WO2023054752A1 - Greenhouse gas reduction device using liquid metal and method for operating same - Google Patents

Greenhouse gas reduction device using liquid metal and method for operating same Download PDF

Info

Publication number
WO2023054752A1
WO2023054752A1 PCT/KR2021/013387 KR2021013387W WO2023054752A1 WO 2023054752 A1 WO2023054752 A1 WO 2023054752A1 KR 2021013387 W KR2021013387 W KR 2021013387W WO 2023054752 A1 WO2023054752 A1 WO 2023054752A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid metal
raw material
unit
greenhouse gas
reduction device
Prior art date
Application number
PCT/KR2021/013387
Other languages
French (fr)
Korean (ko)
Inventor
이은도
오승진
이현성
정수화
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority claimed from KR1020210128857A external-priority patent/KR102668723B1/en
Publication of WO2023054752A1 publication Critical patent/WO2023054752A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a greenhouse gas reduction device using a liquid metal and an operating method thereof, and more particularly, to a greenhouse gas reduction device using a liquid metal and an operating method thereof for simultaneously removing a large amount of various types of greenhouse gases.
  • the technology for producing resources using CO 2 belongs to the category of CCU (Carbon capture and utilization) technology, and the technology for producing carbon and oxygen using CO 2 is a necessary technology for all industries that require greenhouse gas reduction.
  • demand is increasing in power generation, steelmaking, oil refining, and petrochemical industries, where carbon dioxide emission is a problem, and transportation industries that use fossil fuels. It can be used in the field of oxygen utilization, and carbon can also be used as a high value-added material.
  • Resource production technologies using CO 2 are mostly technologies for producing carbon compounds or hydrocarbon-based materials through a reaction between CO 2 and other materials.
  • CCS carbon capture and storage
  • CO 2 mineralization technology for mineralizing and storing CO 2
  • formic acid through gaseous chemical CO 2 conversion
  • ASU Air Separation unit
  • pyrolysis that separates fixed carbon from solid hydrocarbons
  • thermochemical reactions between gas and liquid hydrocarbons There is a technology for producing carbon through carbon production, an electrolysis technology for decomposing CO 2 through an electrochemical method, and the like.
  • the types of greenhouse gases include direct greenhouse gases and indirect greenhouse gases.
  • Direct greenhouse gases are substances that directly contribute to the greenhouse effect, and include perfluorinated compounds such as carbon dioxide and sulfur hexafluoride.
  • Indirect greenhouse gases are substances that can be converted into greenhouse gases by reacting with other substances, and include substances such as nitrogen oxides and sulfur oxides.
  • the conventional technology has a problem in commercialization because it is not economical because the conversion rate during reduction and decomposition of CO 2 corresponding to a very stable molecule is low.
  • An object of the present invention for solving the above problems is to provide a greenhouse gas reduction device using liquid metal and an operating method thereof for simultaneously removing a large amount of various kinds of greenhouse gases.
  • Configuration of the present invention for achieving the above object is a reaction unit provided to accommodate the liquid metal therein; and a transfer unit for injecting a raw material, which is a greenhouse gas compound, into the reaction unit, wherein the reaction unit aerates the raw material inside the liquid metal to separate molecules constituting the raw material.
  • a gas abatement device is provided.
  • the transfer unit may include a storage tank in which the raw material is stored; a flow meter for measuring the amount of the raw material supplied from the storage tank to the reaction unit; And it may be characterized in that it comprises a nozzle provided to inject the raw material provided from the storage tank into the inside of the liquid metal.
  • the raw material may include carbon dioxide, and the carbon dioxide may be prepared to be separated into carbon, carbon monoxide, and oxygen by the liquid metal.
  • a recovery unit coupled to one side of the reaction unit is further included, and the recovery unit is generated as the carbon dioxide is phase-separated by the liquid metal, and the solid carbon located on top of the liquid metal. It may be characterized in that it is provided to recover.
  • it may be located on the downstream side of the recovering unit and may further include a processing unit provided to remove liquid metal included in the solid carbon.
  • a valve unit provided downstream of the processing unit may further include a first three-way valve configured to separate and recover solid carbon from which the liquid metal is removed; and a second three-way valve provided downstream of the first three-way valve to discharge the gas recovered from the recovery unit.
  • a measurement unit connected to the recovery unit may be further included, and the measurement unit may be provided to measure the type and concentration of the gas recovered from the recovery unit.
  • control unit may be provided to be connected to the measurement unit, and may be provided to adjust the concentration ratio of oxygen and carbon monoxide generated by controlling the temperature of the reaction unit.
  • the raw material may be characterized in that it further comprises sulfur hexafluoride (SF6).
  • SF6 sulfur hexafluoride
  • the liquid metal is made of liquid tin, SF 6 + 4Sn -> 3SnF 2 + SnS
  • the liquid tin and the sulfur hexafluoride may be characterized in that a chemical reaction is made by the above formula .
  • the configuration of the present invention for achieving the above object is a method of operating a greenhouse gas reduction device using a liquid metal, a) injecting a raw material into the reaction unit; b) separating the molecules constituting the raw material by causing a chemical reaction between the liquid metal and the raw material in the introduced reaction unit; and c) recovering the molecule or atom formed by being separated from the raw material.
  • the raw material includes carbon dioxide
  • the carbon dioxide may be separated into carbon, carbon monoxide, and oxygen by the liquid metal.
  • the effect of the present invention according to the configuration as described above, by controlling the temperature range of the liquid metal can cause a change in the decomposition rate of carbon dioxide and the product.
  • the production of carbon monoxide can be controlled by using solid carbon and oxygen/oxide as main products and changing temperature.
  • greenhouse gas raw materials such as perfluorinated compounds (PFCs), nitrogen oxides, and sulfur oxides in addition to carbon dioxide into liquid metal.
  • FIG. 1 is a block diagram of a greenhouse gas reduction device using liquid metal according to an embodiment of the present invention.
  • 2 to 4 are graphs showing changes in carbon dioxide, carbon monoxide, carbon and oxygen according to liquid metal temperature and reaction time according to an embodiment of the present invention.
  • 5 is a graph showing the reduction rate of carbon dioxide according to temperature according to an embodiment of the present invention.
  • FIG. 6 is a graph showing a change in concentration of a perfluorinated compound according to a liquid metal temperature according to an embodiment of the present invention.
  • Figure 7 is a graph showing the tin fluoride modification rate according to the liquid metal temperature according to an embodiment of the present invention.
  • FIG. 8 is a graph showing reduction rates of sulfur oxides and nitrogen oxides according to liquid metal temperatures according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of an operating method of a greenhouse gas reduction device using liquid metal according to an embodiment of the present invention.
  • the reaction unit provided to accommodate the liquid metal therein; and a transfer unit for injecting a raw material, which is a greenhouse gas compound, into the reaction unit, wherein the reaction unit is provided to separate molecules constituting the raw material by aerating the raw material into the liquid metal.
  • FIG. 1 is a block diagram of a greenhouse gas reduction device using liquid metal according to an embodiment of the present invention.
  • the greenhouse gas reduction device 100 using the liquid metal 10 includes a reaction unit 110, a transfer unit 120, a recovery unit 130, a processing unit 140, a valve unit 150, A measurement unit 160 and a control unit 170 may be included.
  • the reaction part 110 may be provided in the form of a container in which the liquid metal 10 can be accommodated, and may be made of a material having heat resistance so that no damage occurs even in a high-temperature environment of 1000 degrees or more.
  • liquid metal 10 may be liquid tin, but is not limited thereto. Combinations of molten metals and transition metals that can be utilized as liquid metal catalysts can be utilized.
  • a liquid metal 10 storage unit (not shown) may be provided in the reaction unit 110 .
  • the liquid tin storage unit may be provided to selectively supply the liquid metal 10 in consideration of the amount of the liquid metal 10 in the reaction unit 110 .
  • reaction unit 110 may be provided with a built-in heating device to adjust the temperature of the liquid metal 10 accommodated therein.
  • the transfer unit 120 may be provided to input a raw material, which is a greenhouse gas compound, into the reaction unit 110, and may include a storage tank 121, a flowmeter 122, and a nozzle 123.
  • the storage tank 121 may store the raw material.
  • the raw material may include carbon dioxide.
  • the type of raw material may include greenhouse gas compounds such as perfluorinated compounds, sulfur oxides, and nitrogen oxides in addition to carbon dioxide, and any one or more of them may be accommodated.
  • the flowmeter 122 may be provided to measure and control the amount of the raw material provided from the storage tank 121 to the reaction unit 110 .
  • the transfer unit 120 may further include a raw material preheater (not shown) for preheating the raw material.
  • the nozzle 123 may be provided to inject the raw material provided from the storage tank 121 into the liquid metal 10 .
  • the raw material may be preheated through waste heat exchange or a separate heating device.
  • the nozzle 123 is formed extending to the inside of the liquid metal 10 accommodated in the reaction unit 110, so that the raw material may be discharged from the inside of the liquid metal 10.
  • the reaction unit 110 may be provided to aerate the raw material supplied by the transfer unit 120 to separate molecules constituting the raw material.
  • the carbon dioxide may be separated into carbon, carbon monoxide, and oxygen by the liquid metal 10 .
  • the recovery unit 130 is coupled to one side of the reaction unit 110 and may be provided to recover solid carbon located on top of the liquid metal 10 . Specifically, the solid carbon is generated as the carbon dioxide is phase separated by the liquid metal 10, and the generated solid carbon floats on top of the liquid metal 10.
  • the recovery unit 130 may be provided in the form of a cyclone and a filter to recover solid carbon floating on top of the liquid metal 10 .
  • the recovery unit 130 may be provided to further recover oxygen and carbon monoxide formed by separating molecules constituting the carbon dioxide in addition to the solid carbon.
  • the treatment unit 140 is located downstream of the recovery unit 130 and may be provided to remove a small amount of liquid metal 10 included in the solid carbon.
  • the valve unit 150 is provided downstream of the processing unit 140 and may include a first three-way valve 151 and a second three-way valve 152 .
  • the first three-way valve 151 may be provided to separate and recover solid carbon from which the liquid metal is removed while passing through the processing unit 140 .
  • the second three-way valve 152 may be provided downstream of the first three-way valve 151 to discharge the gas recovered from the recovery unit. Specifically, the second three-way valve 152 may be provided to discharge and recover gases such as carbon monoxide and oxygen generated when the raw material is carbon dioxide. Unreacted carbon dioxide in the product gas may be separated and re-supplied to the liquid metal reactor.
  • the second three-way valve 152 may be provided to further recover tin oxide.
  • a regeneration unit (not shown) provided to separate the recovered tin oxide into oxygen and tin.
  • the regeneration unit may be provided to supply the separated liquid tin to the reaction unit 110 again.
  • the measurement unit 160 is connected to the recovery unit 130 and may be provided to measure the type and concentration of the gas recovered from the recovery unit.
  • the measurement unit 160 may be provided to measure concentrations of oxygen, carbon monoxide, carbon dioxide, and the like.
  • the controller 170 is connected to the measurement unit 160 and may be provided to control the temperature of the reaction unit 110 .
  • control unit 170 may be provided to adjust the concentration ratio of oxygen and carbon monoxide generated in conjunction with the measuring unit 160 .
  • 2 to 4 are graphs showing changes in carbon dioxide, carbon monoxide, carbon and oxygen according to liquid metal temperature and reaction time according to an embodiment of the present invention.
  • the reaction shown in Formula 1 is mainly performed according to the temperature change of the liquid tin. This reaction is dominant in the high-temperature region, and a part of the liquid tin is oxidized to reduce carbon dioxide to generate carbon monoxide.
  • 5 is a graph showing the reduction rate of carbon dioxide according to temperature according to an embodiment of the present invention. The maximum reduction rate may vary (increase) depending on raw material supply and reaction conditions.
  • the reaction between liquid tin and carbon dioxide can produce carbon as a reactant as shown in Formula 2 below.
  • the reaction of the overall formula 3 including the above formulas 1 and 2 is performed by adjusting the temperature of the liquid tin, the amount of the reactant, and the residence time. At this time, a desired product can be selectively obtained by changing the reaction conditions or by combining multiple reactions under different conditions.
  • control unit 170 may be provided to adjust the concentration ratio according to the generation of oxygen, carbon monoxide, and carbon by controlling the temperature of the liquid tin in association with the measurement unit 160.
  • the maximum reduction rate may vary (increase) depending on raw material supply and reaction conditions.
  • the present invention prepared as described above can phase-separate greenhouse gases such as carbon dioxide to generate high-purity oxygen, carbon, and carbon monoxide of high added value.
  • a reaction shown in Chemical Formula 4 may occur in the reaction unit.
  • Figure 6 is a graph showing the perfluoride compound concentration according to the liquid metal temperature according to an embodiment of the present invention
  • Figure 7 is a graph showing the tin fluoride modification rate according to the liquid metal temperature according to an embodiment of the present invention.
  • the concentration of sulfur hexafluoride which is a perfluoride compound contained in the liquid tin, converges to 0 at about 600 degrees or more and can be completely removed, and at the same time, the modification rate of tin fluoride is about It converges to 100% above 600 degrees.
  • control unit 170 may be provided to control the temperature of the reaction unit 110 to 600 degrees or higher when sulfur hexafluoride is included in the raw material.
  • a chemical reaction occurring between the nitrogen oxide and the liquid tin in the reaction unit 110 may be as shown in Chemical Formulas 5 and 6 below.
  • a chemical reaction occurring between the sulfur oxide and the liquid tin in the reaction unit 110 may be represented by Chemical Formulas 7 and 8 below.
  • FIG. 8 is a graph showing reduction rates of sulfur oxides and nitrogen oxides according to liquid metal temperatures according to an embodiment of the present invention.
  • the removal rate of nitrogen oxides is as high as 80% or more even when the temperature of liquid tin is 300 degrees or more, and the removal rate of sulfur oxides is 70% or more when the temperature is 600 degrees or more.
  • liquid tin when the temperature of liquid tin is 600 degrees or more, it is possible to simultaneously reduce greenhouse gases such as carbon dioxide, sulfur hexafluoride, nitrogen oxides, and sulfur oxides.
  • the control unit 170 may be provided to adjust the temperature of the liquid metal 10 accommodated in the reaction unit 110 in response to the type and concentration of the raw material input to the reaction unit 110 and the product to be produced. .
  • FIG. 9 is a flowchart of an operating method of a greenhouse gas reduction device using liquid metal according to an embodiment of the present invention.
  • the operation method of the greenhouse gas reduction device using liquid metal may first perform a step (S10) of introducing raw materials into the reaction unit.
  • the transfer unit 120 may be provided to input the raw material to the reaction unit 110.
  • the transfer unit 120 may be provided to inject carbon dioxide into the reaction unit 110, and in addition to carbon dioxide, any one or more of greenhouse gases such as perfluorinated compounds such as sulfur hexafluoride, nitrogen oxides, and sulfur oxides may be transported together. It may be arranged to add more.
  • greenhouse gases such as perfluorinated compounds such as sulfur hexafluoride, nitrogen oxides, and sulfur oxides may be transported together. It may be arranged to add more.
  • the liquid metal 10 of the reaction unit 110 may be in a temperature controlled state according to the type and concentration of molecules or compounds to be obtained by separating the raw materials. there is.
  • a step (S20) of separating molecules constituting the raw material by a chemical reaction between the liquid metal and the raw material in the input reaction unit may be performed.
  • the raw material input to the reaction unit 110 has a chemical reaction with the liquid metal 10, and various Can be separated into any one or more of the species' molecules and compounds.
  • step (S20) of separating the molecules constituting the raw material by a chemical reaction between the liquid metal and the raw material in the introduced reaction unit it may be provided to further separate the formed compound.
  • a separate treatment process for separating tin sulfide in which liquid tin and sulfur are combined into sulfur and liquid tin may be further provided.
  • the step of recovering the molecules separated from the raw material (S30) may be performed.
  • the measuring unit 160 measures the types and concentrations of the molecules and compounds to be recovered, and the controller 170 adjusts the temperature of the liquid metal 10 accordingly. can be arranged to do so.
  • the present invention thus prepared is economical because it can simultaneously reduce various types of greenhouse gases, including direct greenhouse gases and indirect greenhouse gases, with one device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The present invention relates to a greenhouse gas reduction device using a liquid metal and a method for operating same and, more specifically, to a greenhouse gas reduction device, using a liquid metal, for simultaneously removing a variety of greenhouse gases in large quantities, and a method for operating same. To accomplish the above purpose, the present invention provides a greenhouse gas reduction device using a liquid metal, the device comprising: a reaction part which is provided to hold a liquid metal therein; and a transfer part which introduces a raw material comprising greenhouse gas compounds into the reaction part, wherein the reaction part is provided to aerate the raw material in the liquid metal to dissociate molecules constituting the raw material.

Description

액체금속을 이용한 온실가스 저감 장치 및 이의 작동방법Greenhouse gas reduction device using liquid metal and its operation method
본 발명은 액체금속을 이용한 온실가스 저감 장치 및 이의 작동방법에 관한 것으로, 보다 상세하게는 다종의 온실가스를 동시에 다량으로 제거하기 위한 액체금속을 이용한 온실가스 저감 장치 및 이의 작동방법에 관한 것이다.The present invention relates to a greenhouse gas reduction device using a liquid metal and an operating method thereof, and more particularly, to a greenhouse gas reduction device using a liquid metal and an operating method thereof for simultaneously removing a large amount of various types of greenhouse gases.
CO2를 이용해 자원을 생산하는 기술은 CCU(Carbon capture and utilization) 기술 범주에 속하며, CO2를 이용해 탄소와 산소를 생산하는 기술은 온실가스 저감이 필요한 모든 산업군에 필요한 기술이다.The technology for producing resources using CO 2 belongs to the category of CCU (Carbon capture and utilization) technology, and the technology for producing carbon and oxygen using CO 2 is a necessary technology for all industries that require greenhouse gas reduction.
특히 이산화탄소 배출이 문제가 되고 있는 발전, 제철, 정유 및 석유화학 산업 및 화석연료를 사용하는 수송산업 전반에서 관련 수요가 증가하고 있으며, 이산화탄소 처리 과정에서 생산된 산소는 산업용, 의료용, 발전용 등 다양한 산소이용 분야에 활용이 가능하고 탄소 역시 고부가 소재로 활용 가능한 장점이 있다. In particular, demand is increasing in power generation, steelmaking, oil refining, and petrochemical industries, where carbon dioxide emission is a problem, and transportation industries that use fossil fuels. It can be used in the field of oxygen utilization, and carbon can also be used as a high value-added material.
이러한 CO2를 이용한 자원 생산 기술은 주로 CO2와 다른 물질과의 반응을 통해 탄소 화합물이나 탄화수소계열 물질을 생산하는 기술이 대부분이다.Resource production technologies using CO 2 are mostly technologies for producing carbon compounds or hydrocarbon-based materials through a reaction between CO 2 and other materials.
일 예로, CO2를 고순도화한 이후에 100기압 이상으로 압축하여 저장하는 CCS(carbon capture and storage) 기술, CO2를 광물화하여 저장하는 CO2 광물화 기술, 기화학적 CO2 전환을 통해 개미산 등 탄소가 포함된 화학원료를 생산하는 탄소 포함 소재 생산 기술, 공기중의 산소를 분리하는 ASU(Air Separation unit) 기술, 고체 탄화수소 내 고정탄소를 분리하는 열분해나 기체 및 액체 탄화수소의 열화학적 반응을 통해 탄소를 생산하는 기술, 전기화학(electrochemical) 방식을 통해 CO2를 분해하는 전기분해 기술 등이 있다.For example, carbon capture and storage (CCS) technology for compressing and storing CO 2 at a pressure of 100 atmospheres or more after highly purifying CO 2 , CO 2 mineralization technology for mineralizing and storing CO 2 , and formic acid through gaseous chemical CO 2 conversion Carbon-containing material production technology that produces chemical raw materials containing carbon, etc., ASU (Air Separation unit) technology that separates oxygen in the air, pyrolysis that separates fixed carbon from solid hydrocarbons, or thermochemical reactions between gas and liquid hydrocarbons. There is a technology for producing carbon through carbon production, an electrolysis technology for decomposing CO 2 through an electrochemical method, and the like.
그러나 이러한 종래의 기술들은 다종의 온실가스(CO2, F-gas, NF3, SF6, CF4 등)를 동시에 다량으로 제거하기 어려운 한계가 있었다.However, these conventional technologies have limitations in that it is difficult to simultaneously remove a large amount of various greenhouse gases (CO 2 , F-gas, NF 3 , SF 6 , CF 4 , etc.).
구체적으로, 온실가스의 종류에는 직접 온실가스와 간접온실가스가 있다. 직접 온실가스는 온실효과에 직접 기여하는 물질들로서, 이산화탄소, 육불화황과 같은 과불화화합물이 있다. 그리고, 간접온실가스는 다른 물질과 반응하여 온실가스로 전환될 수 있는 물질로서, 질소산화물 및 황산화물과 같은 물질들이 있다. 종래의 기술들만으로는 이러한 직접 온실가스와 간접 온실가스들을 동시에 저감하기 어려운 문제가 있었다.Specifically, the types of greenhouse gases include direct greenhouse gases and indirect greenhouse gases. Direct greenhouse gases are substances that directly contribute to the greenhouse effect, and include perfluorinated compounds such as carbon dioxide and sulfur hexafluoride. Indirect greenhouse gases are substances that can be converted into greenhouse gases by reacting with other substances, and include substances such as nitrogen oxides and sulfur oxides. There was a problem in that it is difficult to simultaneously reduce these direct greenhouse gases and indirect greenhouse gases with only conventional technologies.
또한 종래의 기술은 매우 안정한 분자에 해당하는 CO2의 환원 및 분해시 전환율이 낮아 경제적이지 못하기 때문에 상용화가 어려운 문제가 있었다.In addition, the conventional technology has a problem in commercialization because it is not economical because the conversion rate during reduction and decomposition of CO 2 corresponding to a very stable molecule is low.
<선행기술문헌><Prior art literature>
일본공개특허 제2003-277962호Japanese Laid-open Patent No. 2003-277962
상기와 같은 문제를 해결하기 위한 본 발명의 목적은 다종의 온실가스를 동시에 다량으로 제거하기 위한 액체금속을 이용한 온실가스 저감 장치 및 이의 작동방법을 제공하는 것이다.An object of the present invention for solving the above problems is to provide a greenhouse gas reduction device using liquid metal and an operating method thereof for simultaneously removing a large amount of various kinds of greenhouse gases.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the above-mentioned technical problem, and other technical problems not mentioned can be clearly understood by those skilled in the art from the description below. There will be.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은 내부에 액체금속이 수용되도록 마련된 반응부; 및 상기 반응부에 온실가스 화합물인 원료를 투입하는 이송부를 포함하며, 상기 반응부는 상기 액체금속 내부에 상기 원료를 폭기시켜 상기 원료를 이루는 분자를 분리시키도록 마련된 것을 특징으로 하는 액체금속을 이용한 온실가스 저감 장치를 제공한다.Configuration of the present invention for achieving the above object is a reaction unit provided to accommodate the liquid metal therein; and a transfer unit for injecting a raw material, which is a greenhouse gas compound, into the reaction unit, wherein the reaction unit aerates the raw material inside the liquid metal to separate molecules constituting the raw material. A gas abatement device is provided.
본 발명의 실시예에 있어서, 상기 이송부는, 상기 원료가 저장된 저장탱크; 상기 저장탱크로부터 상기 반응부로 제공되는 원료의 양을 측정하는 유량계; 및 상기 저장탱크로부터 제공된 원료를 상기 액체금속의 내부에 투입하도록 마련된 노즐을 포함하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the transfer unit may include a storage tank in which the raw material is stored; a flow meter for measuring the amount of the raw material supplied from the storage tank to the reaction unit; And it may be characterized in that it comprises a nozzle provided to inject the raw material provided from the storage tank into the inside of the liquid metal.
본 발명의 실시예에 있어서, 상기 원료는 이산화탄소를 포함하며, 상기 이산화탄소는 상기 액체금속에 의해 탄소, 일산화탄소, 산소로 분리되도록 마련된 것을 특징으로 할 수 있다.In an embodiment of the present invention, the raw material may include carbon dioxide, and the carbon dioxide may be prepared to be separated into carbon, carbon monoxide, and oxygen by the liquid metal.
본 발명의 실시예에 있어서, 상기 반응부의 일측에 결합되는 회수부를 더 포함하며, 상기 회수부는, 상기 이산화탄소가 상기 액체금속에 의해 상분리됨에 따라 발생되며, 상기 액체금속의 상부에 위치하는 고상의 탄소를 회수하도록 마련된 것을 특징으로 할 수 있다.In an embodiment of the present invention, a recovery unit coupled to one side of the reaction unit is further included, and the recovery unit is generated as the carbon dioxide is phase-separated by the liquid metal, and the solid carbon located on top of the liquid metal. It may be characterized in that it is provided to recover.
본 발명의 실시예에 있어서, 상기 회수부의 하류측에 위치하며, 상기 고상의 탄소에 포함된 액체금속을 제거하도록 마련된 처리부를 더 포함하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, it may be located on the downstream side of the recovering unit and may further include a processing unit provided to remove liquid metal included in the solid carbon.
본 발명의 실시예에 있어서, 상기 처리부의 하류에 마련된 밸브부를 더 포함하며, 상기 밸브부는, 상기 액체금속이 제거된 고상의 탄소를 분리하여 회수하도록 마련된 제1 삼방밸브; 및 상기 제1 삼방밸브의 하류에 마련되어 상기 회수부로부터 회수된 가스를 배출하도록 마련된 제2 삼방밸브를 포함하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, a valve unit provided downstream of the processing unit may further include a first three-way valve configured to separate and recover solid carbon from which the liquid metal is removed; and a second three-way valve provided downstream of the first three-way valve to discharge the gas recovered from the recovery unit.
본 발명의 실시예에 있어서, 상기 회수부와 연결되는 측정부를 더 포함하며, 상기 측정부는 상기 회수부로부터 회수된 기체의 종류, 농도를 측정하도록 마련된 것을 특징으로 할 수 있다.In an embodiment of the present invention, a measurement unit connected to the recovery unit may be further included, and the measurement unit may be provided to measure the type and concentration of the gas recovered from the recovery unit.
본 발명의 실시예에 있어서, 상기 제어부는 상기 측정부와 연결되어 마련되며, 상기 반응부의 온도를 제어하여 생성되는 산소와 일산화탄소의 농도 비율을 조절하도록 마련된 것을 특징으로 할 수 있다.In an embodiment of the present invention, the control unit may be provided to be connected to the measurement unit, and may be provided to adjust the concentration ratio of oxygen and carbon monoxide generated by controlling the temperature of the reaction unit.
본 발명의 실시예에 있어서, 상기 원료는 육불화황(SF6)을 더 포함하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the raw material may be characterized in that it further comprises sulfur hexafluoride (SF6).
본 발명의 실시예에 있어서, 상기 액체금속은 액체주석으로 이루어지며, SF6 + 4Sn -> 3SnF2 + SnS 상기 액체주석과 상기 육불화황은 상기 식에 의해 화학반응이 이루어지는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the liquid metal is made of liquid tin, SF 6 + 4Sn -> 3SnF 2 + SnS The liquid tin and the sulfur hexafluoride may be characterized in that a chemical reaction is made by the above formula .
상기와 같은 목적을 달성하기 위한 본 발명의 구성은 액체금속을 이용한 온실가스 저감 장치의 작동방법에 있어서, a) 상기 반응부에 원료를 투입하는 단계; b) 투입된 상기 반응부에서 상기 액체금속과 상기 원료 사이에 화학 반응이 이루어져 상기 원료를 이루는 분자를 분리시키는 단계; 및 c) 상기 원료로부터 분리되어 형성된 상기 분자 또는 원자를 회수하는 단계를 포함하는 것을 특징으로 하는 액체금속을 이용한 온실가스 저감 장치의 작동방법을 제공한다.The configuration of the present invention for achieving the above object is a method of operating a greenhouse gas reduction device using a liquid metal, a) injecting a raw material into the reaction unit; b) separating the molecules constituting the raw material by causing a chemical reaction between the liquid metal and the raw material in the introduced reaction unit; and c) recovering the molecule or atom formed by being separated from the raw material.
본 발명의 실시예에 있어서, 상기 원료는 이산화탄소를 포함하며, 상기 b) 단계에서, 상기 이산화탄소는 상기 액체금속에 의해 탄소, 일산화탄소, 산소로 분리되도록 마련된 것을 특징으로 할 수 있다.In an embodiment of the present invention, the raw material includes carbon dioxide, and in step b), the carbon dioxide may be separated into carbon, carbon monoxide, and oxygen by the liquid metal.
상기와 같은 구성에 따르는 본 발명의 효과는, 액체금속의 온도 범위를 제어하여 이산화탄소의 분해율과 생성물에 변화를 발생시킬 수 있다. 일 예로, 고상의 탄소와 산소/산화물을 주 생성물로 하고 온도 변화를 통해 일산화탄소 생성을 제어할 수 있다.The effect of the present invention according to the configuration as described above, by controlling the temperature range of the liquid metal can cause a change in the decomposition rate of carbon dioxide and the product. For example, the production of carbon monoxide can be controlled by using solid carbon and oxygen/oxide as main products and changing temperature.
회수된 탄소에 포함된 미량의 액체금속에 별도의 처리를 통해 고순도 탄소를 얻는데 활용이 가능하다.It can be used to obtain high-purity carbon through separate treatment of trace amounts of liquid metal contained in recovered carbon.
액체금속에 이산화탄소 외에도 과불화 화합물(PFC), 질소산화물, 황산화물 등의 온실가스 원료를 함께 투입하여 다종의 온실가스를 저감하기 용이하다.It is easy to reduce various types of greenhouse gases by injecting greenhouse gas raw materials such as perfluorinated compounds (PFCs), nitrogen oxides, and sulfur oxides in addition to carbon dioxide into liquid metal.
액체주석과 과불화 화합물이 반응시 과불화 화합물이 제거됨과 동시에 불화주석(SnF2) 및 황화주석(SnS)과 같은 고부가 물질이 생성되어 부가적 수익을 얻을 수 있어 경제적이다.When the liquid tin and the perfluorinated compound react, the perfluorinated compound is removed, and at the same time, high value-added materials such as tin fluoride (SnF 2 ) and tin sulfide (SnS) are produced, so that additional profits can be obtained, which is economical.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above effects, and should be understood to include all effects that can be inferred from the detailed description of the present invention or the configuration of the invention described in the claims.
도 1은 본 발명의 일실시예에 따른 액체금속을 이용한 온실가스 저감 장치의 구성도이다.1 is a block diagram of a greenhouse gas reduction device using liquid metal according to an embodiment of the present invention.
도 2 내지 도 4는 본 발명의 일실시예에 따른 액체금속 온도, 반응 시간에 따른 이산화탄소, 일산화탄소, 탄소 및 산소의 변화를 나타낸 그래프이다.2 to 4 are graphs showing changes in carbon dioxide, carbon monoxide, carbon and oxygen according to liquid metal temperature and reaction time according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 온도에 따른 이산화탄소의 저감률을 나타낸 그래프이다. 5 is a graph showing the reduction rate of carbon dioxide according to temperature according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 액체금속 온도에 따른 과불화 화합물 농도 변화를 나타낸 그래프이다.6 is a graph showing a change in concentration of a perfluorinated compound according to a liquid metal temperature according to an embodiment of the present invention.
도 7은 본 발명의 일실시예에 따른 액체금속 온도에 따른 불화주석 개질률을 나타낸 그래프이다.Figure 7 is a graph showing the tin fluoride modification rate according to the liquid metal temperature according to an embodiment of the present invention.
도 8은 본 발명의 일실시예에 따른 액체금속 온도에 따른 황산화물, 질소산화물 저감률을 나타낸 그래프이다.8 is a graph showing reduction rates of sulfur oxides and nitrogen oxides according to liquid metal temperatures according to an embodiment of the present invention.
도 9는 본 발명의 일실시예에 따른 액체금속을 이용한 온실가스 저감 장치의 작동방법의 순서도이다.9 is a flowchart of an operating method of a greenhouse gas reduction device using liquid metal according to an embodiment of the present invention.
본 발명에 따른 가장 바람직한 일 실시예는, 내부에 액체금속이 수용되도록 마련된 반응부; 및 상기 반응부에 온실가스 화합물인 원료를 투입하는 이송부를 포함하며, 상기 반응부는 상기 액체금속 내부에 상기 원료를 폭기시켜 상기 원료를 이루는 분자를 분리시키도록 마련된 것을 특징으로 한다.One of the most preferred embodiments according to the present invention, the reaction unit provided to accommodate the liquid metal therein; and a transfer unit for injecting a raw material, which is a greenhouse gas compound, into the reaction unit, wherein the reaction unit is provided to separate molecules constituting the raw material by aerating the raw material into the liquid metal.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, the present invention will be described with reference to the accompanying drawings. However, the present invention may be embodied in many different forms and, therefore, is not limited to the embodiments described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be "connected (connected, contacted, combined)" with another part, this is not only "directly connected", but also "indirectly connected" with another member in between. "Including cases where In addition, when a part "includes" a certain component, it means that it may further include other components without excluding other components unless otherwise stated.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in this specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as "include" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일실시예에 따른 액체금속을 이용한 온실가스 저감 장치의 구성도이다.1 is a block diagram of a greenhouse gas reduction device using liquid metal according to an embodiment of the present invention.
도 1에 도시된 것처럼, 액체금속(10)을 이용한 온실가스 저감 장치(100)는 반응부(110), 이송부(120), 회수부(130), 처리부(140), 밸브부(150), 측정부(160) 및 제어부(170)를 포함할 수 있다.As shown in FIG. 1, the greenhouse gas reduction device 100 using the liquid metal 10 includes a reaction unit 110, a transfer unit 120, a recovery unit 130, a processing unit 140, a valve unit 150, A measurement unit 160 and a control unit 170 may be included.
상기 반응부(110)는 액체금속(10)이 수용될 수 있는 용기 형태로 마련될 수 있으며, 1000도 이상의 고온 환경에서도 손상이 발생하지 않도록 내열성을 갖는 소재로 마련될 수 있다.The reaction part 110 may be provided in the form of a container in which the liquid metal 10 can be accommodated, and may be made of a material having heat resistance so that no damage occurs even in a high-temperature environment of 1000 degrees or more.
여기서, 상기 액체금속(10)은 액체주석일 수 있으나, 이에 한정되는 것은 아니다. 액체금속 촉매로 활용될 수 있는 용융금속 및 전이금속의 조합을 활용 할 수 있다.Here, the liquid metal 10 may be liquid tin, but is not limited thereto. Combinations of molten metals and transition metals that can be utilized as liquid metal catalysts can be utilized.
그리고 도시되지는 않았으나, 상기 반응부(110)에는 액체금속(10) 저장부(미도시)가 마련될 수 있다. 상기 액체주석 저장부는 상기 반응부(110) 내의 액체금속(10)의 양을 고려하여 선택적으로 액체금속(10)을 공급하도록 마련될 수 있다.And, although not shown, a liquid metal 10 storage unit (not shown) may be provided in the reaction unit 110 . The liquid tin storage unit may be provided to selectively supply the liquid metal 10 in consideration of the amount of the liquid metal 10 in the reaction unit 110 .
또한, 상기 반응부(110)는 내부에 수용된 상기 액체금속(10)의 온도를 조절할 수 있도록 가열장치가 내장되어 마련될 수 있다.In addition, the reaction unit 110 may be provided with a built-in heating device to adjust the temperature of the liquid metal 10 accommodated therein.
상기 이송부(120)는 상기 반응부(110)에 온실가스 화합물인 원료를 투입하도록 마련될 수 있으며, 저장탱크(121), 유량계(122) 및 노즐(123)을 포함할 수 있다.The transfer unit 120 may be provided to input a raw material, which is a greenhouse gas compound, into the reaction unit 110, and may include a storage tank 121, a flowmeter 122, and a nozzle 123.
상기 저장탱크(121)는 상기 원료가 저장될 수 있다. 여기서, 상기 원료는 이산화탄소를 포함할 수 있다. 단, 상기 원료의 종류는 이산화탄소 외에도 과불화 화합물, 황산화물, 질소산화물 등의 온실가스 화합물을 포함할 수 있으며, 이 중 어느 하나 이상을 수용하도록 마련될 수 있다.The storage tank 121 may store the raw material. Here, the raw material may include carbon dioxide. However, the type of raw material may include greenhouse gas compounds such as perfluorinated compounds, sulfur oxides, and nitrogen oxides in addition to carbon dioxide, and any one or more of them may be accommodated.
상기 유량계(122)는 상기 저장탱크(121)로부터 상기 반응부(110)로 제공되는 원료의 양을 측정 및 조절하도록 마련될 수 있다.The flowmeter 122 may be provided to measure and control the amount of the raw material provided from the storage tank 121 to the reaction unit 110 .
추가적으로 이송부(120)는 원료를 예열시키기 위한 원료 예열기(미도시)를 더 포함할 수 있다.Additionally, the transfer unit 120 may further include a raw material preheater (not shown) for preheating the raw material.
상기 노즐(123)은 상기 저장탱크(121)로부터 제공된 원료를 상기 액체금속(10)에 투입하도록 마련될 수 있다. 노즐(123)에 원료가 공급되는 과정에서 폐열 열교환 또는 별도의 가열기구를 통해 원료를 예열시킬 수 있다.The nozzle 123 may be provided to inject the raw material provided from the storage tank 121 into the liquid metal 10 . In the process of supplying the raw material to the nozzle 123, the raw material may be preheated through waste heat exchange or a separate heating device.
이때, 상기 노즐(123)은 상기 반응부(110)에 수용된 액체금속(10)의 내부까지 연장 형성됨으로써, 상기 원료가 상기 액체금속(10) 내부에서 배출되도록 마련될 수 있다.At this time, the nozzle 123 is formed extending to the inside of the liquid metal 10 accommodated in the reaction unit 110, so that the raw material may be discharged from the inside of the liquid metal 10.
상기 반응부(110)는 상기 이송부(120)에 의해 제공된 상기 원료를 폭기시켜 상기 원료를 이루는 분자를 분리시키도록 마련될 수 있다.The reaction unit 110 may be provided to aerate the raw material supplied by the transfer unit 120 to separate molecules constituting the raw material.
일 예로, 상기 이산화탄소는 상기 액체금속(10)에 의해 탄소, 일산화탄소, 산소로 분리될 수 있다.For example, the carbon dioxide may be separated into carbon, carbon monoxide, and oxygen by the liquid metal 10 .
상기 회수부(130)는 상기 반응부(110)의 일측에 결합되며, 상기 액체금속(10)의 상부에 위치하는 고상의 탄소를 회수하도록 마련될 수 있다. 구체적으로, 상기 고상의 탄소는 상기 이산화탄소가 상기 액체금속(10)에 의해 상분리됨에 따라 발생되며, 발생된 고상의 탄소는 상기 액체금속(10)의 상부에 뜨게 된다. 상기 회수부(130)는 사이클론 및 필터의 형태로 마련되어 상기 액체금속(10)의 상부에 떠오른 고상의 탄소를 회수하도록 마련될 수 있다.The recovery unit 130 is coupled to one side of the reaction unit 110 and may be provided to recover solid carbon located on top of the liquid metal 10 . Specifically, the solid carbon is generated as the carbon dioxide is phase separated by the liquid metal 10, and the generated solid carbon floats on top of the liquid metal 10. The recovery unit 130 may be provided in the form of a cyclone and a filter to recover solid carbon floating on top of the liquid metal 10 .
또한 상기 회수부(130)는 상기 고상의 탄소 외에도 상기 이산화탄소를 이루는 분자가 분리되어 형성된 산소 및 일산화탄소도 더 회수하도록 마련될 수 있다. In addition, the recovery unit 130 may be provided to further recover oxygen and carbon monoxide formed by separating molecules constituting the carbon dioxide in addition to the solid carbon.
상기 처리부(140)는 상기 회수부(130)의 하류측에 위치하며, 상기 고상의 탄소에 포함된 미량의 액체금속(10)을 제거하도록 마련될 수 있다.The treatment unit 140 is located downstream of the recovery unit 130 and may be provided to remove a small amount of liquid metal 10 included in the solid carbon.
상기 밸브부(150)는 상기 처리부(140)의 하류에 마련되며, 제1 삼방밸브(151) 및 제2 삼방밸브(152)를 포함할 수 있다.The valve unit 150 is provided downstream of the processing unit 140 and may include a first three-way valve 151 and a second three-way valve 152 .
상기 제1 삼방밸브(151)는 상기 처리부(140)를 통과하면서 상기 액체금속이 제거된 고상의 탄소를 분리하여 회수하도록 마련될 수 있다.The first three-way valve 151 may be provided to separate and recover solid carbon from which the liquid metal is removed while passing through the processing unit 140 .
상기 제2 삼방밸브(152)는 상기 제1 삼방밸브(151)의 하류에 마련되어 상기 회수부로부터 회수된 가스를 배출하도록 마련될 수 있다. 구체적으로, 상기 제2 삼방밸브(152)는 원료가 이산화탄소일 때 발생한 일산화탄소, 산소 등의 기체를 배출하여 회수하도록 마련될 수 있다. 생성가스 중 미반응 이산화탄소는 분리하여 액체금속 반응기에 재공급될 수 있다.The second three-way valve 152 may be provided downstream of the first three-way valve 151 to discharge the gas recovered from the recovery unit. Specifically, the second three-way valve 152 may be provided to discharge and recover gases such as carbon monoxide and oxygen generated when the raw material is carbon dioxide. Unreacted carbon dioxide in the product gas may be separated and re-supplied to the liquid metal reactor.
또한, 상기 제2 삼방밸브(152)는 산화주석을 더 회수하도록 마련될 수 있다.In addition, the second three-way valve 152 may be provided to further recover tin oxide.
도시되지는 않았으나, 회수된 산화주석을 산소와 주석으로 분리하도록 마련된 재생부(미도시)를 더 포함하도록 마련될 수 있다. 상기 재생부는 분리된 액체주석을 다시 반응부(110)에 공급하도록 마련될 수 있다.Although not shown, it may be provided to further include a regeneration unit (not shown) provided to separate the recovered tin oxide into oxygen and tin. The regeneration unit may be provided to supply the separated liquid tin to the reaction unit 110 again.
상기 측정부(160)는 상기 회수부(130)와 연결되며, 상기 회수부로부터 회수된 기체의 종류, 농도를 측정하도록 마련될 수 있다.The measurement unit 160 is connected to the recovery unit 130 and may be provided to measure the type and concentration of the gas recovered from the recovery unit.
일 예로, 상기 원료가 이산화탄소일 경우, 상기 측정부(160)는 산소, 일산화탄소, 이산화탄소 등의 농도를 측정하도록 마련될 수 있다.For example, when the raw material is carbon dioxide, the measurement unit 160 may be provided to measure concentrations of oxygen, carbon monoxide, carbon dioxide, and the like.
상기 제어부(170)는 상기 측정부(160)와 연결되어 마련되며, 상기 반응부(110)의 온도를 제어하도록 마련될 수 있다.The controller 170 is connected to the measurement unit 160 and may be provided to control the temperature of the reaction unit 110 .
일 예로, 상기 제어부(170)는 상기 원료가 이산화탄소일 때, 상기 측정부(160)와 연동하여 생성되는 산소와 일산화탄소의 농도 비율을 조절하도록 마련될 수 있다.For example, when the raw material is carbon dioxide, the control unit 170 may be provided to adjust the concentration ratio of oxygen and carbon monoxide generated in conjunction with the measuring unit 160 .
도 2 내지 도 4는 본 발명의 일실시예에 따른 액체금속 온도, 반응 시간에 따른 이산화탄소, 일산화탄소, 탄소 및 산소의 변화를 나타낸 그래프이다. 2 to 4 are graphs showing changes in carbon dioxide, carbon monoxide, carbon and oxygen according to liquid metal temperature and reaction time according to an embodiment of the present invention.
도 2 내지 도 4를 참고하면, 원료가 이산화탄소이고 액체금속이 액체주석일 경우, 액체주석의 온도 변화에 따라 화학식1과 같은 반응이 주로 이루어진다. 이 반응은 고온 영역에서 우세하며 액체주석의 일부가 산화되면서 이산화탄소를 환원시켜 일산화탄소를 발생시킨다. 도 5는 본 발명의 일실시예에 따른 온도에 따른 이산화탄소의 저감률을 나타낸 그래프이다. 최대저감률은 원료 공급 및 반응 조건에 따라 변동(상향)될 수 있다.Referring to FIGS. 2 to 4, when the raw material is carbon dioxide and the liquid metal is liquid tin, the reaction shown in Formula 1 is mainly performed according to the temperature change of the liquid tin. This reaction is dominant in the high-temperature region, and a part of the liquid tin is oxidized to reduce carbon dioxide to generate carbon monoxide. 5 is a graph showing the reduction rate of carbon dioxide according to temperature according to an embodiment of the present invention. The maximum reduction rate may vary (increase) depending on raw material supply and reaction conditions.
[화학식1][Formula 1]
Sn + CO2 → SnO + COSn + CO 2 → SnO + CO
원료가 이산화탄소이고 액체금속이 액체주석일 경우, 도 2의 저온영역 에서의 결과와 같이 액체주석과 이산화탄소의 반응은 아래 화학식 2와 같이 탄소를 반응물로 생성시킬 수 있다. When the raw material is carbon dioxide and the liquid metal is liquid tin, as shown in the low-temperature region of FIG. 2, the reaction between liquid tin and carbon dioxide can produce carbon as a reactant as shown in Formula 2 below.
[화학식2][Formula 2]
2Sn + CO2 → SnO2 + C 2Sn + CO 2 → SnO 2 + C
2Sn + CO2 → 2SnO + C 2Sn + CO 2 → 2SnO + C
원료가 이산화탄소이고 액체금속이 액체주석일 경우, 액체주석의 온도, 반응물의 양과 체류시간의 조절을 통해 상기 화학식 1, 2를 포함한 overall 화학식3의 반응이 이루어 진다. 이때 반응 조건을 변화시키거나 서로 다르 조건의 다단 반응을 조합하여 원하는 생성물을 선택적으로 얻을 수 있다. When the raw material is carbon dioxide and the liquid metal is liquid tin, the reaction of the overall formula 3 including the above formulas 1 and 2 is performed by adjusting the temperature of the liquid tin, the amount of the reactant, and the residence time. At this time, a desired product can be selectively obtained by changing the reaction conditions or by combining multiple reactions under different conditions.
[화학식3][Formula 3]
aSn(L) + bCO2 → cSn(L) + dSnO2(S) + eSnO(S) + fC + gCO +hO2 + iCO2 aSn(L) + bCO 2 → cSn(L) + dSnO 2 (S) + eSnO(S) + fC + gCO +hO 2 + iCO 2
이처럼, 액체주석의 온도가 용융점(예를들어300도) 이상일 때부터 이산화탄소의 분리가 이루어지며, 온도 영역에 따라 이산화탄소가 분리되어 생상되는 생성물이 달라지는 것을 알 수 있다.As such, it can be seen that carbon dioxide is separated from when the temperature of liquid tin is higher than the melting point (eg, 300 degrees), and the product produced by separating carbon dioxide varies depending on the temperature range.
따라서, 상기 제어부(170)는 상기 측정부(160)와 연계하여 상기 액체주석의 온도를 조절함으로써 산소, 일산화탄소, 탄소의 생성에 따른 농도 비율을 조절하도록 마련될 수 있다.Therefore, the control unit 170 may be provided to adjust the concentration ratio according to the generation of oxygen, carbon monoxide, and carbon by controlling the temperature of the liquid tin in association with the measurement unit 160.
도 5는 본 발명의 일실시예에 따른 온도에 따른 이산화탄소의 저감률을 나타낸 그래프이다. 최대저감률은 원료 공급 및 반응 조건에 따라 변동(상향)될 수 있다. 5 is a graph showing the reduction rate of carbon dioxide according to temperature according to an embodiment of the present invention. The maximum reduction rate may vary (increase) depending on raw material supply and reaction conditions.
이처럼 마련된 본 발명은 이산화탄소와 같은 온실 가스를 상분리하여 고부가 가치의 고순도 산소, 탄소 및 일산화탄소를 생성하도록 할 수 있다.The present invention prepared as described above can phase-separate greenhouse gases such as carbon dioxide to generate high-purity oxygen, carbon, and carbon monoxide of high added value.
한편, 본 발명에서 상기 원료가 육불화황과 같은 과불화 화합물인 경우, 상기 반응부에서는 하기 화학식 4와 같은 반응이 일어날 수 있다.Meanwhile, in the present invention, when the raw material is a perfluorinated compound such as sulfur hexafluoride, a reaction shown in Chemical Formula 4 may occur in the reaction unit.
[화학식4][Formula 4]
SF6 + 4Sn -> 3SnF2 + SnSSF 6 + 4Sn -> 3SnF 2 + SnS
도 6은 본 발명의 일실시예에 따른 액체금속 온도에 따른 과불화 화합물 농도를 나타낸 그래프이고, 도 7은 본 발명의 일실시예에 따른 액체금속 온도에 따른 불화주석 개질률을 나타낸 그래프이다.Figure 6 is a graph showing the perfluoride compound concentration according to the liquid metal temperature according to an embodiment of the present invention, Figure 7 is a graph showing the tin fluoride modification rate according to the liquid metal temperature according to an embodiment of the present invention.
도 6 및 도 7을 참고하면, 상기 액체주석에 수용된 과불화 화합물인 상기 육불화황의 농도는 약 600도 이상에서 0에 수렴하게 되어 완전히 제거될 수 있으며, 이와 동시에, 불화주석의 개질율은 약 600도 이상에서 100%에 수렴한다.6 and 7, the concentration of sulfur hexafluoride, which is a perfluoride compound contained in the liquid tin, converges to 0 at about 600 degrees or more and can be completely removed, and at the same time, the modification rate of tin fluoride is about It converges to 100% above 600 degrees.
따라서, 상기 제어부(170)는 상기 원료에 육불화황이 포함된 경우, 상기 반응부(110)의 온도를 600도 이상으로 제어하도록 마련될 수 있다.Accordingly, the control unit 170 may be provided to control the temperature of the reaction unit 110 to 600 degrees or higher when sulfur hexafluoride is included in the raw material.
이때, 액체주석의 온도가 600도 이상일 경우에도 상기 이산화탄소의 분리가 이루어질 수 있기 때문에 본 발명에 따르면 이산화탄소 및 육불화황을 동시에 제거할 수 있다.At this time, since the carbon dioxide can be separated even when the temperature of liquid tin is 600 degrees or more, according to the present invention, carbon dioxide and sulfur hexafluoride can be simultaneously removed.
또한, 본 발명에서 상기 원료가 질소산화물인 경우, 상기 반응부(110)에서, 상기 질소산화물과 상기 액체주석 사이에 발생하는 화학 반응은, 하기 화학식5, 화학식 6과 같은 반응이 일어날 수 있다.Further, in the present invention, when the raw material is nitrogen oxide, a chemical reaction occurring between the nitrogen oxide and the liquid tin in the reaction unit 110 may be as shown in Chemical Formulas 5 and 6 below.
[화학식5][Formula 5]
2NO+Sn -> SnO2+N2 2NO+Sn -> SnO 2 +N 2
[화학식6][Formula 6]
2NO+2Sn -> 2SnO+N2 2NO+2Sn -> 2SnO+N 2
또한, 본 발명에서 상기 원료가 황산화물인 경우, 상기 반응부(110)에서, 상기 황산화물과 상기 액체주석 사이에 발생하는 화학 반응은, 하기 화학식7, 화학식 8과 같은 반응이 일어날 수 있다.Further, in the present invention, when the raw material is sulfur oxide, a chemical reaction occurring between the sulfur oxide and the liquid tin in the reaction unit 110 may be represented by Chemical Formulas 7 and 8 below.
[화학식7][Formula 7]
3Sn+SO2 -> SnS+2SnO, 3Sn+SO 2 -> SnS+2SnO,
[화학식8][Formula 8]
SO2+2Sn -> 2SnO2+SnSSO 2 +2Sn -> 2SnO 2 +SnS
도 8은 본 발명의 일실시예에 따른 액체금속 온도에 따른 황산화물, 질소산화물 저감률을 나타낸 그래프이다.8 is a graph showing reduction rates of sulfur oxides and nitrogen oxides according to liquid metal temperatures according to an embodiment of the present invention.
도 8을 참고하면, 질소산화물은 액체주석의 온도가 300도 이상일 때에도 80% 이상으로 제거율이 높으며, 황산화물은 600도 이상일 때 제거율이 70% 이상이 되는 것을 확인할 수 있다.Referring to FIG. 8, it can be seen that the removal rate of nitrogen oxides is as high as 80% or more even when the temperature of liquid tin is 300 degrees or more, and the removal rate of sulfur oxides is 70% or more when the temperature is 600 degrees or more.
따라서, 본 발명에 따르면 액체주석의 온도가 600도 이상일 경우 이산화탄소, 육불화황, 질소산화물, 황산화물 등의 온실가스를 동시에 저감하는 것이 가능한 것을 확인할 수 있다.Therefore, according to the present invention, it can be seen that when the temperature of liquid tin is 600 degrees or more, it is possible to simultaneously reduce greenhouse gases such as carbon dioxide, sulfur hexafluoride, nitrogen oxides, and sulfur oxides.
즉, 본 발명에 따르면 다종의 온실가스 화합물인 원료를 동시에 저감할 수 있다.That is, according to the present invention, it is possible to simultaneously reduce raw materials that are various types of greenhouse gas compounds.
상기 제어부(170)는 성가 반응부(110)에 투입되는 원료 및 생성하고자 하는 생성물의 종류 및 농도에 대응하여 상기 반응부(110)에 수용된 액체금속(10)의 온도를 조절하도록 마련될 수 있다.The control unit 170 may be provided to adjust the temperature of the liquid metal 10 accommodated in the reaction unit 110 in response to the type and concentration of the raw material input to the reaction unit 110 and the product to be produced. .
도 9는 본 발명의 일실시예에 따른 액체금속을 이용한 온실가스 저감 장치의 작동방법의 순서도이다.9 is a flowchart of an operating method of a greenhouse gas reduction device using liquid metal according to an embodiment of the present invention.
도 9에 도시된 것처럼, 액체금속을 이용한 온실가스 저감 장치의 작동방법은 먼저, 반응부에 원료를 투입하는 단계(S10)를 수행할 수 있다.As shown in FIG. 9, the operation method of the greenhouse gas reduction device using liquid metal may first perform a step (S10) of introducing raw materials into the reaction unit.
반응부에 원료를 투입하는 단계(S10)에서, 상기 이송부(120)는 상기 반응부(110)에 원료를 투입하도록 마련될 수 있다.In the step of inputting the raw material to the reaction unit (S10), the transfer unit 120 may be provided to input the raw material to the reaction unit 110.
이때, 상기 이송부(120)는 이산화탄소를 상기 반응부(110)에 투입하도록 마련될 수도 있고, 이산화탄소 외에도 육불화황과 같은 과불화 화합물, 질소산화물, 황산화물 등의 온실 가스 중 어느 하나 이상을 함께 더 투입하도록 마련될 수도 있다.At this time, the transfer unit 120 may be provided to inject carbon dioxide into the reaction unit 110, and in addition to carbon dioxide, any one or more of greenhouse gases such as perfluorinated compounds such as sulfur hexafluoride, nitrogen oxides, and sulfur oxides may be transported together. It may be arranged to add more.
또한, 반응부에 원료를 투입하는 단계(S10)에서 상기 반응부(110)의 액체금속(10)은 원료를 분리하여 얻고자 하는 분자 또는 화합물의 종류 및 농도에 따라 온도가 제어된 상태일 수 있다.In addition, in the step of introducing raw materials into the reaction unit (S10), the liquid metal 10 of the reaction unit 110 may be in a temperature controlled state according to the type and concentration of molecules or compounds to be obtained by separating the raw materials. there is.
반응부에 원료를 투입하는 단계(S10) 이후에는, 투입된 반응부에서 액체금속과 원료 사이에 화학 반응이 이루어져 원료를 이루는 분자를 분리시키는 단계(S20)가 수행될 수 있다.After the step of inputting the raw material to the reaction unit (S10), a step (S20) of separating molecules constituting the raw material by a chemical reaction between the liquid metal and the raw material in the input reaction unit may be performed.
투입된 반응부에서 액체금속과 원료 사이에 화학 반응이 이루어져 원료를 이루는 분자를 분리시키는 단계(S20)에서, 상기 반응부(110)에 투입된 원료는 상기 액체금속(10)과 화학 반응이 발생되어 여러 종의 분자 및 화합물 중 어느 하나 이상으로 분리될 수 있다.In the step (S20) of separating the molecules constituting the raw material by a chemical reaction between the liquid metal and the raw material in the input reaction unit, the raw material input to the reaction unit 110 has a chemical reaction with the liquid metal 10, and various Can be separated into any one or more of the species' molecules and compounds.
또한, 투입된 반응부에서 액체금속과 원료 사이에 화학 반응이 이루어져 원료를 이루는 분자를 분리시키는 단계(S20)에서는 형성된 화합물을 추가로 분리하도록 마련될 수도 있다. 일 예로 액체주석과 황이 결합된 황화주석을 황과 액체주석으로 분리하는 별도의 처리 과정이 이루어지도록 더 마련될 수 있다.In addition, in the step (S20) of separating the molecules constituting the raw material by a chemical reaction between the liquid metal and the raw material in the introduced reaction unit, it may be provided to further separate the formed compound. For example, a separate treatment process for separating tin sulfide in which liquid tin and sulfur are combined into sulfur and liquid tin may be further provided.
투입된 반응부에서 액체금속과 원료 사이에 화학 반응이 이루어져 원료를 이루는 분자를 분리시키는 단계(S20) 이후에는, 원료로부터 분리되어 형성된 분자를 회수하는 단계(S30)가 수행될 수 있다.After the chemical reaction between the liquid metal and the raw material in the introduced reaction unit to separate the molecules constituting the raw material (S20), the step of recovering the molecules separated from the raw material (S30) may be performed.
원료로부터 분리되어 형성된 분자를 회수하는 단계(S30)에서는 원료로부터 분리되어 형성된 분자들을 회수하도록 마련되며, 화합물도 회수하도록 마련될 수도 있다. In the step of recovering molecules formed by being separated from the raw material (S30), arrangements are made to recover molecules formed by being separated from the raw material, and may also be provided to recover compounds.
또한, 원료로부터 분리되어 형성된 분자를 회수하는 단계(S30)에서 측정부(160)는 회수되는 분자 및 화합물의 종류 및 농도를 측정하고 제어부(170)는 이에 따라 액체금속(10)의 온도를 조절하도록 마련될 수 있다.In addition, in the step of recovering the molecules separated from the raw material (S30), the measuring unit 160 measures the types and concentrations of the molecules and compounds to be recovered, and the controller 170 adjusts the temperature of the liquid metal 10 accordingly. can be arranged to do so.
이처럼 마련된 본 발명은 직접 온실가스와 간접 온실가스를 포함하여 다양한 종류의 온실가스를 하나의 장치로 동시에 저감할 수 있기 때문에 경제적이다.The present invention thus prepared is economical because it can simultaneously reduce various types of greenhouse gases, including direct greenhouse gases and indirect greenhouse gases, with one device.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present invention is for illustrative purposes, and those skilled in the art can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.?The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts should be interpreted as being included in the scope of the present invention.
<부호의 설명><Description of codes>
10: 액체금속10: liquid metal
100: 액체금속을 이용한 온실가스 저감 장치100: greenhouse gas reduction device using liquid metal
110: 반응부110: reaction unit
120: 이송부120: transfer unit
121: 저장탱크121: storage tank
122: 유량계122: flow meter
123: 노즐123: nozzle
130: 회수부130: recovery unit
140: 처리부140: processing unit
150: 밸브부150: valve unit
151: 제1 삼방밸브151: first three-way valve
152: 제2 삼방밸브152: second three-way valve
160: 측정부160: measuring part
170: 제어부170: control unit

Claims (12)

  1. 내부에 액체금속이 수용되도록 마련된 반응부; 및A reaction unit provided to accommodate the liquid metal therein; and
    상기 반응부에 온실가스 화합물인 원료를 투입하는 이송부를 포함하며,A transfer unit for injecting a raw material, which is a greenhouse gas compound, into the reaction unit;
    상기 반응부는 상기 액체금속 내부에 상기 원료를 폭기시켜 상기 원료를 이루는 분자를 분리시키도록 마련된 것을 특징으로 하는 액체금속을 이용한 온실가스 저감 장치.The reaction unit is a greenhouse gas reduction device using liquid metal, characterized in that provided to separate the molecules constituting the raw material by aeration of the raw material inside the liquid metal.
  2. 제 1 항에 있어서,According to claim 1,
    상기 이송부는,The transfer unit,
    상기 원료가 저장된 저장탱크;a storage tank in which the raw material is stored;
    상기 저장탱크로부터 상기 반응부로 제공되는 원료의 양을 측정하는 유량계; 및a flow meter for measuring the amount of the raw material supplied from the storage tank to the reaction unit; and
    상기 저장탱크로부터 제공된 원료를 상기 액체금속의 내부에 투입하도록 마련된 노즐을 포함하는 것을 특징으로 하는 액체금속을 이용한 온실가스 저감 장치.Greenhouse gas reduction device using liquid metal, characterized in that it comprises a nozzle provided to inject the raw material provided from the storage tank into the inside of the liquid metal.
  3. 제 1 항에 있어서,According to claim 1,
    상기 원료는 이산화탄소를 포함하며,The raw material includes carbon dioxide,
    상기 이산화탄소는 상기 액체금속에 의해 탄소, 일산화탄소, 산소로 분리되도록 마련된 것을 특징으로 하는 액체금속을 이용한 온실가스 저감 장치.The carbon dioxide is a greenhouse gas reduction device using a liquid metal, characterized in that provided to be separated into carbon, carbon monoxide, and oxygen by the liquid metal.
  4. 제 3 항에 있어서,According to claim 3,
    상기 반응부의 일측에 결합되는 회수부를 더 포함하며,Further comprising a recovery unit coupled to one side of the reaction unit,
    상기 회수부는,The recovery unit,
    상기 이산화탄소가 상기 액체금속에 의해 상분리됨에 따라 발생되며, 상기 액체금속의 상부에 위치하는 고상의 탄소를 회수하도록 마련된 것을 특징으로 하는 액체금속을 이용한 온실가스 저감 장치.Greenhouse gas reduction device using liquid metal, characterized in that provided to recover the solid carbon located on top of the liquid metal, which is generated as the carbon dioxide is phase-separated by the liquid metal.
  5. 제 4 항에 있어서,According to claim 4,
    상기 회수부의 하류측에 위치하며, 상기 고상의 탄소에 포함된 액체금속을 제거하도록 마련된 처리부를 더 포함하는 것을 특징으로 하는 액체금속을 이용한 온실가스 저감 장치.The greenhouse gas reduction device using liquid metal, characterized in that it further comprises a processing unit located downstream of the recovery unit and provided to remove liquid metal included in the solid carbon.
  6. 제 5 항에 있어서,According to claim 5,
    상기 처리부의 하류에 마련된 밸브부를 더 포함하며,Further comprising a valve unit provided downstream of the processing unit,
    상기 밸브부는,The valve part,
    상기 액체금속이 제거된 고상의 탄소를 분리하여 회수하도록 마련된 제1 삼방밸브; 및a first three-way valve provided to separate and recover solid carbon from which the liquid metal has been removed; and
    상기 제1 삼방밸브의 하류에 마련되어 상기 회수부로부터 회수된 가스를 배출하도록 마련된 제2 삼방밸브를 포함하는 것을 특징으로 하는 액체금속을 이용한 온실가스 저감 장치.A greenhouse gas reduction device using liquid metal, characterized in that it comprises a second three-way valve provided downstream of the first three-way valve to discharge the gas recovered from the recovery unit.
  7. 제 4 항에 있어서,According to claim 4,
    상기 회수부와 연결되는 측정부를 더 포함하며,Further comprising a measuring unit connected to the recovery unit,
    상기 측정부는 상기 회수부로부터 회수된 기체의 종류, 농도를 측정하도록 마련된 것을 특징으로 하는 액체금속을 이용한 온실가스 저감 장치.The measuring unit is a greenhouse gas reduction device using liquid metal, characterized in that provided to measure the type and concentration of the gas recovered from the recovery unit.
  8. 제 7 항에 있어서,According to claim 7,
    상기 제어부는 상기 측정부와 연결되어 마련되며,The control unit is provided connected to the measurement unit,
    상기 반응부의 온도를 제어하여 생성되는 산소와 일산화탄소의 농도 비율을 조절하도록 마련된 것을 특징으로 하는 액체금속을 이용한 온실가스 저감 장치.Greenhouse gas reduction device using liquid metal, characterized in that provided to adjust the concentration ratio of oxygen and carbon monoxide generated by controlling the temperature of the reaction unit.
  9. 제 3 항에 있어서,According to claim 3,
    상기 원료는 육불화황(SF6)을 더 포함하는 것을 특징으로 하는 액체금속을 이용한 온실가스 저감 장치.The raw material is a greenhouse gas reduction device using a liquid metal, characterized in that it further comprises sulfur hexafluoride (SF 6 ).
  10. 제 9 항에 있어서,According to claim 9,
    상기 액체금속은 액체주석으로 이루어지며,The liquid metal is made of liquid tin,
    SF6 + 4Sn -> 3SnF2 + SnSSF 6 + 4Sn -> 3SnF 2 + SnS
    상기 액체주석과 상기 육불화황은 상기 식에 의해 화학반응이 이루어지는 것을 특징으로 하는 액체금속을 이용한 온실가스 저감 장치.The liquid tin and the sulfur hexafluoride is a greenhouse gas reduction device using a liquid metal, characterized in that the chemical reaction is made by the above formula.
  11. 제 1 항에 따른 액체금속을 이용한 온실가스 저감 장치의 작동방법에 있어서,In the operating method of the greenhouse gas reduction device using the liquid metal according to claim 1,
    a) 상기 반응부에 원료를 투입하는 단계;a) injecting a raw material into the reaction unit;
    b) 투입된 상기 반응부에서 상기 액체금속과 상기 원료 사이에 화학 반응이 이루어져 상기 원료를 이루는 분자를 분리시키는 단계; 및b) separating the molecules constituting the raw material by causing a chemical reaction between the liquid metal and the raw material in the introduced reaction unit; and
    c) 상기 원료로부터 분리되어 형성된 상기 분자 또는 원자를 회수하는 단계를 포함하는 것을 특징으로 하는 액체금속을 이용한 온실가스 저감 장치의 작동방법.c) a method of operating a greenhouse gas reduction device using liquid metal, characterized in that it comprises the step of recovering the molecule or atom formed by being separated from the raw material.
  12. 제 11 항에 있어서,According to claim 11,
    상기 원료는 이산화탄소를 포함하며,The raw material includes carbon dioxide,
    상기 b) 단계에서,In step b),
    상기 이산화탄소는 상기 액체금속에 의해 탄소, 일산화탄소, 산소로 분리되도록 마련된 것을 특징으로 하는 액체금속을 이용한 온실가스 저감 장치의 작동방법.The method of operating a greenhouse gas reduction device using a liquid metal, characterized in that the carbon dioxide is prepared to be separated into carbon, carbon monoxide, and oxygen by the liquid metal.
PCT/KR2021/013387 2021-09-29 2021-09-29 Greenhouse gas reduction device using liquid metal and method for operating same WO2023054752A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0128857 2021-09-29
KR1020210128857A KR102668723B1 (en) 2021-09-29 Greenhouse gas reduction device using liquid metal and its opertation method

Publications (1)

Publication Number Publication Date
WO2023054752A1 true WO2023054752A1 (en) 2023-04-06

Family

ID=85782988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013387 WO2023054752A1 (en) 2021-09-29 2021-09-29 Greenhouse gas reduction device using liquid metal and method for operating same

Country Status (1)

Country Link
WO (1) WO2023054752A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4722799A (en) * 1985-04-24 1988-02-02 Ashbrook Clifford L Natural gas desulphurizing apparatus and method
JPH08131764A (en) * 1994-11-04 1996-05-28 Babcock Hitachi Kk Wet type exhaust gas treatment method and apparatus
KR100947985B1 (en) * 2008-03-18 2010-03-18 성균관대학교산학협력단 High temperature desulfurization method of fuel gases using liquid-tin and high temperature desulfurization apparatus of fuel gases using liquid-metal
KR101859110B1 (en) * 2017-04-26 2018-06-29 한국생산기술연구원 Device and method for reduceing pfc and producing tin fluoride
KR20190069790A (en) * 2017-12-12 2019-06-20 한국생산기술연구원 NOx AND SOx REMOVAL EQUIPMENT AND REMOVAL METHOD USING LIQUID TIN

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4722799A (en) * 1985-04-24 1988-02-02 Ashbrook Clifford L Natural gas desulphurizing apparatus and method
JPH08131764A (en) * 1994-11-04 1996-05-28 Babcock Hitachi Kk Wet type exhaust gas treatment method and apparatus
KR100947985B1 (en) * 2008-03-18 2010-03-18 성균관대학교산학협력단 High temperature desulfurization method of fuel gases using liquid-tin and high temperature desulfurization apparatus of fuel gases using liquid-metal
KR101859110B1 (en) * 2017-04-26 2018-06-29 한국생산기술연구원 Device and method for reduceing pfc and producing tin fluoride
KR20190069790A (en) * 2017-12-12 2019-06-20 한국생산기술연구원 NOx AND SOx REMOVAL EQUIPMENT AND REMOVAL METHOD USING LIQUID TIN

Also Published As

Publication number Publication date
KR20230045954A (en) 2023-04-05

Similar Documents

Publication Publication Date Title
EP1306617B1 (en) Gas combustion treatment method and apparatus therefor
EP0212297A2 (en) High pressure process for sulfur recovery from a hydrogen sulfide containing gas stream
WO2011087199A1 (en) Molten iron manufacturing apparatus for reducing emissions of carbon dioxide
WO2018084553A1 (en) Process for separating and recovering carbon monoxide from iron and steel industry byproduct gases
WO2020105825A1 (en) Method and apparatus for effectively producing trifluoroamine oxide
WO2019190244A1 (en) System for producing carbon monoxide and hydrogen from carbon dioxide and water by using reversible oxidation-reduction converter and method therefor
EA012470B1 (en) Configuration and method for so
WO2021172898A1 (en) Apparatus and method for manufacturing propylene glycol methyl ether acetate
WO2023054752A1 (en) Greenhouse gas reduction device using liquid metal and method for operating same
WO2011081276A1 (en) Apparatus for manufacturing molten iron
WO2016204393A2 (en) Reduction burner enabling separate occurrence of oxidation reaction and reduction reaction and synthesis gas recycling system using same
KR920016340A (en) Gas treatment method
WO2019098502A1 (en) Method for decomposing byproduct of phenol production process
WO2017146554A1 (en) Acid-resistant catalyst for decomposing perfluorinated compound and use thereof
JPS6274993A (en) Production of gas containing carbon monoxide and hydrogen
WO2018199441A1 (en) Apparatus and method for decreasing perfluorinated compound and generating tin fluoride
WO2017078415A1 (en) Apparatus for treating mercury-containing waste and method for recovering high purity elemental mercury using same apparatus
WO2018066756A1 (en) Carbon dioxide separator
WO2016117736A1 (en) System for treating non-biodegradable harmful gases
WO2012138191A2 (en) Apparatus and method for treating coke oven gas
WO2016013759A1 (en) Method for treating waste by using plasma pyrolysis
WO2023054755A1 (en) Ammonia decomposition and hydrogen production system using liquid metal
WO2019103235A1 (en) Gas treatment apparatus and method therefor
KR102668723B1 (en) Greenhouse gas reduction device using liquid metal and its opertation method
WO2023054753A1 (en) Hydrogen and carbon generation system using methane pyrolysis by means of fluidized bed indirect heat exchange

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959523

Country of ref document: EP

Kind code of ref document: A1