WO2023056813A1 - 会话容灾方法、设备及存储介质 - Google Patents

会话容灾方法、设备及存储介质 Download PDF

Info

Publication number
WO2023056813A1
WO2023056813A1 PCT/CN2022/117186 CN2022117186W WO2023056813A1 WO 2023056813 A1 WO2023056813 A1 WO 2023056813A1 CN 2022117186 W CN2022117186 W CN 2022117186W WO 2023056813 A1 WO2023056813 A1 WO 2023056813A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
sgw
session
cluster
sgw network
Prior art date
Application number
PCT/CN2022/117186
Other languages
English (en)
French (fr)
Inventor
过增斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023056813A1 publication Critical patent/WO2023056813A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure

Definitions

  • the present disclosure relates to the technical field of communications, and in particular to a session disaster recovery method, device and storage medium.
  • the disaster recovery solution generally adopts a cross-regional disaster recovery deployment method, that is, two DCs are deployed in two different regions. When the network equipment in a certain DC is unavailable, the other DC will quickly take over the business to ensure business continuity. availability.
  • this disaster recovery deployment method user plane tunnels are released and rebuilt before and after disaster recovery, resulting in interruption of user traffic during the disaster recovery process, and uninterrupted telecommunications services cannot be provided for users.
  • the main purpose of the embodiments of the present disclosure is to provide a session disaster recovery method, device and storage medium.
  • an embodiment of the present disclosure provides a method for session disaster recovery, including: receiving a first session establishment request sent by an MME network element, and establishing a first session between a UPF network element and an SGW network element cluster based on the first session establishment request A communication link, a second communication link between the PGW network element and the SGW network element cluster, and a third communication link between the MME network element and the SGW network element cluster; wherein, when the When the active SGW network element in the SGW network element cluster is disconnected, obtain the session data of the active SGW network element, and take over the active SGW based on the takeover SGW network element and the session data of the active SGW network element The session of the network element performs session processing, and the takeover SGW network element is selected from the backup SGW network elements of the SGW network element cluster.
  • an embodiment of the present disclosure further provides a device, the device includes a processor, a memory, a computer program stored on the memory and executable by the processor, and a computer program for implementing the processor and the A data bus connecting and communicating between the memories, wherein when the computer program is executed by the processor, the steps of any session disaster recovery method provided in this disclosure are implemented.
  • an embodiment of the present disclosure further provides a storage medium for computer-readable storage, the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors , so as to implement the steps of any session disaster recovery method provided in this disclosure specification.
  • FIG. 1 is a schematic diagram of a control plane and user plane separation architecture provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a networking architecture provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a session disaster recovery method provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of signaling interaction when a user initially attaches according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of signaling interaction for triggering tracking area update on the user side when the primary SGW network element is disconnected according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of signaling interaction for triggering bearer update on the network side when the primary SGW network element is disconnected according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic structural block diagram of a device provided by an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a session disaster recovery method, device, and storage medium.
  • the session disaster recovery method can be applied to the CU separation architecture to solve the problem of user traffic interruption caused by the disconnection of the active SGW network element under the CU separation architecture and triggering the active/standby switchover.
  • the architecture includes MME network element (Mobility Management Entity, mobile management entity), SGW network element (Serving Gateway Control plane function, serving gateway control plane function), PGW network element (PDN Gateway Control plane function, PDN gateway control plane function) function), and UPF network element (Serving Gateway User plane function, serving gateway user plane function).
  • MME network element Mobility Management Entity, mobile management entity
  • SGW network element Serving Gateway Control plane function, serving gateway control plane function
  • PGW network element PDN Gateway Control plane function, PDN gateway control plane function
  • UPF network element Serving Gateway User plane function, serving gateway user plane function
  • the associated network elements of the SGW network element are the MME network element, the PGW network element and the UPF network element
  • the connection of the control plane is from the MME network element to the SGW network element and then to the PGW network element.
  • FIG. 2 is a schematic diagram of a networking architecture provided by an embodiment of the present disclosure.
  • the architecture includes MME network elements, PGW network elements, UPF network elements and multiple SGW network elements.
  • multiple SGW network elements form a SGW network element cluster
  • the SGW network element cluster includes the main SGW network element and the standby SGW network element, for example, SGW1 is the main SGW network element, and SGW2 to SGWn are all standby SGW network elements .
  • SGW network elements in the same SGW network element cluster can share the context data of online services with each other.
  • multiple SGW network elements may be formed into multiple SGW network element clusters, and each SGW network element cluster includes an active SGW network element and a standby SGW network element.
  • each SGW network element cluster includes an active SGW network element and a standby SGW network element.
  • the SGW network element and the PGW network element can also be deployed physically into one to obtain a network element set.
  • the connection of the control plane is from the MME network element to the network element set.
  • the signaling interaction between the PGW network element and the SGW network element is the signaling interaction within the network element set, and the PGW network elements in the network element set also need to support the PGW network element cluster for disaster recovery.
  • the relevant information of the PGW network element cluster needs to be transferred by the SGW network element to the MME network element.
  • FIG. 3 is a schematic flowchart of a session disaster recovery method provided by an embodiment of the present disclosure.
  • the session disaster recovery method includes step S101.
  • Step S101 Receive the first session establishment request sent by the MME network element, and establish the first communication link between the UPF network element and the SGW network element cluster, and the first communication link between the PGW network element and the SGW network element cluster based on the first session establishment request. Two communication links and a third communication link between the MME network element and the SGW network element cluster; wherein, when the active SGW network element in the SGW network element cluster is disconnected, the session data of the active SGW network element is obtained, Based on the session data of the takeover SGW network element and the active SGW network element, the session of the active SGW network element is taken over, and session processing is performed.
  • the takeover SGW network element is selected from the standby SGW network elements of the SGW network element cluster.
  • the SGW network element cluster receives the first session establishment request sent by the MME network element, and establishes the first communication link with the UPF network element and the PGW network element respectively. Establish the second communication link and establish the third communication link with the MME network element.
  • the first communication link is used to transmit control plane information and perform signaling interaction on the control plane.
  • the step of establishing three communication links may include: based on the first session establishment request, initiate a second session establishment request to the UPF network element, so that the UPF network element communicates with the SGW network element cluster based on the second session establishment request.
  • the active SGW network element of the SGW network element establishes the first communication link; sends the third session establishment request to the PGW network element, so that the PGW network element establishes the second communication with the active SGW network element in the SGW network element cluster based on the third session establishment request Link, the third session establishment request carries the cluster identifier of the SGW network element cluster and the address list of the standby SGW network element in the SGW network element cluster; sends the first session establishment response to the MME network element, and establishes the MME network element and the SGW network element For the third communication link between active SGW network elements in the cluster, the session establishment response carries the cluster identifier of the SGW network element cluster and the address list of the backup SGW network elements in the SGW network element cluster.
  • FIG. 4 it is a schematic diagram of signaling interaction when a user initially attaches according to an embodiment of the present disclosure.
  • An MME network element receives an initial attach request initiated by a UE side.
  • the MME network element initiates a first session establishment request to the active SGW network element in the SGW network element cluster, and informs the active SGW network element to establish communication links with the UPF network element and the PGW network element respectively, so as to facilitate control Interface signaling interaction.
  • the active SGW network element in the SGW network element cluster initiates a second session establishment request to the UPF network element, so that the UPF network element can establish a first communication link with the active SGW network element, wherein the first The communication link is a link used for control plane signaling interaction.
  • the UPF network element sends a second session establishment response to the active SGW network element in the SGW network element cluster, indicating that the establishment of the first communication link between the UPF network element and the active SGW network element is completed.
  • the active SGW network element in the SGW network element cluster initiates a third session establishment request to the PGW network element, and the third session establishment request carries the cluster identifier of the SGW network element cluster and/or the standby SGW address in the SGW network element cluster list.
  • the cluster ID of the SGW network element cluster is the cluster ID of the SGW network element cluster where the active SGW network element is located, and the standby SGW network element address list in the SGW network element cluster may include all the addresses of the standby SGW network elements, or It may only include part of the standby SGW network element addresses in the SGW network element cluster.
  • the PGW network element sends a third session establishment response to the active SGW network element in the SGW network element cluster, indicating that the establishment of the second communication link between the PGW network element and the active SGW network element is completed.
  • the active SGW network element in the SGW network element cluster initiates a session update request to the UPF network element, and updates the F-TEIDU on the PGW side.
  • the UPF network element sends a session update response to the active SGW network element in the SGW network element cluster.
  • the active SGW network element in the SGW network element cluster sends the first session establishment response to the MME network element, and the first session establishment response carries the cluster identifier of the SGW network element cluster and/or the standby SGW address in the SGW network element cluster list.
  • the cluster ID of the SGW network element cluster is the cluster ID of the SGW network element cluster where the active SGW network element is located, and the standby SGW network element address list in the SGW network element cluster may include all the addresses of the standby SGW network elements, or It may only include part of the standby SGW network element addresses in the SGW network element cluster.
  • the MME network element notifies the UE side to continue the subsequent attach process, allocate air interface resources, and open a wireless downlink tunnel.
  • the active SGW network element can normally perform traffic processing.
  • the SGW network element cluster is seen as one SGW network element by the associated network elements MME network element, PGW network element and UPF network element.
  • the UPF network element finds that the active SGW connected in the SGW network element cluster fails, the UPF network element can connect to the standby SGW network element in the SGW network element cluster to continue working without releasing the UPF network element
  • the MME network element or PGW network element detects that the primary SGW fails, and does not release the users on the SGW network element, so that the packets on the user plane will not be interrupted.
  • the associated network element can trigger the standby SGW network element to take over the original active SGW in the shortest time User plane resources of network elements, so as to ensure that user traffic is not interrupted during the disaster recovery process.
  • the MME network element When the MME network element receives the tracking area update request triggered by the user side and finds that the active SGW network element is disconnected, the MME network element will select the takeover SGW network element from the backup SGW network elements in the SGW network element cluster, and the takeover The SGW network element acquires the session data of the active SGW network element, takes over the session of the active SGW network element, and ensures the normal progress of user traffic.
  • the MME network element when the MME network element selects to take over the SGW network element from the standby SGW network elements in the SGW network element cluster, it can choose according to the sequence, weight or status of the standby SGW network elements in the SGW network element cluster. .
  • the step of taking over the session of the active SGW network element may include: receiving the first session request sent by the MME network element, and initiating a first session update request to the PGW network element, so that the PGW The network element updates the second communication link based on the first session update request, and enables the UPF network element to update the session tunnel identifier corresponding to the first session update response returned by the PGW network element and the takeover SGW network element The first communication link; sending a first session response to the MME network element, establishing a third communication link between the MME network element and the takeover SGW network element, so that the takeover SGW network element is based on The session data takes over the session of the active SGW network element.
  • FIG. 5 it is a schematic diagram of signaling interaction for triggering tracking area update at the user side when the active SGW network element is disconnected according to the embodiment of the present disclosure.
  • the MME network element receives a tracking area update request initiated by a user side.
  • the MME network element finds that the active SGW network element is disconnected, selects a takeover SGW network element that can be taken over from the SGW network element cluster, and sends a first session request to the takeover SGW network element.
  • a state detection mechanism between the MME network element and the SGW network element may be used to detect the state of the active SGW network element, for example, the detection mechanism may be heartbeat detection.
  • the MME network element can The SGW network element to take over is directly selected from the standby SGW network elements in the SGW network element cluster.
  • the takeover SGW network element After receiving the first session request, acquires session data of the active SGW network element, and initiates a first session update request to the PGW network element according to the acquired session data of the active SGW network element.
  • the first session update request may carry the cluster identifier of the SGW network element cluster and/or the standby SGW address list in the SGW network element cluster.
  • the cluster identification of the SGW network element cluster and/or the standby SGW address list in the SGW network element cluster have been sent to the PGW network element during the user attachment phase, if the address of the standby SGW network element and the cluster of the SGW network element cluster If the identifier changes, the cluster identifier of the new SGW network element cluster and/or the standby SGW address list in the SGW network element cluster may be sent to the PGW network element by using the first session update request, so as to update the initial data.
  • the PGW network element sends a first session update response to the takeover SGW network element, indicating that the update of the second communication link is completed. At this time, the PGW network element performs signaling interaction with the takeover SGW network element.
  • the UPF network element also needs to update the first communication link according to the session tunnel identifier corresponding to the takeover SGW network element, that is, the UPF network element performs control plane signaling with the takeover SGW network element through the updated first communication link interact.
  • the takeover SGW network element may initiate a second session update request to the UPF network element, and receive the second session update returned by the UPF network element response.
  • the second session update request carries the session tunnel identifier corresponding to the takeover SGW network element.
  • the session tunnel identifier corresponding to the takeover SGW network element is F-SEID (Fully Qualified SEID).
  • the takeover SGW network element sends a first session response to the MME network element, indicating that the first communication link between the MME network element and the takeover SGW network element has been established, and the MME network element can communicate with the takeover SGW through the first communication link Network elements perform signaling interaction.
  • the first session response may carry the cluster identifier of the SGW network element cluster and/or the standby SGW address list in the SGW network element cluster.
  • the first session response may be used to send the cluster identifier of the new SGW network element cluster and/or the standby SGW address list in the SGW network element cluster to the MME network element, so as to update the initial data.
  • the MME network element continues to initiate a tracking area update request to the takeover SGW network element.
  • the tracking area update request may also be resent by the user side.
  • the PGW network element When the PGW network element receives the bearer update triggered by the network side and finds that the active SGW network element is disconnected, the PGW network element will select the takeover SGW network element from the standby SGW network elements in the SGW network element cluster, and the takeover SGW network element The element obtains the session data of the active SGW network element, takes over the session of the active SGW network element, and ensures the normal progress of user traffic.
  • the PGW network element when the PGW network element selects to take over the SGW network element from the standby SGW network elements in the SGW network element cluster, it can choose according to the order, weight or status of the standby SGW network elements in the SGW network element cluster .
  • the taking over the session of the active SGW network element based on the session data of the takeover SGW network element and the active SGW network element includes: receiving a first bearer update request sent by the PGW network element And send a second bearer update request to the MME network element, so that the MME network element triggers a second session request based on the second bearer request; send a third session request to the PGW network element based on the second session request
  • the update request updates the second communication link between the PGW network element and the takeover SGW network element; receiving the third session update response returned by the PGW network element based on the third session update request, so that the UPF
  • the network element updates the first communication link between the UPF network element and the takeover SGW network element based on the third session update response and the session tunnel identifier corresponding to the takeover SGW network element; sends the first communication link to the MME network element
  • the second bearer establishes a response to update the third communication link between the MME network element and the takeover SGW network element
  • FIG. 6 it is a schematic diagram of signaling interaction for triggering bearer update on the network side when the active SGW network element is disconnected according to the embodiment of the present disclosure.
  • the PGW network element receives a bearer update triggered by the network side, finds that the primary SGW network element is disconnected, and selects a takeover SGW network element from the SGW network element cluster.
  • a state detection mechanism between the PGW network element and the SGW network element may be used to detect the state of the active SGW network element, for example, the detection mechanism may be heartbeat detection.
  • the PGW network element can The SGW network element to take over is directly selected from the standby SGW network elements in the SGW network element cluster.
  • the PGW network element sends a first bearer update request to the takeover SGW network element.
  • the takeover SGW network element After receiving the first bearer update request, acquires the session data of the active SGW network element, and continues to send the second bearer update request to the MME network element according to the acquired session data of the active SGW network element .
  • the MME network element After receiving the second bearer update request, the MME network element determines that the address of the takeover SGW network element is inconsistent with the address of the active SGW network element, and re-triggers session establishment, and initiates a second session request to the takeover SGW network element.
  • the takeover SGW network element After receiving the second session request, the takeover SGW network element initiates a third session update request to the PGW network element.
  • the third session update request may carry the cluster identifier of the SGW network element cluster and/or the standby SGW address list in the SGW network element cluster.
  • the third session update request may be used to send the cluster identifier of the new SGW network element cluster and/or the standby SGW address list in the SGW network element cluster to the PGW network element, so as to update the initial data.
  • the PGW network element After receiving the third session update request, the PGW network element finds that the process conflicts, and executes the third session update request first to update the second communication link between the PGW network element and the takeover SGW network element, and Send a third session update response to the takeover SGW network element.
  • the UPF network element also needs to update the first communication link between the UPF network element and the SGW network element according to the session tunnel identifier corresponding to the takeover SGW network element, that is, the UPF network element communicates with the UPF network element through the updated first communication link. Take over the SGW network element to perform signaling interaction on the control plane.
  • the takeover SGW network element may initiate a fourth session update request to the UPF network element, and receive the fourth session update returned by the UPF network element response.
  • the fourth session update request carries the session tunnel identifier corresponding to the takeover SGW network element.
  • the session tunnel identifier corresponding to the takeover SGW network element is F-SEID (Fully Qualified SEID).
  • the takeover SGW network element sends a second session response to the MME network element, indicating that the third communication link between the MME network element and the takeover SGW network element has been updated, and the MME network element can communicate with the takeover SGW through the first communication link Network elements perform signaling interaction.
  • the second session response may carry the cluster identifier of the SGW network element cluster and/or the standby SGW address list in the SGW network element cluster.
  • the second session response may be used to send the cluster identifier of the new SGW network element cluster and/or the standby SGW address list in the SGW network element cluster to the MME network element, so as to update the initial data.
  • the MME network element notifies the UE side to continue the subsequent bearer update process.
  • the SGW network element cluster is constructed, and the first communication link between the SGW network element cluster and the UPF network element is established, and the second communication between the SGW network element cluster and the UPF network element is established. link and the third communication link between the SGW network element cluster and the MME network element, so that the active SGW network element in the SGW network element cluster is disconnected, and when the takeover SGW network element takes over the session of the active SGW network element, It is only necessary to update the communication link of the control plane without rebuilding the user plane tunnel, which avoids the interruption of user traffic during the disaster recovery process and improves user experience.
  • FIG. 7 is a schematic structural block diagram of a device provided by an embodiment of the present disclosure.
  • a device 500 includes a processor 501 and a memory 502, and the processor 501 and the memory 502 are connected through a bus 503, such as an I2C (Inter-integrated Circuit) bus.
  • a bus 503 such as an I2C (Inter-integrated Circuit) bus.
  • the processor 501 is used to provide computing and control capabilities to support the operation of the entire device.
  • the processor 501 can be a central processing unit (Central Processing Unit, CPU), and the processor 501 can also be other general processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC) ), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 502 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk.
  • FIG. 7 is only a block diagram of a part of the structure related to the embodiment of the present disclosure, and does not constitute a limitation on the device to which the embodiment of the present disclosure is applied.
  • the server may include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
  • the processor is configured to run a computer program stored in the memory, and implement any one of the session disaster recovery methods provided in the embodiments of the present disclosure when the computer program is executed.
  • the processor is configured to run a computer program stored in a memory, and implement the following steps when executing the computer program: receiving a first session establishment request sent by an MME network element, and based on the first The session establishment request establishes the first communication link between the UPF network element and the SGW network element cluster, the second communication link between the PGW network element and the SGW network element cluster, and the MME network element and the SGW network element cluster The third communication link between; wherein, when the active SGW network element in the SGW network element cluster is disconnected, obtain the session data of the active SGW network element, and based on the takeover SGW network element and the The session data of the active SGW network element takes over the session of the active SGW network element for session processing, and the takeover SGW network element is selected from the standby SGW network elements of the SGW network element cluster.
  • the processor realizes establishing the first communication link between the UPF network element and the SGW network element cluster based on the first session establishment request, and between the PGW network element and the SGW network element cluster
  • the second communication link and the third communication link between the MME network element and the SGW network element cluster are used to implement: based on the first session establishment request, initiate a second session establishment to the UPF network element Request, make the UPF network element establish a first communication link with the active SGW network element in the SGW network element cluster based on the second session establishment request; send a third session establishment request to the PGW network element, so that the The PGW network element establishes a second communication link with the active SGW network element in the SGW network element cluster based on the third session establishment request, and the third session establishment request carries the cluster of the SGW network element cluster identifying and an address list of standby SGW network elements in the SGW network element cluster; and sending a first session establishment response to the MME network element, establishing the MME network element and the active SGW network
  • the processor when the processor takes over the session of the active SGW network element based on the session data of the takeover SGW network element and the active SGW network element, it is configured to: receive the MME A first session request sent by a network element, and a first session update request is initiated to the PGW network element, so that the PGW network element updates the second communication link based on the first session update request, and the The UPF network element updates the first communication link based on the first session update response returned by the PGW network element and the session tunnel identifier corresponding to the takeover SGW network element; and sends the first session response to the MME network element to establish the The third communication link between the MME network element and the takeover SGW network element, so that the takeover SGW network element takes over the session of the active SGW network element based on the session data.
  • the processor is configured to: send a second session update request to the UPF network element, where the second session update request carries the session tunnel identifier corresponding to the takeover SGW network element.
  • the first session update request carries the cluster identifier of the SGW network element cluster and/or the address list of the standby SGW network elements in the SGW network element cluster; and/or the first session The response carries the cluster identifier of the SGW network element cluster and/or the address list of the standby SGW network elements in the SGW network element cluster.
  • the processor when the processor takes over the session of the active SGW network element based on the session data of the takeover SGW network element and the active SGW network element, it is configured to: receive the PGW The network element sends a first bearer update request and sends a second bearer update request to the MME network element, so that the MME network element triggers a second session request based on the second bearer request;
  • the PGW network element sends a third session update request to update the second communication link between the PGW network element and the takeover SGW network element; receives the third session update request returned by the PGW network element based on the third session update request
  • Three session update responses enabling the UPF network element to update the first communication link between the UPF network element and the takeover SGW network element based on the third session update response and the session tunnel identifier corresponding to the takeover SGW network element ; and sending a second session response to the MME network element to update the third communication link between the MME network element and the takeover SGW network element.
  • the processor is configured to: initiate a fourth session update request to the UPF network element, where the fourth session update request includes the session tunnel identifier of the takeover SGW gateway.
  • the third session update request carries the cluster identifier of the SGW network element cluster and/or the address list of the standby SGW network elements in the SGW network element cluster; and/or the second session The response carries the cluster identifier of the SGW network element cluster and/or the address list of the standby SGW network elements in the SGW network element cluster.
  • An embodiment of the present disclosure also provides a storage medium for computer-readable storage, the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the following: The steps of any session disaster recovery method provided by the description of the embodiments of the present disclosure.
  • the storage medium may be an internal storage unit of the device described in the foregoing embodiments, such as a hard disk or a memory of the device.
  • the storage medium can also be an external storage device of the device, such as a plug-in hard disk equipped on the device, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash Card) etc.
  • the functional modules/units in the system, and the device can be implemented as software, firmware, hardware, and an appropriate combination thereof.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components. Components cooperate to execute.
  • Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as an application-specific integrated circuit .
  • Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. permanent, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开实施例提供一种会话容灾方法、设备及存储介质,属于通信技术领域。该方法包括:接收MME网元发送的第一会话建立请求,并基于所述第一会话建立请求建立UPF网元与SGW网元集群的第一通信链路、PGW网元与所述SGW网元集群之间的第二通信链路以及所述MME网元与所述SGW网元集群之间的第三通信链路;其中,当所述SGW网元集群中的主用SGW网元断链时,获取所述主用SGW网元的会话数据,并基于接管SGW网元和所述主用SGW网元的会话数据接管所述主用SGW网元的会话,进行会话处理,所述接管SGW网元为从所述SGW网元集群的备用SGW网元中选择的。

Description

会话容灾方法、设备及存储介质
相关申请的交叉引用
本申请要求享有2021年10月09日提交的名称为“会话容灾方法、设备及存储介质”的中国专利申请202111178282.0的优先权,其全部内容通过引用并入本申请中。
技术领域
本公开涉及通信技术领域,尤其涉及一种会话容灾方法、设备及存储介质。
背景技术
随着5G时代的到来,传输速率大幅提升,为了防止设备故障、停电、自然灾害等种种原因导致的网络服务中断而引发的通讯不畅、数据丢失、资金损失甚至生命危险等问题,核心网提供了容灾方案,一般采用跨地域容灾部署方式,即在两个不同地域分别部署两个DC,当某地DC中的网络设备不可用时,由另一地DC迅速接管业务,从而保障业务的可用性。但在这种容灾部署方式中,容灾前后用户面隧道发生释放和重建,导致在容灾过程中用户的话务中断,无法为用户提供不间断的电信服务。
发明内容
本公开实施例的主要目的在于提供一种会话容灾方法、设备及存储介质。
第一方面,本公开实施例提供一种会话容灾方法,包括:接收MME网元发送的第一会话建立请求,并基于所述第一会话建立请求建立UPF网元与SGW网元集群的第一通信链路、PGW网元与所述SGW网元集群之间的第二通信链路以及所述MME网元与所述SGW网元集群之间的第三通信链路;其中,当所述SGW网元集群中的主用SGW网元断链时,获取所述主用SGW网元的会话数据,并基于接管SGW网元和所述主用SGW网元的会话数据接管所述主用SGW网元的会话,进行会话处理,所述接管SGW网元为从所述SGW网元集群的备用SGW网元中选择的。
第二方面,本公开实施例还提供一种设备,所述设备包括处理器、存储器、存储在所述存储器上并可被所述处理器执行的计算机程序以及用于实现所述处理器和所述存储器之间的连接通信的数据总线,其中所述计算机程序被所述处理器执行时,实现如本公开说明书提供的任一项会话容灾方法的步骤。
第三方面,本公开实施例还提供一种存储介质,用于计算机可读存储,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现 如本公开说明书提供的任一项会话容灾方法的步骤。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种控制面和用户面分离架构的架构示意图;
图2为本公开实施例提供的一种组网架构示意图;
图3为本公开实施例提供的一种会话容灾方法的流程示意图;
图4为本公开实施例提供的用户初始附着时的信令交互示意图;
图5为本公开实施例提供的主用SGW网元断链时,用户侧触发追踪区更新的信令交互示意图;
图6为本公开实施例提供的主用SGW网元断链时,网络侧触发承载更新的信令交互示意图;以及
图7为本公开实施例提供的一种设备的结构示意性框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
应当理解,在此本公开说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本公开。如在本公开说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
本公开实施例提供一种会话容灾方法、设备及存储介质。其中,该会话容灾方法可应用于CU分离架构下,来解决CU分离架构下主用SGW网元出现断链情况触发主备切换时导致的用户话务中断的问题。
下面结合附图,对本公开的一些实施例作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
如图1所示,为控制面和用户面分离架构的架构示意图。其中,该架构中包括MME网元(Mobility Management Entity,移动管理实体)、SGW网元(Serving Gateway Control plane function,服务网关控制面功能)、PGW网元(PDN Gateway Control plane function,PDN网关控制面功能)、以及UPF网元(Serving Gateway User plane function,服务网关用户面功能)。其中,SGW网元的关联网元为MME网元、PGW网元和UPF网元,控制面的连接为MME网元到SGW网元再到PGW网元。
请参照图2,图2为本公开实施例提供的一种组网架构示意图。该架构中包括MME网元、PGW网元、UPF网元和多个SGW网元。其中,多个SGW网元组成了一个SGW网元集群,SGW网元集群中包括主用SGW网元和备用SGW网元,例如SGW1为主用SGW网元,SGW2至SGWn均为备用SGW网元。
同一个SGW网元集群内的多个SGW网元可以彼此共享在线业务的上下文数据,当SGW网元集群中的主用SGW网元故障断链时,SGW网元集群中的备用SGW网元可以从数据存储服务中获取所需处理的业务上下文,也即主用SGW网元的会话数据,瞬间接管主用SGW网元的业务处理,从而实现SGW网元集群内各个SGW网元间的相互冗余倒换。这使得接管SGW网元在接管主用SGW网元的会话的过程中,UPF网元就无需进行资源释放,在线业务也将保持不中断,用户无需重建连接。
在一实施例中,可以将多个SGW网元组成多个SGW网元集群,每个所述SGW网元集群中都包括主用SGW网元和备用SGW网元。当所述主用SGW网元故障断链时,可容灾到与所述主用SGW网元同一SGW网元集群中的备用SGW网元。
另外,还可以将SGW网元和PGW网元进行物理上的合一部署,得到一个网元集合,此时控制面的连接为MME网元到该网元集合。此时PGW网元和SGW网元之间的信令交互为网元集合内部的信令交互,该网元集合中的PGW网元也需要支持PGW网元集群进行容灾,在进行信令交互时,PGW网元集群的相关信息需要由SGW网元进行中转传输给MME网元。
请参照图3,图3为本公开实施例提供的一种会话容灾方法的流程示意图。
如图3所示,该会话容灾方法包括步骤S101。
步骤S101、接收MME网元发送的第一会话建立请求,并基于第一会话建立请求建立UPF网元与SGW网元集群的第一通信链路、PGW网元与SGW网元集群之间的第二通信链路以及MME网元与SGW网元集群之间的第三通信链路;其中,当SGW网元集群中的主用SGW网元断链时,获取主用SGW网元的会话数据,并基于接管SGW网元和主用SGW网元的会话数据接管主用SGW网元的会话,进行会话处理,接管SGW网元为从SGW网元集群的备用SGW网元中选择的。
基于图2所示的组网架构,在用户初始附着时,由SGW网元集群接收MME网元发送的第一会话建立请求,并分别与UPF网元建立第一通信链路、与PGW网元建立第二通信链路以及与MME网元建立第三通信链路。其中,第一通信链路用于传输控制面信息,进行控制面的信令交互。
在一实施例中,建立三个通信链路的步骤可以包括:基于第一会话建立请求向UPF网元发起第二会话建立请求,使UPF网元基于第二会话建立请求与SGW网元集群中的主用SGW网元建立第一通信链路;向PGW网元发送第三会话建立请求,使PGW网元基于第三会话建立请求与SGW网元集群中的主用SGW网元建立第二通信链路,第三会话建立请求中携带SGW网元集群的集群标识和SGW网元集群中备用SGW网元的地址列表;向MME网元发送第一会话建立响应,建立MME网元与SGW网元集群中的主用SGW网元之间的第三通信链路,会话建立响应中携带SGW网元集群的集群标识和SGW网元集群中备用SGW网元的地址列表。
如图4所示,为本公开实施例提供的用户初始附着时的信令交互示意图。
201、MME网元接收到UE侧发起的初始附着请求。
202、MME网元向SGW网元集群中的主用SGW网元发起第一会话建立请求,告知主用SGW网元分别与UPF网元和PGW网元之间建立通信链路,以便于进行控制面信令的交互。
203、SGW网元集群中的主用SGW网元向UPF网元发起第二会话建立请求,使UPF网元能够建立与主用SGW网元之间的第一通信链路,其中,该第一通信链路是用于进行控制面信令交互的链路。
204、UPF网元向SGW网元集群中的主用SGW网元发送第二会话建立响应,表示UPF网元与主用SGW网元之间的第一通信链路建立完成。
205、SGW网元集群中的主用SGW网元向PGW网元发起第三会话建立请求,第三会话建立请求中携带SGW网元集群的集群标识和/或SGW网元集群中的备用SGW地址列表。
其中,SGW网元集群的集群标识为主用SGW网元所在的SGW网元集群的集群ID,SGW网元集群中的备用SGW网元地址列表中可以包括全部的备用SGW网元的地址,也可以仅包括该SGW网元集群中部分的备用SGW网元地址。
将主用SGW网元所在的SGW网元集群的集群ID和/或SGW网元集群中的备用SGW地址列表发送给PGW网元,使PGW网元能够在主用SGW断链,网络侧触发承载更新时在SGW网元集群中快速确定出接管SGW网元。
206、PGW网元向SGW网元集群中的主用SGW网元发送第三会话建立响应,表示PGW网元与主用SGW网元之间的第二通信链路建立完成。
207、SGW网元集群中的主用SGW网元向UPF网元发起会话更新请求,更新PGW侧的F-TEIDU。
208、UPF网元向SGW网元集群中的主用SGW网元发送会话更新响应。
209、SGW网元集群中的主用SGW网元向MME网元发送第一会话建立响应,第一会话建立响应中携带SGW网元集群的集群标识和/或SGW网元集群中的备用SGW地址列表。
其中,SGW网元集群的集群标识为主用SGW网元所在的SGW网元集群的集群ID,SGW网元集群中的备用SGW网元地址列表中可以包括全部的备用SGW网元的地址,也可以仅包括该SGW网元集群中部分的备用SGW网元地址。
将主用SGW网元所在的SGW网元集群的集群ID和/或SGW网元集群中的备用SGW地址列表发送给MME网元,使MME网元能够在主用SGW断链,用户侧触发追踪区更新时在SGW网元集群中快速确定出接管SGW网元。
210、MME网元通知UE侧,继续后续的附着流程,分配空口资源,打通无线下行隧道。
在三个通信链路都建立完成后,主用SGW网元即可以正常进行话务处理。在话务处理过程中,SGW网元集群在关联网元MME网元、PGW网元和UPF网元看来是一个SGW网元。从用户面的角度看,当UPF网元发现SGW网元集群内连接的主用SGW故障时,UPF网元可以连接SGW网元集群中的备用SGW网元继续工作,而不需要释放UPF网元的资源,同时MME网元或PGW网元检测到主用SGW故障,也不释放该SGW网元上的用户,这样用户面的报文就不会中断。
从关联网元的角度看,关联网元只要能够获取SGW网元的备用信息,则在主用SGW网元断链之后,关联网元能在最短的时间内触发备用SGW网元接管原主用SGW网元的用户面资源,从而确保在容灾过程中用户的话务不中断。
当MME网元接收到用户侧触发的追踪区更新请求,发现主用SGW网元断链时,MME网元会从SGW网元集群中的备用SGW网元中选择出接管SGW网元,由接管SGW网元获取所述主用SGW网元的会话数据,接管主用SGW网元的会话,保证用户话务的正常进行。
在具体实施过程中,MME网元在从SGW网元集群中的备用SGW网元中选择接管SGW网元时,可以根据SGW网元集群中备用SGW网元的顺序、权重或者状态等来进行选择。
在一实施例中,接管主用SGW网元的会话的步骤可以包括:接收所述MME网元发送的第一会话请求,并向所述PGW网元发起第一会话更新请求,使所述PGW网元基于所述第一会话更新请求更新所述第二通信链路,以及使所述UPF网元基于所述PGW网元返回 的第一会话更新响应和接管SGW网元对应的会话隧道标识更新所述第一通信链路;发送第一会话响应至所述MME网元,建立所述MME网元与所述接管SGW网元之间的第三通信链路,使所述接管SGW网元基于所述会话数据接管所述主用SGW网元的会话。
如图5所示,为本公开实施例提供的主用SGW网元断链时,用户侧触发追踪区更新的信令交互示意图。
301、MME网元接收到用户侧发起的追踪区更新请求。
302、MME网元发现主用SGW网元断链,从SGW网元集群中选择可接管的接管SGW网元,并向接管SGW网元发送第一会话请求。
可以利用MME网元与SGW网元之间的状态检测机制来对主用SGW网元的状态进行检测,例如检测机制可以是心跳检测。
由于在用户附着阶段已经将SGW网元集群的集群标识和/或SGW网元集群中的备用SGW地址列表发送给了MME网元,因此当发现主用SGW网元断链时,MME网元可以直接从SGW网元集群中的备用SGW网元中选择出接管SGW网元。
303、接管SGW网元收到第一会话请求后,获取主用SGW网元的会话数据,并根据获取到的主用SGW网元的会话数据,向PGW网元发起第一会话更新请求。
在一实施例中,第一会话更新请求中可以携带SGW网元集群的集群标识和/或SGW网元集群中的备用SGW地址列表。
由于在用户附着阶段已经将SGW网元集群的集群标识和/或SGW网元集群中的备用SGW地址列表发送给了PGW网元,因此,若备用SGW网元的地址以及SGW网元集群的集群标识发生变化,则可以利用第一会话更新请求将新的SGW网元集群的集群标识和/或SGW网元集群中的备用SGW地址列表发送给PGW网元,以对初始的数据进行更新。
304、PGW网元向接管SGW网元发送第一会话更新响应,表示第二通信链路更新完成,此时PGW网元与接管SGW网元进行信令交互。
另外,UPF网元还需要根据接管SGW网元对应的会话隧道标识来更新第一通信链路,也即UPF网元通过更新后的第一通信链路与接管SGW网元进行控制面的信令交互。
在一实施例中,若接管SGW网元未把会话隧道标识通知给UPF网元,则接管SGW网元可以向UPF网元发起第二会话更新请求,并接收UPF网元返回的第二会话更新响应。其中,第二会话更新请求中携带接管SGW网元对应的会话隧道标识。接管SGW网元对应的会话隧道标识为F-SEID(Fully Qualified SEID)。
305、接管SGW网元向MME网元发送第一会话响应,表示MME网元与接管SGW网元之间的第一通信链路已经建立完成,MME网元可以通过第一通信链路与接管SGW网元进行信令交互。
在一实施例中,第一会话响应中可以携带SGW网元集群的集群标识和/或SGW网元集群中的备用SGW地址列表。
由于在用户附着阶段已经将SGW网元集群的集群标识和/或SGW网元集群中的备用SGW地址列表发送给了MME网元,因此,若备用SGW网元的地址以及SGW网元集群的集群标识发生变化,则可以利用第一会话响应将新的SGW网元集群的集群标识和/或SGW网元集群中的备用SGW地址列表发送给MME网元,以对初始的数据进行更新。
306、MME网元向接管SGW网元继续发起追踪区更新请求。另外,在一些实施例中,也可以由用户侧重新发送追踪区更新请求。
当PGW网元接收到网络侧触发的承载更新,发现主用SGW网元断链时,PGW网元会从SGW网元集群中的备用SGW网元中选择出接管SGW网元,由接管SGW网元获取所述主用SGW网元的会话数据,接管主用SGW网元的会话,保证用户话务的正常进行。
在具体实施过程中,PGW网元在从SGW网元集群中的备用SGW网元中选择接管SGW网元时,可以根据SGW网元集群中备用SGW网元的顺序、权重或者状态等来进行选择。
在一实施例中,所述基于接管SGW网元和所述主用SGW网元的会话数据接管所述主用SGW网元的会话,包括:接收所述PGW网元发送的第一承载更新请求并向所述MME网元发送第二承载更新请求,使所述MME网元基于所述第二承载请求触发第二会话请求;基于所述第二会话请求向所述PGW网元发送第三会话更新请求对所述PGW网元和接管SGW网元之间的第二通信链路进行更新;接收所述PGW网元基于所述第三会话更新请求返回的第三会话更新响应,使所述UPF网元基于所述第三会话更新响应和接管SGW网元对应的会话隧道标识更新所述UPF网元和所述接管SGW网元之间的第一通信链路;向所述MME网元发送第二承载建立响应以对所述MME网元和所述接管SGW网元之间的第三通信链路进行更新。
如图6所示,为本公开实施例提供的主用SGW网元断链时,网络侧触发承载更新的信令交互示意图。
401、PGW网元接收到网络侧触发的承载更新,发现主用SGW网元断链,从SGW网元集群中选择可接管的接管SGW网元。
可以利用PGW网元与SGW网元之间的状态检测机制来对主用SGW网元的状态进行检测,例如检测机制可以是心跳检测。
由于在用户附着阶段已经将SGW网元集群的集群标识和/或SGW网元集群中的备用SGW地址列表发送给了PGW网元,因此当发现主用SGW网元断链时,PGW网元可以直接从SGW网元集群中的备用SGW网元中选择出接管SGW网元。
402、PGW网元向接管SGW网元发送第一承载更新请求。
403、接管SGW网元收到第一承载更新请求后,获取主用SGW网元的会话数据,并根据获取到的主用SGW网元的会话数据,继续向MME网元发送第二承载更新请求。
404、MME网元在接收到第二承载更新请求后,判断接管SGW网元的地址与主用SGW网元的地址不一致,则重新触发会话建立,向接管SGW网元发起第二会话请求。
405、接管SGW网元收到第二会话请求后,向PGW网元发起第三会话更新请求。
在一实施例中,第三会话更新请求中可以携带SGW网元集群的集群标识和/或SGW网元集群中的备用SGW地址列表。
由于在用户附着阶段已经将SGW网元集群的集群标识和/或SGW网元集群中的备用SGW地址列表发送给了PGW网元,因此,若备用SGW网元的地址以及SGW网元集群的集群标识发生变化,则可以利用第三会话更新请求将新的SGW网元集群的集群标识和/或SGW网元集群中的备用SGW地址列表发送给PGW网元,以对初始的数据进行更新。
406、PGW网元再接收到第三会话更新请求后,发现流程冲突,会优先执行第三会话更新请求,来对PGW网元和接管SGW网元之间的第二通信链路进行更新,并向接管SGW网元发送第三会话更新响应。
另外,UPF网元还需要根据接管SGW网元对应的会话隧道标识来更新UPF网元和SGW网元之间的第一通信链路,也即UPF网元通过更新后的第一通信链路与接管SGW网元进行控制面的信令交互。
在一实施例中,若接管SGW网元未把会话隧道标识通知给UPF网元,则接管SGW网元可以向UPF网元发起第四会话更新请求,并接收UPF网元返回的第四会话更新响应。其中,第四会话更新请求中携带接管SGW网元对应的会话隧道标识。接管SGW网元对应的会话隧道标识为F-SEID(Fully Qualified SEID)。
407、接管SGW网元向MME网元发送第二会话响应,表示MME网元和接管SGW网元之间的第三通信链路已经更新完成,MME网元可以通过第一通信链路与接管SGW网元进行信令交互。
在一实施例中,第二会话响应中可以携带SGW网元集群的集群标识和/或SGW网元集群中的备用SGW地址列表。
由于在用户附着阶段已经将SGW网元集群的集群标识和/或SGW网元集群中的备用SGW地址列表发送给了MME网元,因此,若备用SGW网元的地址以及SGW网元集群的集群标识发生变化,则可以利用第二会话响应将新的SGW网元集群的集群标识和/或SGW网元集群中的备用SGW地址列表发送给MME网元,以对初始的数据进行更新。
408、MME网元通知UE侧,继续后续的承载更新流程。
上述实施例提供的会话容灾方法,通过构建SGW网元集群,并建立SGW网元集群与 UPF网元之间的第一通信链路、SGW网元集群与UPF网元之间的第二通信链路以及SGW网元集群与MME网元之间的第三通信链路,使得在SGW网元集群中的主用SGW网元断链,接管SGW网元接管主用SGW网元的会话时,仅需要对控制面的通信链路进行更新,而无需重建用户面隧道,避免了容灾过程中出现用户的话务中断的情况,改善了用户体验。
请参阅图7,图7为本公开实施例提供的一种设备的结构示意性框图。
如图7所示,设备500包括处理器501和存储器502,处理器501和存储器502通过总线503连接,该总线比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器501用于提供计算和控制能力,支撑整个设备的运行。处理器501可以是中央处理单元(Central Processing Unit,CPU),该处理器501还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
具体地,存储器502可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
本领域技术人员可以理解,图7中示出的结构,仅仅是与本公开实施例方案相关的部分结构的框图,并不构成对本公开实施例方案所应用于其上的设备的限定,具体的服务器可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
其中,所述处理器用于运行存储在存储器中的计算机程序,并在执行所述计算机程序时实现本公开实施例提供的任意一种所述的会话容灾方法。
在一实施例中,所述处理器用于运行存储在存储器中的计算机程序,并在执行所述计算机程序时实现如下步骤:接收MME网元发送的第一会话建立请求,并基于所述第一会话建立请求建立UPF网元与SGW网元集群的第一通信链路、PGW网元与所述SGW网元集群之间的第二通信链路以及所述MME网元与所述SGW网元集群之间的第三通信链路;其中,当所述SGW网元集群中的主用SGW网元断链时,获取所述主用SGW网元的会话数据,并基于接管SGW网元和所述主用SGW网元的会话数据接管所述主用SGW网元的会话,进行会话处理,所述接管SGW网元为从所述SGW网元集群的备用SGW网元中选择的。
在一实施例中,所述处理器在实现所述基于所述第一会话建立请求建立UPF网元与SGW网元集群的第一通信链路、PGW网元与所述SGW网元集群之间的第二通信链路以及所述MME网元与所述SGW网元集群之间的第三通信链路时,用于实现:基于所述第一会话建立请求向UPF网元发起第二会话建立请求,使所述UPF网元基于所述第二会话建立请 求与所述SGW网元集群中的主用SGW网元建立第一通信链路;向PGW网元发送第三会话建立请求,使所述PGW网元基于所述第三会话建立请求与所述SGW网元集群中的主用SGW网元建立第二通信链路,所述第三会话建立请求中携带所述SGW网元集群的集群标识和所述SGW网元集群中备用SGW网元的地址列表;以及向所述MME网元发送第一会话建立响应,建立所述MME网元与所述SGW网元集群中的主用SGW网元之间的第三通信链路,所述会话建立响应中携带所述SGW网元集群的集群标识和所述SGW网元集群中备用SGW网元的地址列表。
在一实施例中,所述处理器在实现所述基于接管SGW网元和所述主用SGW网元的会话数据接管所述主用SGW网元的会话时,用于实现:接收所述MME网元发送的第一会话请求,并向所述PGW网元发起第一会话更新请求,使所述PGW网元基于所述第一会话更新请求更新所述第二通信链路,以及使所述UPF网元基于所述PGW网元返回的第一会话更新响应和接管SGW网元对应的会话隧道标识更新所述第一通信链路;以及发送第一会话响应至所述MME网元,建立所述MME网元与所述接管SGW网元之间的第三通信链路,使所述接管SGW网元基于所述会话数据接管所述主用SGW网元的会话。
在一实施例中,所述处理器用于实现:向所述UPF网元发送第二会话更新请求,所述第二会话更新请求中携带所述接管SGW网元对应的会话隧道标识。
在一实施例中,所述第一会话更新请求中携带所述SGW网元集群的集群标识和/或所述SGW网元集群中备用SGW网元的地址列表;和/或所述第一会话响应中携带所述SGW网元集群的集群标识和/或所述SGW网元集群中备用SGW网元的地址列表。
在一实施例中,所述处理器在实现所述基于接管SGW网元和所述主用SGW网元的会话数据接管所述主用SGW网元的会话时,用于实现:接收所述PGW网元发送的第一承载更新请求并向所述MME网元发送第二承载更新请求,使所述MME网元基于所述第二承载请求触发第二会话请求;基于所述第二会话请求向所述PGW网元发送第三会话更新请求对所述PGW网元和接管SGW网元之间的第二通信链路进行更新;接收所述PGW网元基于所述第三会话更新请求返回的第三会话更新响应,使所述UPF网元基于所述第三会话更新响应和接管SGW网元对应的会话隧道标识更新所述UPF网元和所述接管SGW网元之间的第一通信链路;以及向所述MME网元发送第二会话响应以对所述MME网元和所述接管SGW网元之间的第三通信链路进行更新。
在一实施例中,所述处理器用于实现:向所述UPF网元发起第四会话更新请求,所述第四会话更新请求中包括所述接管用SGW网关的会话隧道标识。
在一实施例中,所述第三会话更新请求中携带所述SGW网元集群的集群标识和/或所述SGW网元集群中备用SGW网元的地址列表;和/或所述第二会话响应中携带所述SGW 网元集群的集群标识和/或所述SGW网元集群中备用SGW网元的地址列表。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的设备的具体工作过程,可以参考前述会话容灾方法实施例中的对应过程,在此不再赘述。
本公开实施例还提供一种存储介质,用于计算机可读存储,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如本公开实施例说明书提供的任一项会话容灾方法的步骤。
其中,所述存储介质可以是前述实施例所述的设备的内部存储单元,例如所述设备的硬盘或内存。所述存储介质也可以是所述设备的外部存储设备,例如所述设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施例中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
应当理解,在本公开说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、 方法、物品或者系统中还存在另外的相同要素。
上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。以上所述,仅为本公开的具体实施例,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种会话容灾方法,包括:
    接收MME网元发送的第一会话建立请求,并基于所述第一会话建立请求建立UPF网元与SGW网元集群的第一通信链路、PGW网元与所述SGW网元集群之间的第二通信链路以及所述MME网元与所述SGW网元集群之间的第三通信链路;
    其中,当所述SGW网元集群中的主用SGW网元断链时,获取所述主用SGW网元的会话数据,并基于接管SGW网元和所述主用SGW网元的会话数据接管所述主用SGW网元的会话,进行会话处理,所述接管SGW网元为从所述SGW网元集群的备用SGW网元中选择的。
  2. 根据权利要求1所述的会话容灾方法,其中,所述基于所述第一会话建立请求建立UPF网元与SGW网元集群的第一通信链路、PGW网元与所述SGW网元集群之间的第二通信链路以及所述MME网元与所述SGW网元集群之间的第三通信链路,包括:
    基于所述第一会话建立请求向UPF网元发起第二会话建立请求,使所述UPF网元基于所述第二会话建立请求与所述SGW网元集群中的主用SGW网元建立第一通信链路;
    向PGW网元发送第三会话建立请求,使所述PGW网元基于所述第三会话建立请求与所述SGW网元集群中的主用SGW网元建立第二通信链路,所述第三会话建立请求中携带所述SGW网元集群的集群标识和所述SGW网元集群中备用SGW网元的地址列表;以及
    向所述MME网元发送第一会话建立响应,建立所述MME网元与所述SGW网元集群中的主用SGW网元之间的第三通信链路,所述会话建立响应中携带所述SGW网元集群的集群标识和所述SGW网元集群中备用SGW网元的地址列表。
  3. 根据权利要求1所述的会话容灾方法,其中,所述基于接管SGW网元和所述主用SGW网元的会话数据接管所述主用SGW网元的会话,包括:
    接收所述MME网元发送的第一会话请求,并向所述PGW网元发起第一会话更新请求,使所述PGW网元基于所述第一会话更新请求更新所述第二通信链路,以及使所述UPF网元基于所述PGW网元返回的第一会话更新响应和接管SGW网元对应的会话隧道标识更新所述第一通信链路;以及
    发送第一会话响应至所述MME网元,建立所述MME网元与所述接管SGW网元之间的第三通信链路,使所述接管SGW网元基于所述会话数据接管所述主用SGW网元的会话。
  4. 根据权利要求3所述的会话容灾方法,还包括:
    向所述UPF网元发送第二会话更新请求,所述第二会话更新请求中携带所述接管SGW网元对应的会话隧道标识。
  5. 根据权利要求4所述的会话容灾方法,其中,所述第一会话更新请求中携带所述SGW网元集群的集群标识和/或所述SGW网元集群中备用SGW网元的地址列表;和/或
    所述第一会话响应中携带所述SGW网元集群的集群标识和/或所述SGW网元集群中备用SGW网元的地址列表。
  6. 根据权利要求1所述的会话容灾方法,其中,所述基于接管SGW网元和所述主用SGW网元的会话数据接管所述主用SGW网元的会话,包括:
    接收所述PGW网元发送的第一承载更新请求并向所述MME网元发送第二承载更新请求,使所述MME网元基于所述第二承载请求触发第二会话请求;
    基于所述第二会话请求向所述PGW网元发送第三会话更新请求对所述PGW网元和接管SGW网元之间的第二通信链路进行更新;
    接收所述PGW网元基于所述第三会话更新请求返回的第三会话更新响应,使所述UPF网元基于所述第三会话更新响应和接管SGW网元对应的会话隧道标识更新所述UPF网元和所述接管SGW网元之间的第一通信链路;以及
    向所述MME网元发送第二会话响应以对所述MME网元和所述接管SGW网元之间的第三通信链路进行更新。
  7. 根据权利要求6所述的会话容灾方法,还包括:
    向所述UPF网元发起第四会话更新请求,所述第四会话更新请求中包括所述接管用SGW网关的会话隧道标识。
  8. 根据权利要求1所述的会话容灾方法,其中,所述第三会话更新请求中携带所述SGW网元集群的集群标识和/或所述SGW网元集群中备用SGW网元的地址列表;和/或
    所述第二会话响应中携带所述SGW网元集群的集群标识和/或所述SGW网元集群中备用SGW网元的地址列表。
  9. 一种设备,所述设备包括处理器、存储器、存储在所述存储器上并可被所述处理器执行的计算机程序以及用于实现所述处理器和所述存储器之间的连接通信的数据总线,其中所述计算机程序被所述处理器执行时,实现如权利要求1至8中任一项所述的会话容灾方法的步骤。
  10. 一种存储介质,用于计算机可读存储,所述存储介质存储有一个或者多个程 序,所述一个或者多个程序可被一个或者多个处理器执行,以实现权利要求1至8中任一项所述的会话容灾方法的步骤。
PCT/CN2022/117186 2021-10-09 2022-09-06 会话容灾方法、设备及存储介质 WO2023056813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111178282.0A CN115955686A (zh) 2021-10-09 2021-10-09 会话容灾方法、设备及存储介质
CN202111178282.0 2021-10-09

Publications (1)

Publication Number Publication Date
WO2023056813A1 true WO2023056813A1 (zh) 2023-04-13

Family

ID=85803886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117186 WO2023056813A1 (zh) 2021-10-09 2022-09-06 会话容灾方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN115955686A (zh)
WO (1) WO2023056813A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130010609A1 (en) * 2010-03-24 2013-01-10 Telefonaktiebolaget L.M. Ericsson (Publ) Node with an Improved Back up Protocol
CN103535072A (zh) * 2011-03-18 2014-01-22 阿尔卡特朗讯公司 用于地理冗余网关处的会话弹性的系统和方法
CN105357701A (zh) * 2014-08-20 2016-02-24 中国电信股份有限公司 一种lte网络网关池组容灾方法、设备及系统
CN107018010A (zh) * 2017-03-07 2017-08-04 杭州承联通信技术有限公司 一种pdt集群核心网系统及其容灾切换方法
CN110784400A (zh) * 2018-07-31 2020-02-11 丛林网络公司 N:1有状态应用网关冗余模型

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130010609A1 (en) * 2010-03-24 2013-01-10 Telefonaktiebolaget L.M. Ericsson (Publ) Node with an Improved Back up Protocol
CN103535072A (zh) * 2011-03-18 2014-01-22 阿尔卡特朗讯公司 用于地理冗余网关处的会话弹性的系统和方法
CN105357701A (zh) * 2014-08-20 2016-02-24 中国电信股份有限公司 一种lte网络网关池组容灾方法、设备及系统
CN107018010A (zh) * 2017-03-07 2017-08-04 杭州承联通信技术有限公司 一种pdt集群核心网系统及其容灾切换方法
CN110784400A (zh) * 2018-07-31 2020-02-11 丛林网络公司 N:1有状态应用网关冗余模型

Also Published As

Publication number Publication date
CN115955686A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
CN110557791B (zh) 会话管理方法、设备及系统
JP6262783B2 (ja) セッション・レジリエンスのためのプール内のモバイルゲートウェイ
CN105323136B (zh) 信息的处理方法及装置
JP6026705B2 (ja) 更新管理システムおよび更新管理方法
US9391877B2 (en) System and method for reducing information loss in an aggregated information handling system
CN110535676B (zh) Smf动态容灾的实现方法、装置、设备及存储介质
BRPI0610332B1 (pt) Processos de atualização de célula para o equipamento do usuário e de atualização de célula para uma rede
WO2018058618A1 (zh) 一种故障处理方法及设备
WO2018018409A1 (zh) 一种承载建立的方法、相关装置以及系统
WO2020103796A1 (zh) 一种实现容灾的方法及相关设备
CN102111790B (zh) 基于基站控制设备群组的通信方法、装置及系统
CN110324375B (zh) 一种信息备份方法及相关设备
WO2021057526A1 (zh) 一种网关设备容灾的方法及通信设备
WO2016082710A1 (zh) 一种呼叫控制方法、Diameter协议转发设备及系统
WO2014201692A1 (zh) 选择移动管理实体的方法、装置和系统
WO2021185169A1 (zh) 一种切换方法、装置、设备和存储介质
US11497071B2 (en) Association handling method and device
WO2020057445A1 (zh) 一种通信系统、方法及装置
CN113727380A (zh) 容灾方法及装置
WO2010127625A2 (zh) 坐席的处理方法、交换机及呼叫中心
WO2023056813A1 (zh) 会话容灾方法、设备及存储介质
WO2021169412A1 (zh) 信息同步方法和装置、电子设备、计算机可读存储介质
WO2018120822A1 (zh) 一种用户数据锚点迁移的方法、设备和系统
WO2020088634A1 (zh) 数据转发方法、装置、主基站及从基站
CN106130783B (zh) 一种端口故障处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877835

Country of ref document: EP

Kind code of ref document: A1