WO2023055069A1 - 파우치 필름 적층체 및 이차 전지 - Google Patents

파우치 필름 적층체 및 이차 전지 Download PDF

Info

Publication number
WO2023055069A1
WO2023055069A1 PCT/KR2022/014552 KR2022014552W WO2023055069A1 WO 2023055069 A1 WO2023055069 A1 WO 2023055069A1 KR 2022014552 W KR2022014552 W KR 2022014552W WO 2023055069 A1 WO2023055069 A1 WO 2023055069A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealant layer
film laminate
pouch film
pouch
layer
Prior art date
Application number
PCT/KR2022/014552
Other languages
English (en)
French (fr)
Inventor
황수지
김상훈
유형균
강민형
송대웅
임훈희
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US18/573,259 priority Critical patent/US20240266645A1/en
Priority to EP22876841.2A priority patent/EP4343932A1/en
Priority to CA3221913A priority patent/CA3221913A1/en
Priority to CN202280040003.0A priority patent/CN117426004A/zh
Priority to JP2023570264A priority patent/JP2024517488A/ja
Publication of WO2023055069A1 publication Critical patent/WO2023055069A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • B32B2307/7375Linear, e.g. length, distance or width
    • B32B2307/7376Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/24Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a pouch film laminate and a secondary battery manufactured by molding the same, and more particularly, to a pouch film laminate that improves the seal strength of a pouch and a secondary battery manufactured by molding the same.
  • types of secondary batteries include nickel cadmium batteries, nickel hydrogen batteries, lithium ion batteries, and lithium ion polymer batteries. These secondary batteries are used not only for small products such as digital cameras, P-DVDs, MP3Ps, mobile phones, PDAs, portable game devices, power tools, and E-bikes, but also for large products that require high power, such as electric vehicles and hybrid vehicles, and surplus power generation. It is applied and used to a power storage device for storing power or renewable energy and a power storage device for backup.
  • an electrode active material slurry is first applied to a positive electrode current collector and a negative electrode current collector to prepare a positive electrode and a negative electrode, and laminated on both sides of a separator to form an electrode assembly of a predetermined shape form Then, the electrode assembly is accommodated in the battery case, and the electrolyte is injected and then sealed.
  • Secondary batteries are classified into a pouch type and a can type according to the material of a case accommodating the electrode assembly.
  • a pouch type an electrode assembly is accommodated in a pouch made of a flexible polymer material.
  • the can type accommodates the electrode assembly in a case made of a material such as metal or plastic.
  • a pouch which is a case of a pouch-type secondary battery, is manufactured by forming a cup portion by performing press processing on a flexible pouch film laminate.
  • a secondary battery may be manufactured by accommodating the electrode assembly in the inner accommodating space of the cup portion and sealing the sealing portion.
  • a pouch film laminate is formed of a plurality of layers in which a polymer film such as polyethylene terephthalate is laminated on one surface of a metal gas barrier layer and a sealant layer is laminated on the other surface.
  • a polymer film such as polyethylene terephthalate
  • a sealant layer is laminated on the other surface.
  • the sealing portion of the pouch may be vented under severe environmental conditions of the pouch-type secondary battery. Accordingly, there is a problem in that the electrode assembly accommodated in the pouch is contaminated or malfunctions occur.
  • the present invention provides a pouch film laminate in which the sealing strength of a pouch is improved by optimizing the yield strength of a sealant layer.
  • a substrate layer, a gas barrier layer, and a sealant layer are sequentially stacked, and the sealant layer includes a first sealant layer disposed adjacent to the gas barrier layer, and the first sealant layer.
  • a second sealant layer is laminated on the first sealant layer, and ⁇ Y according to Equation 1 below is 66% to 120%.
  • ⁇ Y ⁇ (second sealant layer yield strength - first sealant layer yield strength)/first sealant layer yield strength ⁇ ⁇ 100
  • a difference between the yield strength of the first sealant layer and the yield strength of the second sealant layer may be 8 N/15 mm or less.
  • the yield strength of the first sealant layer may be smaller than that of the second sealant layer.
  • the yield strength of the first sealant layer may be 7 N/15 mm to 15 N/15 mm.
  • the yield strength of the second sealant layer may be 10 N/15 mm to 30 N/15 mm.
  • the thickness ratio of the first sealant layer and the second sealant layer may be 1:0.3 to 1:3.
  • the thickness of the first sealant layer may be 10 ⁇ m to 60 ⁇ m.
  • the second sealant layer may have a thickness of 20 ⁇ m to 70 ⁇ m.
  • the first sealant layer and the second sealant layer may include polypropylene (PP), and the gas barrier layer may include aluminum (Al).
  • the peel strength between the gas barrier layer and the first sealant layer may exceed 23 N/15 mm.
  • the breaking strength of the sealing part measured at 25 ° C. 100 N / 15 mm or more, and the breaking strength of the sealing part measured at 60 ° C may be 80 N / 15 mm or more.
  • a secondary battery according to another embodiment of the present invention includes a pouch-type battery case manufactured by molding any one of the aforementioned pouch film laminates, and an electrode assembly accommodated inside the pouch-type battery case.
  • the pouch film laminate according to the present invention controls the yield strength difference between the first sealant layer and the second sealant layer within a specific range, thereby preventing the first sealant layer from being separated from the first sealant layer by external force or gas generation. Interfacial peeling between the two sealant layers can be suppressed. Accordingly, sealing durability of a pouch manufactured by sealing the pouch film laminate may be improved.
  • FIG. 1 is a cross-sectional view of a pouch film laminate according to the present invention.
  • FIG. 2 is a cross-sectional view showing a sealing portion of a pouch type battery case according to the present invention.
  • FIG. 3 is an exploded and assembled view of a secondary battery according to the present invention.
  • Figure 4 shows the state of measuring the peel strength of the gas barrier layer and the sealant layer according to the present invention.
  • Figure 5 shows the state of measuring the breaking strength of the sealing portion prepared from the pouch film laminate according to the present invention.
  • the upper part of the drawing may be referred to as “upper” or “upper side” of the configuration shown in the drawing, and the lower part may be referred to as “lower” or “lower side”.
  • the portion between the upper and lower portions or the upper and lower portions of the illustrated configuration in the drawings may be referred to as “side” or “side”. Relative terms such as “upper” and “upper” may be used to describe relationships between components shown in the drawings, and the present disclosure is not limited by such terms.
  • a direction toward an internal space of a structure may be referred to as “inside”, and a direction protruding into an open external space may be referred to as “outside”.
  • Relative terms such as “inner” and “outer” may be used to describe relationships between components shown in the drawings, and the present disclosure is not limited by such terms.
  • references to "A and/or B" herein means A, or B, or A and B.
  • yield strength means 0.2% off-set stress as the limiting stress at which elastic deformation occurs, using a measuring equipment UTM (Zwick Co.) for a 15 mm x 80 mm polypropylene film sample at a temperature of 25 ° C. , measured by pulling at a speed of 50 mm/min in an environment of 40% relative humidity.
  • the breaking strength of the sealing part is determined by the fact that the sealing part formed by laminating two pouch film laminates so that the respective second sealant layers are in contact with each other and sealing for 2 seconds at 180 ° C. and 0.4 MPa condition.
  • the breaking strength of the sealing part was measured by cutting one end of each of the pouch film laminates stacked up and down in the sample after cutting the sample on which the sealing part was formed to a width of 15 mm at the top of a measuring device (UTM, Zwick Co.) / It means the maximum value of tensile strength measured when the sealing part is broken by pulling it at a speed of 5 mm/min in the vertical direction after fastening to the lower jig.
  • the sealant layer includes a first sealant layer disposed adjacent to the gas barrier layer and a second sealant layer stacked on the first sealant layer, and ⁇ Y according to Equation 1 below is 66% to 120%.
  • ⁇ Y ⁇ (second sealant layer yield strength - first sealant layer yield strength)/first sealant layer yield strength ⁇ ⁇ 100
  • FIG. 1 is a cross-sectional view of a pouch film laminate 100 according to the present invention.
  • the pouch film laminate 100 includes a substrate layer 110, a gas barrier layer 120, and a sealant layer 130, the sealant layer Reference numeral 130 includes a first sealant layer 132 and a second sealant layer 134 .
  • the base layer 110, the gas barrier layer 120, the first sealant layer 132, and the second sealant layer 134 may be sequentially stacked.
  • the base layer 110 is formed on the outermost layer of the pouch film laminate 100 to protect the secondary battery from external friction and collision.
  • the base layer 110 may be made of a polymer to electrically insulate the electrode assembly from the outside.
  • the substrate layer 110 is, for example, polyethylene, polypropylene, polycarbonate, polyethylene terephthalate, polyvinyl chloride, acrylic polymer, polyacrylonitrile, polyimide, polyamide, cellulose, aramid, nylon, polyester , polyparaphenylene benzobisoxazole, polyarylate, may be made of one or more materials selected from the group consisting of Teflon and glass fibers.
  • the substrate layer 110 is particularly preferably made of polyethylene terephthalate (PET), nylon, or a combination thereof having wear resistance and heat resistance.
  • the base layer 110 may have a single film structure made of any one material.
  • the base layer 110 may have a composite film structure in which two or more materials are layered.
  • the base layer 110 may have a thickness of 5 ⁇ m to 50 ⁇ m, specifically 7 ⁇ m to 50 ⁇ m, and more specifically 7 ⁇ m to 40 ⁇ m.
  • the pouch film laminate may have excellent external insulation, and since the entire pouch is not thick, the energy density versus volume of the secondary battery may be excellent.
  • the gas barrier layer 120 is laminated between the substrate layer 110 and the sealant layer 130 to secure mechanical strength of the pouch, block the entry and exit of gas or moisture from the outside of the pouch-type battery case, and This is to prevent electrolyte leakage from the inside of the case.
  • the gas barrier layer 120 may be formed of metal, and may be specifically formed of an aluminum alloy thin film.
  • the aluminum alloy thin film includes metal elements other than aluminum, for example, iron (Fe), copper (Cu), chromium (Cr), manganese (Mn), nickel (Ni), magnesium (Mg), silicon (Si), and One or two or more selected from the group consisting of zinc (Zn) may be included.
  • the thickness of the gas barrier layer 120 may be 40 ⁇ m to 100 ⁇ m, specifically 50 ⁇ m to 90 ⁇ m, and more specifically 55 ⁇ m to 85 ⁇ m. When the thickness of the gas barrier layer 120 satisfies the above range, moldability and gas barrier performance during molding of the cup portion are excellent.
  • the sealant layer 130 is thermally bonded to each other at the sealing portion (350 in FIG. 3) to completely cover the inside of the pouch-type battery case from the outside. It is for sealing.
  • the sealant layer 130 may be formed of a material having excellent thermal bonding strength.
  • the sealant layer 130 may have a composite film structure formed by layering two or more materials.
  • the sealant layer 130 may include a first sealant layer 132 and a second sealant layer 134 .
  • the first sealant layer 132 may be a layer disposed adjacent to the gas barrier layer 120
  • the second sealant layer 134 may be a layer disposed on the first sealant layer 132 .
  • the first sealant layer 132 and the second sealant layer 134 may be made of materials having different materials and/or physical properties.
  • An interface may exist between the first sealant layer 132 and the second sealant layer 134 . This means that the first sealant layer 132 and the second sealant layer 134 are different layers and may be formed separately.
  • ⁇ Y according to Formula 1 below may be 66% to 120%, specifically 66% to 110%, and more specifically 66% to 100%.
  • ⁇ Y means a value expressed as a percentage of the difference between the yield strength of the first sealant layer 132 and the yield strength of the second sealant layer 134 with respect to the yield strength of the first sealant layer 132 .
  • ⁇ Y ⁇ (second sealant layer yield strength - first sealant layer yield strength)/first sealant layer yield strength ⁇ ⁇ 100
  • the extrusion processability of the sealant layer may deteriorate during manufacture of the pouch film laminate, and low-temperature sealing performance may deteriorate during a sealing process for manufacturing a battery after manufacturing the pouch film laminate.
  • the difference in yield strength between the first sealant layer 132 and the second sealant layer 134 may be 8 N/15 mm or less, preferably 1 N/15 mm to 8 N/15 mm, and more preferably 3 N/15 mm to 7 N/15 mm. there is.
  • the difference in yield strength between the first sealant layer 132 and the second sealant layer 134 satisfies the above range, the interface between the first sealant layer 132 and the second sealant layer 134 when an external force or gas is generated. Since the possibility of peeling between layers is reduced, the sealing durability of the pouch-type battery case (310 in FIG. 3) can be improved.
  • the yield strength of the first sealant layer 132 may be smaller than that of the second sealant layer 134 .
  • the first sealant layer 132 since the first sealant layer 132 has lower flowability than the second sealant layer 134, it can be easily attached to the gas barrier layer 120 when forming the pouch film laminate 100, and when an external force is generated. The adhesive force on the interface between the gas barrier layer 120 and the first sealant layer 132 can be maintained high.
  • the first sealant layer 132 and the second sealant layer 134 may be made of materials having different materials and/or physical properties.
  • the first sealant layer 132 may be made of a material having lower flowability than the second sealant layer 134 .
  • the first sealant layer 132 having low flowability may have a lower yield strength than the second sealant layer 134 .
  • the thickness ratio of the first sealant layer 132 and the second sealant layer 134 is 1:0.3 to 1:3, preferably 1:0.6 to 1:2.2, more preferably 1:1 to 1:1.7 can
  • the thickness ratio of the first sealant layer 132 and the second sealant layer 134 satisfies the above range, the extrusion processability between the gas barrier layer 120 and the sealant layer 130 can be secured, and at the same time, the breaking strength of the sealing part can be secured. can obtain an improvement effect.
  • first sealant layer 132 and second sealant layer 134 will be described in detail.
  • the first sealant layer 132 may be disposed adjacent to the gas barrier layer 120 .
  • the first sealant layer 132 may be formed of a polymer material.
  • the first sealant layer 132 may include polyethylene, polypropylene, polycarbonate, polyethylene terephthalate, polyvinyl chloride, an acrylic polymer, polyacrylonitrile, polyimide, polyamide, cellulose, aramid, nylon, It may be made of at least one material selected from the group consisting of polyester, polyparaphenylenebenzobisoxazole, polyarylate, Teflon, and glass fiber, preferably polypropylene (PP) and/or polyethylene (PE). It may be made of polyolefin-based resins such as the like.
  • the polypropylene may be composed of non-stretched polypropylene (Cast Polypropylene, CPP) or acid modified polypropylene (PPa) or a polypropylene-butylene-ethylene terpolymer.
  • the first sealant layer 132 is particularly preferably made of acid-modified polypropylene (PPa) in order to secure long-term adhesion performance between the gas barrier layer 120 and the first sealant layer 132 .
  • the acid-modified polypropylene may be maleic anhydride polypropylene (MAH PP).
  • an additive may be added to a polymer material constituting the first sealant layer 132 .
  • an additive for improving the yield strength of the first sealant layer 132 at least one of carbon fiber, glass fiber, and aramid fiber may be added. .
  • the yield strength of the first sealant layer 132 may be 7 N/15 mm to 15 N/15 mm, preferably 7.2 N/15 mm to 9.0 N/15 mm, and more preferably 7.5 N/15 mm to 8.5 N/15 mm.
  • the yield strength of the first sealant layer 132 is less than 7 N/15 mm, the difference in yield strength between the first sealant layer 132 and the second sealant layer 134 increases, thereby controlling external force or gas generation. Separation between the layers may occur at the interface between the first sealant layer 132 and the second sealant layer 134, and thus sealing durability of the pouch-type battery case (310 in FIG. 3) may deteriorate.
  • the thickness of the first sealant layer 132 may be 10 ⁇ m to 60 ⁇ m, preferably 20 ⁇ m to 50 ⁇ m, and more preferably 30 ⁇ m to 40 ⁇ m.
  • the thickness of the first sealant layer 132 is thinner than 10 ⁇ m, the sealing durability and insulation of the sealing portion (350 in FIG. There is a problem that the sealing strength of 134) is weakened.
  • the thickness of the first sealant layer 132 is thicker than 60 ⁇ m, the overall thickness of the pouch film laminate becomes excessively thick, resulting in deterioration in moldability, and the electrode assembly in a pouch-type battery case manufactured by molding the pouch film laminate Since the accommodation space (324 in FIG. 3) of the secondary battery is reduced, the volume-to-energy density of the secondary battery may be lowered.
  • the second sealant layer 134 may be a layer disposed on the first sealant layer 132 .
  • the second sealant layer 134 may be formed of a material having insulation, corrosion resistance, and sealing properties. Specifically, referring to FIG. 3, the second sealant layer 134 is made of a material having insulation and corrosion resistance because it directly contacts the electrode assembly (360 in FIG. 3) and/or the electrolyte inside the accommodation space (324 in FIG. 3). can be formed. In addition, since the second sealant layer 134 must completely seal the inside of the pouch-type battery case to block material transfer between the inside and outside, it can be formed of a material having high sealing performance (eg, excellent thermal bonding strength). there is.
  • the second sealant layer 134 may be formed of a polymer material.
  • the second sealant layer 134 may include polyethylene, polypropylene, polycarbonate, polyethylene terephthalate, polyvinyl chloride, an acrylic polymer, polyacrylonitrile, polyimide, polyamide, cellulose, aramid, nylon, poly It may be made of one or more materials selected from the group consisting of ester, polyparaphenylenebenzobisoxazole, polyarylate, Teflon, and glass fiber.
  • the second sealant layer 134 may be made of a polyolefin-based resin such as polypropylene (PP) and/or polyethylene (PE).
  • the polypropylene may be composed of unstretched polypropylene, acid modified polypropylene, or polypropylene-butylene-ethylene terpolymer.
  • the acid-modified polypropylene may be maleic anhydride polypropylene (MAH PP).
  • the second sealant layer 134 may be made of unstretched polypropylene having heat sealability and high tensile strength.
  • an additive may be added to a polymer material constituting the second sealant layer 134 .
  • an additive for improving the yield strength of the second sealant layer 134 at least one of carbon fiber, glass fiber, and aramid fiber may be added. .
  • the yield strength of the second sealant layer 134 may be 10 N/15 mm to 30 N/15 mm, specifically 12 N/15 mm to 17 N/15 mm, and more specifically 14 N/15 mm to 16 N/15 mm. If the yield strength of the second sealant layer 134 is less than 10 N/15 mm, breakage may occur along the sealed pair of second sealant layers 134 when an external force or gas is generated, thereby causing a pouch-type battery case (FIG. 3). 310) may deteriorate. When the yield strength of the second sealant layer 134 exceeds 30 N/15 mm, as the difference between the yield strength of the second sealant layer 134 and the yield strength of the first sealant layer 132 increases, the first sealant layer 134 increases. The risk of peeling at the interface between the 132 and the second sealant layer 134 may increase.
  • the second sealant layer 134 may have a thickness of 20 ⁇ m to 70 ⁇ m, preferably 30 ⁇ m to 70 ⁇ m, and more preferably 40 ⁇ m to 60 ⁇ m.
  • the thickness of the second sealant layer 134 is thinner than 20 ⁇ m, the sealing durability and insulation of the sealing portion (350 in FIG. 350) has a problem of weakening the sealing strength.
  • the thickness of the second sealant layer 134 is thicker than 70 ⁇ m, the overall thickness of the pouch film laminate is excessively thick, resulting in deterioration in formability, and the electrode assembly in a pouch-type battery case manufactured by molding the pouch film laminate Since the accommodation space (324 in FIG. 3) of the secondary battery is reduced, the volume-to-energy density of the secondary battery may be lowered.
  • Figure 2 is a cross-sectional view showing the sealing portion 210 of the pouch-type battery case according to the present invention.
  • the battery case manufactured by molding the pouch film laminate may be laminated so that the second sealant layer 134 comes into contact with each other and then sealed.
  • the sealing part 210 may include one or more sealant layers 130 .
  • peeling may occur at interfaces between layers having relatively weak adhesion.
  • the interface between the gas barrier layer 120 and the first sealant layer 132 eg, path A in FIG. 2
  • the interface between the mutually thermally bonded second sealant layer 134 eg, path A in FIG. 2
  • Separation may occur along the path B of FIG. 2) and/or the interface between the first sealant layer 132 and the second sealant layer 134 (eg, path C of FIG. 2).
  • the battery case manufactured using the pouch film laminate according to the present invention has excellent adhesive strength at all three interfaces and exhibits excellent sealing strength.
  • the yield strength of the first sealant layer 132 has a value similar to that of the gas barrier layer 120, so that when an external force is generated, the gas barrier layer 120 and the The adhesive strength on the interface between the first sealant layers 132 is maintained high, and peeling is suppressed.
  • the peel strength between the gas barrier layer 120 and the first sealant layer 132 may be greater than 23 N/15 mm, preferably greater than 23.2 N/15 mm, and more preferably greater than 23.5 N/15 mm.
  • the yield strength of the second sealant layer 134 formed on the sealing portion 210 is high, a high restoring force acts when an external force is generated, so that interface separation between the second sealant layers 134 thermally bonded to each other can be suppressed. .
  • the sealing unit 210 is formed by stacking two pouch film laminates so that the respective second sealant layers 134 come into contact with each other, and then sealing the pouch film at 180° C. and 0.4 MPa for 2 seconds. can be formed
  • the breaking strength of the sealing portion 210 measured at 25° C. may be 100 N/15 mm or more, preferably 110 N/15 mm or more, and more preferably 120 N/15 mm or more.
  • the breaking strength of the sealing portion 210 measured at 60° C. may be 80 N/15 mm or more, preferably 90 N/15 mm or more, and more preferably 100 N/15 mm or more.
  • the breaking strength of the sealing part 210 is 5 mm / 5 mm in the vertical direction after fastening one end of each of the pouch film laminates stacked vertically in the sample on which the sealing part 210 is formed to the upper / lower jig of the measuring equipment. It means the maximum value of tensile strength measured when the sealing part is broken by pulling at a speed of min.
  • the "25 ° C.” and the "60 ° C.” mean the temperature when each end of the adjacently disposed pouch film laminate 100 is pulled in the vertical direction.
  • FIG 3 is an exploded and assembled view of a secondary battery 300 according to the present invention.
  • the secondary battery 300 may include a pouch type battery case 310 and an electrode assembly 360 accommodated in the pouch type battery case 310.
  • the electrode assembly 360 may be formed by stacking an anode, a separator, and a cathode, and may include an electrode tab 370, an electrode lead 380, and an insulator 390.
  • the secondary battery 300 may be manufactured by injecting electrolyte in a state where the electrode assembly 360 is accommodated inside the pouch-type battery case 310 and then sealing the sealing part 350 .
  • the pouch type battery case 310 may accommodate the electrode assembly 360 therein.
  • the pouch-type battery case 310 may be manufactured by molding the pouch film laminate 100 of FIG. 1 described above. Since the detailed configuration and physical properties of the pouch film laminate 100 are the same as those described above, a detailed description thereof will be omitted.
  • the pouch-type film laminate 100 is drawn, molded and stretched by a punch or the like, thereby creating a pocket-shaped accommodation space 324 to accommodate the electrode assembly 360.
  • a cup portion 322 including may be formed.
  • the pouch type battery case 310 may include a first case 320 and a second case 330 .
  • the first case 320 includes a receiving space 324 in which the cup portion 322 is formed to accommodate the electrode assembly 360
  • the second case 330 includes the electrode assembly 360
  • the accommodating space 324 may be covered from above so as not to escape to the outside of the battery case 310 .
  • the first case 320 and the second case 330 may be manufactured by connecting one side to each other (eg, reference numeral 340), but are not limited thereto and are separated from each other and manufactured separately. etc. can be manufactured in various ways.
  • cup portions 322 and 332 when the cup portion 322 is molded on the pouch film laminate 100, two cup portions 322 and 332 symmetrical to one pouch film laminate 100 may be drawn and molded next to each other.
  • cup portions 322 and 332 may be formed in the first case 320 and the second case 330, respectively, as shown in FIG.
  • the electrode assembly 360 is accommodated in the receiving space 324 provided in the cup part 322 of the first case 320, the space between the two cup parts 322 and 332 is placed so that the two cup parts 322 and 332 face each other. It is possible to fold the bridge portion 340 formed in.
  • the cup portion 332 of the second case 330 may accommodate the electrode assembly 360 from above.
  • the thicker electrode assembly 360 can be accommodated than when the cup portion 322 is single.
  • one edge of the secondary battery 300 is formed by folding the pouch-type battery case 310, the number of edges to be sealed may be reduced when a sealing process is performed later. Accordingly, the process speed of the secondary battery 300 can be improved and the number of sealing processes can be reduced.
  • the pouch type battery case 310 may be sealed while accommodating the electrode assembly 360 so that a portion of the electrode lead 380, that is, the terminal portion is exposed. Specifically, when the electrode lead 380 is connected to the electrode tab 370 of the electrode assembly 360 and the insulating portion 390 is formed on a portion of the electrode lead 380, the cup portion of the first case 320 ( The electrode assembly 360 may be accommodated in the accommodating space 324 provided in 322 , and the second case 330 may cover the accommodating space 324 from an upper portion. Subsequently, an electrolyte may be injected into the accommodation space 324 and the sealing portion 350 formed at the edges of the first case 320 and the second case 330 may be sealed.
  • the electrolyte is for moving lithium ions generated by the electrochemical reaction of the electrode during charging/discharging of the secondary battery 300, and is a non-aqueous organic electrolyte solution that is a mixture of lithium salt and organic solvents or a polymer using a polymer electrolyte.
  • the electrolyte may include a sulfide-based, oxide-based, or polymer-based solid electrolyte, and such a solid electrolyte may have flexibility that is easily deformed by an external force.
  • the electrode assembly 360 may be formed by alternately stacking electrodes and separators. Specifically, the electrode assembly 360 manufactures a positive electrode and a negative electrode by applying a slurry in which an electrode active material and a binder and/or a conductive material are mixed to a positive electrode current collector and a negative electrode current collector, and It can be laminated and formed into a predetermined shape. The electrode assembly 360 may be inserted into the pouch type battery case 310 and sealed by the pouch type battery case 310 after electrolyte injection. In one embodiment, the type of electrode assembly 360 may include a stack type, a jelly roll type, a stack and fold type, and the like, but is not limited thereto.
  • the electrode assembly 360 may include two types of electrodes, anode and cathode, and a separator interposed between the electrodes to insulate the electrodes from each other.
  • the positive electrode and the negative electrode may have a structure in which an active material slurry is applied to an electrode current collector in the form of a metal foil or metal mesh including aluminum and copper, respectively.
  • the slurry may be typically formed by stirring a granular active material, an auxiliary conductor, a binder, and a conductive material in a state in which a solvent is added. The solvent may be removed in a subsequent process.
  • the electrode tab 370 is connected to the positive electrode and the negative electrode of the electrode assembly 360, protrudes outward from the electrode assembly 360, and becomes a path through which electrons can move between the inside and outside of the electrode assembly 360.
  • the electrode current collector of the electrode assembly 360 may be composed of a portion coated with an electrode active material and an end portion to which the electrode active material is not coated, that is, a non-coated portion.
  • the electrode tab 370 may be formed by cutting the uncoated portion or by connecting a separate conductive member to the uncoated portion by ultrasonic welding or the like. As shown in FIG. 3 , the electrode tabs 370 may protrude in different directions of the electrode assembly 360, but are not limited thereto and may protrude in various directions, such as protruding side by side in the same direction from one side. there is.
  • the electrode lead 380 may supply electricity to the outside of the secondary battery 300 .
  • the electrode lead 380 may be connected to the electrode tab 370 of the electrode assembly 360 by spot welding or the like. At least a portion of the electrode lead 380 may be surrounded by the insulating portion 390 . In one embodiment, one end of the electrode lead 380 may be connected to the electrode tab 370 and the other end may protrude out of the battery case 310 .
  • the electrode lead 380 has one end connected to the positive tab 372 and the positive lead 382 extending in the direction in which the positive tab 372 protrudes, and one end connected to the negative tab 374 and connected to the negative tab 374.
  • a cathode lead 384 extending in the protruding direction may be included.
  • both the positive lead 382 and the negative lead 384 may protrude out of the battery case 310 . Accordingly, electricity generated inside the electrode assembly 360 may be supplied to the outside.
  • the positive tab 372 and the negative tab 374 protrude in various directions, respectively, the positive lead 382 and the negative lead 384 may also extend in various directions.
  • the anode lead 382 and the cathode lead 384 may be made of different materials. That is, the positive lead 382 may be made of the same aluminum (Al) material as the positive current collector, and the negative lead 384 may be made of the same copper (Cu) material as the negative current collector or a copper material coated with nickel (Ni).
  • a portion of the electrode lead 380 protruding to the outside of the battery case 310 becomes a terminal unit and can be electrically connected to an external terminal.
  • the insulator 390 is limited to the sealing part 350 where the first case 320 and the second case 330 of the pouch type battery case 310 are thermally fused, and the electrode lead 380 is connected to the battery. It can be attached to the case 310.
  • the insulator 390 prevents electricity generated from the electrode assembly 360 from flowing to the battery case 310 through the electrode lead 380 and maintains the sealing of the battery case 310 .
  • the insulator 390 may be made of a non-conductive material that does not conduct electricity well.
  • an insulating tape that is easily attached to the electrode lead 380 and has a relatively thin thickness is often used, but is not limited thereto and any member capable of insulating the electrode lead 380 may be used. can
  • a 266mm wide, 50m long, 60 ⁇ m thick aluminum alloy thin film is laminated with a 266mm wide, 50m long, 12 ⁇ m thick polyethylene terephthalate film and a 266mm wide, 50m long, 25 ⁇ m thick nylon film on one side and 266mm wide, 50m long, 25 ⁇ m thick nylon film on the other side.
  • a pouch film laminate having a non-stretched polypropylene structure was prepared.
  • polyethylene terephthalate and nylon are the base layer
  • aluminum alloy thin film is the gas barrier layer
  • acid-modified polypropylene is the first sealant layer
  • non-stretched polypropylene is the second sealant layer.
  • a pouch film laminate was manufactured in the same manner as in Example 1, except that 5 vol% of a carbon fiber additive capable of improving yield strength was added to the first sealant layer.
  • a pouch film laminate was manufactured in the same manner as in Example 1, except that no additive capable of improving yield strength was added to the first sealant layer.
  • a pouch film laminate was manufactured in the same manner as in Comparative Example 1, except that the thickness of the first sealant layer was 20 ⁇ m.
  • a pouch film laminate was manufactured in the same manner as in Comparative Example 1, except that 10 vol% of a carbon fiber additive capable of improving yield strength was added to the first sealant layer.
  • Example or Comparative Example resin constituting each of the first sealant layer and the second sealant layer was extruded in the form of a film, and then the strain-stress curve was measured to yield strength of the first sealant layer and the second sealant layer. (Yield strength) was measured. In addition, ⁇ Y according to Equation 1 was calculated through the measured yield strength. The yield strength and ⁇ Y value are shown in Table 2 below.
  • ⁇ Y ⁇ (second sealant layer yield strength - first sealant layer yield strength)/first sealant layer yield strength ⁇ ⁇ 100
  • the 180-degree peel strength was measured by peeling the sealant layer from the pouch film laminates prepared in Examples and Comparative Examples, respectively, and the average value of the strength in the 5 to 25 mm flat section was measured. did The measurement results are shown in Table 2 below.
  • Figure 4 shows the state of measuring the peel strength of the gas barrier layer and the sealant layer according to the present invention.
  • Figure 5 shows the state of measuring the breaking strength of the sealing portion prepared from the pouch film laminate according to the present invention.
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 Yield strength of the first sealant layer (N/15mm) 8.0 7.2 6.8 6.0 15.2 Yield strength of the second sealant layer (N/15mm) 14.6 15.0 15.3 15.0 25.1 ⁇ Y (%) 82.5 108.3 125 150 65.1 Difference in yield strength between the first sealant layer and the second sealant layer (N/15mm) 6.6 7.8 8.5 9 9.9 Peel strength between gas barrier layer and sealant layer (N/15mm) 24 23.6 23 22 20 Separation between the first sealant layer and the second sealant layer X X O 0 O Breaking strength of sealing part (N/15mm) @ 25°C 145.7 141.1 99.7 85.9 85.9 @ 60°C 110.9 103.5 71.2 61.1 61.1
  • ⁇ Y was measured at 82.5% in Example 1, 108.3% in Example 2, 125% in Comparative Example 1, 150% in Comparative Example 2, and 65.1% in Comparative Example 3. That is, ⁇ Y in Examples 1 and 2 falls within the numerical range of 66% to 120%, which is the standard value of the present invention, whereas ⁇ Y in Comparative Examples 1 to 3 is in the numerical range of 66% to 120%, which is the standard value of the present invention. was measured to be outside of
  • the difference in yield strength between the first sealant layer and the second sealant layer was 6.6 N/15 mm in Example 1, 7.8 N/15 mm in Example 2, 8.5 N/15 mm in Comparative Example 1, 9 N/15 mm in Comparative Example 2, In Comparative Example 3, it was measured at 9.9 N/15 mm. That is, the difference in yield strength between the first sealant layer and the second sealant layer in Examples 1 and 2 was measured to be smaller than 8 N/15 mm, which is the reference value of the present invention, whereas the first sealant layer and the second sealant layer in Comparative Examples 1 to 3 The yield strength difference between the sealant layers was measured to be greater than 8N/15mm, which is the standard value of the present invention.
  • the peel strength between the gas barrier layer and the first sealant layer was 24 N/15 mm in Example 1, 23.6 N/15 mm in Example 2, 23 N/15 mm in Comparative Example 1, and 22 N/15 mm in Comparative Example 2. , measured at 20 N/15 mm in Comparative Example 3. Therefore, the pouch-type battery case prepared by heat-sealing the pouch film laminates of Examples 1 and 2 may have better sealing strength than the pouch-type battery case prepared by heat-sealing the pouch film laminates of Comparative Examples 1 to 3. there is.
  • the pouch-type battery case prepared by heat-sealing the pouch film laminates of Examples 1 and 2 may have better sealing strength than the pouch-type battery case prepared by heat-sealing the pouch film laminates of Comparative Examples 1 to 3. there is.
  • the breaking strength of the sealing part manufactured using the pouch film laminates of Examples 1 and 2 was 25 ° C. compared to the breaking strength of the sealing part manufactured using the pouch film laminates of Comparative Examples 1 to 3 and 60 ° C. Therefore, the pouch-type battery case prepared by heat-sealing the pouch film laminates of Examples 1 and 2 may have better sealing strength than the pouch-type battery case prepared by heat-sealing the pouch film laminates of Comparative Examples 1 to 3. there is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명에 따른 파우치 필름 적층체는 기재층, 가스 배리어층 및 실런트층이 순서대로 적층된 것으로서, 실런트층은 가스 배리어층에 인접하게 배치되는 제1 실런트층, 및 제1 실런트층 상에 적층되는 제2 실런트층을 포함하고, 하기 식 1에 따른 ΔY는 66% 내지 120%이다. [식 1] ΔY = {(제2 실런트층 항복 강도 - 제1 실런트층 항복 강도)/제1 실런트층 항복 강도} × 100

Description

파우치 필름 적층체 및 이차 전지
관련출원과의 상호인용
본 출원은 2021년 10월 1일자 한국 특허 출원 제10-2021-0131121호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술 분야
본 발명은 파우치 필름 적층체 및 이를 성형하여 제조된 이차 전지에 관한 것으로, 보다 상세하게는 파우치의 밀봉 강도(Seal Strength)를 향상시키는 파우치 필름 적층체 및 이를 성형하여 제조된 이차 전지에 관한 것이다.
일반적으로, 이차 전지의 종류로는 니켈 카드뮴 전지, 니켈 수소 전지, 리튬 이온 전지 및 리튬 이온 폴리머 전지 등이 있다. 이러한 이차 전지는 디지털 카메라, P-DVD, MP3P, 휴대폰, PDA, Portable Game Device, Power Tool 및 E-bike 등의 소형 제품뿐만 아니라, 전기 자동차나 하이브리드 자동차와 같은 고출력이 요구되는 대형 제품과 잉여 발전 전력이나 신재생 에너지를 저장하는 전력 저장 장치와 백업용 전력 저장 장치에도 적용되어 사용되고 있다.
이러한 이차 전지를 제조하기 위해, 먼저 전극 활물질 슬러리를 양극 집전체 및 음극 집전체에 도포하여 양극과 음극을 제조하고, 이를 분리막(Separator)의 양 측에 적층함으로써 소정 형상의 전극 조립체(Electrode Assembly)를 형성한다. 그리고 전지 케이스에 전극 조립체를 수납하고 전해질 주입 후 실링한다.
이차 전지는 전극 조립체를 수용하는 케이스의 재질에 따라, 파우치 형(Pouch Type) 및 캔 형(Can Type) 등으로 분류된다. 파우치 형(Pouch Type)은 유연한 폴리머 재질로 제조된 파우치에 전극 조립체를 수용한다. 캔 형(Can Type)은 금속 또는 플라스틱 등의 재질로 제조된 케이스에 전극 조립체를 수용한다.
파우치 형 이차 전지의 케이스인 파우치는, 유연성을 가지는 파우치 필름 적층체에 프레스 가공을 수행하여, 컵부를 형성함으로써 제조된다. 컵부가 형성되면, 컵부의 내측 수용 공간에 전극 조립체를 수납하고 실링부를 실링하여 이차 전지를 제조할 수 있다.
일반적으로 파우치 필름 적층체는 금속 재질의 가스 배리어층 일면에 폴리에틸렌테레프탈레이트 등과 같은 고분자 필름을 적층하고, 타면에 실런트층이 적층된 복수의 층으로 형성된다. 그러나, 이러한 종래의 파우치 필름 적층체의 경우, 파우치 형 이차 전지가 가혹한 환경 조건에서 파우치의 실링부가 개봉(vent)될 수 있다. 이에 따라, 파우치 내부에 수용된 전극 조립체가 오염되거나 기능 장애가 발생하는 문제가 있었다.
본 발명은 실런트층의 항복 강도(Yield strength)를 최적화하여 파우치의 밀봉 강도가 개선된 파우치 필름 적층체를 제공한다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 파우치 필름 적층체는, 기재층, 가스 배리어층 및 실런트층이 순서대로 적층되고, 상기 실런트층은 상기 가스 배리어층에 인접하게 배치되는 제1 실런트층, 및 상기 제1 실런트층 상에 적층되는 제2 실런트층을 포함하며, 하기 식 1에 따른 ΔY는 66% 내지 120%이다.
[식 1]
ΔY = {(제2 실런트층 항복 강도 - 제1 실런트층 항복 강도)/제1 실런트층 항복 강도} × 100
본 발명의 파우치 필름 적층체에서, 제1 실런트층의 항복 강도와 상기 제2 실런트층의 항복 강도의 차는 8N/15mm 이하일 수 있다.
본 발명의 파우치 필름 적층체에서, 제1 실런트층의 항복 강도는 제2 실런트층의 항복 강도보다 작을 수 있다.
본 발명의 파우치 필름 적층체에서, 제1 실런트층의 항복 강도는 7N/15mm 내지 15N/15mm일 수 있다.
본 발명의 파우치 필름 적층체에서, 제2 실런트층의 항복 강도는 10N/15mm 내지 30N/15mm일 수 있다.
본 발명의 파우치 필름 적층체에서, 제1 실런트층 및 제2 실런트층의 두께 비는 1:0.3 내지 1:3일 수 있다.
본 발명의 파우치 필름 적층체에서, 상기 제1 실런트층의 두께는 10μm 내지 60μm일 수 있다.
본 발명의 파우치 필름 적층체에서, 상기 제2 실런트층의 두께는 20μm 내지 70μm일 수 있다.
본 발명의 파우치 필름 적층체에서, 제1 실런트층 및 제2 실런트층은 폴리프로필렌(PolyPropylene, PP)을 포함할 수 있으며, 가스 배리어층은 알루미늄(Al)을 포함할 수 있다.
본 발명의 파우치 필름 적층체에서, 가스 배리어층과 제1 실런트층 사이의 박리 강도는 23N/15mm를 초과할 수 있다.
2장의 상기 파우치 필름 적층체를 각각의 상기 제2 실런트층이 맞닿도록 적층한 후 180℃, 0.4MPa 조건에서 2초 간 실링함으로써 실링부를 형성할 시, 25℃에서 측정한 상기 실링부의 파단 강도는 100N/15mm 이상이고, 60℃에서 측정한 상기 실링부의 파단 강도는 80N/15mm 이상일 수 있다.
한편, 본 발명의 다른 실시예에 따른 이차 전지는 상술한 파우치 필름 적층체 중 어느 하나를 성형하여 제조된 파우치 형 전지 케이스, 및 상기 파우치 형 전지 케이스의 내부에 수납되는 전극 조립체를 포함한다.
종래에는 파우치 필름 적층체 제조 시에 금속층인 가스 배리어층과의 접착력을 개선하기 위해 가스 배리어층에 부착되는 제1 실런트층을 제2 실런트층보다 흐름성이 낮은 재료로 형성하는 것이 일반적이었다. 그러나 이러한 종래의 파우치 필름 적층체를 이용하여 제조된 전지 케이스의 경우, 파우치 내부에서 가스가 발생하거나 외력이 가해질 시 제1 실런트층과 제2 실런트층 사이 계면이 박리되어 밀봉 내구성이 떨어진다는 문제점이 있었다.
상기와 같은 문제점을 해결하기 위해, 본 발명에 따른 파우치 필름 적층체는 제1 실런트층과 제2 실런트층의 항복 강도 차이를 특정 범위 내로 제어함으로써, 외력이나 가스 발생 등에 의한 제1 실런트층과 제2 실런트층 사이의 계면 박리를 억제할 수 있다. 이에 따라, 상기 파우치 필름 적층체를 실링하여 제조한 파우치의 밀봉 내구성이 향상될 수 있다.
도 1은 본 발명에 따른 파우치 필름 적층체의 단면도이다.
도 2는 본 발명에 따른 파우치 형 전지 케이스의 실링부를 도시한 단면도이다.
도 3은 본 발명에 따른 이차 전지의 분해 조립도이다.
도 4는 본 발명에 따른 가스 배리어층과 실런트층의 박리 강도를 측정하는 모습을 나타낸다.
도 5는 본 발명에 따른 파우치 필름 적층체로부터 제조된 실링부의 파단 강도를 측정하는 모습을 나타낸다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
본 명세서에서, 어떤 부분이 어떤 구성요소를 포함한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본 명세서에서, 도면의 위쪽은 그 도면에 도시된 구성의 "상부" 또는 "상측", 그 아래쪽은 "하부" 또는 "하측"이라고 지칭할 수 있다. 또한, 도면에 있어서 도시된 구성의 상부와 하부의 사이 또는 상부와 하부를 제외한 나머지 부분은 "측부" 또는 "측면"이라고 지칭할 수 있다. 이러한 "상부", "상측" 등과 같은 상대적인 용어는, 도면에 도시된 구성들 간의 관계를 설명하기 위하여 사용될 수 있으며, 본 개시는 그러한 용어에 의해 한정되지 않는다.
본 명세서에서, 한 구조물의 내부 공간으로 향하는 방향을 "내측", 개방된 외부 공간으로 돌출된 방향을 "외측"이라고 지칭할 수 있다. 이러한 "내측", "외측" 등과 같은 상대적인 용어는, 도면에 도시된 구성들 간의 관계를 설명하기 위하여 사용될 수 있으며, 본 개시는 그러한 용어에 의해 한정되지 않는다.
본 명세서에서 "A 및/또는 B"의 기재는 A, 또는 B, 또는 A 및 B를 의미한다.
본 명세서에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐 아니라, 그 중간에 다른 구성을 사이에 두고 연결되어 있는 경우도 포함한다.
본 명세서에서, 항복 강도(Yield strength)는 탄성 변형이 일어나는 한계 응력으로서 0.2% off-set 응력을 의미하며, 측정 장비 UTM(Zwick 社)을 이용하여 15mm x 80mm 폴리프로필렌 필름 샘플에 대해 온도 25℃, 상대습도 40%의 환경에서 50mm/min의 속도로 잡아당겨 측정한다.
본 명세서에서, 실링부의 파단 강도(Breaking strength)는, 2장의 파우치 필름 적층체를 각각의 제2 실런트층이 맞닿도록 적층한 후 180℃, 0.4MPa 조건에서 2초 간 실링함으로써 형성된 실링부가 파단될 때의 응력을 의미한다. 구체적으로, 실링부의 파단 강도는 상기 실링부가 형성된 샘플을 15mm 폭으로 커팅(cutting)한 후, 상기 샘플에서 상하로 적층된 각각의 파우치 필름 적층체의 일단을 측정 장비 (UTM, Zwick 社)의 상부/하부 지그에 체결한 뒤, 상하 방향에서 5mm/min의 속도로 잡아당겨 실링부가 파단될 때 측정된 인장 강도의 최대값을 의미한다.
파우치 필름 적층체
본 발명에 따른 파우치 필름 적층체는 기재층, 가스 배리어층 및 실런트층이 순서대로 적층된 것이다. 이 경우, 실런트층은 가스 배리어층에 인접하게 배치되는 제1 실런트층, 및 제1 실런트층 상에 적층되는 제2 실런트층을 포함하고, 하기 식 1에 따른 ΔY는 66% 내지 120%이다.
[식 1]
ΔY = {(제2 실런트층 항복 강도 - 제1 실런트층 항복 강도)/제1 실런트층 항복 강도} × 100
이하, 도 1을 참조하여 본 발명에 따른 파우치 필름 적층체, 및 상기 파우치 필름 적층체에 포함된 각 층에 대해 자세히 설명한다.
도 1은 본 발명에 따른 파우치 필름 적층체(100)의 단면도이다.
도 1에 도시된 바와 같이, 파우치 필름 적층체(100)는 기재층(110), 가스 배리어층(Gas Barrier Layer)(120) 및 실런트층(Sealant Layer)(130)을 포함하며, 상기 실런트층(130)은 제1 실런트층(132) 및 제2 실런트층(134)을 포함한다. 상기 파우치 필름 적층체(100)에서 기재층(110), 가스 배리어층(120), 제1 실런트층(132) 및 제2 실런트층(134)은 순서대로 적층될 수 있다.
(1) 기재층
기재층(110)은 파우치 필름 적층체(100)의 최외층에 형성되어 외부와의 마찰 및 충돌로부터 이차 전지를 보호하기 위한 것이다. 기재층(110)은 폴리머로 제조되어 전극 조립체를 외부로부터 전기적으로 절연시킬 수 있다. 상기 기재층(110)은, 예를 들어 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리염화비닐, 아크릴계 고분자, 폴리아크릴로나이트릴, 폴리이미드, 폴리아마이드, 셀룰로오스, 아라미드, 나일론, 폴리에스테르, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레이트, 테프론 및 유리섬유로 이루어진 군으로부터 선택된 하나 이상의 재질로 이루어질 수 있다. 그 중에서도, 기재층(110)은 내마모성 및 내열성을 가지는 폴리에틸렌테레프탈레이트(PET), 나일론(Nylon) 또는 이들의 조합으로 이루어지는 것이 특히 바람직하다.
기재층(110)은 어느 하나의 물질로 이루어진 단일막 구조를 가질 수 있다. 이와 달리, 상기 기재층(110)은 2개 이상의 물질이 각각 층을 이루어 형성된 복합막 구조를 가질 수 있다.
상기 기재층(110)의 두께는 5μm 내지 50μm, 구체적으로 7μm 내지 50μm, 보다 구체적으로 7μm 내지 40μm일 수 있다. 기재층(110)의 두께가 상기 범위를 만족하는 경우, 파우치 필름 적층체가 우수한 외부 절연성을 가질 수 있고, 파우치 전체의 두께가 두껍지 않아 이차 전지의 부피 대비 에너지 밀도가 우수할 수 있다.
(2) 가스 배리어층
가스 배리어층(120)은 기재층(110) 및 실런트층(130)의 사이에 적층되어 파우치의 기계적 강도를 확보하고, 파우치 형 전지 케이스 외부의 가스 또는 수분 등의 출입을 차단하며, 파우치 형 전지 케이스 내부로부터의 전해질 누수를 방지하기 위한 것이다.
가스 배리어층(120)은 금속으로 형성될 수 있으며, 구체적으로 알루미늄 합금 박막으로 형성될 수 있다. 알루미늄 합금 박막을 이용하여 가스 배리어층을 형성할 경우, 소정 수준 이상의 기계적 강도를 확보할 수 있으면서도 무게가 가볍고, 전극 조립체와 전해질의 전기 화학적 성질에 대한 보완 및 방열성 등을 확보할 수 있다. 상기 알루미늄 합금 박막에는 알루미늄 이외의 금속 원소, 예를 들어, 철(Fe), 구리(Cu), 크롬(Cr), 망간(Mn), 니켈(Ni), 마그네슘(Mg), 실리콘(Si) 및 아연(Zn)으로 이루어진 군으로부터 선택되는 1종 또는 2종 이상이 포함될 수 있다.
한편, 가스 배리어층(120)의 두께는 40μm 내지 100μm, 구체적으로 50μm 내지 90μm, 보다 구체적으로 55μm 내지 85μm일 수 있다. 가스 배리어층(120)의 두께가 상기 범위를 만족할 경우, 컵부 성형 시 성형성 및 가스 배리어 성능이 우수하다.
(3) 실런트층
실런트층(130)은 내측에 전극 조립체를 수용하는 파우치 형 전지 케이스(도 3의 310)가 실링될 때, 실링부(도 3의 350)에서 상호 열 접착됨으로써 파우치 형 전지 케이스 내부를 외부로부터 완전히 밀폐시키기 위한 것이다. 이를 위해 실런트층(130)은 우수한 열 접착 강도를 갖는 소재로 형성될 수 있다.
실런트층(130)은 2개 이상의 물질이 각각 층을 이루어 형성된 복합막 구조를 가질 수 있다.
구체적으로, 본 발명에 따른 실런트층(130)은 제1 실런트층(132) 및 제2 실런트층(134)을 포함할 수 있다. 이 경우, 제1 실런트층(132)은 가스 배리어층(120)과 인접하도록 배치되는 층이고, 제2 실런트층(134)은 상기 제1 실런트층(132) 상에 배치되는 층일 수 있다. 상기 제1 실런트층(132)과 제2 실런트층(134)은 각각 재질 및/또는 물성이 상이한 재료로 이루어질 수 있다.
상기 제1 실런트층(132)과 상기 제2 실런트층(134) 사이에는 계면이 존재할 수 있다. 이는 제1 실런트층(132)과 제2 실런트층(134)이 서로 다른 층이라는 것을 의미하며, 별도로 형성될 수 있음을 의미한다.
본 발명에 따르면, 하기 식 1에 따른 ΔY는 66% 내지 120%, 구체적으로 66% 내지 110%, 보다 구체적으로 66% 내지 100%일 수 있다. 여기서, ΔY는 제1 실런트층(132)의 항복 강도에 대한 제1 실런트층(132)의 항복 강도와 제2 실런트층(134)의 항복 강도의 차이를 백분율로 나타낸 값을 의미한다.
[식 1]
ΔY = {(제2 실런트층 항복 강도 - 제1 실런트층 항복 강도)/제1 실런트층 항복 강도} × 100
상기 ΔY가 120% 초과할 경우, 외력이나 가스 발생 시에 제1 실런트층(132)과 제2 실런트층(134) 사이의 계면에서 층간 박리가 발생할 가능성이 증가하여 파우치 형 전지 케이스(도 3의 310)의 밀봉 내구성이 저하될 수 있다.
상기 ΔY가 66% 미만일 경우, 파우치 필름 적층체 제조 시 실런트층의 압출 공정성이 저하되며, 파우치 필름 적층체 제조 후 전지 제조를 위한 실링 공정 시 저온 실링성이 저하될 수 있다.
상기 제1 실런트층(132)과 제2 실런트층(134)의 항복 강도의 차는 8N/15mm 이하, 바람직하게는 1N/15mm 내지 8N/15mm, 더 바람직하게는 3N/15mm 내지 7N/15mm일 수 있다. 제1 실런트층(132)과 제2 실런트층(134)의 항복 강도 차이가 상기 범위를 만족할 경우, 외력이나 가스 발생 시에 제1 실런트층(132)과 제2 실런트층(134) 사이의 계면에서 층간 박리가 발생할 가능성이 감소하여 파우치 형 전지 케이스(도 3의 310)의 밀봉 내구성이 향상될 수 있다.
상기 제1 실런트층(132)의 항복 강도는 제2 실런트층(134)의 항복 강도보다 작을 수 있다. 이 경우, 제1 실런트층(132)은 제2 실런트층(134) 대비 흐름성이 낮으므로 파우치 필름 적층체(100) 형성 시 가스 배리어층(120)에 용이하게 부착될 수 있고, 외력 발생 시에 가스 배리어층(120)과 제1 실런트층(132) 사이의 계면 상의 접착력이 높게 유지될 수 있다.
상기 제1 실런트층(132)과 제2 실런트층(134)은 재질 및/또는 물성이 상이한 재료로 이루어질 수 있다. 예를 들어, 상기 제1 실런트층(132)은 상기 제2 실런트층(134)에 비해 흐름성이 낮은 재료로 이루어질 수 있다. 이 경우, 흐름성이 낮은 제1 실런트층(132)은 제2 실런트층(134)보다 항복 강도가 작을 수 있다.
제1 실런트층(132)과 제2 실런트층(134)의 두께 비는 1:0.3 내지 1:3, 바람직하게는 1:0.6 내지 1:2.2, 더 바람직하게는 1:1 내지 1:1.7일 수 있다. 제1 실런트층(132)과 제2 실런트층(134)의 두께 비가 상기 범위를 만족할 때, 가스 배리어층(120)과 실런트층(130) 간 압출 공정성을 확보할 수 있으며, 동시에 실링부의 파단 강도가 향상되는 효과를 얻을 수 있다.
이하, 전술한 제1 실런트층(132) 및 제2 실런트층(134) 각각에 대해 보다 자세히 설명한다.
1) 제1 실런트층
제1 실런트층(132)은 전술한 바와 같이 가스 배리어층(120)과 인접하도록 배치되는 층일 수 있다.
제1 실런트층(132)은 폴리머 재질로 형성될 수 있다. 구체적으로, 상기 제1 실런트층(132)은, 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리염화비닐, 아크릴계 고분자, 폴리아크릴로나이트릴, 폴리이미드, 폴리아마이드, 셀룰로오스, 아라미드, 나일론, 폴리에스테르, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레이트, 테프론, 및 유리섬유로 이루어진 군으로부터 선택된 하나 이상의 물질로 이루어질 수 있으며, 바람직하게는, 폴리프로필렌(PP) 및/또는 폴리에틸렌(PE) 등의 폴리올레핀계 수지로 이루어질 수 있다. 이 경우, 폴리프로필렌은 무연신 폴리프로필렌(Cast Polypropylene, CPP) 또는 산 변성 폴리프로필렌(Acid Modified Polypropylene, PPa) 또는 폴리프로필렌-부틸렌-에틸렌 삼원 공중합체로 구성될 수 있다.
제1 실런트층(132)은 가스 배리어층(120)과 제1 실런트층(132) 간 장기 접착 성능을 확보하기 위해, 산 변성 폴리프로필렌(PPa)으로 이루어짐이 특히 바람직하다. 여기서, 산 변성 폴리프로필렌은 말레익 안하이드라이드 폴리프로필렌(MAH PP)일 수 있다.
제1 실런트층(132)의 항복 강도를 원하는 값으로 조절하기 위해, 제1 실런트층(132)을 이루는 폴리머 물질에 첨가제가 첨가될 수 있다. 예를 들어, 제1 실런트층(132)의 항복 강도를 향상시키기 위한 첨가제로서, 탄소 섬유(Carbon fiber), 유리 섬유(Glass fiber) 및 아라미드 섬유(Aramid fiber) 중 적어도 어느 하나가 첨가될 수 있다.
제1 실런트층(132)의 항복 강도는 7N/15mm 내지 15N/15mm, 바람직하게는 7.2N/15mm 내지 9.0N/15mm, 더 바람직하게는 7.5N/15mm 내지 8.5N/15mm일 수 있다.
제1 실런트층(132)의 항복 강도가 7N/15mm 미만일 경우, 제1 실런트층(132)과 제2 실런트층(134)의 항복 강도 차이가 증가하게 되고, 이에 따라 외력이나 가스 발생 시에 제1 실런트층(132)과 제2 실런트층(134) 사이의 계면에서 층간 박리가 발생하여 파우치 형 전지 케이스(도 3의 310)의 밀봉 내구성이 저하될 수 있다.
제1 실런트층(132)의 항복 강도가 15N/15mm를 초과할 경우, 가스 배리어층(120)과 제1 실런트층(132)을 라미네이션(lamination)하기 위한 압출 공정성이 저하될 수 있다. 또한, 제1 실런트층(132)의 항복 강도를 높이기 위해서는 실런트층(130)의 전반적인 강도 향상이 필요한데, 이를 위해 제1 실런트층(132)과 제2 실런트층(134)을 압출할 경우 네킹(necking) 현상이 발생하는 등의 어려움이 있을 수 있다. 뿐만 아니라, 제1 실런트층(132)의 항복 강도와 가스 배리어층(120)의 항복 강도 간의 차이가 커짐으로써 가스 배리어층(120)과 제1 실런트층(132) 간 계면 상의 접착력이 저하될 수 있다.
제1 실런트층(132)의 두께는 10μm 내지 60μm, 바람직하게는 20μm 내지 50μm, 더 바람직하게는 30μm 내지 40μm일 수 있다. 제1 실런트층(132)의 두께가 10μm보다 얇을 경우, 실링부(도 3의 350)의 실링 내구성 및 절연성이 감소하며, 제1 실런트층(132)의 항복 강도가 감소하여 실링부(도 3의 134)의 밀봉 강도가 약해지는 문제가 있다. 제1 실런트층(132)의 두께가 60μm보다 두꺼울 경우, 파우치 필름 적층체의 전체 두께가 과도하게 두꺼워져 성형성이 저하되고, 상기 파우치 필름 적층체를 성형하여 제조된 파우치형 전지 케이스에서 전극 조립체의 수용 공간(도 3의 324)이 줄어들어 이차 전지의 부피 대비 에너지 밀도가 저하될 수 있다.
2) 제1 실런트층
제2 실런트층(134)은 전술한 바와 같이 상기 제1 실런트층(132) 상에 배치되는 층일 수 있다.
상기 제2 실런트층(134)은 절연성, 내식성, 실링성을 갖는 재질로 형성될 수 있다. 구체적으로 도 3을 참조하면, 제2 실런트층(134)은 수용 공간(도 3의 324) 내측의 전극 조립체(도 3의 360) 및/또는 전해질과 직접 접촉하므로, 절연성 및 내식성을 갖는 재질로 형성될 수 있다. 또한, 제2 실런트층(134)은 파우치 형 전지 케이스 내부를 완전히 밀폐하여 내부/외부 간의 물질 이동을 차단해야 하므로, 높은 실링성(예를 들어, 우수한 열 접착 강도)을 갖는 재질로 형성될 수 있다.
이러한 절연성, 내식성, 실링성의 확보를 위해, 제2 실런트층(134)은 폴리머 재질로 형성될 수 있다. 구체적으로, 상기 제2 실런트층(134)은 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리염화비닐, 아크릴계 고분자, 폴리아크릴로나이트릴, 폴리이미드, 폴리아마이드, 셀룰로오스, 아라미드, 나일론, 폴리에스테르, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레이트, 테프론, 및 유리섬유로 이루어진 군으로부터 선택된 하나 이상의 물질로 이루어질 수 있다. 바람직하게는, 상기 제2 실런트층(134)은 폴리프로필렌(PP) 및/또는 폴리에틸렌(PE) 등의 폴리올레핀계 수지로 이루어질 수 있다. 이 경우, 폴리프로필렌은 무연신 폴리프로필렌 또는 산 변성 폴리프로필렌(Acid Modified Polypropylene) 또는 폴리프로필렌-부틸렌-에틸렌 삼원 공중합체로 구성될 수 있다. 여기서, 산 변성 폴리프로필렌은 말레익 안하이드라이드 폴리프로필렌(MAH PP)일 수 있다. 더욱 바람직하게는, 제2 실런트층(134)은 열 밀봉성을 가지며 인장 강도가 높은 무연신 폴리프로필렌으로 이루어질 수 있다.
상기 제2 실런트층(134)의 항복 강도를 원하는 값으로 조절하기 위해, 제2 실런트층(134)을 이루는 폴리머 물질에 첨가제가 첨가될 수 있다. 예를 들어, 제2 실런트층(134)의 항복 강도를 향상시키기 위한 첨가제로서, 탄소 섬유(Carbon fiber), 유리 섬유(Glass fiber) 및 아라미드 섬유(Aramid fiber) 중 적어도 어느 하나가 첨가될 수 있다.
상기 제2 실런트층(134)의 항복 강도는 10N/15mm 내지 30N/15mm, 구체적으로 12N/15mm 내지 17N/15mm, 보다 구체적으로 14N/15mm 내지 16N/15mm일 수 있다. 제2 실런트층(134)의 항복 강도가 10N/15mm 미만일 경우, 외력이나 가스 발생 시에 실링된 한 쌍의 제2 실런트층(134)을 따라 파단이 발생할 수 있어 파우치 형 전지 케이스(도 3의 310)의 밀봉 내구성이 저하될 수 있다. 제2 실런트층(134)의 항복 강도가 30N/15mm를 초과할 경우, 제2 실런트층(134)의 항복 강도와 제1 실런트층(132)의 항복 강도의 차이가 커짐에 따라 제1 실런트층(132)과 제2 실런트층(134) 사이의 계면에서 박리가 발생할 위험이 증가할 수 있다.
상기 제2 실런트층(134)의 두께는 20μm 내지 70μm, 바람직하게는 30μm 내지 70μm, 더 바람직하게는 40μm 내지 60μm일 수 있다. 제2 실런트층(134)의 두께가 20μm보다 얇을 경우, 실링부(도 3의 350)의 실링 내구성 및 절연성이 감소하며, 제2 실런트층(134)의 항복 강도가 감소하여 실링부(도 3의 350)의 밀봉 강도가 약해지는 문제가 있다. 제2 실런트층(134)의 두께가 70μm보다 두꺼울 경우, 파우치 필름 적층체의 전체 두께가 과도하게 두꺼워져 성형성이 저하되고, 상기 파우치 필름 적층체를 성형하여 제조된 파우치형 전지 케이스에서 전극 조립체의 수용 공간(도 3의 324)이 줄어들어 이차 전지의 부피 대비 에너지 밀도가 저하될 수 있다.
다음으로, 도 2는 본 발명에 따른 파우치 형 전지 케이스의 실링부(210)를 도시한 단면도이다.
도 2에 도시된 바와 같이, 파우치 필름 적층체를 성형하여 제조된 전지 케이스는 제2 실런트층(134)이 맞닿도록 적층된 뒤 실링될 수 있다. 이 경우, 실링부(210)는 하나 이상의 실런트층(130)을 포함할 수 있다.
외력이나 가스 발생 등으로 인해 실링된 전지 케이스에 압력이 작용하면, 상대적으로 접착력이 약한 층들 간의 계면에서 박리가 발생할 수 있다. 예컨대, 가스 배리어층(120)과 제1 실런트층(132) 사이의 계면(예를 들어, 도 2의 A 경로), 상호 열 접착된 제2 실런트층(134) 간의 계면(예를 들어, 도 2의 B 경로), 및/또는 제1 실런트층(132)과 제2 실런트층(134) 사이의 계면(예를 들어, 도 2의 C 경로)을 따라 박리가 발생할 수 있다.
그러나, 본 발명에 따른 파우치 필름 적층체를 이용하여 제조된 전지 케이스는 상기 3가지 계면에서 모두 우수한 접착력을 가져 우수한 밀봉 강도를 나타낸다.
구체적으로, 본 발명의 파우치 필름 적층체는 제1 실런트층(132)의 항복 강도가 가스 배리어층(120)의 항복 강도와 유사한 값을 가짐으로써, 외력 발생 시에 가스 배리어층(120)과 제1 실런트층(132) 사이의 계면 상의 접착력이 높게 유지되어 박리가 억제된다. 예를 들어, 가스 배리어층(120)과 제1 실런트층(132) 사이의 박리 강도는 23N/15mm 초과, 바람직하게는 23.2N/15mm 이상, 더 바람직하게는 23.5N/15mm 이상일 수 있다. 가스 배리어층(120)과 제1 실런트층(132) 사이의 박리 강도가 상기 범위를 만족할 때, 가스 배리어층(120)과 제1 실런트층(132) 사이의 계면에서 박리가 억제될 수 있다.
또한, 실링부(210)에 형성된 제2 실런트층(134)의 항복 강도가 높아 외력 발생 시에 높은 복원력이 작용하므로, 상호 열 접착된 제2 실런트층(134) 간의 계면 박리가 억제될 수 있다.
뿐만 아니라, 제1 실런트층(132)과 제2 실런트층(134)의 항복 강도 차이가 작으므로, 제1 실런트층(132)과 제2 실런트층(134) 사이의 계면에서 층간 박리가 억제될 수 있다.
본 발명의 일 실시예에 따르면, 상기 실링부(210)는 2장의 파우치 필름 적층체를 각각의 제2 실런트층(134)이 맞닿도록 적층한 후 180℃, 0.4MPa 조건에서 2초 간 실링함으로써 형성될 수 있다.
이 경우, 25℃에서 측정한 실링부(210)의 파단 강도는 100N/15mm 이상, 바람직하게는 110N/15mm 이상, 더 바람직하게는 120N/15mm 이상일 수 있다.
또한, 60℃에서 측정한 실링부(210)의 파단 강도는 80N/15mm 이상, 바람직하게는 90N/15mm 이상, 더 바람직하게는 100N/15mm 이상일 수 있다.
25℃에서의 실링부(210)의 파단 강도가 100N/15mm 미만이거나, 60℃에서의 실링부(210)의 파단 강도가 80N/15mm 미만일 경우, 실링부(120)의 밀봉 강도가 낮기 때문에 외력이나 가스 발생 등에 의해 실링된 전지 케이스가 쉽게 벤트(vent)되는 문제가 있다.
상기 실링부(210)의 파단 강도는 상기 실링부(210)가 형성된 샘플에서 상하로 적층된 각각의 파우치 필름 적층체의 일단을 측정 장비의 상부/하부 지그에 체결한 뒤, 상하 방향에서 5mm/min의 속도로 잡아당겨 실링부가 파단될 때 측정된 인장 강도의 최대값을 의미한다. 또한, 상기 "25℃" 및 상기 "60℃"는 인접 배치된 파우치 필름 적층체(100) 각각의 일단을 상하 방향에서 잡아당길 시의 온도를 의미한다.
이차 전지
다음으로 본 발명에 따른 이차 전지에 대해 설명한다.
도 3은 본 발명에 따른 이차 전지(300)의 분해 조립도이다.
도 3에 도시된 바와 같이, 본 발명에 따른 이차 전지(300)는 파우치 형 전지 케이스(310), 및 파우치 형 전지 케이스(310)에 수납되는 전극 조립체(Electrode Assembly)(360)를 포함할 수 있다. 전극 조립체(360)는 양극, 분리막, 음극이 적층되어 형성될 수 있고, 전극 탭(Electrode Tab)(370), 전극 리드(Electrode Lead)(380), 절연부(390)를 포함할 수 있다. 이차 전지(300)는 파우치 형 전지 케이스(310)의 내측에 전극 조립체(360)가 수용된 상태로 전해질이 주입된 후 실링부(350)가 실링됨으로써 제조될 수 있다.
파우치 형 전지 케이스(310)는 전극 조립체(360)를 내측에 수납할 수 있다. 파우치형 전지 케이스(310)는 상술한 도 1의 파우치 필름 적층체(100)를 성형하여 제조될 수 있다. 상기 파우치 필름 적층체(100)의 세부 구성 및 물성은 상술한 바와 동일하므로, 구체적인 설명은 생략한다.
파우치 형 전지 케이스(310)를 제조하기 위해서, 파우치 형 필름 적층체(100)는 펀치 등에 의해 드로잉(Drawing) 성형 및 연신됨으로써, 전극 조립체(360)가 수용되도록 주머니 형태의 수용 공간(324)을 포함하는 컵부(322)가 형성될 수 있다.
도 3에 도시된 바와 같이, 파우치 형 전지 케이스(310)는 제1 케이스(320)와 제2 케이스(330)를 포함할 수 있다. 일 실시예에서, 제1 케이스(320)는 컵부(322)가 형성되어 전극 조립체(360)를 수용할 수 있는 수용 공간(324)을 포함하고, 제2 케이스(330)는 전극 조립체(360)가 전지 케이스(310)의 외부로 이탈되지 않도록 수용 공간(324)을 상방에서 커버할 수 있다. 제1 케이스(320)와 제2 케이스(330)는 도 3에 도시된 바와 같이 일측이 서로 연결(예를 들어, 도면 부호 340)되어 제조될 수 있으나, 이에 한정되지 않고 서로 분리되어 별도로 제조되는 등 다양하게 제조될 수 있다.
다른 실시예에서, 파우치 필름 적층체(100)에 컵부(322)를 성형하는 경우, 하나의 파우치 필름 적층체(100)에 대칭이 되는 두 개의 컵부(322, 332)를 서로 이웃하게 드로잉 성형할 수 있다. 이 경우 제1 케이스(320)와 제2 케이스(330)에는 도 3에 도시된 바와 같이 각각 컵부(322, 332)가 형성될 수 있다. 제1 케이스(320)의 컵부(322)에 마련된 수용 공간(324)에 전극 조립체(360)를 수납한 후에, 두 개의 컵부(322, 332)가 서로 마주보도록 두 컵부(322, 332)의 사이에 형성된 브릿지부(340)를 폴딩할 수 있다. 이 경우, 제2 케이스(330)의 컵부(332)가 전극 조립체(360)를 상방에서 수용할 수 있다. 따라서, 두 개의 컵부(322, 332)가 하나의 전극 조립체(360)를 수용하므로, 컵부(322)가 하나일 때보다 두께가 더 두꺼운 전극 조립체(360)가 수용될 수 있다. 또한, 파우치 형 전지 케이스(310)가 폴딩됨으로써 이차 전지(300)의 하나의 모서리가 형성되므로, 추후에 실링 공정을 수행할 때 실링할 모서리의 개수가 줄어들 수 있다. 이에 따라, 이차 전지(300)의 공정 속도를 향상시킬 수 있고, 실링 공정 수를 감소시킬 수 있다.
파우치 형 전지 케이스(310)는 전극 리드(380)의 일부, 즉 단자부가 노출되도록 전극 조립체(360)를 수용한 상태에서 실링될 수 있다. 구체적으로, 전극 조립체(360)의 전극 탭(370)에 전극 리드(380)가 연결되고, 전극 리드(380)의 일부분에 절연부(390)가 형성되면, 제1 케이스(320)의 컵부(322)에 마련된 수용 공간(324)에 전극 조립체(360)가 수용되고, 제2 케이스(330)가 수용 공간(324)을 상부에서 커버할 수 있다. 이어서, 수용 공간(324)의 내부에 전해질이 주입되고 제1 케이스(320)와 제2 케이스(330)의 테두리에 형성된 실링부(350)가 실링될 수 있다. 전해질은 이차 전지(300)의 충/ 방전 시 전극의 전기 화학적 반응에 의해 생성되는 리튬 이온을 이동시키기 위한 것으로, 리튬염과 유기 용매류의 혼합물인 비수질계 유기 전해액 또는 고분자 전해질을 이용한 폴리머를 포함할 수 있다. 나아가, 전해질은 황화물계, 산화물계 또는 폴리머계의 고체 전해질을 포함할 수 있고, 이러한 고체 전해질은 외력에 의해 쉽게 변형되는 유연성을 가질 수 있다.
다음으로, 전극 조립체(360)는 전극 및 분리막을 교대로 적층하여 형성될 수 있다. 구체적으로, 전극 조립체(360)는, 전극 활물질과 바인더 및/또는 도전재를 혼합한 슬러리를 양극 집전체 및 음극 집전체에 도포하여 양극과 음극을 제조하고, 이를 분리막(Separator)의 양 측에 적층하여 소정의 형상으로 형성될 수 있다. 전극 조립체(360)는 파우치 형 전지 케이스(310)에 삽입되고 전해질 주입 후 파우치 형 전지 케이스(310)에 의해 실링될 수 있다. 일 실시예에서, 전극 조립체(360)의 유형으로는 스택형, 젤리롤형, 스택 앤 폴딩형 등이 있을 수 있으나, 이에 한정되지 않는다.
일 실시예에서, 전극 조립체(360)는 양극 및 음극 두 종류의 전극과, 상기 전극들을 상호 절연시키기 위해 전극들 사이에 개재되는 분리막을 포함할 수 있다. 양극과 음극은 각각 알루미늄과 구리를 포함하는 금속 포일 또는 금속 메쉬 형태의 전극 집전체에 활물질 슬러리가 도포된 구조일 수 있다. 슬러리는 통상적으로 입상의 활물질, 보조 도체, 바인더 및 도전재 등이 용매가 첨가된 상태에서 교반되어 형성될 수 있다. 용매는 후속 공정에서 제거될 수 있다.
전극 탭(370)은 전극 조립체(360)의 양극 및 음극과 각각 연결되고, 전극 조립체(360)로부터 외부로 돌출되어, 전극 조립체(360)의 내부와 외부 사이에 전자가 이동할 수 있는 경로가 될 수 있다. 전극 조립체(360)의 전극 집전체는 전극 활물질이 도포된 부분과 전극 활물질이 도포되지 않은 말단 부분, 즉 무지부로 구성될 수 있다. 전극 탭(370)은 무지부를 재단하여 형성되거나 무지부에 별도의 도전부재를 초음파 용접 등으로 연결하여 형성될 수 있다. 도 3에 도시된 바와 같이, 전극 탭(370)은 전극 조립체(360)의 각각 다른 방향으로 돌출될 수도 있으나, 이에 한정되지 않고 일측으로부터 동일한 방향으로 나란히 돌출되는 등 다양한 방향을 향해 돌출 형성될 수 있다.
전극 리드(Electrode Lead)(380)는 이차 전지(300)의 외부로 전기를 공급할 수 있다. 전극 리드(380)는 전극 조립체(360)의 전극 탭(370)에 스팟(Spot) 용접 등으로 연결될 수 있다. 전극 리드(380)의 적어도 일부는 절연부(390)에 의해 둘러싸일 수 있다. 일 실시예에서, 전극 리드(380)는 일단이 전극 탭(370)과 연결되고 타단이 전지 케이스(310)의 외부로 각각 돌출될 수 있다. 전극 리드(380)는 양극 탭(372)에 일단이 연결되고 양극 탭(372)이 돌출된 방향으로 연장되는 양극 리드(382)와, 음극 탭(374)에 일단이 연결되고 음극 탭(374)이 돌출된 방향으로 연장되는 음극 리드(384)를 포함할 수 있다.
양극 리드(382) 및 음극 리드(384)는 모두 타단이 전지 케이스(310)의 외부로 돌출될 수 있다. 따라서, 전극 조립체(360)의 내부에서 생성된 전기를 외부로 공급할 수 있다. 또한, 양극 탭(372) 및 음극 탭(374)이 각각 다양한 방향으로 돌출 형성되므로, 양극 리드(382) 및 음극 리드(384)도 각각 다양한 방향으로 연장될 수 있다. 일 실시예에서, 양극 리드(382) 및 음극 리드(384)는 서로 그 재질이 다를 수 있다. 즉, 양극 리드(382)는 양극 집전체와 동일한 알루미늄(Al) 재질이며, 음극 리드(384)는 음극 집전체와 동일한 구리(Cu) 재질 또는 니켈(Ni)이 코팅된 구리 재질일 수 있다. 전지 케이스(310)의 외부로 돌출된 전극 리드(380)의 일부분은 단자부가 되어 외부 단자와 전기적으로 연결될 수 있다.
절연부(390)는 파우치 형 전지 케이스(310)의 제1 케이스(320)와 제2 케이스(330)가 열 융착되는 실링부(350)에 한정되어 위치한 상태로, 전극 리드(380)를 전지 케이스(310)에 접착시킬 수 있다. 또한, 절연부(390)는 전극 조립체(360)로부터 생성되는 전기가 전극 리드(380)를 통해 전지 케이스(310)로 흐르는 것을 방지하며, 전지 케이스(310)의 실링을 유지할 수 있다. 이를 위해, 절연부(390)는 전기가 잘 통하지 않는 비전도성을 가진 부도체로 제조될 수 있다. 일반적으로 절연부(390)로는, 전극 리드(380)에 부착되기 용이하고, 두께가 비교적 얇은 절연테이프가 많이 사용되나, 이에 한정되지 않고 전극 리드(380)를 절연할 수 있는 임의의 부재가 사용될 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 예시일 뿐, 본 발명의 범위를 한정하는 것은 아니다. 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
실시예 및 비교예
실시예 1 (파우치 필름 적층체의 제조)
가로 266mm, 세로 50m, 두께 60μm의 알루미늄 합금 박막의 일면에 가로 266mm, 세로 50m, 두께 12μm의 폴리에틸렌테레프탈레이트 필름과 가로 266mm, 세로 50m, 두께 25μm의 나일론 필름을 적층하고, 타면에 가로 266mm, 세로 50m, 두께 30μm의 산 변성 폴리프로필렌(PPa)과, 가로 266mm, 세로 50m, 두께 50μm의 무연신 폴리프로필렌(CPP)을 적층하여, 폴리에틸렌테레프탈레이트/나일론/알루미늄 합금 박막/산 변성된 폴리프로필렌/ 무연신 폴리프로필렌 구조의 파우치 필름 적층체를 제조하였다.
이 때, 산 변성된 폴리프로필렌에는 항복 강도를 향상시킬 수 있는 탄소 섬유(Carbon fiber) 첨가제를 8 vol% 첨가하였으며, 산 변성된 폴리프로필렌은 고온에서 용융시킨 후 알루미늄 합금 박막과 무연신 폴리프로필렌에 압출하여 적층하였다.
여기서, 폴리에틸렌테레프탈레이트 및 나일론은 기재층, 알루미늄 합금 박막은 가스 배리어층, 산 변성 폴리프로필렌은 제1 실런트층, 무연신 폴리프로필렌은 제2 실런트층이다.
실시예 2 (파우치 필름 적층체의 제조)
제1 실런트층에 항복 강도를 향상시킬 수 있는 탄소 섬유(Carbon fiber) 첨가제를 5 vol% 첨가했다는 점을 제외하고는, 실시예 1과 동일한 방법으로 파우치 필름 적층체를 제조하였다.
비교예 1 (파우치 필름 적층체의 제조)
제1 실런트층에 항복 강도를 향상시킬 수 있는 첨가제를 첨가하지 않았다는 점을 제외하고는, 실시예 1과 동일한 방법으로 파우치 필름 적층체를 제조하였다.
비교예 2 (파우치 필름 적층체의 제조)
제1 실런트층의 두께를 20μm로 형성했다는 점을 제외하고는, 비교예 1과 동일한 방법으로 파우치 필름 적층체를 제조하였다.
비교예 3 (파우치 필름 적층체의 제조)
제1 실런트층에 항복 강도를 향상시킬 수 있는 탄소 섬유(Carbon fiber) 첨가제를 10 vol% 첨가하였다는 점을 제외하고는, 비교예 1과 동일한 방법으로 파우치 필름 적층체를 제조하였다.
실시예 1~2 및 비교예 1~3에서 각각 제조된 파우치 필름 적층체의 각 층의 재질 및 두께는 하기 표 1에 기재된 바와 같다.
기재층 가스 배리어층 제1 실런트층 제2 실런트층
재질 두께
(μm)
재질 두께
(μm)
재질 두께
(μm)
재질 두께
(μm)
실시예 1 PET 12 Al 합금 60 PPa
+
Carbon fiber
8 vol%
30 CPP 50
Nylon 25
실시예 2 PET 12 Al 합금 60 PPa
+
Carbon fiber
5 vol%
30 CPP 50
Nylon 25
비교예 1 PET 12 Al 합금 60 PPa 30 CPP 50
Nylon 25
비교예 2 PET 12 Al 합금 60 PPa 20 CPP 50
Nylon 25
비교예 3 PET 12 Al 합금 60 PPa
+
Carbon fiber
10 vol%
30 CPP 50
Nylon 25
실험예 1: 실런트층의 항복 강도 측정
실시예 또는 비교예에서 제1 실런트층과 제2 실런트층 각각을 구성하는 수지(resin)를 필름 형태로 압출한 뒤 strain-stress curve를 측정하여, 제1 실런트층과 제2 실런트층의 항복 강도(Yield strength)를 측정하였다. 아울러, 상기 측정된 항복 강도를 통해, 하기 식 1에 따른 ΔY를 계산하였다. 상기 항복 강도와 ΔY 값은 하기 표 2에 나타내었다.
[식 1]
ΔY = {(제2 실런트층 항복 강도 - 제1 실런트층 항복 강도)/제1 실런트층 항복 강도} × 100
실험예 2: 가스 배리어층과 실런트층 간의 박리 강도 평가
실시예 및 비교예에서 각각 제조된 파우치 필름 적층체에서 가스 배리어층과 실런트층 간의 박리 강도를 측정하였다.
구체적으로, 도 4에 도시된 바와 같이, 실시예 및 비교예에서 각각 제조된 파우치 필름 적층체로부터 실런트층을 벗겨내는 방식으로 180도 peel strength를 측정하여 5~25mm 평탄 구간 강도의 평균 값을 측정하였다. 측정 결과는 하기 표 2에 나타내었다.
도 4는 본 발명에 따른 가스 배리어층과 실런트층의 박리 강도를 측정하는 모습을 나타낸다.
실험예 3: 제1 실런트층과 제2 실런트층의 층간 박리 여부 평가
실험예 2에서의 가스 배리어층/실런트층 간 박리 강도 측정 시, 제1 실런트층과 제2 실런트층의 층간 박리 여부를 육안으로 확인하였다. 측정 결과는 하기 표 2에 나타내었다.
실험예 4: 실링부의 파단 강도 평가
실시예 및 비교예에서 각각 제조된 파우치 필름 적층체 2장을 제2 실런트층이 맞닿도록 적층하였다. 이후, seal bar 면적 200mm × 10mm, 180℃, 0.4MPa 조건에서 2초 간 실런트층을 실링하여 실링부를 형성하였다. 이어서, 실링된 샘플을 15mm 폭으로 커팅(cutting)하였다. 마지막으로, 도 5에 도시된 바와 같이, 컷팅된 샘플에서 상하로 적층된 각각의 적층체 일단을 측정 장비 (UTM, Zwick 社)의 상부/하부 지그에 체결한 뒤, 상하 방향에서 5mm/min의 속도로 잡아당겨 실링부가 파단될 때의 인장 강도의 최대값을 측정하였다. 측정 결과는 하기 표 2에 나타내었다.
도 5는 본 발명에 따른 파우치 필름 적층체로부터 제조된 실링부의 파단 강도를 측정하는 모습을 나타낸다.
실험예 1 내지 4에 따른 측정 결과는 하기 표 2에 기재된 바와 같다.
실시예 1 실시예 2 비교예 1 비교예 2 비교예 3
제1 실런트층의 항복 강도(N/15mm) 8.0 7.2 6.8 6.0 15.2
제2 실런트층의 항복 강도(N/15mm) 14.6 15.0 15.3 15.0 25.1
ΔY (%) 82.5 108.3 125 150 65.1
제1 실런트층과 제2 실런트층의 항복 강도 차(N/15mm) 6.6 7.8 8.5 9 9.9
가스 배리어층과 실런트층 간 박리 강도(N/15mm) 24 23.6 23 22 20
제1 실런트층과 제2 실런트층 간 박리 여부 X X O 0 O
실링부의 파단 강도 (N/15mm) @ 25℃ 145.7 141.1 99.7 85.9 85.9
@ 60℃ 110.9 103.5 71.2 61.1 61.1
실험예 1에 따르면, ΔY는 실시예 1에서 82.5%, 실시예 2에서 108.3%, 비교예 1에서 125%, 비교예 2에서 150%, 비교예 3에서 65.1%로 측정되었다. 즉, 실시예 1 및 2에서의 ΔY는 본 발명의 기준치인 66%~120%의 수치 범위에 속하는 반면, 비교예 1 내지 3에서의 ΔY는 본 발명의 기준치인 66%~120%의 수치 범위를 벗어나는 것으로 측정되었다.
한편, 제1 실런트층과 제2 실런트층의 항복 강도 차는 실시예 1에서 6.6N/15mm, 실시예 2에서 7.8N/15mm, 비교예 1에서 8.5N/15mm, 비교예 2에서 9N/15mm, 비교예 3에서 9.9N/15mm로 측정되었다. 즉, 실시예 1 및 2에서의 제1 실런트층과 제2 실런트층 간 항복 강도 차는 본 발명의 기준치인 8N/15mm보다 작게 측정된 반면, 비교예 1 내지 3에서의 제1 실런트층과 제2 실런트층 간 항복 강도 차는 본 발명의 기준치인 8N/15mm보다 크게 측정되었다.
실험예 2에 따르면, 가스 배리어층과 제1 실런트층 간 박리 강도는 실시예 1에서 24N/15mm, 실시예 2에서 23.6N/15mm, 비교예 1에서 23N/15mm, 비교예 2에서 22N/15mm, 비교예 3에서 20N/15mm로 측정되었다. 따라서, 실시예 1 및 2의 파우치 필름 적층체를 열 밀봉하여 제조된 파우치 형 전지 케이스는 비교예 1 내지 3의 파우치 필름 적층체를 열 밀봉하여 제조된 파우치 형 전지 케이스보다 우수한 밀봉 강도를 가질 수 있다.
실험예 3에 따르면, 실시예 1 및 2에서 제조된 파우치 필름 적층체에서는 제1 실런트층과 제2 실런트층 간의 박리가 확인되지 않는 반면, 비교예 1 내지 3에서 제조된 파우치 필름 적층체에서는 제1 실런트층과 제2 실런트층 간의 박리가 확인되었다. 따라서, 실시예 1 및 2의 파우치 필름 적층체를 열 밀봉하여 제조된 파우치 형 전지 케이스는 비교예 1 내지 3의 파우치 필름 적층체를 열 밀봉하여 제조된 파우치 형 전지 케이스보다 우수한 밀봉 강도를 가질 수 있다.
실험예 4에 따르면, 실시예 1 및 2의 파우치 필름 적층체를 이용하여 제조된 실링부의 파단 강도는, 비교예 1 내지 3의 파우치 필름 적층체를 이용하여 제조된 실링부의 파단 강도에 비해 25℃ 및 60℃ 모두에서 현저히 높게 측정되었다. 따라서, 실시예 1 및 2의 파우치 필름 적층체를 열 밀봉하여 제조된 파우치 형 전지 케이스는 비교예 1 내지 3의 파우치 필름 적층체를 열 밀봉하여 제조된 파우치 형 전지 케이스보다 우수한 밀봉 강도를 가질 수 있다.

Claims (14)

  1. 기재층, 가스 배리어층 및 실런트층이 순서대로 적층된 파우치 필름 적층체에 있어서,
    상기 실런트층은,
    상기 가스 배리어층에 인접하게 배치되는 제1 실런트층; 및
    상기 제1 실런트층 상에 적층되는 제2 실런트층
    을 포함하고,
    하기 식 1에 따른 ΔY는 66% 내지 120%인, 파우치 필름 적층체.
    [식 1]
    ΔY = {(제2 실런트층 항복 강도 - 제1 실런트층 항복 강도)/제1 실런트층 항복 강도} × 100
  2. 제1항에 있어서,
    상기 제1 실런트층의 항복 강도와 상기 제2 실런트층의 항복 강도의 차는 8N/15mm 이하인, 파우치 필름 적층체.
  3. 제1항에 있어서,
    상기 제1 실런트층의 항복 강도는 상기 제2 실런트층의 항복 강도보다 작은, 파우치 필름 적층체.
  4. 제1항에 있어서,
    상기 제1 실런트층의 항복 강도는 7N/15mm 내지 15N/15mm인, 파우치 필름 적층체.
  5. 제1항에 있어서,
    상기 제2 실런트층의 항복 강도는 10N/15mm 내지 30N/15mm인, 파우치 필름 적층체.
  6. 제1항에 있어서,
    상기 제1 실런트층 및 상기 제2 실런트층의 두께 비가 1:0.3 내지 1:3인, 파우치 필름 적층체.
  7. 제1항에 있어서,
    상기 제1 실런트층의 두께가 10μm 내지 60μm인, 파우치 필름 적층체.
  8. 제1항에 있어서,
    상기 제2 실런트층의 두께가 20μm 내지 70μm인, 파우치 필름 적층체.
  9. 제1항에 있어서,
    상기 제1 실런트층 및 상기 제2 실런트층은 폴리프로필렌을 포함하는, 파우치 필름 적층체.
  10. 제1항에 있어서,
    상기 가스 배리어층은 알루미늄을 포함하는, 파우치 필름 적층체.
  11. 제1항에 있어서,
    상기 가스 배리어층과 상기 제1 실런트층 사이의 박리 강도는 23N/15mm를 초과하는, 파우치 필름 적층체.
  12. 제1항에 있어서,
    2장의 상기 파우치 필름 적층체를 각각의 상기 제2 실런트층이 맞닿도록 적층한 후 180℃, 0.4MPa 조건에서 2초 간 실링함으로써 실링부를 형성할 시,
    25℃에서 측정한 상기 실링부의 파단 강도는 100N/15mm 이상인, 파우치 필름 적층체.
  13. 제1항에 있어서,
    2장의 상기 파우치 필름 적층체를 각각의 상기 제2 실런트층이 맞닿도록 적층한 후 180℃, 0.4MPa 조건에서 2초 간 실링함으로써 실링부를 형성할 시,
    60℃에서 측정한 상기 실링부의 파단 강도는 80N/15mm 이상인, 파우치 필름 적층체.
  14. 제1항 내지 제13항 중 어느 한 항의 파우치 필름 적층체를 성형하여 제조된 파우치 형 전지 케이스; 및
    상기 파우치 형 전지 케이스의 내부에 수납되는 전극 조립체를 포함하는, 이차 전지.
PCT/KR2022/014552 2021-10-01 2022-09-28 파우치 필름 적층체 및 이차 전지 WO2023055069A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/573,259 US20240266645A1 (en) 2021-10-01 2022-09-28 Pouch Film Stack and Secondary Battery
EP22876841.2A EP4343932A1 (en) 2021-10-01 2022-09-28 Pouch film laminate and secondary battery
CA3221913A CA3221913A1 (en) 2021-10-01 2022-09-28 Pouch film stack and secondary battery
CN202280040003.0A CN117426004A (zh) 2021-10-01 2022-09-28 软包膜叠层和二次电池
JP2023570264A JP2024517488A (ja) 2021-10-01 2022-09-28 パウチフィルム積層体及び二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0131121 2021-10-01
KR20210131121 2021-10-01

Publications (1)

Publication Number Publication Date
WO2023055069A1 true WO2023055069A1 (ko) 2023-04-06

Family

ID=85783202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014552 WO2023055069A1 (ko) 2021-10-01 2022-09-28 파우치 필름 적층체 및 이차 전지

Country Status (7)

Country Link
US (1) US20240266645A1 (ko)
EP (1) EP4343932A1 (ko)
JP (1) JP2024517488A (ko)
KR (1) KR102660400B1 (ko)
CN (1) CN117426004A (ko)
CA (1) CA3221913A1 (ko)
WO (1) WO2023055069A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003001618A1 (fr) * 2001-06-20 2003-01-03 Dai Nippon Printing Co., Ltd. Materiau d'emballage de batterie
KR101132169B1 (ko) * 2008-04-02 2012-04-05 주식회사 엘지화학 전지케이스용 라미네이트 시트 및 이를 포함하고 있는 리튬이차전지
KR101530590B1 (ko) * 2013-11-29 2015-06-22 율촌화학 주식회사 셀 파우치 및 그 제조방법
US20150372263A1 (en) * 2013-02-06 2015-12-24 Dai Nippon Printing Co., Ltd. Battery packaging material
US20160197318A1 (en) * 2013-09-03 2016-07-07 Dai Nippon Printing Co., Ltd. Resin composition for sealant layer of battery packaging material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003001618A1 (fr) * 2001-06-20 2003-01-03 Dai Nippon Printing Co., Ltd. Materiau d'emballage de batterie
KR101132169B1 (ko) * 2008-04-02 2012-04-05 주식회사 엘지화학 전지케이스용 라미네이트 시트 및 이를 포함하고 있는 리튬이차전지
US20150372263A1 (en) * 2013-02-06 2015-12-24 Dai Nippon Printing Co., Ltd. Battery packaging material
US20160197318A1 (en) * 2013-09-03 2016-07-07 Dai Nippon Printing Co., Ltd. Resin composition for sealant layer of battery packaging material
KR101530590B1 (ko) * 2013-11-29 2015-06-22 율촌화학 주식회사 셀 파우치 및 그 제조방법

Also Published As

Publication number Publication date
US20240266645A1 (en) 2024-08-08
CA3221913A1 (en) 2023-04-06
JP2024517488A (ja) 2024-04-22
KR102660400B1 (ko) 2024-04-25
EP4343932A1 (en) 2024-03-27
KR20230047904A (ko) 2023-04-10
CN117426004A (zh) 2024-01-19

Similar Documents

Publication Publication Date Title
WO2021251736A1 (ko) 파우치 필름 적층체, 파우치 형 전지 케이스 및 파우치 형 이차 전지
WO2013042948A2 (ko) 다공성 구조의 전극조립체 및 이를 포함하는 이차전지
WO2013176533A1 (ko) 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
WO2013176534A1 (ko) 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
WO2021210908A1 (ko) 파우치 형 전지 케이스 및 파우치 형 이차 전지
WO2022139451A1 (ko) 전극 조립체 및 이를 포함하는 이차전지
WO2020091487A1 (ko) 전해액 보충용 홈이 형성된 파우치형 이차전지
WO2023055069A1 (ko) 파우치 필름 적층체 및 이차 전지
WO2022075750A1 (ko) 파우치 형 전지 케이스 및 그의 성형 장치, 파우치 형 이차 전지
WO2022075749A1 (ko) 전지 케이스 성형 장치, 성형 방법 및 전지 케이스
WO2022177355A1 (ko) 이차 전지 및 이를 포함하는 배터리 팩 및 자동차
WO2022191674A1 (ko) 전해액 함침성이 우수한 전극 조립체 및 이를 포함하는 배터리, 배터리 팩 및 자동차
WO2022177179A2 (ko) 전극 조립체 및 그 제조 방법, 전극 조립체를 포함하는 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차
WO2024136380A1 (ko) 파우치형 이차 전지
WO2024162747A1 (ko) 파우치 필름 적층체 및 이차 전지
WO2022065720A1 (ko) 사이드 폴딩 장치 및 방법
WO2024167201A1 (ko) 파우치 필름 적층체 및 이차 전지
WO2024136212A1 (ko) 파우치 필름 적층체 및 이차 전지
WO2024162692A1 (ko) 파우치 필름 적층체 및 이차 전지
WO2024162721A1 (ko) 파우치 필름 적층체 및 이차 전지
WO2024136214A1 (ko) 파우치 필름 적층체 및 이차 전지
WO2024136213A1 (ko) 파우치형 전지 케이스 및 파우치형 이차 전지
WO2024136416A1 (ko) 파우치 필름 적층체 및 이차 전지
WO2024136167A1 (ko) 파우치형 이차 전지
WO2024106944A1 (ko) 가스투과성 필름, 이를 포함하는 파우치 외장재 및 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023570264

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280040003.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202317082778

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 3221913

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022876841

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18573259

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022876841

Country of ref document: EP

Effective date: 20231218

NENP Non-entry into the national phase

Ref country code: DE