WO2023054830A1 - Method for producing terephthalic acid by using high degree of polymerization of polyethylene terephthalate having intrinsic viscosity of 0.75 dl/g or more - Google Patents

Method for producing terephthalic acid by using high degree of polymerization of polyethylene terephthalate having intrinsic viscosity of 0.75 dl/g or more Download PDF

Info

Publication number
WO2023054830A1
WO2023054830A1 PCT/KR2022/006376 KR2022006376W WO2023054830A1 WO 2023054830 A1 WO2023054830 A1 WO 2023054830A1 KR 2022006376 W KR2022006376 W KR 2022006376W WO 2023054830 A1 WO2023054830 A1 WO 2023054830A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene terephthalate
alkali metal
reaction
terephthalate
pet
Prior art date
Application number
PCT/KR2022/006376
Other languages
French (fr)
Korean (ko)
Inventor
김영범
Original Assignee
김영범
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영범 filed Critical 김영범
Priority to JP2023501625A priority Critical patent/JP7484010B2/en
Publication of WO2023054830A1 publication Critical patent/WO2023054830A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/02Preparation of carboxylic acids or their salts, halides or anhydrides from salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing terephthalic acid using polyethylene terephthalate having a high polymerization degree having an intrinsic viscosity of 0.75 dl/g or more, and more specifically, producing polyethylene terephthalate having an intrinsic viscosity of 0.75 dl/g or more without using an organic solvent. It relates to a method for producing terephthalic acid in high yield and good process stability by hydrolysis.
  • PET polyethylene terephthalate
  • EG ethylene glycol
  • a molecular chain decomposition process such as hydrolysis in a solvent is required.
  • DMSO dimethyl sulfoxide
  • dichloromethane A certain amount of organic solvent such as dichloromethane is mixed to promote the swelling of PET, so that the reaction can be performed under weaker conditions.
  • the third method is the method of (c) of [Scheme 1], which uses EG as a solvent to glycolyze PET at high temperature and high pressure to decompose into bis(2-hydroxyethyl) terephthalate (BHET) and oligomers.
  • This is the most widely used method for recycling PET (PET waste) from a long time ago by PET manufacturers.
  • PET waste PET waste
  • These reaction products can be mixed into the polymerization process and used for PET polymerization. In this case, it is mainly used as a reuse method of waste PET with less contamination generated during PET production.
  • PET polymerization only high-purity raw materials are used because the degree of polymerization does not increase unless the high purity of the raw materials is maintained. because it is difficult to do
  • the solid content of the mixed pulverized PET bottle (mixed pulverized water bottle, juice bottle, etc.) is about 30% by weight and subjected to alkaline hydrolysis in a high-pressure reaction tube under an alcohol solvent, the reaction pressure of 3 to 5 bar At the boiling temperature of alcohol and reflux, vigorously agitated and hydrolyzed for one week, more than 20% of non-hydrolyzed PET remains.
  • heat-resistant PET bottles for juice beverages they are produced through a two-stage blowing process that includes a heat-setting process that is much stronger than that of ordinary mineral water bottles, compared to general water bottles produced through a one-stage blowing process. It has a high molecular weight and a much higher crystallinity, and the molecular chain packing is also ultra-dense, so alkaline hydrolysis is much more difficult than general bottled water PET bottles. They do not dissolve easily in strong solvents such as hexafluoroisopropanol (HFIP) (1)-trifluoroacetic acid [(1)-Trifluoroacetic acid: TEA], which is a solvent used in PET IV measurement, and leave a significant amount of undissolved matter.
  • HFIP hexafluoroisopropanol
  • PET with an IV of about 0.55 dl/g and a medium or low degree of polymerization is completely decomposed into monomers within 1 hour when heated under reflux by acid or alkali in a polar organic solvent.
  • a toxic and explosive organic solvent must be used as a reaction solvent, and a large amount of strong acid or alkali must be used.
  • the way to minimize this phenomenon is to grind the sample PET as finely as possible, but PET is highly amorphous, so it is not easy to physically grind it at room temperature.
  • PET bottles it is difficult to grind them into a powder state, so they are used by tearing them into pieces as small as possible.
  • plastics are pulverized using a liquid nitrogen cryogenic mill (Liquid N2 freezer ball mill) or a ball-mill. Crystalline polymers or polymers with high hardness are pulverized relatively well, but PET is difficult to pulverize because of its amorphous nature. It doesn't work out.
  • PET having an intrinsic viscosity of 0.75 dl/g or more, it is much more difficult, and in terms of economic efficiency, such a grinding method is completely meaningless.
  • PET bottles with a high degree of polymerization have hardly been economically chemically recycled, and are mainly made into low-grade fibers such as cotton for filling or staple fibers through simple melt spinning after washing and drying. Recycling is mainly done.
  • terephthalic acid in high yield and good process stability by hydrolyzing polyethylene terephthalate having a high polymerization degree having an intrinsic viscosity of 0.75 dl/g or more without using an organic solvent.
  • the object of the present invention is to solve the problems related to the safety and low reactivity to organic solvents as described above in the economical hydrolysis reaction of PET, and in particular, a high polymerization degree having an intrinsic viscosity of 0.75 dl/g or more, such as a PET bottle, which is difficult to react. It is intended to solve problems such as the low reactivity of PET at the same time.
  • Neat reaction of terephthalate and the mixed slurry to prepare alkali metal terephthalate, (iii) dissolving the prepared alkali metal terephthalate in water, removing foreign substances through filtration and centrifugation, and dissolving in water Terephthalic acid is produced by reacting alkali metal terephthalate with acid.
  • an extruder-type continuous reactor is used to melt without a separate reaction solvent.
  • the PET itself is a reactant and also acts as a solvent, and it undergoes a continuous decomposition reaction with a neat reaction.
  • the reaction temperature and pressure are adjusted to melt PET, and a mixture of catalyst-level ethylene glycol (EG), an alkali metal-based alkali, and a weak acid salt of the alkali metal is added thereto.
  • EG catalyst-level ethylene glycol
  • Na 2 CO 3 which is a salt of NaOH and a weak acid H 2 CO 3 , is added.
  • the EG generated at the beginning serves as a solvent and at the same time acts as an accelerating catalyst, so that the hydrolysis reaction proceeds more rapidly.
  • TPA-Na 2 salt (Salt) produced at this time is a solid powder, and another product, ethylene glycol (EG), is a liquid.
  • TPA-Na 2 is The boiling temperature is 392.4 ° C. at 1 atm, so it is very stable in temperature, but ethylene glycol (EG) has a boiling temperature of 197 ° C. This is because EG generated during the hydrolysis reaction must be kept in a liquid state without vaporization so that it is uniformly mixed with the molten PET to act as a solvent and partially become Na-OC 2 H 4 O-Na to further promote the hydrolysis reaction. am.
  • FIG. 20 is a graph showing the correlation between the temperature and vapor pressure of EG.
  • a pressure higher than the corresponding vapor pressure must be applied.
  • the boiling temperature of EG at 1 atm is 197°C
  • the vapor pressure is 760 mmHg.
  • 260° C. which is the melting temperature of PET, it has a vapor pressure of about 4000 mmHg (about 5.3 atm).
  • a mixed slurry of an alkali containing an alkali metal, a weak salt of the alkali metal, and ethylene glycol is mixed in a reaction zone 2, which is a mixing zone of a continuous reactor having a much lower reaction temperature, in a sufficient amount for the reaction Even if the input amount is large, the viscosity of PET is lowered due to the primary hydrolysis, making mixing much easier.
  • an extruder is used as the most common reactor because it is possible to combine the screws used in the extruder with other spiral types.
  • the characteristics of the device such as temperature and pressure, which are different for each reaction zone, and because it is continuous, high yield can be obtained even with a small device.
  • a high-efficiency twin screw extruder it is possible to react much faster and with higher yield than when using a single screw extruder due to higher mixing efficiency.
  • terephthalic acid can be produced in high yield and good process safety from polyethylene terephthalate having a high degree of polymerization having an intrinsic viscosity of 0.75 dl/g or more, which is difficult to hydrolyze even with an organic solvent due to a high degree of polymerization, without using an organic solvent.
  • the present invention can rapidly hydrolyze high polymerization degree PET having an intrinsic viscosity of 0.75 dl/g or more, which has been difficult to hydrolyze in the past, through a Neat reaction without using a toxic organic solvent.
  • the reaction temperature is lower than the melting temperature of PET in a short time, it is possible to obtain only pure hydrolyzates with almost no side reactants due to thermal decomposition.
  • the fact that low boiling point organic solvents, which are toxic and have a high fire risk, are not used significantly improves the safety of the process.
  • FIG. 1 is a schematic diagram of a process for preparing an alkali metal terephthalate by adding high polymerization degree PET having an intrinsic viscosity of 0.75 dl/g or more and NaOH, EG, and Na 2 CO 3 to an extruder to perform a neat reaction.
  • Figure 2 is a cross-sectional view showing the form of a screw (Screw) constituting the extruder of Figure 1 by way of example.
  • Figure 4 is a Raman spectroscopy spectrum of sodium terephthalate as a standard.
  • Example 6 is a Raman spectroscopy spectrum of sodium terephthalate prepared in Example 1;
  • Example 7 is a Raman spectroscopy spectrum of terephthalic acid prepared in Example 2.
  • Example 19 is a SEM-EDS distribution photograph of Na at a magnification of 500 times obtained in Example 5.
  • 20 is a graph showing the correlation between temperature and vapor pressure of EG.
  • the present invention (i) polyethylene terephthalate (PET) having a degree of polymerization of 0.75 dl / g or more is put into a continuous reactor in the form of an extruder and then heated and pressurized to produce fluid polyethylene terephthalate.
  • PET polyethylene terephthalate
  • a mixed slurry prepared by mixing an alkali containing an alkali metal, a weak acid salt of the alkali metal, and ethylene glycol is introduced into the interior of the continuous reactor through which the fluid polyethylene terephthalate passes, and in the continuous reactor A step of preparing alkali metal terephthalate by neat (Neat) reaction of fluid polyethylene terephthalate and the mixed slurry; and (iii) dissolving the alkali metal terephthalate in water, removing foreign matter through filtration and centrifugation, and reacting the alkali metal terephthalate dissolved in water with acid to produce terephthalic acid.
  • PET polyethylene terephthalate
  • Polyethylene terephthalate having a degree of polymerization of 0.75 dl/g or more may be a homopolymer or a copolymer.
  • polyethylene terephthalate having a degree of polymerization of 0.75 dl/g or more when polyethylene terephthalate having a degree of polymerization of 0.75 dl/g or more is introduced into an extruder-type continuous reactor, it is more preferable to add an alkali containing an alkali metal together.
  • the alkali content including the alkali metal introduced into the continuous reactor together with polyethylene terephthalate having a polymerization degree of 0.75 dl/g or more is adjusted to be 5 to 10% in weight ratio with the polyethylene terephthalate.
  • a mixed slurry prepared by mixing an alkali containing an alkali metal, a weak acid salt of the alkali metal, and ethylene glycol is introduced into the interior of the continuous reactor through which the fluid polyethylene terephthalate passes, and the inside of the continuous reactor Alkali metal terephthalate is prepared by neat reaction of fluid polyethylene terephthalate and the mixed slurry.
  • the mixed slurry it is preferable to divide the mixed slurry into 1 to 5 steps and introduce them at different positions of the continuous reactor through which the fluid polyethylene terephthalate passes.
  • the alkali metal containing the alkali metal and the alkali metal forming the weak acid salt of the alkali metal is lithium (Li), sodium (Na) or potassium (K).
  • the weak acid salt of the alkali metal is a salt produced by the reaction of an alkali metal and carbonic acid (H 2 CO 3 ), a salt produced by a reaction of an alkali metal and phosphoric acid (H 3 PO 4 ), a salt produced by a reaction of an alkali metal and acetic acid Salt or alkali metal and formic acid reaction, such as fish salt.
  • the biggest feature of the present invention is that an organic solvent that is highly flammable and harmful to the human body is not used as a reaction solvent in the decomposition reaction, and alkali with alkali metals such as molten PET and KOH and NaOH is catalytically neutral in the presence of corresponding alkali metal salts. (Neat) is that it reacts.
  • the advantage of the neat reaction is that there are no harmful compounds that act only as solvents regardless of the reaction, so it is very good in terms of safety, reaction efficiency, and speed.
  • a very useful way to solve this problem is to use a mixing device such as an extruder as a reactor.
  • a mixing device such as an extruder
  • PET is pushed and fluidized into an extruder having several reaction zones.
  • the entire screw of the extruder is not of the same screw structure, but has a shape suitable for characteristics required for each reaction zone, as shown in FIG. 2.
  • the biggest consideration in setting the temperature of each reaction zone is the thermal characteristics of PET, such as the glass transition point (Tg: around 70°C), melting point (Tm: usually around 250 ⁇ 260°C), and boiling point of EG (b.p.: 197 °C 1 atm), etc., but when pressure is applied, these temperatures are naturally different from normal pressure.
  • Tg glass transition point
  • Tm melting point
  • Tm boiling point of EG
  • the first reaction zone 1 is a zone for PET supply and fluidization, and the PET solid pieces injected are pushed forward as they become fluid objects by the heat and pressure of the screw and block. At this time, when only PET is added, the melting temperature must be raised to fluidize the PET, but in this case, the melt viscosity is too high. For smooth supply and fluidization, when PET is mixed with 5 to 10% alkali by weight and the first hydrolysis reaction is performed simultaneously with PET supply, the melting point and viscosity are lowered, making it easier to supply.
  • the shape of the extruder screw is also important. In general, a screw with a larger pitch is used as the particle diameter of the input raw material is larger. .
  • the starting temperature of the reaction zone 1, which is the PET supply zone is maintained between the glass transition point (Tg) and the melting point (Tm) of PET, and is usually about 100 to 180 ° C so that the PET is first decomposed and melted. This is because it is well mixed with the secondary input alkali in the reaction zone 2, which is the second mixing zone.
  • the second reaction zone 2 is a mixing zone.
  • the screw is designed to mix the fluidized PET pushed from the reaction zone 1 with the alkali and increase the mixing efficiency.
  • a mixing slurry prepared by mixing a small amount of EG with a slightly excess alkali (eg, NaOH, KOH) and a weak acid salt of an alkali metal (eg, Na 2 CO 3 , K 2 CO 3 ) is prepared.
  • EG and alkali MOH M: alkali metal
  • a part of M 2 CO 3 which is a metal salt, is dissociated to form M + and CO 3 -2 ions, which are all mixed.
  • the amount of M + ions should be 10 to 20% more than the equivalent ratio.
  • reaction zone 2 Quantitatively push the mixing slurry into the mixing zone of the main extruder using a gear pump or a second feeding extruder and mix it well with fluid PET .
  • the temperature is started lower than the PET Tm and gradually lowered to about 200 ° C near the end of the reaction zone 2.
  • the Tm of PET is lowered by primary decomposition. Due to the decrease in molecular weight due to this temperature factor and primary hydrolysis, the viscosity is lowered, so that the temperature of reaction zone 2 is properly adjusted to maintain the shear for mixing so that PET and the mixing slurry are well mixed. do.
  • reaction zone 2 some reactions proceed further as the two reactants are mixed, but the reaction is completed in the third reaction zone 3 and the fourth reaction zone 4, and a screw structure is adopted to improve mixing efficiency.
  • the temperature of the reactants is about 150 to 200 ° C, and the temperature is adjusted so that it can pass to the next reaction zone 3.
  • Reaction zone 3 is the zone where the first reaction proceeds, and PET and metal glycolate react as shown in [Scheme 4], and most of the alkaline hydrolysis reaction of PET proceeds.
  • the pitch interval is narrower than the screw pitch interval of the reaction zone 1.
  • Such a decomposition reaction of PET is not disturbed even when other types of plastics such as polypropylene or polyethylene are mixed, and heterogeneous plastic mixtures remain unreacted and can be physically removed.
  • the product is sodium terephthalate (Disodium terephthalate) and EG, but it is not completely hydrolyzed and becomes a mixture of oligomeric PET.
  • reaction starting temperature of reaction zone 3 starts at about 150 ⁇ 200 °C from reaction zone 2, and the temperature is raised by about 20 ⁇ 30 °C to maximize the hydrolysis reaction rate.
  • the temperature is maintained at 180 ⁇ 230 °C to maintain the melt viscosity that has fallen due to the decrease in molecular weight of PET according to the reaction, and the vapor pressure of the produced EG is kept as low as possible.
  • Reaction zone 4 is a zone where the secondary reaction proceeds, and the temperature starts at 180 ⁇ 230 °C and lowers the temperature to 180 ⁇ 200 °C while increasing the reaction rate to the maximum with a long residence time.
  • the temperature is controlled so that the viscosity and pressure are maintained.
  • the fifth reaction zone 5 is a zone where discharge proceeds and lowers the temperature to about 150 to 180 ° C.
  • Solid products include alkali metal salts of the main component, terephthalic acid (hereinafter referred to as "TPA"), PET and oligomers that are not completely decomposed, and liquid products include EG and alkali metal glycolates. These products are discharged in a mixed slurry state. At this time, by appropriately adjusting the discharge temperature, the vapor pressure of EG, which is a liquid generating material, is lowered so that bumping due to the EG vapor pressure does not occur and the discharge is stably performed. The expelled material is cooled, solidified, and then pulverized into powder.
  • Raman spectroscopy can measure the molecular structure of a solid-state sample as it is without pretreatment, so that the degree of reaction of each product of the present invention can be directly confirmed.
  • the molecular weight change of PET was measured by IV, and the degree of Na distribution was confirmed using SEM-EDX to confirm the mixing performance of the extruder.
  • the reaction process goes through the process of PET ⁇ TPA-Na ⁇ TPA, and the characteristics of the largest molecular structural change are as follows.
  • Sodium terephthalate (TPA-Na) is converted into sodium carboxylate CO-Na by decomposition of the ester structure. As shown in FIG. 4, the benzene ring peak is at the same position, but the ester peak at 1714 cm -1 gradually disappears and the peak of sodium carboxylate at the position of 1123 cm -1 gradually increases.
  • TPA is obtained by adding acid to sodium terephthalate (TPA-Na), Na is dropped and H is attached, and the terminal group is carboxylic acid -COOH.
  • TPA-Na sodium terephthalate
  • Na is dropped and H is attached
  • the terminal group is carboxylic acid -COOH.
  • the peak of sodium carboxylate at 1123 cm -1 disappears as shown in FIG.
  • a new carboxylic acid peak is generated at 823 cm -1 , and the benzene ring peak is also slightly shifted to emerge from the 1617 cm -1 position.
  • the twin extruder can control the temperature with an electric heater and water cooling, and it is also possible to remove the gas generated by vacuum.
  • the length:diameter ratio of the screw is 40:1.
  • reaction zone 1, reaction zone 2, reaction zone 3, reaction zone 4 and reaction zone 5 temperatures were set to 160 ° C, 180 ° C, 220 ° C, 200 ° C and 170 ° C, respectively.
  • the screw rotation speed is adjusted so that the residence time of PET in the extruder is about 10 minutes.
  • Figure 6 is a Raman spectroscopy spectrum taken of sodium terephthalate after the reaction. A very large peak comes out at the 1123 cm -1 position and the PET ester peak at the 1714 cm -1 position is greatly reduced to a level that is seen as a trace.
  • Potassium terephthalate salt was prepared under the same conditions as in Example 1, except that a mixed slurry in which K 2 CO 3 was mixed with 15% EG was secondarily added.
  • the Raman spectroscopy spectrum of the prepared potassium terephthalate salt was the same as in FIG. 16, and FIG. 16 was almost similar to the Raman spectroscopy spectrum of the sodium terephthalate salt, but it could be seen that there were some differences in the peak intensity ratio.
  • TPA-Na 2 sodium terephthalate
  • the twin extruder can control the temperature with an electric heater and water cooling, and it is also possible to remove the gas generated by vacuum.
  • the length:diameter ratio of the screw is 40:1.
  • reaction zone 1 reaction zone 2
  • reaction zone 3 reaction zone 4 and reaction zone 5 temperatures were set to 160 ° C, 180 ° C, 220 ° C, 200 ° C and 170 ° C, respectively.
  • the screw rotation speed is adjusted so that the residence time of PET in the extruder is about 10 minutes.
  • IV of the prepared sodium terephthalate was measured to be 0.51 dl/g, and the Raman spectrometer spectrum was as shown in FIG. 8 .
  • the drop in IV from 0.83 to 0.51 dl/g means that there was a certain level of decomposition reaction.
  • the Raman spectroscopy spectrum of the reacted sodium terephthalate was shown in FIG. 9, and in FIG. 9, a very large peak appeared at the 1123 cm -1 position and the PET ester peak at the 1714 cm -1 position was reduced by almost half, smaller than 1123 cm -1
  • the intensities of the two peaks it can be seen that the 1123 cm -1 peak, which indicates the amount of sodium terephthalate (TPA-Na 2 ), is about 1.2 times larger.
  • the Raman spectroscopy spectrum of the reacted sodium terephthalate is shown in FIG. 10, and in FIG. 10, a very large peak comes out at the 1123 cm -1 position and the PET ester peak at the 1714 cm -1 position is greatly reduced so that the intensity is 1123 cm - It can be seen that it is reduced to about 1/16 level compared to the 1 peak.
  • the emulsion reaction solution having a white precipitate from which unreacted PET pieces are removed is filtered using a paper filter to obtain a white precipitate.
  • the obtained white precipitate was washed with methanol three times and dried to prepare sodium terephthalate.
  • the obtained sodium terephthalate was well soluble in water, and the spectrum was measured with a Raman spectrometer as shown in FIG. 13. As a result of comparing this with the Raman spectrometer spectrum of sodium terephthalate, which is the standard of FIG. 4, it was confirmed that the component was sodium terephthalate.
  • the emulsion filtrate having a white precipitate from which unreacted substances have been removed is filtered using a paper filter to obtain a white precipitate.
  • the obtained white precipitate was washed with methanol three times and dried to prepare sodium terephthalate.
  • the obtained sodium terephthalate was well soluble in water, and the result of measuring the spectrum with a Raman spectrometer was as shown in FIG.
  • the Raman spectrometer spectrum of the prepared terephthalic acid was as shown in FIG. 15, and as a result of comparison with the standard Raman spectrometer spectrum of FIG. 5, it could be confirmed that the terephthalic acid was terephthalic acid.
  • terephthalic acid can be produced in high yield and good process safety from polyethylene terephthalate having a high degree of polymerization having an intrinsic viscosity of 0.75 dl/g or more, which is difficult to hydrolyze even with an organic solvent due to a high degree of polymerization, without using an organic solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a method for producing terephthalic acid from a high degree of polymerization of polyethylene terephthalate having an intrinsic viscosity of 0.75 dl/g or more, wherein (i) the high degree of polymerization of polyethylene terephthalate having an intrinsic viscosity of 0.75 dl/g or more is introduced into a continuous reactor, and then heated and pressurized to prepare a flowable polyethylene terephthalate, (ii) a mixed slurry prepared by mixing an alkali containing an alkali metal, a weak acid salt of the alkali metal, and ethylene glycol is introduced into the continuous reactor through which the flowable polyethylene terephthalate passes, to thereby prepare an alkali metal terephthalate by a neat reaction of the flowable polyethylene terephthalate and the mixed slurry in the continuous reactor, and (iii) the prepared alkali metal terephthalate is dissolved in water, and then foreign materials are removed by filtration and centrifugation, and an acid is added to the alkali metal terephthalate dissolved in water, followed by reaction, thereby producing terephthalic acid. In the present invention, terephthalic acid can be produced from a high degree of polymerization of polyethylene terephthalate having an intrinsic viscosity of 0.75㎗/g or more, which has been difficult to hydrolyze with even an organic solvent due to a high degree of polymerization, with a high yield and favorable process safety, even without the use of an organic solvent.

Description

고유점도가 0.75㎗/g 이상인 고중합도의 폴리에틸렌테레프탈레이트를 이용한 테레프탈산의 제조방법Method for producing terephthalic acid using polyethylene terephthalate of high polymerization degree having an intrinsic viscosity of 0.75 dl/g or more
본 발명은 고유점도가 0.75㎗/g 이상인 고중합도의 폴리에틸렌테레프탈레이트를 이용한 테레프탈산의 제조방법에 관한 것으로서, 보다 구체적으로는 유기용매 사용 없이도 고유점도가 0.75㎗/g 이상인 고중합도의 폴리에틸렌테레프탈레이트를 가수분해시켜서 테레프탈산을 높은 수율과 양호한 공정안정성으로 제조하는 방법에 관한 것이다.The present invention relates to a method for producing terephthalic acid using polyethylene terephthalate having a high polymerization degree having an intrinsic viscosity of 0.75 dl/g or more, and more specifically, producing polyethylene terephthalate having an intrinsic viscosity of 0.75 dl/g or more without using an organic solvent. It relates to a method for producing terephthalic acid in high yield and good process stability by hydrolysis.
폴리에틸렌테레프탈레이트(이하 "PET"라고 약칭한다)의 화학적 재활용을 위해서는 에틸렌글리콜(이하 "EG"라고 한다) 용매하에 고온, 고압으로 분자쇄를 끊는 해중합을 하거나 산, 알카리의 존재하에 알콜류와 같은 극성용매에서 가수 분해등과 같은 분자쇄 분해 과정이 필요하다. For chemical recycling of polyethylene terephthalate (hereinafter abbreviated as "PET"), depolymerization in which the molecular chain is broken at high temperature and high pressure in the presence of ethylene glycol (hereinafter referred to as "EG") solvent or polarity such as alcohol in the presence of acid or alkali A molecular chain decomposition process such as hydrolysis in a solvent is required.
이때 PET가 IV=0.6㎗/g 이하로 중합도가 높지 않은 경우는 다음 [반응식1]의 3가지 방법들이 대표적으로 사용된다.At this time, when the degree of polymerization of PET is not high with IV=0.6 dl/g or less, the following three methods of [Scheme 1] are typically used.
첫번째 방법으로는 [반응식1]의 (a)와 같은 메탄올분해(Methanolysis)로 메틸알콜 용매 하에 분해하여 디메틸테레프탈레이트(DMT)를 제조하는 방법으로 디메틸술폭사이드(Dimethyl sulfoxide : DMSO), 디클로로메탄(Dichloromethane) 같은 유기 용매를 일정량 섞어 주어 PET의 팽윤(Swelling)을 촉진하여 줌으로써 보다 약한 조건에서도 반응이 이루어지도록하기도 한다. In the first method, dimethyl sulfoxide (DMSO), dichloromethane ( A certain amount of organic solvent such as dichloromethane is mixed to promote the swelling of PET, so that the reaction can be performed under weaker conditions.
[반응식 1][Scheme 1]
[규칙 제91조에 의한 정정 18.05.2022] 
Figure PCTKR2022006376-appb-img-000001
[Correction under Rule 91 18.05.2022]
Figure PCTKR2022006376-appb-img-000001
두 번째 방법으로는 [반응식1]의 (b)와 같이 극성 유기 용매에서 NaOH와 같은 알칼리로 가수 분해(Hydrolysis)하여 비교적 용이하게 디-소디움 테레프탈레이트(Di-sodium terephthalate : TPA-Na2)와 에틸렌글리콜(EG)로 분해되며, 디-소디움 테레프탈레이트는 산에 의해 쉽게 테레프탈산(Terephthalic acid : TPA)로 전환이 이루어진다. 이 공정은 폴리에틸렌테레프탈레이트 섬유 폐기물의 재활용, PET 천의 감량가공 등에 광범위하게 이미 활용되고 있다.In the second method, as shown in (b) of [Scheme 1], hydrolysis is performed in a polar organic solvent with an alkali such as NaOH, and relatively easily di-sodium terephthalate (TPA-Na 2 ) and It is decomposed into ethylene glycol (EG), and di-sodium terephthalate is easily converted into terephthalic acid (TPA) by acid. This process is already widely used in the recycling of polyethylene terephthalate fiber waste and reduction processing of PET cloth.
때에 따라서는 분자쇄 팽윤용 유기용매(예: DMSO)를 첨가함으로써 알칼리가 알콜에 녹을 때 발생하는 열만 가지고도 상당 수준의 가수 분해가 된다고 주장하고 있다(Loop Industries USP9,550,713B1). 그러나 이때도 PET가 중합도가 낮은 섬유나 포장재 같은 경우에는 완전치는 않아도 얼마간 가수 분해가 될 것으로 보이나 PET 병과 같이 고유점도가 0.75㎗/g 이상인 고중합도의 PET 경우에는 DMSO의 팽윤(Swelling) 효과가 약해 미미한 수준의 가수 분해가 될 것으로 보인다. In some cases, it is claimed that a significant level of hydrolysis can be achieved with only the heat generated when alkali is dissolved in alcohol by adding an organic solvent for molecular chain swelling (eg DMSO) (Loop Industries USP9,550,713B1). However, even at this time, in the case of PET having a low degree of polymerization, such as fibers or packaging materials, it seems to be hydrolyzed for some time, even if not completely. It appears that there will be an insignificant level of hydrolysis.
세 번째 방법은 [반응식1]의 (c)의 방법으로 EG를 용매로 하여 고온 고압에서 PET를 당분해(Glycolysis)하여 비스(2-하이드록시에틸) 테레프탈레이트(BHET)와 올리고머 상태로 분해하는 것으로 PET 제조업체에서 오래전부터 가장 널리 사용되는 폐 PET(PET waste) 의 재사용 방법이다. 이들 반응 생성물들은 다시 중합 공정에 섞어 넣어 PET 중합에 사용 할 수 있다. 이 경우는 주로 PET 생산 중 발생하는 오염이 적은 폐 PET의 재사용법으로 주로 사용된다. PET 중합 시에는 원료들의 고 순도가 유지되지 않으면 중합도가 올라가지 않아 고 순도의 원료들만을 사용해야 하는데 폐 PET병과 같은 재생 PET 사용 시에는 PET에 묻은 오염물들을 완전히 제거하기가 힘들고 얻은 올리고머들을 고 순도로 정제하는 것이 어렵기 때문이다.The third method is the method of (c) of [Scheme 1], which uses EG as a solvent to glycolyze PET at high temperature and high pressure to decompose into bis(2-hydroxyethyl) terephthalate (BHET) and oligomers. This is the most widely used method for recycling PET (PET waste) from a long time ago by PET manufacturers. These reaction products can be mixed into the polymerization process and used for PET polymerization. In this case, it is mainly used as a reuse method of waste PET with less contamination generated during PET production. During PET polymerization, only high-purity raw materials are used because the degree of polymerization does not increase unless the high purity of the raw materials is maintained. because it is difficult to do
이와 같이 이들 방법들은 모두 유기 용매 중에서 반응을 시키는 방법들로서 중합도가 낮고 분자쇄 상태가 비교적 느슨한 상태의 PET 에는 적용 가능하나 PET병처럼 고상중합과 열 고정(Heat setting) 처리 등으로 IV=0.8dl/g이 넘을 정도로 중합도가 높고 분자쇄가 초밀하게 패킹(Packing) 된 경우에는 이와 같은 반응들이 용이하게 되지 않는다. 실제로 PET병 혼합 분쇄물을(생수병, 주스병 등이 혼합 분쇄 된 것)무게 비로 고형분이 30% 정도가 되게 하고 알콜 용매 하에 고압 반응관에서 알칼리 가수 분해를 할 경우, 3~5bar의 반응 압력과 알콜이 끓는 온도에서 환류(Reflux)시키며 강하게 교반하면서 1주일간 가수 분해 반응을 하여도 가수 분해되지 않는 PET 잔존물이 20% 이상 남는다. 특히 주스 음료용 내열 PET병 같은 경우에는 일반 생수병이 1 스테이지 블루잉(Stage blowing) 공정으로 생산되는데 비해 일반 생수병 보다 훨씬 강한 열고정 공정이 포함된 2 스테이지 블루잉(Stage blowing) 공정으로 생산되어 높은 분자량에 결정화도까지도 훨씬 더 높고 분자쇄 패킹(Packing)도 초밀하여 일반 생수 PET병 보다 알칼리 가수 분해가 훨씬 더 어렵다. 이들은 PET IV 측정시 사용되는 용매인 헥사플루오로이소프로판올( Hexafluoroisopropanol : HFIP) (1)-트리플루오로아세틱산[(1)-Trifluoroacetic acid : TEA] 와 같은 강력한 용매에도 쉽게 녹지 않고 미용해물이 상당량 남을 정도라서 일반 가수 분해 시 더 많은 미분해 잔존물이 생긴다. 이들 잔존물의 표면은 용매에 팽윤(Swelling)되어 떡처럼 서로 뭉쳐서 반응기 벽과 교반기에 엉겨 붙는데 그 결과 반응기를 가동 불능케 만들며 또한 반응기 토출구도 막아서 정상적인 토출이 불가능 하게 만들기도 한다. 일반적인 가수 분해 용매로 사용하는 알콜류들은 메탄올, 에탄올과 같이 용매 극성의 차이가 있어도 가수분해 결과는 유사하였으며 단 단위% 수준으로 팽윤(Swelling)용 유기용매(DMSO, CH2Cl2) 등을 첨가하여도 결과는 크게 개선되지 않았다. As such, these methods are all methods of reacting in an organic solvent and can be applied to PET with a low degree of polymerization and a relatively loose molecular chain state, but IV = 0.8 dl/ Such reactions are not easy when the degree of polymerization is high enough to exceed g and the molecular chains are densely packed. In fact, when the solid content of the mixed pulverized PET bottle (mixed pulverized water bottle, juice bottle, etc.) is about 30% by weight and subjected to alkaline hydrolysis in a high-pressure reaction tube under an alcohol solvent, the reaction pressure of 3 to 5 bar At the boiling temperature of alcohol and reflux, vigorously agitated and hydrolyzed for one week, more than 20% of non-hydrolyzed PET remains. In particular, in the case of heat-resistant PET bottles for juice beverages, they are produced through a two-stage blowing process that includes a heat-setting process that is much stronger than that of ordinary mineral water bottles, compared to general water bottles produced through a one-stage blowing process. It has a high molecular weight and a much higher crystallinity, and the molecular chain packing is also ultra-dense, so alkaline hydrolysis is much more difficult than general bottled water PET bottles. They do not dissolve easily in strong solvents such as hexafluoroisopropanol (HFIP) (1)-trifluoroacetic acid [(1)-Trifluoroacetic acid: TEA], which is a solvent used in PET IV measurement, and leave a significant amount of undissolved matter. As a result, more undecomposed residues are produced during normal hydrolysis. The surface of these residues is swollen in the solvent and clumps together like rice cakes, sticking to the walls of the reactor and the agitator, which makes the reactor inoperable and also blocks the discharge port of the reactor, making normal discharge impossible. Alcohols used as general hydrolysis solvents, such as methanol and ethanol , showed similar hydrolysis results even though there was a difference in solvent polarity . The results were not significantly improved.
섬유와 같이 IV가 0.55㎗/g 정도인 중,저 중합도 PET는 극성 유기 용매에서 산, 알칼리에 의해 가열 환류 반응 시 1시간 이내에 완전히 모노머로 분해가 된다. 이 경우에도 빠른 가수 분해를 위해서는 유독성과 폭발성이 있는 유기 용매를 반응 용매로 사용해야 하며 다량의 강산, 강알칼리를 사용 하여야만 한다.Like fibers, PET with an IV of about 0.55 dl/g and a medium or low degree of polymerization is completely decomposed into monomers within 1 hour when heated under reflux by acid or alkali in a polar organic solvent. Even in this case, for rapid hydrolysis, a toxic and explosive organic solvent must be used as a reaction solvent, and a large amount of strong acid or alkali must be used.
고유점도가 0.75㎗/g 이상인 고중합도 PET 경우는 앞에서 언급한바와 같이 공지의 방법에 의한 가수 분해 시 표면에서 일부 분해가 시작되나 중합도가 높아 더 이상 내부로 분해가 진행되지 못하고 표면에서 팽윤(Swelling) 현상만 일어난다. 표면이 젤(Gel)과 같이 변하면서 점성을 갖게 되면 강하게 교반하여 주어도 PET 조각들은 서로 엉겨 붙는데 시간이 감에 따라 반응기 내벽과 교반기 등에 엉겨 붙고 그 위에 반응 생성물들 까지 엉겨 붙어 견고한 떡 덩어리가 된다. 그 결과 산, 알칼리가 더 이상 내부로 침투하는 것이 불가능하게 되어 분해 반응 속도는 뚝 떨어져서 더 이상 원활한 반응이 이루어지지 못하게 된다. 그나마 이런 현상을 최대한 줄이는 방법은 시료 PET를 최대한 잘게 분쇄하는 것인데 PET는 비결정성이 높아 상온에서는 물리적 분쇄가 쉽지 않다. 특히, PET병의 경우엔 분말 상태로 분쇄하기 어려워 최대한 잘게 찢어 조각으로 만들어 사용한다. 일반적으로 플라스틱들은 액체질소 초저온분쇄기(Liquid N2 freezer ball mill)나 볼밀(Ball-mill)을 사용하여 분쇄를 하는데 결정성 고분자나 경도가 높은 고분자들은 비교적 분쇄가 잘되나 PET는 비결정성이 높아 분쇄가 잘 되지 않는다. 더군다나 고유점도가 0.75㎗/g 이상인 고중합도 PET 경우에는 훨씬 힘들며 경제성 측면에서는 이와 같은 분쇄 방법이 전혀 의미가 없다.In the case of high polymerization degree PET with an intrinsic viscosity of 0.75 dl/g or more, as mentioned above, some decomposition starts on the surface when hydrolyzed by a known method, but the degree of polymerization is high, so the decomposition does not proceed to the inside anymore and swelling occurs on the surface. ) only occurs. When the surface changes like a gel and becomes viscous, the PET pieces stick to each other even when vigorously stirred. As a result, it is impossible for acids and alkalis to permeate into the inside any more, so that the decomposition reaction rate drops drastically, so that smooth reactions are no longer possible. At least, the way to minimize this phenomenon is to grind the sample PET as finely as possible, but PET is highly amorphous, so it is not easy to physically grind it at room temperature. In particular, in the case of PET bottles, it is difficult to grind them into a powder state, so they are used by tearing them into pieces as small as possible. In general, plastics are pulverized using a liquid nitrogen cryogenic mill (Liquid N2 freezer ball mill) or a ball-mill. Crystalline polymers or polymers with high hardness are pulverized relatively well, but PET is difficult to pulverize because of its amorphous nature. It doesn't work out. Moreover, in the case of high-polymerization PET having an intrinsic viscosity of 0.75 dl/g or more, it is much more difficult, and in terms of economic efficiency, such a grinding method is completely meaningless.
이와 같은 이유들로 인해 현재까지는 중합도가 높은 PET병은 경제성 있는 화학적 리싸이클이 거의 이루어지지 못하고 주로 세정 건조 후 단순 용융 방사를 통해 충진용 솜이나 단섬유(Staple fiber)와 같은 저급한 섬유로의 형태로 만드는 재활용이 주로 이루어지고 있다. For these reasons, until now, PET bottles with a high degree of polymerization have hardly been economically chemically recycled, and are mainly made into low-grade fibers such as cotton for filling or staple fibers through simple melt spinning after washing and drying. Recycling is mainly done.
앞에서 말한바와 같은 PET의 화학적 분해에 있어서는 다음과 같은 중요한 문제점들이 있다.There are the following important problems in the chemical decomposition of PET as mentioned above.
첫째로, 정도의 차이는 있지만 기존의 방법들에 있어서는 독성이 있고 인화성이 강한 저 비점 유기 용매를 반응 용매로 사용하고 빠른 반응을 위해선 가열, 가압 반응을 해야 한다는 문제점이 있다. 가장 보편적으로 알칼리 가수 분해에 사용하는 용매로는 에탄올, 메탄올, 등과 같은 알콜 등이 있는데 정도의 차이는 있으나 피부 및 눈에 독성이 있으며 비점이 낮고 휘발성이 강해 쉽게 불이 붙고 증기는 독성도 강하지만 폭발의 위험성이 크다.First, although there is a difference in degree, in the existing methods, there is a problem in that a toxic and highly flammable low boiling point organic solvent is used as a reaction solvent, and heating and pressurization reactions are required for rapid reaction. The most commonly used solvents for alkaline hydrolysis include alcohols such as ethanol, methanol, etc., which are toxic to the skin and eyes to varying degrees. The risk of explosion is great.
둘째로, EG 해중합의 경우에는 인체에 유해한 환상올리고머, 부틸화히드록시톨루엔(BHT)등과 같은 물질등이 생겨 생수,식품용기용 PET로 재중합 할 경우 건강에 위협이 될 수도 있다. Second, in the case of EG depolymerization, substances such as cyclic oligomers and butylated hydroxytoluene (BHT), which are harmful to the human body, are generated, and repolymerization into PET for bottled water and food containers may pose a threat to health.
디메틸술포사이드(DMSO), 디클로로메탄(CH2Cl2)와 같은 팽윤(Swelling)용 유기 용매를 첨가한 가수 분해의 경우 반응 후 이들을 다시 분리해야만 하며 또 부산물로 인해 고순도의 모노머 생산물을 얻는게 어려워 지는데 고순도 제품을 얻기 위해서는 상당한 수준의 정제 설비가 추가로 필요하다. 또 분해 최종 생성물이 테레프탈산(TPA)가 아닌 디메틸테레프탈레이트(Di-Methylterephthalate : DMT)가 나오는 경우가 많으며 그럴 경우에는 테레프탈산(TPA)를 포함한 더욱 다양한 모노머, 올리고머들이 불순물로 생성되는데 이 경우 정제 자체가 거의 불가능하며 초고순도가 필요한 PET 중합의 원료로 사용하는 것은 더욱 곤란하다. In the case of hydrolysis with the addition of organic solvents for swelling such as dimethyl sulfoxide (DMSO) and dichloromethane (CH 2 Cl 2 ), they must be separated again after the reaction, and it is difficult to obtain high-purity monomer products due to by-products. In order to obtain a high-purity product, significant additional refinery facilities are required. In addition, in many cases, the final decomposition product is dimethyl terephthalate (DMT) rather than terephthalic acid (TPA), and in that case, more various monomers and oligomers including terephthalic acid (TPA) are produced as impurities. It is almost impossible and it is more difficult to use it as a raw material for PET polymerization that requires ultra-high purity.
셋째로, 더 결정적인 문제점으로는 고유점도가 0.75㎗/g 이상인 고중합도 PET의 경우에는 상기 [반응식1]의 (a),(b),(c)와 같은 분해가 쉽게 되지 않는다는 문제점이 있다. 고유점도가 0.75㎗/g 이상인 고중합도 PET의 가장 대표적인 제품이 PET 생수병이며 쥬스용 PET 내열병은 결정화도도 높아져 분해가 곤란하며, 보다 더 강한 기계적 물성을 필요로 하는 PET 타이어 코드 같은 고강력사 경우에는 IV=1.0~1.2㎗/g까지도 올라 간다.Thirdly, as a more critical problem, in the case of high polymerization degree PET having an intrinsic viscosity of 0.75 dl / g or more, there is a problem that decomposition such as (a), (b), (c) of [Scheme 1] is not easy. The most representative product of high-polymerization PET with an intrinsic viscosity of 0.75 dl/g or more is PET bottled water bottles, and PET heat-resistant bottles for juice are difficult to disassemble due to high crystallinity, and high-tenacity yarns such as PET tire cords that require stronger mechanical properties. IV=1.0~1.2㎗/g even goes up.
PET병의 경우는 중합도도 높지만 제조 공정에서 높은 연신율과 열고정을 하여 분자쇄들이 촘촘히 쌓이는 크로스-패킹(Cross-packing) 상태가 된다. 이로 인해 분해 반응 시 반응 용매나 알칼리 등이 분자 사이로 스며들기가 어려워 표면에서 반응이 내부로 진행되는 것이 힘들게 된다. In the case of PET bottles, the degree of polymerization is high, but high elongation and heat setting in the manufacturing process result in a cross-packing state in which molecular chains are densely stacked. Due to this, it is difficult for the reaction solvent or alkali to permeate between molecules during the decomposition reaction, making it difficult for the reaction to proceed from the surface to the inside.
본 발명에서는 유기용매 사용 없이도 고유점도가 0.75㎗/g 이상인 고중합도의 폴리에틸렌테레프탈레이트를 가수분해시켜서 테레프탈산을 높은 수율과 양호한 공정안정성으로 제조하는 방법을 제공하고자 한다.In the present invention, it is intended to provide a method for producing terephthalic acid in high yield and good process stability by hydrolyzing polyethylene terephthalate having a high polymerization degree having an intrinsic viscosity of 0.75 dl/g or more without using an organic solvent.
구체적으로, 본 발명의 과제는 PET의 경제적 가수 분해 반응에 있어 위와 같은 유기용매에 대한 안전성과 낮은 반응성에 관한 문제점들을 해결하고 특히 반응 자체가 힘든 PET 병과 같은 고유점도가 0.75㎗/g 이상인 고중합도 PET의 저반응성과 같은 문제점들까지도 동시에 해결 하고자 하는 것이다.Specifically, the object of the present invention is to solve the problems related to the safety and low reactivity to organic solvents as described above in the economical hydrolysis reaction of PET, and in particular, a high polymerization degree having an intrinsic viscosity of 0.75 dl/g or more, such as a PET bottle, which is difficult to react. It is intended to solve problems such as the low reactivity of PET at the same time.
이와 같은 과제를 달성하기 위해서, 본 발명에서는 (i) 고유점도가 0.75㎗/g 이상인 고중합도 폴리에틸렌테레프탈레이트를 연속식 반응기에 투입한 후 가열, 가압하여 유동성 폴리에틸렌테레프탈레이트를 제조한 후, (ii) 유동성 폴리에틸렌테레프탈레이트가 통과하는 상기 연속식 반응기의 내부 위치로 알칼리금속이 포함된 알칼리, 상기 알칼리금속의 약산염 및 에틸렌글리콜을 혼합시켜 제조한 혼합 슬러리를 투입하여 상기 연속식 반응기 내에서 유동성 폴리에틸렌테레프탈레이트와 상기 혼합 슬러리를 니트(Neat) 반응시켜 알칼리금속테레프탈레이트를 제조한 후, (iii) 제조된 알칼리금속테레프탈레이트를 물에 녹인 후 여과 및 원심분리를 통해 이물질을 제거하고, 물에 녹아있는 알칼리금속테레프탈레이트에 산을 넣어 반응시켜 테레프탈산을 제조한다.In order to achieve the above object, in the present invention, (i) after introducing high polymerization degree polyethylene terephthalate having an intrinsic viscosity of 0.75 dl / g or more into a continuous reactor, heating and pressurizing to prepare fluid polyethylene terephthalate, (ii) ) A mixed slurry prepared by mixing an alkali containing an alkali metal, a weak acid salt of the alkali metal, and ethylene glycol is introduced into the interior of the continuous reactor through which the fluid polyethylene terephthalate passes, thereby producing fluid polyethylene in the continuous reactor. Neat reaction of terephthalate and the mixed slurry to prepare alkali metal terephthalate, (iii) dissolving the prepared alkali metal terephthalate in water, removing foreign substances through filtration and centrifugation, and dissolving in water Terephthalic acid is produced by reacting alkali metal terephthalate with acid.
구체적으로, 뱃치(Batch) 반응기에 에탄올 또는 메탄올과 같은 유기용매 등을 반응 용매로 넣고 실시하는 종래의 분해 반응과 달리 익스트루더(Extruder) 형태의 연속식 반응기를 사용하여 별도의 반응 용매 없이 용융된 PET 자체가 반응물이자 용매 역할까지 하는 니트(Neat)반응으로 연속식 분해 반응을 한다. 연속식 반응기내에서 반응 온도와 압력을 조절하여 PET를 용융 시키고 여기에 촉매 수준의 에틸렌글리콜(EG) 및 알칼리 금속 계열의 알칼리와 그 알칼리 금속의 약산염을 섞은 혼합물을 투입한다. 구현일례로 NaOH를 알칼리로 사용하는 경우에는 NaOH와 약산인 H2CO3의 염인 Na2CO3를 넣어 준다. 이는 하기의 [반응식 2]에서 보듯이 PET가 가수분해 되면 디소디움테레프탈레이트(Disodium terephthalate : TPA-Na2)와 에틸렌글리콜(EG)이 생기면서 Na+ 농도가 점차 감소하여 가수 분해 반응 속도도 점차 떨어지게 된다. 그러나 이때 Na+의 약산염인 Na2CO3가 있으면 이 또한 극성용매인 에틸렌글리콜(EG)에 녹으며 더 많은 Na+ 가 생겨나서 NaOH에서 생기는 Na+의 농도와 더불어 Na+의 농도를 더욱 높여 주는 역할을 해 더 많은 NaO-C2H2-ONa 가 생기게 한다. 이는 PET의 가수 분해 반응으로 Na+의 농도가 낮아지지 않게 해주어 반응 속도를 빠르게 유지시켜 준다.Specifically, unlike the conventional decomposition reaction in which an organic solvent such as ethanol or methanol is added as a reaction solvent to a batch reactor, an extruder-type continuous reactor is used to melt without a separate reaction solvent. The PET itself is a reactant and also acts as a solvent, and it undergoes a continuous decomposition reaction with a neat reaction. In a continuous reactor, the reaction temperature and pressure are adjusted to melt PET, and a mixture of catalyst-level ethylene glycol (EG), an alkali metal-based alkali, and a weak acid salt of the alkali metal is added thereto. For example, when NaOH is used as an alkali, Na 2 CO 3 , which is a salt of NaOH and a weak acid H 2 CO 3 , is added. As shown in [Scheme 2] below, when PET is hydrolyzed, disodium terephthalate (TPA-Na 2 ) and ethylene glycol (EG) are formed, and the Na+ concentration gradually decreases, so that the hydrolysis reaction rate gradually decreases. do. However, at this time, if there is Na 2 CO 3 , a weak salt of Na+, it also dissolves in ethylene glycol (EG), a polar solvent, and more Na+ is created, which plays a role in further increasing the concentration of Na+ along with the concentration of Na+ generated from NaOH. more NaO-C 2 H 2 -ONa. This keeps the concentration of Na+ from decreasing due to the hydrolysis reaction of PET, and keeps the reaction rate fast.
[반응식 2][Scheme 2]
[규칙 제91조에 의한 정정 18.05.2022] 
Figure PCTKR2022006376-appb-img-000002
[Correction under Rule 91 18.05.2022]
Figure PCTKR2022006376-appb-img-000002
그러면 PET의 가수 분해가 시작되면 초기에 발생하는 EG가 용매 역할을 함과 동시에 가속 촉매 역할을 하게 되어 더욱 빠르게 가수분해 반응이 진행하게 된다.Then, when the hydrolysis of PET starts, the EG generated at the beginning serves as a solvent and at the same time acts as an accelerating catalyst, so that the hydrolysis reaction proceeds more rapidly.
빠른 반응 속도 유지 및 반응율을 높이기 위해서는 반응 온도와 압력을 적절히 조절하는 것이 매우 중요하다. 전체 반응 기간에 있어 반응 온도는 가능한 한 낮게 유지하는 것이 좋다. 그래야만 부반응에 의한 불순물의 발생이 적어지며 반응압이 낮아져 반응의 조절이 쉽기 때문이다. 초기에 PET를 용융시킨 후 용융된 PET에 위 [반응식2]와 같이 알칼리 및 그 알칼리의 약산염을 섞어주면 가수 분해 반응이 빠르게 진행되면서 분자량이 급격이 작아진다. 반응 결과 TPA-Na2 염(Salt)과 에틸렌글리콜(EG)가 생성되는데 이때 생성되는 TPA-Na2 염(Salt)은 고체 분말이며 또 다른 생성물 에틸렌글리콜(EG)은 액체인데 TPA-Na2는 끓는 온도가 1기압에서 392.4℃라서 온도에 매우 안정하나 에틸렌글리콜(EG)은 1기압에서 끓는 온도가 197℃로 가능한 낮은 반응 온도가 바람직하다. 왜냐하면 가수분해 반응 시 생성된 EG가 기화되지 않고 액체 상태로 유지되어야만 용융 PET와 균일하게 섞여 용매 역할을 하면서 일부는 Na-OC2H4O-Na가 되어 가수 분해 반응을 더욱 촉진 할 수 있기 때문이다.In order to maintain a fast reaction rate and increase the reaction rate, it is very important to properly control the reaction temperature and pressure. During the entire reaction period, it is preferable to keep the reaction temperature as low as possible. This is because the generation of impurities due to side reactions is reduced and the reaction pressure is lowered, making it easy to control the reaction. After initially melting PET, if an alkali and a weak acid salt of the alkali are mixed with the melted PET as shown in [Scheme 2] above, the hydrolysis reaction proceeds rapidly and the molecular weight rapidly decreases. As a result of the reaction, TPA-Na 2 salt (Salt) and ethylene glycol (EG) are produced. The TPA-Na 2 salt (Salt) produced at this time is a solid powder, and another product, ethylene glycol (EG), is a liquid. TPA-Na 2 is The boiling temperature is 392.4 ° C. at 1 atm, so it is very stable in temperature, but ethylene glycol (EG) has a boiling temperature of 197 ° C. This is because EG generated during the hydrolysis reaction must be kept in a liquid state without vaporization so that it is uniformly mixed with the molten PET to act as a solvent and partially become Na-OC 2 H 4 O-Na to further promote the hydrolysis reaction. am.
도 20은 EG의 온도와 증기압의 상관관계를 나타내는 그래프로 EG가 특정 온도에서 액체 상태를 유지하려면 해당 증기압 보다 높은 압력을 걸어주어야만 한다. 예로 1기압에서 EG의 끓는 온도는 197℃인데 이때 증기압이 760mmHg이다. PET의 용융 온도인 260℃에서는 약 4000mmHg(약 5.3기압)의 증기압을 갖게 되는데 이 온도에서 EG를 액체 상태로 유지하려면 반응 압력을 5.3기압 보다 높게 유지 해야만 한다.20 is a graph showing the correlation between the temperature and vapor pressure of EG. In order for EG to maintain a liquid state at a specific temperature, a pressure higher than the corresponding vapor pressure must be applied. For example, the boiling temperature of EG at 1 atm is 197°C, and the vapor pressure is 760 mmHg. At 260° C., which is the melting temperature of PET, it has a vapor pressure of about 4000 mmHg (about 5.3 atm).
실제 공정에 있어서는 PET의 분해가 일어나 EG가 생기기 시작하면 PET의 분자량이 급격히 낮아져 260℃ 보다 20~30℃ 정도 낮은 상태로 반응 온도를 유지해도 PET는 용융 상태를 유지하는데 이때의 EG 증기압은 2000mmHg 이하로 5.3기압 이상의 고압을 안 걸고 2.5~3기압 정도의 반응압만 유지해 주어도 EG는 액체 상태로 유지될 수 있어 빠른 가수 분해 반응 속도를 유지 할 수 있게 된다. 이와 같이 반응 온도를 낮게 유지하고 혼합 효과를 좋게 하기 위해 알칼리를 2차례로 나누어 투입하는 방법을 사용한다. 먼저 PET를 연속식 반응기(익스트루더) 최초 공급(Feeding)시 소량의 알칼리(예 : NaOH)를 섞어 주면 이에 의한 1차 가수 분해로 PET의 평균 분자량이 감소하여 녹는 온도가 낮아진다. 동시에 소량 발생한 EG와 혼합되어 더욱 점도가 떨어지는데 이는 반응 조건을 더 부드럽게해서 분해 반응의 통제가 쉬워진다. 그런 후 본격적인 분해 반응을 위해 2차로 반응 온도가 훨씬 낮은 연속식 반응기의 믹싱구역인 반응구역 2로 알칼리금속이 포함된 알칼리, 상기 알칼리 금속의 약산염 및 에틸렌글리콜의 혼합 슬러리를 반응에 충분한 양으로 투입하는데 투입량이 많아도 1차 가수 분해로 PET의 점도가 낮아져서 혼합이 훨씬 용이하게 된다.In the actual process, when PET decomposes and EG starts to form, the molecular weight of PET rapidly decreases, and PET maintains a molten state even when the reaction temperature is maintained at 20 to 30 ° C lower than 260 ° C. At this time, the EG vapor pressure is below 2000 mmHg. Even if a high pressure of 5.3 atmospheres or more is not applied and only a reaction pressure of about 2.5 to 3 atmospheres is maintained, EG can be maintained in a liquid state and a fast hydrolysis reaction rate can be maintained. In this way, in order to keep the reaction temperature low and improve the mixing effect, a method of dividing the alkali into two times is used. First, when PET is first supplied to the continuous reactor (extruder), a small amount of alkali (e.g., NaOH) is mixed with it, which causes the primary hydrolysis to decrease the average molecular weight of PET and lower the melting temperature. At the same time, it is mixed with a small amount of EG, resulting in a lower viscosity, which makes the reaction conditions milder and easier to control the decomposition reaction. Then, for a full-scale decomposition reaction, a mixed slurry of an alkali containing an alkali metal, a weak salt of the alkali metal, and ethylene glycol is mixed in a reaction zone 2, which is a mixing zone of a continuous reactor having a much lower reaction temperature, in a sufficient amount for the reaction Even if the input amount is large, the viscosity of PET is lowered due to the primary hydrolysis, making mixing much easier.
이와 같은 연속식 반응기로 익스트루더(Extruder)를 가장 보편적인 반응기로 사용하는데 그 이유는 익스트루더는 사용하는 스크류(Screw)를 다른 나선형태의 것들로 조합하는 것이 가능하기 때문이다. 즉, 반응구역(Zone)별로 다른 온도, 압력 등의 반응 조건에 맞게 기기 특성의 설정이 가능하고 연속식이라 작은 장치로도 높은 생산량을 얻을 수 있기 때문이다. 물론 고효율의 트윈 스크류 익스트루더(Twin screw extruder)를 사용하는 경우에는 보다 높은 혼합 효율로 인해 싱글 스크류 익스트루더(Single screw extruder)를 사용할 때 보다 훨씬 빠르고 고수율로 반응시키는 것이 가능하다.As such a continuous reactor, an extruder is used as the most common reactor because it is possible to combine the screws used in the extruder with other spiral types. In other words, it is possible to set the characteristics of the device according to the reaction conditions such as temperature and pressure, which are different for each reaction zone, and because it is continuous, high yield can be obtained even with a small device. Of course, when using a high-efficiency twin screw extruder, it is possible to react much faster and with higher yield than when using a single screw extruder due to higher mixing efficiency.
본 발명은 중합도가 높아 유기용매로도 가수분해가 어려운 고유점도가 0.75㎗/g 이상인 고중합도의 폴리에틸렌테레프탈레이트로부터 유기용매 사용 없이도 테레프탈산을 높은 수율과 양호한 공정 안전성으로 제조할 수 있다. According to the present invention, terephthalic acid can be produced in high yield and good process safety from polyethylene terephthalate having a high degree of polymerization having an intrinsic viscosity of 0.75 dl/g or more, which is difficult to hydrolyze even with an organic solvent due to a high degree of polymerization, without using an organic solvent.
본 발명은 종래에는 원활한 가수분해가 어려웠던 고유점도가 0.75㎗/g 이상인 고중합도 PET를 유독성 유기용매의 사용 없이 니트(Neat) 반응을 통해 빠르게 가수분해 할 수 있다. 또 반응 온도도 PET의 용융 온도 이하에서 단시간 내에 이루어지므로 열분해에 의한 부반응물이 거의 없이 순수한 가수 분해물들만을 얻는 것이 가능하다. 무엇보다도 유독하고 화재 위험성이 높은 저 비점 유기 용매들을 사용치 않는 다는 점은 공정의 안전성이 크게 향상된다.The present invention can rapidly hydrolyze high polymerization degree PET having an intrinsic viscosity of 0.75 dl/g or more, which has been difficult to hydrolyze in the past, through a Neat reaction without using a toxic organic solvent. In addition, since the reaction temperature is lower than the melting temperature of PET in a short time, it is possible to obtain only pure hydrolyzates with almost no side reactants due to thermal decomposition. Above all, the fact that low boiling point organic solvents, which are toxic and have a high fire risk, are not used significantly improves the safety of the process.
도 1은 익스트루더에 고유점도가 0.75㎗/g 이상인 고중합도 PET와 NaOH, EG 및 Na2CO3를 투입하여 니트(Neat) 반응시켜 알칼리금속테레프탈레이트를 제조하는 공정 개략도.1 is a schematic diagram of a process for preparing an alkali metal terephthalate by adding high polymerization degree PET having an intrinsic viscosity of 0.75 dl/g or more and NaOH, EG, and Na 2 CO 3 to an extruder to perform a neat reaction.
도 2는 도 1의 익스트루더를 구성하는 스크류(Screw) 형태를 예시적으로 나타내는 단면도.Figure 2 is a cross-sectional view showing the form of a screw (Screw) constituting the extruder of Figure 1 by way of example.
도 3은 본 발명의 실시예에 사용되는 고유점도가 0.75㎗/g 이상인 고중합도 PET의 라만 분광기 스펙트럼.3 is a Raman spectroscopy spectrum of high polymerization degree PET having an intrinsic viscosity of 0.75 dl/g or more used in Examples of the present invention.
도 4는 표준물인 테레프탈산 나트륨염의 라만 분광기 스펙트럼.Figure 4 is a Raman spectroscopy spectrum of sodium terephthalate as a standard.
도 5는 표준물인 테레프탈산의 라만 분광기 스펙트럼.5 is a Raman spectroscopy spectrum of terephthalic acid as a standard.
도 6은 실시예 1에서 제조한 테레프탈산 나트륨염의 라만 분광기 스펙트럼.6 is a Raman spectroscopy spectrum of sodium terephthalate prepared in Example 1;
도 7은 실시예 2에서 제조한 테레프탈산의 라만 분광기 스펙트럼.7 is a Raman spectroscopy spectrum of terephthalic acid prepared in Example 2;
도 8은 비교실시예 1에서 제조한 테레프탈산 나트륨염의 라만 분광기 스펙트럼.8 is a Raman spectroscopy spectrum of sodium terephthalate prepared in Comparative Example 1;
도 9는 비교실시예 2에서 제조한 테레프탈산 나트륨염의 라만 분광기 스펙트럼.9 is a Raman spectroscopy spectrum of sodium terephthalate prepared in Comparative Example 2;
도 10은 비교실시예 3에서 제조한 테레프탈산 나트륨염의 라만 분광기 스펙트럼.10 is a Raman spectroscopy spectrum of sodium terephthalate prepared in Comparative Example 3;
도 11은 비교실시예 4에서 제조한 테레프탈산 나트륨염의 라만 분광기 스펙트럼.11 is a Raman spectroscopy spectrum of sodium terephthalate prepared in Comparative Example 4;
도 12는 비교실시예 5에서 제조한 테레프탈산의 라만 분광기 스펙트럼.12 is a Raman spectroscopy spectrum of terephthalic acid prepared in Comparative Example 5.
도 13은 비교실시예 6에서 제조한 테레프탈산 나트륨염의 라만분광기 스펙트럼.13 is a Raman spectroscopy spectrum of sodium terephthalate prepared in Comparative Example 6;
도 14은 비교실시예 7에서 제조한 테레프탈산 나트륨염의 라만분광기 스펙트럼.14 is a Raman spectroscopy spectrum of sodium terephthalate prepared in Comparative Example 7;
도 15은 비교실시예 8에서 제조한 테레프탈산의 라만분광기 스펙트럼.15 is a Raman spectroscopy spectrum of terephthalic acid prepared in Comparative Example 8;
도 16은 실시예 3에서 제조한 테레프탈산 칼륨염의 라만분광기 스펙트럼.16 is a Raman spectroscopy spectrum of the potassium terephthalate salt prepared in Example 3.
도 17은 실시예 4에서 제조한 테레프탈산의 라만분광기 스펙트럼.17 is a Raman spectroscopy spectrum of terephthalic acid prepared in Example 4.
도 18는 비교실시예 9에서 얻은 배율500배 Na SEM-EDS 분포 사진.18 is a SEM-EDS distribution photograph of Na at a magnification of 500 times obtained in Comparative Example 9.
도 19는 실시예 5에서 얻은 배율500배 Na SEM-EDS 분포 사진.19 is a SEM-EDS distribution photograph of Na at a magnification of 500 times obtained in Example 5.
도 20은 EG의 온도와 증기압의 상관관계를 나타내는 그래프.20 is a graph showing the correlation between temperature and vapor pressure of EG.
이하, 첨부한 도면등을 참조하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
본 발명은 (i) 중합도가 0.75㎗/g 이상인 폴리에틸렌테레프탈레이트(PET)를 익스트루더(Extruder) 형태의 연속식 반응기(Continuous Reactor)에 투입한 후 가열,가압하여 유동성 폴리에틸렌테레프탈레이트를 제조하는 공정; (ii) 유동성 폴리에틸렌테레프탈레이트가 통과하는 상기 연속식 반응기의 내부 위치로 알칼리금속이 포함된 알칼리, 상기 알칼리금속의 약산염 및 에틸렌글리콜을 혼합시켜 제조한 혼합 슬러리를 투입하여 상기 연속식 반응기 내에서 유동성 폴리에틸렌테레프탈레이트와 상기 혼합 슬러리를 니트(Neat) 반응시켜 알칼리금속테레프탈레이트를 제조하는 공정; 및 (iii) 상기 알칼리금속테레프탈레이트를 물에 녹인 후 여과 및 원심분리를 통해 이물질을 제거하고, 물에 녹아 있는 알칼리금속테레프탈레이트에 산을 넣어 반응시켜 테레프탈산을 제조하는 공정;을 포함하는 것을 특징으로 한다.The present invention (i) polyethylene terephthalate (PET) having a degree of polymerization of 0.75 dl / g or more is put into a continuous reactor in the form of an extruder and then heated and pressurized to produce fluid polyethylene terephthalate. process; (ii) A mixed slurry prepared by mixing an alkali containing an alkali metal, a weak acid salt of the alkali metal, and ethylene glycol is introduced into the interior of the continuous reactor through which the fluid polyethylene terephthalate passes, and in the continuous reactor A step of preparing alkali metal terephthalate by neat (Neat) reaction of fluid polyethylene terephthalate and the mixed slurry; and (iii) dissolving the alkali metal terephthalate in water, removing foreign matter through filtration and centrifugation, and reacting the alkali metal terephthalate dissolved in water with acid to produce terephthalic acid. to be
구체적으로, 본 발명에서는 먼저 중합도가 0.75㎗/g 이상인 폴리에틸렌테레프탈레이트(PET)를 익스트루더(Extruder) 형태의 연속식 반응기(Continuous Reactor)에 투입한 후 가열,가압하여 유동성 폴리에틸렌테레프탈레이트를 제조한다.Specifically, in the present invention, polyethylene terephthalate (PET) having a degree of polymerization of 0.75 dl/g or more is first introduced into a continuous reactor in the form of an extruder, and then heated and pressurized to produce fluid polyethylene terephthalate. do.
상기의 중합도가 0.75㎗/g 이상인 폴리에틸렌테레프탈레이트는 호모 폴리머(Homo polymer)일 수도 있고 공중합 폴리머(공중합체 : Copolymer)일 수도 있다.Polyethylene terephthalate having a degree of polymerization of 0.75 dl/g or more may be a homopolymer or a copolymer.
본 발명에서는 중합도가 0.75㎗/g 이상인 폴리에틸렌테레프탈레이트를 익스트루더(Extruder) 형태의 연속식 반응기에 투입할 때 알칼리금속이 포함된 알칼리를 함께 투입해 주는 것이 더욱 바람직하다.In the present invention, when polyethylene terephthalate having a degree of polymerization of 0.75 dl/g or more is introduced into an extruder-type continuous reactor, it is more preferable to add an alkali containing an alkali metal together.
중합도가 0.75㎗/g 이상인 폴리에틸렌테레프탈레이트와 함께 연속식 반응기에 투입되는 알칼리금속이 포함된 알칼리 함량을 상기 폴리에틸렌테레프탈레이트와 무게 비로 5~10%가 되도록 조절해 준다.The alkali content including the alkali metal introduced into the continuous reactor together with polyethylene terephthalate having a polymerization degree of 0.75 dl/g or more is adjusted to be 5 to 10% in weight ratio with the polyethylene terephthalate.
다음으로는, 유동성 폴리에틸렌테레프탈레이트가 통과하는 상기 연속식 반응기의 내부 위치로 알칼리금속이 포함된 알칼리, 상기 알칼리금속의 약산염 및 에틸렌글리콜을 혼합시켜 제조한 혼합 슬러리를 투입하여 상기 연속식 반응기 내에서 유동성 폴리에틸렌테레프탈레이트와 상기 혼합 슬러리를 니트(Neat) 반응시켜 알칼리금속테레프탈레이트를 제조한다.Next, a mixed slurry prepared by mixing an alkali containing an alkali metal, a weak acid salt of the alkali metal, and ethylene glycol is introduced into the interior of the continuous reactor through which the fluid polyethylene terephthalate passes, and the inside of the continuous reactor Alkali metal terephthalate is prepared by neat reaction of fluid polyethylene terephthalate and the mixed slurry.
이때, 유동성 폴리에틸렌테레프탈레이트가 통과하는 상기 연속식 반응기의 서로 다른 위치에서 상기 혼합 슬러리를 1~5 단계로 나누어 투입해 주는 것이 바람직하다.At this time, it is preferable to divide the mixed slurry into 1 to 5 steps and introduce them at different positions of the continuous reactor through which the fluid polyethylene terephthalate passes.
상기 알칼리금속이 포함된 알칼리 및 알칼리금속의 약산염을 이루는 알칼리금속은 리튬(Li), 나트륨(Na) 또는 칼륨(K) 등이다.The alkali metal containing the alkali metal and the alkali metal forming the weak acid salt of the alkali metal is lithium (Li), sodium (Na) or potassium (K).
상기 알칼리금속의 약산염은 알칼리금속과 탄산(H2CO3)의 반응으로 생성된 염, 알칼리금속과 인산(H3PO4)의 반응으로 생성된 염, 알칼리금속과 초산의 반응으로 생성된 염 또는 알칼리금속과 포름산의 반응으로 생선 염 등이다.The weak acid salt of the alkali metal is a salt produced by the reaction of an alkali metal and carbonic acid (H 2 CO 3 ), a salt produced by a reaction of an alkali metal and phosphoric acid (H 3 PO 4 ), a salt produced by a reaction of an alkali metal and acetic acid Salt or alkali metal and formic acid reaction, such as fish salt.
다음으로, 상기 알칼리금속테레프탈레이트를 물에 녹인 후 여과 및 원심분리를 통해 이물질을 제거하고, 물에 녹아 있는 알칼리금속테레프탈레이트에 산을 넣어 반응시켜 테레프탈산을 제조한다.Next, after dissolving the alkali metal terephthalate in water, foreign substances are removed through filtration and centrifugation, and acid is added to the alkali metal terephthalate dissolved in water to react to prepare terephthalic acid.
본 발명의 가장 큰 특징은 분해 반응에 인화성이 크고 인체에 유해한 유기용매를 반응용매로 사용하지 않고 용융된 PET와 KOH, NaOH와 같이 알칼리 금속이 있는 알칼리가 촉매 수준의 해당 알칼리 금속염의 존재하에 니트(Neat)반응을 한다는 점이다. 니트(Neat) 반응의 장점으로는 반응과 직접 상관없이 용매로만 작용하는 유해한 화합물들이 없어 안전성 측면과 반응 효율, 속도 측면에서 매우 좋다. The biggest feature of the present invention is that an organic solvent that is highly flammable and harmful to the human body is not used as a reaction solvent in the decomposition reaction, and alkali with alkali metals such as molten PET and KOH and NaOH is catalytically neutral in the presence of corresponding alkali metal salts. (Neat) is that it reacts. The advantage of the neat reaction is that there are no harmful compounds that act only as solvents regardless of the reaction, so it is very good in terms of safety, reaction efficiency, and speed.
반응성 측면에서는 반응 용매에 의한 농도 희석이 없어 반응물 간에 직접 반응이 이루어지므로(즉 반응 농도가 100%) 반응 속도가 용매 사용 시 보다 빠르고 부반응이 적어 불순물의 생성이 현격히 줄어든다. 이와 같은 니트(Neat)반응의 경우 PET의 용융 점도가 일반 유기 용매 반응에 비해 엄청나게 높아서 배치식 반응기(Batch reactor)에서는 반응물 혼합하기는 너무 어렵다는 문제가 발생한다.In terms of reactivity, since there is no concentration dilution by the reaction solvent, a direct reaction occurs between the reactants (i.e., the reaction concentration is 100%), so the reaction rate is faster than when a solvent is used and side reactions are less, so the generation of impurities is significantly reduced. In the case of such a neat reaction, since the melt viscosity of PET is extremely high compared to that of a general organic solvent reaction, it is too difficult to mix the reactants in a batch reactor.
이와 같은 문제를 해결하는 매우 유용한 방법이 익스트루더와 같은 혼합장치를 반응기로 사용하는 것이다. 또한 익스트루더를 이용한 반응에 있어서 반응온도와 용융점도를 낮게 함으로써 반응율을 높힐 수 있다는 점 또한 매우 중요하다.A very useful way to solve this problem is to use a mixing device such as an extruder as a reactor. In addition, in the reaction using an extruder, it is also very important that the reaction rate can be increased by lowering the reaction temperature and melt viscosity.
상기 니트(Neat) 반응의 과정을 보면,Looking at the process of the Neat reaction,
먼저 도 1과 같이 여러 개의 반응구역(Zone)들을 갖는 익스트루더에 PET를 밀어 넣어 유동화 시킨다. 이때 익스트루더의 스크류(Screw)는 전체가 동일한 형태의 나사구조가 아니고 도 2와 같이 각 반응구역별로 필요한 특성에 맞는 형태가 된다. First, as shown in FIG. 1, PET is pushed and fluidized into an extruder having several reaction zones. At this time, the entire screw of the extruder is not of the same screw structure, but has a shape suitable for characteristics required for each reaction zone, as shown in FIG. 2.
각 반응구역의 온도 설정에 있어서 가장 크게 고려해야 할 점은 PET의 열적특성으로 유리전이점(Tg : 70℃부근), 융점(Tm: 보통 250~260℃부근), EG의 끊는점(b.p.: 197℃ 1기압하)등인데 압력이 걸리면 이들 온도는 당연히 상압과는 달라진다.The biggest consideration in setting the temperature of each reaction zone is the thermal characteristics of PET, such as the glass transition point (Tg: around 70℃), melting point (Tm: usually around 250~260℃), and boiling point of EG (b.p.: 197 1 atm), etc., but when pressure is applied, these temperatures are naturally different from normal pressure.
이를 각 반응구역별로 좀더 상세히 보면 다음과 같다. A more detailed look at each reaction zone is as follows.
첫 번째 반응구역 1은 PET 공급 및 유동화를 위한 구역으로 투입된 PET 고체 조각들은 스크류(Screw)와 블록(Block)의 열과 압력으로 유동성 물체가 되면서 밀려서 앞으로 간다. 이때 PET 만을 투입할 경우 PET의 유동화를 위해서는 용융 온도까지 올려야 하는데 이 경우에도 용융점도가 너무 높다. 원활한 공급 및 유동화를 위해 투입 PET와 무게 비로 5~10% 정도의 알칼리를 섞어 PET 공급과 동시에 1차로 가수 분해 반응을 시키면 융점과 점도가 떨어져 공급이 쉬워진다. The first reaction zone 1 is a zone for PET supply and fluidization, and the PET solid pieces injected are pushed forward as they become fluid objects by the heat and pressure of the screw and block. At this time, when only PET is added, the melting temperature must be raised to fluidize the PET, but in this case, the melt viscosity is too high. For smooth supply and fluidization, when PET is mixed with 5 to 10% alkali by weight and the first hydrolysis reaction is performed simultaneously with PET supply, the melting point and viscosity are lowered, making it easier to supply.
또 익스트루더 스크류(Screw)의 형태도 중요한데 일반적으로 투입 원료의 입경이 클수록 큰 피치의 스크류를 쓰는데 PET 병 조각의 공급이 잘되게 보통 PET 칩(Chip)을 쓸 때 보다 스크류 피치가 큰 것을 사용한다. 이때 PET 공급구역인 반응구역 1의 시작 온도는 PET의 유리전이점(Tg)에서 녹는점(Tm) 사이로 유지하는데 통상 100~180℃ 정도가 되게 하여 PET가 1차 분해되면서 용융되도록 한다. 그래야만 두번째 믹싱구역(Mixing zone)인 반응구역 2에서 2차 투입 알칼리와 잘 섞이기 때문이다.In addition, the shape of the extruder screw is also important. In general, a screw with a larger pitch is used as the particle diameter of the input raw material is larger. . At this time, the starting temperature of the reaction zone 1, which is the PET supply zone, is maintained between the glass transition point (Tg) and the melting point (Tm) of PET, and is usually about 100 to 180 ° C so that the PET is first decomposed and melted. This is because it is well mixed with the secondary input alkali in the reaction zone 2, which is the second mixing zone.
두 번째 반응구역 2는 믹싱구역(Mixing zone)이다. 여기서는 반응구역 1에서 밀려온 유동성 PET와 알칼리를 섞어주며 믹싱(Mixing) 효율을 높여 주도록 스크류를 설계한다. 먼저 소량의 EG와 당량비 보다 약간 과량의 알칼리(예: NaOH, KOH) 및 알칼리 금속의 약산염(예: Na2CO3, K2CO3)를 섞어 제조한 혼합 슬러리(Mixing slurry)를 만든다. 그러면 아래 [반응식 3]과 같이 EG와 알칼리 MOH(M:알칼리 금속)가 반응하여 금속 글리콜레이트가 만들어 진다. 또 금속염인 M2CO3는 일부가 해리되어 M+ 과 CO3 -2 이온이 되는데 이들이 모두 섞여 있는 상태가 된다. 이때 M+ 이온의 양은 당량비 보다 10~20% 정도 과량이 되게 한다.The second reaction zone 2 is a mixing zone. Here, the screw is designed to mix the fluidized PET pushed from the reaction zone 1 with the alkali and increase the mixing efficiency. First, a mixing slurry prepared by mixing a small amount of EG with a slightly excess alkali (eg, NaOH, KOH) and a weak acid salt of an alkali metal (eg, Na 2 CO 3 , K 2 CO 3 ) is prepared. Then, as shown in [Scheme 3] below, EG and alkali MOH (M: alkali metal) react to form metal glycolates. In addition, a part of M 2 CO 3 , which is a metal salt, is dissociated to form M + and CO 3 -2 ions, which are all mixed. At this time, the amount of M + ions should be 10 to 20% more than the equivalent ratio.
[반응식 3][Scheme 3]
Figure PCTKR2022006376-appb-img-000003
Figure PCTKR2022006376-appb-img-000003
상기 혼합 슬러리(Mixing slurry)를 기어펌프 또는 제2피딩익스트루더(Second feeding extruder)를 사용하여 주 익스트루더(Main extruder)의 믹싱구역(Mixing zone)에 정량적으로 밀어 넣어서 유동성 PET와 잘 섞는다. 반응구역 2에서는 온도를 PET Tm 보다 낮게 시작하여 점차 갈수록 낮춰 반응구역 2의 끝 부근에서는 200℃ 정도가 되게 한다. 유동 PET는 반응구역 1의 끝 부분을 통과하면서 반응구역 2로 유입 될 때는 1차 분해에 의해 PET의 Tm이 낮아진다. 이런 온도 요인과 1차 가수 분해에 의한 분자량 감소로 점도가 낮아져 반응구역 2의 온도를 적절히 조절하여 믹싱(Mixing)을 위한 쉐어(Shear)를 유지함으로써 PET와 혼합 슬러리(Mixing slurry)가 잘 섞이도록 한다. 반응구역 2에서도 두 반응물이 섞이면서 일부 반응이 더욱 진행하나 반응의 완결은 세 번째 반응구역 3 및 네번째 반응구역 4에서 이루어지도록 하며 믹싱(Mixing) 효율 제고에 맞게 스크류(Screw)의 구조를 가져간다. Quantitatively push the mixing slurry into the mixing zone of the main extruder using a gear pump or a second feeding extruder and mix it well with fluid PET . In the reaction zone 2, the temperature is started lower than the PET Tm and gradually lowered to about 200 ° C near the end of the reaction zone 2. When fluidized PET passes through the end of reaction zone 1 and flows into reaction zone 2, the Tm of PET is lowered by primary decomposition. Due to the decrease in molecular weight due to this temperature factor and primary hydrolysis, the viscosity is lowered, so that the temperature of reaction zone 2 is properly adjusted to maintain the shear for mixing so that PET and the mixing slurry are well mixed. do. In reaction zone 2, some reactions proceed further as the two reactants are mixed, but the reaction is completed in the third reaction zone 3 and the fourth reaction zone 4, and a screw structure is adopted to improve mixing efficiency.
반응구역 2의 말단부에서는 반응물의 온도가 150~200℃ 정도가 되어 다음 반응구역 3으로 넘어갈 수 있도록 온도를 조절해 준다.At the end of the reaction zone 2, the temperature of the reactants is about 150 to 200 ° C, and the temperature is adjusted so that it can pass to the next reaction zone 3.
반응구역 3은 1차로 반응이 진행되는 구역으로 [반응식 4]와 같이 PET와 금속 글리콜레이트가 반응 하여 PET의 알칼리 가수 분해 반응의 대부분이 진행된다Reaction zone 3 is the zone where the first reaction proceeds, and PET and metal glycolate react as shown in [Scheme 4], and most of the alkaline hydrolysis reaction of PET proceeds.
[반응식 4][Scheme 4]
[규칙 제91조에 의한 정정 18.05.2022] 
Figure PCTKR2022006376-appb-img-000004
[Correction under Rule 91 18.05.2022]
Figure PCTKR2022006376-appb-img-000004
이때 스크류는 반응압을 유지하면서 반응물을 전방으로 꾸준히 밀어 내기 위해 피치 간격을 반응구역 1의 스크류 피치간격 보다 좁은 형태의 것을 사용한다.At this time, in order to steadily push the reactants forward while maintaining the reaction pressure, the pitch interval is narrower than the screw pitch interval of the reaction zone 1.
이와 같은 PET의 분해 반응은 폴리프로필렌이나 폴리에틸렌등의 다른 종류의 플라스틱이 섞여 있는 경우에도 방해 받지 않으며 이종 플라스틱 혼합물들은 반응치 않고 그대로 남아 물리적으로 제거가 가능하다.Such a decomposition reaction of PET is not disturbed even when other types of plastics such as polypropylene or polyethylene are mixed, and heterogeneous plastic mixtures remain unreacted and can be physically removed.
가장 일반적으로 사용되는 알칼리인 NaOH를 사용 할 경우 생성물은 텔레프탈산 나트륨(Disodium terephthalate)과 EG가 만들어지나 완전히 가수 분해가 되지는 못하고 올리고머 상태의 PET가 섞여 있는 혼합물이 된다.When NaOH, the most commonly used alkali, is used, the product is sodium terephthalate (Disodium terephthalate) and EG, but it is not completely hydrolyzed and becomes a mixture of oligomeric PET.
반응구역 3의 반응 시작 온도는 반응구역 2에서 넘어온 150~ 200℃ 정도에서 시작하여 온도를 20~30℃ 정도를 높혀 가수 분해 반응율을 최대한 높힌다. 온도를 180~230℃로 유지하여 반응에 따른 PET의 분자량 감소로 떨어진 용융 점도를 유지하게 하고 생성된 EG의 증기압을 최대한 낮게 유지한다 .The reaction starting temperature of reaction zone 3 starts at about 150 ~ 200 ℃ from reaction zone 2, and the temperature is raised by about 20 ~ 30 ℃ to maximize the hydrolysis reaction rate. The temperature is maintained at 180 ~ 230 ℃ to maintain the melt viscosity that has fallen due to the decrease in molecular weight of PET according to the reaction, and the vapor pressure of the produced EG is kept as low as possible.
반응구역 4는 2차 반응이 진행되는 구역으로 온도는 180~230℃에서 시작하여 180~200℃까지 온도를 낮추면서 긴 체류 시간으로 반응율을 최대한 높힌다. 반응구역 4의 끝 부분에서는 반응 결과 PET는 거의 모노머(Monomer)로 전환되고 소량 남은 올리고머로 점도가 매우 낮아지는데 온도를 조절하여 점도와 압력이 유지되도록 한다.Reaction zone 4 is a zone where the secondary reaction proceeds, and the temperature starts at 180 ~ 230 ℃ and lowers the temperature to 180 ~ 200 ℃ while increasing the reaction rate to the maximum with a long residence time. At the end of the reaction zone 4, as a result of the reaction, PET is almost converted to a monomer, and the viscosity is very low with a small amount of the remaining oligomer. The temperature is controlled so that the viscosity and pressure are maintained.
다섯번째 반응구역 5는 토출이 진행되는 구역으로 온도를 150~180℃ 정도로 낮춰준다. 고체 생성물로는 주성분인 테레프탈산(이하 "TPA"라고 한다)의 알칼리 금속 염, 일부 완전 분해되지 못한 PET, 올리고머가 있고 액체 생성물로는 EG와 알칼리금속 글리콜레이트가 있다. 이들 생성물들이 혼합된 슬러리 상태로 토출 된다. 이때 토출 온도를 적절히 조절하여 액체 생성 물질인 EG의 증기압을 낮춰서 EG 증기압으로 인한 돌비현상(Bumping)이 발생하지 않으면서 안정적으로 토출 되도록 한다. 토출물은 냉각하여 고체화 후 분쇄하여 분말로 만든다.The fifth reaction zone 5 is a zone where discharge proceeds and lowers the temperature to about 150 to 180 ° C. Solid products include alkali metal salts of the main component, terephthalic acid (hereinafter referred to as "TPA"), PET and oligomers that are not completely decomposed, and liquid products include EG and alkali metal glycolates. These products are discharged in a mixed slurry state. At this time, by appropriately adjusting the discharge temperature, the vapor pressure of EG, which is a liquid generating material, is lowered so that bumping due to the EG vapor pressure does not occur and the discharge is stably performed. The expelled material is cooled, solidified, and then pulverized into powder.
이와 같은 반응의 각 과정 생성물들은 라만 분광기로 확인한다. 라만 분광기는 고체 상태의 시료를 전처리 과정 없이 그대로 분자 구조를 측정 할 수 있어 본 발명의 각 생성물들의 반응 정도를 직접적으로 확인 할 수 있다. 그 외에도 PET의 분자량 변화를 IV로 측정 하고 익스트루더의 믹싱(Mixing) 성능을 확인하기 위해 SEM-EDX를 사용하여 Na분포 정도를 확인하였다.Each process product of this reaction was identified by Raman spectroscopy. Raman spectroscopy can measure the molecular structure of a solid-state sample as it is without pretreatment, so that the degree of reaction of each product of the present invention can be directly confirmed. In addition, the molecular weight change of PET was measured by IV, and the degree of Na distribution was confirmed using SEM-EDX to confirm the mixing performance of the extruder.
반응의 과정은 PET → TPA-Na → TPA의 과정을 거치는데 가장 큰 분자 구조변화의 특징은 다음과 같다.The reaction process goes through the process of PET → TPA-Na → TPA, and the characteristics of the largest molecular structural change are as follows.
PET는 벤젠고리와 에스테르 카르보닐 C=O가 가장 대표적인 구조로서 도 3과 같이 1601㎝-1 위치의 벤젠고리 피크와 1714㎝-1 위치에 에스테르의 큰 피크가 나온다. 이 피크는 PET의 에스테르 결합이 TPA-Na로 전환됨에 따라 크기가 감소하는데 이를 이용하여 PET가 얼마나 분해되었는지를 알 수 있다.In PET, a benzene ring and an ester carbonyl C=O are the most representative structures, and as shown in FIG. 3, a benzene ring peak at 1601 cm -1 and a large ester peak at 1714 cm -1 appear. This peak decreases in size as the ester bond of PET is converted to TPA-Na, and it can be used to determine how much PET is decomposed.
테레프탈산 나트륨(TPA-Na)는 에스테르 구조가 분해되어 카르복실산 나트륨 C-O-Na으로 바뀐 것인데 이와 같이 바뀜에 따라 도 4와 같이 벤젠고리 피크는 동일 위치에 있으나 1714㎝-1 의 에스테르 피크는 점차 없어지고 1123㎝-1 위치에 카르복실산 나트륨의 피크는 점차 커지게 된다. Sodium terephthalate (TPA-Na) is converted into sodium carboxylate CO-Na by decomposition of the ester structure. As shown in FIG. 4, the benzene ring peak is at the same position, but the ester peak at 1714 cm -1 gradually disappears and the peak of sodium carboxylate at the position of 1123 cm -1 gradually increases.
TPA는 테레프탈산 나트륨(TPA-Na)에 산을 넣어주어 Na가 떨어지고 H가 붙어 말단기가 카르복실산 -COOH가 된 것인데 그 결과 도 5와 같이 1123㎝-1의 카르복실산 나트륨의 피크가 없어지고 823㎝-1 에 새로운 카르복실산의 피크가 생기고 벤젠고리피크도 약간 shift되어 1617㎝-1 위치에서 나오는 것이 특징이다.TPA is obtained by adding acid to sodium terephthalate (TPA-Na), Na is dropped and H is attached, and the terminal group is carboxylic acid -COOH. As a result, the peak of sodium carboxylate at 1123 cm -1 disappears as shown in FIG. A new carboxylic acid peak is generated at 823 cm -1 , and the benzene ring peak is also slightly shifted to emerge from the 1617 cm -1 position.
이와 같은 기본 라만 스펙트럼을 바탕으로 실험 과정에서 얻어진 화합물들을 비교 확인하게 된다.Based on this basic Raman spectrum, the compounds obtained in the experimental process are compared and confirmed.
다음의 실시 예를 통하여 본 발명을 더욱 구체적으로 살펴본다. 그러나 본 발명이 하기 실시예에만 국한되는 것은 아니다.The present invention will be examined in more detail through the following examples. However, the present invention is not limited to the following examples.
실시예 1Example 1
테레프탈산 나트륨염 제조Preparation of sodium salt of terephthalate
5개의 반응구역(온도조절구역)을 갖는 트윈 익스트루더를 사용하여 IV=0.83dl/g인 PET 병 조각들과 무게 비로 5%의 NaOH를 잘 섞어 투입한 후 세컨드 익스트루더(Second extruder)를 사용하여 30%의 NaOH, 5%의 Na2CO3를 15%의 EG에 섞은 혼합 슬러리를 제조한 후 이를 익스트루더 반응구역 2에 투입하여 테레프탈산 나트륨염을 제조한다. Using a twin extruder with 5 reaction zones (temperature control zone), the PET bottle pieces with IV=0.83dl/g and 5% NaOH by weight are well mixed and introduced, and then the second extruder After preparing a mixed slurry in which 30% of NaOH and 5% of Na 2 CO 3 are mixed with 15% of EG, it is introduced into the extruder reaction zone 2 to prepare sodium terephthalate.
트윈 익스트루더(Twin extruder)는 전기 히터와 수냉각으로 온도 조절을 하고 진공으로 발생하는 가스를 제거하는 것도 가능하다. 스크류의 길이:지름 비는 40:1이다.The twin extruder can control the temperature with an electric heater and water cooling, and it is also possible to remove the gas generated by vacuum. The length:diameter ratio of the screw is 40:1.
이때 반응구역 1, 반응구역 2, 반응구역 3, 반응구역 4 및 반응구역 5 온도는 각각 160℃, 180℃, 220℃, 200℃ 및 170℃로 설정하였다.At this time, the reaction zone 1, reaction zone 2, reaction zone 3, reaction zone 4 and reaction zone 5 temperatures were set to 160 ° C, 180 ° C, 220 ° C, 200 ° C and 170 ° C, respectively.
PET의 익스트루더 내 체류 시간은 10분 정도가 되도록 스크류 회전수를 조정한다. The screw rotation speed is adjusted so that the residence time of PET in the extruder is about 10 minutes.
반응이 완료된 테레프탈산 나트륨염을 냉각한다.Cool the sodium terephthalate after the reaction is complete.
도 6은 반응이 완료된 테레프탈산 나트륨염을 찍은 라만 분광기 스펙트럼으로 매우 큰 피크가 1123㎝-1 위치에서 나오며 1714㎝-1 위치의 PET 에스테르 피크는 크게 작아져 흔적으로 보여지는 수준이다. Figure 6 is a Raman spectroscopy spectrum taken of sodium terephthalate after the reaction. A very large peak comes out at the 1123 cm -1 position and the PET ester peak at the 1714 cm -1 position is greatly reduced to a level that is seen as a trace.
실시예 2Example 2
테레프탈산 제조terephthalic acid manufacturing
실시예 1에서 얻은 테레프탈산 나트륨염 100g을 순수1L에 교반을 하면서 잘 녹인다. 약 10분 후 이 수용액을 여과지로 걸러 낸다. 여과지에 걸러진 고체를 다시 1L의 순수에 넣고 다시 교반을 하면서 잘 녹인다. 10분 후 다시 여과지로 거르고 걸러진 미용해분 고체는 건조 후 무게를 잰 결과 2g 이었고 이는 PET → TPA-Na2 전환 반응율이 98% 정도임을 의미한다. 2차 여과액 1L는 1차 여과액 1L와 합친다. 이 여과액 2L에 염산을 소량씩 섞고 잘 교반 후 산도(pH)를 잰다. 용액의 산도가 약산성(pH=4,5 정도)이 될 때까지 염산을 넣어 준다. 그러면 하얀색의 침전물들이 떨어지는데 이를 여과지로 걸러 모으고 순수로 2번 더 세정 후에 건조하여 테레프탈산을 제조한다.Dissolve 100 g of the sodium terephthalate salt obtained in Example 1 in 1 L of pure water while stirring. After about 10 minutes, the aqueous solution is filtered through a filter paper. Put the solids filtered out on the filter paper back into 1L of pure water and dissolve them well while stirring again. After 10 minutes, it was filtered again with a filter paper, and the filtered undissolved solid was 2 g as a result of weighing after drying, which means that the conversion reaction rate of PET → TPA-Na 2 was about 98%. 1 L of the second filtrate is combined with 1 L of the first filtrate. Mix a small amount of hydrochloric acid with 2L of this filtrate, stir well, and measure the acidity (pH). Add hydrochloric acid until the acidity of the solution becomes slightly acidic (pH=4,5). Then, white precipitates fall, which are collected through filter paper, washed twice more with pure water, and then dried to produce terephthalic acid.
제조한 테레프탈산의 라만 분광기 스펙트럼을 측정한 결과는 도 7과 같았다.The results of measuring the Raman spectroscopy spectrum of the prepared terephthalic acid were shown in FIG. 7 .
실시예 3Example 3
테레프탈산 칼륨염 제조Manufacture of potassium terephthalate salt
트윈 익스트루더에 IV=0.83dl/g인 PET 병 조각들과 무게 비로 5%의 KOH를 잘 섞어 1차로 투입한 후 세컨드 익스트루더(Second extruder)를 사용하여 35%의 KOH, 5%의 K2CO3를 15%의 EG에 섞은 혼합 슬러리를 2차로 투입한 것을 제외하고는 실시예 1과 동일한 조건으로 테레프탈산 칼륨염을 제조한다.Mix the PET bottle pieces with IV=0.83dl/g and 5% KOH by weight well in the twin extruder, and then add 35% KOH and 5% KOH using the second extruder. Potassium terephthalate salt was prepared under the same conditions as in Example 1, except that a mixed slurry in which K 2 CO 3 was mixed with 15% EG was secondarily added.
제조한 테레프탈산 칼륨염의 라만 분광기 스펙트럼은 도 16과 같았고 도 16은 테레프탈산 나트륨염의 라만 분광기 스펙트럼과 거의 유사하나 피크 세기 비 등에서 다소의 차이를 보임을 볼수 있다. The Raman spectroscopy spectrum of the prepared potassium terephthalate salt was the same as in FIG. 16, and FIG. 16 was almost similar to the Raman spectroscopy spectrum of the sodium terephthalate salt, but it could be seen that there were some differences in the peak intensity ratio.
실시예 4Example 4
테레프탈산 제조terephthalic acid manufacturing
실시예 3에서 얻은 테레프탈산 칼륨염 100g을 순수1L에 교반을 하면서 잘 녹인다. 약 10분 후 이 수용액을 여과지로 걸러 낸다. 여과지에 걸러진 고체를 다시 1L의 순수에 넣고 다시 교반을 하면서 잘 녹인다. 10분 후 다시 여과지로 거르고 걸러진 미용해분 고체는 건조 후 무게를 잰 결과 약4g 이었고 이는 PET → TPA-K2 전환 반응율이 96% 정도임을 의미한다. 2차 여과액 1L는 1차 여과액 1L와 합친다. 이 여과액 2L에 염산을 소량씩 섞고 잘 교반 후 산도(pH)를 잰다. 용액의 산도가 약산성(pH=4,5 정도)이 될 때까지 염산을 넣어 준다. 그러면 하얀색의 침전물들이 떨어지는데 이를 여과지로 걸러 모으고 순수로 2번 더 세정 후 건조하여 테레프탈산을 제조한다. 제조된 테레프탈산 라만 분광기 스펙트럼을 측정결과는 도 17과 같았고, 도 5의 표준물 TPA의 라만 분광기 스펙트럼과 비교한 결과로 부터 건조된 백색 고체 침전 물질이 TPA임을 알 수 있다.Dissolve 100 g of the potassium terephthalate salt obtained in Example 3 in 1 L of pure water while stirring. After about 10 minutes, the aqueous solution is filtered through a filter paper. Put the solids filtered out on the filter paper back into 1L of pure water and dissolve them well while stirring again. After 10 minutes, it was again filtered with a filter paper, and the filtered undissolved solid was about 4 g as a result of weighing after drying, which means that the conversion reaction rate of PET → TPA-K2 was about 96%. 1 L of the second filtrate is combined with 1 L of the first filtrate. Mix a small amount of hydrochloric acid with 2L of this filtrate, stir well, and measure the acidity (pH). Add hydrochloric acid until the acidity of the solution becomes slightly acidic (pH=4,5). Then, white precipitates fall, which are collected by filtering, washed twice more with pure water, and then dried to produce terephthalic acid. The results of measuring the prepared terephthalic acid Raman spectrometer spectrum are shown in FIG. 17, and it can be seen that the dried white solid precipitate material is TPA from the result of comparison with the Raman spectrometer spectrum of the standard TPA in FIG. 5.
실시예 5Example 5
NaCl을 사용한 알칼리 분말 mixing 정도 확인 실험2Alkali powder mixing test using NaCl 2
실시예 1과 동일한 시험 조건에 NaCl 분말을 무게 비로 10% 를 PET에 섞어 추가로 넣어준다. 토출물을 상온 냉각하여 굳힌 후 500배에서 SEM-EDS를 측정한 결과 도 19과 같이 Na(하늘색)이 PET에서 유래한 C(붉은색) 원소들과 큰 덩어리 없이 미세하게 잘 섞인 사진을 얻었는데 이는 NaCl의 분말들이 고르게 퍼져 있음을 의미 한다. 이는 투입 총량 NaOH를 PET 투입시 1차로 먼저 소량을 섞어주고 2차로 나누어 투입하는 것이 점진적인 분해반응으로 PET 점도를 완만하게 저하되게 만들어 혼합이 훨씬 균일하게 됨을 보여준다. 이는 NaOH를 한번에 투입하는 것 보다 나누어 투입하는 것이 훨씬 반응이 균일하고 잘 가는 이유를 설명해 준다. Under the same test conditions as in Example 1, 10% NaCl powder by weight was mixed with PET and added. As a result of measuring SEM-EDS at 500 times after the discharge was cooled to room temperature and hardened, as shown in FIG. 19, Na (light blue) and C (red) elements derived from PET were finely mixed without large lumps. This means that the powders of NaCl are evenly distributed. This shows that when the total amount of NaOH is added to PET, firstly mixing a small amount and secondly adding it gradually causes the viscosity of PET to decrease gradually through a gradual decomposition reaction, and the mixing becomes much more uniform. This explains why the reaction is much more uniform and goes well when NaOH is added in parts rather than at once.
비교실시예 1Comparative Example 1
테레프탈산 나트륨염 제조Preparation of sodium salt of terephthalate
5개의 반응구역(온도조절구역)을 갖는 트윈 익스트루더(Twin extruder)를 사용하여 IV=0.83dl/g인 PET 병 조각들과 NaOH를 반응 시켜 테레프탈산 나트륨염(TPA-Na2)를 제조 한다. 트윈 익스트루더(Twin extruder)는 전기 히터와 수냉각으로 온도 조절을 하고 진공으로 발생하는 가스를 제거하는 것도 가능하다. 스크류의 길이:지름 비는 40:1이다.Using a twin extruder with 5 reaction zones (temperature control zone), IV=0.83dl/g PET bottle pieces and NaOH are reacted to prepare sodium terephthalate (TPA-Na 2 ) . The twin extruder can control the temperature with an electric heater and water cooling, and it is also possible to remove the gas generated by vacuum. The length:diameter ratio of the screw is 40:1.
PET 조각들에 NaOH를 무게 비로 5%가 되게 균일하게 섞어 익스트루더에 투입한다. 이때 반응구역 1, 반응구역 2, 반응구역 3, 반응구역 4 및 반응구역 5 온도는 각각 160℃, 180℃, 220℃, 200℃ 및 170℃로 설정하였다.The PET pieces were uniformly mixed with NaOH at a weight ratio of 5% and then put into the extruder. At this time, the reaction zone 1, reaction zone 2, reaction zone 3, reaction zone 4 and reaction zone 5 temperatures were set to 160 ° C, 180 ° C, 220 ° C, 200 ° C and 170 ° C, respectively.
PET의 익스트루더 내 체류 시간은 10분 정도가 되도록 스크류 회전수를 조정한다. The screw rotation speed is adjusted so that the residence time of PET in the extruder is about 10 minutes.
반응이 완료된 테레프탈산 나트륨염을 냉각한다. 제조된 테레프탈산 나트륨염의 IV는 측정 결과 0.51dl/g 이었고, 라만 분광기 스펙트럼은 도 8과 같았다. IV가 0.83 → 0.51dl/g로 떨어진 것은 분해 반응이 일정 수준 있었음을 의미한다.Cool the sodium terephthalate after the reaction is complete. IV of the prepared sodium terephthalate was measured to be 0.51 dl/g, and the Raman spectrometer spectrum was as shown in FIG. 8 . The drop in IV from 0.83 to 0.51 dl/g means that there was a certain level of decomposition reaction.
또한 도 8의 라만 분광기 스펙트럼에서 보면 1123㎝-1위치에서 작은 피크가 생겼는데 이는 PET가 일부 분해되어 테레프탈산 나트륨염(TPA-Na2) 생성 되었음을 보여 준다.In addition, in the Raman spectrometer spectrum of FIG. 8, a small peak was generated at the position of 1123 cm -1 , indicating that PET was partially decomposed to produce sodium terephthalate (TPA-Na 2 ).
비교실시예 2Comparative Example 2
테레프탈산 나트륨염 제조Preparation of sodium salt of terephthalate
트윈 익스트루더에 IV=0.83dl/g인 PET 병 조각들과 무게 비로 15%의 NaOH를 섞어 투입한 것을 제외하고는 비교실시예 1과 동일한 조건으로 테레프탈산 나트륨염을 제조한다. 반응이 완료된 테레프탈산 나트륨의 라만 분광기 스펙트럼은 도 9와 같았고, 도 9에서는 매우 큰 피크가 1123㎝-1 위치에서 나오며 1714㎝-1 위치의 PET 에스테르 피크는 거의 절반으로 줄어 1123㎝-1 보다 작아졌으며 두 피크의 인텐시티(Intensity)는 테레프탈산 나트륨(TPA-Na2)양을 의미하는 1123㎝-1 피크가 약 1.2배 정도 더 큼을 볼수 있다.Sodium terephthalate was prepared under the same conditions as in Comparative Example 1, except that PET bottle pieces having IV = 0.83 dl/g and 15% NaOH by weight were added to the twin extruder. The Raman spectroscopy spectrum of the reacted sodium terephthalate was shown in FIG. 9, and in FIG. 9, a very large peak appeared at the 1123 cm -1 position and the PET ester peak at the 1714 cm -1 position was reduced by almost half, smaller than 1123 cm -1 As for the intensities of the two peaks, it can be seen that the 1123 cm -1 peak, which indicates the amount of sodium terephthalate (TPA-Na 2 ), is about 1.2 times larger.
비교실시예 3Comparative Example 3
테레프탈산 나트륨염 제조Preparation of sodium salt of terephthalate
트윈 익스트루더에 IV=0.83dl/g인 PET 병 조각들과 무게 비로 30%의 NaOH를 섞어 투입한 것을 제외하고는 비교실시예 1과 동일한 조건으로 테레프탈산 나트륨염을 제조한다. 반응이 완료된 테레프탈산 나트륨의 라만 분광기 스펙트럼은 도 10과 같았고, 도 10에서는 매우 큰 피크가 1123㎝-1 위치에서 나오며 1714㎝-1 위치의 PET 에스테르 피크는 크게 작아져 인텐시티(Intensity)가 1123㎝-1 피크에 비해 약 1/16 수준으로 줄었음을 볼수 있다.Sodium terephthalate was prepared under the same conditions as in Comparative Example 1, except that PET bottle pieces having IV = 0.83 dl/g and 30% NaOH by weight were added to the twin extruder. The Raman spectroscopy spectrum of the reacted sodium terephthalate is shown in FIG. 10, and in FIG. 10, a very large peak comes out at the 1123 cm -1 position and the PET ester peak at the 1714 cm -1 position is greatly reduced so that the intensity is 1123 cm - It can be seen that it is reduced to about 1/16 level compared to the 1 peak.
비교실시예 4Comparative Example 4
테레프탈산 나트륨염 제조Preparation of sodium salt of terephthalate
트윈 익스트루더에 IV=0.83dl/g인 PET 병 조각들과 무게 비로 5%의 NaOH를 잘 섞어 1차로 투입한 후, 세컨드 익스트루더(Second extruder)를 사용하여 30%의 NaOH를 15%의 EG에 섞은 혼합 슬러리를 2차로 투입한 것을 제외하고는 비교실시예 1과 동일한 조건으로 테레프탈산 나트륨염을 제조한다. 반응이 완료된 테레프탈산 나트륨의 라만 분광기 스펙트럼은 도 11과 같았고, 도 11에서는 매우 큰 피크가 1123㎝-1 위치에서 나오며 1714㎝-1 위치의 PET 에스테르 피크는 크게 작아져 인텐시티(Intensity)가 1123㎝-1 피크에 비해 약 1/18 수준으로 줄었으나 아직도 분해되지 않은 PET가 있음을 볼 수 있다.Mix the PET bottle pieces with IV = 0.83dl/g and 5% NaOH by weight into the twin extruder first, and then use the second extruder to mix 30% NaOH with 15% NaOH. Sodium terephthalate was prepared under the same conditions as in Comparative Example 1, except that the mixed slurry mixed with EG was secondarily added. The Raman spectroscopy spectrum of sodium terephthalate after the reaction was completed was shown in FIG. 11, and in FIG. 11, a very large peak appeared at the 1123 cm -1 position and the PET ester peak at the 1714 cm -1 position was greatly reduced, resulting in an intensity of 1123 cm - Although it is reduced to about 1/18 level compared to the 1 peak, it can be seen that there is still undecomposed PET.
비교실시예 5Comparative Example 5
테레프탈산 제조terephthalic acid manufacturing
비교실시예 4에서 얻은 테레프탈산 나트륨 100g을 순수1L에 교반을 하면서 잘 녹인다. 약 10분 후 이 수용액을 여과지로 걸러 낸다. 여과지에 걸러진 고체를 다시 1L의 순수에 넣고 다시 교반을 하면서 잘 녹인다. 10분 후 다시 여과지로 거르고 걸러진 미용해분 고체는 건조 후 무게를 잰 결과 13g 이었고 이는 PET → TPA-Na 전환 반응율이 약 87% 정도임을 의미한다. 2차 여과액 1L는 1차 여과액 1L와 합친다. 이 여과액 2L에 염산을 소량씩 섞고 잘 교반 후 산도(pH)를 잰다. 용액의 산도가 약산성(pH=4,5 정도)이 될 때까지 염산을 넣어 준다. 그러면 하얀색의 침전물들이 떨어지는데 이를 여과지로 걸러 모으고 순수로 2번 더 세정한 후 건조하여 테레프탈산을 제조한다. 제조된 테레프탈산의 라만 분광기 스펙트럼을 측정한 결과는 도 12와 같았다. 도 5의 표준물 TPA의 라만 분광기 스펙트럼과 비교한 결과로부터 제조한 백색 고체물질이 TPA임을 알 수 있다.Dissolve 100 g of sodium terephthalate obtained in Comparative Example 4 in 1 L of pure water while stirring. After about 10 minutes, the aqueous solution is filtered through a filter paper. Put the solids filtered out on the filter paper back into 1L of pure water and dissolve them well while stirring again. After 10 minutes, it was filtered again with filter paper, and the filtered undissolved solid was 13 g as a result of weighing after drying, which means that the conversion reaction rate of PET → TPA-Na was about 87%. 1 L of the second filtrate is combined with 1 L of the first filtrate. Mix a small amount of hydrochloric acid with 2L of this filtrate, stir well, and measure the acidity (pH). Add hydrochloric acid until the acidity of the solution becomes slightly acidic (pH=4,5). Then, white precipitates fall, which are collected by filtering, washed twice more with pure water, and then dried to produce terephthalic acid. The results of measuring the Raman spectroscopy spectrum of the prepared terephthalic acid were shown in FIG. 12. From the results of comparison with the Raman spectroscopy spectrum of the standard TPA in FIG. 5 , it can be seen that the prepared white solid material is TPA.
비교실시예 6Comparative Example 6
에탄올을 용매로 한 테레프탈산 나트륨염 제조Preparation of sodium terephthalate salt using ethanol as a solvent
1리터 4구 둥근바닥플라스크에 교반기, 온도계, 환류 냉각기를 설치하고 히팅맨틀에 장착한다. 여기에 IV=0.83dl/g인 PET 병 조각들 100그램, 에틸렌글리콜 나트륨염 30밀리리터,수산화나트륨 40그램, 에탄올 600ml를 넣는다. 히팅맨틀의 온도를 에탄올이 끓을때까지 높이고 교반기를 돌려 환류시키며 약 10시간 정도 반응을 시킨다. 반응 후 반응액을 100mesh 체로 걸러 미반응 잔류 PET 병 조각들을 걸러낸 후 순수한 에탄올 100ml로 닦아 준다. 걸러진 미 반응물들을 건조 후 무게를 잰 결과 23g이었다. 이는 고유점도가 0.75㎗/g 이상인 고중합도 PET는 분해 반응율이 약 77% 정도에 그침을 보여준다.Install a stirrer, thermometer, and reflux condenser in a 1 liter four-necked round bottom flask and mount it on a heating mantle. Here, 100 grams of PET bottle pieces with IV = 0.83 dl/g, 30 milliliters of ethylene glycol sodium salt, 40 grams of sodium hydroxide, and 600 ml of ethanol are put. Increase the temperature of the heating mantle until ethanol boils, turn the stirrer to reflux, and react for about 10 hours. After the reaction, the reaction solution was filtered through a 100 mesh sieve to filter out unreacted residual PET bottle pieces, and then wiped with 100 ml of pure ethanol. As a result of weighing the filtered unreacted materials after drying, the weight was 23 g. This shows that the high polymerization degree PET having an intrinsic viscosity of 0.75 dl/g or more has a decomposition reaction rate of about 77%.
미반응 PET 조각들을 제거한 흰색 침전물이 있는 에멀전 반응액을 종이 필터를 사용해 여과해서 흰색 침전물을 얻는다. 얻어진 흰색 침전물을 메탄올로 3번 세정 후 건조시켜 테레프탈산 나트륨염을 제조한다.The emulsion reaction solution having a white precipitate from which unreacted PET pieces are removed is filtered using a paper filter to obtain a white precipitate. The obtained white precipitate was washed with methanol three times and dried to prepare sodium terephthalate.
얻어진 테레프탈산 나트륨염은 물에 잘 녹았으며, 라만 분광기로 스펙트럼을 측정 결과 도 13과 같았으며 이를 도 4의 표준물인 테레프탈산 나트륨염 라만 분광기 스펙트럼과 비교해본 결과 성분이 테레프탈산 나트륨염 임을 확인하였다.The obtained sodium terephthalate was well soluble in water, and the spectrum was measured with a Raman spectrometer as shown in FIG. 13. As a result of comparing this with the Raman spectrometer spectrum of sodium terephthalate, which is the standard of FIG. 4, it was confirmed that the component was sodium terephthalate.
비교실시예 7Comparative Example 7
에탄올을 용매로 한 테레프탈산 나트륨염 제조Preparation of sodium terephthalate salt using ethanol as a solvent
1리터 4구 둥근바닥 플라스크에 교반기, 온도계, 환류 냉각기를 설치하고 히팅맨틀에 장착한다. 여기에 IV=0.55dl/g인 잘게 자른 bright PET 천 조각들 100그램, 에틸렌글리콜 나트륨염 30밀리리터,수산화나트륨 40그램, 에탄올 600ml를 넣는다. 히팅맨틀의 온도를 에탄올이 끓을때까지 높이고 교반기를 돌려 환류시키며 약 1시간 정도 반응을 시킨다. 반응 후 반응액을 100mesh 체로 걸러 미 반응 PET 병 조각들을 걸러낸 후 순수한 에탄올 100ml로 닦아 준다. 걸러진 미 반응물들을 전혀 없었다. 이는 중,저중합도 PET는 분해 반응율이 거의 100%로 잘됨을 의미한다.Install a stirrer, thermometer, and reflux condenser in a 1 liter four-necked round bottom flask and mount it on a heating mantle. Here, 100 grams of finely cut bright PET cloth pieces with IV = 0.55 dl/g, 30 milliliters of ethylene glycol sodium salt, 40 grams of sodium hydroxide, and 600 ml of ethanol are added. Raise the temperature of the heating mantle until the ethanol boils, turn the stirrer to reflux, and react for about 1 hour. After the reaction, the reaction solution was filtered through a 100 mesh sieve to filter out unreacted PET bottle pieces, and then wiped with 100 ml of pure ethanol. There were no filtered unreactants. This means that the decomposition reaction rate of medium and low polymerization degree PET is good at almost 100%.
미 반응물을 제거한 흰색 침전물이 있는 에멀전 여과액을 종이 필터를 사용해 여과해서 흰색 침전물을 얻는다. 얻어진 흰색 침전물을 메탄올로 3번 세정 후 건조시켜 테레프탈산 나트륨염을 제조한다.The emulsion filtrate having a white precipitate from which unreacted substances have been removed is filtered using a paper filter to obtain a white precipitate. The obtained white precipitate was washed with methanol three times and dried to prepare sodium terephthalate.
얻어진 테레프탈산 나트륨염은 물에 잘 녹았으며, 라만 분광기로 스펙트럼을 측정 결과 도 14와 같았으며 이를 도 4의 표준물인 테레프탈산 나트륨염 라만 분광기 스펙트럼과 비교해본 결과 성분이 테레프탈산 나트륨염 임을 확인하였다.The obtained sodium terephthalate was well soluble in water, and the result of measuring the spectrum with a Raman spectrometer was as shown in FIG.
비교실시예 8Comparative Example 8
테레프탈산의 제조Preparation of terephthalic acid
비교실시예 7에서 얻은 테레프탈산 나트륨 100g을 2리터 용량의 비이커에 넣고 증류수 1.5리터를 넣고 교반하여 완전히 녹인다. 그런 후 염산을 조금씩 넣어주면서 잘 교반하여 용액이 약산성(약 pH=4,5 정도)이 되게 한다. 그러면 백색 침전이 떨어진다. 이를 여과지로 걸러 모은 후 건조하여 테레프탈산을 제조한다.100 g of sodium terephthalate obtained in Comparative Example 7 was placed in a 2 liter beaker, and 1.5 liters of distilled water was added thereto and stirred to dissolve completely. Then, while adding hydrochloric acid little by little, stir well to make the solution slightly acidic (about pH = 4,5). A white precipitate then falls out. After filtering it with filter paper, it is dried to produce terephthalic acid.
제조한 테레프탈산의 라만 분광기 스펙트럼은 도 15과 같았고, 도 5의 표준물 라만 분광기 스펙트럼과 비교한 결과 테레프탈산임을 확인 할 수 있다.The Raman spectrometer spectrum of the prepared terephthalic acid was as shown in FIG. 15, and as a result of comparison with the standard Raman spectrometer spectrum of FIG. 5, it could be confirmed that the terephthalic acid was terephthalic acid.
비교실시예 9Comparative Example 9
NaCl을 사용한 알칼리 분말 믹싱(Mixing) 정도 확인 실험Alkali powder mixing test using NaCl
비교실시예 3과 동일한 반응 조건에 NaCl 분말을 무게 비로 10% 정도를 PET에 섞어 추가로 넣어준다. 토출물을 상온 냉각하여 굳힌 후 500배에서 SEM-EDS를 측정한 결과 도 18과 같이 NaCl에서 유래한 Na(초록색)이 PET에서 유래한 C(붉은색) 원소들의 잘 안 섞이고 큰 덩어리 상태가 많은 사진을 얻었는데 이는 한꺼번에 많은 NaOH의 투입으로 분해 반응이 너무 급격히 일어나 위치별 PET점도 차가 크고 변화가 불균일하게 되는데 이는 NaCl의 분말들이 불균일 퍼져 있음으로 확인 할 수 있다. 이는 실험에 사용하는 트윈 익스트루더 운영 조건에서 NaOH를 한번에 투입할 경우 믹싱(Mixing) 과정에서 잘 믹싱되지 않음을 보여준다.Under the same reaction conditions as in Comparative Example 3, about 10% of NaCl powder by weight was mixed with PET and added. As a result of measuring SEM-EDS at 500 times after the excipient was cooled to room temperature and hardened, as shown in FIG. A picture was obtained, which shows that the decomposition reaction occurs too rapidly due to the input of a large amount of NaOH at once, so that the difference in PET viscosity by location is large and the change is non-uniform. This shows that when NaOH is added at once under the operating conditions of the twin extruder used in the experiment, it is not mixed well during the mixing process.
본 발명은 중합도가 높아 유기용매로도 가수분해가 어려운 고유점도가 0.75㎗/g 이상인 고중합도의 폴리에틸렌테레프탈레이트로부터 유기용매 사용 없이도 테레프탈산을 높은 수율과 양호한 공정 안전성으로 제조할 수 있다. According to the present invention, terephthalic acid can be produced in high yield and good process safety from polyethylene terephthalate having a high degree of polymerization having an intrinsic viscosity of 0.75 dl/g or more, which is difficult to hydrolyze even with an organic solvent due to a high degree of polymerization, without using an organic solvent.

Claims (7)

  1. (i) 중합도가 0.75㎗/g 이상인 폴리에틸렌테레프탈레이트(PET)를 익스트루더(Extruder) 형태의 연속식 반응기(Continuous Reactor)에 투입한 후 가열,가압하여 유동성 폴리에틸렌테레프탈레이트를 제조하는 공정;(i) a process of producing fluid polyethylene terephthalate by heating and pressurizing polyethylene terephthalate (PET) having a degree of polymerization of 0.75 dl/g or more into an extruder type continuous reactor;
    (ii) 유동성 폴리에틸렌테레프탈레이트가 통과하는 상기 연속식 반응기의 내부 위치로 알칼리금속이 포함된 알칼리, 상기 알칼리금속의 약산염 및 에틸렌글리콜을 혼합시켜 제조한 혼합 슬러리를 투입하여 상기 연속식 반응기 내에서 유동성 폴리에틸렌테레프탈레이트와 상기 혼합 슬러리를 니트(Neat) 반응시켜 알칼리금속테레프탈레이트를 제조하는 공정; 및(ii) A mixed slurry prepared by mixing an alkali containing an alkali metal, a weak acid salt of the alkali metal, and ethylene glycol is introduced into the interior of the continuous reactor through which the fluid polyethylene terephthalate passes, and in the continuous reactor A step of preparing alkali metal terephthalate by neat (Neat) reaction of fluid polyethylene terephthalate and the mixed slurry; and
    (iii) 상기 알칼리금속테레프탈레이트를 물에 녹인 후 여과 및 원심분리를 통해 이물질을 제거하고, 물에 녹아 있는 알칼리금속테레프탈레이트에 산을 넣어 반응시켜 테레프탈산을 제조하는 공정;을 포함하는 것을 특징으로 하는 고유점도가 0.75㎗/g 이상인 고중합도 폴리에틸렌테레프탈레이트를 이용한 테레프탈산의 제조방법.(iii) dissolving the alkali metal terephthalate in water, removing foreign substances through filtration and centrifugation, and adding acid to the alkali metal terephthalate dissolved in water to react to produce terephthalic acid; characterized by comprising a Method for producing terephthalic acid using high polymerization polyethylene terephthalate having an intrinsic viscosity of 0.75 dl / g or more.
  2. 제1항에 있어서, 유동성 폴리에틸렌테레프탈레이트가 통과하는 상기 연속식 반응기의 서로 다른 위치에서 상기 혼합 슬러리를 1~5 단계로 나누어 투입해 주는 것을 특징으로 하는 고유점도가 0.75㎗/g 이상인 고중합도 폴리에틸렌테레프탈레이트를 이용한 테레프탈산의 제조방법.The high polymerization degree polyethylene having an intrinsic viscosity of 0.75 dl/g or more according to claim 1, wherein the mixed slurry is divided into steps 1 to 5 at different positions of the continuous reactor through which the fluid polyethylene terephthalate passes. Method for producing terephthalic acid using terephthalate.
  3. 제1항에 있어서, 중합도가 0.75㎗/g 이상인 폴리에틸렌테레프탈레이트는 호모 폴리머(Homo polymer)및 공중합 폴리머(Copolymer : 공중합체) 중에서 선택된 1종인 것을 특징으로 하는 고유점도가 0.75㎗/g 이상인 고중합도 폴리에틸렌테레프탈레이트를 이용한 테레프탈산의 제조방법.The method of claim 1, wherein the polyethylene terephthalate having a degree of polymerization of 0.75 dl/g or more is one selected from a homopolymer and a copolymer, and has a high degree of polymerization having an intrinsic viscosity of 0.75 dl/g or more. Method for producing terephthalic acid using polyethylene terephthalate.
  4. 제1항에 있어서, 중합도가 0.75㎗/g 이상인 폴리에틸렌테레프탈레이트를 익스트루더(Extruder) 형태의 연속식 반응기에 투입할 때 알칼리금속이 포함된 알칼리를 함께 투입해 주는 것을 특징으로 하는 고유점도가 0.75㎗/g 이상인 고중합도 폴리에틸렌테레프탈레이트를 이용한 테레프탈산의 제조방법.The method of claim 1, wherein the polyethylene terephthalate having a polymerization degree of 0.75 dl / g or more has an intrinsic viscosity characterized in that an alkali containing an alkali metal is added together when the polyethylene terephthalate is introduced into an extruder type continuous reactor. A method for producing terephthalic acid using polyethylene terephthalate having a high polymerization degree of 0.75 dl/g or more.
  5. 제4항에 있어서, 중합도가 0.75㎗/g 이상인 폴리에틸렌테레프탈레이트와 함께 연속식 반응기에 투입되는 알칼리금속이 포함된 알칼리 함량을 상기 폴리에틸렌테레프탈레이트와 무게 비로 5~10%가 되도록 조절해 주는 것을 특징으로 하는 고유점도가 0.75㎗/g 이상인 고중합도 폴리에틸렌테레프탈레이트를 이용한 테레프탈산의 제조방법.The method of claim 4, characterized in that the alkali content including the alkali metal introduced into the continuous reactor together with polyethylene terephthalate having a polymerization degree of 0.75 dl/g or more is adjusted to 5 to 10% in weight ratio with the polyethylene terephthalate. Method for producing terephthalic acid using high polymerization degree polyethylene terephthalate having an intrinsic viscosity of 0.75 dl / g or more.
  6. 제1항에 있어서, 상기 알칼리금속이 포함된 알칼리 및 알칼리금속의 약산염을 이루는 알칼리금속은 리튬(Li), 나트륨(Na) 및 칼륨(K)중에서 선택된 1종인 것을 특징으로 하는 고유점도가 0.75㎗/g 이상인 고중합도 폴리에틸렌테레프탈레이트를 이용한 테레프탈산의 제조방법.The method of claim 1, wherein the alkali metal containing the alkali metal and the alkali metal constituting the weak acid salt of the alkali metal is one selected from lithium (Li), sodium (Na) and potassium (K), characterized in that the intrinsic viscosity is 0.75 Method for producing terephthalic acid using polyethylene terephthalate having a high polymerization degree of ㎗ / g or more.
  7. 제1항에 있어서, 상기 알칼리금속의 약산염은 알칼리금속과 탄산(H2CO3)의 반응으로 생성된 염, 알칼리금속과 인산(H3PO4)의 반응으로 생성된 염, 알칼리금속과 초산의 반응으로 생성된 염 및 알칼리금속과 포름산의 반응으로 생성된 염 중에서 선택된 1종인 것을 특징으로 하는 고유점도가 0.75㎗/g 이상인 고중합도 폴리에틸렌테레프탈레이트를 이용한 테레프탈산의 제조방법.The method of claim 1, wherein the weak acid salt of the alkali metal is a salt produced by the reaction of an alkali metal and carbonic acid (H 2 CO 3 ), a salt produced by the reaction of an alkali metal and phosphoric acid (H 3 PO 4 ), an alkali metal and Method for producing terephthalic acid using high polymerization degree polyethylene terephthalate having an intrinsic viscosity of 0.75 dl / g or more, characterized in that it is one selected from salts produced by the reaction of acetic acid and salts produced by the reaction of alkali metals and formic acid.
PCT/KR2022/006376 2021-09-28 2022-05-04 Method for producing terephthalic acid by using high degree of polymerization of polyethylene terephthalate having intrinsic viscosity of 0.75 dl/g or more WO2023054830A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023501625A JP7484010B2 (en) 2021-09-28 2022-05-04 Method for producing terephthalic acid using polyethylene terephthalate with high polymerization degree having intrinsic viscosity of 0.75 dl/g or more

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210127706A KR102381508B1 (en) 2021-09-28 2021-09-28 Method of manufacturing for terephthalic acid using polyethyleneterephtralate with high degree of polymerization more than 0.75㎗/g of intrinsic viscosity
KR10-2021-0127706 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023054830A1 true WO2023054830A1 (en) 2023-04-06

Family

ID=81183460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006376 WO2023054830A1 (en) 2021-09-28 2022-05-04 Method for producing terephthalic acid by using high degree of polymerization of polyethylene terephthalate having intrinsic viscosity of 0.75 dl/g or more

Country Status (5)

Country Link
US (1) US20230107495A1 (en)
EP (1) EP4155289B1 (en)
JP (1) JP7484010B2 (en)
KR (1) KR102381508B1 (en)
WO (1) WO2023054830A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102381508B1 (en) * 2021-09-28 2022-04-01 김 영 범 Method of manufacturing for terephthalic acid using polyethyleneterephtralate with high degree of polymerization more than 0.75㎗/g of intrinsic viscosity
WO2024043707A1 (en) * 2022-08-25 2024-02-29 효성첨단소재 주식회사 Eco-friendly tire cord and tire using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977905A (en) * 1995-09-12 1997-03-25 Kobe Steel Ltd Apparatus and method for recovering constituent monomers from polyethylene terephthalate
EP0876324B1 (en) * 1995-12-30 2000-04-05 Sunkyong Industries Co., Ltd. Process for manufacturing terephthalic acid
KR100278525B1 (en) * 1992-11-09 2001-02-01 엘마레, 알프레드 Method for recovering terephthalate and alkylene glycol of alkali metal or alkaline earth metal from polyalkylene terephthalate
KR20050036847A (en) * 2001-10-16 2005-04-20 데이진 가부시키가이샤 Method for recycling pet bottle
KR20180027539A (en) * 2015-07-09 2018-03-14 루프 인더스트리즈, 인크. Depolymerization of polyethylene terephthalate
KR102381508B1 (en) * 2021-09-28 2022-04-01 김 영 범 Method of manufacturing for terephthalic acid using polyethyleneterephtralate with high degree of polymerization more than 0.75㎗/g of intrinsic viscosity

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3808672B2 (en) * 1999-11-26 2006-08-16 東洋製罐株式会社 Industrial recovery method of terephthalic acid from recovered pulverized polyethylene terephthalate
EP1138663B1 (en) * 2000-02-29 2002-10-16 Massimo Broccatelli Method for recovery of terephthalic acid from a material containing poly(ethylene terephthalates)
JP4080720B2 (en) 2001-10-16 2008-04-23 帝人ファイバー株式会社 How to recycle PET bottles
ES2328139T3 (en) 2004-01-27 2009-11-10 Universidad Iberoamericana, A.C. CHEMICAL PROCEDURE FOR RECYCLING OF POLYETHYLENE TEREFTALATE (PET) WASTE.
CZ299244B6 (en) * 2004-06-21 2008-05-28 Process of basic hydrolysis of waste polyethyleneterephthalate and apparatus for making the same
JP4937521B2 (en) 2005-03-31 2012-05-23 三井化学株式会社 Method for recovering high-purity monomer from polyester, high-purity monomer, polyester
DE102018122210B4 (en) * 2018-09-12 2023-06-29 Rittec Umwelttechnik Gmbh Process and use of a device for recycling waste containing polyalkylene terephthalate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100278525B1 (en) * 1992-11-09 2001-02-01 엘마레, 알프레드 Method for recovering terephthalate and alkylene glycol of alkali metal or alkaline earth metal from polyalkylene terephthalate
JPH0977905A (en) * 1995-09-12 1997-03-25 Kobe Steel Ltd Apparatus and method for recovering constituent monomers from polyethylene terephthalate
EP0876324B1 (en) * 1995-12-30 2000-04-05 Sunkyong Industries Co., Ltd. Process for manufacturing terephthalic acid
KR20050036847A (en) * 2001-10-16 2005-04-20 데이진 가부시키가이샤 Method for recycling pet bottle
KR20180027539A (en) * 2015-07-09 2018-03-14 루프 인더스트리즈, 인크. Depolymerization of polyethylene terephthalate
KR102381508B1 (en) * 2021-09-28 2022-04-01 김 영 범 Method of manufacturing for terephthalic acid using polyethyleneterephtralate with high degree of polymerization more than 0.75㎗/g of intrinsic viscosity

Also Published As

Publication number Publication date
JP2023548263A (en) 2023-11-16
US20230107495A1 (en) 2023-04-06
JP7484010B2 (en) 2024-05-15
EP4155289A1 (en) 2023-03-29
KR102381508B1 (en) 2022-04-01
EP4155289B1 (en) 2024-01-31

Similar Documents

Publication Publication Date Title
WO2023054830A1 (en) Method for producing terephthalic acid by using high degree of polymerization of polyethylene terephthalate having intrinsic viscosity of 0.75 dl/g or more
EP1292558B1 (en) The method of chemical recycling of polyethylene terephthalate waste
PL165798B1 (en) Method of obtaining polyester resin and method of improving quality of waste ethylene terephtalate
WO2021060686A1 (en) Polyester resin blend, polyester film, and preparation method thereof
WO2024014723A1 (en) Method for producing bis-2-hydroxyethyl terephthalate through continuous depolymerization
WO2015080438A1 (en) Polyamide resin and method for manufacturing same
WO2021010591A1 (en) Polyester resin blend
WO2019093770A1 (en) Molded product manufactured from high heat resistant polycarbonate ester
EP0662466B1 (en) Continuous process for the recovery of terephthalic acid from waste or used products of polyalkylene terephthalate polymers
WO2024071915A1 (en) Polymerization raw material comprising recycled bis(2-hydroxyethyl) terephthalate, and production method for same
CN115003740A (en) Optimized process for depolymerizing polyesters comprising polyethylene terephthalate
JP3763784B2 (en) Method for producing ester-forming monomer
WO2022154224A1 (en) Method for depolymerising polyester
EP0583807B1 (en) A process for preparing high molecular weight polyethyleneterephthalate from recycled PET
WO2021066284A1 (en) Polyester resin blend and molded article formed therefrom
CN114195632A (en) Terephthalic acid, preparation method thereof and method for recycling polyethylene glycol terephthalate with high polymerization degree
WO2024112099A1 (en) Recycled bis(4-hydroxybutyl)terephthalate, method for preparing same, and polyester resin using same
CN114787259A (en) Improved process for depolymerizing polyesters comprising polyethylene terephthalate
WO2024106889A1 (en) Method for chemical-mechanical depolymerizing polyester
WO2022154223A1 (en) Method for decolorizing polyester, and method for depolymerising polyester comprising same
WO2024112056A1 (en) Method for producing pellets comprising polyhydroxyalkanoate, and pellets produced thereby
WO2023195668A1 (en) Method for preparing bis(glycol)terephthalate and polyester resin using same
WO2023219335A1 (en) Method for producing polyester resin and fiber comprising regenerated bis(2-hydroxyethyl) terephthalate
WO2023163481A1 (en) Method for preparing recycled bis(2-hydroxyethyl) terephthalate through multi-step depolymerization
JPH10101784A (en) Production of polyester by utilizing scrap

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023501625

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE