WO2023058106A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2023058106A1
WO2023058106A1 PCT/JP2021/036773 JP2021036773W WO2023058106A1 WO 2023058106 A1 WO2023058106 A1 WO 2023058106A1 JP 2021036773 W JP2021036773 W JP 2021036773W WO 2023058106 A1 WO2023058106 A1 WO 2023058106A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure space
hole
valve body
low
pressure
Prior art date
Application number
PCT/JP2021/036773
Other languages
French (fr)
Japanese (ja)
Inventor
直人 上中居
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/036773 priority Critical patent/WO2023058106A1/en
Publication of WO2023058106A1 publication Critical patent/WO2023058106A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels

Definitions

  • the present disclosure relates to a compressor that compresses refrigerant.
  • a screw compressor is known as a compressor that compresses and discharges a fluid such as a refrigerant.
  • a screw compressor is provided with a motor, a screw shaft, and a screw rotor inside a casing. When the screw shaft is rotated by the motor, the screw rotor provided on the screw shaft also rotates.
  • a screw groove is formed in the screw rotor, and a gate rotor that meshes with the screw groove is provided.
  • a compression chamber for compressing the refrigerant is formed between the screw groove of the screw rotor and the gate rotor.
  • the volume of the compression chamber formed between the screw groove of the screw rotor and the gate rotor is reduced, thereby compressing the refrigerant.
  • the compressed refrigerant is discharged into the high pressure space. If the timing for starting the discharge of the compressed refrigerant is fixed, there is a risk that the compression loss will increase due to overcompression or insufficient compression depending on the operating conditions.
  • Patent Document 1 discloses a screw-type compressor equipped with a slide valve that adjusts the discharge start timing to vary the internal volume ratio Vi, which is the ratio of the suction volume to the discharge volume. disclosed.
  • a slide valve is also called a variable Vi valve.
  • a compression chamber is formed by a screw groove of a screw rotor, a gate rotor, a casing, and a slide valve.
  • the internal volume is adjusted by moving the slide valve in the axial direction of the screw rotor to change the discharge start position of the high-pressure refrigerant in the compression chamber.
  • a system in which the slide valve is connected to the piston is adopted.
  • a high pressure always acts on the front chamber of the piston, and a high pressure and a low pressure act on the back chamber of the piston, respectively, so that the pressure difference moves the slide valve and changes the internal volume.
  • Patent Document 1 requires a separate safety valve.
  • a safety valve pressure relief valve
  • a safety valve is sometimes installed in a compressor to prevent damage to the compressor when the internal high pressure becomes abnormally high.
  • an installation space In Patent Document 1, in order to install the safety valve, an installation space must be secured separately.
  • the present disclosure has been made to solve the above problems, and provides a compressor that does not require a mounting space for installing a safety valve.
  • a compressor includes a casing in which a low-pressure space and a high-pressure space having a higher pressure than the low-pressure space are formed, a motor housed inside the casing, and a screw fixed to the motor and driven to rotate by the motor.
  • a slide valve arranged along the low-pressure space for changing the internal volume ratio, which is the ratio of the suction volume to the discharge volume of the compression chamber, by sliding along the axial direction of the screw shaft.
  • a valve body formed with a bypass hole connecting the high-pressure space and a valve body provided in the valve body part to open the bypass hole when the pressure in the high-pressure space exceeds a threshold value.
  • the slide valve has a valve body portion and a valve body.
  • a bypass hole connecting the low-pressure space and the high-pressure space is formed in the valve body portion, and the valve body opens and closes the bypass hole. That is, the valve body portion and the valve body have the function of a safety valve that prevents damage to the compressor when the internal high pressure becomes abnormally high. Since the slide valve thus functions as a safety valve, there is no need to install a separate safety valve. Therefore, no mounting space is required for installing the safety valve.
  • FIG. 1 is a circuit diagram showing an air conditioner according to Embodiment 1.
  • FIG. 1 is a cross-sectional view showing a compressor according to Embodiment 1;
  • FIG. 2 is a cross-sectional view showing the slide valve according to Embodiment 1;
  • FIG. 4 is a schematic diagram showing the position of the valve body in Embodiment 1;
  • FIG. 2 is a cross-sectional view showing the slide valve according to Embodiment 1;
  • FIG. 1 is a circuit diagram showing an air conditioner 100 according to Embodiment 1.
  • an air conditioner 100 is a device that adjusts air in an indoor space, and includes an outdoor unit 30 and an indoor unit 40 connected to the outdoor unit 30 .
  • the outdoor unit 30 is provided with a compressor 1 , a channel switching device 52 , an outdoor heat exchanger 53 , an outdoor fan 54 and an expansion section 55 .
  • the indoor unit 40 is provided with an indoor heat exchanger 56 and an indoor fan 57 .
  • the compressor 1, the flow switching device 52, the outdoor heat exchanger 53, the expansion section 55, and the indoor heat exchanger 56 are connected by refrigerant pipes 51 to form a refrigerant circuit 50 through which the refrigerant flows.
  • the compressor 1 sucks a low-temperature, low-pressure refrigerant, compresses the sucked refrigerant, converts it into a high-temperature, high-pressure refrigerant, and discharges it.
  • the flow switching device 52 switches the direction in which the refrigerant flows in the refrigerant circuit 50, and is, for example, a four-way valve.
  • the outdoor heat exchanger 53 exchanges heat, for example, between outdoor air and refrigerant.
  • the outdoor heat exchanger 53 acts as a condenser during cooling operation and acts as an evaporator during heating operation.
  • the outdoor blower 54 is a device that sends outdoor air to the outdoor heat exchanger 53.
  • the expansion part 55 is a pressure reducing valve or an expansion valve that reduces the pressure of the refrigerant to expand it.
  • the expansion part 55 is, for example, an electronic expansion valve whose opening is adjusted.
  • the indoor heat exchanger 56 exchanges heat, for example, between indoor air and refrigerant.
  • the indoor heat exchanger 56 acts as an evaporator during cooling operation, and acts as a condenser during heating operation.
  • the indoor air blower 57 is a device that sends indoor air to the indoor heat exchanger 56 .
  • cooling operation Next, operation modes of the air conditioner 100 will be described.
  • the cooling operation the refrigerant sucked into the compressor 1 is compressed by the compressor 1 and discharged in a high-temperature and high-pressure gas state.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1 passes through the flow switching device 52 and flows into the outdoor heat exchanger 53 acting as a condenser. It is heat-exchanged with outdoor air sent by 54 and condenses and liquefies.
  • the condensed liquid refrigerant flows into the expansion section 55, where it is expanded and decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flows into the indoor heat exchanger 56 acting as an evaporator, where it exchanges heat with the indoor air sent by the indoor blower 57 to evaporate and become gas. do.
  • the indoor air is cooled, and cooling is performed in the room.
  • the vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow switching device 52 and is sucked into the compressor 1 .
  • the heating operation In the heating operation, the refrigerant sucked into the compressor 1 is compressed by the compressor 1 and discharged in a high-temperature and high-pressure gas state.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1 passes through the flow switching device 52 and flows into the indoor heat exchanger 56 acting as a condenser. It is heat exchanged with the room air sent by 57 and condenses and liquefies. At this time, the indoor air is warmed, and heating is performed in the room.
  • the condensed liquid refrigerant flows into the expansion section 55, where it is expanded and decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. Then, the gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 53 acting as an evaporator, where it is heat-exchanged with the outdoor air sent by the outdoor fan 54 to evaporate and gasify. do.
  • the vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow switching device 52 and is sucked into the compressor 1 .
  • FIG. 2 is a cross-sectional view showing the compressor 1 according to Embodiment 1.
  • the compressor 1 compresses a refrigerant, and as shown in FIG. , a gate rotor 6 and a slide valve 10 .
  • the casing 2 forms an outer shell of the compressor 1 and has a cylindrical shape. Inside the cylindrical wall 2a of the casing 2, a low pressure space 13 located on the motor 4 side and a high pressure space 14 located on the opposite side to the motor 4 side are formed. A low-temperature, low-pressure gaseous refrigerant flows into the low-pressure space 13 .
  • the high-pressure space 14 is a space having a higher pressure than the low-pressure space 13, and a high-temperature and high-pressure gaseous refrigerant flows therein.
  • the high-pressure space 14 is formed with a discharge port 8 through which the refrigerant is discharged from the compression chamber 12 formed by the screw rotor 3 and the gate rotor 6, and a discharge passage 7 through which the refrigerant discharged from the discharge port 8 flows.
  • the casing 2 has a high-low pressure partition wall 70 that protrudes inward.
  • the high-low pressure partition wall 70 partitions the low-pressure space 13 and the high-pressure space 14 .
  • a semi-cylindrical slide valve housing groove 9 for housing the slide valve 10 is formed along the bearing housing 20 and the screw rotor 3 inside the casing 2 .
  • the bearing housing 20 is provided inside the casing 2 on the side of the high-pressure space 14 and accommodates the bearing 21 .
  • the bearing 21 is a cylindrical member, and the screw shaft 5 is rotatably supported by inserting the screw shaft 5 into the inner peripheral portion thereof.
  • the motor 4 is provided inside the casing 2, the number of revolutions of which is changed by inverter control or the like, and has a motor stator 4a and a motor rotor 4b.
  • the motor stator 4 a has a cylindrical shape, and the outer peripheral surface thereof is fixed to the cylindrical wall 2 a of the casing 2 .
  • a coil (not shown) to which power is supplied from an external power supply (not shown) is wound around the motor stator 4a.
  • the motor rotor 4b has a cylindrical shape, and is arranged with a space in the inner peripheral portion of the motor stator 4a. The motor rotor 4b rotates when power is supplied to the motor stator 4a.
  • the screw shaft 5 is a cylindrical member provided in the center of the casing 2 inside the casing 2 and connects the motor 4 and the screw rotor 3 .
  • the screw shaft 5 is fixed to the motor 4 and driven to rotate by the motor 4 .
  • the screw rotor 3 is fixed to the screw shaft 5 and rotates as the screw shaft 5 rotates. be.
  • the screw rotor 3 is formed with a plurality of screw grooves 3a that are spiral grooves.
  • the screw rotor 3 and the motor rotor 4 b are arranged coaxially with each other, and both are fixed to the screw shaft 5 .
  • Gate rotor 6 A pair of gate rotors 6 are arranged in the radial direction of the screw rotor 3 .
  • the gate rotor 6 has a plurality of radially extending gates 6a, and the gates 6a mesh and engage with the screw grooves 3a of the screw rotor 3.
  • a compression chamber 12 in which the refrigerant is compressed is provided between the gate 6a and the screw groove 3a.
  • the slide valve 10 is arranged along the outer peripheral surface of the screw rotor 3 and housed in the slide valve housing groove 9 .
  • the slide valve 10 changes the internal volume ratio, which is the ratio of the suction volume to the discharge volume of the compression chamber 12 .
  • the slide valve 10 slides along the axial direction of the screw shaft 5 to change the discharge start position of the refrigerant compressed in the compression chamber 12, thereby freely changing the internal volume in two stages.
  • the change stage of the internal volume of the slide valve 10 is not limited to two stages, and may be changed in three or more stages or steplessly.
  • the slide valve 10 has a drive mechanism 11, a guide portion 10a, a connecting portion 10b, and a valve body 10c.
  • the drive mechanism 11 drives the valve body 10c to slide.
  • the guide portion 10a has a guide surface 19 that faces and contacts the bearing housing 20, and guides the valve body 10c to slide in the axial direction.
  • the connecting portion 10b is a rod-shaped member that connects the guide portion 10a and the valve body 10c.
  • the valve body 10c faces the screw rotor 3, forms the compression chamber 12 and the discharge port 8, and is a member that slides in the axial direction.
  • the volume of the compression chamber 12 formed by the screw rotor 3, the gate rotor 6 and the slide valve 10 decreases, compressing the refrigerant.
  • the compression chamber 12 and the discharge port 8 are connected. As a result, the compressed refrigerant is discharged from the compression chamber 12 to the discharge port 8 .
  • a safety valve is a valve that prevents damage to the compressor 1 when the internal high pressure becomes abnormally high.
  • the valve body 10 c of the slide valve 10 has a valve body portion 18 , a valve body 16 and a spring 17 .
  • the valve body portion 18 is a cylindrical member forming the outer shell of the valve body 10c.
  • a bypass hole 15 connecting the low-pressure space 13 and the high-pressure space 14 is formed in the valve body portion 18 .
  • the bypass hole 15 has a first hole 15a and a second hole 15b.
  • the first hole 15 a is a hole that is connected to the discharge port 8 in the high pressure space 14 and extends along the axial direction of the screw shaft 5 .
  • the first hole 15 a has a high pressure space side horizontal hole 61 and a low pressure space side horizontal hole 62 .
  • the high-pressure space side horizontal hole 61 is a long hole connected to the high-pressure space 14 .
  • the low-pressure space-side horizontal hole 62 is connected to the high-pressure space-side horizontal hole 61 and the low-pressure space 13 and has a larger diameter than the high-pressure space-side horizontal hole 61 . Since the low-pressure space side hole 62 has a larger diameter than the high-pressure space side hole 61 , the connection portion between the high-pressure space side hole 61 and the low-pressure space side hole 62 forms a step 63 .
  • the second hole 15b is a hole that extends from the first hole 15a in a direction away from the screw rotor 3 and is connected to the low pressure space 13. That is, the first hole 15a and the second hole 15b intersect perpendicularly.
  • the valve body 16 is provided in the valve body portion 18 and opens the bypass hole 15 when the pressure in the high-pressure space 14 exceeds a threshold value.
  • the valve body 16 is arranged at a portion where the first hole 15a and the second hole 15b are connected.
  • the valve body 16 is inserted into the first hole 15a from the low-pressure space 13 side, and the bypass hole 15 is closed when the tip portion 16a exceeds the second hole 15b. Closed.
  • the bypass hole 15 is closed.
  • FIG. 4 is a schematic diagram showing the position of the valve body 16 in the first embodiment.
  • the valve body 16 is positioned off the center of the rod of the drive mechanism 11 . This is because the other bypass hole 15 and the valve body 16 are provided at symmetrical positions with respect to the central axis when it is desired to speed up the bypass between the low-pressure space 13 and the high-pressure space 14 . This avoids difficulty in providing another bypass hole 15 or valve element 16 in a space other than the central axis when the bypass hole 15 is provided in the central axis.
  • FIG. 5 is a cross-sectional view showing the slide valve 10 according to Embodiment 1.
  • FIG. A spring 17 is provided in the valve body portion 18 and biases the valve body 16 in a direction to close the bypass hole 15 .
  • the spring 17 expands and contracts in the axial direction, and as shown in FIG. 3, the valve body 16 closes the bypass hole 15 when the spring 17 is expanded. Thereby, the connection between the high-pressure space 14 and the low-pressure space 13 is cut off.
  • the valve body 16 opens the bypass hole 15 when the spring 17 is compressed. Thereby, the high pressure space 14 and the low pressure space 13 are connected.
  • the spring 17 may be an elastic body having a similar function. Further, the spring constant of the spring 17 is determined so as to open and close according to a predetermined differential pressure between the high pressure space 14 and the low pressure space 13 .
  • the valve body 16 receives the differential pressure between the high-pressure space 14 and the low-pressure space 13 , but normally the valve body 16 closes the bypass hole 15 due to the biasing force of the spring 17 attached to the valve body 16 . Therefore, by adjusting the biasing force of the spring 17, the valve body 16 can be set to open the bypass hole 15 with an arbitrary differential pressure. That is, the slide valve 10 can reduce the high pressure by releasing the high pressure to the low pressure space 13 with an arbitrary differential pressure. Thus, the slide valve 10 has the function of a safety valve.
  • the slide valve 10 has the valve body portion 18 and the valve body 16 .
  • a bypass hole 15 connecting the low-pressure space 13 and the high-pressure space 14 is formed in the valve body portion 18 , and the valve body 16 opens and closes the bypass hole 15 . That is, the valve body portion 18 and the valve body 16 have the function of a safety valve that prevents damage to the compressor 1 when the internal high pressure becomes abnormally high.
  • the slide valve 10 since the slide valve 10 has the function of a safety valve, it is not necessary to separately install a safety valve. Therefore, a separate mounting space for installing the safety valve is not required.
  • the twin-screw compressor 1 or the open-type compressor 1 may be used. Further, the compressor 1 may be driven by constant-speed driving in which the motor 4 is driven at a constant number of revolutions, or by inverter driving in which the number of revolutions of the motor 4 is controlled.

Abstract

This compressor is provided with: a casing having a low-pressure space and a high-pressure space having pressure higher than that of the low-pressure space; a motor accommodated in the casing; a screw shaft that is fixed to the motor and rotationally driven by the motor; a screw rotor that is fixed to the screw shaft, rotates with rotation of the screw shaft, and has a compression room that compresses a refrigerant flowing in from the low-pressure space and flows out the compressed refrigerant to the high-pressure space; and a slide valve that is arranged along an outer peripheral surface of the screw rotor and changes an inner volume ratio showing the ratio of a suction volume to an ejection volume of the compression room by sliding along an axial direction of the screw shaft. The slide valve has a valve body part having a bypass hole that connects the low-pressure space to the high-pressure space, and a valve body that is provided in the valve body part and brings the bypass hole into an open state when the pressure of the high-pressure space exceeds a threshold.

Description

圧縮機compressor
 本開示は、冷媒を圧縮する圧縮機に関する。 The present disclosure relates to a compressor that compresses refrigerant.
 従来、冷媒といった流体を圧縮して吐出する圧縮機として、スクリュー式の圧縮機が知られている。スクリュー式の圧縮機は、ケーシングの内部に、モータと、スクリュー軸と、スクリューロータとが設けられている。そして、モータによってスクリュー軸が回転すると、スクリュー軸に設けられたスクリューロータも、回転する。スクリューロータには、スクリュー溝が形成されており、スクリュー溝に噛み合うゲートロータが設けられている。また、スクリューロータのスクリュー溝とゲートロータとの間に、冷媒を圧縮する圧縮室が形成されている。低圧空間から流入した冷媒が圧縮室に流入すると、スクリューロータのスクリュー溝とゲートロータとの間に形成された圧縮室の容積が縮小することによって、冷媒が圧縮される。圧縮された冷媒は、高圧空間に吐出される。圧縮された冷媒の吐出開始のタイミングが固定されている場合、運転条件によっては、過圧縮又は不足圧縮によって圧縮損失が増えるおそれがある。 Conventionally, a screw compressor is known as a compressor that compresses and discharges a fluid such as a refrigerant. A screw compressor is provided with a motor, a screw shaft, and a screw rotor inside a casing. When the screw shaft is rotated by the motor, the screw rotor provided on the screw shaft also rotates. A screw groove is formed in the screw rotor, and a gate rotor that meshes with the screw groove is provided. A compression chamber for compressing the refrigerant is formed between the screw groove of the screw rotor and the gate rotor. When the refrigerant that has flowed from the low-pressure space flows into the compression chamber, the volume of the compression chamber formed between the screw groove of the screw rotor and the gate rotor is reduced, thereby compressing the refrigerant. The compressed refrigerant is discharged into the high pressure space. If the timing for starting the discharge of the compressed refrigerant is fixed, there is a risk that the compression loss will increase due to overcompression or insufficient compression depending on the operating conditions.
 これを解消することを目的として、特許文献1には、吐出開始のタイミングを調整して吸入容積と吐出容積との比である内部容積比Viを可変するスライドバルブを備えるスクリュー式の圧縮機が開示されている。スライドバルブは、可変Vi弁とも呼称される。スクリュー式の圧縮機において、スクリューロータのスクリュー溝と、ゲートロータと、ケーシングと、スライドバルブとで圧縮室が形成されている。スライドバルブがスクリューロータの軸方向に移動し、圧縮室において高圧となった冷媒の吐出開始位置が変更されることによって、内部容積が調整される。特許文献1において、スライドバルブはピストンに連結された方式が採用されている。ピストンの前面室には常に高圧圧力が作用し、ピストンの背面室には高圧圧力及び低圧圧力がそれぞれ作用することによって、圧力差によってスライドバルブが移動して、内部容積が変化する。 For the purpose of solving this problem, Patent Document 1 discloses a screw-type compressor equipped with a slide valve that adjusts the discharge start timing to vary the internal volume ratio Vi, which is the ratio of the suction volume to the discharge volume. disclosed. A slide valve is also called a variable Vi valve. In a screw compressor, a compression chamber is formed by a screw groove of a screw rotor, a gate rotor, a casing, and a slide valve. The internal volume is adjusted by moving the slide valve in the axial direction of the screw rotor to change the discharge start position of the high-pressure refrigerant in the compression chamber. In Patent Document 1, a system in which the slide valve is connected to the piston is adopted. A high pressure always acts on the front chamber of the piston, and a high pressure and a low pressure act on the back chamber of the piston, respectively, so that the pressure difference moves the slide valve and changes the internal volume.
特開2011-43084号公報JP 2011-43084 A
 しかしながら、特許文献1に開示された圧縮機は、安全弁を別途設ける必要がある。圧縮機において、内部の高圧圧力が異常に高くなった際に圧縮機の破損を防止するため、安全弁(圧力逃がし弁)を設置することがある。特許文献1は、安全弁を設置するために、別途、取付スペースを確保しなければならない。 However, the compressor disclosed in Patent Document 1 requires a separate safety valve. A safety valve (pressure relief valve) is sometimes installed in a compressor to prevent damage to the compressor when the internal high pressure becomes abnormally high. In Patent Document 1, in order to install the safety valve, an installation space must be secured separately.
 本開示は、上記のような課題を解決するためになされたもので、安全弁を設置する取付スペースが不要な圧縮機を提供するものである。 The present disclosure has been made to solve the above problems, and provides a compressor that does not require a mounting space for installing a safety valve.
 本開示に係る圧縮機は、低圧空間と、低圧空間よりも圧力が高い高圧空間とが形成されたケーシングと、ケーシングの内部に収容されたモータと、モータに固定され、モータによって回転駆動するスクリュー軸と、スクリュー軸に固定され、スクリュー軸の回転に伴って回転して、低圧空間から流入する冷媒を圧縮して高圧空間に流出させる圧縮室が形成されたスクリューロータと、スクリューロータの外周面に沿って配置され、圧縮室の吐出容積に対する吸入容積の比である内部容積比を、スクリュー軸の軸方向に沿ってスライドすることによって変更するスライドバルブと、を備え、スライドバルブは、低圧空間と高圧空間とを接続するバイパス孔が形成された弁体部と、弁体部に設けられ、高圧空間の圧力が閾値を超えた場合にバイパス孔を開状態とする弁体と、を有する。 A compressor according to the present disclosure includes a casing in which a low-pressure space and a high-pressure space having a higher pressure than the low-pressure space are formed, a motor housed inside the casing, and a screw fixed to the motor and driven to rotate by the motor. a shaft, a screw rotor formed with a compression chamber that is fixed to the screw shaft, rotates with the rotation of the screw shaft, compresses the refrigerant flowing from the low-pressure space and flows out to the high-pressure space, and the outer peripheral surface of the screw rotor. and a slide valve arranged along the low-pressure space for changing the internal volume ratio, which is the ratio of the suction volume to the discharge volume of the compression chamber, by sliding along the axial direction of the screw shaft. and a valve body formed with a bypass hole connecting the high-pressure space and a valve body provided in the valve body part to open the bypass hole when the pressure in the high-pressure space exceeds a threshold value.
 本開示によれば、スライドバルブは、弁体部と弁体とを有している。弁体部には低圧空間と高圧空間とを接続するバイパス孔が形成されており、弁体は、バイパス孔を開閉するものである。即ち、弁体部と弁体とは、内部の高圧圧力が異常に高くなった際に圧縮機の破損を防止する安全弁の機能を有している。このように、スライドバルブが安全弁の機能を有しているため、安全弁を別途設置する必要がない。従って、安全弁を設置する取付スペースが不要である。 According to the present disclosure, the slide valve has a valve body portion and a valve body. A bypass hole connecting the low-pressure space and the high-pressure space is formed in the valve body portion, and the valve body opens and closes the bypass hole. That is, the valve body portion and the valve body have the function of a safety valve that prevents damage to the compressor when the internal high pressure becomes abnormally high. Since the slide valve thus functions as a safety valve, there is no need to install a separate safety valve. Therefore, no mounting space is required for installing the safety valve.
実施の形態1に係る空気調和機を示す回路図である。1 is a circuit diagram showing an air conditioner according to Embodiment 1. FIG. 実施の形態1に係る圧縮機を示す断面図である。1 is a cross-sectional view showing a compressor according to Embodiment 1; FIG. 実施の形態1におけるスライドバルブを示す断面図である。FIG. 2 is a cross-sectional view showing the slide valve according to Embodiment 1; 実施の形態1における弁体の位置を示す模式図である。FIG. 4 is a schematic diagram showing the position of the valve body in Embodiment 1; 実施の形態1におけるスライドバルブを示す断面図である。FIG. 2 is a cross-sectional view showing the slide valve according to Embodiment 1;
 以下、本開示の圧縮機の実施の形態について、図面を参照しながら説明する。なお、本開示は、以下に説明する実施の形態によって限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の説明において、本開示の理解を容易にするために方向を表す用語を適宜用いるが、これは本開示を説明するためのものであって、これらの用語は本開示を限定するものではない。方向を表す用語としては、例えば、「上」、「下」、「右」、「左」、「前」又は「後」等が挙げられる。なお、一部の図面において、断面図のハッチングを一部省略している。 Hereinafter, embodiments of the compressor of the present disclosure will be described with reference to the drawings. It should be noted that the present disclosure is not limited by the embodiments described below. In addition, in the following drawings, including FIG. 1, the size relationship of each constituent member may differ from the actual one. In addition, in the following description, directional terms are used as appropriate to facilitate understanding of the present disclosure, but this is for the purpose of describing the present disclosure, and these terms are intended to limit the present disclosure. isn't it. Directional terms include, for example, "up", "down", "right", "left", "front" or "back". In some drawings, hatching in cross-sectional views is partially omitted.
実施の形態1.
 図1は、実施の形態1に係る空気調和機100を示す回路図である。図1に示すように、空気調和機100は、室内空間の空気を調整する装置であり、室外機30と、室外機30に接続された室内機40とを備えている。室外機30には、圧縮機1、流路切替装置52、室外熱交換器53、室外送風機54及び膨張部55が設けられている。室内機40には、室内熱交換器56及び室内送風機57が設けられている。
Embodiment 1.
FIG. 1 is a circuit diagram showing an air conditioner 100 according to Embodiment 1. FIG. As shown in FIG. 1 , an air conditioner 100 is a device that adjusts air in an indoor space, and includes an outdoor unit 30 and an indoor unit 40 connected to the outdoor unit 30 . The outdoor unit 30 is provided with a compressor 1 , a channel switching device 52 , an outdoor heat exchanger 53 , an outdoor fan 54 and an expansion section 55 . The indoor unit 40 is provided with an indoor heat exchanger 56 and an indoor fan 57 .
 圧縮機1、流路切替装置52、室外熱交換器53、膨張部55及び室内熱交換器56が冷媒配管51により接続されて、冷媒が流れる冷媒回路50が構成されている。圧縮機1は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。流路切替装置52は、冷媒回路50において冷媒が流れる方向を切り替えるものであり、例えば四方弁である。室外熱交換器53は、例えば室外空気と冷媒との間で熱交換するものである。室外熱交換器53は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。 The compressor 1, the flow switching device 52, the outdoor heat exchanger 53, the expansion section 55, and the indoor heat exchanger 56 are connected by refrigerant pipes 51 to form a refrigerant circuit 50 through which the refrigerant flows. The compressor 1 sucks a low-temperature, low-pressure refrigerant, compresses the sucked refrigerant, converts it into a high-temperature, high-pressure refrigerant, and discharges it. The flow switching device 52 switches the direction in which the refrigerant flows in the refrigerant circuit 50, and is, for example, a four-way valve. The outdoor heat exchanger 53 exchanges heat, for example, between outdoor air and refrigerant. The outdoor heat exchanger 53 acts as a condenser during cooling operation and acts as an evaporator during heating operation.
 室外送風機54は、室外熱交換器53に室外空気を送る機器である。膨張部55は、冷媒を減圧して膨張する減圧弁又は膨張弁である。膨張部55は、例えば開度が調整される電子式膨張弁である。室内熱交換器56は、例えば室内空気と冷媒との間で熱交換するものである。室内熱交換器56は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。室内送風機57は、室内熱交換器56に室内空気を送る機器である。 The outdoor blower 54 is a device that sends outdoor air to the outdoor heat exchanger 53. The expansion part 55 is a pressure reducing valve or an expansion valve that reduces the pressure of the refrigerant to expand it. The expansion part 55 is, for example, an electronic expansion valve whose opening is adjusted. The indoor heat exchanger 56 exchanges heat, for example, between indoor air and refrigerant. The indoor heat exchanger 56 acts as an evaporator during cooling operation, and acts as a condenser during heating operation. The indoor air blower 57 is a device that sends indoor air to the indoor heat exchanger 56 .
 (運転モード、冷房運転)
 次に、空気調和機100の運転モードについて説明する。先ず、冷房運転について説明する。冷房運転において、圧縮機1に吸入された冷媒は、圧縮機1によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機1から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置52を通過して、凝縮器として作用する室外熱交換器53に流入し、室外熱交換器53において、室外送風機54によって送られる室外空気と熱交換されて凝縮して液化する。凝縮された液状態の冷媒は、膨張部55に流入し、膨張部55において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室内熱交換器56に流入し、室内熱交換器56において、室内送風機57によって送られる室内空気と熱交換されて蒸発してガス化する。このとき、室内空気が冷やされ、室内において冷房が実施される。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置52を通過して、圧縮機1に吸入される。
(Operating mode, cooling operation)
Next, operation modes of the air conditioner 100 will be described. First, the cooling operation will be explained. In the cooling operation, the refrigerant sucked into the compressor 1 is compressed by the compressor 1 and discharged in a high-temperature and high-pressure gas state. The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1 passes through the flow switching device 52 and flows into the outdoor heat exchanger 53 acting as a condenser. It is heat-exchanged with outdoor air sent by 54 and condenses and liquefies. The condensed liquid refrigerant flows into the expansion section 55, where it is expanded and decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. Then, the gas-liquid two-phase refrigerant flows into the indoor heat exchanger 56 acting as an evaporator, where it exchanges heat with the indoor air sent by the indoor blower 57 to evaporate and become gas. do. At this time, the indoor air is cooled, and cooling is performed in the room. The vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow switching device 52 and is sucked into the compressor 1 .
 (運転モード、暖房運転)
 次に、暖房運転について説明する。暖房運転において、圧縮機1に吸入された冷媒は、圧縮機1によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機1から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置52を通過して、凝縮器として作用する室内熱交換器56に流入し、室内熱交換器56において、室内送風機57によって送られる室内空気と熱交換されて凝縮して液化する。このとき、室内空気が暖められ、室内において暖房が実施される。凝縮された液状態の冷媒は、膨張部55に流入し、膨張部55において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室外熱交換器53に流入し、室外熱交換器53において、室外送風機54によって送られる室外空気と熱交換されて蒸発してガス化する。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置52を通過して、圧縮機1に吸入される。
(Operating mode, heating operation)
Next, the heating operation will be explained. In the heating operation, the refrigerant sucked into the compressor 1 is compressed by the compressor 1 and discharged in a high-temperature and high-pressure gas state. The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1 passes through the flow switching device 52 and flows into the indoor heat exchanger 56 acting as a condenser. It is heat exchanged with the room air sent by 57 and condenses and liquefies. At this time, the indoor air is warmed, and heating is performed in the room. The condensed liquid refrigerant flows into the expansion section 55, where it is expanded and decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. Then, the gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 53 acting as an evaporator, where it is heat-exchanged with the outdoor air sent by the outdoor fan 54 to evaporate and gasify. do. The vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow switching device 52 and is sucked into the compressor 1 .
 図2は、実施の形態1における圧縮機1を示す断面図である。次に、圧縮機1について詳細に説明する。圧縮機1は、冷媒を圧縮するものであり、図2に示すように、圧縮機1は、ケーシング2と、軸受ハウジング20と、軸受21と、モータ4と、スクリュー軸5と、スクリューロータ3と、ゲートロータ6と、スライドバルブ10とを備えている。 FIG. 2 is a cross-sectional view showing the compressor 1 according to Embodiment 1. FIG. Next, the compressor 1 will be explained in detail. The compressor 1 compresses a refrigerant, and as shown in FIG. , a gate rotor 6 and a slide valve 10 .
 (ケーシング2)
 ケーシング2は、圧縮機1の外郭を構成するものであり、円筒状をなしている。ケーシング2の円筒壁2aの内部には、モータ4側に位置する低圧空間13と、モータ4側とは反対側に位置する高圧空間14とが形成されている。低圧空間13には、低温且つ低圧のガス状態の冷媒が流入する。高圧空間14は、低圧空間13よりも圧力が高い空間であり、高温且つ高圧のガス状態の冷媒が流れる。高圧空間14には、スクリューロータ3及びゲートロータ6によって形成される圧縮室12から冷媒が吐出される吐出ポート8と、吐出ポート8から吐出される冷媒が流れる吐出流路7とが形成されている。ケーシング2には、内側に突出するように設けられた高低圧隔壁70を有する。高低圧隔壁70は、低圧空間13と高圧空間14とを区画するものである。なお、ケーシング2の内部には、軸受ハウジング20とスクリューロータ3とに沿うように、スライドバルブ10を収納する半円筒状のスライドバルブ収納溝9が形成されている。
(Casing 2)
The casing 2 forms an outer shell of the compressor 1 and has a cylindrical shape. Inside the cylindrical wall 2a of the casing 2, a low pressure space 13 located on the motor 4 side and a high pressure space 14 located on the opposite side to the motor 4 side are formed. A low-temperature, low-pressure gaseous refrigerant flows into the low-pressure space 13 . The high-pressure space 14 is a space having a higher pressure than the low-pressure space 13, and a high-temperature and high-pressure gaseous refrigerant flows therein. The high-pressure space 14 is formed with a discharge port 8 through which the refrigerant is discharged from the compression chamber 12 formed by the screw rotor 3 and the gate rotor 6, and a discharge passage 7 through which the refrigerant discharged from the discharge port 8 flows. there is The casing 2 has a high-low pressure partition wall 70 that protrudes inward. The high-low pressure partition wall 70 partitions the low-pressure space 13 and the high-pressure space 14 . A semi-cylindrical slide valve housing groove 9 for housing the slide valve 10 is formed along the bearing housing 20 and the screw rotor 3 inside the casing 2 .
 (軸受ハウジング20)
 軸受ハウジング20は、ケーシング2の内部における高圧空間14側に設けられており、軸受21を収納するものである。
(Bearing housing 20)
The bearing housing 20 is provided inside the casing 2 on the side of the high-pressure space 14 and accommodates the bearing 21 .
 (軸受21)
 軸受21は、円筒状の部材であり、内周部にスクリュー軸5が挿入されることにより、スクリュー軸5が回転自在に支持されている。
(Bearing 21)
The bearing 21 is a cylindrical member, and the screw shaft 5 is rotatably supported by inserting the screw shaft 5 into the inner peripheral portion thereof.
 (モータ4)
 モータ4は、ケーシング2の内部に設けられ、インバータ制御等によって回転数が変化するものであり、モータステータ4aとモータロータ4bとを有している。モータステータ4aは、円筒形状をなしており、外周面がケーシング2の円筒壁2aに固定されている。モータステータ4aには、外部の電源(図示せず)から電力が供給されるコイル(図示せず)が巻回されている。モータロータ4bは、円筒形状をなしており、モータステータ4aの内周部に間隔を空けて配置されている。モータロータ4bは、モータステータ4aに電力が供給されることによって回転する。
(motor 4)
The motor 4 is provided inside the casing 2, the number of revolutions of which is changed by inverter control or the like, and has a motor stator 4a and a motor rotor 4b. The motor stator 4 a has a cylindrical shape, and the outer peripheral surface thereof is fixed to the cylindrical wall 2 a of the casing 2 . A coil (not shown) to which power is supplied from an external power supply (not shown) is wound around the motor stator 4a. The motor rotor 4b has a cylindrical shape, and is arranged with a space in the inner peripheral portion of the motor stator 4a. The motor rotor 4b rotates when power is supplied to the motor stator 4a.
 (スクリュー軸5)
 スクリュー軸5は、ケーシング2の内部において、ケーシング2の中央に設けられた円柱状の部材であり、モータ4とスクリューロータ3とを接続するものである。スクリュー軸5は、モータ4に固定され、モータ4によって回転駆動する。
(Screw shaft 5)
The screw shaft 5 is a cylindrical member provided in the center of the casing 2 inside the casing 2 and connects the motor 4 and the screw rotor 3 . The screw shaft 5 is fixed to the motor 4 and driven to rotate by the motor 4 .
 (スクリューロータ3)
 スクリューロータ3は、スクリュー軸5に固定され、スクリュー軸5の回転に伴って回転して、低圧空間13から流入する冷媒を圧縮して高圧空間14に流出させる圧縮室12が形成されたものである。スクリューロータ3には、複数の螺旋状の溝であるスクリュー溝3aが形成されている。スクリューロータ3とモータロータ4bとは、互いに同一軸線状に配置されており、いずれもスクリュー軸5に固定されている。
(Screw rotor 3)
The screw rotor 3 is fixed to the screw shaft 5 and rotates as the screw shaft 5 rotates. be. The screw rotor 3 is formed with a plurality of screw grooves 3a that are spiral grooves. The screw rotor 3 and the motor rotor 4 b are arranged coaxially with each other, and both are fixed to the screw shaft 5 .
 (ゲートロータ6)
 ゲートロータ6は、スクリューロータ3の径方向に一対配置されている。ゲートロータ6は、放射状に延びる複数のゲート6aを有しており、ゲート6aは、スクリューロータ3のスクリュー溝3aに噛み合って係合している。ゲート6aとスクリュー溝3aとの間は、冷媒が圧縮される圧縮室12となっている。
(Gate rotor 6)
A pair of gate rotors 6 are arranged in the radial direction of the screw rotor 3 . The gate rotor 6 has a plurality of radially extending gates 6a, and the gates 6a mesh and engage with the screw grooves 3a of the screw rotor 3. As shown in FIG. A compression chamber 12 in which the refrigerant is compressed is provided between the gate 6a and the screw groove 3a.
 (スライドバルブ10)
 スライドバルブ10は、スクリューロータ3の外周面に沿って配置されたものであり、スライドバルブ収納溝9に収納されている。スライドバルブ10は、圧縮室12の吐出容積に対する吸入容積の比である内部容積比を変更する。スライドバルブ10は、スクリュー軸5の軸方向に沿ってスライドすることによって、圧縮室12で圧縮される冷媒の吐出開始位置を変化させ、内部容積を2段階に変更自在にしている。なお、スライドバルブ10の内部容積の変更段階は、2段階に限らず、3段階以上又は無段階に変更自在であってもよい。スライドバルブ10は、駆動機構11と、ガイド部10aと、連結部10bと、バルブ本体10cとを有している。
(Slide valve 10)
The slide valve 10 is arranged along the outer peripheral surface of the screw rotor 3 and housed in the slide valve housing groove 9 . The slide valve 10 changes the internal volume ratio, which is the ratio of the suction volume to the discharge volume of the compression chamber 12 . The slide valve 10 slides along the axial direction of the screw shaft 5 to change the discharge start position of the refrigerant compressed in the compression chamber 12, thereby freely changing the internal volume in two stages. In addition, the change stage of the internal volume of the slide valve 10 is not limited to two stages, and may be changed in three or more stages or steplessly. The slide valve 10 has a drive mechanism 11, a guide portion 10a, a connecting portion 10b, and a valve body 10c.
 駆動機構11は、バルブ本体10cがスライドするように駆動するものである。ガイド部10aは、軸受ハウジング20に対向して接触するガイド面19を有し、バルブ本体10cが軸方向にスライドすることをガイドするものである。連結部10bは、棒状の部材であり、ガイド部10aとバルブ本体10cとを連結するものである。バルブ本体10cは、スクリューロータ3に対向し、圧縮室12と吐出ポート8とを形成するものであり、軸方向にスライドする部材である。 The drive mechanism 11 drives the valve body 10c to slide. The guide portion 10a has a guide surface 19 that faces and contacts the bearing housing 20, and guides the valve body 10c to slide in the axial direction. The connecting portion 10b is a rod-shaped member that connects the guide portion 10a and the valve body 10c. The valve body 10c faces the screw rotor 3, forms the compression chamber 12 and the discharge port 8, and is a member that slides in the axial direction.
 (圧縮機1の動作)
 次に、圧縮機1の動作について説明する。モータステータ4aに電力が供給されると、モータロータ4bが回転する。これにより、モータロータ4bに固定されたスクリュー軸5が回転し、スクリュー軸5に固定されたスクリューロータ3が回転する。スクリューロータ3の回転に伴って、圧縮室12と低圧空間13とが接続されると、低圧空間13から圧縮室12に冷媒が流入する。スクリューロータ3が更に回転すると、圧縮室12と低圧空間13とが遮断され、圧縮が開始される。スクリューロータ3の回転が進むにつれて、スクリューロータ3、ゲートロータ6及びスライドバルブ10によって形成された圧縮室12の容積が減少して、冷媒が圧縮される。スクリューロータ3の回転が更に進むと、圧縮室12と吐出ポート8とが接続される。これにより、圧縮室12から、圧縮された冷媒が吐出ポート8に吐出される。
(Operation of compressor 1)
Next, operation of the compressor 1 will be described. When electric power is supplied to the motor stator 4a, the motor rotor 4b rotates. As a result, the screw shaft 5 fixed to the motor rotor 4b rotates, and the screw rotor 3 fixed to the screw shaft 5 rotates. When the compression chamber 12 and the low-pressure space 13 are connected as the screw rotor 3 rotates, refrigerant flows into the compression chamber 12 from the low-pressure space 13 . When the screw rotor 3 rotates further, the compression chamber 12 and the low pressure space 13 are cut off, and compression starts. As the screw rotor 3 rotates, the volume of the compression chamber 12 formed by the screw rotor 3, the gate rotor 6 and the slide valve 10 decreases, compressing the refrigerant. As the screw rotor 3 rotates further, the compression chamber 12 and the discharge port 8 are connected. As a result, the compressed refrigerant is discharged from the compression chamber 12 to the discharge port 8 .
 (安全弁の機能)
 図3は、実施の形態1におけるスライドバルブ10を示す断面図である。次に、スライドバルブ10に備わる安全弁の機能について説明する。安全弁とは、内部の高圧圧力が異常に高くなった際に圧縮機1の破損を防止する弁である。図3に示すように、スライドバルブ10のバルブ本体10cは、弁体部18と、弁体16と、バネ17とを有する。弁体部18は、バルブ本体10cの外郭を構成する筒状の部材である。弁体部18には、低圧空間13と高圧空間14とを接続するバイパス孔15が形成されている。
(Function of safety valve)
3 is a sectional view showing the slide valve 10 according to Embodiment 1. FIG. Next, the function of the safety valve provided in the slide valve 10 will be described. A safety valve is a valve that prevents damage to the compressor 1 when the internal high pressure becomes abnormally high. As shown in FIG. 3 , the valve body 10 c of the slide valve 10 has a valve body portion 18 , a valve body 16 and a spring 17 . The valve body portion 18 is a cylindrical member forming the outer shell of the valve body 10c. A bypass hole 15 connecting the low-pressure space 13 and the high-pressure space 14 is formed in the valve body portion 18 .
 バイパス孔15は、第1の孔15aと第2の孔15bとを有している。第1の孔15aは、高圧空間14における吐出ポート8に接続され、スクリュー軸5の軸方向に沿って延びる孔である。第1の孔15aは、高圧空間側横孔61と低圧空間側横孔62とを有している。高圧空間側横孔61は、高圧空間14に接続される長さが長い孔である。低圧空間側横孔62は、高圧空間側横孔61と低圧空間13とに接続され、高圧空間側横孔61よりも径が大きい孔である。ここで、低圧空間側横孔62は高圧空間側横孔61よりも径が大きいため、高圧空間側横孔61と低圧空間側横孔62との接続部分は、段差63となっている。 The bypass hole 15 has a first hole 15a and a second hole 15b. The first hole 15 a is a hole that is connected to the discharge port 8 in the high pressure space 14 and extends along the axial direction of the screw shaft 5 . The first hole 15 a has a high pressure space side horizontal hole 61 and a low pressure space side horizontal hole 62 . The high-pressure space side horizontal hole 61 is a long hole connected to the high-pressure space 14 . The low-pressure space-side horizontal hole 62 is connected to the high-pressure space-side horizontal hole 61 and the low-pressure space 13 and has a larger diameter than the high-pressure space-side horizontal hole 61 . Since the low-pressure space side hole 62 has a larger diameter than the high-pressure space side hole 61 , the connection portion between the high-pressure space side hole 61 and the low-pressure space side hole 62 forms a step 63 .
 第2の孔15bは、第1の孔15aからスクリューロータ3から離れる方向に延びて低圧空間13に接続される孔である。即ち、第1の孔15aと第2の孔15bとは垂直に交差している。弁体16は、弁体部18に設けられ、高圧空間14の圧力が閾値を超えた場合にバイパス孔15を開状態とするものである。弁体16は、第1の孔15aと第2の孔15bとが接続される部分に配置されている。ここで、弁体16は、図3に示すように、低圧空間13側から第1の孔15aに挿入されており、先端部16aが第2の孔15bを超えているときにバイパス孔15を閉状態とする。そして、弁体16の先端部16aは、段差63と当接するときにバイパス孔15を閉状態とする。 The second hole 15b is a hole that extends from the first hole 15a in a direction away from the screw rotor 3 and is connected to the low pressure space 13. That is, the first hole 15a and the second hole 15b intersect perpendicularly. The valve body 16 is provided in the valve body portion 18 and opens the bypass hole 15 when the pressure in the high-pressure space 14 exceeds a threshold value. The valve body 16 is arranged at a portion where the first hole 15a and the second hole 15b are connected. Here, as shown in FIG. 3, the valve body 16 is inserted into the first hole 15a from the low-pressure space 13 side, and the bypass hole 15 is closed when the tip portion 16a exceeds the second hole 15b. Closed. When the distal end portion 16 a of the valve body 16 comes into contact with the step 63 , the bypass hole 15 is closed.
 図4は、実施の形態1における弁体16の位置を示す模式図である。図4に示すように、弁体16は、駆機機構11のロッドの中心からずれて位置している。これは、低圧空間13と高圧空間14とのバイパスの速度を速めたい場合に、他のバイパス孔15と弁体16とを中心軸に対して対称の位置に設けることによる。これにより、中心軸にバイパス孔15を設けようとして、他のバイパス孔15又は弁体16を中心軸以外のスペースに設けることが困難になることを回避している。 FIG. 4 is a schematic diagram showing the position of the valve body 16 in the first embodiment. As shown in FIG. 4 , the valve body 16 is positioned off the center of the rod of the drive mechanism 11 . This is because the other bypass hole 15 and the valve body 16 are provided at symmetrical positions with respect to the central axis when it is desired to speed up the bypass between the low-pressure space 13 and the high-pressure space 14 . This avoids difficulty in providing another bypass hole 15 or valve element 16 in a space other than the central axis when the bypass hole 15 is provided in the central axis.
 図5は、実施の形態1におけるスライドバルブ10を示す断面図である。バネ17は、弁体部18に設けられ、弁体16を、バイパス孔15を閉じる方向に付勢するものである。バネ17は、軸方向に伸縮するものであり、図3に示すように、バネ17が伸びた状態において弁体16がバイパス孔15を塞ぐ。これにより、高圧空間14と低圧空間13との接続が遮断される。一方、図5に示すように、バネ17が縮んだ状態において弁体16がバイパス孔15を開く。これにより、高圧空間14と低圧空間13とが接続される。なお、バネ17は、同様の機能を備える弾性体であってもよい。また、バネ17のバネ定数は、高圧空間14と低圧空間13との予め定めた差圧に応じて開閉するように定められている。 FIG. 5 is a cross-sectional view showing the slide valve 10 according to Embodiment 1. FIG. A spring 17 is provided in the valve body portion 18 and biases the valve body 16 in a direction to close the bypass hole 15 . The spring 17 expands and contracts in the axial direction, and as shown in FIG. 3, the valve body 16 closes the bypass hole 15 when the spring 17 is expanded. Thereby, the connection between the high-pressure space 14 and the low-pressure space 13 is cut off. On the other hand, as shown in FIG. 5, the valve body 16 opens the bypass hole 15 when the spring 17 is compressed. Thereby, the high pressure space 14 and the low pressure space 13 are connected. Note that the spring 17 may be an elastic body having a similar function. Further, the spring constant of the spring 17 is determined so as to open and close according to a predetermined differential pressure between the high pressure space 14 and the low pressure space 13 .
 弁体16は、高圧空間14と低圧空間13との差圧を受けるが、通常、弁体16に取り付けられたバネ17の付勢力によって弁体16がバイパス孔15を塞いでいる。従って、バネ17の付勢力を調整することによって、任意の差圧で弁体16がバイパス孔15を開くように設定することができる。即ち、スライドバルブ10は、任意の差圧で高圧圧力を低圧空間13に逃がすことによって、高圧圧力を下げることができる。このように、スライドバルブ10は、安全弁の機能を有している。 The valve body 16 receives the differential pressure between the high-pressure space 14 and the low-pressure space 13 , but normally the valve body 16 closes the bypass hole 15 due to the biasing force of the spring 17 attached to the valve body 16 . Therefore, by adjusting the biasing force of the spring 17, the valve body 16 can be set to open the bypass hole 15 with an arbitrary differential pressure. That is, the slide valve 10 can reduce the high pressure by releasing the high pressure to the low pressure space 13 with an arbitrary differential pressure. Thus, the slide valve 10 has the function of a safety valve.
 本実施の形態1によれば、スライドバルブ10は、弁体部18と弁体16とを有している。弁体部18には低圧空間13と高圧空間14とを接続するバイパス孔15が形成されており、弁体16は、バイパス孔15を開閉するものである。即ち、弁体部18と弁体16とは、内部の高圧圧力が異常に高くなった際に圧縮機1の破損を防止する安全弁の機能を有している。このように、スライドバルブ10が安全弁の機能を有しているため、安全弁を別途設置する必要がない。従って、別途、安全弁を設置する取付スペースが不要である。 According to Embodiment 1, the slide valve 10 has the valve body portion 18 and the valve body 16 . A bypass hole 15 connecting the low-pressure space 13 and the high-pressure space 14 is formed in the valve body portion 18 , and the valve body 16 opens and closes the bypass hole 15 . That is, the valve body portion 18 and the valve body 16 have the function of a safety valve that prevents damage to the compressor 1 when the internal high pressure becomes abnormally high. Thus, since the slide valve 10 has the function of a safety valve, it is not necessary to separately install a safety valve. Therefore, a separate mounting space for installing the safety valve is not required.
 なお、本実施の形態1は、シングルスクリュー式の圧縮機1について例示したが、ツインスクリュー式の圧縮機1としてもよいし、開放型の圧縮機1としてよい。また、圧縮機1の運転は、モータ4を一定の回転数で運転する定速駆動によるものでもよいし、モータ4の回転数を制御するインバータ駆動によるものでもよい。 Although the single-screw compressor 1 is exemplified in the first embodiment, the twin-screw compressor 1 or the open-type compressor 1 may be used. Further, the compressor 1 may be driven by constant-speed driving in which the motor 4 is driven at a constant number of revolutions, or by inverter driving in which the number of revolutions of the motor 4 is controlled.
 1 圧縮機、2 ケーシング、2a 円筒壁、3 スクリューロータ、3a スクリュー溝、4 モータ、4a モータステータ、4b モータロータ、5 スクリュー軸、6 ゲートロータ、6a ゲート、7 吐出流路、8 吐出ポート、9 スライドバルブ収納溝、10 スライドバルブ、10a ガイド部、10b 連結部、10c バルブ本体、11 駆動機構、12 圧縮室、13 低圧空間、14 高圧空間、15 バイパス孔、15a 第1の孔、15b 第2の孔、16 弁体、16a 先端部、17 バネ、18 弁体部、19 ガイド面、20 軸受ハウジング、21 軸受、30 室外機、40 室内機、50 冷媒回路、51 冷媒配管、52 流路切替装置、53 室外熱交換器、54 室外送風機、55 膨張部、56 室内熱交換器、57 室内送風機、61 高圧空間側横孔、62 低圧空間側横孔、63 段差、70 高低圧隔壁、100 空気調和機。 1 compressor, 2 casing, 2a cylindrical wall, 3 screw rotor, 3a screw groove, 4 motor, 4a motor stator, 4b motor rotor, 5 screw shaft, 6 gate rotor, 6a gate, 7 discharge flow path, 8 discharge port, 9 Slide valve storage groove 10 Slide valve 10a Guide part 10b Connection part 10c Valve body 11 Drive mechanism 12 Compression chamber 13 Low pressure space 14 High pressure space 15 Bypass hole 15a First hole 15b Second hole, 16 valve body, 16a tip, 17 spring, 18 valve body part, 19 guide surface, 20 bearing housing, 21 bearing, 30 outdoor unit, 40 indoor unit, 50 refrigerant circuit, 51 refrigerant piping, 52 flow switching Device, 53 outdoor heat exchanger, 54 outdoor fan, 55 expansion part, 56 indoor heat exchanger, 57 indoor fan, 61 high pressure space side hole, 62 low pressure space side hole, 63 step, 70 high and low pressure partition wall, 100 air harmony machine.

Claims (7)

  1.  低圧空間と、前記低圧空間よりも圧力が高い高圧空間とが形成されたケーシングと、
     前記ケーシングの内部に収容されたモータと、
     前記モータに固定され、前記モータによって回転駆動するスクリュー軸と、
     前記スクリュー軸に固定され、前記スクリュー軸の回転に伴って回転して、前記低圧空間から流入する冷媒を圧縮して前記高圧空間に流出させる圧縮室が形成されたスクリューロータと、
     前記スクリューロータの外周面に沿って配置され、前記圧縮室の吐出容積に対する吸入容積の比である内部容積比を、前記スクリュー軸の軸方向に沿ってスライドすることによって変更するスライドバルブと、を備え、
     前記スライドバルブは、
     前記低圧空間と前記高圧空間とを接続するバイパス孔が形成された弁体部と、
     前記弁体部に設けられ、前記高圧空間の圧力が閾値を超えた場合に前記バイパス孔を開状態とする弁体と、を有する
     圧縮機。
    a casing in which a low-pressure space and a high-pressure space having a higher pressure than the low-pressure space are formed;
    a motor housed inside the casing;
    a screw shaft fixed to the motor and driven to rotate by the motor;
    a screw rotor that is fixed to the screw shaft, rotates with the rotation of the screw shaft, and has a compression chamber that compresses the refrigerant flowing in from the low-pressure space and causes it to flow out to the high-pressure space;
    a slide valve arranged along the outer peripheral surface of the screw rotor for changing the internal volume ratio, which is the ratio of the suction volume to the discharge volume of the compression chamber, by sliding along the axial direction of the screw shaft; prepared,
    The slide valve is
    a valve body portion formed with a bypass hole connecting the low-pressure space and the high-pressure space;
    a valve body provided in the valve body portion, the valve body opening the bypass hole when the pressure in the high-pressure space exceeds a threshold value.
  2.  前記スライドバルブは、
     前記弁体を、前記バイパス孔を閉じる方向に付勢するバネを更に有する
     請求項1記載の圧縮機。
    The slide valve is
    The compressor according to claim 1, further comprising a spring that biases the valve body in a direction to close the bypass hole.
  3.  前記バネのバネ定数は、前記高圧空間と前記低圧空間との予め定めた差圧に応じて開閉するように定められている
     請求項2記載の圧縮機。
    The compressor according to claim 2, wherein a spring constant of said spring is set so as to open and close according to a predetermined differential pressure between said high-pressure space and said low-pressure space.
  4.  前記バイパス孔は、
     前記高圧空間に接続され前記スクリュー軸の軸方向に沿って延びる第1の孔と、
     前記第1の孔に接続され、前記第1の孔から前記スクリューロータから離れる方向に延びて前記低圧空間に接続される第2の孔と、を有し、
     前記弁体は、前記第1の孔と前記第2の孔とが接続される部分に配置されている
     請求項1~3のいずれか1項に記載の圧縮機。
    The bypass hole is
    a first hole connected to the high-pressure space and extending along the axial direction of the screw shaft;
    a second hole connected to the first hole, extending from the first hole in a direction away from the screw rotor, and connected to the low-pressure space;
    The compressor according to any one of claims 1 to 3, wherein the valve body is arranged at a portion where the first hole and the second hole are connected.
  5.  前記弁体は、前記低圧空間側から前記第1の孔に挿入されており、先端部が前記第2の孔を超えているときに前記バイパス孔を閉状態とする
     請求項4記載の圧縮機。
    5. The compressor according to claim 4, wherein the valve body is inserted into the first hole from the low-pressure space side, and closes the bypass hole when a tip portion thereof exceeds the second hole. .
  6.  前記第1の孔は、
     前記高圧空間に接続される高圧空間側横孔と、
     前記高圧空間側横孔と前記低圧空間とに接続され、前記高圧空間側横孔よりも径が大きい低圧空間側横孔と、を有し、
     前記弁体の先端部は、前記高圧空間側横孔と前記低圧空間側横孔との接続部分である段差に当接するときに前記バイパス孔を閉状態とする
     請求項4又は5記載の圧縮機。
    The first hole is
    a high-pressure space side horizontal hole connected to the high-pressure space;
    a low-pressure space-side lateral hole connected to the high-pressure space-side lateral hole and the low-pressure space and having a larger diameter than the high-pressure space-side lateral hole;
    6. The compressor according to claim 4, wherein the tip portion of the valve body closes the bypass hole when coming into contact with a step that is a connecting portion between the high-pressure space-side horizontal hole and the low-pressure space-side horizontal hole. .
  7.  前記スライドバルブは、
     前記弁体部及び前記弁体がスライドするように駆動する駆動機構を更に有し、
     前記弁体は、
     前記駆動機構のロッドの中心からずれた位置に設けられている
     請求項1~6のいずれか1項に記載の圧縮機。
    The slide valve is
    further comprising a drive mechanism for driving the valve body portion and the valve body to slide;
    The valve body
    The compressor according to any one of claims 1 to 6, wherein the compressor is provided at a position offset from the center of the rod of the drive mechanism.
PCT/JP2021/036773 2021-10-05 2021-10-05 Compressor WO2023058106A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/036773 WO2023058106A1 (en) 2021-10-05 2021-10-05 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/036773 WO2023058106A1 (en) 2021-10-05 2021-10-05 Compressor

Publications (1)

Publication Number Publication Date
WO2023058106A1 true WO2023058106A1 (en) 2023-04-13

Family

ID=85804011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036773 WO2023058106A1 (en) 2021-10-05 2021-10-05 Compressor

Country Status (1)

Country Link
WO (1) WO2023058106A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240287U (en) * 1985-08-30 1987-03-10
JPH0443883A (en) * 1990-06-11 1992-02-13 Hitachi Ltd Screw compressor
US20100047103A1 (en) * 2006-12-05 2010-02-25 Carrier Corporation Integral Slide Valve Relief Valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240287U (en) * 1985-08-30 1987-03-10
JPH0443883A (en) * 1990-06-11 1992-02-13 Hitachi Ltd Screw compressor
US20100047103A1 (en) * 2006-12-05 2010-02-25 Carrier Corporation Integral Slide Valve Relief Valve

Similar Documents

Publication Publication Date Title
KR20040086562A (en) Refrigerant cycle apparatus
KR20030044867A (en) Multi-stage compression type rotary compressor manufacturing method
KR101738458B1 (en) High pressure compressor and refrigerating machine having the same
KR100629874B1 (en) Capacity variable type rotary compressor and driving method thereof
EP3006740B1 (en) Screw compressor and refrigeration cycle device
JP2974009B1 (en) Multi-stage capacity control scroll compressor
TWI626380B (en) Screw compressor and refrigeration cycle device with screw compressor
WO2017149659A1 (en) Screw compressor and refrigeration cycle device
ES2600557T3 (en) Sliding valve with hot gas bypass port
US11732710B2 (en) Screw compressor, and refrigeration device
JP4005035B2 (en) Variable capacity rotary compressor
WO2011114636A1 (en) Single screw compressor
KR101116214B1 (en) Air conditioning system and control method thereof
US20100037642A1 (en) Compressor capacity control operation mechanism and air conditioner provided with same
KR100527316B1 (en) Closed refrigeration system
JP4516122B2 (en) Volume variable type rotary compressor, method of operating the same, and method of operating an air conditioner including the same
WO2023058106A1 (en) Compressor
JP5515289B2 (en) Refrigeration equipment
WO2017094057A1 (en) Single-screw compressor and refrigeration cycle device
JPH02191882A (en) Displacement control device for compressor and control method thereof
WO2022044149A1 (en) Refrigeration cycle device
KR20180094408A (en) High pressure compressor and refrigerating machine having the same
JP2003148815A (en) Engine driven type heat pump air conditioner
WO2023182457A1 (en) Screw compressor and freezer
GB2537996A (en) Screw compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959849

Country of ref document: EP

Kind code of ref document: A1