WO2023056983A1 - Device and system for visual monitoring based on measuring robot - Google Patents

Device and system for visual monitoring based on measuring robot Download PDF

Info

Publication number
WO2023056983A1
WO2023056983A1 PCT/CN2022/126862 CN2022126862W WO2023056983A1 WO 2023056983 A1 WO2023056983 A1 WO 2023056983A1 CN 2022126862 W CN2022126862 W CN 2022126862W WO 2023056983 A1 WO2023056983 A1 WO 2023056983A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
points
data
coordinates
initial
Prior art date
Application number
PCT/CN2022/126862
Other languages
French (fr)
Inventor
Zhengji Li
Hao Tang
Wanqing LU
Zhaohui Cai
Xuan XU
Xiuyan WANG
Original Assignee
China Construction Seventh Engineering Division Corp., Ltd.
China Construction Sixth Engineering Bureau Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Construction Seventh Engineering Division Corp., Ltd., China Construction Sixth Engineering Bureau Corp., Ltd. filed Critical China Construction Seventh Engineering Division Corp., Ltd.
Publication of WO2023056983A1 publication Critical patent/WO2023056983A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • G01C7/06Tracing profiles of cavities, e.g. tunnels
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points

Definitions

  • the invention relates to the technical field of safety monitoring, in particular to a device and system for visual monitoring based on measuring robot.
  • the super high-rise structure in the city has become more and more complex, and more and more testing items are involved, such as deep foundation pit monitoring, track monitoring, high support form monitoring, steel structure monitoring, etc.
  • the required monitoring methods are also becoming more and more advanced, and today's monitoring generally uses manual data collection, the efficiency of data collection and transmission is low, the data collection time interval is long,
  • the monitoring project is single, and it is difficult for the same monitoring method to complete the monitoring requirements of the whole process of the project.
  • the displacement data is very small, the observers have no intuitive feeling of the collected data.
  • corresponding measures cannot be taken immediately when the monitoring target is abnormal, or the processing time will be delayed, resulting in irreversible accidents, which will have a great impact on the safety of the entire project.
  • the purpose of the invention is to solve the shortcomings of the existing technology and provide a device and system for visual monitoring based on measuring robot.
  • a real-time high-precision monitoring system and a data analysis system are established to analyze and calculate the received data, then compare the initial data stored in the data storage device with the results of the analysis and calculation, and then enlarge the compared data, Transmitted to the computer and mobile phone of the monitoring personnel.
  • the monitoring personnel can intuitively judge whether it is abnormal, so as to grasp the deformation of the monitoring target in real time, and use a monitoring method to monitor the monitoring targets in the whole process of the project.
  • the invention discloses a device for visual monitoring, which is based on measuring robot, to detect the interval tunnel directly affected by the project construction, wherein the device includes a plurality of monitoring points, a plurality of reference points and an automatic measuring robot;
  • a section is arranged on the single track tunnel of the interval tunnel at an interval of 10m, and is arranged along the double track along the direction of the interval tunnel;
  • a total of 5 monitoring points are arranged on each section, of which 1 arch crown settlement is arranged at the top of the section, 2 relative convergence points are arranged at the two edges of the transverse centerline of the section, and 2 ballast bed settlement points are arranged at both sides near the bottom below the section;
  • the reference points are arranged at both ends of the left and right lines 3 meters outside the subway monitoring area;
  • the measuring robot is installed in the subway monitoring area, obtains data from the monitoring points and reference points, and adopts remote automatic monitoring of the vertical displacement and horizontal displacement of the tunnel structure in the project.
  • the device comprises L-shaped prisms arranged on the monitoring point.
  • the device comprises circular prism arranged on the reference point and fixed with a triangular steel base.
  • the reference points are arranged at an interval of more than 10 meters.
  • the invention also discloses a system for visual monitoring based on a measuring robot, includes monitoring unit and data processing unit;
  • the monitoring unit uses the measuring robot to collect the information of the monitoring points and the reference points, and transmits it to the data processing unit through the communication module;
  • the data processing unit is a computer data processing center composed of a data analysis sub unit, a data storage sub unit and a data amplification sub unit;
  • the data analysis sub unit analyzes and calculates the collected real-time data of monitoring points and reference points, and then compares the initial data about monitoring points and reference points stored in the data storage sub unit with the results of analysis and calculation to obtain each horizontal displacement and cumulative horizontal displacement of the corresponding monitoring points; When the comparison result is normal, repeat the cycle monitoring, and send an alarm message when the result is abnormal;
  • each comparison result will be visualized through the data amplification sub unit, and then the visualized result will be transmitted to the computer and mobile phone of the monitoring personnel.
  • the stability of the reference point is a relatively stable concept. Due to the influence of the surrounding environment, the reference point will sometimes produce displacement.
  • the stability analysis of the reference point is an important content that cannot be ignored in the processing of deformation observation data.
  • the benchmark shall be retested once a month and the stability of the benchmark shall be analyzed.
  • the system comprises the process of comparing the initial data about monitoring points and reference points stored in the data storage sub unit with the results of analysis and calculation in the data analysis sub unit, the process is using the initial coordinates of the reference point and the coordinates of the later observation to calculate the conversion parameters between the two coordinate systems, then using the conversion parameters to convert the coordinates of the later deformation point into the initial coordinate system, and then comparing with the coordinates of the initial reference point to obtain the difference;
  • the system of the invention is a high-precision measurement system for measuring the relative settlement of multiple points. It can not only ensure 24-hour uninterrupted settlement monitoring, but also has the characteristics of high precision, good automation performance, convenient operation, and no need for monitoring personnel to get off the track. It is an ideal choice for foundation pit monitoring, high formwork monitoring, and settlement monitoring in steel structure installation monitoring..
  • the invention can remotely control the monitoring system for data collection and make corresponding data analysis in real time. After program calculation and processing, the collected data can form a complete monitoring report to reflect the changes of the monitoring target in real time.
  • the monitoring personnel can observe anytime and anywhere through the mobile app, and can complete the monitoring of the monitoring target even if they are not in the office.
  • Fig. 1 is the layout of track section monitoring points of the embodiment of the invention (the left line and the right line are the same, the black triangle indicates the detection point) ;
  • Fig. 2 is a schematic diagram of the layout position of reference points in the embodiment of the invention (the dark area represents the detection area, and the small circle represents the reference point) ;
  • Fig. 3 is a structural diagram of L-shaped prism in the embodiment of the invention (circle represents prism) ;
  • Fig. 4 is a structural diagram of a prism with a triangular shaped steel fixed reference point in the embodiment of the invention (circle represents prism) ;
  • Fig. 5 is the structure diagram of the system of the invention.
  • Fig. 6 is the operation flow chart of the system of the invention.
  • this embodiment discloses a device for visual monitoring based on measuring robot to detect the interval tunnel directly affected by the project construction.
  • the detection system includes a plurality of monitoring points, a plurality of reference points and an automatic measuring robot;
  • a section is arranged on the single track tunnel of the interval tunnel at an interval of 10m, and is arranged along the double track along the direction of the interval tunnel;
  • a total of 5 monitoring points are arranged on each section, of which 1 arch crown settlement is arranged at the top of the section, 2 relative convergence points are arranged at the two edges of the transverse centerline of the section, and 2 ballast bed settlement points are arranged at both sides near the bottom below the section;
  • the reference points are arranged at both ends of the left and right lines 3 meters outside the subway monitoring area;
  • the measuring robot is installed in the subway monitoring area, obtains data from the monitoring points and reference points, and adopts remote automatic monitoring of the vertical displacement and horizontal displacement of the tunnel structure in the project.
  • the device comprises L-shaped prisms arranged on the monitoring point.
  • the device comprises circular prism arranged on the reference point and fixed with a triangular steel base.
  • the reference points are arranged at an interval of more than 10 meters.
  • a system based on the device described in embodiment 1, includes monitoring unit and data processing unit;
  • the monitoring unit uses the measuring robot to collect the information of the monitoring points and the reference points, and transmits it to the data processing unit through the communication module;
  • the data processing unit is a computer data processing center composed of a data analysis sub unit, a data storage sub unit and a data amplification sub unit;
  • the data analysis sub unit analyzes and calculates the collected real-time data of monitoring points and reference points, and then compares the initial data about monitoring points and reference points stored in the data storage sub unit with the results of analysis and calculation to obtain each horizontal displacement and cumulative horizontal displacement of the corresponding monitoring points; When the comparison result is normal, repeat the cycle monitoring, and send an alarm message when the result is abnormal;
  • each comparison result will be visualized through the data amplification sub unit, and then the visualized result will be transmitted to the computer and mobile phone of the monitoring personnel.
  • the system comprises the process of comparing the initial data about monitoring points and reference points stored in the data storage sub unit with the results of analysis and calculation in the data analysis sub unit, the process is using the initial coordinates of the reference point and the coordinates of the later observation to calculate the conversion parameters between the two coordinate systems, then using the conversion parameters to convert the coordinates of the later deformation point into the initial coordinate system, and then comparing with the coordinates of the initial reference point to obtain the difference;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mining & Mineral Resources (AREA)
  • Multimedia (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

The invention discloses a device and system for visual monitoring based on measuring robot. The invention makes the data visualized by amplifying the data, the monitoring personnel can intuitively feel the change of the monitoring target, and can view the real-time monitoring data anytime and anywhere through the mobile phone, so as to know the change at any time, and realize the automatic monitoring of the monitoring data through the deformation monitoring method of the measuring robot. Collection, real-time transmission, and through data analysis, various change curves and graphs are automatically formed to visualize the monitoring results.

Description

DEVICE AND SYSTEM FOR VISUAL MONITORING BASED ON MEASURING ROBOT Technical Field
The invention relates to the technical field of safety monitoring, in particular to a device and system for visual monitoring based on measuring robot.
Background
With the development of the city, the super high-rise structure in the city has become more and more complex, and more and more testing items are involved, such as deep foundation pit monitoring, track monitoring, high support form monitoring, steel structure monitoring, etc. The required monitoring methods are also becoming more and more advanced, and today's monitoring generally uses manual data collection, the efficiency of data collection and transmission is low, the data collection time interval is long, The monitoring project is single, and it is difficult for the same monitoring method to complete the monitoring requirements of the whole process of the project. In addition, it is impossible to grasp the dynamic information of the monitoring target in real time. At the same time, because the displacement data is very small, the observers have no intuitive feeling of the collected data. As a result, corresponding measures cannot be taken immediately when the monitoring target is abnormal, or the processing time will be delayed, resulting in irreversible accidents, which will have a great impact on the safety of the entire project.
Summary
The purpose of the invention is to solve the shortcomings of the existing technology and provide a device and system for visual monitoring based on  measuring robot. By combining modern wireless transmission technology, a real-time high-precision monitoring system and a data analysis system are established to analyze and calculate the received data, then compare the initial data stored in the data storage device with the results of the analysis and calculation, and then enlarge the compared data, Transmitted to the computer and mobile phone of the monitoring personnel. According to the amplified data, the monitoring personnel can intuitively judge whether it is abnormal, so as to grasp the deformation of the monitoring target in real time, and use a monitoring method to monitor the monitoring targets in the whole process of the project.
In order to achieve the above purpose, taking the section tunnel directly affected by the project construction as an example, the invention discloses a device for visual monitoring, which is based on measuring robot, to detect the interval tunnel directly affected by the project construction, wherein the device includes a plurality of monitoring points, a plurality of reference points and an automatic measuring robot;
a section is arranged on the single track tunnel of the interval tunnel at an interval of 10m, and is arranged along the double track along the direction of the interval tunnel;
a total of 5 monitoring points are arranged on each section, of which 1 arch crown settlement is arranged at the top of the section, 2 relative convergence points are arranged at the two edges of the transverse centerline of the section, and 2 ballast bed settlement points are arranged at both sides near the bottom below the section;
the reference points are arranged at both ends of the left and right lines 3 meters outside the subway monitoring area;
the measuring robot is installed in the subway monitoring area, obtains data from the monitoring points and reference points, and adopts remote automatic monitoring of the vertical displacement and horizontal displacement of the  tunnel structure in the project.
In some embodiments of the invention, the device comprises L-shaped prisms arranged on the monitoring point.
In some embodiments of the invention, the device comprises circular prism arranged on the reference point and fixed with a triangular steel base.
In some embodiments of the invention, the reference points are arranged at an interval of more than 10 meters.
The invention also discloses a system for visual monitoring based on a measuring robot, includes monitoring unit and data processing unit;
the monitoring unit uses the measuring robot to collect the information of the monitoring points and the reference points, and transmits it to the data processing unit through the communication module;
the data processing unit is a computer data processing center composed of a data analysis sub unit, a data storage sub unit and a data amplification sub unit;
the data analysis sub unit analyzes and calculates the collected real-time data of monitoring points and reference points, and then compares the initial data about monitoring points and reference points stored in the data storage sub unit with the results of analysis and calculation to obtain each horizontal displacement and cumulative horizontal displacement of the corresponding monitoring points; When the comparison result is normal, repeat the cycle monitoring, and send an alarm message when the result is abnormal;
each comparison result will be visualized through the data amplification sub unit, and then the visualized result will be transmitted to the computer and mobile phone of the monitoring personnel.
Further, the stability of the reference point is a relatively stable concept. Due to the influence of the surrounding environment, the reference point will sometimes produce displacement. The stability analysis of the reference point is  an important content that cannot be ignored in the processing of deformation observation data. The benchmark shall be retested once a month and the stability of the benchmark shall be analyzed.
Preferably, the system comprises the process of comparing the initial data about monitoring points and reference points stored in the data storage sub unit with the results of analysis and calculation in the data analysis sub unit, the process is using the initial coordinates of the reference point and the coordinates of the later observation to calculate the conversion parameters between the two coordinate systems, then using the conversion parameters to convert the coordinates of the later deformation point into the initial coordinate system, and then comparing with the coordinates of the initial reference point to obtain the difference;
hypothesis test on the statistics of residual error composition after benchmark conversion, comprising the steps:
1) set the initial coordinates of the datum point as X 0= (x 01, y 01, z 01, x 02, y 02, z 02…z 0m, y 0m, z 0m) ;
2) the later coordinates of the datum point are X 1= (x 11, y 11, z 11, x 12, y 12, z 1 2, …x 1m, y 1m, z 1m) ;
3) calculate the conversion parameters through these two sets of coordinates, and then convert them to the coordinate system where they are located, the coordinates of the later coordinates in the initial coordinate system X 2= (x 21, y 21, z 21, x 22, y 22, z 22, …x 2m, y 2m, z 2m) ;
4) obtain the residual V=X 2-X 0, and form the statistics
Figure PCTCN2022126862-appb-000001
5) select confidence level α, search in α quantile value at confidence level, if Г If the value is less than the quantile value, it is accepted; otherwise, point I  is eliminated;
6) after removing the points, use the reserved points to convert again, and then conduct hypothesis test again, and repeat steps 1) -5) until all points meet the requirements.
The Beneficial Effects of the Invention:
1) The system of the invention is a high-precision measurement system for measuring the relative settlement of multiple points. It can not only ensure 24-hour uninterrupted settlement monitoring, but also has the characteristics of high precision, good automation performance, convenient operation, and no need for monitoring personnel to get off the track. It is an ideal choice for foundation pit monitoring, high formwork monitoring, and settlement monitoring in steel structure installation monitoring..
2) After installing the supporting software in the office, the invention can remotely control the monitoring system for data collection and make corresponding data analysis in real time. After program calculation and processing, the collected data can form a complete monitoring report to reflect the changes of the monitoring target in real time.
3) The monitoring results are visualized through the data amplification system, and the deformation of the foundation pit that cannot be observed with the naked eye is amplified wirelessly, so that the monitoring personnel can intuitively feel the changes of the monitoring target.
4) The monitoring personnel can observe anytime and anywhere through the mobile app, and can complete the monitoring of the monitoring target even if they are not in the office.
Brief Description of the Drawings
Fig. 1 is the layout of track section monitoring points of the embodiment of the invention (the left line and the right line are the same, the black triangle  indicates the detection point) ;
Fig. 2 is a schematic diagram of the layout position of reference points in the embodiment of the invention (the dark area represents the detection area, and the small circle represents the reference point) ;
Fig. 3 is a structural diagram of L-shaped prism in the embodiment of the invention (circle represents prism) ;
Fig. 4 is a structural diagram of a prism with a triangular shaped steel fixed reference point in the embodiment of the invention (circle represents prism) ;
Fig. 5 is the structure diagram of the system of the invention.
Fig. 6 is the operation flow chart of the system of the invention.
Detailed Description of the Embodiments
The invention is further described in detail below in combination with the accompanying drawings and specific embodiments. The following embodiments are implemented on the premise of the technical scheme of the invention, and the detailed implementation mode and specific operation process are given, but the protection scope of the invention is not limited to the following embodiments.
Embodiment 1
As shown in Figures 1 to 4, this embodiment discloses a device for visual monitoring based on measuring robot to detect the interval tunnel directly affected by the project construction. The detection system includes a plurality of monitoring points, a plurality of reference points and an automatic measuring robot;
a section is arranged on the single track tunnel of the interval tunnel at an interval of 10m, and is arranged along the double track along the direction of the interval tunnel;
a total of 5 monitoring points are arranged on each section, of which 1 arch crown settlement is arranged at the top of the section, 2 relative convergence points are arranged at the two edges of the transverse centerline of the section, and 2 ballast bed settlement points are arranged at both sides near the bottom below the section;
the reference points are arranged at both ends of the left and right lines 3 meters outside the subway monitoring area;
the measuring robot is installed in the subway monitoring area, obtains data from the monitoring points and reference points, and adopts remote automatic monitoring of the vertical displacement and horizontal displacement of the tunnel structure in the project.
the device comprises L-shaped prisms arranged on the monitoring point.
the device comprises circular prism arranged on the reference point and fixed with a triangular steel base.
the reference points are arranged at an interval of more than 10 meters.
Embodiment 2
A system based on the device described in embodiment 1, includes monitoring unit and data processing unit;
the monitoring unit uses the measuring robot to collect the information of the monitoring points and the reference points, and transmits it to the data processing unit through the communication module;
the data processing unit is a computer data processing center composed of a data analysis sub unit, a data storage sub unit and a data amplification sub unit;
the data analysis sub unit analyzes and calculates the collected real-time data of monitoring points and reference points, and then compares the initial  data about monitoring points and reference points stored in the data storage sub unit with the results of analysis and calculation to obtain each horizontal displacement and cumulative horizontal displacement of the corresponding monitoring points; When the comparison result is normal, repeat the cycle monitoring, and send an alarm message when the result is abnormal;
each comparison result will be visualized through the data amplification sub unit, and then the visualized result will be transmitted to the computer and mobile phone of the monitoring personnel.
the system comprises the process of comparing the initial data about monitoring points and reference points stored in the data storage sub unit with the results of analysis and calculation in the data analysis sub unit, the process is using the initial coordinates of the reference point and the coordinates of the later observation to calculate the conversion parameters between the two coordinate systems, then using the conversion parameters to convert the coordinates of the later deformation point into the initial coordinate system, and then comparing with the coordinates of the initial reference point to obtain the difference;
hypothesis test on the statistics of residual error composition after benchmark conversion, comprising the steps:
1) set the initial coordinates of the datum point as X 0= (x 01, y 01, z 01, x 02, y 02, z 02…z 0m, y 0m, z 0m) ;
2) the later coordinates of the datum point are X 1= (x 11, y 11, z 11, x 12, y 12, z 1 2, …x 1m, y 1m, z 1m) ;
3) calculate the conversion parameters through these two sets of coordinates, and then convert them to the coordinate system where they are located, the coordinates of the later coordinates in the initial coordinate system X 2= (x 21, y 21, z 21, x 22, y 22, z 22, …x 2m, y 2m, z 2m) ;
4) obtain the residual V=X 2-X 0, and form the statistics
Figure PCTCN2022126862-appb-000002
5) select confidence level α, search in α quantile value at confidence level, if Г If the value is less than the quantile value, it is accepted; otherwise, point I is eliminated;
6) after removing the points, use the reserved points to convert again, and then conduct hypothesis test again, and repeat steps 1) -5) until all points meet the requirements.
Those skilled in the art can better understand and master the invention with the help of embodiments. However, the scope of protection and claims of the invention is not limited to the provided cases. Based on the embodiments in the invention, all other embodiments obtained by those skilled in the art without creative labor belong to the scope of the invention.

Claims (6)

  1. A device for visual monitoring, which is based on measuring robot, to detect the interval tunnel directly affected by the project construction, wherein the device includes a plurality of monitoring points, a plurality of reference points and an automatic measuring robot;
    a section is arranged on the single track tunnel of the interval tunnel at an interval of 10m, and is arranged along the double track along the direction of the interval tunnel;
    a total of 5 monitoring points are arranged on each section, of which 1 arch crown settlement is arranged at the top of the section, 2 relative convergence points are arranged at the two edges of the transverse centerline of the section, and 2 ballast bed settlement points are arranged at both sides near the bottom below the section;
    the reference points are arranged at both ends of the left and right lines 3 meters outside the subway monitoring area;
    the measuring robot is installed in the subway monitoring area, obtains data from the monitoring points and reference points, and adopts remote automatic monitoring of the vertical displacement and horizontal displacement of the tunnel structure in the project.
  2. The device according to claim 1, comprising L-shaped prisms arranged on the monitoring point.
  3. The device according to claim 2, comprising circular prism arranged on the reference point and fixed with a triangular steel base.
  4. The device according to claim 1, wherein the reference points are arranged at an interval of more than 10 meters.
  5. A system based on the device of claim 1, Including monitoring unit and  data processing unit;
    the monitoring unit uses the measuring robot to collect the information of the monitoring points and the reference points, and transmits it to the data processing unit through the communication module;
    the data processing unit is a computer data processing center composed of a data analysis sub unit, a data storage sub unit and a data amplification sub unit;
    the data analysis sub unit analyzes and calculates the collected real-time data of monitoring points and reference points, and then compares the initial data about monitoring points and reference points stored in the data storage sub unit with the results of analysis and calculation to obtain each horizontal displacement and cumulative horizontal displacement of the corresponding monitoring points; When the comparison result is normal, repeat the cycle monitoring, and send an alarm message when the result is abnormal;
    each comparison result will be visualized through the data amplification sub unit, and then the visualized result will be transmitted to the computer and mobile phone of the monitoring personnel.
  6. The system of claim 5, comprising the process of comparing the initial data about monitoring points and reference points stored in the data storage sub unit with the results of analysis and calculation in the data analysis sub unit, the process is using the initial coordinates of the reference point and the coordinates of the later observation to calculate the conversion parameters between the two coordinate systems, then using the conversion parameters to convert the coordinates of the later deformation point into the initial coordinate system, and then comparing with the coordinates of the initial reference point to obtain the difference;
    hypothesis test on the statistics of residual error composition after benchmark conversion, comprising the steps:
    1) set the initial coordinates of the datum point as X 0= (x 01, y 01, z 01, x 02, y 02, z 02… z 0m, y 0m, z 0m) ;
    2) the later coordinates of the datum point are X 1= (x 11, y 11, z 11, x 12, y 12, z 1 2, … x 1m, y 1m, z 1m) ;
    3) calculate the conversion parameters through these two sets of coordinates, and then convert them to the coordinate system where they are located, the coordinates of the later coordinates in the initial coordinate system X 2= (x 21, y 21, z 21, x 22, y 22, z 22, … x 2m, y 2m, z 2m) ;
    4) obtain the residual V=X 2-X 0, and form the statistics
    Figure PCTCN2022126862-appb-100001
    5) select confidence level α, search in α quantile value at confidence level, if Г If the value is less than the quantile value, it is accepted; otherwise, point I is eliminated;
    6) after removing the points, use the reserved points to convert again, and then conduct hypothesis test again, and repeat steps 1) -5) until all points meet the requirements.
PCT/CN2022/126862 2022-06-12 2022-10-22 Device and system for visual monitoring based on measuring robot WO2023056983A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ZA2022/07686 2022-06-12
ZA2022/07686A ZA202207686B (en) 2022-07-12 2022-07-12 Device and system for visual monitoring based on measuring robot

Publications (1)

Publication Number Publication Date
WO2023056983A1 true WO2023056983A1 (en) 2023-04-13

Family

ID=83743385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126862 WO2023056983A1 (en) 2022-06-12 2022-10-22 Device and system for visual monitoring based on measuring robot

Country Status (2)

Country Link
WO (1) WO2023056983A1 (en)
ZA (1) ZA202207686B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256457A2 (en) * 2009-05-26 2010-12-01 Emschergenossenschaft Measurement of underground structures, in particular for underground tunnelling, with consoles
CN104034275A (en) * 2014-06-09 2014-09-10 同济大学 Total station instrument based subway tunnel deformation automatic monitoring method and device
CN110057302A (en) * 2019-05-15 2019-07-26 南京工业职业技术学院 Automatic Measuring Apparatus and measurement method towards subsurface safety
CN110186420A (en) * 2019-05-22 2019-08-30 中国铁道科学研究院集团有限公司铁道建筑研究所 A kind of tunnel cross section convergence deformation auto-monitoring system
CN111866337A (en) * 2020-06-30 2020-10-30 北京福瑶科技有限公司 Intelligent inspection robot and inspection method
CN112483187A (en) * 2021-01-29 2021-03-12 中铁工程装备集团有限公司 Shield tunneling machine pipe piece settlement monitoring system and monitoring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256457A2 (en) * 2009-05-26 2010-12-01 Emschergenossenschaft Measurement of underground structures, in particular for underground tunnelling, with consoles
CN104034275A (en) * 2014-06-09 2014-09-10 同济大学 Total station instrument based subway tunnel deformation automatic monitoring method and device
CN110057302A (en) * 2019-05-15 2019-07-26 南京工业职业技术学院 Automatic Measuring Apparatus and measurement method towards subsurface safety
CN110186420A (en) * 2019-05-22 2019-08-30 中国铁道科学研究院集团有限公司铁道建筑研究所 A kind of tunnel cross section convergence deformation auto-monitoring system
CN111866337A (en) * 2020-06-30 2020-10-30 北京福瑶科技有限公司 Intelligent inspection robot and inspection method
CN112483187A (en) * 2021-01-29 2021-03-12 中铁工程装备集团有限公司 Shield tunneling machine pipe piece settlement monitoring system and monitoring method

Also Published As

Publication number Publication date
ZA202207686B (en) 2022-10-26

Similar Documents

Publication Publication Date Title
US20220392326A1 (en) Multi-state triggered system and method for remote automatic monitoring and early warning of landslide mass
CN110926439B (en) Operation tunnel structure health monitoring system based on BIM technology
CN108050952B (en) Method for monitoring tunnel section deformation by using tunnel section deformation monitoring system
CN107843195A (en) A kind of active breaking belt tunnel structure DEFORMATION MONITORING SYSTEM and method
CN108180885B (en) Automatic monitoring system and method for tunnel deformation
CN206987892U (en) A kind of prior-warning device for being used to monitor Propagation in Tunnel Disaster
CN111366101A (en) Real-time monitoring and early warning method for deep foundation pit based on three-dimensional laser scanning technology
CN108922123A (en) A kind of mine slope sliding stability monitoring and pre-alarming method
CN103603330B (en) Method for using total station instrument to measure horizontal displacement of deep soil
CN205804432U (en) Static load pilot system that architecture foundation pile is wireless
CN204065819U (en) A kind of dam deformation automatic monitoring system based on technology of Internet of things
CN114485570A (en) Intelligent monitoring, measuring and early warning system and method for construction safety of tunnel under construction
CN111895962A (en) Method for monitoring deformation of operation subway station
CN103835764A (en) Underground engineering and deep foundation pit safety monitoring and early warning system
CN112097823A (en) Based on big dipper high accuracy location and BIM construction multiple spot synchronous monitoring system
CN206959776U (en) High-rise building safe monitoring system based on big-dipper satellite
WO2023056983A1 (en) Device and system for visual monitoring based on measuring robot
CN109764795A (en) High-speed railway track plate arch automatic monitoring system based on NB-iot
CN114232698A (en) Foundation pit monitoring method and system based on BIM
CN113653107A (en) Foundation pit monitoring method and system based on 5G + informatization
CN111314801B (en) Data acquisition system and method supporting dynamic scheduling
CN112082495A (en) Deformation monitoring system and method for comprehensive pipe gallery
CN109707452B (en) Remote operation system for intelligently judging surrounding rock level of tunnel face
CN207851308U (en) Object space variation monitoring system based on satellite positioning
CN215003695U (en) Beidou positioning system-based monitoring system for deep foundation pit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877997

Country of ref document: EP

Kind code of ref document: A1