WO2023054685A1 - 端末、基地局、及び無線通信方法 - Google Patents

端末、基地局、及び無線通信方法 Download PDF

Info

Publication number
WO2023054685A1
WO2023054685A1 PCT/JP2022/036745 JP2022036745W WO2023054685A1 WO 2023054685 A1 WO2023054685 A1 WO 2023054685A1 JP 2022036745 W JP2022036745 W JP 2022036745W WO 2023054685 A1 WO2023054685 A1 WO 2023054685A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
pbch block
ssb
information
terminal
Prior art date
Application number
PCT/JP2022/036745
Other languages
English (en)
French (fr)
Inventor
樹 長野
秀明 ▲高▼橋
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Priority to CN202280062454.4A priority Critical patent/CN117957906A/zh
Publication of WO2023054685A1 publication Critical patent/WO2023054685A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present disclosure relates to terminals, base stations, and wireless communication methods.
  • LTE Long Term Evolution
  • RAT Radio Access Technology
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • RedCap also referred to as "terminal"
  • SSB synchronization signal block
  • an initial DL BWP (hereinafter referred to as “second initial DL BWP”) is set separately from the existing initial DL BWP (hereinafter referred to as “first initial DL BWP”) in the cell, and the second initial If SSB can also be transmitted in DL BWP, the terminal may not be able to properly control the operation based on SSB.
  • an operation based on such SSB for example, an operation of selecting a random access preamble and/or a resource used for transmitting the random access preamble is assumed.
  • One object of the present disclosure is to provide a terminal and a wireless communication method capable of appropriately controlling operations related to random access.
  • a terminal receives the first SS/PBCH block based on information on transmission of the first synchronization signal and physical broadcast channel (SS/PBCH) block included in the radio resource control message.
  • receiving the second SS/PBCH block based on the information about the transmission of the second SS/PBCH block, if the radio resource control message includes information about the transmission of the second SS/PBCH block; a receiving unit, and a control unit that, when the second SS/PBCH block is received by the receiving unit, selects a random access opportunity in a collision-free random access procedure based on the second SS/PBCH block.
  • a base station transmits a radio resource control message, and based on information on transmission of the first synchronization signal and physical broadcast channel (SS/PBCH) block included in the radio resource control message, a transmitting unit that transmits a first SS/PBCH block and transmits the second SS/PBCH block based on information regarding the transmission of the second SS/PBCH block included in the radio resource control message; a controller for selecting a random access opportunity in a collision-free random access procedure based on the second SS/PBCH block when transmitting the second SS/PBCH block.
  • SS/PBCH physical broadcast channel
  • a terminal radio communication method is based on information on transmission of a first synchronization signal and a physical broadcast channel (SS/PBCH) block included in a radio resource control message, the first SS/PBCH block, and if the radio resource control message includes information on transmission of a second SS/PBCH block, based on the information on transmission of the second SS/PBCH block, the second SS/PBCH If a block is received and said second SS/PBCH block is received, based on said second SS/PBCH block, selecting a random access opportunity in a collision-free random access procedure.
  • SS/PBCH physical broadcast channel
  • a radio communication method for a base station transmits a radio resource control message, and information on transmission of a first synchronization signal and a physical broadcast channel (SS/PBCH) block included in the radio resource control message transmitting a first SS/PBCH block based on and transmitting the second SS/PBCH block based on information regarding transmission of a second SS/PBCH block included in the radio resource control message; If the second SS/PBCH block is transmitted, select a random access opportunity in a collision-free random access procedure based on the second SS/PBCH block.
  • SS/PBCH physical broadcast channel
  • operations related to random access can be appropriately controlled.
  • FIG. 1 is a diagram showing an example of an outline of a wireless communication system according to this embodiment.
  • FIG. 2 is a diagram showing an example of the SSB according to this embodiment.
  • FIG. 3 is a diagram showing an example of an SS burst set according to this embodiment.
  • FIG. 4 is a diagram showing an example of BWP in this embodiment.
  • FIG. 5 is a diagram showing an example of first and second initial DL/UP BWPs according to this embodiment.
  • FIGS. 6A and 6B are diagrams showing examples of first and second initial DL BWPs according to this embodiment.
  • FIG. 7 is a diagram showing an example of SSB, PF and PO according to this embodiment.
  • FIG. 8 is a diagram showing an example of SSB, PF and PO according to this embodiment.
  • FIG. 1 is a diagram showing an example of an outline of a wireless communication system according to this embodiment.
  • FIG. 2 is a diagram showing an example of the SSB according to this embodiment.
  • FIG. 9 is a flow chart showing an example of operation for setting PDCCH monitoring opportunities for paging according to the present embodiment.
  • FIG. 10 is a diagram showing an example of the relationship between SSB and RO and RA preambles according to this embodiment.
  • FIG. 11 is a diagram showing another example of the relationship between SSB and RO and RA preambles according to this embodiment.
  • FIG. 12 is a flowchart showing an example of the RO and/or RA preamble selection operation according to this embodiment.
  • FIG. 13 is a diagram showing an example of the MIB according to this embodiment.
  • FIG. 14 is a flow chart showing an example of the operation at the time of MIB reception according to this embodiment.
  • FIG. 15 is a diagram showing an example of BWP-DownlinkCommon according to this embodiment.
  • FIG. 16 is a diagram showing an example of BWP-UplinkCommon according to this embodiment.
  • FIG. 17 is a diagram showing an example of RACH-ConfigCommon according to this embodiment.
  • FIG. 18 is a diagram showing an example of RACH-ConfigCommonTwoStepRA according to this embodiment.
  • FIG. 19 is a diagram showing an example of the hardware configuration of each device in the wireless communication system according to this embodiment.
  • FIG. 20 is a diagram showing an example of a functional block configuration of a terminal according to this embodiment.
  • FIG. 21 is a diagram showing an example of the functional block configuration of the base station according to this embodiment.
  • FIG. 1 is a diagram showing an example of an overview of a wireless communication system according to this embodiment.
  • the wireless communication system 1 may include a terminal 10, a base station 20, and a core network 30.
  • the numbers of terminals 10 and base stations 20 shown in FIG. 1 are merely examples, and are not limited to the numbers shown.
  • the radio communication system 1 is a system that communicates in compliance with the radio access technology (RAT) defined by 3GPP.
  • RAT radio access technology
  • a radio access technology to which the radio communication system 1 conforms for example, a fifth generation RAT such as NR is assumed, but not limited to this, for example, a fourth generation RAT such as LTE, LTE-Advanced, etc.
  • One or more RATs can be used, such as a 6th generation RAT or later, or a non-3GPP RAT such as Wi-Fi®.
  • the wireless communication system 1 is a form of communication that conforms to a wireless access technology defined by a standard development organization different from 3GPP (for example, Institute of Electrical and Electronics Engineers (IEEE), Internet Engineering Task Force (IETF)). may be
  • the terminal 10 is a device corresponding to a terminal (for example, UE (User Equipment)) defined in the 3GPP specifications.
  • the terminal 10 is, for example, a predetermined terminal or device such as a smartphone, a personal computer, a car, an in-vehicle terminal, an in-vehicle device, a stationary device, a telematics control unit (TCU), and an IoT device such as a sensor.
  • Terminal 10 may also be called a User Equipment (UE), a Mobile Station (MS), a User Terminal, a Radio apparatus, a subscriber terminal, an access terminal, and so on.
  • the terminal 10 may be a so-called Reduced capability (RedCap) terminal, such as an industrial wireless sensor, a surveillance camera (video service), a wearable device, etc. There may be.
  • the terminal 10 may be mobile or stationary.
  • the terminal 10 is configured to be able to communicate using one or more RATs such as NR, LTE, LTE-Advanced, Wi-Fi (registered trademark), for example.
  • RATs such as NR, LTE, LTE-Advanced, Wi-Fi (registered trademark), for example.
  • the terminal 10 is not limited to a terminal defined in the 3GPP specifications, and may be a terminal complying with standards defined by other standard development organizations. Also, the terminal 10 does not have to be a standard-compliant terminal.
  • the base station 20 is a device corresponding to a base station (eg, gNodeB (gNB) or eNB) defined in the 3GPP specifications.
  • the base station 20 forms one or more cells C and communicates with the terminal 10 using the cells.
  • Cell C may be interchangeably referred to as serving cell, carrier, component carrier (CC), and the like.
  • Cell C may also have a predetermined bandwidth.
  • base station 20 may communicate with terminal 10 using one or more cell groups. Each cell group may include one or more cells C. Aggregating multiple cells C within a cell group is called carrier aggregation.
  • the plurality of cells C includes a primary cell (Primary Cell: PCell) or a primary SCG cell (Primary Secondary Cell Group (SCG) Cell: PSCell) and one or more secondary cells (Secondary Cell: SCG). Communicating with the terminal 10 using two cell groups is also called dual connectivity.
  • the terminal 10 is not limited to a base station defined in the 3GPP specifications, and may be a terminal complying with standards defined by other standard development organizations. Also, the terminal 10 does not have to be a base station conforming to the standards.
  • Base station 20 includes gNodeB (gNB), en-gNB, Next Generation-Radio Access Network (NG-RAN) node, low-power node, Central Unit (CU), Distributed Unit (DU), gNB It may also be called -DU, Remote Radio Head (RRH), Integrated Access and Backhaul/Backhauling (IAB) node, access point, and so on.
  • the base station 20 is not limited to one node, and may be composed of a plurality of nodes (for example, a combination of a lower node such as DU and an upper node such as CU).
  • the core network 30 is, for example, a fifth generation core network (5G Core Network: 5GC) or a fourth generation core network (Evolved Packet Core: EPC), but is not limited to this.
  • a device on the core network 30 (hereinafter also referred to as a “core network device”) may perform mobility management such as paging and location registration of the terminal 10 .
  • a core network device may be connected to the base station 20 or terminal 10 via a predetermined interface (eg, S1 or NG interface).
  • the core network device includes, for example, an Access and Mobility Management Function (AMF) that manages C-plane information (e.g., information related to access and mobility management), and a User that controls transmission of U-plane information (e.g., user data).
  • AMF Access and Mobility Management Function
  • UPF Plane Function
  • the terminal 10 receives a downlink (DL) signal from the base station 20 and/or transmits an uplink (UL) signal to the base station 20 .
  • DL downlink
  • UL uplink
  • One or more cells C are configured in the terminal 10, and at least one of the configured cells is activated.
  • the maximum bandwidth of each cell is, for example, 20 MHz or 400 MHz.
  • the terminal 10 performs a cell search based on a synchronization signal (eg, Primary Synchronization Signal (PSS) and/or Secondary Synchronization Signal (SSS)) from the base station 20.
  • Cell search is a procedure by which the terminal 10 acquires time and frequency synchronization in a cell and detects the identifier of the cell (eg, physical layer cell ID).
  • the terminal 10 determines a search space set and/or a control resource set (Control Resource Set: CORESET) based on parameters included in a Radio Resource Control (RRC) message (hereinafter referred to as "RRC parameters").
  • CORESET may consist of frequency domain resources (eg, a predetermined number of resource blocks) and time domain resources (eg, a predetermined number of symbols).
  • RRC Radio Resource Control
  • a CORESET may consist of frequency domain resources (eg, a predetermined number of resource blocks) and time domain resources (eg, a predetermined number of symbols).
  • the RRC parameter may also be called an RRC information element (Information Element: IE) or the like.
  • downlink control channel for example, physical downlink control channel (Physical Downlink Control Channel: PDCCH)
  • DCI Downlink Control Information
  • the RRC message may include, for example, an RRC setup message, an RRC reconfiguration message, an RRC resume message, an RRC reestablishment message, system information, and the like.
  • DCI monitoring means that the terminal 10 blind-decodes the PDCCH candidate (PDCCH candidate) in the search space set in the assumed DCI format.
  • the number of bits (also referred to as size, bit width, etc.) of the DCI format is predetermined or derived according to the number of bits of fields included in the DCI format.
  • the terminal 10 specifies the number of bits in the DCI format and the scramble (hereinafter referred to as “CRC scramble”) of the cyclic redundancy check (CRC) bits (also referred to as CRC parity bits) of the DCI format.
  • DCI for the terminal 10 is detected based on the Radio Network Temporary Identifier (RNTI).
  • RNTI Radio Network Temporary Identifier
  • DCI monitoring is also called PDCCH monitoring, monitor, and the like.
  • a given period for monitoring DCI or PDCCH is also called a PDCCH monitoring occasion.
  • a search space set is a set of one or more search spaces.
  • a search space set commonly used by one or more terminals 10 (hereinafter referred to as a “common search space (CSS) set”) and a terminal-specific search space set (UE-specific search space (USS) set), and
  • the search space set includes a search space set for paging (hereinafter referred to as “paging search space”), a search space set for random access (RA) (hereinafter referred to as "RA search space”), and system information (hereinafter referred to as “system information search space”), etc. may also be included.
  • Terminal 10 may receive information regarding the configuration of each search space set.
  • the terminal 10 monitors PDCCH using a search space set (or search space) at PDCCH monitoring opportunities and receives (or detects) DCI that is CRC-scrambled by a specific RNTI.
  • the terminal 10 receives a downlink shared channel scheduled using the DCI (for example, a physical downlink shared channel (Physical Downlink Shared Channel: PDSCH)) and/or receives an uplink shared channel (for example, a physical uplink shared channel (Physical Controls transmission of Uplink Shared Channel: PUSCH)).
  • a downlink shared channel scheduled using the DCI for example, a physical downlink shared channel (Physical Downlink Shared Channel: PDSCH)
  • an uplink shared channel for example, a physical uplink shared channel (Physical Controls transmission of Uplink Shared Channel: PUSCH)
  • the system information broadcast in cell C may include a master information block (MIB) and/or one or more system information blocks (SIB).
  • the MIB is broadcast via a broadcast channel (for example, a physical broadcast channel (PBCH)).
  • PBCH physical broadcast channel
  • MIB and SIB1 are also called Minimum System Information, and SIB1 is also called Remaining Minimum System Information (RMSI).
  • SIB1 and SIBx other than SIB1 are broadcast via PDSCH.
  • SIB1 is cell-specific, and SIBx other than SIB1 may be cell-specific or area-specific containing one or more cells.
  • the SSB is a block containing at least one of a synchronization signal, a PBCH, and a demodulation reference signal (DM-RS) for the PBCH.
  • An SSB may also be called an SS/PBCH block, an SS block, and so on.
  • FIG. 2 is a diagram showing an example of the SSB according to this embodiment. Note that FIG. 2 is merely an example, and the SSB is not limited to the illustrated one. As shown in FIG. 2, the SSB consists of a predetermined number of symbols (e.g., four consecutive symbols) as time domain resources and a predetermined number of subcarriers (e.g., consecutive four symbols) as frequency resource resources. 240 subcarriers).
  • symbols e.g., four consecutive symbols
  • subcarriers e.g., consecutive four symbols
  • the PSS is transmitted in the first symbol within the SSB and mapped to 127 subcarriers.
  • the remaining subcarriers of the first symbol may be empty.
  • SSS is transmitted in the third symbol within SSB and is mapped to the same 127 subcarriers as PSS.
  • a predetermined number (8 or 9) of empty subcarriers may be provided at both ends of the SSS.
  • the PBCH is transmitted on the 2nd and 4th symbols in the SSB and mapped to 240 subcarriers. Also, the PBCH is mapped to 48 subcarriers at both ends of the SSS.
  • a DMRS (not shown) may be mapped to some subcarriers indicated as PBCH in FIG.
  • An SS burst set which is a set of one or more SSBs, is transmitted at predetermined intervals.
  • the SS burst set may also be called an SS burst or the like.
  • the terminal 10 receives information (hereinafter referred to as "ssb-periodicityServingCell") regarding the period of the SSB or SS burst set (hereinafter referred to as "SSB period").
  • the ssb-periodicityServingCell may indicate the SSB period (eg, 5, 10, 20, 40, 80 or 160 ms).
  • Each SSB in the SS burst set is identified by an index (hereinafter referred to as "SSB index").
  • SSB index an index
  • SSBs with different indexes in the SS burst set correspond to different beams, and may be transmitted by sequentially switching beam directions by beam sweeping.
  • the SSB (single or multiple SSBs) of a particular index within the SS burst set may be transmitted in all directions.
  • the terminal 10 receives information about SSB transmission within the SS burst set (hereinafter referred to as "ssb-PositionsInBurst").
  • ssb-PositionsInBurst may be a bitmap containing bits corresponding to each SSB in the SS burst set, with the value of each bit indicating whether the corresponding SSB is actually transmitted.
  • a bit value of '1' may indicate that the corresponding SSB is actually transmitted
  • a bit value of '0' may indicate that the corresponding SSB is not actually transmitted.
  • ssb-PositionsInBurst is not limited to the above, and may be any information regarding SSB transmission within the SS burst set.
  • ssb-PositionsInBurst may be cell specific.
  • ssb-PositionsInBurst is included in SIB1, for example, but may be included in other RRC messages.
  • FIG. 3 is a diagram showing an example of an SS burst set according to this embodiment.
  • FIG. 3 is only an example, and the number of SSBs in the SS burst set, the SSB period, the subcarrier interval, the beam direction, the arrangement position of the SS burst set, etc. are not limited to those shown in the drawing.
  • SSBs #0 to #7 in the SS burst set are transmitted from the base station 20 at different times with beams #0 to #7 having different directivities.
  • An SS burst set containing one or more SSBs is placed in the first or second half frame (eg, 5 ms) of a radio frame, and is repeated at the SSB cycle.
  • the SS burst set including SSB #0 to #7 is arranged in the first half frame of the radio frame and repeated with an SSB period of 20 ms.
  • the positions within the half-frame where SSB#0-#7 are transmitted may vary depending on the subcarrier spacing.
  • ssb-PositionsInBurst is an 8-bit bitmap corresponding to each of SSB #0 to #7 and is set to "11111111". Therefore, the terminal 10 recognizes that all SSBs #0 to #7 in the SS burst set are transmitted. Thus, the terminal 10 determines the SSBs actually transmitted within the SS burst set based on ssb-PositionsInBurst.
  • FIG. 3 shows an example of multi-beam operation, it is also applicable to single-beam operation.
  • a specific SSB eg, only SSB#0
  • the bit corresponding to that specific SSB in ssb-PositionsInBurst is set to '1', and the other bits may be set to '0'.
  • the BWP may include a BWP for DL (hereinafter referred to as "DL BWP") and/or a BWP for UL (hereinafter referred to as "UL BWP").
  • the BWP includes a BWP that is set unique to the cell (hereinafter referred to as "initial BWP"), a BWP that is uniquely set to the terminal 10 (hereinafter referred to as "dedicated BWP”), may include
  • the initial BWP may be used for initial access and/or common to one or more terminals 10 .
  • the initial BWP may include an initial BWP for DL (hereinafter referred to as "initial DL BWP") and an initial BWP for UL (hereinafter referred to as “initial UL BWP”).
  • DL BWP initial BWP for DL
  • UL BWP initial BWP for UL
  • Dedicated BWP is also called “UE-specific BWP”.
  • Initial DL BWP and/or initial UL BWP (hereinafter referred to as "initial DL/UL BWP") is equal to CORESET#0 determined based on a specific parameter in the MIB (hereinafter referred to as "pdcch-ConfigSIB1”) may Alternatively, the initial DL/UL BWP may be set in the terminal 10 based on information on the initial DL/UL BWP received by the terminal 10 from the base station 20 (hereinafter referred to as "initial DL/UL BWP information"). .
  • the initial DL/UL BWP information includes information indicating the location and/or bandwidth of the frequency domain of the initial DL/UL BWP (hereinafter referred to as “locationAndBandwidth") and information indicating subcarrier spacing (hereinafter referred to as “subcarrierSpacing”). , and information about a cyclic prefix (hereinafter referred to as “cyclicPrefix”).
  • Initial DL/UL BWP information is a cell-specific RRC parameter and may be included in SIB1 or other RRC messages
  • an individual BWP for DL (hereinafter referred to as “individual DL BWP”) is a DL BWP with bwp-id ⁇ 0 (that is, DL BWP#bwp-id), and an individual BWP for UL (hereinafter referred to as “individual UL BWP”) may be a UL BWP with bwp-id ⁇ 0 (that is, UL BWP#bwp-id).
  • DL BWPs and/or one or more individual UL BWPs When one or more individual DL BWPs and/or one or more individual UL BWPs are configured in the terminal 10, one individual DL BWP and/or one individual UL BWP may be activated.
  • SSB is transmitted in one or more DL BWPs.
  • CD-SSB is an SSB associated with a particular cell and may be associated with SIB1.
  • NCD-SSBs are SSBs that are not associated with a particular cell and may not be associated with SIB1.
  • FIG. 4 is a diagram showing an example of the DL BWP in this embodiment.
  • DL BWP is shown in FIG. 4, it goes without saying that UL BWP may also be set.
  • X is a number given for convenience to distinguish SSBs in different frequency domains, and does not indicate an SSB index that identifies each SSB within an SS burst set.
  • NGCI is the cell C identifier.
  • SSB1 is CD-SSB and is associated with cell #5 (and/or SIB1 broadcasted in cell #5).
  • SSB3 is CD-SSB and is associated with cell #6 (and/or SIB1 broadcast on cell #6).
  • SSB2 and SSB4 are NCD-SSBs and are not associated with SIB1 of a particular cell.
  • terminals 10A and 10B are connected to cell #5, so they may detect SSB1 associated with cell #5 and set initial DL BWP#0 based on SSB1.
  • the terminal 10A sets individual DL BWP #1 and #2 based on parameters unique to the terminal 10A.
  • Terminal 10A may use individual DL BWP #1 and #2 by switching over time.
  • terminal 10B sets individual DL BWP#1 based on parameters specific to terminal 10B.
  • terminal 10C since terminal 10C is connected to cell #6, it may detect SSB3 associated with cell #6 and set initial DL BWP#0 based on SSB3.
  • Terminal 10C sets individual DL BWP #1 and #2 based on parameters specific to terminal 10C.
  • Each of the terminals 10A-10C may perform measurement based on at least one SSB in the initial DL BWP or the individual DL BWP.
  • received power for example, reference signal received power (RSRP)
  • RSRP measured based on SSB may be referred to as Synchronization Signal (SS)-RSRP.
  • the measurement may be performed for at least one of radio resource management (RRM), radio link monitoring (RLM), and mobility.
  • RRM radio resource management
  • RLM radio link monitoring
  • mobility mobility
  • the terminal 10 may be a RedCap terminal intended for lower performance or price range than existing terminals supported by Release 15 or 16 of 3GPP.
  • RedCap terminals are expected to be used, for example, in industrial wireless sensors, surveillance cameras (video serveilance), wearable devices, and the like.
  • the maximum bandwidth supported by a RedCap terminal may be narrower than the maximum bandwidth of existing terminals.
  • multiple initial DL BWPs may be set in such a terminal 10 .
  • the initial DL/UL BWP may be set independently of the conventional initial DL/UL BWP.
  • the conventional initial DL/UL BWP will be referred to as the first initial DL/UL BWP
  • the initial DL/UL BWP that is set independently of the first initial DL/UL BWP will be referred to as the second initial DL/UL BWP. call.
  • the initial DL/UL BWP information used for setting the first initial DL/UL BWP is referred to as the first initial DL/UL BWP information, and the above information used for setting the second initial DL/UL BWP.
  • the initial DL/UL BWP information shall be referred to as the second initial DL/UL BWP information.
  • the first and second initial DL/UL BWP information may each include at least one of locationAndBandwidth, subcarrierSpacing and cyclicPrefix.
  • the first initial DL/UL BWP may be set based on CORESET#0 or the frequency position and/or bandwidth indicated by locationAndBandwidth in the first initial DL/UL BWP information.
  • the first initial DL/UL BWP may be set for existing terminals and/or RedCap terminals.
  • the second initial DL/UL BWP may be the DL/UL BWP of the frequency location and/or bandwidth specified in advance, or the second initial DL/UL BWP information It may be set based on the frequency location and/or bandwidth indicated by locationAndBandwidth.
  • a second initial DL/UL BWP may be set in the RedCap terminal.
  • the above subcarrierSpacing and/or cyclicPrefix may or may not be set.
  • the second initial DL/UL DWP may be called a separate initial DL/UL BWP, an additional initial DL/UL BWP, or the like.
  • a RedCap terminal may use a second initial UL BWP during initial access (eg after message 3) and/or after initial access (eg after message 4).
  • the RedCap terminal may use the second initial DL BWP after the initial access (for example, after message 4) or before the initial access (for example, after receiving configuration information for the second initial DL BWP). may be used for
  • CORESET#0 may not be set.
  • SIB1 may not be transmitted in the second initial DL BWP.
  • at least part of the second initial DL BWP may or may not overlap with the first initial UL BWP.
  • at least part of the second initial UL BWP may or may not overlap with the first initial UL BWP.
  • the bandwidth of each of the second initial DL BWP and the second initial UL BWP may be narrower than the maximum bandwidth of the RedCap terminal.
  • FIG. 5 is a diagram showing an example of first and second initial DL/UL BWPs according to this embodiment. As shown in FIG. 5, one end of the first and second initial UL BWPs are aligned to share a resource region for an uplink control channel (eg, Physical Uplink Control Channel (PUCCH)). may In Time Division Duplex (TDD), the second initial UL BWP and the second initial DL BWP may be identical. Note that FIG. 5 is merely an example, and the bandwidth and arrangement of the first and second initial DL/UL BWPs are not limited to those shown.
  • PUCCH Physical Uplink Control Channel
  • FIGS. 6(A) and (B) are diagrams showing examples of the first and second initial DL BWPs according to this embodiment.
  • SSB eg, CD-SSB
  • the terminal 10 which transmits and receives data in the second initial DL BWP, performs RF retuning for SSB-based measurement, and may need RF retuning again for data transmission and reception after measurement. is assumed.
  • CORESET#0 may be set to the first initial DL BWP and may not be set to the second initial DL BWP. As shown in FIG.
  • support information information on BWP support in which SSB is not transmitted and/or CORESET#0 is not set
  • support information information on the capability of the terminal 10 (hereinafter referred to as "UE capability”).
  • UE capability may be transmitted from the terminal 10 to the base station 20 .
  • SSB (eg, CD-SSB) is transmitted in the first initial DL BWP
  • SSB (eg, NC-SSB) is transmitted in the second initial DL BWP.
  • FIG. 6B unlike FIG. 6A, there is no need to perform RF retuning for measurement. Therefore, SSB transmission in the second initial DL BWP can contribute to reducing the processing load on terminal 10 .
  • the terminal 10 if a second initial DL BWP is set in cell C where the first initial DL BWP is set and SSB can be transmitted in the second initial DL BWP, the terminal 10 Alternatively, there is a risk that it may not be possible to properly recognize which SSB of the second initial DL BWP should be operated based on. As a result, the SSB-based operation may not be properly controlled.
  • the terminal 10 controls SSB-based operations based on whether or not the second initial DL BWP is set in the cell C in which the first initial DL BWP is set. For example, based on whether or not the second initial DL BWP is set in the cell C, the terminal 10 transmits SSB (hereinafter referred to as "first SSB") in the first initial DL BWP. Alternatively, it may be determined based on which of the SSBs transmitted in the second initial DL BWP (hereinafter referred to as "second SSB").
  • first SSB SSB
  • second SSB which of the SSBs transmitted in the second initial DL BWP
  • Terminal 10 receives parameters or information from base station 20 .
  • "configured” may mean receiving the parameters and/or information, or controlling the operation of the terminal 10 based on the received parameters and/or information.
  • RRC parameters are exemplified below as the parameters and/or information, the parameters and/or information are not limited thereto.
  • the parameters and/or information are parameters of higher layers (for example, layers higher than physical layers such as Medium Access Control (MAC) layers and Non Access Stratum (NAS) layers). may be a parameter of the physical layer.
  • MAC Medium Access Control
  • NAS Non Access Stratum
  • the first initial DL BWP may be set in terminal 10 based on the first initial DL BWP information from base station 20 .
  • the first initial DL BWP information may include at least one of locationAndBandwidth, subcarrierSpacing and cyclicPrefix.
  • the first initial DL BWP information is the RRC parameters in SIB1 (e.g., "BWP” as “genericParameters” in “BWP-DownlinkCommon” as “initialDownlinkBWP” in “DownlinkConfigCommonSIB” in “ServingCellConfigCommonSIB”) may be Alternatively, the first initial DL BWP information may be specified as RRC parameters in other RRC messages (e.g., "genericParameters" in "BWP-DownlinkCommon” as "initialDownlinkBWP” in “DownlinkConfigCommon” in “ServingCellConfigCommon”). BWP”).
  • the first initial DL BWP information may be cell specific.
  • the second initial DL BWP may be set in the terminal 10 based on the second initial DL BWP information from the base station 20.
  • the second initial DL BWP information may include at least one of locationAndBandwidth, subcarrierSpacing and cyclicPrefix.
  • the second initial DL BWP information is the RRC parameters in SIB1 (for example, "BWP” as “genericParametersRedCap” in “BWP-DownlinkCommon” as “initialDownlinkBWP-RedCap” in “DownlinkConfigCommonSIB” in “ServingCellConfigCommonSIB”) may be Alternatively, the second initial DL BWP information is RRC parameters in other RRC messages (for example, as “genericParametersRedCap” in "BWP-DownlinkCommon” as "initialDownlinkBWP-RedCap” in "DownlinkConfigCommon” in "ServingCellConfigCommon” "BWP”).
  • the second initial DL BWP information may be cell specific.
  • the first initial UL BWP may be configured in terminal 10 based on the first initial UL BWP information from base station 20 .
  • the first initial DL BWP information may include at least one of locationAndBandwidth, subcarrierSpacing and cyclicPrefix.
  • the first initial UL BWP information is the RRC parameters in SIB1 (e.g., "BWP” as “genericParameters” in “BWP-UplinkCommon” as “initialUplinkBWP” in “UplinkConfigCommonSIB” in “ServingCellConfigCommonSIB”) may be Alternatively, the first initial UL BWP information may include RRC parameters in other RRC messages (e.g., "genericParameters" in "BWP-UplinkCommon” as “initialUplinkBWP” in “UplinkConfigCommon” in “ServingCellConfigCommon”). BWP”).
  • the second initial UL BWP information may be cell specific.
  • the second initial UL BWP may be set in the terminal 10 based on the second initial UL BWP information from the base station 20.
  • the second initial UL BWP information may include at least one of locationAndBandwidth, subcarrierSpacing and cyclicPrefix.
  • the second initial UL BWP information is the RRC parameters in SIB1 (for example, "BWP” as “genericParametersRedCap” in “BWP-UplinkCommon” as “initialUplinkBWP-RedCap” in “UplinkConfigCommonSIB” in “ServingCellConfigCommonSIB”) may be Alternatively, the second initial UL BWP information can be specified as RRC parameters in other RRC messages (for example, as “genericParametersRedCap” in "BWP-UplinkCommon” as "initialUplinkBWP-RedCap” in "UplinkConfigCommon” in “ServingCellConfigCommon” "BWP”).
  • the second initial UL BWP information may be cell specific.
  • the first SSB may be set in the terminal 10 based on information regarding transmission of the first SSB (hereinafter referred to as "first SSB transmission information").
  • the first SSB transmission information includes information on the first SSB transmission within the SS burst set (hereinafter referred to as "ssb-PositionsInBurst”), information on the SSB period of the first SSB (hereinafter referred to as "ssb-periodicityServingCell").
  • the first SSB transmission information may be RRC parameters in SIB1 (e.g. parameters in 'ServingCellConfigCommonSIB') or RRC parameters in other RRC messages (e.g. parameters in 'ServingCellConfigCommon').
  • SIB1 e.g. parameters in 'ServingCellConfigCommonSIB'
  • RRC parameters in other RRC messages e.g. parameters in 'ServingCellConfigCommon'
  • the first SSB transmission information may be cell specific.
  • the second SSB may be set in the terminal 10 based on information regarding transmission of the second SSB (hereinafter referred to as "second SSB transmission information").
  • the second SSB transmission information includes information on the second SSB transmission within the SS burst set (hereinafter referred to as “additional SSB-PositionsInBurst”), information on the SSB period of the second SSB (hereinafter referred to as "additional SSB-periodicityServingCell”).
  • the second SSB transmission information may be RRC parameters in SIB1 (e.g. parameters in 'ServingCellConfigCommonSIB') or RRC parameters in other RRC messages (e.g. parameters in 'ServingCellConfigCommon').
  • SIB1 e.g. parameters in 'ServingCellConfigCommonSIB'
  • RRC parameters in other RRC messages e.g. parameters in 'ServingCellConfigCommon'
  • the second SSB transmission information may be cell specific.
  • the first SSB transmission information (ssb-PositionsInBurst , and/or ssb-periodicityServingCell, and/or ss-PBCH-BlockPower, and/or ssb-SMTC) may be applied to the second SSB transmission information.
  • the terminal 10 may use the first SSB (that is, give priority to the first SSB). good).
  • the transmission resources may be, for example, time domain and/or frequency domain resources.
  • pdcch-ConfigCommon Information related to PDCCH configuration in the first initial DL BWP
  • pdcch-ConfigCommon contains information about paging search space (hereinafter referred to as “pagingSearchSpace”), information about RA search space (hereinafter referred to as “ra-SearchSpace”), information about CORESET (hereinafter referred to as "commonControlResourceSet”), and paging It may include at least one of information about the first PDCCH monitoring opportunity within the paging occasion (PO) (hereinafter referred to as "firstPDCCH-MonitoringOccasionOfPO").
  • pagingSearchSpace information about paging search space
  • ra-SearchSpace information about RA search space
  • CORESET hereinafter referred to as "commonControlResourceSet”
  • paging It may include at least one of information about the first PDCCH monitoring opportunity within the paging occasion (PO) (hereinafter referred to as "firstPDCCH-Monit
  • pdcch-ConfigCommon may be the RRC parameter in SIB1 (eg, the parameter in 'BWP-DownlinkCommon' as 'initialDownlinkBWP' in 'DownlinkConfigCommonSIB' in 'ServingCellConfigCommonSIB').
  • pdcch-ConfigCommon may be RRC parameters in other RRC messages (eg, parameters in 'BWP-DownlinkCommon' as 'initialDownlinkBWP' in 'DownlinkConfigCommon' in 'ServingCellConfigCommon').
  • pdcch-ConfigCommon may be cell specific.
  • pdcch-ConfigCommon may be called first downlink control channel setting information or the like.
  • pdcch-ConfigCommonRedCap Information related to PDCCH configuration in the second initial DL BWP (hereinafter referred to as "pdcch-ConfigCommonRedCap”) may be configured in the terminal 10.
  • pdcch-ConfigCommonRedCap may include at least one of pagingSearchSpace, ra-SearchSpace, commonControlResourceSet, and firstPDCCH-MonitoringOccasionOfPO.
  • pdcch-ConfigCommonRedCap may be an RRC parameter in SIB1 (eg, a parameter in 'BWP-DownlinkCommon' as 'initialDownlinkBWP' in 'DownlinkConfigCommonSIB' in 'ServingCellConfigCommonSIB').
  • pdcch-ConfigCommonRedCap may be an RRC parameter in another RRC message (eg, a parameter in 'BWP-DownlinkCommon' as 'initialDownlinkBWP' in 'DownlinkConfigCommon' in 'ServingCellConfigCommon').
  • pdcch-ConfigCommonRedCap may be cell specific.
  • pdcch-ConfigCommonRedCap may be called second downlink control channel setting information or the like.
  • rach-ConfigCommon Information related to random access configuration in the first initial DL BWP (hereinafter referred to as “rach-ConfigCommon”) may be configured in the terminal 10 .
  • rach-ConfigCommon is information indicating the number of first SSBs per RO and/or the number of RA preambles per first SSB transmission (hereinafter referred to as “ssb-perRACH-OccasionAndCB-PreamblesPerSSB”); It may include at least one piece of information (hereinafter referred to as “rsrp-ThresholdSSB”) regarding the received power (for example, RSRP) threshold of the first SSB.
  • rsrp-ThresholdSSB the received power (for example, RSRP) threshold of the first SSB.
  • rach-ConfigCommon may be the RRC parameter in SIB1 (eg, the parameter in 'BWP-UplinkCommon' as 'initialUplinkBWP' in 'UplinkConfigCommonSIB' in 'ServingCellConfigCommonSIB').
  • rach-ConfigCommon may be RRC parameters in other RRC messages (eg, parameters in 'BWP-UplinkCommon' as 'initialUplinkBWP' in 'UplinkConfigCommon' in 'ServingCellConfigCommon').
  • rach-ConfigCommon may be cell-specific.
  • rach-ConfigCommon may be called the first random access parameter, and so on.
  • rach-ConfigCommonRedCap Information related to the random access setting in the second initial DL BWP (hereinafter referred to as “rach-ConfigCommonRedCap”) may be set in the terminal 10.
  • rach-ConfigCommonRedCap is information indicating the number of second SSBs per RO and/or the number of RA preambles per second SSB transmission (hereinafter referred to as “ssb-perRACH-OccasionAndCB-PreamblesPerSSB”); It may include at least one piece of information (hereinafter referred to as “rsrp-ThresholdSSB”) regarding the threshold of the received power (for example, RSRP) of the second SSB.
  • rsrp-ThresholdSSB the threshold of the received power (for example, RSRP) of the second SSB.
  • rach-ConfigCommonRedCap may be an RRC parameter in SIB1 (eg, a parameter in 'BWP-UplinkCommon' as 'initialUplinkBWP' in 'UplinkConfigCommonSIB' in 'ServingCellConfigCommonSIB').
  • rach-ConfigCommonRedCap may be an RRC parameter in another RRC message (eg, parameter in 'BWP-UplinkCommon' as 'initialUplinkBWP' in 'UplinkConfigCommon' in 'ServingCellConfigCommon').
  • rach-ConfigCommonRedCap may be cell specific.
  • the rach-ConfigCommonRedCap may be called a second random access parameter or the like.
  • PCCH-Config Information related to paging configuration in the first initial DL BWP (hereinafter referred to as “PCCH-Config”) may be configured in the terminal 10 .
  • PCCH-Config includes information about the paging cycle (hereinafter referred to as "PagingCycle”), firstPDCCH-MonitoringOccasionOfPO, information indicating the number of paging frames (paging frmae: PF) in the paging cycle and/or time offset (hereinafter referred to as “nAndPagingFrameOffset” ), information on the number of POs per PF (hereinafter referred to as “ns”), and information on the number of PDCCH monitoring opportunities per SSB in a PO (hereinafter referred to as “nrofPDCCH-MonitoringOccasionPerSSB-InPO”).
  • PagingCycle information about the paging cycle
  • firstPDCCH-MonitoringOccasionOfPO information indicating the number of
  • PCCH-Config may be RRC parameters in SIB1 (eg, parameters in 'DownlinkConfigCommonSIB' in 'ServingCellConfigCommonSIB').
  • PCCH-Config may be cell specific.
  • PCCH-Config may be called first paging configuration information or the like.
  • PCCH-ConfigRedCap Information related to paging settings in the second initial DL BWP (hereinafter referred to as "PCCH-ConfigRedCap”) may be set in the terminal 10.
  • PCCH-ConfigRedCap may include at least one of defaultPagingCycle, firstPDCCH-MonitoringOccasionOfPO, nAndPagingFrameOffset, ns and nrofPDCCH-MonitoringOccasionPerSSB-InPO.
  • PCCH-ConfigRedCap may be an RRC parameter in SIB1 (eg, a parameter in 'DownlinkConfigCommonSIB' in 'ServingCellConfigCommonSIB').
  • PCCH-Config may be cell specific.
  • PCCH-ConfigRedCap may be referred to as second paging configuration information or the like.
  • the terminal 10 monitors the PDCCH at the PDCCH monitoring opportunity and receives DCI used for scheduling the PDSCH that transmits the paging message.
  • the DCI may be CRC scrambled with a specific RNTI (eg Paging(P)-RNTI).
  • Terminal 10 may determine the PDCCH monitoring opportunity based on whether the second initial DL BWP is configured in cell C where the first initial DL BWP is configured.
  • the terminal 10 determines paging frames based on at least one of the DRX cycle, the number of PFs in the DRX cycle, the time offset and the identifier of the terminal 10 .
  • PF is, for example, a radio frame (RF) including PO.
  • the terminal 10 may determine the identification number of the PF (hereinafter referred to as "system frame number (SFN)”) based on Equation (1) below.
  • SFN system frame number
  • T (T div N) * (UE_ID mod N)
  • N the number of PFs in T
  • PF_offset is a predetermined offset
  • UE_ID is determined based on the terminal 10 identifier (eg, 5G-S-TMSI). value.
  • T may be determined based on the PagingCycle.
  • PagingCycle may indicate, for example, 32, 64, 128 or 256 RF.
  • N and/or PF_offset may be determined based on the nAndPagingFrameOffset.
  • the terminal 10 may determine POs in the PF based on at least one of the ID of the search space used as the paging search space, firstPDCCH-MonitoringOccasionOfPO, and nrofPDCCH-MonitoringOccasionPerSSB-InPO.
  • PO is, for example, a set of one or more PDCCH monitoring occasions for paging, and S*X consecutive PDCCH monitoring occasions from the time position indicated by firstPDCCH-MonitoringOccasionOfPO (e.g., S*X consecutive excluding UL symbols symbol).
  • Each PDCCH monitoring occasion within the PO may consist of a predetermined number of symbols.
  • firstPDCCH-MonitoringOccasionOfPO may, for example, indicate the time position (eg, symbol position) of the first PDCCH monitoring occasion within the PF.
  • S is the number of SSBs actually transmitted within the SS burst set, and may be indicated by ssb-PositionsInBurst or additional SSB-PositionsInBurst.
  • X is the number of PDCCH monitoring occasions per SSB in PO, which may be determined based on nrofPDCCH-MonitoringOccasionPerSSB-InPO.
  • nrofPDCCH-MonitoringOccasionPerSSB-InPO indicates, for example, that the number of PDCCH monitoring occasions per SSB in PO is either 2 to 4, and if nrofPDCCH-MonitoringOccasionPerSSB-InPO is not set, the number of PDCCH monitoring occasions is 1 It may be shown that
  • 7 and 8 are diagrams showing examples of SSB, PF and PO according to this embodiment.
  • 7 and 8 show an example of the first and second SSBs, PFs and POs in the first and second initial DL BWPs, respectively, while the first and second SSBs in the first and second initial DL BWPs
  • the settings of SSB, PF and PO of 2 are not limited to those shown in the figure, and can be appropriately changed by setting various parameters.
  • T 32 RFs
  • nAndPagingFrameOffset may indicate that PFs are placed every 1 RF within T (oneT).
  • the terminal 10 may determine the PF for the terminal 10 (here, RF#0) among the 32 PFs in T based on the UE_ID.
  • firstPDCCH-MonitoringOccasionOfPO for the first initial DL BWP indicates the fifth symbol from the first in symbols #0 to #139 in the PF (that is, symbol #4 of slot #0).
  • the PO is composed of S*X (here, 8) PDCCH monitoring opportunities, and SSB #0 to #7 are the first to eighth PDCCH monitoring opportunities in the PO (that is, symbols of slot #0 #4 to #11 PDCCH monitoring occasions) may be supported. For multi-beam operation, the terminal 10 may assume that the corresponding SSB and PDCCH DM-RSs are quasi-collocated at each PDCCH monitoring occasion in the PO.
  • nAndPagingFrameOffset indicates that PFs are placed every eight RFs within T (oneEightT) and a time offset of "2". good.
  • the terminal 10 may determine the PF for the terminal 10 (here, RF#2) among the 4 PFs in T based on the UE_ID.
  • firstPDCCH-MonitoringOccasionOfPO for the second initial DL BWP is symbol #284 in symbols #0-#1119 in RF#0-#7 (that is, symbol #4 in slot #0 of PF#2). ).
  • a symbol index is attached to each slot in each RF, but symbol indexes #0 to #1119 may be attached to all symbols in RF #0 to #7.
  • the terminal 10 determines four consecutive symbols from symbol #4 in slot #0 of RF#2 as PO.
  • the PO is composed of S*X (here, 4) PDCCH monitoring opportunities, and SSB #0 to #4 are the first to fourth PDCCH monitoring opportunities in the PO (that is, symbols of slot #0). #4 to #7 PDCCH monitoring occasions) may be supported.
  • Terminal 10 may assume that the corresponding SSB and PDCCH DM-RSs are quasi-colocated at each PDCCH monitoring occasion in the PO.
  • the terminal 10 has parameters for the first initial DL BWP (eg, first SSB transmission information and pdcch-ConfigCommon) and parameters for the second initial DL BWP (eg, , second SSB transmission information and pdcch-ConfigCommonRedCap) can be set independently. Therefore, the terminal 10 sets the first initial DL BWP or the second initial DL based on whether the second initial DL BWP is set and/or whether a predetermined condition is satisfied. Determine which parameters for BWP to set PDCCH monitoring occasions for paging based on.
  • first initial DL BWP eg, first SSB transmission information and pdcch-ConfigCommon
  • parameters for the second initial DL BWP eg, second SSB transmission information and pdcch-ConfigCommonRedCap
  • FIG. 9 is a flowchart showing an example of operation for determining PDCCH monitoring opportunities for paging according to the present embodiment.
  • the terminal 10 has the first initial DL BWP set.
  • the terminal 10 determines whether or not the second initial DL BWP is set.
  • step S102 when the terminal 10 is configured with the second initial DL BWP, the terminal 10 transmits the second SSB in the second initial DL BWP, configures the paging search space in the second initial DL BWP, Then, it is determined whether or not conditions related to at least one of the capabilities of the terminal 10 are satisfied. Specifically, the terminal 10 may determine whether at least one of the following conditions is satisfied. (a) transmission of the second SSB in the second initial DL BWP is set; (b) A paging search space is set up in the second initial DL BWP. (c) that the terminal 10 has certain capabilities;
  • the above condition (a) may be that the second SSB transmission information (eg, at least one of additional SSB-Frequency, additional SSB-PositionsInBurst, and additional SSB-PeriodicityServingCell) is set.
  • the above condition (b) is that pagingsearchspace (for example, a search space ID of a paging search space) is set in pdcch-ConfigCommonRedCap, or that pagingsearchspace and commonControlResourceSet are set in pdcch-ConfigCommonRedCap. good too.
  • the specific capability in the above condition (c) is the capability of the terminal 10 regarding CORESET#0 and/or SSB in BWP.
  • each BWP set in the terminal 10 includes the bandwidth of CORESET #0 and SSB (feature group 6-1), and/or the CORESET #0 and SSB It may be to allow BWPs that do not include bandwidth (feature group 6-1a).
  • step S103 the terminal 10 sets the additional SSB-PositionsInBurst and/or the second initial Based on pdcch-ConfigCommonRedCap related to PDCCH configuration in DL BWP, PDCCH monitoring opportunities for paging are determined.
  • step S103 if the search space ID indicated by pagingsearchspace in pdcch-ConfigCommonRedCap is other than 0, terminal 10 performs PDCCH monitoring for paging based on additionalSSB-PositionsInBurst and/or pdcch-ConfigCommonRedCap. Opportunity may be determined. For example, as shown in FIG. 8, the terminal 10 sets PDCCH monitoring opportunities for paging based on additionalSSB-PositionsInBurst and firstPDCCH-MonitoringOccasionOfPO in pdcch-ConfigCommonRedCap from symbol #4 in slot #0 in RF #2 to symbol #4 in slot #0 in RF #2. #7 may be determined. On the other hand, when the search space ID is 0, the terminal 10 may determine the PDCCH monitoring opportunity for SIB1 as the PDCCH monitoring opportunity for paging.
  • the terminal 10 may determine PDCCH monitoring opportunities for paging based on pcch-ConfigRedCap instead of or in addition to pdcch-ConfigCommonRedCap.
  • the terminal 10 is based on at least one of pdcch-ConfigCommonRedCap or firstPDCCH-MonitoringOccasionOfPO in pcch-ConfigRedCap, nrofPDCCH-MonitoringOccasionPerSSB-InPO in pcch-ConfigRedCap, defaultPagingCycle in pcch-ConfigRedCap, and nAndPagingFrameOffset in pcch-ConfigRedCap. , may determine PDCCH monitoring occasions for paging.
  • step S104 The terminal 10 determines PDCCH monitoring opportunities for paging based on ssb-PositionsInBurst for the first SSB and/or pdcch-ConfigCommon for PDCCH configuration in the first initial DL BWP.
  • step S104 when the search space ID indicated by pagingsearchspace in pdcch-ConfigCommon is other than 0, terminal 10 performs PDCCH monitoring for paging based on ssb-PositionsInBurst and/or pdcch-ConfigCommon.
  • Opportunity may be determined.
  • the terminal 10 sets PDCCH monitoring opportunities for paging based on ssb-PositionsInBurst and firstPDCCH-MonitoringOccasionOfPO in pdcch-ConfigCommon to symbols #4 to symbols #4 in slot #0 in RF #0. #11 may be determined.
  • the terminal 10 may determine the PDCCH monitoring opportunity for SIB1 as the PDCCH monitoring opportunity for paging.
  • the terminal 10 may determine PDCCH monitoring opportunities for paging based on pcch-Config instead of or in addition to pdcch-ConfigCommon. For example, the terminal 10, based on at least one of pdcch-ConfigCommonRedCap or firstPDCCH-MonitoringOccasionOfPO in pcch-Config, nrofPDCCH-MonitoringOccasionPerSSB-InPO in pcch-Config, defaultPagingCycle in pcch-Config and nAndPagingFrameOffset in pcch-Config , may determine PDCCH monitoring occasions for paging.
  • pdcch-ConfigCommonRedCap or firstPDCCH-MonitoringOccasionOfPO in pcch-Config
  • nrofPDCCH-MonitoringOccasionPerSSB-InPO in pcch-Config
  • defaultPagingCycle in pcch-Con
  • the terminal 10 can receive paging messages based on the DCI detected at PDCCH monitoring occasions.
  • the terminal 10 transmits the RA preamble.
  • the terminal 10 determines the RA preamble and/or the RO used to transmit the RA preamble based on whether the second initial DL BWP is configured in the cell C in which the first initial DL BWP is configured. You may
  • the RA preamble is a predetermined sequence and is also called PRACH preamble or preamble, preamble sequence, message 1, PRACH, and the like.
  • An RO is, for example, time domain and/or frequency domain resources for transmission of an RA preamble, and may consist of one or more symbols and M (M ⁇ 1) resource blocks. RO is also called PRACH opportunity, random access opportunity, transmission opportunity, opportunity, and so on.
  • the RA preamble may be transmitted using a random access channel (PRACH).
  • the RACH is a UL channel used for transmitting the RA preamble, and is also called a Physical Random Access Channel (PRACH) or the like.
  • Random access procedures include contention-based random access (CBRA) and contention-free random access (CFRA). Two types are supported for CBRA and CFRA, respectively. The first type is called Type 1, Type-1 random access procedure, 4-step RACH, or 4-step random access, or the like. The second type is called Type-2, Type-2 random access procedure, 2-step RACH, or 2-step random access, or the like.
  • terminal 10 randomly selects an RA preamble and transmits the selected RA preamble to base station 20 .
  • the terminal 10 receives a Random Access Response (RAR) (also called message 2) via PDSCH in response to the RA preamble and transmits message 3 via PUSCH in response to the RAR.
  • RAR Random Access Response
  • Terminal 10 receives message 4 (collision resolution message) via PDSCH in response to message 3 .
  • the terminal 10 transmits the RA preamble assigned by the base station 20 to the base station 20 .
  • the terminal 10 receives RAR from the base station 20 via PDSCH according to the RA preamble. Since the RA preamble is indicated by DCI, CFRA is also called PDCCH-ordered RA.
  • the terminal 10 transmits the RA preamble and message 3 in type 1 CBRA as message A, and receives message B (that is, RAR).
  • message B that is, RAR
  • the RA preamble in message A is also randomly selected.
  • type 2 CFRA the RA preamble and message 3 indicated by the DCI from base station 20 are sent as message A and message B is received.
  • the terminal 10 may select an RO and/or an RA preamble based on the RSRP of the SSB and transmit the RA preamble using the selected RO.
  • the base station 20 Based on the RA preamble received from the terminal 10 and/or the RO used to transmit the RA preamble, the base station 20 recognizes which SSB the terminal 10 has received, that is, in which beamforming direction the terminal 10 is located. can. That is, the base station 20 may estimate the pseudo collocation (QCL) relationship for the terminal 10 based on the RA preamble from the terminal 10 and/or the SSB associated with the RO used to receive the RA preamble.
  • the control unit 203 may control transmission of DL signals and/or reception of UL signals using the same spatial parameters (beams) as those of the SSB.
  • the terminal 10 monitors the PDCCH in the RA search space, detects DCI that is CRC scrambled with a specific RNTI (eg, RA-RNTI), and uses the PDSCH scheduled by the DCI to perform type 1 and 2 CBRA and CFRA, message 4 and/or message B may be received.
  • a specific RNTI eg, RA-RNTI
  • FIG. 10 is a diagram showing an example of the relationship between SSB and RO and RA preambles according to this embodiment.
  • FIG. 10 shows the relationship between SSB #0 to #7 (first SSB) actually transmitted in the first initial DL BWP and the RO and RA preambles in the first initial UL BWP.
  • first SSB the relationship between SSB, RO, and RA preambles is not limited to that illustrated.
  • RACH slots one or more slots used for transmitting RA preambles are provided in a predetermined period (hereinafter referred to as "RACH resource periodicity").
  • RACH resource periodicity a predetermined period
  • the RACH resource period is 10 slots
  • the 2nd, 5th, and 8th slots in RF are RACH slots, but this is not limitative.
  • each RACH slot may be provided with one or more ROs.
  • One RO is composed of M (M ⁇ 1) resource blocks.
  • one or more ROs can be allocated per RACH slot. For example, in FIG. 10, a total of 2 ROs, 2 ROs in the frequency domain and 1 RO in the time domain, are allocated per RACH slot.
  • each RACH slot may contain one or more ROs in the time domain and/or frequency domain.
  • An SSB is associated with one or more ROs. Also, one SSB is associated with one or more RA preambles.
  • the association between SSB and RO and/or RA preambles may be indicated by ssb-perRACHOccasionAndCB-PreamblesPerSSB above.
  • the ssb-perRACHOccasionAndCB-PreamblesPerSSB may indicate the number of SSBs associated with one RO and/or the number of RA preambles associated with one SSB.
  • ssb-perRACHOccasionAndCB-PreamblesPerSSB indicates that one RO corresponds to one SSB ("one") and that one SSB corresponds to 8RA preambles ("n8").
  • the SSB number X associated with one RO is not limited to 1, and may be a number larger than 1 (eg, 2, 4, 8, or 16) or a number smaller than 1 (eg, 1/8 , 1/4 or 1/2). If X ⁇ 1, one RO is associated with X SSBs.
  • one SSB is associated with the reciprocal of X ROs.
  • the number Y of RA preambles associated with one SSB is, for example, 4, 8, 12, etc., but is not limited thereto, and may be 1 or more.
  • the RO and RA preamble indexes and the like associated with each SSB shown in FIG. 10 are merely examples, and are not limited to those shown.
  • terminal 10 measures RSRP using SSB #0 to #7 in the SS burst set in the first initial DL BWP. At least one of SSB #0 to #7 is selected for terminal 10 based on the RSRP measurement result of SSB #0 to #7 and the threshold indicated by rsrp-ThresholdSSB. Specifically, the terminal 10 may select at least one of the SSBs #0 to #7 whose RSRP exceeds the threshold.
  • terminal 10 when terminal 10 selects two SSB #0 and #1 based on RSRP and the threshold, random Select one RA preamble for . Also, the terminal 10 selects one RO from RO #0 and #1 associated with SSB #0 and #1 respectively. Terminal 10 uses the selected RO to transmit the selected RA preamble. Note that, in the case of CFRA, the terminal 10 may transmit the RA preamble indicated by DCI using the selected RO.
  • type 1 CBRA or CFRA is assumed in FIG. 10, it is applicable to type 2 CBRA or CFRA.
  • Information related to association of RO and/or RA preambles for message A (hereinafter referred to as “msgA-SSB-PerRACH-OccasionAndCB-PreamblesPerSSB”) may be configured in terminal 10 .
  • information on the threshold of RSRP of SSB (hereinafter referred to as “msgA-RSRP-ThresholdSSB”) may be configured in the terminal 10 for type 2 CBRA or CFRA.
  • Terminal 10 similar to ssb-perRACHOccasionAndCB-PreamblesPerSSB and RSRP-ThresholdSSB described in FIG.
  • An RO may be selected for RA preamble transmission.
  • FIG. 11 is a diagram showing another example of the relationship between SSB and RO and RA preambles according to this embodiment.
  • FIG. 11 shows the relationship between SSB #0 to #3 (second SSB) actually transmitted in the second initial DL BWP and the RO and RA preambles in the second initial UL BWP.
  • second SSB the relationship between SSB, RO, and RA preambles is not limited to that illustrated.
  • FIG. 11 will be described with a focus on differences from FIG. 10 .
  • SSsb-perRACHOccasionAndCB-PreamblesPerSSB indicates that 1/2 SSBs correspond to one RO (that is, one SSB corresponds to two ROs) ("oneHalf"), and one SSB has 16 RAs. Indicates that the preamble supports ("n16").
  • terminal 10 measures RSRP using SSB #0 to #3 in the SS burst set in the second initial DL BWP. At least one of SSB #0 to #7 is selected for terminal 10 based on the RSRP measurement result of SSB #0 to #3 and the threshold indicated by rsrp-ThresholdSSB. Specifically, the terminal 10 may select at least one of the SSBs #0 to #3 whose RSRP exceeds the threshold.
  • terminal 10 when terminal 10 selects SSB#1 based on RSRP and the threshold, terminal 10 randomly selects one RA preamble from RA preambles #15 to #31 associated with SSB#1. . Also, the terminal 10 selects one RO from RO #2 and #3 associated with SSB #1. Terminal 10 uses the selected RO to transmit the selected RA preamble. Note that, in the case of CFRA, the terminal 10 may transmit the RA preamble indicated by DCI using the selected RO.
  • type 1 CBRA or CFRA is assumed in FIG. 11, it is applicable to type 2 CBRA or CFRA.
  • Information related to association of RO and/or RA preambles for message A (hereinafter referred to as “msgA-SSB-PerRACH-OccasionAndCB-PreamblesPerSSB”) may be configured in terminal 10 .
  • information on the threshold of RSRP of SSB (hereinafter referred to as “msgA-RSRP-ThresholdSSB”) may be configured in the terminal 10 for type 2 CBRA or CFRA.
  • Terminal 10 similar to ssb-perRACHOccasionAndCB-PreamblesPerSSB and RSRP-ThresholdSSB described in FIG.
  • An RO may be selected for RA preamble transmission.
  • the terminal 10 has parameters for the first initial DL BWP (for example, first SSB transmission information and rach-ConfigCommon) and parameters for the second initial DL BWP (for example, the second SSB transmission information (rach-ConfigCommonRedCap) can be set independently. Therefore, the terminal 10 sets the first initial DL BWP or the second initial DL based on whether the second initial DL BWP is set and/or whether a predetermined condition is satisfied. Decide on which parameters for BWP to select RO and/or RA preambles.
  • first initial DL BWP for example, first SSB transmission information and rach-ConfigCommon
  • the second SSB transmission information rach-ConfigCommonRedCap
  • FIG. 12 is a flowchart showing an example of the RO and/or RA preamble selection operation according to this embodiment.
  • the terminal 10 has the first initial DL BWP set.
  • the terminal 10 determines whether or not the second initial DL BWP is set.
  • step S202 when the terminal 10 is configured with the second initial DL BWP, the terminal 10 transmits the second SSB in the second initial DL BWP, configures the RA search space in the second initial DL BWP, It is determined whether or not conditions related to at least one of the setting of the second random access parameter and the capability of the terminal 10 are satisfied. Specifically, the terminal 10 may determine whether at least one of the following conditions is satisfied.
  • A) Transmission of the second SSB in the second initial DL BWP is set.
  • B RA search space is set in the second initial DL BWP.
  • C A second random access parameter is set.
  • Terminal 10 has a specific capability.
  • condition (B) is that ra-searchspace (for example, search space ID of RA search space) is set in pdcch-ConfigCommonRedCap, or that ra-searchspace and the commonControlResourceSet are set in pdcch-ConfigCommonRedCap. It may be Also, the above condition (C) may be that ssb-perRACH-OccasionAndCB-preamblesPerSSB and/or RSRP-ThresholdSSB are set in rach-ConfigCommonRedCap. Conditions (A) and (D) above are the same as conditions (a) and (c) above.
  • step S203 the terminal 10 sets additionalSSB-PositionsInBurst and/or RACH-ConfigCommonRedCap for the second SSB. based on which RA preamble and/or RO is selected.
  • the terminal 10 generates an RA preamble based on at least one of additionalSSB-PositionsInBurst, ssb-perRACHOccasionAndCB-PreamblesPerSSB and RSRP-ThresholdSSB in RACH-ConfigCommonRedCap, and RSRP of the second SSB. and/or RO may be selected.
  • terminal 10 determines RO and/or RA preambles corresponding to SSB #0 to #3 based on additional SSB-PositionsInBurst and ssb-perRACHOccasionAndCB-PreamblesPerSSB in RACH-ConfigCommonRedCap.
  • the terminal 10 based on the RSRP of SSB #0 ⁇ #3 and RSRP-ThresholdSSB in RACH-ConfigCommonRedCap, at least one of SSB #0 ⁇ #3 (for example, in FIG. 11, the threshold indicated by RSRP-ThresholdSSB SSB#1) with an RSRP greater than . Also, in FIG. 11, the terminal 10 has one of RO #2 and #3 corresponding to the selected SSB and/or one of RA preambles #15 to #31 corresponding to the selected SSB #1. may be selected.
  • step S204 Terminal 10 selects the RA preamble and/or RO based on ssb-PositionsInBurst and/or RACH-ConfigCommon for the first SSB.
  • the terminal 10 generates an RA preamble based on at least one of ssb-PositionsInBurst, ssb-perRACHOccasionAndCB-PreamblesPerSSB and RSRP-ThresholdSSB in RACH-ConfigCommon, and RSRP of the first SSB. and/or RO may be determined. For example, as shown in FIG. 10, terminal 10 determines RO and/or RA preambles corresponding to SSB #0 to #7 based on ssb-PositionsInBurst and ssb-perRACHOccasionAndCB-PreamblesPerSSB in RACH-ConfigCommon.
  • the terminal 10 based on the RSRP of SSB #0 ⁇ #7 and RSRP-ThresholdSSB in RACH-ConfigCommon, at least one of SSB #0 ⁇ #7 (for example, in FIG. 10, the threshold indicated by RSRP-ThresholdSSB SSBs #0 and #1) with RSRP greater than .
  • the terminal 10 uses one of RO #0 and #1 corresponding to the selected SSB #0 and #1 and/or the RA preamble corresponding to the selected SSB #0 and #1.
  • One of #0 to #15 may be selected.
  • RACH-ConfigCommon and RACH-ConfigCommonRedCap may be replaced with msgA-ConfigCommon and msgA-ConfigCommonRedCap, respectively.
  • ssb-perRACHOccasionAndCB-PreamblesPerSSB and RSRP-ThresholdSSB may be replaced with msgA-SSB-PerRACH-OccasionAndCB-PreamblesPerSSB and msgA-RSRP-ThresholdSSB, respectively.
  • RO and/or RA preambles can be appropriately selected even if the second SSB can be transmitted in the second initial DL BWP. Therefore, operations related to random access can be appropriately controlled.
  • the selection of RA preambles in the above means selecting (or determining) one RA preamble transmitted by terminal 10 using RACH from among one or more groups (or sets) of RA preambles. It may be to Also, the selection of the RA preamble may be rephrased as the selection or determination of the index of the RA preamble, and the terminal 10 may transmit the RA preamble of the selected index via the RACH.
  • Terminal 10 receives MIB via PBCH.
  • the terminal 10 may control the operation when receiving the MIB based on whether or not the second initial DL BWP is set in the cell C in which the first initial DL BWP is set. Specifically, when the second initial DL BWP is configured, the terminal 10 receives a specific It may ignore the parameter or assume that the particular parameter is not sent.
  • FIG. 13 is a diagram showing an example of the MIB according to this embodiment.
  • the MIB may include at least one of the following parameters.
  • ⁇ Information about SFN hereinafter referred to as “systemFrameNumber”
  • subCarrierSpacingCommon Information on subcarrier spacing
  • k SSB frequency offset between the SSB and the resource block grid
  • ssb-SubcarrierOffset Information about the position of DM-RS (hereinafter referred to as "dmrs-TypeA-Position”) - Information on common CORESET (CORESET#0) and/or common search space (search space #0) (hereinafter referred to as "pdcch-ConfigSIB1”)
  • pdcch-ConfigSIB1 Information on whether or not (camp-on to) the cell is prohibited
  • cellBarred Information on the selection and / or rese
  • FIG. 14 is a flow chart showing an example of the operation when MIB is received according to this embodiment.
  • the terminal 10 has the first initial DL BWP set.
  • the terminal 10 determines whether or not the second initial DL BWP is set.
  • step S302 when the second initial DL BWP is configured in the terminal 10, the terminal 10 transmits the second SSB in the second initial DL BWP, configures the paging search space in the second initial DL BWP, It is determined whether or not conditions related to at least one of setting of RA search spaces in the second initial DL BWP and capabilities of the terminal 10 are satisfied. Specifically, the terminal 10 may determine whether at least one of the following conditions is satisfied. (i) transmission of the second SSB in the second initial DL BWP is set; (ii) A paging search space is set up in the second initial DL BWP. (iii) RA search space is set in the second initial DL BW. (iv) the terminal 10 has certain capabilities; For example, conditions (i), (ii) and (iv) above are the same as conditions (a), (b) and (c) above. Condition (iii) above is the same as condition (B) above.
  • step S303 the terminal 10 receives the may ignore certain parameters of or assume that certain parameters are not transmitted.
  • the specific parameter in the MIB is, for example, at least one of cellBarred, intraFreqReselection, and ssb-SubcarrierOffset, but is not limited to this.
  • the specific parameter may be at least one parameter within the MIB.
  • the terminal 10 may control reception of DL signals in the second initial DL BWP and/or transmission of UL signals in the second initial UL BWP based on parameters other than the specific parameters in the MIB. good.
  • Terminal 10 receives DL signals in the first initial DL BWP and/or receives UL signals in the first initial UL BWP based on each parameter in the MIB received via the PBCH in the first SSB Signal transmission may be controlled.
  • the operation of the terminal 10 when the second initial DL BWP is set is not limited to the above.
  • the terminal 10 when the second initial DL BWP is set, the terminal 10 can set a specific meaning regardless of the value of a specific parameter in the MIB received via the PBCH in the second SSB. can be interpreted as The specific parameter is, for example, cellBarred, and the terminal 10 may interpret cellBarred to indicate that the cell is not barred even if it indicates that the cell is barred.
  • the second SSB when the second SSB can be transmitted not only in the first initial DL BWP but also in the second initial DL BWP, appropriate operation can be performed based on the MIB.
  • FIG. 15 is a diagram showing an example of BWP-DownlinkCommon according to this embodiment.
  • BWP-DownlinkCommon is information used for setting DL BWP common parameters, and may be included in ServingCellConfigCommon or ServingCellConfigCommonSIB.
  • ServingCellConfigCommonSIB is a cell-specific parameter and may be included in SIB1.
  • ServingCellConfigCommon is a cell-specific configuration parameter and may be included in other RRC messages.
  • BWP-DownlinkCommon may include at least one of the following.
  • - genericParameters which is the first initial DL BWP information - pdcch-ConfigCommon, which is information about PDCCH configuration in the first initial DL BWP - pdsch-ConfigCommon, which is information about the configuration of the PDSCH in the first initial DLBWP - genericParametersRedCap, which is the second initial DL BWP information - pdcch-ConfigCommonRedCap, which is information about PDCCH configuration in the second initial DL BWP - pdsch-ConfigCommonRedCap, which is information about the setting of PDSCH in the second initial DL BWP, and additionalSSB-PositionsInBurst, additionalSSB-periodicityServingCell, additional-SS-PBCH-BlockPower, additionalSSB-Frequency, and additionalSSB as second SSB transmission information -
  • inOneGroup is information indicating whether or not each SSB in the SSB group is actually transmitted by the value of each corresponding bit. In operation bands below 6 GHz, only information indicated by inOneGroup may be used. Also, in the operation band above 6 GHz, information indicated by inOneGroup and groupPresence may be used.
  • FIG. 16 is a diagram showing an example of BWP-UplinkCommon according to this embodiment.
  • BWP-UplinkCommon is information used to configure UL BWP common parameters, and may be included in ServingCellConfigCommon or ServingCellConfigCommonSIB.
  • ServingCellConfigCommonSIB is a cell-specific parameter and may be included in SIB1.
  • ServingCellConfigCommon is a cell-specific configuration parameter and may be included in other RRC messages.
  • BWP-UplinkCommon may include at least one of the following.
  • - genericParameters which is the first initial UL BWP information - rach-ConfigCommon, which is information about the configuration of random access in the first initial UL BWP - pusch-ConfigCommon, which is information about the configuration of PUSCH in the first initial ULBWP - pucch-ConfigCommon, which is information about the configuration of PUCCH in the first initial ULBWP msgA-ConfigCommon, which is information about the transmission of message A in the first initial UL BWP - genericParametersRedCap, which is the second initial UL BWP information - rach-ConfigCommonRedCap, which is information about the configuration of random access in the second initial UL BWP - pusch-ConfigCommonRedCap, which is information about the configuration of PUSCH in the second initial ULBWP - pucch-ConfigCommonRedCap, which is information about the
  • FIG. 17 is a diagram showing an example of RACH-ConfigCommon according to this embodiment.
  • RACH-ConfigCommon may function as information on the configuration of random access in the first initial UL BWP (that is, rach-ConfigCommon), or information on the configuration of random access in the second initial UL BWP ( That is, it may function as rach-ConfigCommonRedCap).
  • push-ConfigCommon may include at least one of the following parameters.
  • ssb-perRACH-OccasionAndCB-PreamblesPerSSB which is information indicating the number of first or second SSBs per RO and/or the number of RA preambles per first or second SSB - rsrp-ThresholdSSB, which is information about the RSRP threshold of the first or second SSB
  • FIG. 18 is a diagram showing an example of RACH-ConfigCommonTwoStepRA according to this embodiment.
  • RACH-ConfigCommonTwoStepRA may serve as information regarding the transmission of message A in the first initial UL BWP (ie msgA-ConfigCommon) or information regarding the transmission of message A in the second initial UL BWP (ie msgA -ConfigCommonRedCap).
  • RACH-ConfigCommonTwoStepRA may include at least one of the following parameters.
  • msgA-SSB-perRACH-OccasionAndCB-PreamblesPerSSB which is information indicating the number of first or second SSBs per RO and/or the number of RA preambles per first or second SSB - msgA-rsrp-ThresholdSSB, which is information about the RSRP threshold of the first or second SSB
  • FIG. 19 is a diagram showing an example of the hardware configuration of each device in the wireless communication system according to this embodiment.
  • Each device in the wireless communication system 1 (for example, the terminal 10, the base station 20, the CN 30, etc.) includes a processor 11, a storage device 12, a communication device 13 that performs wired or wireless communication, an input device that receives various input operations, and various It includes an input/output device 14 for outputting information.
  • the processor 11 is, for example, a CPU (Central Processing Unit) and controls each device within the wireless communication system 1 .
  • the processor 11 may read and execute the program from the storage device 12 to execute various processes described in this embodiment.
  • Each device within the wireless communication system 1 may be configured with one or more processors 11 .
  • Each device may also be called a computer.
  • the storage device 12 is composed of storage such as memory, HDD (Hard Disk Drive) and/or SSD (Solid State Drive).
  • the storage device 12 may store various types of information necessary for execution of processing by the processor 11 (for example, programs executed by the processor 11, etc.).
  • the communication device 13 is a device that communicates via a wired and/or wireless network, and may include, for example, network cards, communication modules, chips, antennas, and the like. Further, the communication device 13 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
  • RF Radio Frequency
  • BB BaseBand
  • the RF device for example, performs D/A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device to generate a radio signal to be transmitted from the antenna. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A/D conversion, etc. on the radio signal received from the antenna, and transmits the digital baseband signal to the BB device.
  • the BB device performs processing to convert data into digital baseband signals. Specifically, the BB device may map data to subcarriers, perform IFFT to generate OFDM symbols, insert CPs into the generated OFDM symbols, and generate digital baseband signals. Note that the BB device may apply a transform precoder (DFT spreading) before mapping data to subcarriers.
  • DFT spreading transform precoder
  • the BB device performs processing to convert the digital baseband signal into data. Specifically, the BB device may remove the CP from the digital baseband signal input from the RF device, perform FFT on the CP-removed signal, and extract the signal in the frequency domain. Note that the BB device may apply IDFT to the signal in the frequency domain.
  • the input/output device 14 includes input devices such as keyboards, touch panels, mice and/or microphones, and output devices such as displays and/or speakers.
  • Each device in the wireless communication system 1 may omit part of the hardware shown in FIG. 19, or may include hardware not shown in FIG. Also, the hardware shown in FIG. 19 may be configured by one or a plurality of chips.
  • FIG. 20 is a diagram showing an example of the functional configuration of a terminal according to this embodiment.
  • terminal 10 includes receiver 101 , transmitter 102 , and controller 103 .
  • the functional configuration shown in FIG. 20 is merely an example, and any names of functional divisions and functional units may be used as long as the operations according to the present embodiment can be executed.
  • the receiving unit 101 and the transmitting unit 102 may be collectively referred to as a communication unit.
  • All or part of the functions realized by the receiving unit 101 and the transmitting unit 102 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 101 and the transmitting unit 102 and the control unit 103 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium.
  • the storage medium storing the program may be a non-transitory computer readable medium.
  • the non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
  • the receiving unit 101 receives a signal (eg, DL signal and/or sidelink signal). Also, the receiving unit 101 may receive information and/or data transmitted via the signal.
  • “receiving” may include, for example, performing processing related to reception such as at least one of receiving, demapping, demodulating, decoding, monitoring, and measuring radio signals.
  • the DL signal may include, for example, at least one of PDSCH, PDCCH, downlink reference signal, synchronization signal, PBCH, and the like.
  • Receiving section 101 monitors PDCCH candidates in the search space to detect DCI.
  • the receiver 101 may receive DL data via PDSCH scheduled using DCI.
  • the DL data may include downlink user data and/or higher layer control information (eg, at least one parameter of the MAC layer, RRC layer and Non Access Stratum (NAS) layer).
  • the receiver 101 may receive system information via PBCH and/or PDSCH.
  • the transmission unit 102 transmits signals (eg, UL signals and/or sidelink signals). Also, the transmitting unit 102 may transmit information and/or data transmitted via the signal. Here, “transmitting” may include performing processing related to transmission, such as at least one of encoding, modulation, mapping, and transmission of radio signals.
  • the UL signal may include, for example, at least one of PUSCH, PRACH, PUCCH, uplink reference signals, and the like.
  • the transmitting section 102 may transmit UL data via PUSCH scheduled using the DCI received by the receiving section 101 .
  • the UL data may transmit uplink user data and/or higher layer control information (eg, at least one parameter of the MAC layer, RRC layer and NAS layer).
  • the control unit 103 performs various controls in the terminal 10. Specifically, the control unit 103 controls the operation of the terminal 10 based on information (for example, RRC layer parameters) related to various configurations received by the receiving unit 101 from the base station 20 or another terminal 10. may be controlled.
  • information for example, RRC layer parameters
  • the operation of the terminal 10 based on the information may be synonymous with "the setting information is configured in the terminal 10".
  • the control unit 103 may control signal reception in the receiving unit 101 . Further, the control section 103 may control transmission of signals in the transmission section 102 . The control unit 103 may determine whether to apply the transform precoder to the signal transmitted by the transmission unit 102 .
  • the terminal 10 monitors the downlink control channel using a search space (eg, paging search space) in a predetermined period (eg, PDCCH monitoring opportunity), and schedules the downlink shared channel that transmits the paging message.
  • a search space eg, paging search space
  • a predetermined period eg, PDCCH monitoring opportunity
  • the control unit 103 controls transmission of the second synchronization signal block (SSB) in the second initial DL BWP, transmission of the search space in the second initial DL BWP,
  • the predetermined period of time may be determined based on configuration and whether conditions relating to at least one of the capabilities of the terminal are met.
  • the control unit 103 stores information on the transmission of the second SSB (for example, additional SSB-PositionInBurst) and The predetermined period may be determined based on at least one piece of information (for example, pdcch-ConfigCommonRedCap) regarding configuration of the downlink control channel.
  • information on the transmission of the second SSB for example, additional SSB-PositionInBurst
  • the predetermined period may be determined based on at least one piece of information (for example, pdcch-ConfigCommonRedCap) regarding configuration of the downlink control channel.
  • control section 103 receives information (eg, additional SSB-PositionInBurst) regarding transmission of the second SSB and the second
  • the predetermined period may be determined based on at least one piece of information (for example, pdcch-ConfigCommonRedCap) regarding the configuration of the downlink control channel in the initial DL BWP.
  • the control unit 103 stores information on the transmission of the first SSB (for example, SSB-PositionInBurst) and The predetermined period may be determined based on at least one piece of information (for example, pdcch-ConfigCommon) regarding configuration of the downlink control channel.
  • control section 103 receives information on transmission of the first SSB (for example, SSB-PositionInBurst) and the first The predetermined period may be determined based on at least one piece of information (for example, pdcch-ConfigCommon) regarding the configuration of the downlink control channel in the initial DL BWP.
  • the control unit 103 When the second initial DL BWP is not set, the control unit 103 provides information regarding the transmission of the first SSB (for example, SSB-PositionInBurst) and information regarding the setting of the downlink control channel in the first initial DL BWP. (eg, pdcch-ConfigCommon).
  • the terminal 10 has a transmission section 102 that transmits a random access preamble, and a second initial downlink bandwidth part (DL BWP) in the cell in which the first initial downlink bandwidth part (DL BWP) is set.
  • DL BWP second initial downlink bandwidth part
  • the control unit 103 that selects the random access preamble and/or the resource used for transmitting the random access preamble.
  • the control unit 103 controls the transmission of the second synchronization signal block (SSB) in the second initial DL BWP, the random access in the second initial DL BWP.
  • SSB synchronization signal block
  • Search space setting, second random access parameter setting for random access in the second initial DL BWP, and whether or not conditions regarding at least one of the capabilities of the terminal are satisfied, the random access A preamble and/or the resource may be selected.
  • the control unit 103 sets the information on the transmission of the second SSB (for example, additional SSB-PositionInBurst), the second random access parameter (for example, the random access preamble and/or the resource may be selected based on at least one of RACH-ConfigCommonRedCap) and received power of the second SSB.
  • the information on the transmission of the second SSB for example, additional SSB-PositionInBurst
  • the second random access parameter For example, the random access preamble and/or the resource may be selected based on at least one of RACH-ConfigCommonRedCap
  • the second random access parameters include information about association of the second SSB with the resource and/or the random access preamble (eg, ssb-perRACH-OccasionAndCB-preamblesPerSSB), and reception of the second SSB. It may include at least one of information on power thresholds (eg, RSRP-ThresholdSSB).
  • the control unit 103 transmits information (for example, ssb -PositionsInBurst), a first random access parameter for random access in the first initial DL BWP (for example, Rach-ConfigCommon), and the received power of the first SSB, the random access A preamble and/or the resource may be selected.
  • information for example, ssb -PositionsInBurst
  • a first random access parameter for random access in the first initial DL BWP for example, Rach-ConfigCommon
  • the received power of the first SSB the random access A preamble and/or the resource may be selected.
  • the control unit 103 sets information on transmission of the first synchronization signal block (SSB) in the first initial DL BWP (for example, ssb-PositionsInBurst), the first Select the random access preamble and/or the resource based on at least one of the first random access parameter (eg, Rach-ConfigCommon) for random access in the initial DL BWP and the received power of the first SSB You may
  • SSB synchronization signal block
  • the first random access parameters include information on association between the first SSB and the resource and/or the random access preamble (eg, ssb-perRACH-OccasionAndCB-preamblesPerSSB), and reception of the first SSB. It may include at least one of information on power thresholds (eg, RSRP-ThresholdSSB).
  • the terminal 10 includes a receiving section 101 that receives a master information block (MIB), and a second initial downlink bandwidth part (DL BWP) in a cell in which the first initial downlink bandwidth part (DL BWP) is set. and a control unit 103 that controls an operation based on a specific parameter in the MIB based on whether (DL BWP) is set.
  • MIB master information block
  • DL BWP second initial downlink bandwidth part
  • control unit 103 that controls an operation based on a specific parameter in the MIB based on whether (DL BWP) is set.
  • the control unit 103 transmits the second synchronization signal block (SSB) at the second initial DL BWP and searches for paging at the second initial DL BWP.
  • SSB second synchronization signal block
  • control unit 103 converts the specific parameter in the MIB received via the broadcast channel included in the second SSB to It may be ignored or assumed that said particular parameter is not transmitted.
  • the specific parameters include information on whether a cell is barred (eg, cellBarred), information on intra-frequency cell selection and/or reselection (eg, intraFreqReselection), and the second SSB and resource block. At least one of information about the frequency domain offset to/from the grid (eg, ssb-SubcarrierOffset) may be included.
  • the control unit 103 may interpret it to have a specific meaning regardless of the value of the specific parameter.
  • the specific parameter may include information on whether or not a cell is barred (eg, cellBarred), and the control unit 103 may interpret that the cell is not barred regardless of the value indicated by the information.
  • FIG. 21 is a diagram showing an example of the functional block configuration of the base station according to this embodiment.
  • the base station 20 includes a receiver 201, a transmitter 202, and a controller 203.
  • FIG. The functional configuration shown in FIG. 21 is merely an example, and any names of functional divisions and functional units may be used as long as the operations according to the present embodiment can be executed.
  • the receiving unit 201 and the transmitting unit 202 may be collectively referred to as a communication unit.
  • All or part of the functions realized by the receiving unit 201 and the transmitting unit 202 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 201 and the transmitting unit 202 and the control unit 203 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium.
  • the storage medium storing the program may be a computer-readable non-temporary storage medium.
  • the non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
  • the receiving unit 201 receives signals (eg, UL signals and/or sidelink signals). Also, the receiving unit 201 may receive information and/or data (for example, the UL data described above) transmitted via the signal.
  • signals eg, UL signals and/or sidelink signals.
  • the receiving unit 201 may receive information and/or data (for example, the UL data described above) transmitted via the signal.
  • the transmission unit 202 transmits signals (eg, DL signals and/or sidelink signals). Also, the transmitting unit 202 may transmit information and/or data (for example, the DL data described above) transmitted via the signal. Part of the information transmitted from the transmission unit 202 may be transmitted by a transmission unit within the core network device.
  • signals eg, DL signals and/or sidelink signals.
  • the transmitting unit 202 may transmit information and/or data (for example, the DL data described above) transmitted via the signal. Part of the information transmitted from the transmission unit 202 may be transmitted by a transmission unit within the core network device.
  • the control unit 203 performs various controls for communication with the terminal 10. Specifically, the control unit 203 may determine information regarding various settings to be notified to the terminal 10 . Transmitting the information to the terminal 10 may be synonymous with "setting the information in the terminal".
  • the control unit 203 may control signal reception in the receiving unit 201 .
  • the control unit 203 may also control signal transmission in the transmission unit 202 .
  • the base station 20 monitors the downlink control channel using a search space (eg, paging search space) in a predetermined period (eg, PDCCH monitoring opportunity), and schedules a downlink shared channel for transmitting paging messages.
  • a search space eg, paging search space
  • a predetermined period eg, PDCCH monitoring opportunity
  • the base station 20 based on the receiving unit 201 that receives a random access preamble, the random access preamble and/or the resources used for receiving the random access preamble, the transmission of the DL signal and / Alternatively, it may include a control unit 203 that controls reception of the UL signal.
  • the control unit 203 may estimate the pseudo collocation (QCL) relationship for the terminal 10 based on the random access preamble and/or the synchronization signal block (SSB) associated with the random access preamble.
  • the control unit 203 may control transmission of DL signals and/or reception of UL signals using the same beam as the SSB.
  • the base station 20 includes a transmission section 202 that transmits a master information block (MIB), and a second initial downlink bandwidth part (DL BWP) within a cell in which the first initial downlink bandwidth part (DL BWP) is set. and a control unit 203 that controls transmission of specific parameters in the MIB based on whether or not the part (DL BWP) is set.
  • MIB master information block
  • DL BWP second initial downlink bandwidth part
  • control unit 203 that controls transmission of specific parameters in the MIB based on whether or not the part (DL BWP) is set.
  • the control unit 203 transmits the second synchronization signal block (SSB) at the second initial DL BWP and searches for paging at the second initial DL BWP.
  • SSB second synchronization signal block
  • transmission of the specific parameter in the MIB over the broadcast channel provided by the MIB may be discontinued.
  • the control unit 203 stops transmission of the specific parameter in the MIB via the broadcast channel included in the second SSB. You may
  • Various signals, information and parameters in the above embodiments may be signaled in any layer. That is, the various signals, information, and parameters are replaced with signals, information, and parameters of any layer such as higher layers (eg, NAS layer, RRC layer, MAC layer, etc.), lower layers (eg, physical layer), etc. good too. Further, the notification of the predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, by not notifying the information or using other information).
  • a slot may be named any unit of time having a predetermined number of symbols.
  • RB may be any name as long as it is a frequency unit having a predetermined number of subcarriers. Also, the "first .
  • a physical channel that transmits DL data a physical channel that transmits UL data
  • a physical channel that transmits DCI a physical channel that transmits broadcast information
  • a physical channel that transmits RA preambles PDSCH, PUSCH, PDCCH, PBCH, and PRACH are exemplified, respectively, but the names are not limited to these as long as the physical channels have similar functions.
  • These physical channels may also be translated into transport channels to which physical channels are mapped.
  • PDSCH, PUSCH, PDCCH, PBCH and PRACH etc.
  • DL-SCH downlink shared channel
  • Uplink Shared Channel: UL -SCH uplink shared channel
  • RCH Random Access Channel
  • DL data and UL data are downlink and uplink data, respectively, and the data includes user data and higher layer control information (e.g., RRC parameters, medium access control (Medium Access Control: MAC) parameters, etc.).
  • RRC Radio Resource Control
  • the use of the terminal 10 in the above embodiment is not limited to those illustrated, as long as it has similar functions, any use (for example, eMBB, URLLC, Device-to- Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • the format of various information is not limited to the above embodiment, and may be appropriately changed to bit representation (0 or 1), true/false value (Boolean: true or false), integer value, character, or the like.
  • singularity and plurality in the above embodiments may be interchanged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の端末は、無線リソース制御メッセージに含まれる第1の同期信号及び物理報知チャネル(SS/PBCH)ブロックの送信に関する情報に基づいて、第1のSS/PBCHブロックを受信し、前記無線リソース制御メッセージに第2のSS/PBCHブロックの送信に関する情報が含まれる場合、当該第2のSS/PBCHブロックの送信に関する情報に基づいて、前記第2のSS/PBCHブロックを受信する受信部と、前記第2のSS/PBCHブロックを前記受信部により受信した場合、当該第2のSS/PBCHブロックに基づいて、衝突フリーランダムアクセス手順におけるランダムアクセス機会を選択する制御部と、を備える。

Description

端末、基地局、及び無線通信方法 関連出願の相互参照
 本出願は、2021年9月30日に出願された日本国特許出願2021-162297号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。
 本開示は、端末、基地局、及び無線通信方法に関する。
 国際標準化団体であるThird Generation Partnership Project(3GPP)では、第3.9世代の無線アクセス技術(Radio Access Technology:RAT)であるLong Term Evolution(LTE)及び第4世代のRATであるLTE-Advancedの後継として、第5世代(Fifth Generation:5G)のRATであるNew Radio(NR)であるリリース15が仕様化されている(非特許文献1)。LTE及び/又はLTE-Advancedは、Evolved Universal Terrestrial Radio Access(E-UTRA)とも呼ばれる。
3GPP TS 38.300 V15.2.0 (2018-06)
 3GPP(例えば、NRを規定するリリース17)では、リリース15又は16で導入された端末(以下、「既存端末」という)よりも低い性能や価格帯を想定した端末(以下、「低減能力(Reduced capability:RedCap)端末」ともいう)をサポートすることが検討されている。具体的には、初期下り帯域幅部分(Initial Downlink Bandwidth Part:初期DL BWP)が設定されるセル内に、RedCap端末向けの初期DL BWPを新たに設定可能とすることが検討されている。また、RedCap端末向けの初期DL BWPにおいて同期信号ブロック(Synchronization Signal Block:SSB)を送信することも検討されている。
 しかしながら、セル内に既存の初期DL BWP(以下、「第1の初期DL BWP」という)とは別に初期DL BWP(以下、「第2の初期DL BWP」という)が設定され、第2の初期DL BWPにおいてもSSBが送信され得る場合、端末が、SSBに基づく動作を適切に制御できない恐れがある。このようなSSBに基づく動作としては、例えば、ランダムアクセスプリアンブル及び/又はランダムアクセスプリアンブルの送信に用いられるリソースの選択動作が想定される。
 本開示は、ランダムアクセスに関する動作を適切に制御可能な端末及び無線通信方法を提供することを目的の一つとする。
 本開示の一態様に係る端末は、無線リソース制御メッセージに含まれる第1の同期信号及び物理報知チャネル(SS/PBCH)ブロックの送信に関する情報に基づいて、第1のSS/PBCHブロックを受信し、前記無線リソース制御メッセージに第2のSS/PBCHブロックの送信に関する情報が含まれる場合、当該第2のSS/PBCHブロックの送信に関する情報に基づいて、前記第2のSS/PBCHブロックを受信する受信部と、前記第2のSS/PBCHブロックを前記受信部により受信した場合、当該第2のSS/PBCHブロックに基づいて、衝突フリーランダムアクセス手順におけるランダムアクセス機会を選択する制御部と、を備える。
 本開示の一態様に係る基地局は、無線リソース制御メッセージを送信し、前記無線リソース制御メッセージに含めた第1の同期信号及び物理報知チャネル(SS/PBCH)ブロックの送信に関する情報に基づいて、第1のSS/PBCHブロックを送信し、前記無線リソース制御メッセージに含めた第2のSS/PBCHブロックの送信に関する情報に基づいて、前記第2のSS/PBCHブロックを送信する送信部と、前記第2のSS/PBCHブロックを送信する場合に、当該第2のSS/PBCHブロックに基づいて、衝突フリーランダムアクセス手順におけるランダムアクセス機会を選択する制御部と、を備える。
 本開示の一態様に係る端末の無線通信方法は、無線リソース制御メッセージに含まれる第1の同期信号及び物理報知チャネル(SS/PBCH)ブロックの送信に関する情報に基づいて、第1のSS/PBCHブロックを受信し、前記無線リソース制御メッセージに第2のSS/PBCHブロックの送信に関する情報が含まれる場合、当該第2のSS/PBCHブロックの送信に関する情報に基づいて、前記第2のSS/PBCHブロックを受信し、前記第2のSS/PBCHブロックを受信した場合、当該第2のSS/PBCHブロックに基づいて、衝突フリーランダムアクセス手順におけるランダムアクセス機会を選択する。
 本開示の一態様に係る基地局の無線通信方法は、無線リソース制御メッセージを送信し、 前記無線リソース制御メッセージに含まれる第1の同期信号及び物理報知チャネル(SS/PBCH)ブロックの送信に関する情報に基づいて、第1のSS/PBCHブロックを送信し、前記無線リソース制御メッセージに含まれる第2のSS/PBCHブロックの送信に関する情報に基づいて、前記第2のSS/PBCHブロックを送信し、 前記第2のSS/PBCHブロックを送信した場合、、当該第2のSS/PBCHブロックに基づいて、衝突フリーランダムアクセス手順におけるランダムアクセス機会を選択する。
 本開示の一態様によれば、ランダムアクセスに関する動作を適切に制御できる。
図1は、本実施形態に係る無線通信システムの概要の一例を示す図である。 図2は、本実施形態に係るSSBの一例を示す図である。 図3は、本実施形態に係るSSバーストセットの一例を示す図である。 図4は、本実施形態におけるBWPの一例を示す図である。 図5は、本実施形態に係る第1及び第2の初期DL/UP BWPの一例を示す図である。 図6(A)及び(B)は、本実施形態に係る第1及び第2の初期DL BWPの一例を示す図である。 図7は、本実施形態に係るSSB、PF及びPOの一例を示す図である。 図8は、本実施形態に係るSSB、PF及びPOの一例を示す図である。 図9は、本実施形態に係るページング用のPDCCHモニタリング機会の設定動作の一例を示すフローチャートである。 図10は、本実施形態に係るSSBとRO及びRAプリアンブルとの関係の一例を示す図である。 図11は、本実施形態に係るSSBとRO及びRAプリアンブルとの関係の他の例を示す図である。 図12は、本実施形態に係るRO及び/又はRAプリアンブルの選択動作の一例を示すフローチャートである。 図13は、本実施形態に係るMIBの一例を示す図である。 図14は、本実施形態に係るMIB受信時の動作の一例を示すフローチャートである。 図15は、本実施形態に係るBWP-DownlinkCommonの一例を示す図である。 図16は、本実施形態に係るBWP-UplinkCommonの一例を示す図である。 図17は、本実施形態に係るRACH-ConfigCommonの一例を示す図である。 図18は、本実施形態に係るRACH-ConfigCommonTwoStepRAの一例を示す図である。 図19は、本実施形態に係る無線通信システム内の各装置のハードウェア構成の一例を示す図である。 図20は、本実施形態に係る端末の機能ブロック構成の一例を示す図である。 図21は、本実施形態に係る基地局の機能ブロック構成の一例を示す図である。
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 図1は、本実施形態に係る無線通信システムの概要の一例を示す図である。図1に示すように、無線通信システム1は、端末10と、基地局20と、コアネットワーク30と、を含んでもよい。なお、図1に示す端末10、基地局20の数は例示にすぎず、図示する数に限られない。
 無線通信システム1は、3GPPにより規定される無線アクセス技術(Radio Access Technology:RAT)に準拠して通信するシステムである。無線通信システム1が準拠する無線アクセス技術としては、例えば、NR等の第5世代のRATが想定されるが、これに限られず、例えば、LTE、LTE-Advanced等の第4世代のRAT、第6世代以降のRAT、Wi-Fi(登録商標)等の非3GPPのRAT等、一つ又は複数のRATを利用できる。なお、無線通信システム1は、3GPPとは異なる標準策定団体(例えば、Institute of Electrical and Electronics Engineers(IEEE)、Internet Engineering Task Force(IETF))により規定される無線アクセス技術に準拠した通信を行う形態であってもよい。
 端末10は、3GPP仕様書に規定される端末(例えば、UE(User Equipment))に相当する装置である。端末10は、例えば、スマートフォンや、パーソナルコンピュータ、車、車載端末、車載装置、静止装置、テレマティクス制御ユニット(Telematics control unit:TCU)、センサなどのIoT機器等、所定の端末又は装置である。端末10は、ユーザ装置(User Equipment:UE)、移動局(Mobile Station:MS)、端末(User Terminal)、無線装置(Radio apparatus)、加入者端末、アクセス端末等と呼ばれてもよい。また、端末10は、いわゆる、低減能力(Reduced capability:RedCap)端末であってもよく、例えば、産業用無線センサ(industrial wireless sensor)、監視カメラ(video serveilance)、ウエアラブルデバイス(wearable device)等であってもよい。端末10は、移動型であってもよいし、固定型であってもよい。端末10は、例えば、NR、LTE、LTE-Advanced、Wi-Fi(登録商標)等の一つ又は複数のRATを用いて通信可能に構成される。なお、端末10は、3GPP仕様書に規定される端末に限られず、他の標準策定団体で規定される標準規格に準拠した端末であってもよい。また、端末10は、標準規格に準拠した端末でなくともよい。
 基地局20は、3GPP仕様書に規定される基地局(例えば、gNodeB(gNB)またはeNB)に相当する装置である。基地局20は、一以上のセルCを形成し、当該セルを用いて端末10と通信する。セルCは、サービングセル、キャリア、コンポーネントキャリア(Component Carrier:CC)等と相互に言い換えられてもよい。また、セルCは、所定の帯域幅を有してもよい。例えば、基地局20は、一以上のセルグループを用いて端末10と通信してもよい。各セルグループは、一以上のセルCを含んでもよい。セルグループ内の複数のセルCを統合することはキャリアアグリゲーション(Carrier Aggregation)と呼ばれる。当該複数のセルCは、プライマリセル(Primary Cell:PCell)又はプライマリSCGセル(Primary Secondary Cell Group(SCG) Cell:PSCell)と、一以上のセカンダリセル(Secondary Cell:SCG)とを含んでもよい。また、2つのセルグループを用いて端末10と通信することはデュアルコネクティビティ(Dual Connectivity)とも呼ばれる。なお、端末10は、3GPP仕様書に規定される基地局に限られず、他の標準策定団体で規定される標準規格に準拠した端末であってもよい。また、端末10は、標準規格に準拠した基地局でなくともよい。
 基地局20は、gNodeB(gNB)、en-gNB、Next Generation‐Radio Access Network(NG-RAN)ノード、低電力ノード(low-power node)、Central Unit(CU)、Distributed Unit(DU)、gNB-DU、Remote Radio Head(RRH)、Integrated Access and Backhaul/Backhauling(IAB)ノード、アクセスポイント等と呼ばれてもよい。基地局20は、一つのノードに限られず、複数のノード(例えば、DU等の下位ノードとCU等の上位ノードの組み合わせ)で構成されてもよい。
 コアネットワーク30は、例えば、第5世代のコアネットワーク(5G Core Network:5GC)又は第4世代のコアネットワーク(Evolved Packet Core:EPC)であるが、これに限られない。コアネットワーク30上の装置(以下、「コアネットワーク装置」ともいう)は、端末10のページング、位置登録等のモビリティ管理(mobility management)を行ってもよい。コアネットワーク装置は、所定のインタフェース(例えば、S1又はNGインタフェース)を介して基地局20又は端末10に接続されてもよい。
 コアネットワーク装置は、例えば、Cプレーンの情報(例えば、アクセス及び移動管理等に関する情報)を管理するAccess and Mobility Management Function(AMF)、Uプレーンの情報(例えば、ユーザデータ)の伝送制御を行うUser Plane Function(UPF)の少なくとも一つ等を含んでもよい。
 無線通信システム1において、端末10は、基地局20からの下り(downlink:DL)信号の受信、及び/又は、基地局20に対する上り(uplink:UL)信号の送信を行う。端末10には、一以上のセルCが設定(configure)され、設定されたセルの少なくとも一つがアクティベイト(activate)される。各セルの最大帯域幅は、例えば、20MHz又は400MHz等である。
 また、端末10は、基地局20からの同期信号(例えば、プライマリ同期信号(Primary Synchronization Signal:PSS)及び/又はセカンダリ同期信号(Secondary Synchronization Signal:SSS))に基づいて、セルサーチを行う。セルサーチとは、端末10が、セルにおける時間及び周波数の同期を取得し、当該セルの識別子(例えば、物理レイヤセルID)を検出する手順である。
 端末10は、無線リソース制御(Radio Resource Control:RRC)メッセージに含まれるパラメータ(以下、「RRCパラメータ」という)に基づいて、サーチスペースセット及び/又は制御リソースセット(Control Resource Set:CORESET)を決定する。CORESETは、周波数領域リソース(例えば、所定数のリソースブロック)と時間領域リソース(例えば、所定数のシンボル)で構成されてもよい。なお、RRCパラメータは、RRC情報要素(Information Element:IE)等と呼ばれてもよい。
 端末10は、CORESETに関連付けられるサーチスペースセット内で、下り制御チャネル(例えば、物理下り制御チャネル(Physical Downlink Control Channel:PDCCH))を介して伝送される下り制御情報(Downlink Control Information:DCI)のモニタリングを実行する。なお、RRCメッセージは、例えば、RRCセットアップメッセージ、RRC再設定(reconfiguration)メッセージ、RRC再開(resume)メッセージ、RRC再確立(reestablishment)メッセージ、システム情報等を含んでもよい。
 DCIのモニタリングとは、端末10が、想定されるDCIフォーマットでサーチスペースセット内のPDCCH候補(PDCCH candidate)をブラインド復号することである。DCIフォーマットのビット数(サイズ、ビット幅等ともいう)は、当該DCIフォーマットに含まれるフィールドのビット数に応じて、予め定められる又は導出される。端末10は、DCIフォーマットのビット数と、当該DCIフォーマットの巡回冗長検査(Cyclic Redundancy Check:CRC)ビット(CRCパリティビットとも称される)のスクランブル(以下、「CRCスクランブル」という)に用いられる特定の無線ネットワーク一時識別子(Radio Network Temporary Identifier:RNTI)とに基づいて、当該端末10に対するDCIを検出する。DCIのモニタリングは、PDCCHモニタリング、モニタ等とも呼ばれる。また、DCI又はPDCCHのモニタリングを行う所定(given)期間は、PDCCHモニタリング機会(PDCCH monitoring occasion)とも呼ばれる。
 サーチスペースセットは、一以上のサーチスペースの集合であり、一以上の端末10に共通に用いられるサーチスペースセット(以下、「共通サーチスペース(Common search space:CSS)セット」という)と、端末固有のサーチスペースセット(UE-specific search space(USS)セット)と、を含んでもよい。サーチスペースセットは、ページング用のサーチスペースセット(以下、「ページングサーチスペース」という)、ランダムアクセス(Random Access:RA)用のサーチスペースセット(以下、「RAサーチスペース」という)、及び、システム情報用のサーチスペースセット(以下、「システム情報サーチスペース」という)等を含んでもよい。端末10は、各サーチスペースセットの設定に関する情報を受信してもよい。
 端末10は、PDCCHモニタリング機会においてサーチスペースセット(又はサーチスペース)を用いてPDCCHをモニタリングして、特定のRNTIによりCRCスクランブルされるDCIを受信(又は検出)する。端末10は、当該DCIを用いてスケジューリングされる下り共有チャネル(例えば、物理下り共有チャネル(Physical Downlink Shared Channel:PDSCH))の受信、及び/又は、上り共有チャネル(例えば、物理上り共有チャネル(Physical Uplink Shared Channel:PUSCH))の送信を制御する。
 セルCで報知(broadcast)されるシステム情報は、マスター情報ブロック(Master Information Block:MIB)及び/又は一以上のシステム情報ブロック(System Information Block:SIB)を含んでもよい。MIBは、報知チャネル(例えば、物理報知チャネル(Physical Broadcast channel:PBCH))を介して報知される。MIB及びSIB1は、Minimum System Informationとも呼ばれ、SIB1は、Remaining Minimum System Information(RMSI)とも呼ばれる。SIB1以外のSIBx(x=2、3、…等の任意の文字列)は、Other System Information(OSI)とも呼ばれる。SIB1及びSIB1以外のSIBxは、PDSCHを介して報知される。SIB1はセル固有であり、SIB1以外のSIBxはセル固有又は一以上のセルを含むエリア固有であってもよい。
 (SSB)
 SSBは、同期信号、PBCH及びPBCHの復調用参照信号(Demodulation Reference Signal:DM-RS)の少なくとも一つを含むブロックである。SSBは、SS/PBCHブロック、SSブロック等とも呼ばれてもよい。
 図2は、本実施形態に係るSSBの一例を示す図である。なお、図2は、一例にすぎず、SSBは図示するものに限られない。図2に示すように、SSBは、時間領域(time domain)リソースとしての所定数のシンボル(例えば、連続する4シンボル)及び周波数領域(frequency resource)リソースとしての所定数のサブキャリア(例えば、連続する240サブキャリア)で構成されてもよい。
 例えば、図2では、PSSはSSB内の最初のシンボルで送信され、127サブキャリアにマッピングされる。当該最初のシンボルの残りのサブキャリアは空(empty)であってもよい。SSSは、SSB内の3番目のシンボルで送信され、PSSと同じ127サブキャリアにマッピングされる。SSSの両端には所定数(8又は9)の空サブキャリアが設けられてもよい。PBCHは、SSB内の2番目及び4番目のシンボルで送信され、240サブキャリアにマッピングされる。また、PBCHは、SSSの両端の48サブキャリアにマッピングされる。SSBには異なるニューメロロジー(例えば、サブキャリア間隔=15、30、120又は240kHz)を適用可能である。なお、図3においてPBCHとして示される一部のサブキャリアには、不図示のDMRSがマッピングされてもよい。
 一以上のSSBのセットであるSSバーストセットは、所定周期で送信される。なお、SSバーストセットは、SSバースト等と呼ばれてもよい。端末10は、SSB又はSSバーストセットの周期(以下、「SSB周期」という)に関する情報(以下、「ssb-periodicityServingCell」という)を受信する。ssb-periodicityServingCellは、SSB周期(例えば、5、10、20、40、80又は160ms)を示してもよい。
 SSバーストセット内の各SSBはインデックス(以下、「SSBインデックス」という)により識別される。マルチビーム運用の場合、SSバーストセット内の異なるインデックスのSSBは、異なるビームに対応し、ビームスウィーピングにより順次ビーム方向を切り替えて送信されてもよい。シングルビーム運用の場合、SSバーストセット内の特定のインデックスのSSB(一つ又は複数のSSB)が全方向で送信されてもよい。
 端末10は、SSバーストセット内でのSSB送信に関する情報(以下、「ssb-PositionsInBurst」という)を受信する。例えば、ssb-PositionsInBurstは、SSバーストセット内の各SSBに対応するビットを含むビットマップであり、各ビットの値が、対応するSSBが実際に送信されるか否かを示してもよい。例えば、ビット値「1」は対応するSSBが実際に送信されることを示し、ビット値「0」は対応するSSBが実際に送信されないことを示してもよい。なお、ssb-PositionsInBurstは、上記に限られず、SSバーストセット内でのSSB送信に関するどのような情報であってもよい。ssb-PositionsInBurstは、セル固有であってもよい。また、ssb-PositionsInBurstは、例えば、SIB1に含まれるが、他のRRCメッセージに含まれてもよい。
 図3は、本実施形態に係るSSバーストセットの一例を示す図である。なお、図3は、一例にすぎず、SSバーストセット内のSSB数、SSB周期、サブキャリア間隔、ビーム方向、SSバーストセットの配置位置等は図示するものに限られない。例えば、図3では、SSバーストセット内のSSB#0~#7が、それぞれ異なる指向性を有するビーム#0~#7で異なる時間に基地局20から送信される。
 一以上のSSBを含むSSバーストセットは、無線フレームの前半又は後半のハーフフレーム(例えば、5ms)に配置され、SSB周期で繰り返される。例えば、図3では、SSB#0~#7を含むSSバーストセットは無線フレームの前半のハーフフレームに配置され、20msのSSB周期で繰り返される。図3に示すように、SSB#0~#7が送信されるハーフフレーム内の位置は、サブキャリア間隔に応じて異なってもよい。
 また、例えば、図3では、ssb-PositionsInBurstは、SSB#0~#7それぞれに対応する8ビットのビットマップであり、「11111111」にセットされる。このため、端末10はSSバーストセット内のSSB#0~#7の全てが送信されると認識する。このように、端末10は、ssb-PositionsInBurstに基づいて、SSバーストセット内で実際に送信されるSSBを決定する。
 なお、図3では、マルチビーム運用の一例が示されるが、シングルビーム運用の場合にも適用可能である。シングルビーム運用の場合、特定のSSB(例えば、SSB#0だけ)が全方向に送信されてもよく、ssb-PositionsInBurstにおいて当該特定のSSBに対応するビットが「1」にセットされ、他のビットが「0」にセットされてもよい。
 (BWP)
 一つのセルCに対して、一つ又は複数の帯域幅部分(Bandwidth Part:BWP)が設定されてもよい。BWPは、DL用のBWP(以下、「DL BWP」という)、及び/又は、UL用のBWP(以下、「UL BWP」という)を含んでもよい。また、BWPは、セル固有に設定されるBWP(以下、「初期BWP(initial BWP)」という)と、端末10固有に設定されるBWP(以下、「個別BWP(dedicated BWP)」という)と、を含んでもよい。初期BWPは、初期アクセスに用いられ、及び/又は、一以上の端末10に共通であってもよい。初期BWPは、DL用の初期BWP(以下、「初期DL BWP」という)と、UL用の初期BWP(以下、「初期UL BWP」という)とを含んでもよい。個別BWPは、「UE固有(UE-specific)BWP」とも呼ばれる。
 初期DL BWP及び/又は初期UL BWP(以下、「初期DL/UL BWP」という)は、MIB内の特定のパラメータ(以下、「pdcch-ConfigSIB1」という)に基づいて決定されるCORESET#0と等しくてもよい。又は、初期DL/UL BWPは、端末10が基地局20から受信する初期DL/UL BWPに関する情報(以下、「初期DL/UL BWP情報」という)に基づいて、端末10に設定されてもよい。初期DL/UL BWP情報は、当該初期DL/UL BWPの周波数領域の位置及び/又は帯域幅を示す情報(以下、「locationAndBandwidth」という)、サブキャリア間隔を示す情報(以下、「subcarrierSpacing」という)、及び、サイクリックプリフィックスに関する情報(以下、「cyclicPrefix」という)の少なくとも一つを含んでもよい。初期DL/UL BWP情報は、セル固有のRRCパラメータであり、SIB1又は他のRRCメッセージに含まれてもよい
 初期DL BWPは、BWPの識別子(以下、「bwp-id」という)=0のDL BWP(すなわち、DL BWP#0)であり、初期UL BWPは、bwp-id=0のUL BWP(すなわち、UL BWP#0)であってもよい。一方、DL用の個別BWP(以下、「個別DL BWP」という)はbwp-id≠0のDL BWP(すなわち、DL BWP#bwp-id)であり、UL用の個別BWP(以下、「個別UL BWP」という)はbwp-id≠0のUL BWP(すなわち、UL BWP#bwp-id)であってもよい。端末10に一以上の個別DL BWP及び/又は一以上の個別UL BWPが設定される場合、一つの個別DL BWP及び/又は一つの個別UL BWPがアクティブ化されてもよい。
 一つ又は複数のDL BWPでは、SSBが送信される。例えば、初期DL BWP」では、セルデファイニング(Cell Defining:CD)-SSBが伝送され、個別DL BWPでは、CD-SSB、及び/又は、非セルデファイニング(Non Cell Defining:NCD)-SSBが伝送されてもよい。CD-SSBは、特定のセルに関連付けられたSSBであり、SIB1に関連してもよい。NCD-SSBは、特定のセルに関連付けられていないSSBであり、SIB1に関連しなくともよい。
 図4は、本実施形態におけるDL BWPの一例を示す図である。なお、図4では、DL BWPを示すが、UL BWPが設定されてもよいことは勿論である。例えば、図4では、セルC(又はセルCの帯域幅)内の所定の周波数位置で複数のSSBX(ここでは、X=1~4)が伝送される。なお、Xは、異なる周波数領域のSSBを区別するために便宜上付された番号であり、SSバーストセット内の各SSBを識別するSSBインデックスを示すものではない。
 例えば、図4では、端末10A及び10Bは、NRセルグローバル識別子(NR Cell Global Identifier:NCGI)=5であるセル#5に接続され、端末10Cは、NGCI=6であるセル#6に接続されるものとする。NGCIは、セルCの識別子である。また、SSB1は、CD-SSBであり、セル#5(及び/又は、セル#5で報知されるSIB1)に関連付けられる。同様に、SSB3は、CD-SSBであり、セル#6(及び/又は、セル#6で報知されるSIB1)に関連付けられる。一方、SSB2及びSSB4は、NCD-SSBであり、特定のセルのSIB1に関連づけられていない。
 図4において、端末10A及び10Bは、セル#5に接続されるので、セル#5に関連づけられるSSB1を検出し、SSB1に基づいて初期DL BWP#0を設定してもよい。また、端末10Aは、端末10A固有のパラメータに基づいて、個別DL BWP#1及び#2を設定する。端末10Aは、個別DL BWP#1及び#2を時間的に切り替えて使用してもよい。一方、端末10Bは、端末10B固有のパラメータに基づいて、個別DL BWP#1を設定する。また、端末10Cは、セル#6に接続されるので、セル#6に関連づけられるSSB3を検出し、SSB3に基づいて初期DL BWP#0を設定してもよい。端末10Cは、端末10C固有のパラメータに基づいて、個別DL BWP#1及び#2を設定する。
 端末10A~10Cの各々は、初期DL BWP又は個別DL BWP内の少なくとも一つのSSBに基づいて、メジャメント(measurement)を行ってもよい。メジャメントでは、例えば、SSBに基づいて受信電力(例えば、参照信号受信電力(Reference Signal Received Power:RSRP))が測定されてもよい。SSBに基づいて測定されるRSRPは、Synchronization Signal(SS)-RSRPと呼ばれてもよい。当該メジャメントは、無線リソース管理(radio resource management :RRM)、無線リンクモニタリング(radio link monitoring:RLM)及びモビリティ(mobility)の少なくとも一つのために行われてもよい。
 (RedCap)
 端末10は、3GPPのリリース15又は16でサポートされる既存端末よりも低い性能や価格帯を想定したRedCap端末であってもよい。RedCap端末は、例えば、産業用無線センサ(industrial wireless sensor)、監視カメラ(video serveilance)、ウエアラブルデバイス(wearable device)等に利用されることが想定されている。例えば、RedCap端末がサポートする最大帯域幅は、既存端末の最大帯域幅よりも狭くてもよい。
 このような端末10には、複数の初期BWP(複数の初期DL BWP及び/又は複数の初期UL BWP)が設定されてもよい。例えば、端末10には、従来の初期DL/UL BWPとは独立(independently)に初期DL/UL BWPが設定されてもよい。以下、従来の初期DL/UL BWPを第1の初期DL/UL BWPと呼び、第1の初期DL/UL BWPとは独立に設定される初期DL/UL BWPを第2の初期DL/UL BWPと呼ぶ。
 また、第1の初期DL/UL BWPの設定に用いられる上記初期DL/UL BWP情報は、第1の初期DL/UL BWP情報と呼び、第2の初期DL/UL BWPの設定に用いられる上記初期DL/UL BWP情報は、第2の初期DL/UL BWP情報と呼ぶものとする。第1及び第2の初期DL/UL BWP情報は、それぞれ、上記locationAndBandwidth、subcarrierSpacing及びcyclicPrefixの少なくとも一つを含んでもよい。
 第1の初期DL/UL BWPは、CORESET#0、又は、第1の初期DL/UL BWP情報内のlocationAndBandwidthが示す周波数位置及び/又は帯域幅に基づいて設定されてもよい。第1の初期DL/UL BWPは、既存端末及び/又はRedCap端末に設定されてもよい。
 一方、第2の初期DL/UL BWPは、予め仕様で定められた周波数位置及び/又は帯域幅のDL/UL BWPであってもよいし、又は、第2の初期DL/UL BWP情報内のlocationAndBandwidthが示す周波数位置及び/又は帯域幅に基づいて設定されてもよい。第2の初期DL/UL BWPはRedCap端末に設定されてもよい。第2の初期DL/UL BWPについて、上記subcarrierSpacing及び/又はcyclicPrefixは、設定されてもよいし、又は、設定されなくともよい。第2の初期DL/UL DWPは、セパレート(separate)初期DL/UL BWP、又は、追加(additional)初期DL/UL BWP等と呼ばれてもよい。RedCap端末は、第2の初期UL BWPを初期アクセスの間(例えば、メッセージ3以降)及び/又は初期アクセスの後(例えば、メッセージ4の後)に用いてもよい。RedCap端末は、第2の初期DL BWPを初期アクセスの後(例えば、メッセージ4の後)に用いてもよいし、初期アクセスの前(例えば、第2の初期DL BWPの設定情報の受信後)に用いてもよい。
 第2の初期DL BWPにおいて、CORESET#0は、設定されなくともよい。また、第2の初期DL BWPにおいて、SIB1は送信されなくともよい。また、第2の初期DL BWPの少なくとも一部は、第1の初期UL BWPと重複しなくともよいし、又は、重複してもよい。また、第2の初期UL BWPの少なくとも一部は、第1の初期UL BWPと重複してもよいし、又は、重複しなくともよい。第2の初期DL BWP及び第2の初期UL BWPそれぞれの帯域幅は、RedCap端末の最大帯域幅よりも狭くてもよい。
 図5は、本実施形態に係る第1及び第2の初期DL/UL BWPの一例を示す図である。図5に示すように、上り制御チャネル(例えば、物理上り制御チャネル(Physical Uplink Control Channel:PUCCH))用のリソース領域を共用するために、第1及び第2の初期UL BWPの一端が揃えられてもよい。時間分割複信(Time Division Duplex:TDD)では、第2の初期UL BWP及び第2の初期DL BWPが同一であってもよい。なお、図5は例示にすぎず、第1及び第2の初期DL/UL BWPの帯域幅及び配置は図示するものに限られない。
 図6(A)及び(B)は、本実施形態に係る第1及び第2の初期DL BWPの一例を示す図である。図6(A)では、第1の初期DL BWPでSSB(例えば、CD-SSB)が送信されるが、第2の初期DL BWPでSSBは送信されない。この場合、第2の初期DL BWPでデータの送受信を行う端末10は、SSBに基づくメジャメントのためにRFリチューニングを行い、メジャメント後データの送受信のために再度RFリチューニングが必要となることが想定される。また、図6(A)において、CORESET#0は第1の初期DL BWPに設定され、第2の初期DL BWPに設定されなくともよい。図6(A)に示すように、SSBが送信されない及び/又はCORESET#0が設定されないBWPのサポートに関する情報(以下、「サポート情報」という)は、端末10の能力に関する情報(以下、「UE capability」いう)として規定されてもよい。UE capabilityは、端末10から基地局20に送信されてもよい。
 図6(B)では、第1の初期DL BWPでSSB(例えば、CD-SSB)が送信さ、第2の初期DL BWPでもSSB(例えば、NC-SSB)が送信される。図6(B)では、図6(A)のように、メジャメントのためのRFリチューニングを行う必要がない。このため、第2の初期DL BWPにおけるSSB送信は、端末10の処理負荷の軽減に寄与し得る。
 しかしながら、第1の初期DL BWPが設定されるセルC内で第2の初期DL BWPが設定され、第2の初期DL BWPでSSBが送信され得る場合、端末10が、第1の初期DL BWP又は第2の初期DL BWPのどちらのSSBに基づいて動作すべきかを適切に認識できない恐れがある。この結果、SSBに基づく動作を適切に制御できなくなる恐れがある。
 そこで、端末10は、第1の初期DL BWPが設定されるセルC内で第2の初期DL BWPが設定されるか否かに基づいてSSBに基づく動作を制御する。例えば、端末10は、当該セルC内に第2の初期DL BWPが設定されるか否かに基づいて、第1の初期DL BWPで送信されるSSB(以下、「第1のSSB」という)又は第2の初期DL BWPで送信されるSSB(以下、「第2のSSB」という)のどちらに基づいて動作するかを決定してもよい。これにより、第1の初期DL BWPが設定されるセルC内で第2の初期DL BWPが設定され、第2の初期DL BWPでSSBが送信され得る場合でも、SSBに基づく動作を適切に制御できる。
 以下では、SSBに基づく動作の例として、(1)ページング用のPDCCHモニタリング機会の決定動作、(2)RAプリアンブル及び/又はRAプリアンブルの送信に用いられるリソース(以下、「ランダムアクセス機会(Random access Occasion:RO)という」の選択動作、(3)MIB受信時の動作を説明する。なお、本実施形態は、以下の(1)~(3)だけでなく、SSBに基づく他の動作にも適宜適用可能である。
 (設定)
 本実施形態におけるSSBに基づく動作(1)~(3)のための端末10の設定(configuration)について説明する。端末10は、基地局20からパラメータ又は情報を受信する。本実施形態において「設定される(configured)」とは、当該パラメータ及び/又は情報を受信することであってもよいし、受信したパラメータ及び/又は情報に基づいて端末10の動作を制御することであってもよい。以下では、当該パラメータ及び/又は情報として、RRCパラメータを例示するが、これに限られない。当該パラメータ及び/又は情報は、上位レイヤ(例えば、媒体アクセス制御(Medium Access Control:MAC)レイヤ、非アクセスストレイタム(Non Access Stratum:NAS)レイヤ等の物理レイヤよりも上位レイヤ)のパラメータであってもよいし、物理レイヤのパラメータであってもよい。
 <初期DL BWPに関する設定>
 本実施形態において、第1の初期DL BWPは、基地局20からの上記第1の初期DL BWP情報に基づいて、端末10に設定されてもよい。ここで、第1の初期DL BWP情報は、上記locationAndBandwidth、subcarrierSpacing及びcyclicPrefixの少なくとも一つを含んでもよい。また、第1の初期DL BWP情報は、SIB1内のRRCパラメータ(例えば、「ServingCellConfigCommonSIB」内の「DownlinkConfigCommonSIB」内の「initialDownlinkBWP」としての「BWP-DownlinkCommon」内の「genericParameters」としての「BWP」)であってもよい。又は、第1の初期DL BWP情報は、他のRRCメッセージ内のRRCパラメータ(例えば、「ServingCellConfigCommon」内の「DownlinkConfigCommon」内の「initialDownlinkBWP」としての「BWP-DownlinkCommon」内の「genericParameters」としての「BWP」)であってもよい。第1の初期DL BWP情報は、セル固有であってもよい。
 また、第2の初期DL BWPは、基地局20からの上記第2の初期DL BWP情報に基づいて、端末10に設定されてもよい。ここで、第2の初期DL BWP情報は、上記locationAndBandwidth、subcarrierSpacing及びcyclicPrefixの少なくとも一つを含んでもよい。第2の初期DL BWP情報は、SIB1内のRRCパラメータ(例えば、「ServingCellConfigCommonSIB」内の「DownlinkConfigCommonSIB」内の「initialDownlinkBWP-RedCap」としての「BWP-DownlinkCommon」内の「genericParametersRedCap」としての「BWP」)であってもよい。又は、第2の初期DL BWP情報は、他のRRCメッセージ内のRRCパラメータ(例えば、「ServingCellConfigCommon」内の「DownlinkConfigCommon」内の「initialDownlinkBWP-RedCap」としての「BWP-DownlinkCommon」内の「genericParametersRedCap」としての「BWP」)であってもよい。第2の初期DL BWP情報は、セル固有であってもよい。
 <初期UL BWPに関する設定>
 第1の初期UL BWPは、基地局20からの上記第1の初期UL BWP情報に基づいて、端末10に設定されてもよい。ここで、第1の初期DL BWP情報は、上記locationAndBandwidth、subcarrierSpacing及びcyclicPrefixの少なくとも一つを含んでもよい。また、第1の初期UL BWP情報は、SIB1内のRRCパラメータ(例えば、「ServingCellConfigCommonSIB」内の「UplinkConfigCommonSIB」内の「initialUplinkBWP」としての「BWP-UplinkCommon」内の「genericParameters」としての「BWP」)であってもよい。又は、第1の初期UL BWP情報は、他のRRCメッセージ内のRRCパラメータ(例えば、「ServingCellConfigCommon」内の「UplinkConfigCommon」内の「initialUplinkBWP」としての「BWP-UplinkCommon」内の「genericParameters」としての「BWP」)であってもよい。第2の初期UL BWP情報は、セル固有であってもよい。
 また、第2の初期UL BWPは、基地局20からの上記第2の初期UL BWP情報に基づいて、端末10に設定されてもよい。ここで、第2の初期UL BWP情報は、上記locationAndBandwidth、subcarrierSpacing及びcyclicPrefixの少なくとも一つを含んでもよい。第2の初期UL BWP情報は、SIB1内のRRCパラメータ(例えば、「ServingCellConfigCommonSIB」内の「UplinkConfigCommonSIB」内の「initialUplinkBWP-RedCap」としての「BWP-UplinkCommon」内の「genericParametersRedCap」としての「BWP」)であってもよい。又は、第2の初期UL BWP情報は、他のRRCメッセージ内のRRCパラメータ(例えば、「ServingCellConfigCommon」内の「UplinkConfigCommon」内の「initialUplinkBWP-RedCap」としての「BWP-UplinkCommon」内の「genericParametersRedCap」としての「BWP」)であってもよい。第2の初期UL BWP情報は、セル固有であってもよい。
 <SSBに関する設定>
 第1のSSBは、第1のSSBの送信に関する情報(以下、「第1のSSB送信情報」という)に基づいて、端末10に設定されてもよい。第1のSSB送信情報は、SSバーストセット内での第1のSSB送信に関する情報(以下、「ssb-PositionsInBurst」という)、第1のSSBのSSB周期に関する情報(以下、「ssb-periodicityServingCell」という)、第1のSSBの送信電力に関する情報(以下、「ss-PBCH-BlockPower」という)、第1のSSBの送信周波数に関する情報(以下、「ssb-Frequency」という)、及び、第1のSSBのメジャメントタイミングに関する情報(以下、「SSB-MTC」という)の少なくとも一つを含んでもよい。第1のSSB送信情報は、SIB1内のRRCパラメータ(例えば、「ServingCellConfigCommonSIB」内のパラメータ)であってもよいし、他のRRCメッセージ内のRRCパラメータ(例えば、「ServingCellConfigCommon」内のパラメータ)であってもよい。第1のSSB送信情報は、セル固有であってもよい。
 第2のSSBは、第2のSSBの送信に関する情報(以下、「第2のSSB送信情報」という)に基づいて、端末10に設定されてもよい。第2のSSB送信情報は、SSバーストセット内での第2のSSB送信に関する情報(以下、「additionalSSB-PositionsInBurst」という)、第2のSSBのSSB周期に関する情報(以下、「additionalSSB-periodicityServingCell」という)、第2のSSBの送信電力に関する情報(以下、「additional-SS-PBCH-BlockPower」という)、第2のSSBの送信周波数に関する情報(以下、「additionalSSB-Frequency」という)、及び、第2のSSBのメジャメントタイミングに関する情報(以下、「additionalSSB-SMTC」という)の少なくとも一つを含んでもよい。第2のSSB送信情報は、SIB1内のRRCパラメータ(例えば、「ServingCellConfigCommonSIB」内のパラメータ)であってもよいし、他のRRCメッセージ内のRRCパラメータ(例えば、「ServingCellConfigCommon」内のパラメータ)であってもよい。第2のSSB送信情報は、セル固有であってもよい。また、additionalSSB-PositionsInBurst、及び/又は、additionalSSB-periodicityServingCell、及び/又は、additional-SS-PBCH-BlockPower、及び/又は、additionalSSB-SMTCが設定されなかった場合、第1のSSB送信情報(ssb-PositionsInBurst、及び/又は、ssb-periodicityServingCell、及び/又は、ss-PBCH-BlockPower、及び/又は、ssb-SMTC)を第2のSSB送信情報に適用してもよい。
 なお、第1のSSBの送信リソースと第2のSSBの送信リソースがオーバーラップした場合には、端末10は、第1のSSBを用いてもよい(すなわち、第1のSSBを優先してもよい)。送信リソースは、例えば、時間領域及び/又は周波数領域のリソースであってもよい。
 <PDCCHに関する設定>
 第1の初期DL BWPにおけるPDCCHの設定に関する情報(以下、「pdcch-ConfigCommon」という)が端末10に設定されてもよい。pdcch-ConfigCommonは、ページングサーチスペースに関する情報(以下、「pagingSearchSpace」という)、RAサーチスペースに関する情報(以下、「ra-SearchSpace」という)、CORESETに関する情報(以下、「commonControlResourceSet」という)、及び、ページング機会(paging occasion:PO)内の最初のPDCCHモニタリング機会に関する情報(以下、「firstPDCCH-MonitoringOccasionOfPO」という)の少なくとも一つを含んでもよい。pdcch-ConfigCommonは、SIB1内のRRCパラメータ(例えば、「ServingCellConfigCommonSIB」内の「DownlinkConfigCommonSIB」内の「initialDownlinkBWP」としての「BWP-DownlinkCommon」内のパラメータ)であってもよい。又は、pdcch-ConfigCommonは、他のRRCメッセージ内のRRCパラメータ(例えば、「ServingCellConfigCommon」内の「DownlinkConfigCommon」内の「initialDownlinkBWP」としての「BWP-DownlinkCommon」内のパラメータ)であってもよい。pdcch-ConfigCommonは、セル固有であってもよい。pdcch-ConfigCommonは、第1の下り制御チャネル設定情報等と呼ばれてもよい。
 第2の初期DL BWPにおけるPDCCHの設定に関する情報(以下、「pdcch-ConfigCommonRedCap」という)が端末10に設定されてもよい。pdcch-ConfigCommonRedCapは、pagingSearchSpace、ra-SearchSpace、commonControlResourceSet、及びfirstPDCCH-MonitoringOccasionOfPOの少なくとも一つを含んでもよい。pdcch-ConfigCommonRedCapは、SIB1内のRRCパラメータ(例えば、「ServingCellConfigCommonSIB」内の「DownlinkConfigCommonSIB」内の「initialDownlinkBWP」としての「BWP-DownlinkCommon」内のパラメータ)であってもよい。又は、pdcch-ConfigCommonRedCapは、他のRRCメッセージ内のRRCパラメータ(例えば、「ServingCellConfigCommon」内の「DownlinkConfigCommon」内の「initialDownlinkBWP」としての「BWP-DownlinkCommon」内のパラメータ)であってもよい。pdcch-ConfigCommonRedCapは、セル固有であってもよい。pdcch-ConfigCommonRedCapは、第2の下り制御チャネル設定情報等と呼ばれてもよい。
 <ランダムアクセスに関する設定>
 第1の初期DL BWPにおけるランダムアクセスの設定に関する情報(以下、「rach-ConfigCommon」という)が端末10に設定されてもよい。rach-ConfigCommonは、ROあたりの第1のSSBの数、及び/又は、第1のSSB送信あたりのRAプリアンブルの数を示す情報(以下、「ssb-perRACH-OccasionAndCB-PreamblesPerSSB」という)、及び、第1のSSBの受信電力(例えば、RSRP)の閾値に関する情報(以下、「rsrp-ThresholdSSB」という)の少なくとも一つを含んでもよい。rach-ConfigCommonは、SIB1内のRRCパラメータ(例えば、「ServingCellConfigCommonSIB」内の「UplinkConfigCommonSIB」内の「initialUplinkBWP」としての「BWP-UplinkCommon」内のパラメータ)であってもよい。又は、rach-ConfigCommonは、他のRRCメッセージ内のRRCパラメータ(例えば、「ServingCellConfigCommon」内の「UplinkConfigCommon」内の「initialUplinkBWP」としての「BWP-UplinkCommon」内のパラメータ)であってもよい。rach-ConfigCommonは、セル固有であってもよい。rach-ConfigCommonは、第1のランダムアクセスパラメータ等と呼ばれてもよい。
 第2の初期DL BWPにおけるランダムアクセスの設定に関する情報(以下、「rach-ConfigCommonRedCap」という)が端末10に設定されてもよい。rach-ConfigCommonRedCapは、ROあたりの第2のSSBの数、及び/又は、第2のSSB送信あたりのRAプリアンブルの数を示す情報(以下、「ssb-perRACH-OccasionAndCB-PreamblesPerSSB」という)、及び、第2のSSBの受信電力(例えば、RSRP)の閾値に関する情報(以下、「rsrp-ThresholdSSB」という)の少なくとも一つを含んでもよい。rach-ConfigCommonRedCapは、SIB1内のRRCパラメータ(例えば、「ServingCellConfigCommonSIB」内の「UplinkConfigCommonSIB」内の「initialUplinkBWP」としての「BWP-UplinkCommon」内のパラメータ)であってもよい。又は、rach-ConfigCommonRedCapは、他のRRCメッセージ内のRRCパラメータ(例えば、「ServingCellConfigCommon」内の「UplinkConfigCommon」内の「initialUplinkBWP」としての「BWP-UplinkCommon」内のパラメータ)であってもよい。rach-ConfigCommonRedCapは、セル固有であってもよい。rach-ConfigCommonRedCapは、第2のランダムアクセスパラメータ等と呼ばれてもよい。
 <ページングに関する設定>
 第1の初期DL BWPにおけるページングの設定に関する情報(以下、「PCCH-Config」という)が端末10に設定されてもよい。PCCH-Configは、ページングサイクルに関する情報(以下、「PagingCycle」という)、firstPDCCH-MonitoringOccasionOfPO、ページングサイクル内のページングフレーム(paging frmae:PF)の数及び/又は時間オフセットを示す情報(以下、「nAndPagingFrameOffset」という)、PFあたりのPOの数に関する情報(以下、「ns」という)、及び、PO内のSSBあたりのPDCCHモニタリング機会の数に関する情報(以下、「nrofPDCCH-MonitoringOccasionPerSSB-InPO」という)の少なくとも一つを含んでもよい。PCCH-Configは、SIB1内のRRCパラメータ(例えば、「ServingCellConfigCommonSIB」内の「DownlinkConfigCommonSIB」内のパラメータ)であってもよい。PCCH-Configは、セル固有であってもよい。PCCH-Configは、第1のページング設定情報等と呼ばれてもよい。
 第2の初期DL BWPにおけるページングの設定に関する情報(以下、「PCCH-ConfigRedCap」という)が端末10に設定されてもよい。PCCH-ConfigRedCapは、defaultPagingCycle、firstPDCCH-MonitoringOccasionOfPO、nAndPagingFrameOffset、ns及びnrofPDCCH-MonitoringOccasionPerSSB-InPOの少なくとも一つを含んでもよい。PCCH-ConfigRedCapは、SIB1内のRRCパラメータ(例えば、「ServingCellConfigCommonSIB」内の「DownlinkConfigCommonSIB」内のパラメータ)であってもよい。PCCH-Configは、セル固有であってもよい。PCCH-ConfigRedCapは、第2のページング設定情報等と呼ばれてもよい。
 (SSBに基づく動作)
 (1)ページング用のPDCCHモニタリング機会の決定動作
 端末10は、PDCCHモニタリング機会においてPDCCHをモニタリングして、ページングメッセージを伝送するPDSCHのスケジューリングに用いられるDCIを受信する。当該DCIは、特定のRNTI(例えば、Paging(P)-RNTI)によりCRCスクランブルされてもよい。端末10は、第1の初期DL BWPが設定されるセルC内に第2の初期DL BWPが設定されるか否かに基づいて、PDCCHモニタリング機会を決定してもよい。
 端末10は、DRX周期、DRX周期内のPFの数、時間オフセット及び端末10の識別子の少なくとも一つに基づいて、ページングフレームを決定する。ここで、PFは、例えば、POを含む無線フレーム(Radio Frame:RF)である。例えば、端末10は、以下の式(1)に基づいて、PFの識別番号(以下、「システムフレーム番号(System Frame Number:SFN)」という)を決定してもよい。
 (式1)
 (SFN+PF_offset) mod T 
= (T div N)*(UE_ID mod N)
 ここで、TはDRX周期であり、NはT内のPFの数であり、PF_offsetは所定のオフセットであり、UE_IDは端末10の識別子(例えば、5G-S-TMSI)に基づいて決定される値である。Tは、上記PagingCycleに基づいて決定されてもよい。PagingCycleは、例えば、32、64、128又は256RFを示してもよい。また、N及び/又はPF_offsetは、上記nAndPagingFrameOffsetに基づいて決定されてもよい。nAndPagingFrameOffsetは、T内のxRF毎にPFが配置されること(例えば、x=1、2、4、8又は16)及び/又は時間オフセットを示してもよい。
 端末10は、ページングサーチスペースとして用いられるサーチスペースのID、上記firstPDCCH-MonitoringOccasionOfPO、及び、上記nrofPDCCH-MonitoringOccasionPerSSB-InPOの少なくとも一つに基づいて、PF内のPOを決定してもよい。POは、例えば、ページング用の一以上のPDCCHモニタリング機会のセットであり、firstPDCCH-MonitoringOccasionOfPOが示す時間位置からS*X個の連続するPDCCHモニタリング機会(例えば、ULシンボルを除くS*X個の連続するシンボル)で構成されてもよい。PO内の各PDCCHモニタリング機会は所定数のシンボルで構成されてもよい。firstPDCCH-MonitoringOccasionOfPOは、例えば、PF内の最初のPDCCHモニタリング機会の時間位置(例えば、シンボルの位置)を示してもよい。
 ここで、上記Sは、SSバーストセット内で実際に送信されるSSBの数であり、上記ssb-PositionsInBurst又はadditionalSSB-PositionsInBurstで示されてもよい。Xは、PO内のSSBあたりのPDCCHモニタリング機会の数であり、nrofPDCCH-MonitoringOccasionPerSSB-InPOに基づいて決定されてもよい。nrofPDCCH-MonitoringOccasionPerSSB-InPOは、例えば、PO内のSSBあたりのPDCCHモニタリング機会の数が2~4のいずれかであることを示し、nrofPDCCH-MonitoringOccasionPerSSB-InPOが設定されない場合当該PDCCHモニタリング機会の数が1であることを示してもよい。
 図7及び8は、本実施形態に係るSSB、PF及びPOの一例を示す図である。図7及び8では、それぞれ、第1及び第2の初期DL BWPにおける第1及び第2のSSB、PF及びPOの一例が示されるが、第1及び第2の初期DL BWPにおける第1及び第2のSSB、PF及びPOの設定は図示するものに限られず、各種パラメータの設定により適宜変更される。
 例えば、第1の初期DL BWPでは、図7に示すように、T=32RFであり、nAndPagingFrameOffsetがT内の1RF毎にPFが配置されること(oneT)を示してもよい。端末10は、UE_IDに基づいて、T内の32PFのうちで当該端末10用のPF(ここでは、RF#0)を決定してもよい。また、第1の初期 DL BWP用のfirstPDCCH-MonitoringOccasionOfPOが、PF内のシンボル#0~#139内の最初から5番目のシンボル(すなわち、スロット#0のシンボル#4)を示す。また、ssb-PositionsInBurst=11111111であり、SSバーストセット内のSSB#0~#7(第1のSSB)が実際に送信されるので、S=8である。また、第1のSSBあたりのPDCCH機会の数が1であるので、X=1である。したがって、端末10は、RF#0のスロット#0のシンボル#4から連続する8シンボルをPOとして決定する。当該POはS*X個(ここでは、8個)のPDCCHモニタリング機会で構成され、SSB#0~#7はそれぞれPO内の1番目~8番目のPDCCHモニタリング機会(すなわち、スロット#0のシンボル#4~#11のPDCCHモニタリング機会)に対応してもよい。マルチビーム運用の場合、端末10は、PO内の各PDCCHモニタリング機会において対応するSSBとPDCCHのDM-RSが疑似コロケート(quasi-collocate)されると想定してもよい。
 一方、第2の初期DL BWPでは、図8に示すように、T=32RFであり、nAndPagingFrameOffsetがT内の8RF毎にPFが配置されること(oneEightT)及び時間オフセット「2」を示してもよい。端末10は、UE_IDに基づいて、T内の4PFのうちで当該端末10用のPF(ここでは、RF#2)を決定してもよい。図8では、nAndPagingFrameOffsetがoneEightTを示すので、ページングモニタリング機会の最初のシンボルの候補位置は1120シンボル(すなわち、RF#0~#7のインデックス#0~#1119の1120シンボル(=8*10*14))である。図8では、第2の初期 DL BWP用のfirstPDCCH-MonitoringOccasionOfPOが、RF#0~#7内のシンボル#0~#1119内のシンボル#284(すなわち、PF#2のスロット#0のシンボル#4)を示す。なお、図8では、各RF内のスロット毎にシンボルインデックスが付されているが、RF#0~#7内の全シンボルに通しでシンボルインデックス#0~#1119が付されてもよい。また、additionalSSB-PositionsInBurst=11110000であり、SSバーストセット内のSSB#0~#3(第2のSSB)が実際に送信され、SSB#4~#7は実際に送信されないので、S=4である。また、SSBあたりのPDCCH機会の数が1であるので、X=1である。したがって、端末10は、RF#2のスロット#0のシンボル#4から連続する4シンボルをPOとして決定する。当該POはS*X個(ここでは、4個)のPDCCHモニタリング機会で構成され、SSB#0~#4はそれぞれPO内の1番目~4番目のPDCCHモニタリング機会(すなわち、スロット#0のシンボル#4~#7のPDCCHモニタリング機会)に対応してもよい。端末10は、PO内の各PDCCHモニタリング機会において対応するSSBとPDCCHのDM-RSが疑似コロケートされると想定してもよい。
 図7及び8に示すように、端末10には、第1の初期DL BWP用のパラメータ(例えば、第1のSSB送信情報及びpdcch-ConfigCommon)と、第2の初期DL BWP用のパラメータ(例えば、第2のSSB送信情報及びpdcch-ConfigCommonRedCap)とが、独立に設定され得る。そこで、端末10は、第2の初期DL BWPが設定されるか否か、及び/又は、所定の条件が満たされるか否かに基づいて、第1の初期DL BWP用又は第2の初期DL BWP用のどちらのパラメータに基づいてページング用のPDCCHモニタリング機会を設定するかを決定する。
 図9は、本実施形態に係るページング用のPDCCHモニタリング機会の決定動作の一例を示すフローチャートである。なお、図9において、端末10には、第1の初期DL BWPが設定されているものとする。ステップS101において、端末10は、第2の初期DL BWPが設定されるか否かを判定する。
 ステップS102において、端末10に第2の初期DL BWPが設定される場合、端末10は、第2の初期DL BWPにおける第2のSSBの送信、第2の初期DL BWPにおけるページングサーチスペースの設定、及び、端末10の能力の少なくとも一つに関する条件を満たすか否かを判定する。具体的には、端末10は、以下の少なくとも一つの条件が満たされるか否かを判定してもよい。
(a)第2の初期DL BWPにおける第2のSSBの送信が設定される。
(b)第2の初期DL BWPにおいてページングサーチスペースが設定される。
(c)端末10が特定の能力を有すること。
 例えば、上記条件(a)は、第2のSSB送信情報(例えば、additionalSSB-Frequency、additionalSSB-PositionsInBurst及びadditionalSSB-PeriodicityServingCellの少なくとも一つ)が設定されることであってもよい。また、上記条件(b)は、pdcch-ConfigCommonRedCap内にpagingsearchspace(例えば、ページングサーチスペースのサーチスペースID)が設定されること、又は、pdcch-ConfigCommonRedCap内にpagingsearchspace及びcommonControlResourceSetが設定されることであってもよい。また、上記条件(c)における特定の能力は、端末10がBWPにおけるCORESET#0及び/又はSSBに関する能力である。例えば、条件(c)は、端末10に設定される各BWPがCORESET#0及びSSBの帯域幅を含むこと(特徴(feature)グループ6-1)、及び/又は、当該CORESET#0及びSSBの帯域幅を含まないBWPを許容すること(特徴グループ6-1a)であってもよい。
 第2の初期DL BWPが設定され、かつ、ステップS102の条件が満たされる場合(ステップS102;YES)、ステップS103において、端末10は、第2のSSBに関するadditionalSSB-PositionsInBurst及び/又は第2の初期DL BWPにおけるPDCCHの設定に関するpdcch-ConfigCommonRedCapに基づいて、ページング用のPDCCHモニタリング機会を決定する。
 具体的には、ステップS103において、端末10は、pdcch-ConfigCommonRedCap内のpagingsearchspaceによって示されるサーチスペースIDが0以外である場合、additionalSSB-PositionsInBurst及び/又はpdcch-ConfigCommonRedCapに基づいて、ページング用のPDCCHモニタリング機会を決定してもよい。例えば、図8に示すように、端末10は、additionalSSB-PositionsInBurst及びpdcch-ConfigCommonRedCap内のfirstPDCCH-MonitoringOccasionOfPOに基づいて、ページング用のPDCCHモニタリング機会をRF#2内のスロット#0内のシンボル#4~#7に決定してもよい。一方、端末10は、サーチスペースIDが0である場合、SIB1用のPDCCHモニタリング機会をページング用のPDCCHモニタリング機会として決定してもよい。
 なお、ステップS103において、端末10は、pdcch-ConfigCommonRedCapに代えて又はpdcch-ConfigCommonRedCapに加えて、pcch-ConfigRedCapに基づいて、ページング用のPDCCHモニタリング機会を決定してもよい。例えば、端末10は、pdcch-ConfigCommonRedCap又はpcch-ConfigRedCap内のfirstPDCCH-MonitoringOccasionOfPO、pcch-ConfigRedCap内のnrofPDCCH-MonitoringOccasionPerSSB-InPO、pcch-ConfigRedCap内のdefaultPagingCycle及びpcch-ConfigRedCap内のnAndPagingFrameOffsetの少なくとも一つに基づいて、ページング用のPDCCHモニタリング機会を決定してもよい。
 第2の初期DL BWPが設定されない場合(ステップS101;NO)、又は、第2の初期DL BWPが設定され、かつ、ステップS102の条件が満たされない場合(ステップS102;NO)、ステップS104において、端末10は、第1のSSBに関するssb-PositionsInBurst及び/又は第1の初期DL BWPにおけるPDCCHの設定に関するpdcch-ConfigCommonに基づいて、ページング用のPDCCHモニタリング機会を決定する。
 具体的には、ステップS104において、端末10は、pdcch-ConfigCommon内のpagingsearchspaceによって示されるサーチスペースIDが0以外である場合、ssb-PositionsInBurst及び/又はpdcch-ConfigCommonに基づいて、ページング用のPDCCHモニタリング機会を決定してもよい。例えば、図7に示すように、端末10は、ssb-PositionsInBurst及びpdcch-ConfigCommon内のfirstPDCCH-MonitoringOccasionOfPOに基づいて、ページング用のPDCCHモニタリング機会をRF#0内のスロット#0内のシンボル#4~#11に決定してもよい。一方、サーチスペースIDが0である場合、端末10は、SIB1用のPDCCHモニタリング機会をページング用のPDCCHモニタリング機会として決定してもよい。
 なお、ステップS104おいて、端末10は、pdcch-ConfigCommonに代えて又はpdcch-ConfigCommonに加えて、pcch-Configに基づいて、ページング用のPDCCHモニタリング機会を決定してもよい。例えば、端末10は、pdcch-ConfigCommonRedCap又はpcch-Config内のfirstPDCCH-MonitoringOccasionOfPO、pcch-Config内のnrofPDCCH-MonitoringOccasionPerSSB-InPO、pcch-Config内のdefaultPagingCycle及びpcch-Config内のnAndPagingFrameOffsetの少なくとも一つに基づいて、ページング用のPDCCHモニタリング機会を決定してもよい。
 以上の動作によれば、第2の初期DL BWPにおいて第2のSSBが送信され得る場合でも、ページング用のPDCCHモニタリング機会を適切に決定できる。したがって、端末10は、PDCCHモニタリング機会で検出されるDCIに基づいて、ページングメッセージを受信できる。
 (2)RAプリアンブル及び/ROの決定動作
 ランダムアクセス手順において、端末10は、RAプリアンブルを送信する。端末10は、第1の初期DL BWPが設定されるセルC内に第2の初期DL BWPが設定されるか否かに基づいて、RAプリアンブル及び/又はRAプリアンブルの送信に用いられるROを決定してもよい。
 RAプリアンブルは、所定の系列であり、PRACHプリアンブル又はプリアンブル、プリアンブル系列、メッセージ1、PRACH等とも呼ばれる。ROは、例えば、RAプリアンブルの送信用の時間領域及び/又は周波数領域のリソースであり、一以上のシンボル及びM(M≧1)個のリソースブロックで構成されてもよい。ROは、PRACH機会、ランダムアクセス機会、送信機会、機会等とも呼ばれる。RAプリアンブルは、ランダムアクセスチャネル(Random Access Channel:PRACH)を用いて送信されてもよい。RACHは、RAプリアンブルの伝送に用いられるULチャネルであり、物理ランダムアクセスチャネル(Physical Random Access Channel:PRACH)等とも呼ばれる。
 ランダムアクセス手順には、衝突ベースランダムアクセス(Contention based random access:CBRA)及び衝突フリーランダムアクセス(Contention free random access:CFRA)が含まれる。CBRA及びCFRAには、それぞれ、2つのタイプがサポートされる。第1のタイプは、タイプ1、タイプ1ランダムアクセス手順(Type-1 random access procedure)、4ステップRACH、又は、4ステップランダムアクセス等と呼ばれる。第2のタイプは、タイプ2、タイプ2ランダムアクセス手順(Type-2 random access procedure)、2ステップRACH、又は、2ステップランダムアクセス等と呼ばれる。
 タイプ1のCBRAでは、端末10は、RAプリアンブルをランダムに選択し、選択したRAプリアンブルを基地局20送信する。端末10は、RAプリアンブルに応じて、PDSCHを介してランダムアクセス応答(Random Access Response:RAR)(メッセージ2とも呼ばれる)を受信し、RARに応じて、PUSCHを介してメッセージ3を送信する。端末10は、メッセージ3に応じてメッセージ4(衝突解決メッセージ)を、PDSCHを介して受信する。
 タイプ1のCFRAでは、端末10は、基地局20によって割り当てられたRAプリアンブルを基地局20に送信する。端末10は、RAプリアンブルに応じて、PDSCHを介して、基地局20からRARを受信する。当該RAプリアンブルはDCIによって示されるので、CFRAはPDCCHオーダのRAとも呼ばれる。
 タイプ2のCBRAでは、端末10は、タイプ1のCBRAにおけるRAプリアンブル及びメッセージ3をメッセージAとして送信し、メッセージB(すなわち、RAR)を受信する。タイプ2のCBRAでも、メッセージA内のRAプリアンブルは、ランダムに選択される。タイプ2のCFRAでは、基地局20からのDCIによって示されるRAプリアンブル及びメッセージ3をメッセージAとして送信し、メッセージBを受信する。
 以上のタイプ1及び2のCBRA及びCFRAにおいて、端末10は、SSBのRSRPに基づいてRO及び/又はRAプリアンブルを選択し、選択されたROを用いて、RAプリアンブルを送信してもよい。基地局20は、端末10から受信したRAプリアンブル、及び/又は、RAプリアンブルの送信に用いられたROから、当該端末10がどのSSBを受信したか、すなわち、どのビームフォーミング方向にいるのかを認識できる。すなわち、基地局20は、端末10からのRAプリアンブル及び/又はRAプリアンブルの受信に用いたROに関連付けられるSSBに基づいて、端末10に対する疑似コロケーション(QCL)関係を推定してもよい。制御部203は、当該SSBと同一の空間パラメータ(ビーム)を用いて、DL信号の送信及び/又はUL信号の受信を制御してもよい。
 また、端末10は、RAサーチスペースにおいてPDCCHをモニタリングして、特定のRNTI(例えば、RA-RNTI)でCRCスクランブルされたDCIを検出し、当該DCIによりスケジューリングされるPDSCHを介して、タイプ1及び2のCBRA及びCFRAにおけるRAR、メッセージ4及びメッセージBの少なくとも一つを受信してもよい。
 図10は、本実施形態に係るSSBとRO及びRAプリアンブルとの関係の一例を示す図である。例えば、図10では、第1の初期DL BWPで実際に送信されるSSB#0~#7(第1のSSB)と第1の初期UL BWP内のRO及びRAプリアンブルの関係が示される。なお、図10は例示にすぎず、SSB、RO及びRAプリアンブルの関係は図示するものに限られない。
 図10に示すように、RAプリアンブルの送信に用いられる一つ又は複数のスロット(以下、「RACHスロット」という)が所定周期(以下、「RACHリソース周期(RACH resource periodicity)」という)で設けられる。例えば、図10では、RACHリソース周期が10スロットであり、RF内の2、5、8番目のスロットがRACHスロットであるが、これに限られない。
 例えば、図10に示すように、各RACHスロットには、一以上のROが設けられてもよい。一つのROは、M(M≧1)個のリソースブロックで構成される。また、周波数領域には、K(図10では、K=2)個のROを配置できる。また、時間領域には、1RACHスロットあたり1以上のROを配置できる。例えば、図10では、1RACHスロットあたり、周波数領域に2個、時間領域に1個の合計2ROが配置される。このように、各RACHスロットには、時間領域及び/又は周波数領域において、一以上のROが含まれてもよい。
 SSBは、一以上のROに関連付けられる。また、一つのSSBは、一以上のRAプリアンブルに関連付けられる。SSBと、RO及び/又はRAプリアンブルの関連付けは、上記ssb-perRACHOccasionAndCB-PreamblesPerSSBによって示されてもよい。具体的には、上記ssb-perRACHOccasionAndCB-PreamblesPerSSBは、一つのROに関連付けられるSSB数及び/又は一つのSSBに関連付けられるRAプリアンブル数を示してもよい。
 例えば、図10では、ssb-PositionsInBurst=11111111であり、SSバーストセット内のSSB#0~#7が第1の初期DL BWPにおいて実際に送信されるものとする。ssb-perRACHOccasionAndCB-PreamblesPerSSBは、一つのROに一つのSSBが対応すること(”one”)を示し、かつ、一つのSSBに8RAプリアンブルが対応すること(”n8”)を示す。なお、一つのROに関連付けられるSSB数Xは、1に限られず、1より大きい数(例えば、2、4、8又は16)であってもよいし、1より小さい数(例えば、1/8、1/4又は1/2)であってもよい。X≧1の場合、一つのROにはX個のSSBが関連付けられる。X<1の場合、一つのSSBがXの逆数個のROに関連付けられる。また、一つのSSBに関連付けられるRAプリアンブル数Yは、例えば、4、8、12等であるがこれに限られず、1以上であればよい。また、図10に示す各SSBに関連付けられるRO及びRAプリアンブルのインデックス等は一例にすぎず、図示するものに限られない。
 図10において、端末10は、第1の初期DL BWPにおいてSSバーストセット内のSSB#0~#7を用いてRSRPを測定する。端末10には、SSB#0~#7のRSRPの測定結果と、rsrp-ThresholdSSBが示す閾値とに基づいて、SSB#0~#7の少なくとも一つを選択する。具体的には、端末10は、RSRPが当該閾値を越えるSSB#0~#7の少なくとも一つを選択してもよい。
 例えば、図10において、端末10は、RSRPと当該閾値に基づいて2つのSSB#0及び#1を選択する場合、SSB#0及び#1に関連付けられるRAプリアンブル#0~#15の中からランダムに一つのRAプリアンブルを選択する。また、端末10は、SSB#0及び#1それぞれに関連付けられるRO#0及び#1の中から一つのROを選択する。端末10は、選択したROを用いて、選択されたRAプリアンブルを送信する。なお、CFRAの場合、端末10は、選択したROを用いて、DCIが示すRAプリアンブルを送信してもよい。
 また、図10では、タイプ1のCBRA又はCFRAを想定したが、タイプ2のCBRA又はCFRAに適用可能である。メッセージA用のRO及び/又はRAプリアンブルの関連付けに関する情報(以下、「msgA-SSB-PerRACH-OccasionAndCB-PreamblesPerSSB」という)が端末10に設定されてもよい。また、タイプ2のCBRA又はCFRA用にSSBのRSRPの閾値に関する情報(以下、「msgA-RSRP-ThresholdSSB」という)が端末10に設定されてもよい。端末10は、図10で説明したssb-perRACHOccasionAndCB-PreamblesPerSSB及びRSRP-ThresholdSSBと同様に、msgA-SSB-PerRACH-OccasionAndCB-PreamblesPerSSB及びmsgA-RSRP-ThresholdSSBに基づいて、メッセージAとしてのRAプリアンブル及び/又はRAプリアンブル送信用のROを選択してもよい。
 図11は、本実施形態に係るSSBとRO及びRAプリアンブルとの関係の他の例を示す図である。例えば、図11では、第2の初期DL BWPで実際に送信されるSSB#0~#3(第2のSSB)と第2の初期UL BWP内のRO及びRAプリアンブルの関係が示される。なお、図11は例示にすぎず、SSB、RO及びRAプリアンブルの関係は図示するものに限られない。また、図11では、図10との相違点を中心に説明する。
 例えば、図11では、additionalSSB-PositionsInBurst=11110000であり、SSバーストセット内のSSB#0~#3が第2の初期DL BWPにおいて実際に送信されるものとする。ssb-perRACHOccasionAndCB-PreamblesPerSSBは、一つのROに1/2個のSSBが対応する(すなわち、一つのSSBが2つのROに対応する)こと(”oneHalf”)を示し、かつ、一つのSSBに16RAプリアンブルが対応すること(”n16”)を示す。
 図11において、端末10は、第2の初期DL BWPにおいてSSバーストセット内のSSB#0~#3を用いてRSRPを測定する。端末10には、SSB#0~#3のRSRPの測定結果と、rsrp-ThresholdSSBが示す閾値とに基づいて、SSB#0~#7の少なくとも一つを選択する。具体的には、端末10は、RSRPが当該閾値を越えるSSB#0~#3の少なくとも一つを選択してもよい。
 例えば、図11において、端末10は、RSRPと当該閾値に基づいてSSB#1を選択する場合、SSB#1に関連付けられるRAプリアンブル#15~#31の中からランダムに一つのRAプリアンブルを選択する。また、端末10は、SSB#1に関連付けられるRO#2及び#3の中から一つのROを選択する。端末10は、選択したROを用いて、選択されたRAプリアンブルを送信する。なお、CFRAの場合、端末10は、選択したROを用いて、DCIが示すRAプリアンブルを送信してもよい。
 また、図11では、タイプ1のCBRA又はCFRAを想定したが、タイプ2のCBRA又はCFRAに適用可能である。メッセージA用のRO及び/又はRAプリアンブルの関連付けに関する情報(以下、「msgA-SSB-PerRACH-OccasionAndCB-PreamblesPerSSB」という)が端末10に設定されてもよい。また、タイプ2のCBRA又はCFRA用にSSBのRSRPの閾値に関する情報(以下、「msgA-RSRP-ThresholdSSB」という)が端末10に設定されてもよい。端末10は、図11で説明したssb-perRACHOccasionAndCB-PreamblesPerSSB及びRSRP-ThresholdSSBと同様に、msgA-SSB-PerRACH-OccasionAndCB-PreamblesPerSSB及びmsgA-RSRP-ThresholdSSBに基づいて、メッセージAとしてのRAプリアンブル及び/又はRAプリアンブル送信用のROを選択してもよい。
 図10及び図11に示すように、端末10には、第1の初期DL BWP用のパラメータ(例えば、第1のSSB送信情報及びrach-ConfigCommon)と、第2の初期DL BWP用のパラメータ(例えば、第2のSSB送信情報、rach-ConfigCommonRedCap)とが、独立に設定され得る。そこで、端末10は、第2の初期DL BWPが設定されるか否か、及び/又は、所定の条件が満たされるか否かに基づいて、第1の初期DL BWP用又は第2の初期DL BWP用のどちらのパラメータに基づいてRO及び/又はRAプリアンブルを選択するかを決定する。
 図12は、本実施形態に係るRO及び/又はRAプリアンブルの選択動作の一例を示すフローチャートである。なお、図12において、端末10には、第1の初期DL BWPが設定されているものとする。ステップS201において、端末10は、第2の初期DL BWPが設定されるか否かを判定する。
 ステップS202において、端末10に第2の初期DL BWPが設定される場合、端末10は、第2の初期DL BWPにおける第2のSSBの送信、第2の初期DL BWPにおけるRAサーチスペースの設定、第2のランダムアクセスパラメータの設定、及び、端末10の能力の少なくとも一つに関する条件を満たすか否かを判定する。具体的には、端末10は、以下の少なくとも一つの条件が満たされるか否かを判定してもよい。
(A)第2の初期DL BWPにおける第2のSSBの送信が設定される。
(B)第2の初期DL BWPにおいてRAサーチスペースが設定される。
(C)第2のランダムアクセスパラメータが設定される。
(D)端末10が特定の能力を有する。
 例えば、上記条件(B)は、pdcch-ConfigCommonRedCap内にra-searchspace(例えば、RAサーチスペースのサーチスペースID)が設定されること、又は、pdcch-ConfigCommonRedCap内にra-searchspace及び上記commonControlResourceSetが設定されることであってもよい。また、上記条件(C)は、rach-ConfigCommonRedCap内でssb-perRACH-OccasionAndCB-preamblesPerSSB及び/又はRSRP-ThresholdSSBが設定されることであってもよい。なお、上記条件(A)及び(D)は、上記条件(a)及び(c)と同様である。
 第2の初期DL BWPが設定され、かつ、ステップS202の条件が満たされる場合(ステップS202;YES)、ステップS203において、端末10は、第2のSSBに関するadditionalSSB-PositionsInBurst及び/又はRACH-ConfigCommonRedCapに基づいて、RAプリアンブル及び/又はROを選択する。
 具体的には、ステップS203において、端末10は、additionalSSB-PositionsInBurst、RACH-ConfigCommonRedCap内のssb-perRACHOccasionAndCB-PreamblesPerSSB及びRSRP-ThresholdSSB、及び、第2のSSBのRSRPの少なくとも一つに基づいて、RAプリアンブル及び/又はROを選択してもよい。例えば、図11に示すように、端末10は、additionalSSB-PositionsInBurst及びRACH-ConfigCommonRedCap内のssb-perRACHOccasionAndCB-PreamblesPerSSBに基づいて、SSB#0~#3それぞれに対応するRO及び/又はRAプリアンブルを決定してもよい。また、端末10は、SSB#0~#3のRSRP及びRACH-ConfigCommonRedCap内のRSRP-ThresholdSSBに基づいて、SSB#0~#3の少なくとも一つ(例えば、図11では、RSRP-ThresholdSSBが示す閾値を越えるRSRPを有するSSB#1)を選択してもよい。また、図11では、端末10は、選択されたSSBに対応するRO#2及び#3の一つ、及び/又は、選択されたSSB#1に対応するRAプリアンブル#15~#31の一つを選択してもよい。
 第2の初期DL BWPが設定されない場合(ステップS201;NO)、又は、第2の初期DL BWPが設定され、かつ、ステップS202の条件が満たされない場合(ステップS202;NO)、ステップS204において、端末10は、第1のSSBに関するssb-PositionsInBurst及び/又はRACH-ConfigCommonに基づいて、RAプリアンブル及び/又はROを選択する。
 具体的には、ステップS204において、端末10は、ssb-PositionsInBurst、RACH-ConfigCommon内のssb-perRACHOccasionAndCB-PreamblesPerSSB及びRSRP-ThresholdSSB、及び、第1のSSBのRSRPの少なくとも一つに基づいて、RAプリアンブル及び/又はROを決定してもよい。例えば、図10に示すように、端末10は、ssb-PositionsInBurst及びRACH-ConfigCommon内のssb-perRACHOccasionAndCB-PreamblesPerSSBに基づいて、SSB#0~#7それぞれに対応するRO及び/又はRAプリアンブルを決定してもよい。また、端末10は、SSB#0~#7のRSRP及びRACH-ConfigCommon内のRSRP-ThresholdSSBに基づいて、SSB#0~#7の少なくとも一つ(例えば、図10では、RSRP-ThresholdSSBが示す閾値を越えるRSRPを有するSSB#0及び#1)を選択してもよい。また、図10では、端末10は、選択されたSSB#0及び#1に対応するRO#0及び#1の一つ、及び/又は、選択されたSSB#0及び#1に対応するRAプリアンブル#0~#15の一つを選択してもよい。
 なお、図12に示す動作は、タイプ2のCBRA及びCFRAにも適用可能である。タイプ2の場合、上記RACH-ConfigCommon及びRACH-ConfigCommonRedCapはそれぞれ、msgA-ConfigCommon及びmsgA-ConfigCommonRedCapに置き換えられてもよい。また、ssb-perRACHOccasionAndCB-PreamblesPerSSB及びRSRP-ThresholdSSBは、それぞれ、msgA-SSB-PerRACH-OccasionAndCB-PreamblesPerSSB及びmsgA-RSRP-ThresholdSSBに置き換えられてもよい。
 以上の動作によれば、第2の初期DL BWPにおいて第2のSSBが送信され得る場合でも、RO及び/又はRAプリアンブルを適切に選択できる。したがって、ランダムアクセスに関する動作を適切に制御できる。なお、上記におけるRAプリアンブルの選択とは、一つ又は複数のRAプリアンブルのグループ(又は、セット)の中から、RACHを用いて端末10によって送信される一つのRAプリアンブルを選択(又は、決定)することであってもよい。また、当該RAプリアンブルの選択は、当該RAプリアンブルのインデックスの選択又は決定と言い換えられてもよく、端末10は、選択されたインデックスのRAプリアンブルを、RACHを介して送信してもよい。
 (3)MIB受信時の動作
 端末10は、PBCHを介して、MIBを受信する。端末10は、第1の初期DL BWPが設定されるセルC内に第2の初期DL BWPが設定されるか否かに基づいて、MIB受信時の動作を制御してもよい。具体的には、端末10は、第2の初期DL BWPが設定される場合、端末10は、第2の初期DL BWPで送信されるSSB内のPBCHを介して受信されたMIB内の特定のパラメータを無視する、又は、当該特定のパラメータが送信されないと想定してもよい。
 図13は、本実施形態に係るMIBの一例を示す図である。図13に示すように、MIBは、以下の少なくとも一つのパラメータを含んでもよい。
・SFNに関する情報(以下、「systemFrameNumber」という)
・サブキャリア間隔に関する情報(以下、「subCarrierSpacingCommon」という)
・SSBとリソースブロックグリッドとの間の周波数オフセット(kSSB)に関する情報(以下、「ssb-SubcarrierOffset」という)
・DM-RSの位置に関する情報(以下、「dmrs-TypeA-Position」という)
・共通CORESET(CORESET#0)及び/又は共通サーチスペース(サーチスペース#0)に関する情報(以下、「pdcch-ConfigSIB1」という)
・セル(に対するキャンプオン)が禁止されるか否かに関する情報(以下、「cellBarred」という)
・同周波数セルの選択及び/又は再選択に関する情報(以下、「intraFreqReselection」という)
 図14は、本実施形態に係るMIB受信時の動作の一例を示すフローチャートである。なお、図14において、端末10には、第1の初期DL BWPが設定されているものとする。ステップS301において、端末10は、第2の初期DL BWPが設定されるか否かを判定する。
 ステップS302において、端末10に第2の初期DL BWPが設定される場合、端末10は、第2の初期DL BWPにおける第2のSSBの送信、第2の初期DL BWPにおけるページングサーチスペースの設定、第2の初期DL BWPにおけるRAサーチスペースの設定、端末10の能力の少なくとも一つに関する条件を満たすか否かを判定する。具体的には、端末10は、以下の少なくとも一つの条件が満たされるか否かを判定してもよい。
(i)第2の初期DL BWPにおける第2のSSBの送信が設定される。
(ii)第2の初期DL BWPにおいてページングサーチスペースが設定される。
(iii)第2の初期DL BWにおいてRAサーチスペースが設定される。
(iv)端末10が特定の能力を有する。
 例えば、上記条件(i)、(ii)及び(iv)は、上記条件(a)、(b)及び(c)と同様である。上記条件(iii)は、上記条件(B)と同様である。
 第2の初期DL BWPが設定され、かつ、ステップS302の条件が満たされる場合(ステップS302;YES)、ステップS303において、端末10は、第2のSSB内のPBCHを介して受信されたMIB内の特定のパラメータを無視する、又は、当該特定のパラメータが送信されないと想定してもよい。
 ここで、MIB内の特定のパラメータは、例えば、cellBarred、intraFreqReselection及びssb-SubcarrierOffsetの少なくとも一つであるが、これに限られない。当該特定のパラメータは、MIB内の少なくとも一つのパラメータであればよい。端末10は、MIB内の当該特定のパラメータ以外のパラメータに基づいて、第2の初期DL BWPにおけるDL信号の受信、及び/又は、第2の初期UL BWPにおけるUL信号の送信を制御してもよい。
 第2の初期DL BWPが設定されない場合(ステップS301;NO)、又は、第2の初期DL BWPが設定され、かつ、ステップS302の条件が満たされない場合(ステップS302;NO)、ステップS304において、端末10は、第1のSSB内のPBCHを介して受信されたMIB内の各パラメータに基づいて、第1の初期DL BWPにおけるDL信号の受信、及び/又は、第1の初期UL BWPにおけるUL信号の送信を制御してもよい。
 なお、第2の初期DL BWPが設定される場合における端末10の動作は上記に限られない。例えば、端末10は、第2の初期DL BWPが設定される場合、端末10は、第2のSSB内のPBCHを介して受信されるMIB内の特定のパラメータの値に関係なく、特定の意味に解釈してもよい。当該特定のパラメータは、例えば、cellBarredであり、端末10は、cellBarredがセルが禁止されることを示しても、セルが禁止されないことを示すと解釈してもよい。
 以上の動作によれば、第1の初期DL BWPだけでなく第2の初期DL BWPにおいても第2のSSBが送信され得る場合、MIBに基づいて適切に動作を行うことができる。
 (パラメータ)
 図15~18を参照し、本実施形態における上記SSBに基づく動作(1)~(3)のための端末10の設定に用いられる上記パラメータ又は情報の一例を説明する。なお、図15~18に示す各パラメータ又は情報は、例示にすぎず、名称、サイズ、階層構造等は図示するものに限られない。また、本実施形態における上記動作(1)~(3)には、図15~18に図示しないパラメータ又は情報が用いられてもよいことは勿論である。
 図15は、本実施形態に係るBWP-DownlinkCommonの一例を示す図である。BWP-DownlinkCommonは、DL BWPの共通パラメータの設定に用いられる情報であり、ServingCellConfigCommon又はServingCellConfigCommonSIBに含まれてもよい。ServingCellConfigCommonSIBは、セル固有のパラメータであり、SIB1に含まれてもよい。ServingCellConfigCommonは、セル固有の設定パラメータであり、他のRRCメッセージに含まれてもよい。
 図15に示すように、BWP-DownlinkCommonは、以下の少なくとも一つを含んでもよい。
・上記第1の初期DL BWP情報であるgenericParameters
・第1の初期DL BWPにおけるPDCCHの設定に関する情報であるpdcch-ConfigCommon
・第1の初期DLBWPにおけるPDSCHの設定に関する情報であるpdsch-ConfigCommon
・上記第2の初期DL BWP情報であるgenericParametersRedCap
・第2の初期DL BWPにおけるPDCCHの設定に関する情報であるpdcch-ConfigCommonRedCap
・第2の初期DL BWPにおけるPDSCHの設定に関する情報であるpdsch-ConfigCommonRedCap、及び、第2のSSB送信情報としてのadditionalSSB-PositionsInBurst、additionalSSB-periodicityServingCell、additional-SS-PBCH-BlockPower、additionalSSB-Frequency及びadditionalSSB-SMTCの少なくとも一つ
 なお、additionalSSB-PositionsInBurst内のgroupPresenceは、SSバーストセット内で最大64個送信可能なSSBを8つのSSBグループに分割したとき、各SSBグループが実際に送信されるか否かを、対応する各ビットの値によって示す情報である。また、inOneGroupは、SSBグループ内の各SSBが実際に送信されるか否かを、対応する各ビットの値によって示す情報である。6GHzを下回るオペレーションバンドでは、inOneGroupが示す情報のみが用いられてもよい。また、6GHzを上回るオペレーションバンドでは、inOneGroup及びgroupPresenceが示す情報が用いられてもよい。
 図16は、本実施形態に係るBWP-UplinkCommonの一例を示す図である。BWP-UplinkCommonは、UL BWPの共通パラメータの設定に用いられる情報であり、ServingCellConfigCommon又はServingCellConfigCommonSIBに含まれてもよい。ServingCellConfigCommonSIBは、セル固有のパラメータであり、SIB1に含まれてもよい。ServingCellConfigCommonは、セル固有の設定パラメータであり、他のRRCメッセージに含まれてもよい。
 図16に示すように、BWP-UplinkCommonは、以下の少なくとも一つを含んでもよい。
・上記第1の初期UL BWP情報であるgenericParameters
・第1の初期UL BWPにおけるランダムアクセスの設定に関する情報であるrach-ConfigCommon
・第1の初期ULBWPにおけるPUSCHの設定に関する情報であるpusch-ConfigCommon
・第1の初期ULBWPにおけるPUCCHの設定に関する情報であるpucch-ConfigCommon
・第1の初期UL BWPにおけるメッセージAの送信に関する情報であるmsgA-ConfigCommon
・上記第2の初期UL BWP情報であるgenericParametersRedCap
・第2の初期UL BWPにおけるランダムアクセスの設定に関する情報であるrach-ConfigCommonRedCap
・第2の初期ULBWPにおけるPUSCHの設定に関する情報であるpusch-ConfigCommonRedCap
・第2の初期ULBWPにおけるPUCCHの設定に関する情報であるpucch-ConfigCommonRedCap
・第2の初期UL BWPにおけるメッセージAの送信に関する情報であるmsgA-ConfigCommonRedCap
 図17は、本実施形態に係るRACH-ConfigCommonの一例を示す図である。RACH-ConfigCommonは、上記第1の初期UL BWPにおけるランダムアクセスの設定に関する情報(すなわち、rach-ConfigCommon)として機能してもよいし、又は、第2の初期UL BWPにおけるランダムアクセスの設定に関する情報(すなわち、rach-ConfigCommonRedCap)として機能してもよい。
 図17に示すように、pusch-ConfigCommonは、以下の少なくとも一つのパラメータを含んでもよい。
・ROあたりの第1又は第2のSSBの数、及び/又は、第1又は第2のSSBあたりのRAプリアンブルの数を示す情報であるssb-perRACH-OccasionAndCB-PreamblesPerSSB
・第1又は第2のSSBのRSRPの閾値に関する情報であるrsrp-ThresholdSSB
 図18は、本実施形態に係るRACH-ConfigCommonTwoStepRAの一例を示す図である。RACH-ConfigCommonTwoStepRAは、第1の初期UL BWPにおけるメッセージAの送信に関する情報(すなわち、msgA-ConfigCommon)として機能してもよいし、第2の初期UL BWPにおけるメッセージAの送信に関する情報(すなわち、msgA-ConfigCommonRedCap)として機能してもよい。
 図18に示すように、RACH-ConfigCommonTwoStepRAは、以下の少なくとも一つのパラメータを含んでもよい。
・ROあたりの第1又は第2のSSBの数、及び/又は、第1又は第2のSSBあたりのRAプリアンブルの数を示す情報であるmsgA-SSB-perRACH-OccasionAndCB-PreamblesPerSSB
・第1又は第2のSSBのRSRPの閾値に関する情報であるmsgA-rsrp-ThresholdSSB
 (無線通信システムの構成)
 次に、以上のような無線通信システム1の各装置の構成について説明する。なお、以下の構成は、本実施形態の説明において必要な構成を示すためのものであり、各装置が図示以外の機能ブロックを備えることを排除するものではない。
 <ハードウェア構成>
 図19は、本実施形態に係る無線通信システム内の各装置のハードウェア構成の一例を示す図である。無線通信システム1内の各装置(例えば、端末10、基地局20、CN30など)は、プロセッサ11、記憶装置12、有線又は無線通信を行う通信装置13、各種の入力操作を受け付ける入力装置や各種情報の出力を行う入出力装置14を含む。
 プロセッサ11は、例えば、CPU(Central Processing Unit)であり、無線通信システム1内の各装置を制御する。プロセッサ11は、プログラムを記憶装置12から読み出して実行することで、本実施形態で説明する各種の処理を実行してもよい。無線通信システム1内の各装置は、1又は複数のプロセッサ11により構成されていてもよい。また、当該各装置は、コンピュータと呼ばれてもよい。
 記憶装置12は、例えば、メモリ、HDD(Hard Disk Drive)及び/又はSSD(Solid State Drive)等のストレージから構成される。記憶装置12は、プロセッサ11による処理の実行に必要な各種情報(例えば、プロセッサ11によって実行されるプログラム等)を記憶してもよい。
 通信装置13は、有線及び/又は無線ネットワークを介して通信を行う装置であり、例えば、ネットワークカード、通信モジュール、チップ、アンテナ等を含んでもよい。また、通信装置13には、アンプ、無線信号に関する処理を行うRF(Radio Frequency)装置と、ベースバンド信号処理を行うBB(BaseBand)装置とを含んでいてもよい。
 RF装置は、例えば、BB装置から受信したデジタルベースバンド信号に対して、D/A変換、変調、周波数変換、電力増幅等を行うことで、アンテナから送信する無線信号を生成する。また、RF装置は、アンテナから受信した無線信号に対して、周波数変換、復調、A/D変換等を行うことでデジタルベースバンド信号を生成してBB装置に送信する。
 BB装置は、データをデジタルベースバンド信号に変換する処理を行う。具体的には、BB装置は、データをサブキャリアにマッピングし、IFFTしてOFDMシンボルを生成し、生成したOFDMシンボルにCPを挿入し、デジタルベースバンド信号を生成してもよい。なお、BB装置は、データをサブキャリアにマッピングする前に、トランスフォームプリコーダ(DFT拡散)を適用してもよい。
 また、BB装置は、デジタルベースバンド信号をデータに変換する処理を行う。具体的には、BB装置は、RF装置から入力されたデジタルベースバンド信号からCPを除去し、CPを除去した信号に対してFFTを行い、周波数領域の信号を抽出してもよい。なお、BB装置は、当該周波数領域の信号に対してIDFTを適用してもよい。
 入出力装置14は、例えば、キーボード、タッチパネル、マウス及び/又はマイク等の入力装置と、例えば、ディスプレイ及び/又はスピーカ等の出力装置とを含む。
 以上説明したハードウェア構成は一例に過ぎない。無線通信システム1内の各装置は、図19に記載したハードウェアの一部が省略されていてもよいし、図19に記載されていないハードウェアを備えていてもよい。また、図19に示すハードウェアが1又は複数のチップにより構成されていてもよい。
 <機能ブロック構成>
 ≪端末≫
 図20は、本実施形態に係る端末の機能構成の一例を示す図である。図20に示すように、端末10は、受信部101と、送信部102と、制御部103と、を備える。図20に示す機能構成は一例にすぎず、本実施形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。また、受信部101と送信部102とをまとめて通信部と称してもよい。
 なお、受信部101と送信部102とが実現する機能の全部又は一部は、通信装置13を用いて実現することができる。また、受信部101と送信部102とが実現する機能の全部又は一部と、制御部103とは、プロセッサ11が、記憶装置12に記憶されたプログラムを実行することにより実現することができる。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体(Non-transitory computer readable medium)であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。
 受信部101は、信号(例えば、DL信号及び/又はサイドリンク信号)を受信する。また、受信部101は、当該信号を介して伝送された情報及び/又はデータを受信してもよい。ここで、「受信する」とは、例えば、無線信号の受信、デマッピング、復調、復号、モニタリング、測定の少なくとも一つ等の受信に関する処理を行うことを含んでもよい。DL信号は、例えば、PDSCH、PDCCH、下り参照信号、同期信号、PBCH等の少なくとも一つを含んでもよい。
 受信部101は、サーチスペース内のPDCCH候補をモニタリングして、DCIを検出する。受信部101は、DCIを用いてスケジューリングされるPDSCHを介して、DLデータを受信してもよい。DLデータは、下りユーザデータ、及び/又は、上位レイヤの制御情報(例えば、MACレイヤ、RRCレイヤ及びNon Access Stratum(NAS)レイヤの少なくとも一つのパラメータ)を含んでもよい。受信部101は、PBCH及び/又はPDSCHを介して、システム情報を受信してもよい。
 送信部102は、信号(例えば、UL信号及び/又はサイドリンク信号)を送信する。また、送信部102は、当該信号を介して伝送される情報及び/又はデータを送信してもよい。ここで、「送信する」とは、例えば、符号化、変調、マッピング、無線信号の送信の少なくとも一つ等の送信に関する処理を行うことを含んでもよい。UL信号は、例えば、PUSCH、PRACH、PUCCH、上り参照信号等の少なくとも一つを含んでもよい。
 送信部102は、受信部101で受信されたDCIを用いてスケジューリングされるPUSCHを介して、ULデータを送信してもよい。ULデータは、上りユーザデータ、及び/又は、上位レイヤの制御情報(例えば、MACレイヤ、RRCレイヤ及びNASレイヤの少なくとも一つのパラメータ)を送信してもよい。
 制御部103は、端末10における各種制御を行う。具体的には、制御部103は、基地局20又は他の端末10から受信部101によって受信される各種の設定(configuration)に関する情報(例えば、RRCレイヤのパラメータ)に基づいて、端末10の動作を制御してもよい。当該情報に基づいて端末10が動作することは、「設定情報が端末10に設定されること(configured)」と同義であってもよい。
 制御部103は、受信部101における信号の受信を制御してもよい。また、制御部103は、送信部102における信号の送信を制御してもよい。制御部103は、送信部102によって送信される信号にトランスフォームプリコーダを適用するか否かを決定してもよい。
 本実施形態において、端末10は、所定期間(例えば、PDCCHモニタリング機会)においてサーチスペース(例えば、ページングサーチスペース)を用いて下り制御チャネルをモニタリングして、ページングメッセージを伝送する下り共有チャネルのスケジューリングに用いられる下り制御情報を受信する受信部101と、第1の初期下り帯域幅部分(DL BWP)が設定されるセルC内に第2の初期下り帯域幅部分(DL BWP)が設定されるか否かに基づいて、前記所定期間を決定する制御部103と、を備えてもよい。
 制御部103は、前記第2の初期DL BWPが設定される場合、前記第2の初期DL BWPにおける第2の同期信号ブロック(SSB)の送信、前記第2の初期DL BWPにおける前記サーチスペースの設定、及び、前記端末の能力の少なくとも一つに関する条件が満たされるか否かに基づいて、前記所定期間を決定してもよい。
 制御部103は、前記第2の初期DL BWPが設定され、かつ、前記条件が満たされる場合、前記第2のSSBの送信に関する情報(例えば、additionalSSB-PositionInBurst)及び前記第2の初期DL BWPにおける前記下り制御チャネルの設定に関する情報(例えば、pdcch-ConfigCommonRedCap)の少なくとも一つに基づいて、前記所定期間を決定してもよい。
 制御部103は、前記サーチスペースとして特定のID(例えば、「0」)以外のサーチスペースが設定される場合、前記第2のSSBの送信に関する情報(例えば、additionalSSB-PositionInBurst)及び前記第2の初期DL BWPにおける前記下り制御チャネルの設定に関する情報(例えば、pdcch-ConfigCommonRedCap)の少なくとも一つに基づいて、前記所定期間を決定してもよい。
 制御部103は、前記第2の初期DL BWPが設定され、かつ、前記条件が満たされない場合、前記第1のSSBの送信に関する情報(例えば、SSB-PositionInBurst)及び前記第1の初期DL BWPにおける前記下り制御チャネルの設定に関する情報(例えば、pdcch-ConfigCommon)の少なくとも一つに基づいて、前記所定期間を決定してもよい。
 制御部103は、前記サーチスペースとして特定のID(例えば、「0」)以外のサーチスペースが設定される場合、前記第1のSSBの送信に関する情報(例えば、SSB-PositionInBurst)及び前記第1の初期DL BWPにおける前記下り制御チャネルの設定に関する情報(例えば、pdcch-ConfigCommon)の少なくとも一つに基づいて、前記所定期間を決定してもよい。
 制御部103は、前記第2の初期DL BWPが設定されない場合、前記第1のSSBの送信に関する情報(例えば、SSB-PositionInBurst)及び前記第1の初期DL BWPにおける前記下り制御チャネルの設定に関する情報(例えば、pdcch-ConfigCommon)の少なくとも一つに基づいて、前記所定期間を決定してもよい。
 また、本実施形態において、端末10は、ランダムアクセスプリアンブルを送信する送信部102と、第1の初期下り帯域幅部分(DL BWP)が設定されるセル内に第2の初期下り帯域幅部分(DL BWP)が設定されるか否かに基づいて、前記ランダムアクセスプリアンブル、及び/又は、前記ランダムアクセスプリアンブルの送信に用いられるリソースを選択する制御部103と、を備えてもよい。
 制御部103は、前記第2の初期DL BWPが設定される場合、前記第2の初期DL BWPにおける第2の同期信号ブロック(SSB)の送信、前記第2の初期DL BWPにおけるランダムアクセス用のサーチスペースの設定、前記第2の初期DL BWPにおけるランダムアクセスに関する第2のランダムアクセスパラメータの設定、及び、前記端末の能力の少なくとも一つに関する条件が満たされるか否かに基づいて、前記ランダムアクセスプリアンブル及び/又は前記リソースを選択してもよい。
 制御部103は、前記第2の初期DL BWPが設定され、かつ、前記条件が満たされる場合、前記第2のSSBの送信に関する情報(例えば、additionalSSB-PositionInBurst)、前記第2のランダムアクセスパラメータ(例えば、RACH-ConfigCommonRedCap)、及び、前記第2のSSBの受信電力の少なくとも一つに基づいて、前記ランダムアクセスプリアンブル及び/又は前記リソースを選択してもよい。
 前記第2のランダムアクセスパラメータは、前記第2のSSBと前記リソース及び/又は前記ランダムアクセスプリアンブルとの関連付けに関する情報(例えば、ssb-perRACH-OccasionAndCB-preamblesPerSSB)、及び、前記第2のSSBの受信電力の閾値に関する情報(例えば、RSRP-ThresholdSSB)の少なくとも一つを含んでもよい。
 制御部103は、前記第2の初期DL BWPが設定され、かつ、前記条件が満たされない場合、前記第1の初期DL BWPにおける第1の同期信号ブロック(SSB)の送信に関する情報(例えば、ssb-PositionsInBurst)、前記第1の初期DL BWPにおけるランダムアクセスに関する第1のランダムアクセスパラメータ(例えば、Rach-ConfigCommon)、及び、前記第1のSSBの受信電力の少なくとも一つに基づいて、前記ランダムアクセスプリアンブル及び/又は前記リソースを選択してもよい。
 制御部103は、前記第2の初期DL BWPが設定されない場合、前記第1の初期DL BWPにおける第1の同期信号ブロック(SSB)の送信に関する情報(例えば、ssb-PositionsInBurst)、前記第1の初期DL BWPにおけるランダムアクセスに関する第1のランダムアクセスパラメータ(例えば、Rach-ConfigCommon)、及び、前記第1のSSBの受信電力の少なくとも一つに基づいて、前記ランダムアクセスプリアンブル及び/又は前記リソースを選択してもよい。
 前記第1のランダムアクセスパラメータは、前記第1のSSBと前記リソース及び/又は前記ランダムアクセスプリアンブルとの関連付けに関する情報(例えば、ssb-perRACH-OccasionAndCB-preamblesPerSSB)、及び、前記第1のSSBの受信電力の閾値に関する情報(例えば、RSRP-ThresholdSSB)の少なくとも一つを含んでもよい。
 本実施形態において、端末10は、マスター情報ブロック(MIB)を受信する受信部101と、第1の初期下り帯域幅部分(DL BWP)が設定されるセル内に第2の初期下り帯域幅部分(DL BWP)が設定されるか否かに基づいて、前記MIB内の特定のパラメータに基づく動作を制御する制御部103と、を備えてもよい。
 制御部103は、前記第2の初期DL BWPが設定される場合、前記第2の初期DL BWPにおける第2の同期信号ブロック(SSB)の送信、前記第2の初期DL BWPにおけるページング用のサーチスペースの設定、前記第2の初期DL BWPにおけるランダムアクセス用のサーチスペースの設定、及び、前記端末の能力の少なくとも一つに関する条件が満たされるか否かに基づいて、前記特定のパラメータを無視する、又は、前記特定のパラメータが送信されないと想定してもよい。
 制御部103は、前記第2の初期DL BWPが設定され、かつ、前記条件が満たされる場合、前記第2のSSBに含まれる報知チャネルを介して受信された前記MIB内の前記特定のパラメータを無視する、又は、前記特定のパラメータが送信されないと想定してもよい。
 前記特定のパラメータは、セルが禁止されるか否かに関する情報(例えば、cellBarred)、同周波数セルの選択及び/又は再選択に関する情報(例えば、intraFreqReselection)、及び、前記第2のSSBとリソースブロックグリッドとの間の周波数領域オフセットに関する情報(例えば、ssb-SubcarrierOffset)の少なくとも一つを含んでもよい。
 制御部103は、前記第2の初期DL BWPが設定される場合、前記特定のパラメータの値に関係なく、特定の意味に解釈してもよい。前記特定のパラメータは、セルが禁止されるか否かに関する情報(例えば、cellBarred)を含み、制御部103は、前記情報が示す値に関係なく、前記セルが禁止されないと解釈してもよい。
 ≪基地局≫
 図21は、本実施形態に係る基地局の機能ブロック構成の一例を示す図である。図21に示すように、基地局20は、受信部201と、送信部202と、制御部203と、を備える。図21に示す機能構成は一例にすぎず、本実施形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。また、受信部201と送信部202とをまとめて通信部と称してもよい。
 なお、受信部201と送信部202とが実現する機能の全部又は一部は、通信装置13を用いて実現することができる。また、受信部201と送信部202とが実現する機能の全部又は一部と、制御部203とは、プロセッサ11が、記憶装置12に記憶されたプログラムを実行することにより実現することができる。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。
 受信部201は、信号(例えば、UL信号及び/又はサイドリンク信号)を受信する。また、受信部201は、当該信号を介して伝送された情報及び/又はデータ(例えば、上記ULデータ)を受信してもよい。
 送信部202は、信号(例えば、DL信号及び/又はサイドリンク信号)を送信する。また、送信部202は、当該信号を介して伝送される情報及び/又はデータ(例えば、上記DLデータ)を送信してもよい。なお、送信部202から送信される一部の情報は、コアネットワーク装置内の送信部によって送信されてもよい。
 制御部203は、端末10との通信のための各種制御を行う。具体的には、制御部203は、端末10に通知される各種の設定に関する情報を決定してもよい。当該情報を端末10に送信することは、「当該情報が端末に設定されること」と同義であってもよい。
 制御部203は、受信部201における信号の受信を制御してもよい。また、制御部203は、送信部202における信号の送信を制御してもよい。
 本実施形態において、基地局20は、所定期間(例えば、PDCCHモニタリング機会)においてサーチスペース(例えば、ページングサーチスペース)を用いて下り制御チャネルをモニタリングして、ページングメッセージを伝送する下り共有チャネルのスケジューリングに用いられる下り制御情報を送信する送信部202と、第1の初期下り帯域幅部分(DL BWP)が設定されるセルC内に第2の初期下り帯域幅部分(DL BWP)が設定されるか否かに基づいて、前記所定期間を決定する制御部203と、を備えてもよい。
 また、本実施形態において、基地局20は、ランダムアクセスプリアンブルを受信する受信部201と、前記ランダムアクセスプリアンブル及び/又は前記ランダムアクセスプリアンブルの受信に用いられるリソースに基づいて、DL信号の送信及び/又はUL信号の受信を制御する制御部203とを備えてもよい。
 制御部203は、前記ランダムアクセスプリアンブル及び/又は前記ランダムアクセスプリアンブルに関連付けられる同期信号ブロック(SSB)に基づいて、端末10に対する疑似コロケーション(QCL)関係を推定してもよい。制御部203は、前記SSBと同一のビームを用いて、DL信号の送信及び/又はUL信号の受信を制御してもよい。
 本実施形態において、基地局20は、マスター情報ブロック(MIB)を送信する送信部202と、第1の初期下り帯域幅部分(DL BWP)が設定されるセル内に第2の初期下り帯域幅部分(DL BWP)が設定されるか否かに基づいて、前記MIB内の特定のパラメータの送信を制御する制御部203と、を備えてもよい。
 制御部203は、前記第2の初期DL BWPが設定される場合、前記第2の初期DL BWPにおける第2の同期信号ブロック(SSB)の送信、前記第2の初期DL BWPにおけるページング用のサーチスペースの設定、前記第2の初期DL BWPにおけるランダムアクセス用のサーチスペースの設定、及び、前記端末の能力の少なくとも一つに関する条件が満たされるか否かに基づいて、前記第2のSSBに含まれる報知チャネルを介した前記MIB内の前記特定のパラメータの送信を中止してもよい。
 制御部203は、前記第2の初期DL BWPが設定され、かつ、前記条件が満たされる場合、前記第2のSSBに含まれる報知チャネルを介した前記MIB内の前記特定のパラメータの送信を中止してもよい。
 (補足)
 上記実施形態における各種の信号、情報、パラメータは、どのようなレイヤでシグナリングされてもよい。すなわち、上記各種の信号、情報、パラメータは、上位レイヤ(例えば、NASレイヤ、RRCレイヤ、MACレイヤ等)、下位レイヤ(例えば、物理レイヤ)等のどのレイヤの信号、情報、パラメータに置き換えられてもよい。また、所定情報の通知は明示的に行うものに限られず、黙示的に(例えば、情報を通知しないことや他の情報を用いることによって)行われてもよい。
 また、上記実施形態における各種の信号、情報、パラメータ、IE、チャネル、時間単位及び周波数単位の名称は、例示にすぎず、他の名称に置き換えられてもよい。例えば、スロットは、所定数のシンボルを有する時間単位であれば、どのような名称であってもよい。また、RBは、所定数のサブキャリアを有する周波数単位であれば、どのような名称であってもよい。また、「第1の~」、「第2の~」は、複数の情報又は信号の単なる識別にすぎず、適宜順番が入れ替えられてもよい。
 例えば、上記本実施形態では、DLデータを伝送する物理チャネル、ULデータを伝送する物理チャネル、DCIを伝送する物理チャネル、報知情報を伝送する物理チャネル及びRAプリアンブルを伝送する物理チャネルの一例として、それぞれ、PDSCH、PUSCH、PDCCH、PBCH及びPRACH等を例示するが、同様の機能を有する物理チャネルであれば、名称はこれらに限られない。また、これらの物理チャネルは、物理チャネルがマッピングされるトランスポートチャネルに言い換えられてもよい。また、PDSCH、PUSCH、PDCCH、PBCH及びPRACH等は、それぞれ、物理チャネルにマッピングされるトランスポートチャネル(例えば、下り共有チャネル(Downlink Shared Channel:DL-SCH)、上り共有チャネル(Uplink Shared Channel:UL-SCH)、報知チャネル(Broadcast Channel:BCH及びランダムアクセスチャネル(Random Access Channel:RCH)の少なくとも一つ)等と言い換えられてもよい。また、これらのトランスポートチャネルは、トランスポートチャネルがマッピングされる論理チャネルに言い換えられてもよい。また、DLデータ及びULデータは、それぞれ、下りリンク及び上りリンクのデータであり、当該データはユーザデータ及び上位レイヤの制御情報(例えば、RRCパラメータ、媒体アクセス制御(Medium Access Control:MAC)パラメータ等)を含んでもよい。
 また、上記実施形態における端末10の用途(例えば、RedCap、IoT向け等)は、例示するものに限られず、同様の機能を有する限り、どのような用途(例えば、eMBB、URLLC、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)等)で利用されてもよい。また、各種情報の形式は、上記実施形態に限られず、ビット表現(0又は1)、真偽値(Boolean:true又はfalse)、整数値、文字等適宜変更されてもよい。また、上記実施形態における単数、複数は相互に変更されてもよい。
 以上説明した実施形態は、本開示の理解を容易にするためのものであり、本開示を限定して解釈するためのものではない。実施形態で説明したフローチャート、シーケンス、実施形態が備える各要素並びにその配置、インデックス、条件等は、例示したものに限定されるわけではなく適宜変更することができる。また、上記実施形態で説明した少なくとも一部の構成を部分的に置換し又は組み合わせることが可能である。

Claims (16)

  1.  無線リソース制御メッセージに含まれる第1の同期信号及び物理報知チャネル(SS/PBCH)ブロックの送信に関する情報に基づいて、第1のSS/PBCHブロックを受信し、
     前記無線リソース制御メッセージに第2のSS/PBCHブロックの送信に関する情報が含まれる場合、当該第2のSS/PBCHブロックの送信に関する情報に基づいて、前記第2のSS/PBCHブロックを受信する受信部と、
     前記第2のSS/PBCHブロックを前記受信部により受信した場合、当該第2のSS/PBCHブロックに基づいて、衝突フリーランダムアクセス手順におけるランダムアクセス機会を選択する制御部と、を備える
     端末。
  2.  前記第2のSS/PBCHブロックの送信に関する情報は、前記第2のSS/PBCHブロックの周波数に関する情報を含む
     請求項1に記載の端末。
  3.  前記第1のSS/PBCHブロックはセルデファイニングSS/PBCHブロックであり、前記第2のSS/PBCHブロックは非セルデファイニングSS/PBCHブロックである
     請求項1又は請求項2に記載の端末。
  4.  前記受信部は、前記第2のSS/PBCHブロックを、RedCap端末向けの初期下りリンク帯域幅部分において受信する
     請求項1から請求項3のいずれかに記載の端末。
  5.  無線リソース制御メッセージを送信し、
     前記無線リソース制御メッセージに含めた第1の同期信号及び物理報知チャネル(SS/PBCH)ブロックの送信に関する情報に基づいて、第1のSS/PBCHブロックを送信し、
     前記無線リソース制御メッセージに含めた第2のSS/PBCHブロックの送信に関する情報に基づいて、前記第2のSS/PBCHブロックを送信する送信部と、
     前記第2のSS/PBCHブロックを送信する場合に、当該第2のSS/PBCHブロックに基づいて、衝突フリーランダムアクセス手順におけるランダムアクセス機会を選択する制御部と、を備える
     基地局。
  6.  前記第2のSS/PBCHブロックの送信に関する情報は、前記第2のSS/PBCHブロックの周波数に関する情報を含む
     請求項5に記載の基地局。
  7.  前記第1のSS/PBCHブロックはセルデファイニングSS/PBCHブロックであり、前記第2のSS/PBCHブロックは非セルデファイニングSS/PBCHブロックである
     請求項5又は請求項6に記載の基地局。
  8.  前記送信部は、前記第2のSS/PBCHブロックを、RedCap端末向けの初期下りリンク帯域幅部分において送信する
     請求項5から請求項7のいずれかに記載の基地局。
  9.  無線リソース制御メッセージに含まれる第1の同期信号及び物理報知チャネル(SS/PBCH)ブロックの送信に関する情報に基づいて、第1のSS/PBCHブロックを受信し、
     前記無線リソース制御メッセージに第2のSS/PBCHブロックの送信に関する情報が含まれる場合、当該第2のSS/PBCHブロックの送信に関する情報に基づいて、前記第2のSS/PBCHブロックを受信し、
     前記第2のSS/PBCHブロックを受信した場合、当該第2のSS/PBCHブロックに基づいて、衝突フリーランダムアクセス手順におけるランダムアクセス機会を選択する
     端末の無線通信方法。
  10.  前記第2のSS/PBCHブロックの送信に関する情報は、前記第2のSS/PBCHブロックの周波数に関する情報を含む
     請求項9に記載の端末の無線通信方法。
  11.  前記第1のSS/PBCHブロックはセルデファイニングSS/PBCHブロックであり、前記第2のSS/PBCHブロックは非セルデファイニングSS/PBCHブロックである
     請求項9又は請求項10に記載の端末の無線通信方法。
  12.  前記端末は、前記第2のSS/PBCHブロックを、RedCap端末向けの初期下りリンク帯域幅部分において受信する
     請求項9から請求項11のいずれかに記載の端末の無線通信方法。
  13.  無線リソース制御メッセージを送信し、
     前記無線リソース制御メッセージに含まれる第1の同期信号及び物理報知チャネル(SS/PBCH)ブロックの送信に関する情報に基づいて、第1のSS/PBCHブロックを送信し、
     前記無線リソース制御メッセージに含まれる第2のSS/PBCHブロックの送信に関する情報に基づいて、前記第2のSS/PBCHブロックを送信し、
     前記第2のSS/PBCHブロックを送信した場合、当該第2のSS/PBCHブロックに基づいて、衝突フリーランダムアクセス手順におけるランダムアクセス機会を選択する
     基地局の無線通信方法。
  14.  前記第2のSS/PBCHブロックの送信に関する情報は、前記第2のSS/PBCHブロックの周波数に関する情報を含む
     請求項13に記載の基地局の無線通信方法。
  15.  前記第1のSS/PBCHブロックはセルデファイニングSS/PBCHブロックであり、前記第2のSS/PBCHブロックは非セルデファイニングSS/PBCHブロックである
     請求項13又は請求項14に記載の無線通信方法。
  16.  前記基地局は、前記第2のSS/PBCHブロックを、RedCap端末向けの初期下りリンク帯域幅部分において送信する
     請求項13から請求項15のいずれかに記載の無線通信方法。
PCT/JP2022/036745 2021-09-30 2022-09-30 端末、基地局、及び無線通信方法 WO2023054685A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280062454.4A CN117957906A (zh) 2021-09-30 2022-09-30 终端、基站以及无线通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-162297 2021-09-30
JP2021162297 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054685A1 true WO2023054685A1 (ja) 2023-04-06

Family

ID=85783009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036745 WO2023054685A1 (ja) 2021-09-30 2022-09-30 端末、基地局、及び無線通信方法

Country Status (2)

Country Link
CN (1) CN117957906A (ja)
WO (1) WO2023054685A1 (ja)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MODERATOR (ERICSSON): "FL summary #5 on reduced maximum UE bandwidth for RedCap", 3GPP DRAFT; R1-2108497, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 26 August 2021 (2021-08-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052042783 *
NORDIC SEMICONDUCTOR ASA: "On aspects related to reduced maximum UE BW", 3GPP DRAFT; R1-2107040, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 6 August 2021 (2021-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052033370 *

Also Published As

Publication number Publication date
CN117957906A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
RU2731677C1 (ru) Способ конфигурирования формы сигнала передачи восходящей линии связи, базовая станция и пользовательское оборудование
KR102624966B1 (ko) 비면허 스펙트럼에서의 rach 절차
JP7010933B2 (ja) 無線通信システムにおいてリソースを選択しpscchを伝送する方法及び装置
KR102401700B1 (ko) 빔포밍 시스템의 새로운 무선 랜 액세스
CN110621068B (zh) 一种寻呼方法和装置
US10064064B2 (en) LTE-U communication devices and methods for aperiodic beacon and reference signal transmission
EP2868142B1 (en) Sounding reference signal (srs) mechanism for intracell device-to-device (d2d) communication
US11889490B2 (en) Data and control channels in synchronization bursts for millimeter wave new radio
US20190037606A1 (en) User terminal, radio base station and radio communication method
US20180132273A1 (en) Random access response message transmission
JP2019537896A (ja) ピーク対平均電力比低減のための同期信号送信技法
US10419185B2 (en) System and method for listen before talk-based random access with partial subframes
EP3780858A1 (en) User device
US20160135056A1 (en) Device of Handling Measurement Signal on Unlicensed Carrier
US20160135145A1 (en) Telecommunications apparatus and method relating to a random access procedure
JP6348997B2 (ja) 免許不要帯域における空きチャネル判定及び伝送を扱うための装置
US11291044B2 (en) Apparatuses and methods for preamble sequence management for contention based access
WO2023054685A1 (ja) 端末、基地局、及び無線通信方法
WO2023054684A1 (ja) 端末、基地局、及び無線通信方法
WO2023054686A1 (ja) 端末、基地局、及び無線通信方法
WO2017170774A1 (ja) ユーザ装置、基地局、及び報知情報受信方法
CN114175777A (zh) 通信方法、设备及其计算机可读介质
WO2023153340A1 (ja) 端末、基地局及び無線通信方法
WO2023132325A1 (ja) 端末、基地局及び通信方法
US11864246B2 (en) Method and apparatus for random access

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876547

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551908

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024005727

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022876547

Country of ref document: EP

Effective date: 20240430