WO2023054834A1 - Method and device for ai cluster-controlling mobile dof robot for water purification - Google Patents

Method and device for ai cluster-controlling mobile dof robot for water purification Download PDF

Info

Publication number
WO2023054834A1
WO2023054834A1 PCT/KR2022/007752 KR2022007752W WO2023054834A1 WO 2023054834 A1 WO2023054834 A1 WO 2023054834A1 KR 2022007752 W KR2022007752 W KR 2022007752W WO 2023054834 A1 WO2023054834 A1 WO 2023054834A1
Authority
WO
WIPO (PCT)
Prior art keywords
water quality
dof robot
information
mobile
robot
Prior art date
Application number
PCT/KR2022/007752
Other languages
French (fr)
Korean (ko)
Inventor
김민환
Original Assignee
주식회사 캐스트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220066206A external-priority patent/KR20230047883A/en
Application filed by 주식회사 캐스트 filed Critical 주식회사 캐스트
Publication of WO2023054834A1 publication Critical patent/WO2023054834A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Definitions

  • the present application relates to an AI group control method and apparatus of a mobile DOF robot for water purification.
  • Ozone is one of the active species produced by the reaction of chemical species generated in a plasma state based on oxygen. Ozone has strong sterilizing and oxidizing power, and is environmentally friendly because it oxidizes or sterilizes materials and is reduced to oxygen after the reaction.
  • the core of the microplasma technology is to minimize the two discharge spaces to a micro size to lower the breakdown voltage, and to concentrate the electromagnetic field using the micro pattern to induce the micro discharge at atmospheric pressure and generate the plasma as a glow discharge.
  • electron density can be increased and miniaturized plasma is generated, thereby reducing power consumption and thereby increasing its efficiency.
  • oxygen and air are injected as a reaction gas using this principle, ozone is generated as an active species, and the generated ozone can be used for various purposes such as removing pests, decomposing odorous substances, and sterilizing harmful bacteria.
  • DGF Dissolved Gas Floating
  • DAF Dissolved AIr Floating
  • DOF Dissolved Ozone Flotation
  • the purpose of the present invention is to solve the problems of the prior art described above, and to provide an AI group control apparatus and method of a mobile DOF robot for water purification based on microplasma AOP and ultrasonic inactivation technology.
  • an AI cluster control method of a mobile DOF robot for water quality purification includes acquiring image water quality information collected from a drone, using a pre-learned neural network model analyzing the acquired image quality information; and generating a control signal for controlling the DOF robot based on the analysis result.
  • the analyzing step further includes inputting water quality measurement information collected by an external server to a pre-learned neural network model, and generating the control signal comprises using the pre-learned neural network model,
  • the method may include generating a control signal corresponding to the image water quality information and the water quality measurement information.
  • the analyzing may include analyzing at least one state information of water quality temperature, oxidation-reduction potential (ORP), turbidity, and dissolved ozone concentration by applying the image water quality information and water quality measurement information to a pretrained neural network model.
  • ORP oxidation-reduction potential
  • turbidity turbidity
  • dissolved ozone concentration by applying the image water quality information and water quality measurement information to a pretrained neural network model.
  • the method may further include a monitoring step for monitoring a water quality state, wherein the generating of the control signal corresponds to an analysis result in which first water quality state information among a plurality of water quality state information does not satisfy a preset condition as a result of the analysis. to generate a first control signal, and in the monitoring step, monitoring may be performed based on the image water quality information and water quality measurement information collected after a predetermined time period in which the DOF robot is driven by the first control signal.
  • the DOF robot uses a water quality sensor for measuring the state of water quality at which the DOF robot is located, a control unit for controlling driving of the DOF robot by the generated control signal, and a micro-pattern to concentrate an electromagnetic field and micro-discharge at normal pressure. It may include at least one of micro plasma generators for inducing and generating plasma as a glow discharge.
  • control for controlling the DOF robot by analyzing image water quality information obtained from a drone using a pre-learned neural network model A device for generating a signal and a DOF robot that is driven based on a control signal provided from the device to perform water processing, wherein the device includes: an acquisition unit for acquiring image water quality information collected from the drone; It may include an analysis unit that analyzes the obtained image quality information using a neural network model, and a control unit that generates a control signal for controlling the DOF robot based on an analysis result.
  • FIG. 1 is a schematic configuration diagram of an AI group control system of a mobile DOF robot for water purification according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of an AI group control device of a mobile DOF robot for water purification according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a DOF robot according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of an AI group control method of a mobile DOF robot for water purification according to an embodiment of the present invention.
  • the present application relates to an AI cluster control method of a mobile DOF robot for water purification based on microplasma AOP and ultrasonic inactivation technology. is possible, and the image process is performed using sensors and drones that measure the flow rate, flow rate, and water quality, thereby increasing the efficiency of water treatment robot control by measuring the exact water pollution status and change in pollution concentration.
  • the AI cluster control system 1 of the mobile DOF robot for water purification will be referred to as the present system 1
  • the AI cluster control device 20 of the mobile DOF robot for water purification will be referred to as the present device 20.
  • the mobile DOF robot 30 for water quality purification will be referred to as the robot 30 .
  • FIG. 1 is a schematic configuration diagram of an AI group control system of a mobile DOF robot for water purification according to an embodiment of the present invention.
  • the present system 1 may include a drone 10, the present device 20, and a robot 30, and the drone 10 and the present device 20 And the robot 30 may transmit and receive various communication signals through a network.
  • the system 1 analyzes image water quality information obtained from a drone using a pre-learned neural network model to control the mobile DOF robot 30 for water quality purification based on artificial intelligence to control the DOF robot It may include a device 20 that generates a control signal for controlling the device 30 and a DOF robot 30 that performs water treatment by driving based on the control signal provided from the device 20 .
  • An example of a network for sharing information between the drone 10, the present device 20, and the robot 30 is a 3rd Generation Partnership Project (3GPP) network, a Long Term Evolution (LTE) network, a 5G network, and a World Interoperability for WIMAX (WIMAX) network.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • 5G 5th Generation
  • WWIX World Interoperability for WIMAX
  • Microwave Access network wired and wireless Internet
  • LAN Local Area Network
  • Wireless LAN Wireless Local Area Network
  • WAN Wide Area Network
  • PAN Personal Area Network
  • Bluetooth network Wireless Ifi network
  • a Near Field Communication (NFC) network a satellite broadcasting network, an analog broadcasting network, a Digital Multimedia Broadcasting (DMB) network, and the like may be included, but are not limited thereto.
  • NFC Near Field Communication
  • DMB Digital Multimedia Broadcasting
  • the drone 10 may be connected wirelessly or wired to the device 20 or a separate controller to receive location information of a destination.
  • the drone 10 recognizes the current location using GPS, obtains route information from the current location to the destination using data of the map database, and then can fly while detecting the surrounding environment.
  • it may include an unmanned aerial vehicle, an unmanned aerial vehicle (UAV), and the like.
  • the drone 10 may acquire a plurality of images and a plurality of water quality data by having one or more drones, but is not limited thereto.
  • the drone 10 may include a photographing device for photographing a place requiring water quality improvement (eg, a medium-sized or large-sized reservoir, dam, river, lake, and sea), and the drone 10 may include a mobile DOF robot for water quality purification.
  • Image water quality information may be provided to the AI group control device 20 .
  • the drone 10 including the photographing device can take images of medium-sized or large-sized reservoirs, dams, rivers, lakes, and seas, and transmit the captured images to the AI swarm control device 20 of the mobile DOF robot for water purification.
  • the image water quality information includes an aerial image captured by the drone 10, location information of a place where the image was captured, temperature and humidity information of the location (eg, region), and altitude information of the drone 10 when the image was captured. may be included, but is not limited thereto.
  • the drone 10 may include a plurality of sensors such as a photographing device, an ultrasonic sensor, a gyro sensor, an acceleration sensor, a humidity sensor, a wind direction sensor, and a temperature sensor.
  • the drone 10 may include an ultrasonic sensor, an optical sensor, etc., but is not necessarily limited thereto, and may include an image sensor including known water quality data and an image sensor to be developed in the future.
  • the image sensor may include a communication sensor in the form of wirelessly communicating with objects around the drone to check an identification number.
  • the AI swarm control device 20 of the mobile DOF robot for water purification may analyze water quality information based on the image and water quality data obtained from the drone 10 and control the DOF robot 30 based on the analysis result.
  • FIG. 2 is a schematic block diagram of an AI group control device of a mobile DOF robot for water purification according to an embodiment of the present invention.
  • the device 20 may include an acquisition unit 21 , an analysis unit 220 , a control unit 23 and a monitoring unit 24 .
  • the device 20 transmits and receives data and various communication signals with the drone 10 and the robot 30 through a network, and all kinds of servers, terminals, or device may be included.
  • the device 20 may be provided by being embedded in the robot 30 to transmit and receive data and various communication signals to and from the drone 10 through a network, and to perform data storage and processing functions. Branches may include all types of servers, terminals or devices.
  • the acquisition unit 21 may acquire image quality information collected from the drone 10 .
  • the acquisition unit 21 may acquire an image captured in the air from the drone 10 .
  • the acquisition unit 210 may acquire and reconstruct image quality information.
  • the acquisition unit 210 may obtain image water quality information and reconstruct information such as a water depth, a water supply line, and a direction of water flow in a photographed image to be displayed.
  • the analysis unit 22 may analyze image quality information obtained from the drone 10 by using a pretrained neural network model.
  • the analyzer 22 may input the water quality measurement information collected by the external server to a pretrained neural network model.
  • the water quality measurement information may be information obtained from a sensor provided in an external server (eg, a river or a reservoir).
  • the water quality measurement information may be information obtained by measuring flow velocity and flow rate, but is not limited thereto.
  • the analyzer 22 may derive an analysis result by applying image water quality information and water quality measurement information to a pre-learned neural network model.
  • Analysis results include water temperature, oxidation reduction potential (ORP), turbidity, dissolved ozone concentration, information on pathogenic microorganisms, and information on harmful substances (chlorine, non-degradable organic substances, industrial chemicals, toxic chemicals, persistent organic substances, endocrine disruptors, etc.) , odor (smell) information, heavy metal and carcinogenic substance information, green algae information, etc., and may be a plurality of water quality state information, but the plurality of water quality state information is not limited thereto.
  • the analyzer 22 may analyze image water quality information and water quality measurement information based on a pretrained neural network model.
  • the neural network model may be applied to a convolutional neural network (CNN), but is not limited thereto, and an algorithm previously developed or developed in the future may be applied.
  • CNN convolutional neural network
  • control unit 23 may generate a control signal for controlling the robot 30 based on the analysis result.
  • the control unit 23 may generate a control signal for controlling the robot 30 corresponding to the image water quality information and the water quality measurement information by utilizing a pretrained neural network model.
  • a first signal may be generated in response to an analysis result in which first water quality state information among a plurality of water quality state information does not satisfy a preset condition.
  • the robot 30 sets the pathogenic microorganism information, which is the first water quality state information among the plurality of water quality information, to satisfy the preset pathogenic microorganism condition.
  • the control unit 23 may generate a control signal for controlling the robot 30 to perform an advanced oxidation process (AOP).
  • AOP Advanced Oxidation Process
  • the Advanced Oxidation Process (AOP) is a chemical process used in water treatment or wastewater treatment, which uses a combination of ozone, ultraviolet (UV), and hydroproxide to remove highly reactive hydroxyl radicals (OH-Radical) and various active species. It may be a chemical oxidation process that creates and removes organic contaminants.
  • the advanced oxidation process (AOP) may be performed in the micro plasma generator 33 of the robot 30 to be described later.
  • the robot 30 when the green algae information, which is second water quality state information, among the plurality of water quality information, does not satisfy a preset green algae information condition, the robot 30 is operated so that the green algae information, which is second water quality state information, satisfies the preset green algae information condition.
  • a control signal for driving may be generated.
  • the controller 23 may generate a control signal for controlling the robot 30 to output inactive ultrasonic waves.
  • the inactive ultrasound may be generated by the inactive ultrasound generator 34 of the robot 30 to be described later.
  • the robot 30 sets the turbidity information, the third water quality state information, to satisfy the preset turbidity information condition.
  • a control signal for driving may be generated.
  • the control unit 23 may generate a control signal for controlling the robot 30 to generate ozone.
  • ozone may be generated in a Dissolved Ozone Flotation (DOF) 35 of the robot 30 to be described later.
  • DOF Dissolved Ozone Flotation
  • the monitoring unit 24 may monitor the state of water quality.
  • the monitoring unit 24 may perform monitoring based on image water quality information and water quality measurement information collected after a predetermined period of time when the robot 30 is driven by the first control signal.
  • the monitoring unit 24 collects image water quality information and water quality measurement information after a predetermined period of time when the robot 30 is driven according to a control signal from the control unit 23, and thus the water quality derived as a result of the analysis. It may be determined whether the state information satisfies a preset condition.
  • FIG. 3 is a schematic diagram of a DOF robot according to an embodiment of the present application.
  • the DOF robot 30 includes a water quality sensor 31, a controller 32, a micro plasma generator 33, an inactive ultrasonic generator 34, and a DOF 35. can do.
  • the water quality sensor 31 may measure the state of water quality where the DOF robot is located.
  • the water quality sensor 31 may measure the state of water quality where the DOF robot 30 is located and obtain information on the water quality.
  • water quality information includes water temperature, oxidation-reduction potential (ORP), turbidity, dissolved ozone concentration, information on pathogenic microorganisms, harmful substances (chlorine, non-degradable organic substances, industrial chemicals, toxic chemicals, persistent organic substances, endocrine disrupting substances, etc.) ) information, odor (smell) information, heavy metal and carcinogenic substance information, green algae information, etc. may be included, but is not limited thereto.
  • the control unit 32 may control driving of the DOF robot by a control signal generated by the device 20 .
  • the control unit 32 may include an IOT control unit (not shown) and a battery unit (not shown).
  • the IOT control unit may control driving of the DOF robot based on the control signal received through the network.
  • the IOT control unit may control driving of the micro plasma generator 33, the inactive ultrasonic generator 34, and the DOF 35 based on the control signal received through the network.
  • the micro-plasma generator 33 may induce micro-discharge at atmospheric pressure by concentrating an electromagnetic field using a micro-pattern, and may generate plasma as a glow discharge.
  • the micro-plasma generator 33 may induce micro-discharge at atmospheric pressure by concentrating an electromagnetic field using a micro-pattern, and may generate plasma as a glow discharge.
  • the microplasma generator 33 according to an embodiment of the present application may perform an advanced oxidation process (AOP), that is, a cast microplasma AOP method according to a control signal received from the IOT controller.
  • AOP advanced oxidation process
  • the cast microplasma AOP method generates a large amount of OH radicals that are fused and combined with ultraviolet (UV) and ozone (O3), sterilizes pathogenic microorganisms (e.g., bacteria, fungi, viruses, etc.) ) It can mean a chemical oxidation process that decomposes and removes substances and odors (odors).
  • UV ultraviolet
  • O3 ozone
  • the inactive ultrasonic generator 34 can generate a constant pressure cycle around algae cells by emitting low-power ultrasonic waves, and naturally decompose toxins that interfere with the growth rhythm of algae and organics.
  • the inactive ultrasonic generator 34 according to an embodiment of the present application may emit low-power ultrasonic waves according to a control signal received from the IOT control unit.
  • the DOF 35 may remove contaminants through dissolved ozone flotation.
  • the DOF 35 is capable of pre-treatment of industrial wastewater, fracturing fluids, water containing algae and final separation of wastewater and excess sludge by performing dissolved air flotation and replacement of feed gas by air versus ozone for disinfection and water treatment.
  • the DOF 35 according to an embodiment of the present application may perform the dissolved ozone flotation method according to the control signal received from the IOT control unit.
  • FIG. 4 is an operation flowchart of an AI group control method of a mobile DOF robot for water purification according to an embodiment of the present invention.
  • the AI group control method of the mobile DOF robot for water purification shown in FIG. 4 may be performed by the computing device 100 described above. Therefore, even if omitted below, the description of the computing device 100 can be equally applied to the description of the AI group control method of the mobile DOF robot for water purification.
  • the AI crowd control method of the mobile DOF robot for water purification may be further divided into additional steps or combined into fewer steps according to an embodiment of the present invention. Also, some steps may be omitted if necessary, and the order of steps may be changed.
  • a method for cluster control of mobile DOF robots for water quality purification based on artificial intelligence includes the steps of acquiring image water quality information collected from a drone, and using a pre-learned neural network model to obtain the obtained image water quality information.
  • the step of analyzing and generating a control signal for controlling the DOF robot based on the analysis result may be included.
  • the analyzing step further includes inputting water quality measurement information collected by an external server into a pre-learned neural network model, and generating a control signal includes image water quality information using the pre-learned neural network model. and generating a control signal corresponding to the water quality measurement information.
  • At least one state information of water quality temperature, oxidation-reduction potential (ORP), turbidity, and dissolved ozone concentration may be analyzed by applying the image water quality information and water quality measurement information to a pretrained neural network model.
  • a monitoring step for monitoring the water quality state may be further included, and the step of generating the control signal may include generating the control signal in response to an analysis result in which the first water quality state information among the plurality of water quality state information does not satisfy a preset condition as a result of the analysis.
  • monitoring may be performed based on image water quality information and water quality measurement information collected after a predetermined time when the DOF robot is driven by the first control signal.
  • the AI crowd control method of the mobile DOF robot for water purification may be further divided into additional steps or combined into fewer steps according to an embodiment of the present invention. Also, some steps may be omitted if necessary, and the order of steps may be changed.
  • the AI group control method of the mobile DOF robot for water purification may be implemented in the form of program commands that can be executed through various computer means and recorded on a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • Program instructions recorded on the medium may be those specially designed and configured for the present invention or those known and usable to those skilled in computer software.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floptical disks.
  • - includes hardware devices specially configured to store and execute program instructions, such as magneto-optical media, and ROM, RAM, flash memory, and the like.
  • program instructions include high-level language codes that can be executed by a computer using an interpreter, as well as machine language codes such as those produced by a compiler.
  • the hardware devices described above may be configured to act as one or more software modules to perform the operations of the present invention, and vice versa.
  • AI group control method of the mobile DOF robot for water purification may be implemented in the form of a computer program or application stored in a recording medium and executed by a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computational Linguistics (AREA)
  • Remote Sensing (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Automation & Control Theory (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physical Water Treatments (AREA)

Abstract

The present invention relates to a device for artificial intelligence-based cluster-controlling a mobile DOF robot for water purification. The device for AI cluster-controlling a mobile DOF robot for water purification may comprise: an acquisition unit for acquiring image water quality information collected from a drone; an analysis unit for analyzing the acquired image water quality information using a pre-trained neural network model; and a control unit for generating control signals for controlling the DOF robot, the control signals being generated on the basis of the analysis results. The DOF robot comprises: a water quality sensor for measuring the water quality where the DOF robot is located; a control unit for controlling the driving of the DOF robot by means of the generated control signals; and a micro-plasma generator which induces micro-discharges at atmospheric pressure by concentrating electromagnetic fields using micro-patterns and generates plasma by means of glow discharges.

Description

수질 정화용 이동형 DOF 로봇의 AI 군집 제어 방법 및 장치AI cluster control method and apparatus for mobile DOF robot for water purification
본원은 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 방법 및 장치에 관한 것이다.The present application relates to an AI group control method and apparatus of a mobile DOF robot for water purification.
초고온 상태에서 만들어진 플라즈마는 가스 온도가 높지 않으면서 완전하게 해리된 분자, 불완전하게 이온화된 분자상태로 반응성이 높은 화학종(레디컬)들이 생긴다. 오존은 산소를 기반으로 플라즈마 상태에서 발생된 화학종의 반응에 의해 생긴 활성종의 하나이다. 이러한 오존은 살균 및 산화력이 강하며 물질을 산화 또는 살균을 진행하고 반응 이후 환원되어 산소로 돌아가므로 친환경적이다.Plasma created in an ultra-high temperature state generates highly reactive chemical species (radicals) in a completely dissociated molecule or incompletely ionized molecular state without a high gas temperature. Ozone is one of the active species produced by the reaction of chemical species generated in a plasma state based on oxygen. Ozone has strong sterilizing and oxidizing power, and is environmentally friendly because it oxidizes or sterilizes materials and is reduced to oxygen after the reaction.
또한, 마이크로 플라즈마 기술의 핵심은 두 방전공간을 마이크로 크기로 최소화하여 항복전압을 낮추고 마이크로 패턴을 이용하여 전자기장을 집중시켜 상압에서 마이크로 방전을 유도하고 플라즈마를 글로우 방전으로 발생시키는 것이다. 이로 인해 전자 밀도(Electron density)를 높일 수 있고, 극소형 플라즈마를 발생시키므로 전력량 사용을 줄이며 그로 인해 그 효율을 높일 수 있는 것이 가장 큰 장점이다. 이 원리를 사용하여 반응가스로 산소 및 공기를 주입할 경우 그 활성종으로 오존을 발생시키고 발생한 오존을 활용하여 병해충 제거와 악취물질 분해, 유해균 살균 등등의 다양한 목적으로 사용할 수 있다.In addition, the core of the microplasma technology is to minimize the two discharge spaces to a micro size to lower the breakdown voltage, and to concentrate the electromagnetic field using the micro pattern to induce the micro discharge at atmospheric pressure and generate the plasma as a glow discharge. As a result, electron density can be increased and miniaturized plasma is generated, thereby reducing power consumption and thereby increasing its efficiency. When oxygen and air are injected as a reaction gas using this principle, ozone is generated as an active species, and the generated ozone can be used for various purposes such as removing pests, decomposing odorous substances, and sterilizing harmful bacteria.
한편, 중형 또는 대형 저수지의 경우 이동형 DOF 로봇 및 이의 군집 제어 기술을 이용하여 효율적인 수처리가 가능하다. DGF(Dissolved Gas Floating) 또는 DAF(Dissolved AIr Floating) 시스템은 전 세계적으로 다양한 응용 분야에 사용된다. 이 공정은 고체, 오일 및 기타 오염 물질을 액체 표면으로 띄우고 물리적으로 분리된 오염 물질을 제거 제거함. 석유 및 가스 생산 시설은 수년 동안 생산 및 처리된 물(폐수)에서 기름과 고형물을 제거하기 위해 DGF 시스템을 사용한다. DOF (Dissolved Ozone Flotation) 기술은 DGF 기술에 더 나은 살균 및 수처리결과를 얻기 위해 공기 대신 오존에 의한 공급 가스의 교체와 함께 용존 공기 부양법에 적용하여 오존의 높은 살균성과 분해성을 적용하여 높은 효율을 얻어내는 고도 기술이다. DOF 방법을 적용할 시 오존에 의한 수질 향상과 및 미세 오염 물질 제거에 매우 효과적이다. 또한 DOF 방법은 산업 폐수, 파쇄 유체, 조류가 포함된 물의 전처리 또는 도시 폐수 처리 공장의 폐수 및 과잉 슬러지의 최종 분리에 다양하게 적용될 수 있다.On the other hand, in the case of a medium or large reservoir, efficient water treatment is possible using a mobile DOF robot and its crowd control technology. Dissolved Gas Floating (DGF) or Dissolved AIr Floating (DAF) systems are used worldwide in a variety of applications. This process floats solids, oils and other contaminants to the liquid surface and removes physically separated contaminants. Oil and gas production facilities use DGF systems to remove oil and solids from produced and treated water (wastewater) for many years. DOF (Dissolved Ozone Flotation) technology is applied to the dissolved air flotation method along with replacement of supply gas by ozone instead of air to obtain better sterilization and water treatment results to DGF technology, and high efficiency by applying ozone's high sterilization and decomposability. It is a high skill to obtain. When the DOF method is applied, it is very effective in improving water quality and removing fine pollutants by ozone. The DOF method can also be applied in a variety of applications for the pretreatment of industrial wastewater, fracturing fluids, water containing algae, or for the final separation of wastewater and excess sludge from municipal wastewater treatment plants.
본원의 배경이 되는 기술은 한국공개특허공보 제10-2005-0035780호에 개시되어 있다.The background technology of the present application is disclosed in Korean Patent Publication No. 10-2005-0035780.
본원은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 마이크로 플라즈마 AOP 및 초음파 비활성 기술을 기반한 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 장치 및 방법을 제공하려는 것을 목적으로 한다.The purpose of the present invention is to solve the problems of the prior art described above, and to provide an AI group control apparatus and method of a mobile DOF robot for water purification based on microplasma AOP and ultrasonic inactivation technology.
다만, 본원의 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.However, the technical problem to be achieved by the embodiments of the present application is not limited to the technical problems described above, and other technical problems may exist.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 일 실시예에 따른 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 방법은 드론으로부터 수집된 이미지 수질 정보를 획득하는 단계, 사전 학습된 신경망 모델을 활용하여 상기 획득된 이미지 수질 정보를 분석하는 단계; 및 분석 결과를 기반으로 DOF 로봇을 제어하기 위한 제어 신호를 생성하는 단계를 포함할 수 있다.As a technical means for achieving the above technical problem, an AI cluster control method of a mobile DOF robot for water quality purification according to an embodiment of the present application includes acquiring image water quality information collected from a drone, using a pre-learned neural network model analyzing the acquired image quality information; and generating a control signal for controlling the DOF robot based on the analysis result.
또한, 상기 분석하는 단계는, 외부 서버로 수집된 수질 측정 정보를 사전 학습된 신경망 모델에 입력하는 단계를 더 포함하고, 상기 제어 신호를 생성하는 단계는, 상기 사전 학습된 신경망 모델을 활용하여, 상기 이미지 수질 정보 및 상기 수질 측정 정보에 대응하는 제어 신호를 생성하는 단계를 포함할 수 있다.In addition, the analyzing step further includes inputting water quality measurement information collected by an external server to a pre-learned neural network model, and generating the control signal comprises using the pre-learned neural network model, The method may include generating a control signal corresponding to the image water quality information and the water quality measurement information.
또한, 상기 분석하는 단계는, 상기 이미지 수질 정보 및 수질 측정 정보를 사전 학습된 신경망 모델에 적용하여 수질의 온도, 산화환원전위(ORP), 탁도 및 용해 오존 농도 중 적어도 하나의 상태 정보를 분석할 수 있다.In addition, the analyzing may include analyzing at least one state information of water quality temperature, oxidation-reduction potential (ORP), turbidity, and dissolved ozone concentration by applying the image water quality information and water quality measurement information to a pretrained neural network model. can
또한, 수질 상태를 모니터링하기 위한 모니터링 단계를 더 포함하되, 상기 제어 신호를 생성하는 단계는, 상기 분석 결과 복수의 수질 상태 정보 중 제 1 수질 상태 정보가 미리 설정된 조건을 만족하지 못하는 분석 결과에 대응하여 제 1 제어 신호를 생성하고, 상기 모니터링 단계는, 상기 제 1 제어 신호에 의해 DOF 로봇이 구동된 소정의 시간 이후 수집된 상기 이미지 수질 정보 및 수질 측정 정보를 기반으로 모니터링을 수행할 수 있다. The method may further include a monitoring step for monitoring a water quality state, wherein the generating of the control signal corresponds to an analysis result in which first water quality state information among a plurality of water quality state information does not satisfy a preset condition as a result of the analysis. to generate a first control signal, and in the monitoring step, monitoring may be performed based on the image water quality information and water quality measurement information collected after a predetermined time period in which the DOF robot is driven by the first control signal.
또한, 상기 DOF 로봇은, DOF 로봇이 위치한 수질의 상태를 측정하기 위한 수질 센서, 상기 생성된 제어 신호에 의해 DOF 로봇의 구동을 제어하는 제어부 및 마이크로 패턴을 이용하여 전자기장을 집중시켜 상압에서 마이크로 방전을 유도하고 플라즈마를 글로우 방전으로 발생시키는 마이크로 플라즈마 발생기 중 적어도 하나를 포함할 수 있다.In addition, the DOF robot uses a water quality sensor for measuring the state of water quality at which the DOF robot is located, a control unit for controlling driving of the DOF robot by the generated control signal, and a micro-pattern to concentrate an electromagnetic field and micro-discharge at normal pressure. It may include at least one of micro plasma generators for inducing and generating plasma as a glow discharge.
본원의 일 실시예에 따르면, 수질 정화용 이동형 DOF 로봇을 인공지능 기반으로 군집 제어하는 장치에 있어서, 드론으로부터 수집된 이미지 수질 정보를 획득하는 획득부, 사전 학습된 신경망 모델을 활용하여 상기 획득된 이미지 수질 정보를 분석하는 분석부 및 분석 결과를 기반으로 DOF 로봇을 제어하기 위한 제어 신호를 생성하는 제어부를 포함할 수 있다.According to an embodiment of the present application, in the apparatus for cluster control of mobile DOF robots for water quality purification based on artificial intelligence, an acquisition unit for acquiring image water quality information collected from a drone, and the acquired image using a pre-learned neural network model It may include an analyzer that analyzes water quality information and a controller that generates a control signal for controlling the DOF robot based on the analysis result.
본원의 일 실시예에 따르면, 수질 정화용 이동형 DOF 로봇을 인공지능 기반으로 군집 제어하는 시스템에 있어서, 사전 학습된 신경망 모델을 활용하여 드론으로부터 획득된 이미지 수질 정보를 분석하여 DOF 로봇을 제어하기 위한 제어 신호를 생성하는 장치 및 상기 장치로부터 제공받은 제어 신호를 기반으로 구동하여 수처리를 수행하는 DOF 로봇을 포함하되, 상기 장치는, 상기 드론으로부터 수집된 이미지 수질 정보를 획득하는 획득부, 상기 사전 학습된 신경망 모델을 활용하여 상기 획득된 이미지 수질 정보를 분석하는 분석부 및 분석 결과를 기반으로 상기 DOF 로봇을 제어하기 위한 제어 신호를 생성하는 제어부를 포함할 수 있다.According to an embodiment of the present application, in a system for cluster control of mobile DOF robots for water purification based on artificial intelligence, control for controlling the DOF robot by analyzing image water quality information obtained from a drone using a pre-learned neural network model A device for generating a signal and a DOF robot that is driven based on a control signal provided from the device to perform water processing, wherein the device includes: an acquisition unit for acquiring image water quality information collected from the drone; It may include an analysis unit that analyzes the obtained image quality information using a neural network model, and a control unit that generates a control signal for controlling the DOF robot based on an analysis result.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본원을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 추가적인 실시예가 존재할 수 있다.The above-described problem solving means are merely exemplary and should not be construed as intended to limit the present disclosure. In addition to the exemplary embodiments described above, additional embodiments may exist in the drawings and detailed description of the invention.
전술한 본원의 과제 해결 수단에 의하면, 중형 또는 대형 저수지에 군집 로봇 제어를 통한 효율적이 수처리가 가능하고, 유속 및 유량을 측정하는 수질 측정 센서 미 드론을 활용한 이미지 프로세싱을 기반으로 정확한 수질 오염 상태 및 오염 농도 변화를 측정하여 수처리 로봇 제어에 효율성을 높일 수 있는 효과가 있다.According to the above-mentioned problem-solving means of the present application, efficient water treatment is possible through swarm robot control in medium-sized or large-sized reservoirs, and accurate water pollution status based on image processing using a water quality measurement sensor mid-drone that measures flow rate and flow rate And there is an effect of increasing the efficiency of controlling the water treatment robot by measuring the change in the concentration of contamination.
다만, 본원에서 얻을 수 있는 효과는 상기된 바와 같은 효과들로 한정되지 않으며, 또 다른 효과들이 존재할 수 있다.However, the effects obtainable herein are not limited to the effects described above, and other effects may exist.
도 1은 본원의 일 실시예에 따른 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 시스템의 개략적인 구성도이다.1 is a schematic configuration diagram of an AI group control system of a mobile DOF robot for water purification according to an embodiment of the present invention.
도 2는 본원의 일 실시예에 따른 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 장치의 개략적인 블록도이다.2 is a schematic block diagram of an AI group control device of a mobile DOF robot for water purification according to an embodiment of the present invention.
도 3은 본원의 일 실시예에 따른 DOF 로봇의 개략적인 도면이다.3 is a schematic diagram of a DOF robot according to an embodiment of the present application.
도 4는 본원의 일 실시예에 따른 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 방법에 대한 개략적인 흐름도이다.4 is a schematic flowchart of an AI group control method of a mobile DOF robot for water purification according to an embodiment of the present invention.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, embodiments of the present application will be described in detail so that those skilled in the art can easily practice with reference to the accompanying drawings. However, the present disclosure may be implemented in many different forms and is not limited to the embodiments described herein. And in order to clearly describe the present application in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결" 또는 “간접적으로 연결”되어 있는 경우도 포함한다. Throughout the present specification, when a part is said to be “connected” to another part, it is not only “directly connected”, but also “electrically connected” or “indirectly connected” with another element in between. ”Including cases where it is.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에", "상부에", "상단에", "하에", "하부에", "하단에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout the present specification, when a member is referred to as being “on,” “above,” “on top of,” “below,” “below,” or “below” another member, this means that a member is located in relation to another member. This includes not only the case of contact but also the case of another member between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the present specification, when a certain component is said to "include", it means that it may further include other components without excluding other components unless otherwise stated.
본원은 마이크로 플라즈마 AOP 및 초음파 비활성 기술을 기반한 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 방법에 관한 것으로, 중형 또는 대형 저수지, 댐, 강, 호수 및 바다 등의 수질을 대상으로 군집 로봇 제어를 통해 효율적인 수처리가 가능하고, 유속, 유량 및 수질을 측정하는 센서와 드론을 활용하여 이미지 프로세스를 진행함으로써 정확한 수질 오염 상태 및 오염 농도 변화를 측정하여 수처리 로봇 제어에 효율성을 높일 수 있다.The present application relates to an AI cluster control method of a mobile DOF robot for water purification based on microplasma AOP and ultrasonic inactivation technology. is possible, and the image process is performed using sensors and drones that measure the flow rate, flow rate, and water quality, thereby increasing the efficiency of water treatment robot control by measuring the exact water pollution status and change in pollution concentration.
이하에서는 설명의 편의상 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 시스템(1)을 본 시스템(1)이라 하고, 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 장치(20)를 본 장치(20)라 하기로 한다. 또한, 설명의 편의상 수질 정화용 이동형 DOF 로봇(30)을 로봇(30)이라 하기로 한다.Hereinafter, for convenience of description, the AI cluster control system 1 of the mobile DOF robot for water purification will be referred to as the present system 1, and the AI cluster control device 20 of the mobile DOF robot for water purification will be referred to as the present device 20. . In addition, for convenience of description, the mobile DOF robot 30 for water quality purification will be referred to as the robot 30 .
도 1은 본원의 일 실시예에 따른 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 시스템의 개략적인 구성도이다.1 is a schematic configuration diagram of an AI group control system of a mobile DOF robot for water purification according to an embodiment of the present invention.
도 1을 참조하면, 본원의 일 실시예에 따른 본 시스템(1)은 드론(10), 본 장치(20) 및 로봇(30)을 포함할 수 있고, 드론(10), 본 장치(20) 및 로봇(30)은 네트워크를 통해 각종 통신 신호를 송수신할 수 있다. Referring to FIG. 1 , the present system 1 according to an embodiment of the present application may include a drone 10, the present device 20, and a robot 30, and the drone 10 and the present device 20 And the robot 30 may transmit and receive various communication signals through a network.
본원의 일 실시예에 따른 시스템(1)은 수질 정화용 이동형 DOF 로봇(30)을 인공지능 기반으로 군집 제어하기 위해, 사전 학습된 신경망 모델을 활용하여 드론으로부터 획득된 이미지 수질 정보를 분석하여 DOF 로봇(30)을 제어하기 위한 제어 신호를 생성하는 장치(20) 및 장치(20)로부터 제공받은 제어 신호를 기반으로 구동하여 수처리를 수행하는 DOF 로봇(30)을 포함할 수 있다.The system 1 according to an embodiment of the present application analyzes image water quality information obtained from a drone using a pre-learned neural network model to control the mobile DOF robot 30 for water quality purification based on artificial intelligence to control the DOF robot It may include a device 20 that generates a control signal for controlling the device 30 and a DOF robot 30 that performs water treatment by driving based on the control signal provided from the device 20 .
드론(10), 본 장치(20) 및 로봇(30) 간의 정보 공유를 위한 네트워크의 일 예로는 3GPP(3rd Generation Partnership Project) 네트워크, LTE(Long Term Evolution) 네트워크, 5G 네트워크, WIMAX(World Interoperability for Microwave Access) 네트워크, 유무선 인터넷(Internet), LAN(Local Area Network), Wireless LAN(Wireless Local Area Network), WAN(Wide Area Network), PAN(Personal Area Network), 블루투스(Bluetooth) 네트워크, Wifi 네트워크, NFC(Near Field Communication) 네트워크, 위성 방송 네트워크, 아날로그 방송 네트워크, DMB(Digital Multimedia Broadcasting) 네트워크 등이 포함될 수 있으며, 이에 한정된 것은 아니다.An example of a network for sharing information between the drone 10, the present device 20, and the robot 30 is a 3rd Generation Partnership Project (3GPP) network, a Long Term Evolution (LTE) network, a 5G network, and a World Interoperability for WIMAX (WIMAX) network. Microwave Access network, wired and wireless Internet, LAN (Local Area Network), Wireless LAN (Wireless Local Area Network), WAN (Wide Area Network), PAN (Personal Area Network), Bluetooth network, Wifi network, A Near Field Communication (NFC) network, a satellite broadcasting network, an analog broadcasting network, a Digital Multimedia Broadcasting (DMB) network, and the like may be included, but are not limited thereto.
드론(10)은 본 장치(20) 또는 별도의 컨트롤러와 무선 또는 유선으로 연결되어 목적지의 위치 정보를 입력 받을 수 있다. 또한, 드론(10)은 GPS를 이용하여 현재 위치를 인식하고, 맵 데이터 베이스의 데이터를 이용하여 현재 위치로부터 목적지까지의 경로정보를 획득한 뒤 주변환경을 탐지하면서 비행할 수 있는 것으로서, 예를 들어, 무인 항공기, UAV(Unmanned Aerial Vehicle) 등을 포함할 수 있다. 또한, 드론(10)은 하나 또는 하나 이상의 복수 개를 구비함으로써 복수의 이미지 및 복수의 수질 데이터를 획득할 수 있으며, 이에 한정된 것은 아니다.The drone 10 may be connected wirelessly or wired to the device 20 or a separate controller to receive location information of a destination. In addition, the drone 10 recognizes the current location using GPS, obtains route information from the current location to the destination using data of the map database, and then can fly while detecting the surrounding environment. For example, it may include an unmanned aerial vehicle, an unmanned aerial vehicle (UAV), and the like. In addition, the drone 10 may acquire a plurality of images and a plurality of water quality data by having one or more drones, but is not limited thereto.
드론(10)은 수질 개선이 필요한 장소(예컨대, 중형 또는 대형 저수지, 댐, 강, 호수 및 바다 등)를 촬영하기 위한 촬영 장치를 포함할 수 있고, 드론(10)은 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 장치(20)로 이미지 수질 정보를 제공할 수 있다. 다시 말해, 촬영 장치를 포함하는 드론(10)은 중형 또는 대형 저수지, 댐, 강, 호수 및 바다 등의 이미지를 촬영할 수 있고, 촬영된 이미지를 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 장치(20)로 송신할 수 있다. 여기서 이미지 수질 정보는, 드론(10)이 촬영한 항공 이미지와 해당 이미지가 촬영된 장소의 위치 정보, 해당 위치(예컨대, 지역)의 온도 및 습도 정보, 해당 이미지 촬영시 드론(10)의 고도 정보가 포함될 수 있으며, 이에 한정된 것은 아니다.The drone 10 may include a photographing device for photographing a place requiring water quality improvement (eg, a medium-sized or large-sized reservoir, dam, river, lake, and sea), and the drone 10 may include a mobile DOF robot for water quality purification. Image water quality information may be provided to the AI group control device 20 . In other words, the drone 10 including the photographing device can take images of medium-sized or large-sized reservoirs, dams, rivers, lakes, and seas, and transmit the captured images to the AI swarm control device 20 of the mobile DOF robot for water purification. can be sent to Here, the image water quality information includes an aerial image captured by the drone 10, location information of a place where the image was captured, temperature and humidity information of the location (eg, region), and altitude information of the drone 10 when the image was captured. may be included, but is not limited thereto.
드론(10)은 촬영 장치, 초음파 센서, 자이로 센서, 가속도 센서, 습도 센서, 풍향 센서, 온도 센서 등 복수의 센서를 포함할 수 있다. 예를 들어, 드론(10)은 초음파 센서, 광센서 등을 포함할 수 있으나, 반드시 이에 한정되는 것은 아니며 기 알려진 수질 데이터가 포함된 이미지 센서 및 향후 개발되는 이미지 센서를 포함할 수 있다. 또한, 이미지 센서는 드론 주변의 물체와 무선 통신하여 식별번호 등을 확인하는 형태의 통신센서를 포함할 수 있다.The drone 10 may include a plurality of sensors such as a photographing device, an ultrasonic sensor, a gyro sensor, an acceleration sensor, a humidity sensor, a wind direction sensor, and a temperature sensor. For example, the drone 10 may include an ultrasonic sensor, an optical sensor, etc., but is not necessarily limited thereto, and may include an image sensor including known water quality data and an image sensor to be developed in the future. In addition, the image sensor may include a communication sensor in the form of wirelessly communicating with objects around the drone to check an identification number.
수질 정화용 이동형 DOF 로봇의 AI 군집 제어 장치(20)는 드론(10)에서 획득한 이미지 및 수질 데이터를 기반으로 수질 정보를 분석하여 분석 결과를 기반으로 DOF 로봇(30)을 제어할 수 있다.The AI swarm control device 20 of the mobile DOF robot for water purification may analyze water quality information based on the image and water quality data obtained from the drone 10 and control the DOF robot 30 based on the analysis result.
도 2는 본원의 일 실시예에 따른 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 장치의 개략적인 블록도이다. 2 is a schematic block diagram of an AI group control device of a mobile DOF robot for water purification according to an embodiment of the present invention.
도 2를 참조하면, 본 장치(20)는 획득부(21), 분석부(220), 제어부(23) 및 모니터링부(24)를 포함할 수 있다. 본원의 일 실시예에 따르면, 장치(20)는 드론(10) 및 로봇(30)과 데이터, 각종 통신 신호를 네트워크를 통해 송수신하고, 데이터 저장 및 처리의 기능을 가지는 모든 종류의 서버, 단말 또는 디바이스를 포함할 수 있다. 본원의 다른 일 실시예에 따르면, 장치(20)는 로봇(30)에 내장되어 구비될 수 있어, 드론(10)과 데이터, 각종 통신 신호를 네트워크를 통해 송수신하고, 데이터 저장 및 처리의 기능을 가지는 모든 종류의 서버, 단말 또는 디바이스를 포함할 수 있다.Referring to FIG. 2 , the device 20 may include an acquisition unit 21 , an analysis unit 220 , a control unit 23 and a monitoring unit 24 . According to one embodiment of the present application, the device 20 transmits and receives data and various communication signals with the drone 10 and the robot 30 through a network, and all kinds of servers, terminals, or device may be included. According to another embodiment of the present application, the device 20 may be provided by being embedded in the robot 30 to transmit and receive data and various communication signals to and from the drone 10 through a network, and to perform data storage and processing functions. Branches may include all types of servers, terminals or devices.
본원의 일 실시예에 따르면, 획득부(21)는 드론(10)으로부터 수집된 이미지 수질 정보를 획득할 수 있다. 획득부(21)는 드론(10)으로부터 항공에서 촬영된 이미지를 획득할 수 있다. 획득부(210)는 이미지 수질 정보를 획득하여 재구성할 수 있다. 획득부(210)는 이미지 수질 정보를 획득하여, 촬영된 이미지에 수심, 물 공급라인, 물의 흐름의 방향 등의 정보가 표시될 수 있도록 재구성할 수 있다.According to an embodiment of the present application, the acquisition unit 21 may acquire image quality information collected from the drone 10 . The acquisition unit 21 may acquire an image captured in the air from the drone 10 . The acquisition unit 210 may acquire and reconstruct image quality information. The acquisition unit 210 may obtain image water quality information and reconstruct information such as a water depth, a water supply line, and a direction of water flow in a photographed image to be displayed.
본원의 일 실시예에 따르면, 분석부(22)는 사전 학습된 신경망 모델을 활용하여 드론(10)으로부터 획득된 이미지 수질 정보를 분석할 수 있다. According to an embodiment of the present application, the analysis unit 22 may analyze image quality information obtained from the drone 10 by using a pretrained neural network model.
본원의 일 실시예에 따르면, 분석부(22)는 외부 서버로 수집된 수질 측정 정보를 사전 학습된 신경망 모델이 입력할 수 있다. 여기서, 수질 측정 정보는, 외부 서버(예컨대, 하천, 저수지) 등에 구비된 센서로부터 획득된 정보일 수 있다. 수질 측정 정보는, 유속 및 유량 등을 측정한 정보일 수 있으며, 이에 한정된 것은 아니다.According to one embodiment of the present application, the analyzer 22 may input the water quality measurement information collected by the external server to a pretrained neural network model. Here, the water quality measurement information may be information obtained from a sensor provided in an external server (eg, a river or a reservoir). The water quality measurement information may be information obtained by measuring flow velocity and flow rate, but is not limited thereto.
본원의 일 실시예에 따르면, 분석부(22)는 이미지 수질 정보 및 수질 측정 정보를 사전 학습된 신경망 모델에 적용함으로써, 분석 결과를 도출할 수 있다. 분석 결과는 물의 온도, 산화환원전위(ORP), 탁도, 용해 오존 농도, 병원성 미생물 정보, 유해물질(염소, 난분해성 유기물, 산업용 화학물질, 독성 화학물, 잔류성 유기물질, 내분비 교란 물질 등) 정보, 악취(냄새) 정보, 중금속 및 발암성 물질 정보, 녹조 정보 등을 포함하는 복수의 수질 상태 정보일 수 있으며, 복수의 수질 상태 정보는 이에 한정된 것은 아니다. According to an embodiment of the present disclosure, the analyzer 22 may derive an analysis result by applying image water quality information and water quality measurement information to a pre-learned neural network model. Analysis results include water temperature, oxidation reduction potential (ORP), turbidity, dissolved ozone concentration, information on pathogenic microorganisms, and information on harmful substances (chlorine, non-degradable organic substances, industrial chemicals, toxic chemicals, persistent organic substances, endocrine disruptors, etc.) , odor (smell) information, heavy metal and carcinogenic substance information, green algae information, etc., and may be a plurality of water quality state information, but the plurality of water quality state information is not limited thereto.
본원의 일 실시예에 따르면, 분석부(22)는 사전 학습된 신경망 모델을 기반으로 이미지 수질 정보 및 수질 측정 정보를 분석할 수 있다. 일 예로, 신경 망 모델은, 컨볼루션 신경망(CNN, Convolutional Neural Network)등이 적용될 수 있으나, 이에 한정되는 것은 아니며, 기 개발되었거나 향후 개발되는 알고리즘이 적용될 수 있다. According to an embodiment of the present application, the analyzer 22 may analyze image water quality information and water quality measurement information based on a pretrained neural network model. For example, the neural network model may be applied to a convolutional neural network (CNN), but is not limited thereto, and an algorithm previously developed or developed in the future may be applied.
본원의 일 실시예에 따르면, 제어부(23)는 분석 결과를 기반으로 로봇(30)을 제어하기 위한 제어 신호를 생성할 수 있다.According to one embodiment of the present application, the control unit 23 may generate a control signal for controlling the robot 30 based on the analysis result.
제어부(23)는 사전 학습된 신경망 모델을 활용하여, 이미지 수질 정보 및 수질 측정 정보에 대응하는 로봇(30)을 제어하기 위한 제어 신호를 생성할 수 있다.The control unit 23 may generate a control signal for controlling the robot 30 corresponding to the image water quality information and the water quality measurement information by utilizing a pretrained neural network model.
분석 결과 복수의 수질 상태 정보 중 제1 수질 상태 정보가 미리 설정된 조건을 만족하지 못하는 분석 결과에 대응하여 제1 신호를 생성할 수 있다.As a result of the analysis, a first signal may be generated in response to an analysis result in which first water quality state information among a plurality of water quality state information does not satisfy a preset condition.
일 예로, 복수의 수질 정보 중 제1 수질 상태 정보인 병원성 미생물 정보가 미리 설정된 병원성 미생물 조건을 만족하지 못하는 경우, 제1 수질 상태 정보인 병원성 미생물 정보가 미리 설정된 병원성 미생물 조건을 만족하도록 로봇(30)을 구동하기 위한 제어 신호를 생성할 수 있다. 예컨대, 제어부(23)는 고도 산화공정(Advanced Oxidation Process, AOP)을 수행하도록 로봇(30)을 제어하기 위한 제어 신호를 생성할 수 있다. 여기서 고도 산화 공정(AOP)은 수처리 또는 폐수 처리에 이용되는 화학 공정으로, 오존, 자외선(UV), 하이드로프록사이드 등을 복합적으로 적용하여 반응성이 좋은 수산기 라디칼(OH-Radical)과 각종 활성종을 생성시켜 유기 오염물질들을 제거하는 화학적 산화 공정일 수 있다. 또한, 고도 산화 공정(AOP)은 후술하는 로봇(30)의 마이크로 플라즈마 발생기(33)에서 수행될 수 있다.For example, when the pathogenic microorganism information, which is the first water quality state information among the plurality of water quality information, does not satisfy the preset pathogenic microorganism condition, the robot 30 sets the pathogenic microorganism information, which is the first water quality state information, to satisfy the preset pathogenic microorganism condition. ) can generate a control signal for driving. For example, the control unit 23 may generate a control signal for controlling the robot 30 to perform an advanced oxidation process (AOP). The Advanced Oxidation Process (AOP) is a chemical process used in water treatment or wastewater treatment, which uses a combination of ozone, ultraviolet (UV), and hydroproxide to remove highly reactive hydroxyl radicals (OH-Radical) and various active species. It may be a chemical oxidation process that creates and removes organic contaminants. In addition, the advanced oxidation process (AOP) may be performed in the micro plasma generator 33 of the robot 30 to be described later.
다른 예로, 복수의 수질 정보 중 제2 수질 상태 정보인 녹조 정보가 미리 설정된 녹조 정보 조건을 만족하지 못하는 경우, 제2 수질 상태 정보인 녹조 정보가 미리 설정된 녹조 정보 조건을 만족하도록 로봇(30)을 구동하기 위한 제어 신호를 생성할 수 있다. 예컨대, 제어부(23)는 비활성 초음파를 출력하도록 로봇(30)을 제어하기 위한 제어 신호를 생성할 수 있다. 또한, 비활성 초음파는 후술하는 로봇(30)의 비활성 초음파 발생기(34)에서 발생될 수 있다.As another example, when the green algae information, which is second water quality state information, among the plurality of water quality information, does not satisfy a preset green algae information condition, the robot 30 is operated so that the green algae information, which is second water quality state information, satisfies the preset green algae information condition. A control signal for driving may be generated. For example, the controller 23 may generate a control signal for controlling the robot 30 to output inactive ultrasonic waves. In addition, the inactive ultrasound may be generated by the inactive ultrasound generator 34 of the robot 30 to be described later.
또 다른 예로, 복수의 수질 정보 중 제3 수질 상태 정보인 탁도 정보가 미리 설정된 탁도 정보 조건을 만족하지 못하는 경우, 제3 수질 상태 정보인 탁도 정보가 미리 설정된 탁도 정보 조건을 만족하도록 로봇(30)을 구동하기 위한 제어 신호를 생성할 수 있다. 예컨대, 제어부(23)는 오존을 생성하도록 로봇(30)을 제어하기 위한 제어 신호를 생성할 수 있다. 또한, 오존은 후술하는 로봇(30)의 DOF(Dissolved Ozone Flotation)(35)에서 발생될 수 있다.As another example, when the turbidity information, which is the third water quality state information among the plurality of water quality information, does not satisfy the preset turbidity information condition, the robot 30 sets the turbidity information, the third water quality state information, to satisfy the preset turbidity information condition. A control signal for driving may be generated. For example, the control unit 23 may generate a control signal for controlling the robot 30 to generate ozone. In addition, ozone may be generated in a Dissolved Ozone Flotation (DOF) 35 of the robot 30 to be described later.
본원의 일 실시예에 따른 모니터링부(24)는 수질의 상태를 모니터링할 수 있다. 모니터링부(24)는 제1 제어 신호에 의해 로봇(30)이 구동된 소정의 시간 후 수집된 이미지 수질 정보 및 수질 측정 정보를 기반으로 모니터링을 수행할 수 있다.The monitoring unit 24 according to an embodiment of the present application may monitor the state of water quality. The monitoring unit 24 may perform monitoring based on image water quality information and water quality measurement information collected after a predetermined period of time when the robot 30 is driven by the first control signal.
본원의 일 실시예에 다른 모니터링부(24)는 제어부(23)의 제어 신호에 따라 로봇(30)이 구동된 소정의 시간 후 이미지 수질 정보 및 수질 측정 정보를 수집함으로써, 분석 결과로 도출된 수질 상태 정보가 미리 설정된 조건을 만족하는지 여부를 판단할 수 있다. According to another embodiment of the present application, the monitoring unit 24 collects image water quality information and water quality measurement information after a predetermined period of time when the robot 30 is driven according to a control signal from the control unit 23, and thus the water quality derived as a result of the analysis. It may be determined whether the state information satisfies a preset condition.
도 3은 본원의 일 실시예에 따른 DOF 로봇의 개략적인 도면이다.3 is a schematic diagram of a DOF robot according to an embodiment of the present application.
도 3을 참조하면, 본원의 일 실시예에 따른 DOF 로봇(30)은 수질 센서(31), 제어부(32), 마이크로 플라즈마 발생기(33), 비활성 초음파 발생기(34) 및 DOF(35)를 포함할 수 있다.Referring to FIG. 3 , the DOF robot 30 according to an embodiment of the present application includes a water quality sensor 31, a controller 32, a micro plasma generator 33, an inactive ultrasonic generator 34, and a DOF 35. can do.
본원의 일 실시예에 따른 수질 센서(31)는 DOF 로봇이 위치한 수질의 상태를 측정할 수 있다. 수질 센서(31)는 DOF 로봇(30)이 위치한 수질의 상태를 측정하고, 수질의 정보를 획득할 수 있다. 여기서 수질의 정보는 물의 온도, 산화환원전위(ORP), 탁도, 용해 오존 농도, 병원성 미생물 정보, 유해물질(염소, 난분해성 유기물, 산업용 화학물질, 독성 화학물, 잔류성 유기물질, 내분비 교란 물질 등) 정보, 악취(냄새) 정보, 중금속 및 발암성 물질 정보, 녹조 정보 등을 포함할 수 있고, 이에 한정하지 않는다.The water quality sensor 31 according to an embodiment of the present application may measure the state of water quality where the DOF robot is located. The water quality sensor 31 may measure the state of water quality where the DOF robot 30 is located and obtain information on the water quality. Here, water quality information includes water temperature, oxidation-reduction potential (ORP), turbidity, dissolved ozone concentration, information on pathogenic microorganisms, harmful substances (chlorine, non-degradable organic substances, industrial chemicals, toxic chemicals, persistent organic substances, endocrine disrupting substances, etc.) ) information, odor (smell) information, heavy metal and carcinogenic substance information, green algae information, etc. may be included, but is not limited thereto.
본원의 일 실시예에 따른 제어부(32)는 장치(20)에서 생성된 제어 신호에 의해 DOF 로봇의 구동을 제어할 수 있다. The control unit 32 according to an embodiment of the present application may control driving of the DOF robot by a control signal generated by the device 20 .
본원의 일 실시예에 따른 제어부(32)는 IOT 제어부(미도시) 및 배터리부(미도시)를 포함할 수 있다. IOT 제어부는 네트워크를 통해 수신된 제어 신호에 기반하여 DOF 로봇의 구동을 제어할 수 있다. 일 예로, IOT 제어부는 네트워크로 수신된 제어 신호에 기반하여 마이크로 플라즈마 발생기(33), 비활성 초음파 발생기(34) 및 DOF(35)의 구동을 제어할 수 있다. The control unit 32 according to an embodiment of the present application may include an IOT control unit (not shown) and a battery unit (not shown). The IOT control unit may control driving of the DOF robot based on the control signal received through the network. For example, the IOT control unit may control driving of the micro plasma generator 33, the inactive ultrasonic generator 34, and the DOF 35 based on the control signal received through the network.
본원의 일 실시예에 따른 마이크로 플라즈마 발생기(33)는 마이크로 패턴을 이용하여 전자기장을 집중시켜 상압에서 마이크로 방전을 유도하고 플라즈마를 글로우 방전으로 발생시킬 수 있다.The micro-plasma generator 33 according to an embodiment of the present application may induce micro-discharge at atmospheric pressure by concentrating an electromagnetic field using a micro-pattern, and may generate plasma as a glow discharge.
본원의 일 실시예에 따른 마이크로 플라즈마 발생기(33)는 마이크로 패턴을 이용하여 전자기장을 집중시켜 상압에서 마이크로 방전을 유도하고 플라즈마를 글로우 방전으로 발생시킬 수 있다. 본원의 일 실시예에 따른 마이크로 플라즈마 발생기(33)는 IOT제어부에서 수신된 제어 신호에 따라 고도 산화공정(Advanced Oxidation Process, AOP), 즉 캐스트 마이크로 플라즈마 AOP 공법을 수행할 수 있다. 캐스트 마이크로 플라즈마 AOP공법은 자외선(UV) 및 오존(O₃) 을 융·복합한 OH 라디칼(Radical)을 대량으로 생성시켜,  병원성 미생물(예컨대, 세균, 곰팡이 및 바이러스 등)을 살균하고, 유해(기)물질과 악취(냄새)를 분해·제거하는 화학적 산화공정을 의미할 수 있다. The micro-plasma generator 33 according to an embodiment of the present application may induce micro-discharge at atmospheric pressure by concentrating an electromagnetic field using a micro-pattern, and may generate plasma as a glow discharge. The microplasma generator 33 according to an embodiment of the present application may perform an advanced oxidation process (AOP), that is, a cast microplasma AOP method according to a control signal received from the IOT controller. The cast microplasma AOP method generates a large amount of OH radicals that are fused and combined with ultraviolet (UV) and ozone (O₃),   sterilizes pathogenic microorganisms (e.g., bacteria, fungi, viruses, etc.) ) It can mean a chemical oxidation process that decomposes and removes substances and odors (odors).
본원의 일 실시예에 따른 비활성 초음파 발생기(34)는 저전력 초음파를 방출하여 조류 세포 주위에 일정한 압력 주기를 생성하고, 조류 및 유기물의 생장리듬을 방해하는 독소를 자연적으로 분해할 수 있다. 본원의 일 실시예에 따른 비활성 초음파 발생기(34)는 IOT 제어부에서 수신된 제어 신호에 따라 저전력 초음파를 방출할 수 있다.The inactive ultrasonic generator 34 according to an embodiment of the present application can generate a constant pressure cycle around algae cells by emitting low-power ultrasonic waves, and naturally decompose toxins that interfere with the growth rhythm of algae and organics. The inactive ultrasonic generator 34 according to an embodiment of the present application may emit low-power ultrasonic waves according to a control signal received from the IOT control unit.
본원의 일 실시예에 따른 DOF(35)는 용존 오존 부양법(Dissolved Ozone Flotation)을 통해 오염 물질을 제거할 수 있다. DOF(35)는 살균 및 수처리를 위해 공기 대산 오존에 의한 공급 가스의 교체와 용존 공기 부양법을 수행함으로써 산업 폐수, 파쇄 유체, 조류가 포함된 물의 전처리와 폐수 및 과잉 슬러지의 최종 분리를 처리할 수 있다. 본원의 일 실시예에 따른 DOF(35)는 IOT 제어부에서 수신된 제어 신호에 따라 용존 오존 부양법을 수행할 수 있다.The DOF 35 according to an embodiment of the present application may remove contaminants through dissolved ozone flotation. The DOF 35 is capable of pre-treatment of industrial wastewater, fracturing fluids, water containing algae and final separation of wastewater and excess sludge by performing dissolved air flotation and replacement of feed gas by air versus ozone for disinfection and water treatment. can The DOF 35 according to an embodiment of the present application may perform the dissolved ozone flotation method according to the control signal received from the IOT control unit.
이하에서는 상기에 자세히 설명된 내용을 기반으로, 본원의 동작 흐름을 간단히 살펴보기로 한다.Hereinafter, based on the details described above, the operation flow of the present application will be briefly reviewed.
도 4는 본원의 일 실시예에 따른 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 방법에 대한 동작 흐름도이다. 도 4에 도시된 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 방법은 앞서 설명된 컴퓨팅 장치(100)에 의하여 수행될 수 있다. 따라서, 이하 생략된 내용이라고 하더라도 컴퓨팅 장치(100)에 대하여 설명된 내용은 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 방법에 대한 설명에도 동일하게 적용될 수 있다.4 is an operation flowchart of an AI group control method of a mobile DOF robot for water purification according to an embodiment of the present invention. The AI group control method of the mobile DOF robot for water purification shown in FIG. 4 may be performed by the computing device 100 described above. Therefore, even if omitted below, the description of the computing device 100 can be equally applied to the description of the AI group control method of the mobile DOF robot for water purification.
상술한 설명에서, 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 방법은 본원의 구현예에 따라서, 추가적인 단계들로 더 분할되거나, 더 적은 단계들로 조합될 수 있다. 또한, 일부 단계는 필요에 따라 생략될 수도 있고, 단계 간의 순서가 변경될 수도 있다.In the above description, the AI crowd control method of the mobile DOF robot for water purification may be further divided into additional steps or combined into fewer steps according to an embodiment of the present invention. Also, some steps may be omitted if necessary, and the order of steps may be changed.
본원의 일 실시예에 따른 수질 정화용 이동형 DOF 로봇을 인공지능 기반으로 군집 제어하는 방법은, 드론으로부터 수집된 이미지 수질 정보를 획득하는 단계, 사전 학습된 신경망 모델을 활용하여 상기 획득된 이미지 수질 정보를 분석하는 단계 및 분석 결과를 기반으로 DOF 로봇을 제어하기 위한 제어 신호를 생성하는 단계를 포함할 수 있다.A method for cluster control of mobile DOF robots for water quality purification based on artificial intelligence according to an embodiment of the present application includes the steps of acquiring image water quality information collected from a drone, and using a pre-learned neural network model to obtain the obtained image water quality information. The step of analyzing and generating a control signal for controlling the DOF robot based on the analysis result may be included.
또한, 분석하는 단계는, 외부 서버로 수집된 수질 측정 정보를 사전 학습된 신경망 모델에 입력하는 단계를 더 포함하고, 제어 신호를 생성하는 단계는, 사전 학습된 신경망 모델을 활용하여, 이미지 수질 정보 및 수질 측정 정보에 대응하는 제어 신호를 생성하는 단계를 포함할 수 있다.In addition, the analyzing step further includes inputting water quality measurement information collected by an external server into a pre-learned neural network model, and generating a control signal includes image water quality information using the pre-learned neural network model. and generating a control signal corresponding to the water quality measurement information.
또한, 분석하는 단계에서, 이미지 수질 정보 및 수질 측정 정보를 사전 학습된 신경망 모델에 적용하여 수질의 온도, 산화환원전위(ORP), 탁도 및 용해 오존 농도 중 적어도 하나의 상태 정보를 분석할 수 있다.In addition, in the analysis step, at least one state information of water quality temperature, oxidation-reduction potential (ORP), turbidity, and dissolved ozone concentration may be analyzed by applying the image water quality information and water quality measurement information to a pretrained neural network model. .
또한, 수질 상태를 모니터링하기 위한 모니터링 단계를 더 포함하되, 제어 신호를 생성하는 단계는, 분석 결과 복수의 수질 상태 정보 중 제 1 수질 상태 정보가 미리 설정된 조건을 만족하지 못하는 분석 결과에 대응하여 제 1 제어 신호를 생성하고, 모니터링 단계는, 제 1 제어 신호에 의해 DOF 로봇이 구동된 소정의 시간 이후 수집된 이미지 수질 정보 및 수질 측정 정보를 기반으로 모니터링을 수행할 수 있다.In addition, a monitoring step for monitoring the water quality state may be further included, and the step of generating the control signal may include generating the control signal in response to an analysis result in which the first water quality state information among the plurality of water quality state information does not satisfy a preset condition as a result of the analysis. In the step of generating 1 control signal and monitoring, monitoring may be performed based on image water quality information and water quality measurement information collected after a predetermined time when the DOF robot is driven by the first control signal.
상술한 설명에서, 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 방법은 본원의 구현예에 따라서, 추가적인 단계들로 더 분할되거나, 더 적은 단계들로 조합될 수 있다. 또한, 일부 단계는 필요에 따라 생략될 수도 있고, 단계 간의 순서가 변경될 수도 있다.In the above description, the AI crowd control method of the mobile DOF robot for water purification may be further divided into additional steps or combined into fewer steps according to an embodiment of the present invention. Also, some steps may be omitted if necessary, and the order of steps may be changed.
본원의 일 실시 예에 따른 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.The AI group control method of the mobile DOF robot for water purification according to an embodiment of the present application may be implemented in the form of program commands that can be executed through various computer means and recorded on a computer readable medium. The computer readable medium may include program instructions, data files, data structures, etc. alone or in combination. Program instructions recorded on the medium may be those specially designed and configured for the present invention or those known and usable to those skilled in computer software. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floptical disks. - includes hardware devices specially configured to store and execute program instructions, such as magneto-optical media, and ROM, RAM, flash memory, and the like. Examples of program instructions include high-level language codes that can be executed by a computer using an interpreter, as well as machine language codes such as those produced by a compiler. The hardware devices described above may be configured to act as one or more software modules to perform the operations of the present invention, and vice versa.
또한, 전술한 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 방법은 기록 매체에 저장되는 컴퓨터에 의해 실행되는 컴퓨터 프로그램 또는 애플리케이션의 형태로도 구현될 수 있다.In addition, the above-described AI group control method of the mobile DOF robot for water purification may be implemented in the form of a computer program or application stored in a recording medium and executed by a computer.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present application is for illustrative purposes, and those skilled in the art will understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present application. Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the detailed description above, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts thereof should be construed as being included in the scope of the present application.

Claims (5)

  1. 수질 정화용 이동형 DOF 로봇을 인공지능 기반으로 군집 제어하는 방법에 있어서,A method for group control of a mobile DOF robot for water purification based on artificial intelligence,
    드론으로부터 수집된 이미지 수질 정보를 획득하는 단계; Acquiring image water quality information collected from a drone;
    사전 학습된 신경망 모델을 활용하여 상기 획득된 이미지 수질 정보를 분석하는 단계; 및 analyzing the acquired image quality information using a pretrained neural network model; and
    분석 결과를 기반으로 DOF 로봇을 제어하기 위한 제어 신호를 생성하는 단계;를 포함하는 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 방법.An AI group control method of a mobile DOF robot for water purification, comprising: generating a control signal for controlling the DOF robot based on the analysis result.
  2. 제 1 항에 있어서,According to claim 1,
    상기 분석하는 단계는, 외부 서버로 수집된 수질 측정 정보를 사전 학습된 신경망 모델에 입력하는 단계를 더 포함하고, The analyzing step further includes inputting water quality measurement information collected by an external server to a pre-learned neural network model,
    상기 제어 신호를 생성하는 단계는, 상기 사전 학습된 신경망 모델을 활용하여, 상기 이미지 수질 정보 및 상기 수질 측정 정보에 대응하는 제어 신호를 생성하는 단계를 포함하고,The generating of the control signal includes generating a control signal corresponding to the image water quality information and the water quality measurement information by utilizing the pretrained neural network model,
    상기 분석하는 단계는, The analysis step is
    상기 이미지 수질 정보 및 수질 측정 정보를 사전 학습된 신경망 모델에 적용하여 물의 온도, 산화환원전위(ORP), 탁도 및 용해 오존 농도 중 적어도 하나의 상태 정보를 분석하는 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 방법.AI group control of a mobile DOF robot for water purification that analyzes at least one state information among water temperature, oxidation-reduction potential (ORP), turbidity, and dissolved ozone concentration by applying the image water quality information and water quality measurement information to a pre-learned neural network model method.
  3. 제 2 항에 있어서,According to claim 2,
    수질 상태를 모니터링하기 위한 모니터링 단계를 더 포함하되,Further comprising a monitoring step for monitoring the water quality condition,
    상기 제어 신호를 생성하는 단계는,Generating the control signal,
    상기 분석 결과 복수의 수질 상태 정보 중 제 1 수질 상태 정보가 미리 설정된 조건을 만족하지 못하는 분석 결과에 대응하여 제 1 제어 신호를 생성하고,As a result of the analysis, a first control signal is generated in response to an analysis result in which first water quality state information among a plurality of water quality state information does not satisfy a preset condition;
    상기 모니터링 단계는, The monitoring step is
    상기 제 1 제어 신호에 의해 DOF 로봇이 구동된 소정의 시간 이후 수집된 상기 이미지 수질 정보 및 수질 측정 정보를 기반으로 모니터링을 수행하는 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 방법.AI cluster control method of a mobile DOF robot for water quality purification that performs monitoring based on the image water quality information and water quality measurement information collected after a predetermined time when the DOF robot is driven by the first control signal.
  4. 제 1 항에 있어서,According to claim 1,
    상기 DOF 로봇은, The DOF robot,
    DOF 로봇이 위치한 수질의 상태를 측정하기 위한 수질 센서;A water quality sensor for measuring the state of water quality where the DOF robot is located;
    상기 생성된 제어 신호에 의해 DOF 로봇의 구동을 제어하는 제어부; 및a control unit controlling driving of the DOF robot by the generated control signal; and
    마이크로 패턴을 이용하여 전자기장을 집중시켜 상압에서 마이크로 방전을 유도하고 플라즈마를 글로우 방전으로 발생시키는 마이크로 플라즈마 발생기를 포함하는 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 방법.An AI group control method of a mobile DOF robot for water purification including a micro plasma generator that induces micro discharge at normal pressure by concentrating an electromagnetic field using a micro pattern and generates a glow discharge plasma.
  5. 수질 정화용 이동형 DOF 로봇을 인공지능 기반으로 군집 제어하는 장치에 있어서,A device for group control of a mobile DOF robot for water purification based on artificial intelligence,
    드론으로부터 수집된 이미지 수질 정보를 획득하는 획득부; an acquisition unit that acquires image quality information collected from the drone;
    사전 학습된 신경망 모델을 활용하여 상기 획득된 이미지 수질 정보를 분석하는 분석부; 및 an analysis unit that analyzes the obtained image quality information by using a pretrained neural network model; and
    분석 결과를 기반으로 DOF 로봇을 제어하기 위한 제어 신호를 생성하는 제어부;를 포함하는 수질 정화용 이동형 DOF 로봇의 AI 군집 제어 장치.An AI group control device for a mobile DOF robot for water purification, including a control unit that generates a control signal for controlling the DOF robot based on the analysis result.
PCT/KR2022/007752 2021-10-01 2022-05-31 Method and device for ai cluster-controlling mobile dof robot for water purification WO2023054834A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210131219 2021-10-01
KR10-2021-0131219 2021-10-01
KR1020220066206A KR20230047883A (en) 2021-10-01 2022-05-30 AI group control method and device of mobile DOF robot for water purification
KR10-2022-0066206 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023054834A1 true WO2023054834A1 (en) 2023-04-06

Family

ID=85783021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007752 WO2023054834A1 (en) 2021-10-01 2022-05-31 Method and device for ai cluster-controlling mobile dof robot for water purification

Country Status (1)

Country Link
WO (1) WO2023054834A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160272291A1 (en) * 2015-03-16 2016-09-22 Saudi Arabian Oil Company Water environment mobile robots
KR20190006247A (en) * 2017-07-10 2019-01-18 장동의 Water purifying system
KR20200078182A (en) * 2018-12-21 2020-07-01 서울여자대학교 산학협력단 Water quality measuring system by using drone
KR20200082102A (en) * 2018-12-28 2020-07-08 에코피스주식회사 Removing system of green tide using drone
KR20210001399A (en) * 2019-06-28 2021-01-06 윤재웅 Underwater Drone Control System Using Airborne Drone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160272291A1 (en) * 2015-03-16 2016-09-22 Saudi Arabian Oil Company Water environment mobile robots
KR20190006247A (en) * 2017-07-10 2019-01-18 장동의 Water purifying system
KR20200078182A (en) * 2018-12-21 2020-07-01 서울여자대학교 산학협력단 Water quality measuring system by using drone
KR20200082102A (en) * 2018-12-28 2020-07-08 에코피스주식회사 Removing system of green tide using drone
KR20210001399A (en) * 2019-06-28 2021-01-06 윤재웅 Underwater Drone Control System Using Airborne Drone

Similar Documents

Publication Publication Date Title
Gallagher et al. Rapid inactivation of airborne bacteria using atmospheric pressure dielectric barrier grating discharge
Jing et al. Modeling of UV-induced photodegradation of naphthalene in marine oily wastewater by artificial neural networks
US20080293042A1 (en) Detection of Contamination of Municipal Water Distribution Systems
Altowayti et al. The role of conventional methods and artificial intelligence in the wastewater treatment: a comprehensive review
WO2023054834A1 (en) Method and device for ai cluster-controlling mobile dof robot for water purification
US20100147174A1 (en) Device for making damping solution by reducing surface tension of water used for offset printing method, which is lithographic printing method
Jo et al. A study on the removal of sulfate and nitrate from the wet scrubber wastewater using electrocoagulation
Cecconet et al. Bioelectrochemical greywater treatment for non-potable reuse and energy recovery
Song et al. Degradation of antibiotics via UV-activated peroxodisulfate or peroxymonosulfate: A review
Mohammed et al. Optimization of solar photocatalytic biodegradability of seawater using statistical modelling
WO2015016556A1 (en) High-voltage discharge system for removing scum
Uwamungu et al. Future of water/wastewater treatment and management by industry 4.0 integrated nanocomposite manufacturing
KR20230047883A (en) AI group control method and device of mobile DOF robot for water purification
US10308530B2 (en) Apparatus and method for the microbiological control of fluids using electric and magnetic fields generated from alternate electrical current of low voltage and low frequency
Talukder et al. Phycoremediation of textile industry effluent by cyanobacteria (Nostoc muscorum and Anabaena variabilis)
CN107445256A (en) A kind of continuous stream filtering type electrolysis ozone sterilizing method
Liu et al. Optimized hybridized mathematical model for wastewater treatment and energy generation using microbial fuel cells
CN103754981B (en) Remove method and the electron beam irradiation water treatment facilities of estrogen bio-toxicity in water body
CN106693633A (en) Integrated equipment for treatment of malodorous gas
KR20030014054A (en) Enhancement of Soil Bioremediation Using Electrokinetic
Ahmadmoazzam et al. Assessment of the Water Quality of Karun River Catchment Using Artificial Neural Networks-self-Organizing Maps and K-Means Algorithm
KR102166957B1 (en) System and method for treating sewage
Nasr Modeling applications in bioremediation of hydrocarbon pollutants
CN207483557U (en) A kind of application system of pollution administration water quality
KR20210050077A (en) The water treatment system including an apparatus for generating microbubble and an apparatus for real-time monitoring using artificial intelligence technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876609

Country of ref document: EP

Kind code of ref document: A1