WO2023056989A1 - 三维超声地震模型实时成像系统及成像方法 - Google Patents

三维超声地震模型实时成像系统及成像方法 Download PDF

Info

Publication number
WO2023056989A1
WO2023056989A1 PCT/CN2022/134590 CN2022134590W WO2023056989A1 WO 2023056989 A1 WO2023056989 A1 WO 2023056989A1 CN 2022134590 W CN2022134590 W CN 2022134590W WO 2023056989 A1 WO2023056989 A1 WO 2023056989A1
Authority
WO
WIPO (PCT)
Prior art keywords
main control
control unit
transmitting
real
receiving
Prior art date
Application number
PCT/CN2022/134590
Other languages
English (en)
French (fr)
Inventor
刘可禹
高建磊
刘建良
曹雪砷
何晓
Original Assignee
中国石油大学(华东)
中国科学院声学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东), 中国科学院声学研究所 filed Critical 中国石油大学(华东)
Publication of WO2023056989A1 publication Critical patent/WO2023056989A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the application belongs to the technical field of geological simulation, and in particular relates to a real-time imaging system and imaging method of a three-dimensional ultrasonic seismic model for indoor water tank experiments.
  • Ultrasonic imaging technology is an effective means to obtain the three-dimensional structure of the target model, and is widely used in medical imaging, non-destructive testing, and seismic model research.
  • 3D ultrasound imaging there are mainly two commonly used methods for 3D ultrasound imaging: one is to use two-dimensional array probes to emit scanning beams through phase control technology. This method has high requirements for the directivity and consistency of the probe array. The angle is small, the imaging area is limited, and there are high requirements for the target model.
  • the second is mechanical scanning imaging, which uses a single ultrasonic probe to image a single point, fixes the ultrasonic probe on the positioning device, and drives the probe to scan and measure each point of the target area through the positioning device. The speed is slow, and the signal-to-noise ratio of reflected waves is low under the condition of complex interfaces, so real-time imaging of changing geological models cannot be realized.
  • the present application provides a real-time imaging system and imaging method of a three-dimensional ultrasonic seismic model to solve the technical problems that existing ultrasonic imaging methods have high limitations or cannot perform real-time imaging.
  • the embodiment of the present application provides a real-time imaging system for a three-dimensional ultrasonic seismic model, which is used for three-dimensional real-time imaging of a seismic model in an indoor water tank experiment, including:
  • the ultrasonic sensor network comprising at least one transmitting probe and at least one receiving probe, the transmitting probe and the receiving probe being deployed above the seismic model in a spaced network;
  • the hardware subsystem includes a main control unit, an acquisition unit, a transmitting unit, an industrial computer and a display, the acquisition unit, the transmitting unit and the industrial computer are respectively electrically connected to the main control unit, the transmitting probe and the The receiving probes are respectively electrically connected to the transmitting unit and the acquisition unit, the display is electrically connected to the industrial computer, and a software subsystem is deployed in the industrial computer;
  • the main control unit controls the transmitting unit to excite the transmitting probe to emit sound beams, and the acquisition unit synchronously collects the acoustic wave signals of all the receiving probes and transmits the wave train data to the A main control unit, the main control unit uploads the wave train data to the industrial computer, and the software subsystem performs data post-processing to obtain the three-dimensional imaging map of the earthquake model.
  • the acquisition unit has at least one, and each acquisition unit controls at least one receiving probe respectively, and each acquisition unit has a number equal to the number of receiving probes it controls.
  • a data processing module wherein the acoustic wave signal collected by each receiving probe is processed by the corresponding data processing module and then uploaded to the main control unit.
  • each of the acquisition units also includes a multi-channel analog-to-digital converter and a first field programmable logic gate array logic controller, and all the data in each of the acquisition units
  • the processing modules are collected in the multi-channel analog-to-digital converter, converted into digital signals and uploaded to the first FPGA logic controller, and then uploaded to the main control unit.
  • each data processing module includes a differential preamplifier, a bandpass filter, and a programmable gain amplifier that are electrically connected in sequence, wherein the differential preamplifier is electrically connected to the receiving probe, and the programmable gain amplifier The final summation is connected to a multi-channel analog-to-digital converter.
  • the transmitting unit includes a second field programmable logic gate array logic controller, a high-voltage circuit, an H-bridge driving circuit, and an impedance matching network, and the second field programmable logic gate array logic controller According to the instructions of the main control unit, the controller controls the H-bridge drive circuit and provides high voltage from the high-voltage circuit to generate an excitation waveform, and the excitation waveform excites the transmitting probe to transmit after passing through a prime number impedance matching network.
  • the excitation mode of the transmitting probe is at least one of single pulse, Burst signal, Blackman window function signal and chirp signal.
  • the main control unit uploads the wave train data to the software subsystem after receiving the wave train data, and the software subsystem uses a prestack migration imaging algorithm to process the wave train data deal with.
  • the software subsystem uses the Kirchhoff integration method to perform pre-stack migration, and according to the spatial range of the reflected wave that may be generated by the current wave train, record the wave train from the receiving point to the outside Push, using the Kirchhoff integral expression for wave field continuation and imaging.
  • the software subsystem divides the imaging operation process into at least one operation part, and establishes a thread for each operation part to perform parallel operation.
  • a task management program is deployed inside the main control unit, and the task management program schedules the task processes of the main control unit according to preset priorities, and the task management program also includes The priority of the task process whose waiting time exceeds a threshold is increased.
  • the number ratio of the transmitting probes to the receiving probes is 1:4.
  • Another aspect of the embodiment of the present application provides a method for real-time imaging of a three-dimensional ultrasonic seismic model, which is used for three-dimensional real-time imaging of a seismic model in an indoor water tank experiment, comprising the following steps:
  • the ultrasonic sensor network transmits and receives acoustic signals: the ultrasonic sensor network includes at least one transmitting probe and at least one receiving probe, the transmitting probe and the receiving probe are arranged above the seismic model in a spaced network, and the transmitting probe Transmitting acoustic signals in turn, after each transmitting probe transmits, all receiving probes receive the acoustic signals synchronously;
  • the hardware subsystem performs imaging processing on the waveform data: the hardware subsystem includes a main control unit, an acquisition unit, a transmitting unit, an industrial computer and a display, and a software subsystem is deployed in the industrial computer;
  • the software subsystem sends working parameters to the main control unit, the main control unit controls the transmitting unit to sequentially stimulate the transmitting probes, the acquisition unit synchronously collects the receiving waveforms of all receiving probes, and transmits the receiving waveforms to the
  • the main control unit uploads the data to the industrial computer, and the software subsystem performs post-processing of the data, and finally displays the three-dimensional imaging diagram of the model on the display.
  • the task processes of the main control unit are scheduled according to preset priorities, and the priority of task processes whose waiting time exceeds a threshold is increased.
  • the acquisition unit is responsible for the synchronous acquisition of the receiving probe and the transmission of waveform data to the main control unit, the acquisition unit has at least one, each of the acquisition units controls at least one The receiving probe, each of the acquisition units has a data processing module equal to the number of the receiving probes controlled by it, and the acoustic wave signal collected by each of the receiving probes is processed by the corresponding data processing module and then uploaded to the main control unit.
  • the transmitting unit includes a second field programmable logic gate array logic controller, a high-voltage circuit, a driver chip, an H-bridge driver circuit, and an impedance matching network; Send parameter commands to the second FPGA logic controller, set parameters, and after parameter setting is completed, the second FPGA logic controller controls the The H-bridge drive circuit is provided with high voltage by the high-voltage circuit, thereby generating an excitation waveform, and the high-voltage excitation waveform excites the transmitting probe after passing through the impedance matching network.
  • the main control unit uploads the wave train data to the software subsystem after receiving the wave train data, and the software subsystem uses a prestack migration imaging algorithm to process the wave train data deal with.
  • the software subsystem uses the Kirchhoff integration method to perform pre-stack migration, and according to the spatial range of the reflected wave that may be generated by the current wave train, record the wave train from the receiving point to the outside Push, using the Kirchhoff integral expression for wave field continuation and imaging.
  • the software subsystem divides the imaging operation process into at least one operation part, and establishes a thread for each operation part to perform parallel operation.
  • the 3D ultrasonic seismic model real-time imaging system uses the principle of multi-coverage observation system in 3D seismic exploration and the pre-stack migration method, adopts network sensor arrangement, and cooperates with multi-channel synchronous excitation
  • the acquisition system and high-resolution imaging algorithm can perform three-dimensional imaging of multi-layer complex geological models without moving, which greatly saves measurement time, and can effectively suppress invalid clutter and noise, and obtain high-quality three-dimensional imaging maps, thereby realizing geological analysis.
  • the model deposition process is monitored in real time.
  • the 3D ultrasonic seismic model real-time imaging system provided by at least one embodiment of the present application is similar to the simulated detection of offshore earthquakes, and can obtain changes through rapid measurement and real-time migration processing and imaging of data after the deposition experiment.
  • the dynamic image of multi-layer complex geological model greatly improves the experimental efficiency and imaging accuracy.
  • the system has good real-time performance, imaging quality and detection range, and has broad application prospects in the study of geological sedimentation, marine geology and 3D seismic model research.
  • Fig. 1 is the overall structure schematic diagram of the embodiment of the present application.
  • Fig. 2 is the distribution schematic diagram of the sensor network of the embodiment of the present application.
  • FIG. 3 is a schematic diagram of the control of the main control unit of the embodiment of the present application.
  • FIG. 4 is a flow chart of a task management program in an embodiment of the present application.
  • Fig. 5 is the frame structure diagram of the acquisition unit of the embodiment of the present application.
  • FIG. 6 is a frame structure diagram of a transmitting unit according to an embodiment of the present application.
  • Fig. 7 is the framework structural diagram of the software subsystem of the embodiment of the present application.
  • FIG. 8 is a schematic diagram of excitation signals in various transmission modes according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a wave train after imaging processing according to an embodiment of the present application.
  • Fig. 10 is a three-dimensional imaging diagram of a sand body model in the embodiment of the present application.
  • Fig. 11 is a three-dimensional imaging diagram of a three-layer geological model of the embodiment of the present application.
  • Ultrasonic sensor network 11. Transmitting probe; 12. Receiving probe; 13. Positioning device;
  • Hardware subsystem 21. Main control unit; 211. First processor; 212. First memory; 22. Acquisition unit; 23. Launching unit; 24. Industrial computer; 241. Second processor; 242. Two memory; 25, software subsystem; 26, display;
  • Differential preamplifier 222. Bandpass filter; 223. Programmable gain amplifier; 224. Multi-channel ADC; 225. First FPGA logic controller; 226. SRAM;
  • Second FPGA logic controller 232. High-voltage circuit; 233. Driver chip; 234. H-bridge driver circuit; 235. Impedance matching network;
  • Gigabit Ethernet communication interface 252.
  • Parameter delivery module 253.
  • Waveform display module 254.
  • Waveform data preprocessing module 255.
  • Positioning system control module 256.
  • Data storage module 257.
  • Time-frequency analysis module 258.
  • Two-dimensional interface imaging module 259. Three-dimensional tomographic imaging module.
  • the words “connected”, “connected”, “coupled” and similar words mentioned in this application are not limited to physical or mechanical connection, but may include electrical connection, no matter it is direct or indirect.
  • the “plurality” involved in this application refers to two or more than two.
  • the terms “first”, “second” and the like involved in this application are only used to distinguish similar objects, and do not represent a specific ordering of objects.
  • the “plurality” mentioned in this application refers to two or more than two.
  • the embodiment of the present application provides a real-time imaging system for a 3D ultrasonic seismic model, which can be used to perform 3D monitoring and imaging of an underwater geological model during an indoor tank experiment for simulating geological deposition in a pool, so as to obtain real-time data during the deposition process.
  • the real-time imaging system for a three-dimensional ultrasonic seismic model includes an ultrasonic sensor network 1 and a hardware subsystem 2 .
  • the ultrasonic sensor network 1 includes at least one transmitting probe 11 and at least one receiving probe 12, and the transmitting probe 11 and the receiving probe 12 are arranged above the seismic model in a spaced network.
  • the number ratio of the transmitting probes 11 to the receiving probes 12 is 1:4.
  • the ultrasonic sensor network 1 includes 64 transmitting probes 11 and 256 receiving probes 12, and the ultrasonic sensor network 1 is fixed in a support positioned above the seismic model, as shown in Figure 2, T1-T64 are transmitting probes 11, R1-R256 are receiving probes 12, and the transmitting probes 11 and receiving probes 12 are distributed in an interval network.
  • This distribution method can maximize the detection range when the number of probes is fixed, and at the same time perform all-round three-dimensional imaging of the model in the detection area, and also has good imaging capabilities for geological models with complex structures.
  • 64 transmitting probes 11 transmit in turn. After each transmitting probe 11 transmits, all receiving probes 12 receive the acoustic signal synchronously.
  • a total of 16,384 waveform data are obtained after completing a working process.
  • the “spaced network” distribution in this application means that the transmitting probes 11 and receiving probes 12 are arranged at intervals, and each transmitting probe 11 is surrounded by a plurality of receiving probes 12 arranged at intervals around the transmitting probe 11 .
  • the receiving probes 12 are arranged at intervals and every four receiving probes 12 form a square or rectangle (that is, the receiving probes 12 are located on four sides of the square. corner positions), and a transmitting probe 11 is arranged at the center of each square or rectangle.
  • the ratio of the number of transmitting probes 11 to receiving probes 12 is 1:4
  • the receiving probes 12 are arranged at intervals and every four receiving probes 12 form a square or rectangle (that is, the receiving probes 12 are located on four sides of the square. corner positions), and a transmitting probe 11 is arranged at the center of each square or rectangle.
  • the ultrasonic sensor network 1 includes 64 transmitting probes 11 and 256 receiving probes 12, and the 256 receiving probes 12 are arranged at equal intervals in 16 rows with 16 in each row.
  • the probes 11 are arranged in 8 rows, 8 in each row, and each transmitting probe 11 is located at the center of a square surrounded by four receiving probes 12 .
  • the ultrasonic sensor network 1 further includes a positioning device 13, the above-mentioned transmitting probe 11 and receiving probe 12 are mounted on the positioning device 13, and are used to move the transmitting probe 11 and receiving probe 12 to the detection area.
  • the hardware subsystem 2 includes a main control unit 21 installed in the cabinet, an acquisition unit 22, a transmitting unit 23, an industrial computer 24 and a display 26, and the acquisition unit 22, the transmitting unit 23 and the industrial computer 24 are electrically connected to the main control unit 21 respectively , the transmitting probe 11 and the receiving probe 12 are respectively electrically connected to the hardware subsystem 2 through shielded signal lines, and further connected to the transmitting unit 23 and the acquisition unit 22, and the display 26 is electrically connected to the industrial computer 24, and the industrial computer 24 is equipped with software Subsystem 25.
  • the software subsystem 25 in the industrial computer 24 sends working parameters such as sampling rate, sampling delay, wave train length, and excitation waveform mode to the main control unit 21, and controls the transmitting unit 23 to stimulate the transmitting probe in turn.
  • the acquisition unit 22 synchronously collects the received waveforms of all the receiving probes 12, and transmits the received waveforms to the main control unit 21, and the main control unit 21 uploads the data to the industrial computer 24 in turn, and the software system performs post-processing of the data, and finally The three-dimensional imaging image of the obtained model is displayed on the monitor 26 .
  • the main control unit 21 is the core of the entire hardware subsystem 2, and is mainly responsible for controlling the acquisition unit 22 and the transmission unit 23, issuing acquisition and transmission parameters, receiving and uploading waveform data, and the like.
  • the LVDS (Low Voltage Differential Signaling) high-speed data transmission bus is used for data transmission between the main control unit 21, the acquisition unit 22 and the transmitting unit 23.
  • the LVDS bus itself is a serial data transmission structure, and the system adopts a multi-line Parallel transmission structure, there are 8 independent LVDS between the master control unit 21 and each subordinate unit (for example, the acquisition unit 22 and the transmission unit 23), thereby further speeding up the data transmission speed.
  • the main control unit 21 communicates with the software subsystem 25 of the industrial computer 24 using Gigabit Ethernet at the same time, and the transmission speed can reach 113MB/s, thereby realizing real-time data transmission.
  • a task management program is deployed inside the main control unit 21.
  • the task management program schedules the task processes of the main control unit 21 according to preset priorities.
  • the task management program also includes task processes whose waiting time exceeds a threshold. Do priority escalation.
  • the main control unit 21 needs to control multiple subordinate units to work in parallel, and at the same time need to perform tasks such as data upload, command reception and delivery, and multi-task conflicts will cause data loss and even system crashes.
  • a task management program is set inside the main control unit 21 , which simulates the task manager mode of the computer system for internal task management, as shown in FIG. 4 . First set the priority of each task, and schedule the tasks according to the order of priority during work.
  • the scheduling When the scheduling occurs, first check whether the high-priority thread is ready. If a high-priority thread is found to be ready, immediately Send high-priority tasks to the execution queue to wait for execution. At the same time, the task manager will record the waiting time of the tasks in the task queue, and if the waiting time is too long, the priority will be raised to ensure the stable operation of the system.
  • the main control unit 21 includes at least one first processor 211 and a first memory 212 connected to the first processor 211, a task management program is stored in the first memory 212, and the first processor 211 executes the following functions of the task management program: the task management program schedules the task processes of the main control unit 21 according to preset priorities, and the task management program also includes raising the priority of task processes whose waiting time exceeds a threshold. Specifically, first set the priority of each task, and schedule tasks according to the order of priority during work. When scheduling occurs, first check whether the high-priority thread is ready. If there is a high-priority thread Ready immediately sends high-priority tasks to the execution queue to wait for execution. At the same time, the task manager will record the waiting time of the tasks in the task queue, and if the waiting time is too long, the priority will be raised to ensure the stable operation of the system.
  • each acquisition unit 22 controls at least one receiving probe 12 respectively.
  • a distributed structure is adopted, and one main control unit 21 controls four collection units 22 and one transmission unit 23, and each collection unit 22 controls 64 receiving probes 12, The transmitting unit 23 controls 64 transmitting probes 11, with 256 synchronous acquisition channels and 64 independent transmitting channels in total.
  • the main control unit 21 communicates with the collection unit 22 and the transmission unit 23 through separate interfaces.
  • the collection unit 22 and the transmission unit 23 can work independently without interfering with each other, so that the system can flexibly select the required subordinate units to work together.
  • the main control unit 21 reserves 16 acquisition unit 22 interfaces and 8 emission unit 23 interfaces, and the number of subordinate units can be increased according to requirements, thereby further increasing the detection range and imaging precision.
  • each acquisition unit 22 has a number of data processing modules 220 equal to the number of receiving probes 12 it controls, and the acoustic wave signal collected by each receiving probe 12 is processed by the corresponding data processing module 220 and then uploaded to the master. control unit 21.
  • each acquisition unit 22 also includes a multi-channel ADC (Analog-to-Digital Converter) 224 and a first FPGA (Field Programmable Gate Array) logic controller 225, all in each acquisition unit 22
  • the data processing module 220 collects the data into the multi-channel ADC 224, converts it into a digital signal and uploads it to the first FPGA logic controller 225, and then uploads it to the main control unit 21.
  • each data processing module 220 includes a differential preamplifier 221, a bandpass filter 222 and a programmable gain amplifier 223 electrically connected in sequence, wherein the differential preamplifier 221 is electrically Connected to the receiving probe 12, the programmable gain amplifier 223 is finally connected to the multi-channel ADC 224 together.
  • the acquisition unit 22 is mainly responsible for the synchronous acquisition of the receiving probes 12 and the transmission of waveform data to the main control unit 21 , and each acquisition unit 22 controls 64 receiving probes 12 .
  • Acquisition unit 22 includes parts such as 64 data processing modules 220 corresponding to receiving probe 12, multi-channel ADC 224 and first FPGA logic controller 225, and each data processing module 220 includes preamplifier 221, band-pass filter 222 and program-controlled
  • the gain amplifier 223 has 64 independent acquisition channels corresponding to 64 receiving probes 12 .
  • the acquisition unit 22 can individually control parameters such as sampling rate, gain, and number of sampling points of each acquisition channel.
  • the wave train data collected by each receiving probe 12 passes through an independent differential preamplifier 221, a bandpass filter 222, and a programmable gain amplifier 223, and then is converted into a digital signal by a multi-channel ADC 224 and uploaded to the first FPGA logic Controller 225, and is stored in SRAM (Static Random-Access Memory) 226 by the first FPGA logic controller 225, after main control unit 21 issues upload command to the first FPGA logic controller 225, the first FPGA logic controller The device 225 uploads the data to the main control unit 21 through the multi-line LVDS, so as to realize the synchronous acquisition of the waveform data of 64 receiving probes 12 .
  • Acquisition unit 22 adopts the mode of parallel synchronous acquisition of 64 acquisition channels.
  • This structure can meet the needs of ultrasonic sensor network 1 waveform synchronous acquisition. At the same time, timing and gain control are performed through the first FPGA logic controller 225, which can also meet the needs of different locations.
  • the probes 12 have different requirements for waveform amplitude and delay time, so as to meet the system's wave train sampling requirements for the 256 receiving probes 12 of the ultrasonic sensor network 1 .
  • the transmitting unit 23 includes a second FPGA logic controller 231, a high voltage circuit 232, an H bridge driving circuit 234, and an impedance matching network 235, and the second FPGA logic controller 231 controls the H bridge according to the instructions of the main control unit 21.
  • the bridge drive circuit 234 is also provided with high voltage by the high voltage circuit 232 to generate an excitation waveform, and the excitation waveform passes through the impedance matching network 235 to excite the transmitting probe 11 to transmit.
  • the transmitting unit 23 is mainly responsible for the excitation of 64 transmitting probes 11, and includes a second FPGA logic controller 231, a high-voltage circuit 232, an H-bridge driving circuit 234, and an impedance matching network 235 inside. .
  • the main control unit 21 sends parameter commands to the second FPGA logic controller 231 through the LVDS bus to set parameters such as the transmitting waveform mode, the transmitting waveform pulse width, and the excitation timing of the transmitting probe 11; after completing the parameter setting, the second Second, the FPGA logic controller 231 controls the H-bridge driving circuit 234 through the driving chip 233 and the high voltage circuit 232 provides high voltage to generate an excitation waveform.
  • the high voltage excitation waveform excites the transmitting probe 11 after passing through the impedance matching network 235 .
  • the transmitting unit 23 adopts a multi-channel independent excitation mode, is divided into 64 independent excitation channels, and is generally controlled by the FPGA; this structure can realize independent emission control of any emission probe 11, thereby satisfying the requirements of the system for the emission sequence and emission of the emission probe 11. Waveforms and the need to combine them.
  • the transmitting unit 23 includes: a second FPGA logic controller 231, a high-voltage circuit 232, an H-bridge driving circuit 234, and an impedance matching network 235, wherein the second FPGA logic controller 231 and The main control unit 21 is connected to and can receive instructions from the main control unit 21.
  • the H-bridge drive circuit 234 has the same number as the transmitting probe and is connected to the second FPGA logic controller 231.
  • Each H-bridge drive circuit 234 is connected to the high-voltage circuit. 232, and each H-bridge driving circuit 234 is connected to the corresponding transmitting probe through an impedance matching network 235.
  • the second FPGA logic controller 231 controls the H-bridge drive circuit 234 according to the instructions of the main control unit 21 and provides high voltage from the high-voltage circuit 232 to generate an excitation waveform.
  • each H-bridge driver circuit 234 is connected to the second FPGA logic controller 231 through the driver chip 233, and the second FPGA logic controller 231 controls the H-bridge driver circuit 234 through the driver chip 233 and is controlled by the high voltage circuit 232. A high voltage is supplied to generate the excitation waveform.
  • the excitation mode of the transmitting probe 11 is at least one of single pulse, Burst signal, Blackman window function signal and LFM (linear frequency modulation) signal.
  • the transmitting unit 23 uses the SPWM (Sinusoidal Pulse Width Modulation) method to realize arbitrary waveform excitation to the transmitting probe 11.
  • the transmitting unit 23 provides a variety of excitation signals to choose from, including single pulse, Burst signal, Blackman window function signal and LFM (Linear Frequency Modulation) signal, etc., and the appropriate excitation signal can be selected according to the test requirements .
  • a single-pulse excitation signal can meet the test requirements; in some cases where there are many clutter and the received wave train components are more complex, a purer wave train signal can be obtained by using the Blackman window function and Burst signal excitation; When the noise is large and the signal-to-noise ratio of the wave train data is low, the LFM excitation method combined with the PC (Pulse Compression) algorithm can greatly improve the wave train signal-to-noise ratio and improve the imaging quality.
  • the pulse width, main frequency and signal duration of all excitation signals are adjustable within a certain range, which can adapt to geological models of various physical properties to the greatest extent. According to the different test environments and models, choose the appropriate excitation signal to achieve the best Imaging effect.
  • the main control unit 21 uploads the wave train data to the software subsystem 25 after receiving the wave train data, and the software subsystem 25 processes the wave train data using a prestack migration imaging algorithm.
  • the software subsystem 25 is an interface for human-computer interaction, which integrates hardware control, data processing, imaging, and imaging display. Its main functional modules are as shown in Figure 7, including a Gigabit Ethernet communication interface 251, a parameter delivery module 252, Waveform display module 253 , waveform data preprocessing module 254 , positioning system control module 255 , data storage module 256 , time-frequency analysis module 257 , two-dimensional interface imaging module 258 , and three-dimensional tomographic imaging module 259 .
  • the parameter issuing module 252 of the software subsystem 25 when working, at first, sends parameter commands to the main control unit 21 through the Gigabit Ethernet communication interface 251 with Gigabit Ethernet;
  • the network 1 also includes a positioning device 13, and the positioning system control module 255 in the software subsystem 25 controls the positioning device to move the ultrasonic sensor network 1 to the detection area according to the instructions of the software;
  • the waveform display module 253 and the data storage module 256 of the software subsystem 25 display the waveform and save the data, and the waveform data is preprocessed by the waveform data preprocessing module 254 to prepare for the next step of imaging; finally, the preprocessed Time-frequency analysis is performed on the waveform data by the time-frequency analysis module 257 according to requirements, two-dimensional interface imaging is performed by the two-dimensional interface imaging module 258 and three-dimensional tomography processing is performed by the three-dimensional tomography module 259.
  • the software subsystem 25 can be used to flexibly control the main frequency of the hardware system, sampling rate, gain and other parameters. After receiving the data, the pre-stack migration imaging algorithm is used for post-processing, which can greatly suppress invalid clutter and noise, and obtain clear images. Imaging diagram.
  • the industrial computer 24 includes at least one second processor 241 and a second memory 242 connected to the second processor 241.
  • the software subsystem 25 is stored in the second memory 242 and executed by the second processor 241. The functions of the following program modules of the software subsystem 25:
  • the parameter issuing module 252 is connected to the main control unit 21 through the Gigabit Ethernet communication interface 251 and is configured to issue parameter commands to the main control unit 21;
  • the positioning system control module 255 is used to control the positioning device 13 to move the ultrasonic sensor network 1 to the detection area;
  • Data preservation module 256 for preserving data
  • the waveform data preprocessing module 254 is used to preprocess the waveform data for subsequent imaging
  • Time-frequency analysis module 257 for performing time-frequency analysis according to requirements
  • the three-dimensional tomography module 259 is configured to perform three-dimensional tomography processing.
  • the above waveform data preprocessing module 254 performs preprocessing on the waveform data, mainly including such preprocessing as bandpass filtering and noise removal.
  • the software subsystem 25 uses the Kirchhoff integral method for pre-stack migration, and extrapolates the recorded wave train downward from the receiving point according to the spatial range of the reflected wave that may be generated by the current wave train, and uses the Kirchhoff integral expression Perform wavefield continuation and imaging.
  • the software uses the Kirchhoff integral method for pre-stack migration. According to the spatial range of the reflected wave that may be generated by the current wave train, the recorded wave train is extrapolated downward from the receiving point, and the Kirchhoff integral expression is used to perform Wavefield continuation and imaging:
  • U(x, y, z) represents the displacement of the sound wave at the coordinate (x, y, z) position; cos ⁇ is the tilt factor, indicating the change of the amplitude with the exit angle; v is the speed of sound; R is the position of the imaging point The distance from (x,y,z) to the position (x 0 ,y 0 ,0) of the receiving probe 12 .
  • the imaging values of all waveform gathers are superimposed according to the principle of superimposing records of coincident ground points, and then a three-dimensional imaging map is obtained.
  • the two-dimensional interface imaging module 258 and the three-dimensional tomographic imaging module 259 in the software subsystem 25 both use the methods described above to perform imaging.
  • the software subsystem 25 divides the imaging operation process into at least one operation part, and establishes a thread for each operation part to perform parallel operation.
  • the method of prestack migration requires a large number of calculations on the waveform data, which takes a lot of time, and the traditional linear program calculation method has a slower imaging speed.
  • the software internally splits the imaging operation process into multiple parts, and each part establishes a separate thread for parallel operation, maximizing the use of the computing power of the 24 multi-core CPU of the industrial computer to achieve the effect of real-time imaging.
  • Another aspect of the embodiment of the present application provides a real-time imaging method of a three-dimensional ultrasonic seismic model, comprising the following steps:
  • the ultrasonic sensor network 1 transmits and receives acoustic signals: the ultrasonic sensor network 1 includes at least one transmitting probe 11 and at least one receiving probe 12, the transmitting probe 11 and the receiving probe 12 are arranged above the seismic model in a spaced network, and the transmitting probes emit sound waves in turn Signal, after each transmitting probe transmits, all receiving probes receive the acoustic signal synchronously;
  • the hardware subsystem 2 carries out imaging processing to the waveform data: the hardware subsystem 2 includes a main control unit 21, an acquisition unit 22, a transmitting unit 23, an industrial computer 24 and a display 26, and a software subsystem 25 is disposed in the industrial computer 24;
  • the software subsystem 25 in 24 issues working parameters to the main control unit 21, and the main control unit 21 controls the transmitting unit 23 to stimulate the transmitting probes 11 in turn, and the acquisition unit 22 synchronously collects the receiving waveforms of all receiving probes 12, and transmits the receiving waveforms to
  • the main control unit 21 uploads the data to the industrial computer 24 sequentially by the main control unit 21 , and the software subsystem 25 performs post-processing of the data, and displays the 3D imaging diagram of the finally obtained model on the display 26 .
  • the task processes of the main control unit 21 are scheduled according to preset priorities, and the priority of task processes whose waiting time exceeds a threshold is increased.
  • scheduling occurs, first check whether the high-priority thread is ready. If there is a high-priority thread When ready, immediately send high-priority tasks to the execution queue to wait for execution; at the same time, the task manager will record the waiting time of tasks in the task queue, and increase the priority if the waiting time is too long.
  • the acquisition unit 22 is responsible for the synchronous acquisition of the receiving probe 12 and the transmission of waveform data to the main control unit 21.
  • the acquisition unit 22 has at least one, and each acquisition unit 22 controls at least one receiving probe 12 respectively.
  • Each acquisition unit 22 has the same number of data processing modules 220 as the number of receiving probes 12 it controls, and the acoustic wave signal collected by each receiving probe 12 is processed by the corresponding data processing module 220 and then uploaded to the main control unit 21 .
  • each acquisition unit 22 also includes a multi-channel ADC (Analog-to-Digital Converter) 224 and a first FPGA (Field Programmable Gate Array) logic controller 225, all in each acquisition unit 22
  • the data processing module 220 collects the data into the multi-channel ADC 224, converts it into a digital signal and uploads it to the first FPGA logic controller 225, and then uploads it to the main control unit 21. Specifically, after the main control unit 21 sends an upload command to the first FPGA logic controller 225, the first FPGA logic controller 225 uploads the data to the main control unit 21 through the multi-line LVDS, thereby realizing multiple receiving probes 12 waveform data synchronous collection.
  • ADC Analog-to-Digital Converter
  • FPGA Field Programmable Gate Array
  • the transmitting unit 23 includes a second FPGA logic controller 231, a high-voltage circuit 232, a driver chip 233, an H-bridge driver circuit 234, and an impedance matching network 235;
  • the second FPGA logic controller 231 issues parameter commands to set parameters such as the transmission waveform mode, the transmission waveform pulse width, and the excitation timing of the transmission probe 11.
  • the second FPGA logic controller 231 controls the H bridge through the driver chip 233
  • the driving circuit 234 is supplied with high voltage by the high voltage circuit 232 to generate an excitation waveform, and the high voltage excitation waveform excites the transmitting probe 11 after passing through the impedance matching network 235 .
  • the main control unit 21 uploads the wave train data to the software subsystem 25 after receiving the wave train data, and the software subsystem 25 processes the wave train data using a prestack migration imaging algorithm.
  • the software subsystem 25 uses the Kirchhoff integration method for pre-stack migration, and extrapolates the recorded wave train from the receiving point downward according to the spatial range of the reflected wave that the current wave train may generate, using Kirchhoff Integral expressions perform wavefield continuation and imaging.
  • the software subsystem 25 divides the imaging operation process into at least one operation part, and establishes a thread for each operation part to perform parallel operation.
  • the imaging effect of the three-dimensional real-time imaging system of the embodiment of the present application was tested in an indoor water tank. Specifically, build a tower-shaped sand pile model in the water tank, place a wooden block in the sand pile, and fill the water tank with water.
  • the ultrasonic sensor network 1 is arranged at the liquid level in the water tank.
  • the sand pile model is imaged by using the 3D real-time imaging system of the embodiment of the present application, and the original wave train data is collected and processed by the software subsystem 25.
  • the processed wave train is shown in FIG. 9 . It can be seen from Figure 9 that the processed wave train eliminates the reflected waves on the inner wall of the water tank and the water surface, and can clearly obtain the reflected wave signals of sand bodies, wood blocks and the bottom of the pool.
  • Three-dimensional imaging is performed on the processed wave train, and the three-dimensional imaging map and XYZ direction section imaging map are obtained as shown in Figure 10.
  • the surface contour of the sand body model, internal wooden blocks and the bottom of the pool can be clearly displayed, so as to realize the model 3D imaging.
  • a three-layer geological structure model was built in the water tank. From the inside to the outside, there are quartz sand (grain size 20-40), coal powder, quartz sand (grain size 80-120 ).
  • the three-layer geological structure model is measured by using the three-dimensional real-time imaging system of the embodiment of the present application, and finally the three-dimensional imaging map is obtained as shown in FIG. 11 . It can be seen from FIG. 11 that the imaging image can clearly display the interface of the three layers, thereby achieving a three-dimensional tomographic imaging effect.
  • the 3D ultrasonic seismic model real-time imaging system provided by this application can increase the number of probes and increase the operating frequency of sensors according to needs, thereby increasing the detection range and imaging resolution; optional, the hardware subsystem of this application 2 is small and portable, so that the three-dimensional ultrasonic seismic model real-time imaging system provided by this application can be applied to other fields.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Fluid Mechanics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

一种三维超声地震模型实时成像系统及成像方法,用于室内水槽实验的地震模型三维实时成像,该系统包括:超声传感器网络(1),超声传感器网络(1)包括至少一个发射探头(11)和至少一个接收探头(12),发射探头(11)和接收探头(12)以间隔网络式部署于地震模型上方;硬件子系统(2),包括主控单元(21)、采集单元(22)、发射单元(23)、工控机(24)和显示器(26),采集单元(22)、发射单元(23)和工控机(24)分别电性连接至主控单元(21),发射探头(11)和接收探头(12)分别电性连接至发射单元(23)和采集单元(22),显示器(26)电性连接于工控机(24),工控机(24)内部署有软件子系统(25)。

Description

三维超声地震模型实时成像系统及成像方法
本申请要求在2021年12月01日提交中国专利局、申请号为202111456015.5、申请名称为“一种三维超声地震模型实时成像系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于地质模拟技术领域,尤其涉及一种用于室内水槽实验的三维超声地震模型实时成像系统及成像方法。
背景技术
在地质学研究中,对地质构造的沉积形成过程的研究有重要意义。研究地质沉积过程有多种手段,在实验室中利用水池环境模拟沙泥等矿物质的冲刷沉积过程是其中的有效方法。在水池模拟地质沉积的过程中,需要对水下地质模型进行三维监控成像,以便获取沉积过程中的实时数据。
超声成像技术是获取目标模型三维结构的有效手段,广泛应用于医疗成像、无损检测以及地震模型研究等方面。目前,三维超声成像常用方法主要有两种:一种是利用二维阵列探头通过相控技术发射扫描声束,这种方法对探头阵列的指向性、一致性等指标有着较高的要求,扫描角度较小、成像区域有限,且对目标模型有较高的要求。第二种是机械式扫描式成像,采用单个超声探头对单点进行成像,将超声探头固定在定位装置上,通过定位装置带动探头对目标区域的每个点分别进行扫描测量,这种方法测量速度较慢,在复杂界面的条件下反射波信噪比低,无法实现对变化地质模型的实时成像。
发明内容
针对相关技术中存在的不足之处,本申请提供了一种三维超声地震模型实时成像系统及成像方法,以解决现有超声成像方法局限性高或无法实时成像的技术问题。
本申请实施例一方面提供一种三维超声地震模型实时成像系统,用于室内水槽实验的地震模型三维实时成像,包括:
超声传感器网络,所述超声传感器网络包括至少一个发射探头和至少一个接收探头,所述发射探头和所述接收探头以间隔网络式部署于所述地震模型上方;
硬件子系统,包括主控单元、采集单元、发射单元、工控机和显示器,所述采集单元、所述发射单元和所述工控机分别电性连接至所述主控单元,所述发射探头和所述接收探头分别电性连接至所述发射单元和所述采集单元,所述显示器电性连接于所述工控机,所述工控机内部署有软件子系统;
所述主控单元根据所述软件子系统的指令,控制所述发射单元激励所述 发射探头发射声束,所述采集单元同步采集所有所述接收探头的声波信号并传输波列数据至所述主控单元,所述主控单元将所述波列数据上传至所述工控机,并由所述软件子系统进行数据后处理,得到所述地震模型的三维成像图。
在本申请的一些实施例中,所述采集单元具有至少一个,每个所述采集单元分别控制至少一个所述接收探头,每个所述采集单元中具有与其控制的所述接收探头数量相等的数据处理模块,每个所述接收探头采集到的所述声波信号经过对应的所述数据处理模块进行处理后上传至所述主控单元。
在本申请的一些实施例中,每个所述采集单元还包括一多通道模拟数字转换器和一第一现场可编程逻辑门阵列逻辑控制器,每个所述采集单元中的所有所述数据处理模块汇总至所述多通道模拟数字转换器中转换为数字信号上传至所述第一现场可编程逻辑门阵列逻辑控制器后,上传至所述主控单元。
在本申请的一些实施例中,每个数据处理模块包括依次电性连接的差分前置放大器、带通滤波器和程控增益放大器,其中,差分前置放大器电性连接于接收探头,程控增益放大器最终汇总连接至多通道模拟数字转换器。
在本申请的一些实施例中,所述发射单元包括第二现场可编程逻辑门阵列逻辑控制器、高压电路、H桥驱动电路以及阻抗匹配网络,所述第二现场可编程逻辑门阵列逻辑控制器根据所述主控单元的指令,控制所述H桥驱动电路并由所述高压电路提供高压,产生激励波形,所述激励波形经过素数阻抗匹配网络后激发发射探头进行发射。
在本申请的一些实施例中,所述发射探头的激励模式为单脉冲、Burst信号、Blackman窗函数信号以及线性调频信号中至少一种。
在本申请的一些实施例中,所述主控单元接收到所述波列数据后,上传至所述软件子系统,所述软件子系统采用叠前偏移成像算法对所述波列数据进行处理。
在本申请的一些实施例中,所述软件子系统采用克希霍夫积分法进行叠前偏移,根据本道波列可能产生反射波的空间范围,将记录波列从接收点上向下外推,采用Kirchhoff积分表达式进行波场延拓以及成像。
在本申请的一些实施例中,所述软件子系统将成像运算过程分为至少一个运算部分,并为每个所述运算部分单独建立一个线程进行并行运算。
在本申请的一些实施例中,所述主控单元内部部署有任务管理程序,所述任务管理程序对所述主控单元的任务进程按照预设优先级进行调度,所述任务管理程序还包括对等待时间超过一阈值的所述任务进程进行优先级提升。
在本申请的一些实施例中,所述发射探头与所述接收探头的数量比为1比4。
本申请实施例的另一方面提供一种三维超声地震模型实时成像方法,用 于室内水槽实验的地震模型三维实时成像,包括以下步骤:
超声传感器网络发射和接收声波信号:所述超声传感器网络包括至少一个发射探头和至少一个接收探头,所述发射探头和所述接收探头以间隔网络式部署于所述地震模型上方,所述发射探头依次轮流发射声波信号,每个所述发射探头发射后,所有接收探头同步接收声波信号;
硬件子系统对波形数据进行成像处理:所述硬件子系统包括主控单元、采集单元、发射单元、工控机和显示器,所述工控机内部署有软件子系统;由所述工控机中的所述软件子系统向所述主控单元下发工作参数,所述主控单元控制所述发射单元依次激励发射探头,所述采集单元同步采集所有接收探头的接收波形,并将接收波形传输至所述主控单元,由所述主控单元将数据上传至所述工控机,并由所述软件子系统进行数据后处理,将最终得到模型的三维成像图显示于所述显示器上。
在本申请的一些实施例中,对所述主控单元的任务进程按照预设优先级进行调度,对等待时间超过一阈值的任务进程进行优先级提升。
在本申请的一些实施例中,所述采集单元负责所述接收探头的同步采集以及向所述主控单元传输波形数据,所述采集单元具有至少一个,每个所述采集单元分别控制至少一个所述接收探头,每个所述采集单元中具有与其控制的所述接收探头数量相等的数据处理模块,每个所述接收探头采集到的声波信号经过对应的所述数据处理模块进行处理后上传至所述主控单元。
在本申请的一些实施例中,所述发射单元包括第二现场可编程逻辑门阵列逻辑控制器、高压电路、驱动芯片、H桥驱动电路以及阻抗匹配网络;工作时,由所述主控单元向所述第二现场可编程逻辑门阵列逻辑控制器下发参数命令,设定参数,完成参数设定后,所述第二现场可编程逻辑门阵列逻辑控制器通过所述驱动芯片控制所述H桥驱动电路并由所述高压电路提供高压,从而产生激励波形,高压激励波形经过所述阻抗匹配网络后激发发射探头。
在本申请的一些实施例中,所述主控单元接收到所述波列数据后,上传至所述软件子系统,所述软件子系统采用叠前偏移成像算法对所述波列数据进行处理。
在本申请的一些实施例中,所述软件子系统采用克希霍夫积分法进行叠前偏移,根据本道波列可能产生反射波的空间范围,将记录波列从接收点上向下外推,采用Kirchhoff积分表达式进行波场延拓以及成像。
在本申请的一些实施例中,所述软件子系统将成像运算过程分为至少一个运算部分,并为每个所述运算部分单独建立一个线程进行并行运算。
(1)本申请至少一个实施例所提供的三维超声地震模型实时成像系统,其发射探头和接收探头采用间隔网络式部署于地震模型的上方,可以最大程度地扩展探测范围,且在探测过程中无需移动探头,对探测区域内的模型进 行全方位的三维成像,对结构复杂的地质模型同样具有良好的成像能力。
(2)本申请至少一个实施例所提供的三维超声地震模型实时成像系统,,利用三维地震勘探中多次覆盖观测系统原理以及叠前偏移方法,采用网络式传感器布置,配合多通道同步激励采集系统以及高分辨率成像算法,无需移动即可对多层复杂地质模型进行三维成像,大大节省了测量时间,且可以有效压制无效杂波以及噪声,获得高质量三维成像图,从而实现对地质模型沉积过程进行实时监控。
(3)本申请至少一个实施例所提供的三维超声地震模型实时成像系统,其类似于海上地震模拟探测,可以在沉积实验后通过快速测量及对数据的实时偏移处理与成像可以获取变化的多层复杂地质模型动态图像,极大地提高了实验效率和成像精度。该系统具有良好的实时性、成像质量以及探测范围,在对研究地质沉积、海洋地质以及三维地震模型研究等方面有着广泛应用前景。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例的整体结构示意图;
图2为本申请实施例的传感器网络分布示意图;
图3为本申请实施例的主控单元控制示意图;
图4为本申请实施例的任务管理程序流程图;
图5为本申请实施例的采集单元的框架结构图;
图6为本申请实施例的发射单元的框架结构图;
图7为本申请实施例的软件子系统的框架结构图;
图8为本申请实施例的多种发射模式激励信号示意图;
图9为本申请实施例的一种成像处理后的波列示意图;
图10为本申请实施例的一种砂体模型三维成像图;
图11为本申请实施例的一种三层地质模型三维成像图;
以上图中:
1、超声传感器网络;11、发射探头;12、接收探头;13、定位装置;
2、硬件子系统;21、主控单元;211、第一处理器;212、第一存储器;22、采集单元;23、发射单元;24、工控机;241、第二处理器;242、第二存储器;25、软件子系统;26、显示器;
221、差分前置放大器;222、带通滤波器;223、程控增益放大器;224、多通道ADC;225、第一FPGA逻辑控制器;226、SRAM;
231、第二FPGA逻辑控制器;232、高压电路;233、驱动芯片;234、H桥驱动电路;235、阻抗匹配网络;
251、千兆以太网通信接口;252、参数下发模块;253、波形显示模块;254、波形数据预处理模块;255、定位系统控制模块;256、数据保存模块;257、时频分析模块;258、二维界面成像模块;259、三维层析成像模块。
具体实施方式
下面将结合本申请实施例中的附图,对实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本申请的一部分实施例,而非全部的实施例。基于本申请的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其他类似情景。此外,还可以理解的是,虽然这种开发过程中所作出的努力可能是复杂并且冗长的,然而对于与本申请公开的内容相关的本领域的普通技术人员而言,在本申请揭露的技术内容的基础上进行的一些设计,制造或者生产等变更只是常规的技术手段,不应当理解为本申请公开的内容不充分。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域普通技术人员显式地和隐式地理解的是,本申请所描述的实施例在不冲突的情况下,可以与其它实施例相结合。
除非另作定义,本申请所涉及的技术术语或者科学术语应当为本申请所属技术领域内具有一般技能的人士所理解的通常意义。本申请所涉及的“一”、“一个”、“一种”、“该”等类似词语并不表示数量限制,可表示单数或复数。本申请所涉及的术语“包括”、“包含”、“具有”以及它们任何变形,意图在于覆盖不排他的包含;例如包含了一系列步骤或模块(单元)的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可以还包括没有列出的步骤或单元,或可以还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。本申请所涉及的“连接”、“相连”、“耦接”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电气的连接,不管是直接的还是间接的。本申请所涉及的“多个”是指两个或两个以上。本申请所涉及的术语“第一”、“第二”等仅仅是区别类似的对象,不代表针对对象的特定排序。本申请中所述“多个”是指两个或两个以上。
本申请实施例提供一种三维超声地震模型实时成像系统,能够用于在水 池模拟地质沉积的室内水槽实验过程中,对水下地质模型进行三维监控成像,以便获取沉积过程中的实时数据。
请参见图1到图3,本申请实施例的三维超声地震模型实时成像系统包括超声传感器网络1和硬件子系统2。
具体的,超声传感器网络1包括至少一个发射探头11和至少一个接收探头12,发射探头11和接收探头12以间隔网络式部署于地震模型上方。可选的,发射探头11与接收探头12的数量比为1比4。在具体实施中,超声传感器网络1包括64个发射探头11与256个接收探头12,超声传感器网络1固定在位于地震模型上方的支架中,如图2所示,T1-T64为发射探头11,R1-R256为接收探头12,发射探头11以及接收探头12呈间隔网络式分布。这种分布方式可以在探头数目一定的情况下最大程度地扩展探测范围,同时对探测区域内的模型进行全方位的三维成像,对结构复杂的地质模型同样具有良好的成像能力。在工作过程中,64个发射探头11依次轮流发射,每个发射探头11发射后,所有接收探头12同步接收声波信号,完成一次工作过程共获得16384道波形数据,通过对大量波形数据的成像处理可以最大限度地消除杂波以及噪声,从而获得高质量三维成像图。
需要说明的是,本申请所述“间隔网络式”分布是指发射探头11和接收探头12呈间隔布置,且每个发射探头11周围围绕该发射探头11间隔地布置有多个接收探头12。在一些实施例中,发射探头11与接收探头12的数量比为1:4时,接收探头12间隔设置且每四个接收探头12围成一个正方形或矩形(即,接收探头12位于正方形的四个角部位置),每个正方形或矩形的中心位置布置一发射探头11。在图2所示的实施例中,超声传感器网络1包括64个发射探头11和256个接收探头12,256个接收探头12按照16行、每行16个的方式等间距排布,64个发射探头11按照8行、每行8个的方式进行排布,且每个发射探头11均位于四个接收探头12所围成的正方形的中心位置。
在一些实施例中,超声传感器网络1还包括定位装置13,定位装置13上搭载有上述发射探头11和接收探头12,用于将发射探头11和接收探头12移动至探测区域。
硬件子系统2包括安装在机柜中的主控单元21、采集单元22、发射单元23、工控机24和显示器26,采集单元22、发射单元23和工控机24分别电性连接至主控单元21,发射探头11和接收探头12分别通过屏蔽信号线电性连接至硬件子系统2,进一步连接至发射单元23和采集单元22,显示器26电性连接于工控机24,工控机24内部署有软件子系统25。
在具体实施中,工作时,由工控机24中的软件子系统25向主控单元21下发采样率、采样延迟、波列长度以及激励波形模式等工作参数,控制发射 单元23依次激励发射探头11,采集单元22同步采集所有接收探头12的接收波形,并将接收波形传输至主控单元21,由主控单元21依次将数据上传至工控机24,并由软件系统进行数据后处理,最终得到模型的三维成像图显示于显示器26上。
主控单元21是整个硬件子系统2的核心,主要负责采集单元22和发射单元23的控制、下发采集以及发射参数、接收并上传波形数据等。可选的,主控单元21与采集单元22和发射单元23之间采用LVDS(Low Voltage Differential Signaling)高速数据传输总线进行数据的传输,LVDS总线本身是串行数据传输结构,本系统采用多线并行传输结构,主控单元21与每一个下属单元(例如,采集单元22和发射单元23)间均有8根独立LVDS,从而进一步加快数据传输速度。主控单元21同时利用千兆以太网与工控机24端的软件子系统25进行通信,传输速度可以达到113MB/s,从而实现数据的实时传输。
在一些实施例中,主控单元21内部部署有任务管理程序,任务管理程序对主控单元21的任务进程按照预设优先级进行调度,任务管理程序还包括对等待时间超过一阈值的任务进程进行优先级提升。在具体实施中,主控单元21需要控制多个下属单元并行工作,同时需要进行数据上传、命令接收以及下发等工作,多任务的冲突会造成数据丢失,甚至系统死机的情况。为了避免这些情况发生,主控单元21内部设置了任务管理程序,模拟计算机系统的任务管理器模式进行内部任务管理,如图4所示。首先设定每个任务的优先级,工作时按照优先级高低顺序来进行任务的调度,当调度发生时,首先检查高优先级的线程是否就绪,如果有发现有高优先级的线程就绪则立刻将高优先级的任务送往执行队列中等待执行。同时任务管理器会记录任务队列中任务的等待时间,如果等待时间过长则提升优先级,从而保证系统的稳定运行。
例如,在一些实施例中,主控单元21包括至少一个第一处理器211以及与第一处理器211连接的第一存储器212,第一存储器212中存储有任务管理程序,通过第一处理器211执行任务管理程序的以下功能:任务管理程序对主控单元21的任务进程按照预设优先级进行调度,任务管理程序还包括对等待时间超过一阈值的任务进程进行优先级提升。具体地,首先设定每个任务的优先级,工作时按照优先级高低顺序来进行任务的调度,当调度发生时,首先检查高优先级的线程是否就绪,如果有发现有高优先级的线程就绪则立刻将高优先级的任务送往执行队列中等待执行。同时任务管理器会记录任务队列中任务的等待时间,如果等待时间过长则提升优先级,从而保证系统的稳定运行。
在一些实施例中,采集单元22具有至少一个,每个采集单元22分别控 制至少一个接收探头12。例如,在一些实施例中,如图3所示,采用分布式结构,由一个主控单元21控制4个采集单元22以及1个发射单元23,每个采集单元22控制64个接收探头12,发射单元23控制64个发射探头11,共有256个同步采集通道以及64个独立发射通道。主控单元21与采集单元22和发射单元23之间均通过单独的接口通信,采集单元22和发射单元23可以独立工作而互不干扰,使系统可以灵活地选择需要的下属单元组合工作。可选的,主控单元21预留16个采集单元22接口与8个发射单元23接口,可以根据需求增加下属单元数量,从而进一步加大探测范围以及成像精度。
在一些实施例中,每个采集单元22中具有与其控制的接收探头12数量相等的数据处理模块220,每个接收探头12采集到的声波信号经过对应的数据处理模块220进行处理后上传至主控单元21。
在一些实施例中,每个采集单元22还包括一多通道ADC(Analog-to-Digital Converter)224和一第一FPGA(Field Programmable Gate Array)逻辑控制器225,每个采集单元22中的所有数据处理模块220汇总至多通道ADC 224中转换为数字信号上传至第一FPGA逻辑控制器225后,上传至主控单元21。
请进一步参见图5,在一些实施例中,每个数据处理模块220包括依次电性连接的差分前置放大器221、带通滤波器222和程控增益放大器223,其中,差分前置放大器221电性连接于接收探头12,程控增益放大器223最终汇总连接至多通道ADC 224。在具体实施中,采集单元22主要负责接收探头12的同步采集以及向主控单元21传输波形数据,每个采集单元22控制64个接收探头12。采集单元22包括对应接收探头12的64个数据处理模块220、多通道ADC 224以及第一FPGA逻辑控制器225等部分,每个数据处理模块220包括前置放大器221、带通滤波器222和程控增益放大器223,从而对应64个接收探头12具有64个独立的采集通道。采集单元22可以单独控制各个采集通道的采样率、增益以及采样点数等参数。工作时,每个接收探头12采集到的波列数据经过独立的差分前置放大器221、带通滤波器222以及程控增益放大器223后,由多通道ADC 224转换为数字信号上传至第一FPGA逻辑控制器225,并由第一FPGA逻辑控制器225存储在SRAM(Static Random-Access Memory)226中,在主控单元21向第一FPGA逻辑控制器225下发上传命令后,第一FPGA逻辑控制器225将数据通过多线LVDS上传至主控单元21,从而实现64个接收探头12波形数据的同步采集。采集单元22采用64个采集通道并行同步采集的模式,这种结构可以满足超声传感器网络1波形同步采集的需求,同时通过第一FPGA逻辑控制器225进行时序以及增益控制,又可以满足不同位置接收探头12对波形幅度以及延迟时间的不同需求,从而满足系统对超声传感器网络1的256个接收探 头12的波列采样需求。
在一些实施例中,发射单元23包括第二FPGA逻辑控制器231、高压电路232、H桥驱动电路234以及阻抗匹配网络235,第二FPGA逻辑控制器231根据主控单元21的指令,控制H桥驱动电路234并由高压电路232提供高压,产生激励波形,激励波形经过阻抗匹配网络235后激发发射探头11进行发射。
在具体实施中,请具体参见图6,发射单元23主要负责64个发射探头11的激励,内部包括第二FPGA逻辑控制器231、高压电路232、H桥驱动电路234以及阻抗匹配网络235等部分。工作时,由主控单元21通过LVDS总线向第二FPGA逻辑控制器231下发参数命令,设定发射波形模式、发射波形脉宽以及发射探头11激励时序等参数;完成参数设定后,第二FPGA逻辑控制器231通过驱动芯片233控制H桥驱动电路234并由高压电路232提供高压,从而产生激励波形,高压激励波形经过阻抗匹配网络235后激发发射探头11。发射单元23采用多通道独立激励模式,分为64个独立激励通道,由FPGA进行总控制;这种结构可以实现对任意发射探头11的独立发射控制,从而满足系统对发射探头11发射顺序、发射波形以及相互组合的需求。
在一些实施例中,如图6所示,发射单元23包括:第二FPGA逻辑控制器231、高压电路232、H桥驱动电路234以及阻抗匹配网络235,其中,第二FPGA逻辑控制器231与主控单元21连接并可接收主控单元21的指令,H桥驱动电路234与发射探头的数量相同且均与第二FPGA逻辑控制器231连接,每个H桥驱动电路234均连接至高压电路232,且每个H桥驱动电路234均通过阻抗匹配网络235连接至对应的发射探头。第二FPGA逻辑控制器231根据主控单元21的指令,控制H桥驱动电路234并由高压电路232提供高压,产生激励波形,激励波形经过素数阻抗匹配网络235后激发发射探头11进行发射
在一些实施例中,每个H桥驱动电路234均通过驱动芯片233连接至第二FPGA逻辑控制器231,第二FPGA逻辑控制器231通过驱动芯片233控制H桥驱动电路234并由高压电路232提供高压,从而产生激励波形。
可选的,发射探头11的激励模式为单脉冲、Burst信号、Blackman窗函数信号以及LFM(linear frequency modulation)信号中至少一种。在具体实施例中,如图8所示,发射单元23利用SPWM(Sinusoidal Pulse Width Modulation)方法实现对发射探头11的任意波形激励。在发射探头11的激励模式方面,发射单元23提供多种激励信号可供选择,包括单脉冲、Burst信号、Blackman窗函数信号以及LFM(线性调频)信号等,可以根据测试需求选择合适的激励信号。在常规测量中,单脉冲激励信号即可满足测试需求;在一些杂波较多、接收波列成分较复杂的情况下,采用Blackman窗函数以及 Burst信号激励可以获得更纯净的波列信号;在噪声较大、波列数据信噪比较低的情况下,采用LFM激励方式配合PC(Pulse Compression)算法,可以大大提升波列信噪比,提高成像质量。所有激励信号的脉宽、主频以及信号持续时间均在一定范围内可调,最大限度适应各种物性的地质模型,根据测试环境以及模型的不同,选择合适的激励信号,从而达到最佳的成像效果。
主控单元21接收到波列数据后,上传至软件子系统25,软件子系统25采用叠前偏移成像算法对波列数据进行处理。软件子系统25是人机交互的接口,集硬件控制、数据处理与成像、成像显示于一体,其主要功能模块如图7所示,包括千兆以太网通信接口251、参数下发模块252、波形显示模块253、波形数据预处理模块254、定位系统控制模块255、数据保存模块256、时频分析模块257、二维界面成像模块258、三维层析成像模块259。
在一些实施例中,工作时,首先由软件子系统25的参数下发模块252通过千兆以太网通信接口251以千兆以太网向主控单元21下发参数命令;可选的,超声传感器网络1还包括定位装置13,软件子系统25中的定位系统控制模块255根据软件的指令控制定位装置将超声传感器网络1移动至探测区域;其次,当主控单元21将波列数据上传后,软件子系统25的波形显示模块253和数据保存模块256将波形进行显示以及数据保存,并通过波形数据预处理模块254将波形数据进行预处理,为下一步成像做准备;最后,将预处理后的波形数据通过时频分析模块257根据需求进行时频分析,通过二维界面成像模块258进行二维界面成像以及通过三维层析成像模块259进行三维层析成像处理。利用软件子系统25可以灵活控制硬件系统的发射主频、采样率、增益等参数,接收到数据后采用叠前偏移成像算法进行后处理,可以极大压制无效杂波以及噪声,得到清晰的成像图。
在一些实施例中,工控机24包括至少一个第二处理器241以及与第二处理器241连接的第二存储器242,软件子系统25存储在第二存储器242内,通过第二处理器241执行软件子系统25的以下程序模块的功能:
参数下发模块252,通过千兆以太网通信接口251与主控单元21连接并被配置为向主控单元21下发参数命令;
定位系统控制模块255,用于控制定位装置13将超声传感器网络1移动至探测区域;
波形显示模块253,用于显示波形;
数据保存模块256,用于保存数据;
波形数据预处理模块254,用于对波形数据进行预处理,用于后续成像;
时频分析模块257,用于根据需求进行时频分析;
二维界面成像模块258,用于进行二维界面成像;
三维层析成像模块259,用于进行三维层析成像处理。
以上波形数据预处理模块254对波形数据进行预处理,主要包括例如进行带通滤波,去除噪声等预处理。
软件子系统25采用克希霍夫(Kirchhoff)积分法进行叠前偏移,根据本道波列可能产生反射波的空间范围,将记录波列从接收点上向下外推,采用Kirchhoff积分表达式进行波场延拓以及成像。在具体实施中,软件采用克希霍夫积分法进行叠前偏移,根据本道波列可能产生反射波的空间范围,将记录波列从接收点上向下外推,采用Kirchhoff积分表达式进行波场延拓以及成像:
Figure PCTCN2022134590-appb-000001
其中:
Figure PCTCN2022134590-appb-000002
Figure PCTCN2022134590-appb-000003
式中,U(x,y,z)代表声波在坐标(x,y,z)位置处产生的位移;cosθ为倾斜因子,表示振幅随出射角的变化;v为声速;R为成像点位置(x,y,z)到接收探头12位置(x 0,y 0,0)的距离。利用射线追踪法求取发射点到地下R(x,z)点声波入射射线的走时,从而得到该点的成像值。将所有波形道集的成像值按照地面点相重合的记录相叠加的原则进行叠加处理,进而得到三维成像图。
具体地,软件子系统25中的二维界面成像模块258和三维层析成像模块259均采用以上所述的方法进行成像。
软件子系统25将成像运算过程分为至少一个运算部分,并为每个运算部分单独建立一个线程进行并行运算。在具体实施中,叠前偏移的方法需要对波形数据进行大量的运算,耗时较多,采用传统线性程序运算方法则成像速度较慢。为了提高成像速度,软件内部将成像运算过程拆分为多个部分,每个部分都单独建立一个线程进行并行运算,最大限度利用工控机24多核CPU的运算能力,以达到实时成像的效果。
本申请实施例的另一方面提供一种三维超声地震模型实时成像方法,包括以下步骤:
超声传感器网络1发射和接收声波信号:超声传感器网络1包括至少一个发射探头11和至少一个接收探头12,发射探头11和接收探头12以间隔网络式部署于地震模型上方,发射探头依次轮流发射声波信号,每个发射探头发射后,所有接收探头同步接收声波信号;
硬件子系统2对波形数据进行成像处理:硬件子系统2包括主控单元21、 采集单元22、发射单元23、工控机24和显示器26,工控机24内部署有软件子系统25;由工控机24中的软件子系统25向主控单元21下发工作参数,主控单元21控制发射单元23依次激励发射探头11,采集单元22同步采集所有接收探头12的接收波形,并将接收波形传输至主控单元21,由主控单元21依次将数据上传至工控机24,并由软件子系统25进行数据后处理,将最终得到模型的三维成像图显示于显示器26上。
在一些实施例中,对主控单元21的任务进程按照预设优先级进行调度,对等待时间超过一阈值的任务进程进行优先级提升。
具体地,首先设定每个任务的优先级,工作时按照优先级高低顺序来进行任务的调度,当调度发生时,首先检查高优先级的线程是否就绪,如果有发现有高优先级的线程就绪则立刻将高优先级的任务送往执行队列中等待执行;同时任务管理器会记录任务队列中任务的等待时间,如果等待时间过长则提升优先级。
在一些实施例中,采集单元22负责接收探头12的同步采集以及向主控单元21传输波形数据,采集单元22具有至少一个,每个采集单元22分别控制至少一个接收探头12,每个采集单元22中具有与其控制的接收探头12数量相等的数据处理模块220,每个接收探头12采集到的声波信号经过对应的数据处理模块220进行处理后上传至主控单元21。
在一些实施例中,每个采集单元22还包括一多通道ADC(Analog-to-Digital Converter)224和一第一FPGA(Field Programmable Gate Array)逻辑控制器225,每个采集单元22中的所有数据处理模块220汇总至多通道ADC 224中转换为数字信号上传至第一FPGA逻辑控制器225后,上传至主控单元21。具体地,主控单元21向第一FPGA逻辑控制器225下发上传命令后,第一FPGA逻辑控制器225将数据通过多线LVDS上传至主控单元21,从而实现多个接收探头12波形数据的同步采集。
在一些实施例中,发射单元23包括第二FPGA逻辑控制器231、高压电路232、驱动芯片233、H桥驱动电路234以及阻抗匹配网络235;工作时,由主控单元21通过LVDS总线向第二FPGA逻辑控制器231下发参数命令,设定发射波形模式、发射波形脉宽以及发射探头11激励时序等参数,完成参数设定后,第二FPGA逻辑控制器231通过驱动芯片233控制H桥驱动电路234并由高压电路232提供高压,从而产生激励波形,高压激励波形经过阻抗匹配网络235后激发发射探头11。
在一些实施例中,主控单元21接收到波列数据后,上传至软件子系统25,软件子系统25采用叠前偏移成像算法对波列数据进行处理。
在一些实施例中,软件子系统25采用克希霍夫积分法进行叠前偏移,根据本道波列可能产生反射波的空间范围,将记录波列从接收点上向下外推, 采用Kirchhoff积分表达式进行波场延拓以及成像。
在一些实施例中,软件子系统25将成像运算过程分为至少一个运算部分,并为每个所述运算部分单独建立一个线程进行并行运算。
实施例
在室内水箱中测试本申请实施例的三维实时成像系统的成像效果。具体地,在水箱内建造塔状砂堆模型,沙堆内放置一个木块,水箱内注满水。将超声传感器网络1,布置于水箱内液面位置。利用本申请实施例的三维实时成像系统对砂堆模型进行成像,采集得到原始波列数据后利用软件子系统25进行成像处理,得到处理后的波列如图9所示。由图9中可以看出,经过处理后的波列消除了水箱内壁以及水面的反射波,可以清晰地获得砂体、木块以及池底的反射波信号。
对处理后的波列进行三维成像处理,得到三维成像图以及XYZ方向切面成像图如图10所示,图中可以清晰地显示砂体模型表面轮廓、内部木块以及池底,从而实现对模型的三维成像。
进一步的,为了验证系统对多层地质结构的成像效果,在水箱中建造三层地质结构模型,由内到外分别为石英砂(粒度20~40)、煤粉、石英砂(粒度80~120)。利用本申请实施例的三维实时成像系统对三层地质结构模型进行测量,最终得到三维成像图如图11所示。由图11中可以看出,成像图可以清晰地显示三层界面,从而实现三维层析成像效果。
在具体实施中,本申请所提供的三维超声地震模型实时成像系统可以根据需要,增加探头数量和提高传感器工作频率,从而增大探测范围以及成像分辨率;可选的,本申请的硬件子系统2为小型且便携化的,以使本申请所提供的三维超声地震模型实时成像系统可以应用于其他领域当中。
最后应当说明的是:本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上实施例仅用以说明本申请的技术方案而非对其限制;尽管参照较佳实施例对本申请进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本申请的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本申请技术方案的精神,其均应涵盖在本申请请求保护的技术方案范围当中。

Claims (18)

  1. 一种三维超声地震模型实时成像系统,其特征在于,用于室内水槽实验的地震模型三维实时成像,包括:
    超声传感器网络,所述超声传感器网络包括至少一个发射探头和至少一个接收探头,所述发射探头和所述接收探头以间隔网络式部署于所述地震模型上方;
    硬件子系统,包括主控单元、采集单元、发射单元、工控机和显示器,所述采集单元、所述发射单元和所述工控机分别电性连接至所述主控单元,所述发射探头和所述接收探头分别电性连接至所述发射单元和所述采集单元,所述显示器电性连接于所述工控机,所述工控机内部署有软件子系统;
    所述主控单元根据所述软件子系统的指令,控制所述发射单元激励所述发射探头发射声束,所述采集单元同步采集所有所述接收探头的声波信号并传输波列数据至所述主控单元,所述主控单元将所述波列数据上传至所述工控机,并由所述软件子系统进行数据后处理,得到所述地震模型的三维成像图。
  2. 根据权利要求1所述的实时成像系统,其特征在于,所述采集单元具有至少一个,每个所述采集单元分别控制至少一个所述接收探头,每个所述采集单元中具有与其控制的所述接收探头数量相等的数据处理模块,每个所述接收探头采集到的所述声波信号经过对应的所述数据处理模块进行处理后上传至所述主控单元。
  3. 根据权利要求2所述的实时成像系统,其特征在于,每个所述采集单元还包括一多通道模拟数字转换器和一第一现场可编程逻辑门阵列逻辑控制器,每个所述采集单元中的所有所述数据处理模块汇总至所述多通道模拟数字转换器中转换为数字信号上传至所述第一现场可编程逻辑门阵列逻辑控制器后,上传至所述主控单元。
  4. 根据权利要求3所述的实时成像系统,其特征在于,每个数据处理模块包括依次电性连接的差分前置放大器、带通滤波器和程控增益放大器,其中,差分前置放大器电性连接于接收探头,程控增益放大器最终汇总连接至多通道模拟数字转换器。
  5. 根据权利要求1所述的实时成像系统,其特征在于,所述发射单元包括第二现场可编程逻辑门阵列逻辑控制器、高压电路、H桥驱动电路以及阻抗匹配网络,所述第二现场可编程逻辑门阵列逻辑控制器根据所述主控单元的指令,控制所述H桥驱动电路并由所述高压电路提供高压,产生激励波形,所述激励波形经过素数阻抗匹配网络后激发发射探头进行发射。
  6. 根据权利要求5所述的实时成像系统,其特征在于,所述发射探头的激励模式为单脉冲、Burst信号、Blackman窗函数信号以及线性调频信号中至 少一种。
  7. 根据权利要求1到3任一项所述的实时成像系统,其特征在于,所述主控单元接收到所述波列数据后,上传至所述软件子系统,所述软件子系统采用叠前偏移成像算法对所述波列数据进行处理。
  8. 根据权利要求7所述的实时成像系统,其特征在于,所述软件子系统采用克希霍夫积分法进行叠前偏移,根据本道波列可能产生反射波的空间范围,将记录波列从接收点上向下外推,采用Kirchhoff积分表达式进行波场延拓以及成像。
  9. 根据权利要求8所述的实时成像系统,其特征在于,所述软件子系统将成像运算过程分为至少一个运算部分,并为每个所述运算部分单独建立一个线程进行并行运算。
  10. 根据权利要求1所述的实时成像系统,其特征在于,所述主控单元内部部署有任务管理程序,所述任务管理程序对所述主控单元的任务进程按照预设优先级进行调度,所述任务管理程序还包括对等待时间超过一阈值的所述任务进程进行优先级提升。
  11. 根据权利要求1所述的实时成像系统,其特征在于,所述发射探头与所述接收探头的数量比为1比4。
  12. 一种三维超声地震模型实时成像方法,用于室内水槽实验的地震模型三维实时成像,其特征在于,包括以下步骤:
    超声传感器网络发射和接收声波信号:所述超声传感器网络包括至少一个发射探头和至少一个接收探头,所述发射探头和所述接收探头以间隔网络式部署于所述地震模型上方,所述发射探头依次轮流发射声波信号,每个所述发射探头发射后,所有接收探头同步接收声波信号;
    硬件子系统对波形数据进行成像处理:所述硬件子系统包括主控单元、采集单元、发射单元、工控机和显示器,所述工控机内部署有软件子系统;由所述工控机中的所述软件子系统向所述主控单元下发工作参数,所述主控单元控制所述发射单元依次激励发射探头,所述采集单元同步采集所有接收探头的接收波形,并将接收波形传输至所述主控单元,由所述主控单元将数据上传至所述工控机,并由所述软件子系统进行数据后处理,将最终得到模型的三维成像图显示于所述显示器上。
  13. 根据权利要求12所述的三维超声地震模型实时成像方法,其特征在于,对所述主控单元的任务进程按照预设优先级进行调度,对等待时间超过一阈值的任务进程进行优先级提升。
  14. 根据权利要求12所述的三维超声地震模型实时成像方法,其特征在于,所述采集单元负责所述接收探头的同步采集以及向所述主控单元传输波形数据,所述采集单元具有至少一个,每个所述采集单元分别控制至少一个 所述接收探头,每个所述采集单元中具有与其控制的所述接收探头数量相等的数据处理模块,每个所述接收探头采集到的声波信号经过对应的所述数据处理模块进行处理后上传至所述主控单元。
  15. 根据权利要求12所述的三维超声地震模型实时成像方法,其特征在于,所述发射单元包括第二现场可编程逻辑门阵列逻辑控制器、高压电路、驱动芯片、H桥驱动电路以及阻抗匹配网络;工作时,由所述主控单元向所述第二现场可编程逻辑门阵列逻辑控制器下发参数命令,设定参数,完成参数设定后,所述第二现场可编程逻辑门阵列逻辑控制器通过所述驱动芯片控制所述H桥驱动电路并由所述高压电路提供高压,从而产生激励波形,高压激励波形经过所述阻抗匹配网络后激发发射探头。
  16. 根据权利要求12所述的三维超声地震模型实时成像方法,其特征在于,所述主控单元接收到所述波列数据后,上传至所述软件子系统,所述软件子系统采用叠前偏移成像算法对所述波列数据进行处理。
  17. 根据权利要求16所述的实时成像系统,其特征在于,所述软件子系统采用克希霍夫积分法进行叠前偏移,根据本道波列可能产生反射波的空间范围,将记录波列从接收点上向下外推,采用Kirchhoff积分表达式进行波场延拓以及成像。
  18. 根据权利要求17所述的实时成像系统,其特征在于,所述软件子系统将成像运算过程分为至少一个运算部分,并为每个所述运算部分单独建立一个线程进行并行运算。
PCT/CN2022/134590 2021-12-01 2022-11-28 三维超声地震模型实时成像系统及成像方法 WO2023056989A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111456015.5A CN114137547A (zh) 2021-12-01 2021-12-01 一种三维超声地震模型实时成像系统
CN202111456015.5 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023056989A1 true WO2023056989A1 (zh) 2023-04-13

Family

ID=80386855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134590 WO2023056989A1 (zh) 2021-12-01 2022-11-28 三维超声地震模型实时成像系统及成像方法

Country Status (2)

Country Link
CN (1) CN114137547A (zh)
WO (1) WO2023056989A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137547A (zh) * 2021-12-01 2022-03-04 中国石油大学(华东) 一种三维超声地震模型实时成像系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914791A (zh) * 2011-08-05 2013-02-06 中国石油天然气集团公司 一种起伏地表地震数据处理的克希霍夫叠前时间偏移方法
CN103033563A (zh) * 2013-01-04 2013-04-10 中国地质大学(武汉) 一种超声波物理探测仪
CN108828671A (zh) * 2018-03-12 2018-11-16 中国科学院地质与地球物理研究所 高精度数传式地震勘探数据采集系统
EP3722838A1 (en) * 2019-04-11 2020-10-14 First Institute of Oceanography, Ministry of Natural Resources Device and method for uninterrupted recording of multi-channel seismic data
CN111948294A (zh) * 2020-08-12 2020-11-17 自然资源部第一海洋研究所 沉积物声学特性原位测量的声波发射采集装置、系统及方法
CN114137547A (zh) * 2021-12-01 2022-03-04 中国石油大学(华东) 一种三维超声地震模型实时成像系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914791A (zh) * 2011-08-05 2013-02-06 中国石油天然气集团公司 一种起伏地表地震数据处理的克希霍夫叠前时间偏移方法
CN103033563A (zh) * 2013-01-04 2013-04-10 中国地质大学(武汉) 一种超声波物理探测仪
CN108828671A (zh) * 2018-03-12 2018-11-16 中国科学院地质与地球物理研究所 高精度数传式地震勘探数据采集系统
EP3722838A1 (en) * 2019-04-11 2020-10-14 First Institute of Oceanography, Ministry of Natural Resources Device and method for uninterrupted recording of multi-channel seismic data
CN111948294A (zh) * 2020-08-12 2020-11-17 自然资源部第一海洋研究所 沉积物声学特性原位测量的声波发射采集装置、系统及方法
CN114137547A (zh) * 2021-12-01 2022-03-04 中国石油大学(华东) 一种三维超声地震模型实时成像系统

Also Published As

Publication number Publication date
CN114137547A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
Schubert Basic principles of acoustic emission tomography
Rao et al. Ultrasonic imaging of irregularly shaped notches based on elastic reverse time migration
WO2023056989A1 (zh) 三维超声地震模型实时成像系统及成像方法
CN112067698B (zh) 一种时频结合快速全聚焦超声成像方法
IL281888B2 (en) An image reconstruction method based on non-linear mapping
AU2014268976A1 (en) Multi-parameter inversion through offset dependent elastic FWI
Wilcox Ultrasonic arrays in NDE: Beyond the B-scan
CN107219513A (zh) 水下运动目标回波模拟方法及收发一体化装置
CN102697524B (zh) 全聚焦超声成像方法及其在血流成像中的运用
CA2834993C (en) Enhanced ultrasound image formation using qualified regions of overlapping transmit beams
Lubeigt et al. Topological imaging in bounded elastic media
CN108508093A (zh) 一种工件缺陷高度的检测方法及系统
CN107091884A (zh) 一种钢轨探伤作业数据显示和存储方法
CN117147694A (zh) 基于逆问题的超声全聚焦成像稀疏正则化重构方法及设备
US20210048413A1 (en) Fast pattern recognition using ultrasound
Shi et al. Waveform-based geometrical inversion of obstacles
CN105675721A (zh) 一种超声成像检测装置及系统
CN211627836U (zh) 一种小面元高分辨率三维地震数据采集系统
Li et al. Research on the imaging of concrete defect based on the pulse compression technique
CN110824015A (zh) 一种粉末高温合金密度分布成像的超声评价方法
CN1588036A (zh) 一种超声波探伤系统
CN110274613B (zh) 一种适用于声学波潮测量仪的实验室检测装置及方法
CN102589679A (zh) 一种动态声场可视化方法
CN109884187A (zh) 一种适用于板状结构的基于压缩感知的超声导波场损伤检测方法
CN111077227B (zh) 一种超声阵列扫查反演方法、系统、存储介质及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878003

Country of ref document: EP

Kind code of ref document: A1