WO2023054335A1 - Power supply facility - Google Patents

Power supply facility Download PDF

Info

Publication number
WO2023054335A1
WO2023054335A1 PCT/JP2022/035884 JP2022035884W WO2023054335A1 WO 2023054335 A1 WO2023054335 A1 WO 2023054335A1 JP 2022035884 W JP2022035884 W JP 2022035884W WO 2023054335 A1 WO2023054335 A1 WO 2023054335A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
power line
power supply
supply facility
Prior art date
Application number
PCT/JP2022/035884
Other languages
French (fr)
Japanese (ja)
Inventor
直充 吉田
玲彦 叶田
輝 菊池
尊衛 嶋田
一正 井出
拓也 石川
Original Assignee
株式会社日立パワーソリューションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立パワーソリューションズ filed Critical 株式会社日立パワーソリューションズ
Publication of WO2023054335A1 publication Critical patent/WO2023054335A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power supply facility that stably supplies power generated by a renewable energy power generation device to a load.
  • Patent Document 1 is known as a power supply facility that stably supplies power generated by a renewable energy power generation device to a load.
  • Patent Document 1 states, "The power control device includes a control unit configured to be able to control a bidirectional inverter connected between the AC side and the DC side, and the control unit controls the power generated by the renewable energy power generation device.
  • a power control device for causing a bidirectional inverter to perform a charging operation or a discharging operation.
  • a bidirectional inverter performs a charging operation or a discharging operation based on a target charge amount of a power storage device assumed from each predicted value of the power generation amount of a renewable energy power generation apparatus and the power consumption amount of a load.
  • the storage battery can be used effectively, but when the predicted value and the actual power deviate due to a sudden change in the generated power due to weather changes or a sudden change in the load, the voltage value of the DC connection is set to a predetermined value or within a predetermined range.
  • the voltage value of the DC connection may deviate from a predetermined value or a predetermined range, and if the voltage value deviates from the predetermined range, failure of equipment connected to the DC power line is caused.
  • a first conversion device that is arranged between an AC power line and a DC power line and performs power conversion
  • a second conversion device that is arranged between the DC power line and a storage battery and performs power conversion
  • a third conversion device disposed between a DC power line and a renewable energy power source to perform power conversion
  • the first conversion device converts the voltage of the DC power line to a first voltage
  • the second converter sets a second voltage in which the first converter cannot control the voltage of the DC power line to the first voltage and the voltage of the DC power line is set higher than the first voltage
  • a power supply facility characterized by controlling the voltage of a DC power line to a second voltage when the voltage is exceeded.
  • a first conversion device that is arranged between an AC power line and a DC power line and performs power conversion
  • a second conversion device that is arranged between the DC power line and a storage battery and performs power conversion
  • a third conversion device arranged between the DC power line and the renewable energy power source to perform power conversion
  • a power supply that gives a control command to the first conversion device, the second conversion device, and the third conversion device.
  • a power supply facility including a facility control unit, wherein the power supply facility control unit transmits a maximum power conversion capacity command as a control command to the first conversion device, and the first conversion device transmits the maximum power conversion capacity command
  • a power supply facility characterized by controlling the voltage of a DC power line to a first voltage within the power capacity designated by a command.
  • a first conversion device that is arranged between an AC power line and a DC power line and performs power conversion
  • a second conversion device that is arranged between the DC power line and a storage battery and performs power conversion
  • a power supply facility including a third conversion device that is arranged between a DC power line and a renewable energy power source and performs power conversion, wherein the first conversion device, the second conversion device, and the third conversion device and a power supply facility control unit that gives a control command, and is provided in each of the first conversion device, the second conversion device, and the third conversion device, and the voltage of the DC power line is the first voltage, the second voltage
  • a power supply comprising: a voltage regulator for controlling each voltage to a third voltage, wherein the voltage regulator controls the voltage of the DC power line to any one of the first voltage, the second voltage, and the third voltage. equipment.
  • each DC device in the power supply facility can actively switch control by referring to the voltage value of the DC power line without using an external command, thereby stably supplying DC power.
  • FIG. 4 is a diagram showing control example 1 of the power of each part and the voltage VD of the DC power line when the present invention is applied.
  • FIG. 4 is a diagram showing control example 2 of the power of each part and the voltage VD of the DC power line when the present invention is applied.
  • FIG. 10 is a diagram showing control example 3 of the power of each part and the voltage VD of the DC power line when the present invention is applied.
  • FIG. 10 is a diagram showing control example 4 of the power of each part and the voltage VD of the DC power line when the present invention is applied.
  • FIG. 10 is a diagram showing control example 5 of the power of each part and the voltage VD of the DC power line when the present invention is applied.
  • FIG. 1 shows a configuration example of a power supply facility according to Embodiment 1 of the present invention.
  • the power supply facility 1 includes a solar cell 2 , a first DC/DC converter 3 , a power storage device 4 , an AC/DC inverter 5 , a DC power line 6 , and a power supply facility controller 7 .
  • a solar cell 2 is connected to a first DC/DC converter 3 .
  • a DC power line 6 connects the output end of the first DC/DC converter 3, the power storage device 4, and the DC output end of the AC/DC inverter 5 in parallel.
  • An AC output terminal of the AC/DC inverter 5 is connected to a distribution line 8 connected to an AC power supply 9, and the AC/DC inverter 5 is capable of bi-directional power conversion.
  • An AC load 10 is connected to the distribution line 8 .
  • the power storage device 4 is composed of a storage battery 41 and a DC/DC converter 42 .
  • the DC/DC converter 42 is a bidirectional power conversion circuit, and can charge and discharge the storage battery 41 under the control of the DC/DC converter 42 .
  • the storage battery 41 is, for example, a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
  • the power storage device 4 may be a stationary facility, or the storage battery 41 may be an electric vehicle such as an electric vehicle, and the DC/DC converter 42 may be a stationary charger/discharger.
  • the solar cell 2 may generally be a renewable energy power source such as photovoltaic power generation or wind power generation, and the case of photovoltaic power generation is shown here.
  • the wind power generation itself outputs alternating current, so the first DC/DC converter 3 is configured as an AC/DC inverter.
  • the present invention can be applied to any of the above renewable energy power sources.
  • the power supply facility 1 includes a first conversion device (AC/DC inverter 5) that is arranged between the AC power line 8 and the DC power line 6 to perform power conversion, the DC power line 6 and the storage battery 4 A second conversion device (DC/DC converter 42) that is placed between the DC power line 6 and the renewable energy power supply 2 to perform power conversion, and a third conversion device (the third 1 DC/DC converter 3).
  • a first conversion device AC/DC inverter 5
  • DC/DC converter 42 DC/DC converter 42
  • the third conversion device the third 1 DC/DC converter 3
  • the power supply facility control unit 7 As a control function for controlling this, the power supply facility control unit 7 and the voltage adjustment units 5V, 3V, and 4V arranged for each of the individual converters 3, 42, and 5 It has two types of control by The voltage regulators 5V, 3V and 4V may have their functions in control circuits (not shown) of the converters 3, 42 and 5, respectively.
  • the power supply facility control unit 7 performs long-cycle control in units of several seconds or minutes on the three sets of converters 3, 42, and 5 described above. , 42 and 5 are provided for short-cycle control. Short-cycle control is performed in a shorter cycle than long-cycle control.
  • the power supply facility control unit 7 operates as an EMS (Energy Management System). That is, the power received from the AC power supply 9, the power consumption of the load 10, the power generated by the solar cell 2, the SOC (State of Charge) of the storage battery 41, etc. are measured (not shown), and the rated power of each device and the solar power
  • the power flow in the power supply facility 1 is determined from the viewpoint of the predicted power generation of the battery 2, the predicted power consumption of the load 10, the SOC of the storage battery 41, and life/deterioration management.
  • a charge/discharge power command or a charge/discharge current command, a charge/discharge power upper/lower limit value or a charge/discharge current upper/lower limit value, and an SOC upper/lower limit value are commanded to the power storage device 4 as control commands.
  • the power supply facility control unit 7 instructs the first DC/DC converter 3, the power storage device 4, and the AC/DC inverter 5 to start and stop operations as control commands.
  • the first DC/DC converter 3 performs maximum power point tracking (MPPT) control on the power generated by the connected solar cell 2 and outputs it to the DC power line 6 .
  • MPPT maximum power point tracking
  • the power storage device 4 performs charging/discharging power or charging/discharging current control in accordance with a command from the power supply facility control unit 7 .
  • the voltage VD of the DC power line 6 is detected and detected. They are controlled to respective set voltage values VD1, VD2 or VD4, VD3.
  • a voltage value VD1 is set in the voltage adjustment section 5V of the AC/DC inverter 5
  • voltage values VD2 and VD4 are set in the voltage adjustment section 4V of the DC/DC converter 42
  • the voltage of the first DC/DC converter 3 A voltage value VD3 is set in the adjusting section 3V.
  • the magnitude relationship of each voltage value is voltage value VD3>voltage value VD2>voltage value VD1.
  • VD1 when the voltage VD of the DC power line 6 rises, it is controlled to the voltage value VD2 by the control by the voltage adjustment unit 4V of the DC/DC converter 42, and when the voltage VD of the DC power line 6 further rises, the 1 is controlled by the voltage adjustment unit 3V of the DC/DC converter 3 of 1 to the voltage value VD3.
  • the voltage value VD4 will be described later.
  • the voltage control itself is continued.
  • the AC/DC inverter 5 always tries to control the voltage to VD1, but the conversion power reaches the upper limit, resulting in P3+P4>P5, and the voltage rises without being controlled to VD1.
  • the power storage device starts voltage control to VD2, but the AC/DC inverter 5 continues the control operation (control to VD1). This also applies to power storage device 4 .
  • the three sets of converters 3, 42, and 5 control the DC power line 6 within the range of control commands related to various long-cycle restrictions set by the power supply facility control unit 7.
  • Three sets of converters 3, 42, 5 will perform the voltage control.
  • this sharing control is executed as follows according to the operation status of the power supply facility 1.
  • AC/DC inverter 5 controls voltage VD of DC power line 6 to voltage value VD1.
  • the voltage value VD1 is, for example, 350V.
  • AC/DC inverter 5 controls AC output power P5 so that voltage VD of DC power line 6 is controlled to voltage value VD1.
  • the first voltage VD1 is the maximum value of the voltage range common to the input voltage ranges of the AC/DC inverter 5, the first DC/DC converter 3, and the power storage device 4 connected to the DC voltage line 6. , the voltage except for the minimum value.
  • the AC/DC inverter 5 When the voltage VD of the DC power line 6 is higher than the voltage value VD1, the AC/DC inverter 5 outputs AC power to the distribution line 8 side and feeds it to the load 10 to increase the voltage VD of the DC power line 6 to the voltage value VD1. lower to When the voltage VD of the DC power line 6 is lower than the voltage value VD1, the AC/DC inverter 5 receives the power of the AC power supply 9 from the distribution line 8 side, and supplies the power to the power storage device 4, whereby the DC power line 6 is increased to a voltage value VD1.
  • the AC/DC inverter 5 can control the voltage VD of the DC power line 6 to the voltage value VD1 by controlling the converted power.
  • power conversion from the DC side to the AC side is positive, and power conversion from the AC side to the DC side is negative.
  • the power that the AC/DC inverter 5 can convert is limited by the rated power.
  • the power supply facility control unit 7 manages the reverse flow power to the AC power supply 9 and the received power
  • the AC/DC inverter 5 is commanded by the power supply facility control unit 7 for the upper and lower limits of the converted power. Therefore, the upper limit of the converted power of the AC/DC inverter 5 is the minimum value of the rated power of the AC/DC inverter 5 and the upper limit of the converted power commanded from the power supply facility control unit 7.
  • the lower limit of the power is the maximum value of the rated power of the AC/DC inverter 5 ⁇ ( ⁇ 1) and the lower limit of the converted power commanded from the power supply facility control unit 7 .
  • the AC/DC inverter 5 may not be able to control the voltage VD of the DC power line 6 to the voltage value VD1.
  • FIG. 2 shows control example 1 of the power of each part and the voltage VD of the DC power line when the present invention is applied.
  • the output power P3 of the first DC/DC converter 3, the discharge power P4 of the power storage device 4, and the AC output power P5 of the AC/DC inverter 5 are used as the power for each part of the power supply facility 1, as shown in FIG. listed above.
  • the converted power P5 of the AC/DC inverter 5 has a positive output to the AC side and a negative input (power reception) from the AC side.
  • the charge/discharge power P4 of the power storage device 4 is positive when discharged and negative when charged. Assume that the output P3 of the first DC/DC converter 3 is positive.
  • FIG. 2 shows the relationship between the time change of the voltage VD of the DC power line and the voltage values VD1, VD2, and VD3 set for each of the three sets.
  • the control cycle of the power supply facility control unit 7 is T, and after giving a command at time 0, it shows that a command is given again at time T.
  • the times T1 to T6 written within the period T are the times when various events occur in the three sets of converters 3, 42, and 5 in the power supply facility 1.
  • the upper limit of the converted power of the AC/DC inverter 5 is set to 50 kW (at time 0, the converted power P5 is 40 kW) by a command from the power supply facility control unit 7, and the power storage device 4
  • the charge/discharge power upper limit is set to 20 kW
  • the charge/discharge power lower limit is set to -20 kW.
  • the power storage device 4 is discharged at 20 kW in order to supply power to the load 10 .
  • the output of the first DC/DC converter 3 is assumed to be 20 kW.
  • the total of the output P3 (20 kW) of the first DC/DC converter 3 and the discharged power P4 (20 kW) of the power storage device 4 is 40 kW, which is less than the upper limit of the converted power P5 of the AC/DC inverter 5.
  • the AC/DC inverter 5 can control the voltage VD of the DC power line 6 to the voltage value VD1 by converting the power by 40 kW.
  • the AC/DC inverter 5 increases the converted power P5 to bring the voltage VD of the DC power line 6 to the first level. Control to voltage VD1.
  • the output power P3 of the first DC/DC converter 3 becomes 30 kW, and the converted power P5 of the AC/DC inverter 5 reaches the upper limit value of 50 kW.
  • the power storage device 4 performs voltage control with the second voltage VD2 as the target value.
  • the power storage device 4 performs voltage control within a control range that complies with a discharge power equal to or higher than the charge/discharge power lower limit commanded by the power supply equipment control unit 7 or a discharge current equal to or higher than the charge/discharge current lower limit commanded. do.
  • a discharge power equal to or higher than the charge/discharge power lower limit commanded by the power supply equipment control unit 7 or a discharge current equal to or higher than the charge/discharge current lower limit commanded. do.
  • -20 kW is commanded as the charge/discharge power lower limit.
  • the upper limit value of the discharge power or discharge current is the minimum value between the instructed charge/discharge power upper limit value and 0 kW, or the minimum value between the instructed charge/discharge current upper limit value and 0 A.
  • voltage control is executed only when the SOC of the storage battery 41 is less than the SOC upper limit commanded by the power supply facility control unit 7 . This operation prevents overvoltage from being applied to equipment connected to the DC power line 6 .
  • the power storage device 4 executes voltage control with the second voltage as a target value by decreasing the discharging power and increasing the charging power.
  • the discharged power of the power storage device 4 reaches -20 kW (charged power of 20 kW).
  • the power storage device 4 cannot increase the charging power. It further increases, and at time T4, it reaches a third voltage VD3 (for example, 390 V) that is higher than the second voltage VD2 and lower than the maximum DC voltage.
  • the maximum DC voltage is the input voltage upper limit value of the device with the lowest withstand voltage among the AC/DC inverter 5, the first DC/DC converter 3, and the power storage device 4 connected to the DC voltage line 6.
  • the relationship between the second voltage VD2 and the third voltage VD3 is set such that the third voltage VD3 is higher than the second voltage VD2.
  • control switching of the first DC/DC converter 3 is performed after control switching of the power storage device 4 .
  • the first DC/DC converter 3 switches from MPPT control to voltage control, and as a result, the means for suppressing photovoltaic power generation can be used as a final means, and power generation by the solar cell 2 can be continued as much as possible.
  • the power storage device 4 switches the control to charge the battery. Power generation by the solar cell 2 is suppressed before the power is increased, and the power generation capacity of the solar cell 2 is wasted.
  • the voltage VD of the DC power line 6 drops below the third voltage VD3 at time T5.
  • the first DC/DC converter 3 terminates the voltage control of the DC power line 6 and restarts the MPPT control. Note that the power storage device 4 continues to control the voltage VD of the DC power line 6 to the second voltage.
  • the power storage device 4 terminates the voltage control of the DC power line 6 and restarts the charge/discharge power control instructed by the power supply equipment control unit 7 .
  • the voltage VD of the DC power line 6 is controlled to the first voltage VD1 by voltage control of the AC/DC inverter.
  • the voltage VD of the DC power line 6 is the first voltage VD1.
  • the upper limit of the converted power of the AC/DC inverter 5 is updated to the minimum value of the rated power of the AC/DC inverter 5 and the upper limit of the converted power received from the power supply facility control unit 7 at time T.
  • the lower limit of the converted power of the AC/DC inverter 5 is the maximum value of the rated power of the AC/DC inverter 5 ⁇ ( ⁇ 1) and the lower limit of the converted power commanded from the power supply facility control unit 7 .
  • Power storage device 4 operates according to the charge/discharge power command or the charge/discharge current command received from power supply facility control unit 7 at time T.
  • the power after time T in FIG. 2 shows the case where the upper limit of the converted power of AC/DC inverter 5 is updated to 50 kW, and power storage device 4 discharges with the new charge/discharge power command value of 10 kW.
  • FIG. 3 shows control example 2 of the power of each part and the voltage VD of the DC power line when the present invention is applied. Since the process up to time T5 is the same as control case 1 shown in FIG. 2, the description is omitted.
  • the first DC/DC converter 3 performs MPPT control, and the power storage device 4 controls the voltage VD of the DC power line 6 to the second voltage. In this embodiment, it is assumed that the power storage device 4 is operating with a discharge power of 5 kW.
  • AC/DC inverter 5 and power storage device 4 receive a new command from power supply equipment control unit 7 at time T when voltage VD of DC power line 6 is greater than or equal to second voltage VD2 and less than third voltage VD3 , the upper limit of the converted power of the AC/DC inverter 5 is the minimum of the rated power of the AC/DC inverter 5 and the upper limit of the converted power received from the power supply facility control unit 7 at time T, as described in FIG. value. Assume that at time T in FIG. 3, the upper limit of the converted power of the AC/DC inverter 5 is updated to 50 kW.
  • the power storage device 4 updates the charge/discharge power upper/lower limit value, the charge/discharge current upper/lower limit value, and the SOC upper/lower limit value to the new values received from the power supply facility control unit 7 .
  • the power storage device 4 stores the charge/discharge power command or charge/discharge current command (referred to as a command value in the present embodiment) received from the power supply facility control unit 7 at time T, and the actual charge/discharge power at time T or The charge/discharge current (referred to as the actual value in this embodiment) is compared with the power and current in the discharge direction as positive.
  • command value is smaller than the actual value
  • power storage device 4 terminates voltage control of DC power line 6 and performs charge/discharge power control according to the command value. If the command value is greater than the actual value, voltage control of the DC power line 6 is continued. However, the command value received at time T is retained and used as a command value from power supply equipment control unit 7 when power storage device 4 terminates voltage control of DC power line 6 and restarts charge/discharge power control.
  • the discharge power of the power storage device 4 immediately before time T is 5 kW.
  • the command value is ⁇ 10 kW, which is smaller than the actual value of 5 kW. terminates the voltage control of the DC power line 6 and implements the discharge power control according to the command value -10 kW.
  • the voltage VD of the DC power line 6 is controlled to the first voltage VD1 by voltage control of the AC/DC inverter.
  • FIG. 4 shows control example 3 of the power of each part and the voltage VD of the DC power line when the present invention is applied. Since the process up to time T4 is the same as control case 1 shown in FIG. 2, the description is omitted.
  • the first DC/DC converter 3 controls the voltage VD of the DC power line 6 to the third voltage VD3. It is assumed that the power storage device 4 operates with a discharge power of -20 kW (a charge power of 20 kW).
  • the AC/DC inverter 5 When time T arrives when the voltage VD of the DC power line 6 is equal to or higher than the third voltage VD3, and the AC/DC inverter 5 and the power storage device 4 receive a new command from the power supply facility control unit 7, the AC/DC inverter 5 is updated to the minimum value of the rated power of the AC/DC inverter 5 and the converted power upper limit value received from the power supply facility control unit 7 at time T, as described in FIG.
  • the power storage device 4 updates the charge/discharge power upper/lower limit value, the charge/discharge current upper/lower limit value, or the SOC upper/lower limit value to the new command received from the power supply facility control unit 7 . Further, power storage device 4 holds the charge/discharge power command or charge/discharge current command received from power supply facility control unit 7 at time T, and continues voltage control of DC power line 6 . The stored command value is used as a command value from the power supply facility control unit 7 when the power storage device 4 ends the voltage control of the DC power line 6 and restarts the charge/discharge power control.
  • the upper limit of the converted power of the AC/DC inverter 5 is updated to 50 kW, and the upper and lower limits of the charge/discharge power of the power storage device 4 are updated to the upper limit of 20 kW and the lower limit of ⁇ 40 kW.
  • the charging/discharging power command for the storage device 4 is assumed to be -20 kW.
  • the power storage device 4 continues to control the voltage of the DC power line 6 .
  • the charge/discharge power lower limit was ⁇ 20 kW, but at time T, the charge/discharge power lower limit was updated to ⁇ 40 kW, so the discharge power of power storage device 4 decreases.
  • the voltage adjustment unit 4V of the DC/DC converter 42 cannot control the voltage VD of the DC power line 6 to the voltage value VD2 and the voltage VD rises and exceeds the voltage value VD1
  • the voltage adjustment unit of the AC/DC inverter 5 The voltage VD is controlled to the voltage value VD1 by control with 5V.
  • the AC/DC inverter 5 determines the AC output power P5 within the range of the converted power upper and lower limit values instructed by the power supply facility control unit 7 .
  • the power supply facility 1 that commands and controls the output power P5 to the AC power line 8 can be configured.
  • FIG. 5 shows control example 4 of the power of each part and the voltage VD of the DC power line when the present invention is applied. 2, 3, and 4 show the response when the voltage VD of the DC power line rises, while FIGS. 5 and 6 show the response when the voltage VD of the DC power line rises and falls.
  • the lower limit of the converted power of the AC/DC inverter 5 is set to ⁇ 50 kW, and the charge/discharge power upper limit of the power storage device 4 is set to 60 kW, and the charge/discharge power lower limit is set to ⁇ 60 kW. be.
  • the power storage device 4 is discharged at -60 kW according to a command from the power supply equipment control unit 7 .
  • the output of the first DC/DC converter 3 is assumed to be 20 kW.
  • the sum of the output of the first DC/DC converter 3 and the discharge power of the power storage device 4 is -40 kW, which is equal to or higher than the lower limit of the converted power of the AC/DC inverter 5. Therefore, the AC/DC inverter 5 is - By converting 40 kW of power (receiving 40 kW of power from the distribution line 8), the voltage VD of the DC power line 6 can be controlled to the first voltage VD1.
  • the AC/DC inverter 5 reduces the converted power to convert the voltage VD of the DC power line 6 to the first voltage. Control to VD.
  • the output power of the first DC/DC converter 3 becomes 10 kW, and the converted power of the AC/DC inverter 5 reaches the lower limit value of -50 kW.
  • the AC/DC inverter 5 cannot decrease the converted power from -50 kW, and the voltage VD of the DC power line 6 becomes the first voltage. Decrease from VD1. Then, at time T2, it reaches a fourth voltage VD4 (for example, 340 V) that is lower than the first voltage VD1.
  • the fourth voltage VD4 is set to a value higher than the lowest DC voltage of the power supply facility 1.
  • the minimum DC voltage is set to a value (eg, 320 V) higher than the maximum AC voltage value (eg, 220 2 V) at the AC output terminal of the AC/DC inverter 5 .
  • the devices connected to the DC power line 6 (first DC/DC converter 3, power storage device 4, AC/DC inverter 5) all stop operating.
  • the power storage device 4 stops the charge/discharge power control commanded by the power supply facility control unit 7 and executes the voltage control of the DC power line 6.
  • the power storage device 4 uses the fourth voltage VD4 as a target value and performs voltage control with a discharge power less than the charge/discharge power upper limit value or a discharge current less than the charge/discharge current upper limit value.
  • voltage control is executed only when the SOC of the storage battery 41 is equal to or higher than the SOC lower limit commanded by the power supply facility control unit 7 . This operation secures the voltage necessary for the operation of the equipment connected to the DC power line 6 .
  • the power storage device 4 continues voltage control with the fourth voltage as the target value due to an increase in discharge power.
  • the power storage device 4 continues voltage control with the fourth voltage VD4 as the target value due to the decrease in discharge power. Then, when the output power of the first DC/DC converter 3 further increases, the voltage VD of the DC power line 6 becomes equal to or higher than the fourth voltage VD4 at time T4. At this time, the power storage device 4 terminates the voltage control of the DC power line 6 and restarts the charge/discharge power control instructed by the power supply equipment control unit 7 . After time T5, the voltage VD of the DC power line 6 is controlled to the first voltage VD1 by voltage control of the AC/DC inverter.
  • the voltage VD of the DC power line 6 is the first voltage VD1.
  • the upper limit of the converted power of the AC/DC inverter 5 is updated to the minimum value of the rated power of the AC/DC inverter 5 and the upper limit of the converted power received from the power supply facility control unit 7 at time T.
  • the lower limit of the converted power of the AC/DC inverter 5 is updated to the maximum value of the rated power of the AC/DC inverter 5 ⁇ ( ⁇ 1) and the lower limit of the converted power commanded from the power supply equipment control unit 7 .
  • the power storage device 4 operates according to the charge/discharge power command or the charge/discharge current command received from the power supply facility control unit 7 at time T.
  • the charge/discharge power upper/lower limit value, the charge/discharge current upper/lower limit value, and the SOC upper/lower limit value are updated.
  • the power after time T in FIG. 5 shows the case where the lower limit of the converted power of AC/DC inverter 5 is updated to ⁇ 50 kW, and power storage device 4 discharges with the new charge/discharge power command value of ⁇ 50 kW.
  • FIG. 6 shows control example 5 of the power of each part and the voltage VD of the DC power line when the present invention is applied. Since the process up to time T3 is the same as control case 4 shown in FIG. 5, the description is omitted.
  • first DC/DC converter 3 executes MPPT control, and power storage device 4 controls voltage VD of DC power line 6 to a fourth voltage.
  • the power storage device 4 is operating with a discharge power of -55 kW (charge power of 55 kW).
  • AC/DC inverter 5 and power storage device 4 receive a new command from power supply facility control unit 7 at time T when voltage VD of DC power line 6 is greater than or equal to fourth voltage VD4 and less than first voltage VD1 , the upper limit of the converted power of the AC/DC inverter 5 is the minimum of the rated power of the AC/DC inverter 5 and the upper limit of the converted power received from the power supply equipment control unit 7 at time T, as described in FIG. value. Also, the lower limit of the converted power of the AC/DC inverter 5 is updated to the maximum value of the rated power of the AC/DC inverter 5 ⁇ ( ⁇ 1) and the lower limit of the converted power commanded from the power supply equipment control unit 7 .
  • the power storage device 4 updates the charge/discharge power upper/lower limit value, the charge/discharge current upper/lower limit value, and the SOC upper/lower limit value to the new values received from the power supply facility control unit 7 .
  • the power storage device 4 stores the charge/discharge power command or charge/discharge current command (referred to as a command value in the present embodiment) received from the power supply facility control unit 7 at time T, and the actual charge/discharge power at time T or The charge/discharge current (referred to as the actual value in this embodiment) is compared with the power and current in the discharge direction as positive.
  • command value when the command value is larger than the actual value, power storage device 4 terminates voltage control of DC power line 6 and performs charge/discharge power control according to the command value. If the command value is smaller than the actual value, voltage control of the DC power line 6 is continued. However, the command value received at time T is retained and used as a command value from power supply equipment control unit 7 when power storage device 4 terminates voltage control of DC power line 6 and restarts charge/discharge power control.
  • the discharge power of the power storage device 4 immediately before time T is -55 kW.
  • the command value is -40 kW, which is larger than the actual value of -55 kW.
  • discharge power control is performed according to the command value of -40 kW.
  • the voltage VD of the DC power line 6 is controlled to the first voltage VD1 by voltage control of the AC/DC inverter.
  • FIG. 7 shows another configuration example of the power supply facility according to the first embodiment of the present invention.
  • an electric vehicle connector 611 is installed on the DC power line 6 .
  • the electric vehicle 11 is connected to the DC power line 6 via the electric vehicle connecting portion 611 .
  • the electric vehicle connecting part 611 is a cable connector branched from the DC power line 6 and is an electrical contact between the electric vehicle 11 and the DC power line 6 .
  • the electric vehicle 11 is, for example, an electric vehicle, an electric agricultural machine, a drone, or the like, and is not always provided in the power supply facility 1 .
  • the electric vehicle 11 has a storage battery 41 and a DC/DC converter 42, and can charge the storage battery 41 by controlling the charging power by itself by DC power supply. Also, the electric power stored in the storage battery 41 can be discharged by direct current through the control of the DC/DC converter 42 .
  • the electric power supply facility 7 can issue charge/discharge power commands or charge/discharge current commands, charge/discharge current upper/lower limits, and SOC upper/lower limits to the electric vehicle 11.
  • the configuration example shown in FIG. 1 and FIGS. can operate in the same manner as the power supply facility power and DC power line voltage example shown in .
  • the electric vehicle 11 may have a structure that does not have the DC/DC converter 42.
  • the DC/DC converter 42 is separately provided externally. good too.
  • FIG. 8 shows still another configuration example of the power supply facility according to Embodiment 1 of the present invention, which is a connection example when the electric vehicle 11 does not have the DC/DC converter 42 .
  • one end of the DC/DC converter 42 is connected to the DC power line 6
  • the other end of the DC/DC converter 42 is provided with a motor-driven vehicle connection section 611 .
  • the electric vehicle 12 is connected to the DC power line 6 via the DC/DC converter 42 and the electric vehicle connection section 611 .
  • the electric vehicle connection unit 611 is a cable connector for supplying the output of the DC/DC converter 42 to the electric vehicle 12 .
  • the electric vehicle 12 is, for example, an electric vehicle, an electric agricultural machine, a drone, or the like, and is not always provided in the power supply facility 1 .
  • the electric vehicle 12 has a storage battery 41 , and charges and discharges the storage battery 41 under charge/discharge power control of the DC/DC converter 42 .
  • the configuration shown in FIG. 8 can also operate in the same manner as the configuration shown in FIG.
  • FIG. 9 shows a configuration example of a power supply facility according to Embodiment 2 of the present invention.
  • the power supply facility 1 includes a received power measuring unit 12 in addition to the configuration shown in the first embodiment. Below, portions different from the first embodiment will be described.
  • This embodiment is applied to the power supply facility 1 and the load 10 interconnected to the AC power supply 9 on the condition that reverse power flow does not occur.
  • a reverse power flow relay is installed at the power receiving point, and the circuit breaker is opened when a reverse power flow occurs.
  • the occurrence of reverse power flow must be prevented so that the circuit breaker is not opened.
  • the conversion power upper limit command to the AC/DC inverter 5 and the charging/discharging power command or charging/discharging current command to the power storage device 4 by the power supply facility 7 are performed at a constant cycle (for example, 1 minute), a constant cycle or more Reverse power flow can be prevented when the power consumption of the load 10, which requires time, gradually decreases. However, if the power consumption of the load 10 suddenly decreases within a period of less than a certain period, the update of the command value of the power supply facility 7 will not be in time, causing a reverse power flow and opening the circuit breaker. If the command cycle of the power supply facility 7 is set to a short period (for example, 0.1 second) in order to prevent reverse power flow, the facility cost of the power supply facility 7 will increase.
  • a short period for example, 0.1 second
  • the received power measurement unit 12 measures the power at the power receiving point 91 of the AC power supply 9, and issues an AC output stop command 13 to the AC/DC inverter 5 while the received power is equal to or less than a predetermined value (for example, 1 kW). Send.
  • a predetermined value for example, 1 kW.
  • the AC/DC inverter 5 sets the upper limit of the converted power to 0 kW from the time of reception until it receives the new converted power upper limit value command of the power supply facility 7.
  • the upper limit of the conversion power of the AC/DC inverter 5 is the rated power of the AC/DC inverter 5 and the conversion commanded by the power supply facility control unit 7. It is set to the minimum power cap value.
  • FIG. 10 shows an example of controlling the power of each part and the voltage VD of the DC power line when the second embodiment of the present invention is applied.
  • the converted power P5 of the AC/DC inverter 5 is positive when output to the AC side and negative when input (power reception) from the AC side.
  • the charge/discharge power P4 of the power storage device 4 is positive when discharged and negative when charged. Assume that the output P3 of the first DC/DC converter 3 is positive.
  • the upper limit of the converted power P5 of the AC/DC inverter 5 is set to 50 kW by a command from the power supply facility control unit 7.
  • the power storage device 4 has an upper limit of charge/discharge power of 30 kW and a lower limit of charge/discharge power of -30 kW, and discharges at 30 kW to supply power to the load 10 .
  • the output of the first DC/DC converter 3 is assumed to be constant at 10 kW for simplicity.
  • the sum of the output P3 of the first DC/DC converter 3 and the discharged power P4 of the power storage device 4 is 40 kW, which is less than the upper limit of the converted power P5 of the AC/DC inverter 5. is power conversion of 40 kW, the voltage VD of the DC power line 6 can be controlled to the first voltage VD1.
  • the AC/DC inverter 5 When the AC/DC inverter 5 receives the AC output stop command 13 at time T1, the upper limit of the converted power P5 of the AC/DC inverter 5 is updated to 0 kW. Therefore, the converted power of the AC/DC inverter 5 was 40 kW until time T1, but becomes 0 kW after time T1. Then, the voltage VD of the DC power line 6 rises, and the voltage VD of the DC power line 6 exceeds the second voltage VD2 at time T2.
  • the power storage device 4 stops charging/discharging power control instructed by the power supply facility control unit 7 and executes voltage control of the DC power line 6. At this time, in the present embodiment, the power storage device 4 performs voltage control with the second voltage VD2 as the target value. In addition, the power storage device 4 performs voltage control with a discharge power equal to or higher than the charge/discharge power lower limit commanded by the power supply facility control unit 7 or a discharge current equal to or higher than the charge/discharge current lower limit commanded. In this embodiment, it is assumed that -30 kW is commanded as the charge/discharge power lower limit.
  • the upper limit of the converted power P5 of the AC/DC inverter 5 is updated to the minimum value of the rated power of the AC/DC inverter 5 and the upper limit of the converted power received from the power supply equipment control unit 7. In this embodiment, it is assumed that the power is updated to 30 kW.
  • the power storage device 4 updates the charge/discharge power upper/lower limit value, the charge/discharge current upper/lower limit value, or the SOC upper/lower limit value to the new upper/lower limit value received from the power supply facility control unit 7 .
  • the voltage VD of the DC power line 6 is greater than or equal to the second voltage VD2 and less than the third voltage VD3.
  • the discharge current command (referred to as the command value in this embodiment) and the actual charge/discharge power or charge/discharge current at time T (referred to as the actual value in this embodiment) are the power and current in the discharge direction. Compare as positive.
  • the power storage device 4 terminates the voltage control of the DC power line 6 and performs charge/discharge power control according to the command value. If the command value is greater than the actual value, voltage control of the DC power line 6 is continued. In this embodiment, it is assumed that a command value of 10 kW, which is larger than the actual value, is received. At this time, power storage device 4 continues voltage control of DC power line 6 .
  • the AC/DC inverter 5 starts controlling the voltage VD of the DC power line 6 to the first voltage VD1 with the converted power of 30 kW as the upper limit.
  • the discharge power is increased in accordance with the increase in the converted power of the AC/DC inverter 5 .
  • the power storage device 4 ends the voltage control of the DC power line 6 and supplies power. Charge/discharge power control is performed at 10 kW commanded from the facility control unit 7 .
  • the voltage VD of the DC power line 6 is controlled to the first voltage VD1 by voltage control of the AC/DC inverter.
  • the power storage device 4 can be replaced with the configuration of the electric vehicle connection unit 611 and the electric vehicle 11 shown in FIG. 7 of the first embodiment.
  • FIG. 11 shows a configuration example of a power supply facility according to Embodiment 3 of the present invention.
  • a power storage device 4A is connected to the DC power line 6 in addition to the power storage device 4.
  • FIG. 4A Like the power storage device 4, the power storage device 4A includes a storage battery 41A and a DC/DC converter 42A, and can charge and discharge the storage battery 4A under the control of the DC/DC converter 42A. Below, portions different from the first and second embodiments will be described.
  • the first is droop control.
  • the power supply facility control unit 7 transmits a charge/discharge power command or a charge/discharge current command, a charge/discharge power upper/lower limit value command or a charge/discharge current upper/lower limit value command, and an SOC upper/lower limit value command to the power storage device 4 and the power storage device 4A.
  • a droop gain is set in advance for the power storage device 4 and the power storage device 4A.
  • the power storage device 4 and the power storage device 4A change the voltage VD of the DC power line 6 to the second voltage VD2 or Control to the fourth voltage VD4.
  • the droop gain may be sequentially transmitted from the power supply facility control unit 7. That is, the power supply facility control unit 7 sends a charge/discharge power command or a charge/discharge current command to the power storage device 4 or the power storage device 4A, a charge/discharge power upper/lower limit value command or a charge/discharge current upper/lower limit value command, an SOC upper/lower limit value command, Send droop gain.
  • Power storage device 4 and power storage device 4A perform droop control according to the droop gain received from power supply facility control unit 7 when voltage VD of DC power line 6 is equal to or higher than second voltage VD2 or equal to or lower than fourth voltage VD4. and controls the voltage VD of the DC power line 6 to the second voltage VD2 or the fourth voltage VD4.
  • Power storage device 4 and power storage device 4A perform charging and discharging at the commanded upper and lower limits of charge/discharge power or upper and lower limits of charge/discharge current.
  • the lower limit value of the discharge power is set to 0 kW and charging is not performed, and when the commanded SOC lower limit value is reached, the discharge power upper limit value is set to 0 kW and no discharge is performed.
  • the second method is to set the voltage control switching priority for the power storage device.
  • the power storage device stops the charge/discharge power control commanded by the power supply facility control unit 7, and the second voltage DV2 and the fourth voltage DV4, which are the thresholds for executing the voltage control of the DC power line 6, are changed to the DC It is set for each power storage device connected to the power line 6 .
  • the power storage device 4 stops charge/discharge power control commanded by the power supply facility control unit 7 at the second voltage VD2 and the fourth voltage VD4, and executes voltage control of the DC power line 6. Further, power storage device 4A stops charge/discharge power control instructed by power supply facility control unit 7 at second voltage VD2A and fourth voltage VD4A, and executes voltage control of DC power line 6.
  • the magnitude relationship between the second voltage VD2 and the second voltage VD2A and the magnitude relationship between the fourth voltage VD4 and the fourth voltage VD4A are independently determined, and the voltage control switching priority appears in this magnitude relationship.
  • the maximum values of the second voltage VD2 and the second voltage VD2A are set below the third voltage, and the minimum values of the second voltage VD2 and the second voltage VD2A are set above the first voltage.
  • the maximum values of the fourth voltage VD4 and the fourth voltage VD4A are set below the first voltage, and the minimum values of the fourth voltage VD4 and the fourth voltage VD4A are set above the minimum DC voltage.
  • the second voltage VD2, the second voltage VD2A, the fourth voltage VD4, and the fourth voltage VD4A are commands from the power supply equipment control unit 7, the power storage device 4, and the power supply equipment control unit 7 of the power storage device 4A. , power storage device 4 or power storage device 4A itself. In the present embodiment, it is assumed that the voltage is determined by a command from the power supply facility control unit 7. First voltage VD1 ⁇ second voltage VD2 ⁇ second voltage VD2A ⁇ third voltage VD3, first voltage VD1 >fourth voltage VD4>fourth voltage VD4A>lowest DC voltage.
  • FIG. 12 shows an example of controlling the power of each part and the voltage VD of the DC power line when the third embodiment of the present invention is applied.
  • the time at which power storage devices 4 and 4A and AC/DC inverter 5 receive a command from power supply facility control unit 7 is defined as zero.
  • the power supply equipment control unit 7 transmits a command at a fixed cycle T. Therefore, it is time T that power storage devices 4, 4A and AC/DC inverter 5 next receive a command.
  • the upper limit of the converted power P5 of the AC/DC inverter 5 is set to 50 kW by a command from the power supply facility control unit 7.
  • the power storage device 4 and the power storage device 4A are set to have a charge/discharge power upper limit value of 10 kW and a charge/discharge power lower limit value of -20 kW, and are discharged at 10 kW to supply power to the load 10 .
  • the output of the first DC/DC converter 3 is assumed to be 20 kW.
  • the sum of the output of the first DC/DC converter 3 and the discharge power of the power storage device 4 and the power storage device 4A is 40 kW, which is less than the upper limit of the converted power P5 of the AC/DC inverter 5.
  • the inverter 5 can control the voltage VD of the DC power line 6 to the first voltage VD1 by converting the power by 40 kW.
  • the AC/DC inverter 5 increases the converted power P5 to bring the voltage VD of the DC power line 6 to the first level. is controlled to VD1.
  • the output power P3 of the first DC/DC converter 3 becomes 30 kW, and the converted power P5 of the AC/DC inverter 5 reaches the upper limit value of 50 kW.
  • the power storage device 4 stops charging/discharging power control instructed by the power supply facility control unit 7 and executes voltage control of the DC power line 6. At this time, in the present embodiment, the power storage device 4 performs voltage control with the second voltage VD2 as the target value. In addition, the power storage device 4 performs voltage control with a discharge power equal to or higher than the charge/discharge power lower limit commanded by the power supply facility control unit 7 or a discharge current equal to or higher than the charge/discharge current lower limit commanded. In this embodiment, -20 kW is commanded as the charge/discharge power lower limit.
  • the power storage device 4A continues the charge/discharge power control commanded by the power supply facility control unit 7. After time T2, power storage device 4 executes voltage control with second voltage VD2 as a target value due to a decrease in discharge power.
  • the discharged power of the power storage device 4 reaches -20 kW.
  • the power storage device 4 cannot increase the charging power. It further rises and reaches a second voltage VD2A (for example, 375 V) higher than the second voltage VD2 at time T4.
  • the power storage device 4A stops charging/discharging power control instructed by the power supply facility control unit 7 and executes voltage control of the DC power line 6. At this time, in this embodiment, the power storage device 4A performs voltage control with the second voltage VD2A as the target value. Further, the power storage device 4A performs voltage control with a discharge power equal to or higher than the charge/discharge power lower limit commanded from the power supply facility control unit 7 or a discharge current equal to or higher than the charge/discharge current lower limit commanded. In this embodiment, -20 kW is commanded as the charge/discharge power lower limit.
  • the power storage device 4A executes voltage control with the second voltage VD2A as the target value due to the decrease in the discharge power.
  • the voltage VD of the DC power line 6 becomes less than the second voltage VD2A at time T5.
  • the power storage device 4 ⁇ /b>A ends the voltage control of the DC power line 6 and restarts the charge/discharge power control instructed by the power supply facility control section 7 .
  • the voltage VD of the DC power line 6 is controlled to the second voltage VD2 by voltage control of the power storage device 4 .
  • the power storage device 4 terminates the voltage control of the DC power line 6 and restarts the charge/discharge power control instructed by the power supply equipment control unit 7 .
  • the voltage VD of the DC power line 6 is controlled to the first voltage VD1 by voltage control of the AC/DC inverter 5 .
  • the voltage VD of the DC power line 6 is the first voltage VD1.
  • the upper limit of the converted power P5 of the AC/DC inverter 5 is updated to the minimum value of the rated power P5 of the AC/DC inverter 5 and the upper limit of the converted power received from the power supply facility control unit 7 at time T.
  • the lower limit of the converted power P5 of the AC/DC inverter 5 is the maximum value of the rated power of the AC/DC inverter 5 ⁇ ( ⁇ 1) and the lower limit of the converted power commanded from the power supply equipment control unit 7 .
  • Power storage device 4 operates according to the charge/discharge power command or the charge/discharge current command received from power supply facility control unit 7 at time T.
  • FIG. the charge/discharge power upper/lower limit value, the charge/discharge current upper/lower limit value, and the SOC upper/lower limit value are updated.
  • the second voltage in the first and second embodiments is set to the second voltage for each power storage device.
  • 2 voltage VD2 the second voltage VD2A, . . . , the voltage VD of the DC power line 6 can be controlled.
  • voltage control switching priority can be set for a power storage device group that performs droop control and each power storage device that does not perform droop control.
  • power storage device 4 when power storage device 4, power storage device 4A, power storage device 4B, and power storage device 4C are connected to DC power line 6, power storage device 4 and power storage device 4A perform droop control, and power storage device 4B and power storage device 4C perform droop control. Can be set to never run.
  • the voltages for starting droop control of power storage device 4 and power storage device 4A are set to second voltage VD2 and fourth voltage VD4, and power storage device 4B and power storage device 4C start voltage control of DC power line 6.
  • the voltages are set to a second voltage VD2B and a fourth voltage VD4B, a second voltage VD2C and a fourth voltage VD4C, respectively.
  • the magnitude relationship between the second voltage VD2, the second voltage VD2B, and the second voltage VD2C and the magnitude relationship between the fourth voltage VD4, the fourth voltage VD4B, and the fourth voltage VD4C are independently arbitrary. can be set to However, the maximum values of the second voltage VD2, the second voltage VD2B, and the second voltage VD2C are less than the third voltage VD3, and the minimum values are set higher than the first voltage VD1. Further, the maximum values of the fourth voltage VD4, the fourth voltage VD4B, and the fourth voltage VD4C are less than the first voltage VD1, and the maximum values of the fourth voltage VD4, the fourth voltage VD4B, and the fourth voltage VD4C are The minimum value is set higher than the minimum DC voltage.
  • the power storage device 4 and the power storage device 4A can be replaced with the configurations of the electric movable body connecting portion 611 and the electric movable body 11 shown in FIG. 7 of the first embodiment, respectively.
  • FIG. 13 shows a configuration example of a power supply facility according to Embodiment 4 of the present invention.
  • one end (primary side) of the second DC/DC converter 60 is connected to the first DC power line 61 to which the first DC/DC converter 3 and the AC/DC inverter 5 are connected. do.
  • a second DC power line 62 is connected to the other end (secondary side) of the second DC/DC converter 60 .
  • the second DC/DC converter 60 divides the DC power line 6 in the configuration example of the power supply facility in the first embodiment.
  • the second DC/DC converter 60 is a bi-directional converter, and can charge the power storage device 4 with the power generated by the solar cell 2 or the power of the AC power supply 9 received via the AC/DC inverter 5. can be fed to the load 10 via the AC/DC inverter 5 .
  • the output voltage of the first DC/DC converter 3 is high (eg, 1000 V).
  • the first voltage which is the control target value, is set to a high voltage (for example, 1000 V), and as a result, the withstand voltage of the power storage device 4 must be increased.
  • the second DC/DC converter 60 by installing the second DC/DC converter 60 and stepping down the output voltage (primary side voltage) of the first DC/DC converter 3, it is possible to prevent the electric storage device 4 from increasing the breakdown voltage.
  • the second DC/DC converter 60 an insulated bidirectional converter
  • the first DC/DC converter 3 and the power storage device 4 can be insulated.
  • the second DC power line 62 deteriorates and the human body touches the exposed conductor portion, a current path from the solar battery 2 as the power source to the human body is not formed, so the first DC power line Electric shock can be prevented even if the DC converter 3 is a non-insulated type (for example, a boost chopper circuit).
  • the rated power of second DC/DC converter 60 is equal to the rated power of DC/DC converter 42 of power storage device 4 .
  • the voltage of the second DC power line 62 becomes the first voltage VD1 (350 V) and the second voltage VD2 (370 V) shown in the first embodiment.
  • the third voltage VD3 (390 V), and the fourth voltage VD4 (340 V) the primary side voltage of the second DC/DC converter 60, that is, the voltage of the first DC power line 61 is the first They are the voltage VD1' (1000 V), the second voltage VD2' (1057 V), the third voltage VD3' (1114 V), and the fourth voltage VD4' (971 V).
  • the power storage device 4 operates in the same manner as in the first embodiment. That is, when the voltage value of the second DC power line 62 is equal to or higher than the second voltage that is higher than the first voltage, and is lower than the fourth voltage that is lower than the first voltage, the second voltage control of the DC power line 62 is performed.
  • the voltage control target value of the AC/DC inverter 5 is set to the first voltage VD1′, and the threshold voltage at which the first DC/DC converter 3 ends MPPT control and performs voltage control is set to the third voltage VD3′. do.
  • the AC/DC inverter 5 can control the voltage of the first DC power line 61 to the first voltage VD1', the voltage of the second DC power line 62 becomes the first voltage VD1.
  • the AC/DC inverter 5 cannot control the voltage of the first DC power line 61 to the first voltage VD1' due to the upper and lower limit values of the converted power, and the first voltage VD1' It may rise to the second voltage VD2' (1057V) or fall to the fourth voltage VD4' (971V). At this time, the voltage of the second DC power line 62 also rises or falls corresponding to the rise or fall of the voltage of the first DC power line 61 . Assuming that the voltage of the first DC power line 61 rises to the second voltage VD2′, the voltage of the second DC power line 62 then rises to the second voltage VD2, and the power storage device 4 is charged to the second DC power line. 62 voltage control is started.
  • the power storage device 4 executes voltage control, if the voltage of the second DC power line 62 rises and reaches the third voltage VD3, then the voltage of the first DC power line 61 reaches the third voltage It rises to VD3'. At this time, the first DC/DC converter 3 ends the MPPT control and controls the voltage of the first DC power line 61 .
  • the voltage control target value of the AC/DC inverter 5 is set to the first voltage VD1′, and the threshold voltage at which the first DC/DC converter 3 ends MPPT control and performs voltage control is set to the third voltage.
  • FIG. 14 shows a configuration example of power supply equipment according to Embodiment 5 of the present invention.
  • the first DC/DC converter 3, the AC/DC inverter 5, and the power storage device 4 are connected to the first DC power line 61, which is the primary side of the second DC/DC converter 60.
  • a power storage device 4A is connected to a second DC power line 62 on the secondary side of the second DC/DC converter 60 . That is, the power storage device is connected to each of the primary side and the secondary side of the second DC/DC converter 60 .
  • the rated power of second DC/DC converter 60 is equal to the rated power of DC/DC converter 422 of power storage device 4A.
  • the voltage control target value of the AC/DC inverter 5 is set to the first voltage VD1′, and the threshold voltage at which the first DC/DC converter 3 ends MPPT control and performs voltage control is set to the third voltage VD3′. do. Further, the power storage device 4 suspends the charge/discharge power control commanded by the power supply facility control unit 7 and sets the threshold voltage at which the voltage control of the first DC power line 61 is executed to the second voltage VD2′ or the second voltage VD2 ', and the fourth voltage VD4'.
  • Other controls and operations conform to those of the third embodiment, so that the same effects as those of the third embodiment can be obtained even in the configuration example of the power supply facility in the present embodiment.
  • the power storage device 4 and the power storage device 4A can be replaced with the configurations of the electric movable body connecting portion 611 and the electric movable body 11 shown in FIG. 7 of the first embodiment, respectively.
  • SYMBOLS 1... Power supply facility, 2... Solar cell (renewable energy power supply), 3... First DC/DC converter, 4, 4A... Power storage device, 5... AC/DC inverter, 6... DC power line, 7... Power supply Equipment control unit 8 Distribution line 9 AC power supply 10 Load 12 Power receiving power system side 13 AC output stop command 60 Second DC/DC converter 61 First DC power line , 62 ... second DC power line

Abstract

Provided is a power supply facility in which each DC apparatus stably supplies DC power. A power supply facility according to the present invention comprises a first conversion device that is disposed between an AC power line and a DC power line and that carries out power conversion, a second conversion device that is disposed between the DC power line and a storage battery and that carries out power conversion, and a third conversion device that is disposed between the DC power line and a renewable energy power supply and that carries out power conversion, said power supply facility being characterized in that: the first conversion device controls the voltage of the DC power line to be a first voltage; and when the first conversion device fails to control the voltage of the DC power line to be the first voltage and the voltage of the DC power line exceeds a second voltage which is set higher than the first voltage, the second conversion device controls the voltage of the DC power line to be the second voltage.

Description

電力供給設備Power supply equipment
 本発明は、再生可能エネルギー発電装置の発電電力を負荷に安定供給する電力供給設備に関する。 The present invention relates to a power supply facility that stably supplies power generated by a renewable energy power generation device to a load.
 再生可能エネルギー発電装置の発電電力を負荷に安定供給する電力供給設備として、特許文献1が知られている。特許文献1は、「電力制御装置は、交流側と直流側との間に接続される双方向インバータを制御可能に構成される制御部を備え、制御部は、再生可能エネルギー発電装置の発電電力量及び負荷の消費電力量それぞれの、第1時刻から第2時刻までの間の複数の時刻における予測値を取得し、第2時刻における蓄電装置の目標充電量を仮定し、仮定した目標充電量に対して、第2時刻から第1時刻までさかのぼるように各時刻の予測値を適用して各時刻において目標充電量を更新することによって算出した、第1時刻における目標充電量に基づいて、双方向インバータに、充電動作又は放電動作を実行させる電力制御装置、電力制御方法、双方向インバータ、及び電力制御システム」のように構成されたものである。 Patent Document 1 is known as a power supply facility that stably supplies power generated by a renewable energy power generation device to a load. Patent Document 1 states, "The power control device includes a control unit configured to be able to control a bidirectional inverter connected between the AC side and the DC side, and the control unit controls the power generated by the renewable energy power generation device. obtaining predicted values at a plurality of times between a first time and a second time for each of the power consumption and the power consumption of the load, assuming a target charging amount of the power storage device at the second time, , based on the target charge amount at the first time calculated by updating the target charge amount at each time by applying the predicted value at each time so as to go back from the second time to the first time, both A power control device, a power control method, a bidirectional inverter, and a power control system for causing a bidirectional inverter to perform a charging operation or a discharging operation.
特開2021-52488号公報Japanese Patent Application Laid-Open No. 2021-52488
 特許文献1によれば、再生可能エネルギー発電装置の発電電力量及び負荷の消費電力量それぞれの予測値から仮定した蓄電装置の目標充電量に基づいて、双方向インバータに、充電動作又は放電動作を実行させることで蓄電池を有効に利用できるが、天候の変動による発電電力の急変や、負荷の急変といった予測値と実際の電力が乖離した際に、直流接続部の電圧値が所定値あるいは所定範囲から逸脱し得るという課題がある。 According to Patent Document 1, a bidirectional inverter performs a charging operation or a discharging operation based on a target charge amount of a power storage device assumed from each predicted value of the power generation amount of a renewable energy power generation apparatus and the power consumption amount of a load. By executing it, the storage battery can be used effectively, but when the predicted value and the actual power deviate due to a sudden change in the generated power due to weather changes or a sudden change in the load, the voltage value of the DC connection is set to a predetermined value or within a predetermined range. There is a problem that can deviate from
 直流接続部の電圧値が所定値あるいは所定範囲から逸脱し得、所定範囲からの電圧値の逸脱が生じると、直流電力線に接続される装置の故障が引き起こされる。 The voltage value of the DC connection may deviate from a predetermined value or a predetermined range, and if the voltage value deviates from the predetermined range, failure of equipment connected to the DC power line is caused.
 本発明はこの課題に鑑み、電力供給設備内の各直流機器が、直流電力を安定供給する電力供給設備を提供することを目的とする。 In view of this problem, it is an object of the present invention to provide a power supply facility in which each DC device in the power supply facility supplies DC power stably.
 以上のことから本発明においては、「交流電力線と直流電力線の間に配置されて電力変換を行う第1の変換装置と、直流電力線と蓄電池の間に配置されて電力変換を行う第2の変換装置と、直流電力線と再生可能エネルギー電源の間に配置されて電力変換を行う第3の変換装置を含む電力供給設備であって、第1の変換装置は、直流電力線の電圧を第1の電圧に制御し、第2の変換装置は、第1の変換装置が直流電力線の電圧を第1の電圧に制御できず、直流電力線の電圧が第1の電圧より高く設定される第2の電圧を超過したとき、直流電力線の電圧を第2の電圧に制御することを特徴とする電力供給設備」のようにしたものである。 From the above, in the present invention, "a first conversion device that is arranged between an AC power line and a DC power line and performs power conversion, and a second conversion device that is arranged between the DC power line and a storage battery and performs power conversion and a third conversion device disposed between a DC power line and a renewable energy power source to perform power conversion, wherein the first conversion device converts the voltage of the DC power line to a first voltage and the second converter sets a second voltage in which the first converter cannot control the voltage of the DC power line to the first voltage and the voltage of the DC power line is set higher than the first voltage A power supply facility characterized by controlling the voltage of a DC power line to a second voltage when the voltage is exceeded.
 また本発明においては、「交流電力線と直流電力線の間に配置されて電力変換を行う第1の変換装置と、直流電力線と蓄電池の間に配置されて電力変換を行う第2の変換装置と、直流電力線と再生可能エネルギー電源の間に配置されて電力変換を行う第3の変換装置と、第1の変換装置、第2の変換装置、第3の変換装置に対して制御指令を与える電力供給設備制御部と、を含む電力供給設備であって、電力供給設備制御部は、第1の変換装置に制御指令として最大電力変換容量指令を送信し、第1の変換装置は、最大電力変換容量指令により指定された電力容量を限度として、直流電力線の電圧を第1の電圧に制御することを特徴とする電力供給設備」のようにしたものである。 Further, in the present invention, "a first conversion device that is arranged between an AC power line and a DC power line and performs power conversion, and a second conversion device that is arranged between the DC power line and a storage battery and performs power conversion, A third conversion device arranged between the DC power line and the renewable energy power source to perform power conversion, and a power supply that gives a control command to the first conversion device, the second conversion device, and the third conversion device. A power supply facility including a facility control unit, wherein the power supply facility control unit transmits a maximum power conversion capacity command as a control command to the first conversion device, and the first conversion device transmits the maximum power conversion capacity command A power supply facility characterized by controlling the voltage of a DC power line to a first voltage within the power capacity designated by a command.
 また本発明においては、「交流電力線と直流電力線の間に配置されて電力変換を行う第1の変換装置と、直流電力線と蓄電池の間に配置されて電力変換を行う第2の変換装置と、直流電力線と再生可能エネルギー電源の間に配置されて電力変換を行う第3の変換装置を含む電力供給設備であって、第1の変換装置、第2の変換装置、第3の変換装置に対して制御指令を与える電力供給設備制御部と、第1の変換装置、第2の変換装置、第3の変換装置の夫々に設けられ、直流電力線の電圧を第1の電圧、第2の電圧、第3の電圧に夫々制御する電圧調整部を備え、電圧調整部により直流電力線の電圧を第1の電圧、第2の電圧、第3の電圧のいずれかに制御することを特徴とする電力供給設備」のようにしたものである。 Further, in the present invention, "a first conversion device that is arranged between an AC power line and a DC power line and performs power conversion, and a second conversion device that is arranged between the DC power line and a storage battery and performs power conversion, A power supply facility including a third conversion device that is arranged between a DC power line and a renewable energy power source and performs power conversion, wherein the first conversion device, the second conversion device, and the third conversion device and a power supply facility control unit that gives a control command, and is provided in each of the first conversion device, the second conversion device, and the third conversion device, and the voltage of the DC power line is the first voltage, the second voltage, A power supply comprising: a voltage regulator for controlling each voltage to a third voltage, wherein the voltage regulator controls the voltage of the DC power line to any one of the first voltage, the second voltage, and the third voltage. equipment.
 本発明によれば、電力供給設備内の各直流機器が、外部指令を用いず直流電力線の電圧値を参照して能動的に制御を切り換え、直流電力を安定供給することが可能である。 According to the present invention, each DC device in the power supply facility can actively switch control by referring to the voltage value of the DC power line without using an external command, thereby stably supplying DC power.
本発明の実施例1に係る電力供給設備の構成例を示す図。The figure which shows the structural example of the power supply equipment which concerns on Example 1 of this invention. 本発明適用時の各部電力と直流電力線の電圧VDの制御事例1を示す図。FIG. 4 is a diagram showing control example 1 of the power of each part and the voltage VD of the DC power line when the present invention is applied. 本発明適用時の各部電力と直流電力線の電圧VDの制御事例2を示す図。FIG. 4 is a diagram showing control example 2 of the power of each part and the voltage VD of the DC power line when the present invention is applied. 本発明適用時の各部電力と直流電力線の電圧VDの制御事例3を示す図。FIG. 10 is a diagram showing control example 3 of the power of each part and the voltage VD of the DC power line when the present invention is applied. 本発明適用時の各部電力と直流電力線の電圧VDの制御事例4を示す図。FIG. 10 is a diagram showing control example 4 of the power of each part and the voltage VD of the DC power line when the present invention is applied. 本発明適用時の各部電力と直流電力線の電圧VDの制御事例5を示す図。FIG. 10 is a diagram showing control example 5 of the power of each part and the voltage VD of the DC power line when the present invention is applied. 本発明の実施例1に係る電力供給設備の他の構成例を示す図。The figure which shows the other structural example of the power supply equipment which concerns on Example 1 of this invention. 本発明の実施例1に係る電力供給設備のさらに他の構成例を示す図。The figure which shows the other structural example of the power supply equipment which concerns on Example 1 of this invention. 本発明の実施例2に係る電力供給設備の構成例を示す図。The figure which shows the structural example of the power supply equipment which concerns on Example 2 of this invention. 本発明の実施例2適用時の各部電力と直流電力線の電圧VDの制御事例を示す図。The figure which shows the control example of each part electric power and the voltage VD of a DC power line at the time of Example 2 application of this invention. 本発明の実施例3に係る電力供給設備の構成例を示す図。The figure which shows the structural example of the power supply equipment which concerns on Example 3 of this invention. 本発明の実施例3適用時の各部電力と直流電力線の電圧VDの制御事例を示す図。The figure which shows the control example of each part electric power and the voltage VD of a DC power line at the time of Example 3 application of this invention. 本発明の実施例4に係る電力供給設備の構成例を示す図。The figure which shows the structural example of the power supply equipment which concerns on Example 4 of this invention. 本発明の実施例5に係る電力供給設備の構成例を示す図。The figure which shows the structural example of the power supply equipment which concerns on Example 5 of this invention.
 以下、本発明の実施例について、図面を参照して説明する。なお、本発明は、以下の実施例に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the present invention is not limited to the following examples. Those skilled in the art can make various additions, modifications, etc. within the scope of the present invention.
 図1に、本発明の実施例1に係る電力供給設備の構成例を示す。電力供給設備1は太陽電池2と、第1のDC/DCコンバータ3と、蓄電装置4と、AC/DCインバータ5と、直流電力線6と、電力供給設備制御部7を備えている。太陽電池2は第1のDC/DCコンバータ3に接続される。直流電力線6は、第1のDC/DCコンバータ3の出力端と、蓄電装置4と、AC/DCインバータ5の直流出力端とを並列に接続する。AC/DCインバータ5の交流出力端は交流電源9に接続された配電線8に接続され、AC/DCインバータ5は双方向に電力変換が可能である。配電線8には交流負荷10が接続される。 FIG. 1 shows a configuration example of a power supply facility according to Embodiment 1 of the present invention. The power supply facility 1 includes a solar cell 2 , a first DC/DC converter 3 , a power storage device 4 , an AC/DC inverter 5 , a DC power line 6 , and a power supply facility controller 7 . A solar cell 2 is connected to a first DC/DC converter 3 . A DC power line 6 connects the output end of the first DC/DC converter 3, the power storage device 4, and the DC output end of the AC/DC inverter 5 in parallel. An AC output terminal of the AC/DC inverter 5 is connected to a distribution line 8 connected to an AC power supply 9, and the AC/DC inverter 5 is capable of bi-directional power conversion. An AC load 10 is connected to the distribution line 8 .
 蓄電装置4は、蓄電池41とDC/DCコンバータ42から構成される。DC/DCコンバータ42は双方向電力変換回路であり、DC/DCコンバータ42の制御により蓄電池41を充放電することができる。蓄電池41は、例えば、リチウムイオン電池や、ニッケル水素電池等の2次電池である。蓄電装置4は定置設備でもよいし、蓄電池41が電気自動車等の電動移動体であり、DC/DCコンバータ42が定置充放電器である構成でもよい。 The power storage device 4 is composed of a storage battery 41 and a DC/DC converter 42 . The DC/DC converter 42 is a bidirectional power conversion circuit, and can charge and discharge the storage battery 41 under the control of the DC/DC converter 42 . The storage battery 41 is, for example, a secondary battery such as a lithium ion battery or a nickel metal hydride battery. The power storage device 4 may be a stationary facility, or the storage battery 41 may be an electric vehicle such as an electric vehicle, and the DC/DC converter 42 may be a stationary charger/discharger.
 なお、図1の電力供給設備1において、太陽電池2は一般的には太陽光発電や風力発電などの再生可能エネルギー電源であればよく、ここでは太陽光発電とした場合について示している。なお、風力発電である場合には、風力発電自体が交流出力するので、第1のDC/DCコンバータ3は交流/直流変換するインバータとして構成されることになる。係る構成上の相違はあるが、本発明は上記のいずれの再生可能エネルギー電源の場合であっても適用が可能である。 In addition, in the power supply facility 1 of FIG. 1, the solar cell 2 may generally be a renewable energy power source such as photovoltaic power generation or wind power generation, and the case of photovoltaic power generation is shown here. In the case of wind power generation, the wind power generation itself outputs alternating current, so the first DC/DC converter 3 is configured as an AC/DC inverter. Although there is such a structural difference, the present invention can be applied to any of the above renewable energy power sources.
 図1に例示したように、電力供給設備1は交流電力線8と直流電力線6の間に配置されて電力変換を行う第1の変換装置(AC/DCインバータ5)と、直流電力線6と蓄電池4の間に配置されて電力変換を行う第2の変換装置(DC/DCコンバータ42)と、直流電力線6と再生可能エネルギー電源2の間に配置されて電力変換を行う第3の変換装置(第1のDC/DCコンバータ3)により、構成される。 As illustrated in FIG. 1, the power supply facility 1 includes a first conversion device (AC/DC inverter 5) that is arranged between the AC power line 8 and the DC power line 6 to perform power conversion, the DC power line 6 and the storage battery 4 A second conversion device (DC/DC converter 42) that is placed between the DC power line 6 and the renewable energy power supply 2 to perform power conversion, and a third conversion device (the third 1 DC/DC converter 3).
 電力供給設備1の係る機器構成において、これを制御する制御機能として本発明では電力供給設備制御部7と、個別の変換装置3、42、5ごとに配置された電圧調整部5V、3V、4Vによる制御の2種類を備えている。電圧調整部5V、3V、4Vは、変換装置3、42、5が夫々有する制御回路(不図示)内にその機能を備えてよい。詳細は後述するが、電力供給設備制御部7は上記した3組の変換装置3、42、5に対して数秒、或は分単位での長周期制御を行うものであり、個別の変換装置3、42、5ごとに配置された電圧調整部5V、3V、4Vによる制御は短周期制御を行うものである。短周期制御は長周期制御より短い周期で実施される。 In the equipment configuration related to the power supply facility 1, in the present invention, as a control function for controlling this, the power supply facility control unit 7 and the voltage adjustment units 5V, 3V, and 4V arranged for each of the individual converters 3, 42, and 5 It has two types of control by The voltage regulators 5V, 3V and 4V may have their functions in control circuits (not shown) of the converters 3, 42 and 5, respectively. Although the details will be described later, the power supply facility control unit 7 performs long-cycle control in units of several seconds or minutes on the three sets of converters 3, 42, and 5 described above. , 42 and 5 are provided for short-cycle control. Short-cycle control is performed in a shorter cycle than long-cycle control.
 電力供給設備制御部7は、EMS(Energy Management System)として動作する。すなわち、交流電源9からの受電電力や、負荷10の消費電力、太陽電池2の発電電力、蓄電池41のSOC(State of Charge)等を計測(不図示)し、各機器の定格電力や、太陽電池2の予測発電電力、負荷10の予測消費電力、蓄電池41のSOC、寿命・劣化管理等の観点から電力供給設備1内の電力フローを決定する。 The power supply facility control unit 7 operates as an EMS (Energy Management System). That is, the power received from the AC power supply 9, the power consumption of the load 10, the power generated by the solar cell 2, the SOC (State of Charge) of the storage battery 41, etc. are measured (not shown), and the rated power of each device and the solar power The power flow in the power supply facility 1 is determined from the viewpoint of the predicted power generation of the battery 2, the predicted power consumption of the load 10, the SOC of the storage battery 41, and life/deterioration management.
 そして、蓄電装置4に対して充放電電力指令または充放電電流指令、充放電電力上下限値または充放電電流上下限値、SOC上下限値を制御指令として指令し、AC/DCインバータ5に対して変換電力上下限値を制御指令として指令する。指令は有線通信または無線通信にて一定の周期(例えば、1分間隔)で行われる。また電力供給設備制御部7は、第1のDC/DCコンバータ3と、蓄電装置4と、AC/DCインバータ5に対して動作の開始、停止を制御指令として指令する。 Then, a charge/discharge power command or a charge/discharge current command, a charge/discharge power upper/lower limit value or a charge/discharge current upper/lower limit value, and an SOC upper/lower limit value are commanded to the power storage device 4 as control commands. command the upper and lower limits of the converted power as a control command. Commands are issued at regular intervals (for example, at intervals of one minute) through wired communication or wireless communication. Further, the power supply facility control unit 7 instructs the first DC/DC converter 3, the power storage device 4, and the AC/DC inverter 5 to start and stop operations as control commands.
 電力供給設備制御部7から、第1のDC/DCコンバータ3と、蓄電装置4と、AC/DCインバータ5に対して与えられる、これらの指令の発信は数十秒、或は分単位オーダーで行われる長周期のものである。 These commands given from the power supply facility control unit 7 to the first DC/DC converter 3, the power storage device 4, and the AC/DC inverter 5 are transmitted in several tens of seconds or on the order of minutes. It is a long-cycle one that occurs.
 第1のDC/DCコンバータ3は接続されている太陽電池2が出力する発電電力を最大電力点追従(MPPT)制御し、直流電力線6へ出力する。また蓄電装置4は電力供給設備制御部7の指令に従い、充放電電力または充放電電流制御を実施する。 The first DC/DC converter 3 performs maximum power point tracking (MPPT) control on the power generated by the connected solar cell 2 and outputs it to the DC power line 6 . In addition, the power storage device 4 performs charging/discharging power or charging/discharging current control in accordance with a command from the power supply facility control unit 7 .
 これに対し、もう一方の制御体系である個別の変換装置3、42、5ごとに配置された電圧調整部5V、3V、4Vによる制御では、直流電力線6の電圧VDを検知して、これをそれぞれの設定電圧値VD1、VD2またはVD4、VD3に制御する。AC/DCインバータ5の電圧調整部5Vには電圧値VD1が設定され、DC/DCコンバータ42の電圧調整部4Vには電圧値VD2およびVD4が設定され、第1のDC/DCコンバータ3の電圧調整部3Vには電圧値VD3が設定されている。 On the other hand, in the control by the voltage adjustment units 5V, 3V, and 4V arranged for the individual converters 3, 42, and 5, which is the other control system, the voltage VD of the DC power line 6 is detected and detected. They are controlled to respective set voltage values VD1, VD2 or VD4, VD3. A voltage value VD1 is set in the voltage adjustment section 5V of the AC/DC inverter 5, voltage values VD2 and VD4 are set in the voltage adjustment section 4V of the DC/DC converter 42, and the voltage of the first DC/DC converter 3 A voltage value VD3 is set in the adjusting section 3V.
 この時各電圧値の大小関係は、電圧値VD3>電圧値VD2>電圧値VD1とされており、通常は直流電力線6の電圧VDはAC/DCインバータ5の電圧調整部5Vによる制御により電圧値VD1に制御しているが、直流電力線6の電圧VDが上昇した時にはDC/DCコンバータ42の電圧調整部4Vによる制御により電圧値VD2に制御し、直流電力線6の電圧VDがさらに上昇した時には第1のDC/DCコンバータ3の電圧調整部3Vによる制御により電圧値VD3に制御する。電圧値VD4については後述する。 At this time, the magnitude relationship of each voltage value is voltage value VD3>voltage value VD2>voltage value VD1. Although it is controlled to VD1, when the voltage VD of the DC power line 6 rises, it is controlled to the voltage value VD2 by the control by the voltage adjustment unit 4V of the DC/DC converter 42, and when the voltage VD of the DC power line 6 further rises, the 1 is controlled by the voltage adjustment unit 3V of the DC/DC converter 3 of 1 to the voltage value VD3. The voltage value VD4 will be described later.
 なお、結果的に電圧を目標値VDに制御できないことがあるが、電圧制御自体は継続実施されている。AC/DCインバータ5は常時VD1への制御を試みるが、変換電力上限に到達してしまい、結果としてP3+P4>P5となって電圧がVD1に制御されず上昇してしまうということが生じる。その際に蓄電装置がVD2への電圧制御を開始するが、AC/DCインバータ5は制御動作(VD1への制御)を継続している。このことは、蓄電装置4についても同様である。 Although it may not be possible to control the voltage to the target value VD as a result, the voltage control itself is continued. The AC/DC inverter 5 always tries to control the voltage to VD1, but the conversion power reaches the upper limit, resulting in P3+P4>P5, and the voltage rises without being controlled to VD1. At that time, the power storage device starts voltage control to VD2, but the AC/DC inverter 5 continues the control operation (control to VD1). This also applies to power storage device 4 .
 上記した2種類の制御体系の適用により、3組の変換装置3、42、5は電力供給設備制御部7から設定された長周期での各種制限に関する制御指令の範囲内で、直流電力線6の電圧制御を3組の変換装置3、42、5が実施することになる。 By applying the two types of control systems described above, the three sets of converters 3, 42, and 5 control the DC power line 6 within the range of control commands related to various long-cycle restrictions set by the power supply facility control unit 7. Three sets of converters 3, 42, 5 will perform the voltage control.
 この分担制御は、電力供給設備1の運転状況に応じて、具体的には以下のように実行される。まず、AC/DCインバータ5は、直流電力線6の電圧VDを電圧値VD1に制御する。電圧値VD1は例えば350Vである。AC/DCインバータ5は、直流電力線6の電圧VDが電圧値VD1に制御されるように、交流出力電力P5を制御する。このとき、第1のDC/DCコンバータ3の出力電力P3と、蓄電装置4の放電電力P4の和が、AC/DCインバータ5の交流出力電力P5と等しい(P3+P4=P5)。第1の電圧VD1は、直流電圧線6に接続されているAC/DCインバータ5、第1のDC/DCコンバータ3、蓄電装置4のそれぞれの入力電圧範囲に共通する電圧範囲のうち、最大値、最小値を除く電圧の中から設定する。 Specifically, this sharing control is executed as follows according to the operation status of the power supply facility 1. First, AC/DC inverter 5 controls voltage VD of DC power line 6 to voltage value VD1. The voltage value VD1 is, for example, 350V. AC/DC inverter 5 controls AC output power P5 so that voltage VD of DC power line 6 is controlled to voltage value VD1. At this time, the sum of the output power P3 of the first DC/DC converter 3 and the discharge power P4 of the power storage device 4 is equal to the AC output power P5 of the AC/DC inverter 5 (P3+P4=P5). The first voltage VD1 is the maximum value of the voltage range common to the input voltage ranges of the AC/DC inverter 5, the first DC/DC converter 3, and the power storage device 4 connected to the DC voltage line 6. , the voltage except for the minimum value.
 直流電力線6の電圧VDが電圧値VD1より高い場合、AC/DCインバータ5は、配電線8側に交流電力を出力して、負荷10へ給電することで直流電力線6の電圧VDを電圧値VD1に低下させる。直流電力線6の電圧VDが電圧値VD1より低い場合、AC/DCインバータ5は、配電線8側から交流電源9の電力を受電して、蓄電装置4への電力供給を行うことで直流電力線6の電圧VDを電圧値VD1に上昇させる。 When the voltage VD of the DC power line 6 is higher than the voltage value VD1, the AC/DC inverter 5 outputs AC power to the distribution line 8 side and feeds it to the load 10 to increase the voltage VD of the DC power line 6 to the voltage value VD1. lower to When the voltage VD of the DC power line 6 is lower than the voltage value VD1, the AC/DC inverter 5 receives the power of the AC power supply 9 from the distribution line 8 side, and supplies the power to the power storage device 4, whereby the DC power line 6 is increased to a voltage value VD1.
 以上のように、AC/DCインバータ5は変換電力の制御により、直流電力線6の電圧VDを電圧値VD1に制御できる。本実施例では、直流側から交流側への電力変換を正、交流側から直流側への電力変換を負とする。 As described above, the AC/DC inverter 5 can control the voltage VD of the DC power line 6 to the voltage value VD1 by controlling the converted power. In this embodiment, power conversion from the DC side to the AC side is positive, and power conversion from the AC side to the DC side is negative.
 しかし、AC/DCインバータ5が変換できる電力は定格電力により制限される。また、電力供給設備制御部7が交流電源9への逆潮流電力、受電電力を管理しているとき、AC/DCインバータ5は電力供給設備制御部7から変換電力上下限値を指令される。このため、AC/DCインバータ5の変換電力の上限は、AC/DCインバータ5の定格電力と電力供給設備制御部7から指令される変換電力上限値の最小値となり、AC/DCインバータ5の変換電力の下限は、AC/DCインバータ5の定格電力×(-1)と電力供給設備制御部7から指令される変換電力下限値の最大値となる。この変換電力の上下限値により、AC/DCインバータ5が直流電力線6の電圧VDを電圧値VD1に制御できない場合がある。 However, the power that the AC/DC inverter 5 can convert is limited by the rated power. When the power supply facility control unit 7 manages the reverse flow power to the AC power supply 9 and the received power, the AC/DC inverter 5 is commanded by the power supply facility control unit 7 for the upper and lower limits of the converted power. Therefore, the upper limit of the converted power of the AC/DC inverter 5 is the minimum value of the rated power of the AC/DC inverter 5 and the upper limit of the converted power commanded from the power supply facility control unit 7. The lower limit of the power is the maximum value of the rated power of the AC/DC inverter 5×(−1) and the lower limit of the converted power commanded from the power supply facility control unit 7 . Depending on the upper and lower limits of the converted power, the AC/DC inverter 5 may not be able to control the voltage VD of the DC power line 6 to the voltage value VD1.
 図2に、本発明適用時の各部電力と直流電力線の電圧VDの制御事例1を示す。まずここでは電力供給設備1の各部電力として、第1のDC/DCコンバータ3の出力電力P3と、蓄電装置4の放電電力P4と、AC/DCインバータ5の交流出力電力P5を、図2の上部に記載している。ただしここでは、AC/DCインバータ5の変換電力P5は交流側への出力を正、交流側からの入力(受電)を負とする。また、蓄電装置4の充放電電力P4は放電を正、充電を負とする。第1のDC/DCコンバータ3の出力P3は正とする。 FIG. 2 shows control example 1 of the power of each part and the voltage VD of the DC power line when the present invention is applied. First, here, the output power P3 of the first DC/DC converter 3, the discharge power P4 of the power storage device 4, and the AC output power P5 of the AC/DC inverter 5 are used as the power for each part of the power supply facility 1, as shown in FIG. listed above. However, in this case, the converted power P5 of the AC/DC inverter 5 has a positive output to the AC side and a negative input (power reception) from the AC side. Also, the charge/discharge power P4 of the power storage device 4 is positive when discharged and negative when charged. Assume that the output P3 of the first DC/DC converter 3 is positive.
 また図2の下部には、直流電力線の電圧VDの時間変化と3組の夫々に設定された電圧値VD1、VD2、VD3との関係を示している。 In addition, the lower part of FIG. 2 shows the relationship between the time change of the voltage VD of the DC power line and the voltage values VD1, VD2, and VD3 set for each of the three sets.
 図2上部の横軸に示した時刻表記によれば、電力供給設備制御部7の制御周期はTであり、時刻0において指令を与えた後は、時刻Tに再度指令を与えることを示している。これに対し、周期T内に表記される時刻T1からT6は電力供給設備1における3組の変換装置3、42、5での各種イベントの発生時刻であり、このことからも明らかなように、電力供給設備1の制御は長周期制御であり、個別の変換装置3、42、5ごとに配置された電圧調整部5V、3V、4Vによる制御は短周期制御であるといえる。 According to the time notation shown on the horizontal axis in the upper part of FIG. 2, the control cycle of the power supply facility control unit 7 is T, and after giving a command at time 0, it shows that a command is given again at time T. there is On the other hand, the times T1 to T6 written within the period T are the times when various events occur in the three sets of converters 3, 42, and 5 in the power supply facility 1. As is clear from this, It can be said that the control of the power supply facility 1 is long-cycle control, and the control by the voltage regulators 5V, 3V, and 4V arranged for the individual converters 3, 42, and 5 is short-cycle control.
 なお、図1に示した2系統による制御においては、長周期制御の電力供給設備制御部7は変換装置42、5に対して上下限の制限値を与えており、変換装置42、5は与えられた制限の範囲内で、運用されている。但し、再生可能エネルギー源については、発電量をそのまま出力することを優先させ、格別の制限を行わないのがよい。 In addition, in the control by the two systems shown in FIG. operated within the limits set. However, with respect to renewable energy sources, it is preferable to give priority to outputting the amount of power generation as it is, and not to impose any particular restrictions.
 図示の例では、時刻0において、電力供給設備制御部7の指令により、AC/DCインバータ5の変換電力の上限が50kW(時刻0では変換電力P5は40kw)に設定され、また蓄電装置4は充放電電力上限値が20kW、充放電電力下限値が-20kWに設定されている。ただし図示の例では、負荷10への給電のため蓄電装置4は20kWで放電している。また、時刻0において第1のDC/DCコンバータ3の出力は20kWとする。 In the illustrated example, at time 0, the upper limit of the converted power of the AC/DC inverter 5 is set to 50 kW (at time 0, the converted power P5 is 40 kW) by a command from the power supply facility control unit 7, and the power storage device 4 The charge/discharge power upper limit is set to 20 kW, and the charge/discharge power lower limit is set to -20 kW. However, in the illustrated example, the power storage device 4 is discharged at 20 kW in order to supply power to the load 10 . Also, at time 0, the output of the first DC/DC converter 3 is assumed to be 20 kW.
 このとき、第1のDC/DCコンバータ3の出力P3(20kW)と蓄電装置4の放電電力P4(20kW)の合計は40kWであり、AC/DCインバータ5の変換電力P5の上限未満であるため、AC/DCインバータ5は40kWだけ電力変換することで、直流電力線6の電圧VDを電圧値VD1に制御できる。 At this time, the total of the output P3 (20 kW) of the first DC/DC converter 3 and the discharged power P4 (20 kW) of the power storage device 4 is 40 kW, which is less than the upper limit of the converted power P5 of the AC/DC inverter 5. , the AC/DC inverter 5 can control the voltage VD of the DC power line 6 to the voltage value VD1 by converting the power by 40 kW.
 時刻0から時刻T1にかけて、日射の変動により第1のDC/DCコンバータ3の出力電力が増加すると、AC/DCインバータ5は変換電力P5を増加させることで直流電力線6の電圧VDを第1の電圧VD1に制御する。時刻T1になると、第1のDC/DCコンバータ3の出力電力P3が30kWになり、AC/DCインバータ5の変換電力P5は上限値50kWに到達する。 From time 0 to time T1, when the output power of the first DC/DC converter 3 increases due to fluctuations in solar radiation, the AC/DC inverter 5 increases the converted power P5 to bring the voltage VD of the DC power line 6 to the first level. Control to voltage VD1. At time T1, the output power P3 of the first DC/DC converter 3 becomes 30 kW, and the converted power P5 of the AC/DC inverter 5 reaches the upper limit value of 50 kW.
 時刻T1以降、さらに第1のDC/DCコンバータ3の出力電力P3が増加すると、AC/DCインバータ5は変換電力P5を50kWから増加させることができず、直流電力線6の電圧VDが第1の電圧VD1から上昇する。そして、時刻T2には第1の電圧VD1より高く第3の電圧VD3より低い電圧である第2の電圧VD2(例えば、370V)に到達する。 After time T1, when the output power P3 of the first DC/DC converter 3 further increases, the AC/DC inverter 5 cannot increase the converted power P5 from 50 kW, and the voltage VD of the DC power line 6 becomes the first It rises from voltage VD1. Then, at time T2, it reaches a second voltage VD2 (for example, 370 V) that is higher than the first voltage VD1 and lower than the third voltage VD3.
 直流電力線6の電圧VDが第2の電圧VD2以上のとき、この状態はDC/DCコンバータ42の電圧調整部4Vにより検知されて、蓄電装置4は電力供給設備制御部7から指令された充放電電力制御を中止し、直流電力線6の電圧制御を実行する。電圧制御は例えば、直流電力線6の電圧VDを参照値としたフィードバック制御によって行われる。 When the voltage VD of the DC power line 6 is equal to or higher than the second voltage VD2, this state is detected by the voltage adjustment unit 4V of the DC/DC converter 42, and the power storage device 4 charges and discharges as instructed by the power supply equipment control unit 7. Power control is stopped and voltage control of the DC power line 6 is executed. Voltage control is performed, for example, by feedback control using the voltage VD of the DC power line 6 as a reference value.
 このとき本実施例では、蓄電装置4は、第2の電圧VD2を目標値とした電圧制御を実行する。また、蓄電装置4は、電力供給設備制御部7から指令された充放電電力下限値以上の放電電力または指令された充放電電流下限値以上の放電電流を順守する制御範囲内で電圧制御を実行する。本実施例では、充放電電力下限値として-20kWが指令されているものとする。なお、放電電力または放電電流の上限値は、指令された充放電電力上限値と0kWのうちの最小値、または指令された充放電電流上限値と0Aのうちの最小値である。 At this time, in the present embodiment, the power storage device 4 performs voltage control with the second voltage VD2 as the target value. In addition, the power storage device 4 performs voltage control within a control range that complies with a discharge power equal to or higher than the charge/discharge power lower limit commanded by the power supply equipment control unit 7 or a discharge current equal to or higher than the charge/discharge current lower limit commanded. do. In this embodiment, it is assumed that -20 kW is commanded as the charge/discharge power lower limit. The upper limit value of the discharge power or discharge current is the minimum value between the instructed charge/discharge power upper limit value and 0 kW, or the minimum value between the instructed charge/discharge current upper limit value and 0 A.
 また、蓄電池41のSOCが電力供給設備制御部7から指令されたSOC上限値未満の時のみ電圧制御を実行する。この動作により直流電力線6に接続される機器への過電圧印加を防止する。時刻T2以降、蓄電装置4は、放電電力の減少、充電電力増加により第2の電圧を目標値とした電圧制御を実行する。 Also, voltage control is executed only when the SOC of the storage battery 41 is less than the SOC upper limit commanded by the power supply facility control unit 7 . This operation prevents overvoltage from being applied to equipment connected to the DC power line 6 . After time T2, the power storage device 4 executes voltage control with the second voltage as a target value by decreasing the discharging power and increasing the charging power.
 時刻T3になると、蓄電装置4の放電電力が-20kW(充電電力20kW)に到達する。時刻T3以降、さらに第1のDC/DCコンバータ3の出力電力P3が増加しても、蓄電装置4は充電電力を増加させることができないため、直流電力線6の電圧VDは第2の電圧VD2からさらに上昇し、時刻T4になると、第2の電圧VD2より高く最高直流電圧より低い電圧である第3の電圧VD3(例えば、390V)に到達する。最高直流電圧は直流電圧線6に接続されているAC/DCインバータ5、第1のDC/DCコンバータ3、蓄電装置4のなかで、最も低い耐圧となる機器の入力電圧上限値である。 At time T3, the discharged power of the power storage device 4 reaches -20 kW (charged power of 20 kW). After time T3, even if the output power P3 of the first DC/DC converter 3 further increases, the power storage device 4 cannot increase the charging power. It further increases, and at time T4, it reaches a third voltage VD3 (for example, 390 V) that is higher than the second voltage VD2 and lower than the maximum DC voltage. The maximum DC voltage is the input voltage upper limit value of the device with the lowest withstand voltage among the AC/DC inverter 5, the first DC/DC converter 3, and the power storage device 4 connected to the DC voltage line 6.
 図2の下部に示すように以上の動作において、第2の電圧VD2と第3の電圧VD3の関係について、第3の電圧VD3が第2の電圧VD2より高いものと設定している。これは第1のDC/DCコンバータ3の制御切替が蓄電装置4の制御切替より後で行われることを意味する。この設定により、第1のDC/DCコンバータ3がMPPT制御から電圧制御に切り替え、結果として太陽光発電が抑制される手段を最終手段とし、可能な限り太陽電池2での発電を継続できる。 As shown in the lower part of FIG. 2, in the above operation, the relationship between the second voltage VD2 and the third voltage VD3 is set such that the third voltage VD3 is higher than the second voltage VD2. This means that control switching of the first DC/DC converter 3 is performed after control switching of the power storage device 4 . With this setting, the first DC/DC converter 3 switches from MPPT control to voltage control, and as a result, the means for suppressing photovoltaic power generation can be used as a final means, and power generation by the solar cell 2 can be continued as much as possible.
 もし、この電圧の大小関係を入れ替え、第2の電圧VD2を第3の電圧VD3より高く、第3の電圧VD3を第1の電圧VD1より高く設定した場合、蓄電装置4が制御を切り替えて充電電力を増加させる前に太陽電池2での発電を抑制してしまい、太陽電池2の発電能力を無駄にしてしまうこととなる。 If the magnitude relationship of these voltages is switched so that the second voltage VD2 is set higher than the third voltage VD3 and the third voltage VD3 is set higher than the first voltage VD1, the power storage device 4 switches the control to charge the battery. Power generation by the solar cell 2 is suppressed before the power is increased, and the power generation capacity of the solar cell 2 is wasted.
 直流電力線6の電圧VDが第3の電圧VD3以上のとき、この状態は第1のDC/DCコンバータ3の電圧調整部3Vにより検知されて、第1のDC/DCコンバータ3はMPPT制御を中止し、直流電力線6の電圧制御を実行する。このとき本実施例では、第1のDC/DCコンバータ3は、第3の電圧VD3を目標値とした電圧制御を実行する。直流電力線6の電圧VDが第3の電圧VD3以上のときは、太陽電池で発電した電力すべてを消費または充電できる負荷、蓄電池が存在しないため、太陽電池2の発電電力を抑制する必要がある。以上に述べた電圧制御への切替により、太陽電池2の発電を抑制し、直流電力線6に接続される機器への過電圧印加を防止する。 When the voltage VD of the DC power line 6 is equal to or higher than the third voltage VD3, this state is detected by the voltage adjustment section 3V of the first DC/DC converter 3, and the first DC/DC converter 3 stops MPPT control. and voltage control of the DC power line 6 is executed. At this time, in this embodiment, the first DC/DC converter 3 performs voltage control with the third voltage VD3 as the target value. When the voltage VD of the DC power line 6 is equal to or higher than the third voltage VD3, there is no load or storage battery that can consume or charge all the power generated by the solar cell, so it is necessary to suppress the power generated by the solar cell 2. By switching to the voltage control described above, the power generation of the solar cell 2 is suppressed and the application of overvoltage to the equipment connected to the DC power line 6 is prevented.
 時刻T4以降、日射が減少し、太陽電池2の発電電力が減少すると、時刻T5で直流電力線6の電圧VDが第3の電圧VD3未満に低下する。このとき、第1のDC/DCコンバータ3は直流電力線6の電圧制御を終了し、MPPT制御を再開する。なお、蓄電装置4は継続して直流電力線6の電圧VDを第2の電圧に制御している状態である。 After time T4, when the solar radiation decreases and the power generated by the solar cell 2 decreases, the voltage VD of the DC power line 6 drops below the third voltage VD3 at time T5. At this time, the first DC/DC converter 3 terminates the voltage control of the DC power line 6 and restarts the MPPT control. Note that the power storage device 4 continues to control the voltage VD of the DC power line 6 to the second voltage.
 太陽電池2の発電電力がさらに減少すると、時刻T6で、直流電力線6の電圧VDが第2の電圧VD2未満に低下する。このとき、蓄電装置4は直流電力線6の電圧制御を終了し、電力供給設備制御部7から指令されていた充放電電力制御を再開する。そして、直流電力線6の電圧VDはAC/DCインバータの電圧制御により、時刻T7以降、第1の電圧VD1に制御される。 When the power generated by the solar cell 2 further decreases, the voltage VD of the DC power line 6 drops below the second voltage VD2 at time T6. At this time, the power storage device 4 terminates the voltage control of the DC power line 6 and restarts the charge/discharge power control instructed by the power supply equipment control unit 7 . After time T7, the voltage VD of the DC power line 6 is controlled to the first voltage VD1 by voltage control of the AC/DC inverter.
 電力供給設備制御部7から新しい指令を受信する時刻Tにおいて、直流電力線6の電圧VDが第1の電圧VD1である。このとき、AC/DCインバータ5の変換電力の上限は、AC/DCインバータ5の定格電力と、時刻Tで電力供給設備制御部7から受信した変換電力上限値の最小値に更新される。また、AC/DCインバータ5の変換電力の下限は、AC/DCインバータ5の定格電力×(-1)と電力供給設備制御部7から指令される変換電力下限値の最大値となる。蓄電装置4は、時刻Tで電力供給設備制御部7から受信した充放電電力指令または充放電電流指令に従って動作する。また、充放電電力上下限値または充放電電流上下限値、SOC上下限値を更新する。図2における時刻T以降の電力は、AC/DCインバータ5の変換電力の上限が50kWに更新され、蓄電装置4が新しい充放電電力指令値10kWで放電した場合を示している。 At time T when a new command is received from the power supply facility control unit 7, the voltage VD of the DC power line 6 is the first voltage VD1. At this time, the upper limit of the converted power of the AC/DC inverter 5 is updated to the minimum value of the rated power of the AC/DC inverter 5 and the upper limit of the converted power received from the power supply facility control unit 7 at time T. The lower limit of the converted power of the AC/DC inverter 5 is the maximum value of the rated power of the AC/DC inverter 5×(−1) and the lower limit of the converted power commanded from the power supply facility control unit 7 . Power storage device 4 operates according to the charge/discharge power command or the charge/discharge current command received from power supply facility control unit 7 at time T. FIG. In addition, the charge/discharge power upper/lower limit value, the charge/discharge current upper/lower limit value, and the SOC upper/lower limit value are updated. The power after time T in FIG. 2 shows the case where the upper limit of the converted power of AC/DC inverter 5 is updated to 50 kW, and power storage device 4 discharges with the new charge/discharge power command value of 10 kW.
 図3に、本発明適用時の各部電力と直流電力線の電圧VDの制御事例2を示す。時刻T5までは図2に示した制御事例1と同様であるため説明を割愛する。図3では、時刻Tにおいて、第1のDC/DCコンバータ3はMPPT制御を実行し、蓄電装置4は直流電力線6の電圧VDを第2の電圧に制御している。本実施例では、蓄電装置4は放電電力5kWで動作しているものとする。 FIG. 3 shows control example 2 of the power of each part and the voltage VD of the DC power line when the present invention is applied. Since the process up to time T5 is the same as control case 1 shown in FIG. 2, the description is omitted. In FIG. 3, at time T, the first DC/DC converter 3 performs MPPT control, and the power storage device 4 controls the voltage VD of the DC power line 6 to the second voltage. In this embodiment, it is assumed that the power storage device 4 is operating with a discharge power of 5 kW.
 直流電力線6の電圧VDが第2の電圧VD2以上第3の電圧VD3未満のときに時刻Tを迎え、AC/DCインバータ5および蓄電装置4が電力供給設備制御部7から新しい指令を受信した場合、AC/DCインバータ5の変換電力の上限は、図2での説明と同様に、AC/DCインバータ5の定格電力と、時刻Tで電力供給設備制御部7から受信した変換電力上限電力の最小値に更新される。図3では時刻Tにおいて、AC/DCインバータ5の変換電力の上限が50kWに更新されたとする。 AC/DC inverter 5 and power storage device 4 receive a new command from power supply equipment control unit 7 at time T when voltage VD of DC power line 6 is greater than or equal to second voltage VD2 and less than third voltage VD3 , the upper limit of the converted power of the AC/DC inverter 5 is the minimum of the rated power of the AC/DC inverter 5 and the upper limit of the converted power received from the power supply facility control unit 7 at time T, as described in FIG. value. Assume that at time T in FIG. 3, the upper limit of the converted power of the AC/DC inverter 5 is updated to 50 kW.
 蓄電装置4は、充放電電力上下限値または充放電電流上下限値、SOC上下限値を電力供給設備制御部7から受信した新しい値に更新する。また、蓄電装置4は、時刻Tで電力供給設備制御部7から受信した充放電電力指令または充放電電流指令(本実施例において、指令値と呼ぶ)と、時刻Tにおける実際の充放電電力または充放電電流(本実施例において、実際の値と呼ぶ)とを、放電方向の電力、電流を正として比較する。そして、指令値が実際の値より小さい場合は、蓄電装置4は直流電力線6の電圧制御を終了し、指令値に従って充放電電力制御を実施する。指令値が実際の値より大きい場合は、直流電力線6の電圧制御を継続する。ただし、時刻Tで受信した指令値は保持され、蓄電装置4は直流電力線6の電圧制御を終了し、充放電電力制御を再開する際の電力供給設備制御部7から指令値として使用される。 The power storage device 4 updates the charge/discharge power upper/lower limit value, the charge/discharge current upper/lower limit value, and the SOC upper/lower limit value to the new values received from the power supply facility control unit 7 . In addition, the power storage device 4 stores the charge/discharge power command or charge/discharge current command (referred to as a command value in the present embodiment) received from the power supply facility control unit 7 at time T, and the actual charge/discharge power at time T or The charge/discharge current (referred to as the actual value in this embodiment) is compared with the power and current in the discharge direction as positive. Then, when the command value is smaller than the actual value, power storage device 4 terminates voltage control of DC power line 6 and performs charge/discharge power control according to the command value. If the command value is greater than the actual value, voltage control of the DC power line 6 is continued. However, the command value received at time T is retained and used as a command value from power supply equipment control unit 7 when power storage device 4 terminates voltage control of DC power line 6 and restarts charge/discharge power control.
 図3において、蓄電装置4の時刻Tの直前における放電電力は5kWである。時刻Tで、蓄電装置4は電力供給設備制御部7から放電-10kW(充電10kW)の充放電電力指令を受信すると、実際の値5kWに対して指令値が-10kWと小さいため、蓄電装置4は直流電力線6の電圧制御を終了し、指令値-10kWに従って放電電力制御を実施する。このとき、直流電力線6の電圧VDはAC/DCインバータの電圧制御により第1の電圧VD1に制御される。 In FIG. 3, the discharge power of the power storage device 4 immediately before time T is 5 kW. At time T, when power storage device 4 receives a charge/discharge power command of −10 kW for discharging (10 kW for charging) from power supply facility control unit 7, the command value is −10 kW, which is smaller than the actual value of 5 kW. terminates the voltage control of the DC power line 6 and implements the discharge power control according to the command value -10 kW. At this time, the voltage VD of the DC power line 6 is controlled to the first voltage VD1 by voltage control of the AC/DC inverter.
 図4に、本発明適用時の各部電力と直流電力線の電圧VDの制御事例3を示す。時刻T4までは図2に示した制御事例1と同様であるため説明を割愛する。図4では、時刻Tにおいて、第1のDC/DCコンバータ3は直流電力線6の電圧VDを第3の電圧VD3に制御している。蓄電装置4は放電電力-20kW(充電電力20kW)で動作しているものとする。 FIG. 4 shows control example 3 of the power of each part and the voltage VD of the DC power line when the present invention is applied. Since the process up to time T4 is the same as control case 1 shown in FIG. 2, the description is omitted. In FIG. 4, at time T, the first DC/DC converter 3 controls the voltage VD of the DC power line 6 to the third voltage VD3. It is assumed that the power storage device 4 operates with a discharge power of -20 kW (a charge power of 20 kW).
 直流電力線6の電圧VDが第3の電圧VD3以上のときに時刻Tを迎え、AC/DCインバータ5および蓄電装置4が電力供給設備制御部7から新しい指令を受信した場合、AC/DCインバータ5の変換電力の上限は、図2での説明と同様に、AC/DCインバータ5の定格電力と、時刻Tで電力供給設備制御部7から受信した変換電力上限値の最小値に更新される。 When time T arrives when the voltage VD of the DC power line 6 is equal to or higher than the third voltage VD3, and the AC/DC inverter 5 and the power storage device 4 receive a new command from the power supply facility control unit 7, the AC/DC inverter 5 is updated to the minimum value of the rated power of the AC/DC inverter 5 and the converted power upper limit value received from the power supply facility control unit 7 at time T, as described in FIG.
 蓄電装置4は、充放電電力上下限値または充放電電流上下限値、SOC上下限値を電力供給設備制御部7から受信した新しい指令に更新する。また、蓄電装置4は、時刻Tで電力供給設備制御部7から受信した充放電電力指令または充放電電流指令を保持して直流電力線6の電圧制御を継続する。保持した指令値は、蓄電装置4が直流電力線6の電圧制御を終了し、充放電電力制御を再開する際に電力供給設備制御部7からの指令値として使用される。 The power storage device 4 updates the charge/discharge power upper/lower limit value, the charge/discharge current upper/lower limit value, or the SOC upper/lower limit value to the new command received from the power supply facility control unit 7 . Further, power storage device 4 holds the charge/discharge power command or charge/discharge current command received from power supply facility control unit 7 at time T, and continues voltage control of DC power line 6 . The stored command value is used as a command value from the power supply facility control unit 7 when the power storage device 4 ends the voltage control of the DC power line 6 and restarts the charge/discharge power control.
 時刻Tにおいて、AC/DCインバータ5の変換電力の上限が50kWに、蓄電装置4の充放電電力上下限値が上限20kW、下限-40kWに更新されたとする。また、蓄電装置4の充放電電力指令は-20kWとする。このとき、直流電力線6の電圧VDは第3の電圧VD3であるため、蓄電装置4は引き続き直流電力線6の電圧制御を実施する。時刻T以前は、充放電電力下限値が-20kWであったが、時刻Tで充放電電力下限値は-40kWに更新されたため、蓄電装置4の放電電力は減少する。この動作により、時刻T7で直流電力線6の電圧VDが第3の電圧VD3から第2の電圧VD2に低下すると、第1のDC/DCコンバータ3は直流電力線6の電圧制御を終了し、MPPT制御を再開する。そして、蓄電装置4は継続して直流電力線6の電圧VDを第2の電圧に制御する。
以上の動作の他に、各電圧値の大小関係を、電圧値VD3>電圧値VD1>電圧値VD2と設定し、通常は直流電力線6の電圧VDはDC/DCコンバータ42の電圧調整部4Vによる制御により電圧値VD2に制御しているが、直流電力線6の電圧VDが上昇した時にはAC/DCインバータ5の電圧調整部5Vによる制御により電圧値VD1に制御し、直流電力線6の電圧VDがさらに上昇した時には第1のDC/DCコンバータ3の電圧調整部3Vによる制御により電圧値VD3に制御するという制御動作も実施できる。この動作では、電力供給設備制御部7はAC/DCインバータ5に対して交流出力電力を指令し、AC/DCインバータ5は、直流電力線6の電圧VDが電圧値VD1未満の時は指令に従って交流電力線8に交流出力電力P5を出力する。ただし、DC/DCコンバータ42の電圧調整部4Vが直流電力線6の電圧VDを電圧値VD2に制御できず、電圧VDが上昇して電圧値VD1を超過すると、AC/DCインバータ5の電圧調整部5Vによる制御により電圧VDを電圧値VD1に制御する。この時、AC/DCインバータ5は、電力供給設備制御部7から指令される変換電力上下限値の範囲内で交流出力電力P5を決定する。この動作により、交流電力線8への出力電力P5を指令、制御した電力供給設備1を構成できる。
Assume that at time T, the upper limit of the converted power of the AC/DC inverter 5 is updated to 50 kW, and the upper and lower limits of the charge/discharge power of the power storage device 4 are updated to the upper limit of 20 kW and the lower limit of −40 kW. Also, the charging/discharging power command for the storage device 4 is assumed to be -20 kW. At this time, since the voltage VD of the DC power line 6 is the third voltage VD3, the power storage device 4 continues to control the voltage of the DC power line 6 . Before time T, the charge/discharge power lower limit was −20 kW, but at time T, the charge/discharge power lower limit was updated to −40 kW, so the discharge power of power storage device 4 decreases. As a result of this operation, when the voltage VD of the DC power line 6 drops from the third voltage VD3 to the second voltage VD2 at time T7, the first DC/DC converter 3 ends the voltage control of the DC power line 6 and MPPT control is performed. to resume. Then, power storage device 4 continues to control voltage VD of DC power line 6 to the second voltage.
In addition to the above operation, the magnitude relationship of each voltage value is set as voltage value VD3>voltage value VD1>voltage value VD2, and normally the voltage VD of the DC power line 6 is determined by the voltage adjustment unit 4V of the DC/DC converter 42. Although it is controlled to the voltage value VD2 by control, when the voltage VD of the DC power line 6 rises, it is controlled to the voltage value VD1 by the control by the voltage adjustment unit 5V of the AC/DC inverter 5, and the voltage VD of the DC power line 6 is further increased. It is also possible to carry out a control operation in which the voltage is controlled to the voltage value VD3 by the control by the voltage adjusting section 3V of the first DC/DC converter 3 when it rises. In this operation, the power supply facility control unit 7 commands the AC/DC inverter 5 to output AC power, and the AC/DC inverter 5 follows the command when the voltage VD of the DC power line 6 is less than the voltage value VD1. AC output power P5 is output to the power line 8 . However, when the voltage adjustment unit 4V of the DC/DC converter 42 cannot control the voltage VD of the DC power line 6 to the voltage value VD2 and the voltage VD rises and exceeds the voltage value VD1, the voltage adjustment unit of the AC/DC inverter 5 The voltage VD is controlled to the voltage value VD1 by control with 5V. At this time, the AC/DC inverter 5 determines the AC output power P5 within the range of the converted power upper and lower limit values instructed by the power supply facility control unit 7 . By this operation, the power supply facility 1 that commands and controls the output power P5 to the AC power line 8 can be configured.
 図5に、本発明適用時の各部電力と直流電力線の電圧VDの制御事例4を示す。図2、図3、図4では、直流電力線の電圧VDが上昇した時の対応を示しているが、図5、図6では直流電力線の電圧VDが上昇下降した時の対応を示している。 FIG. 5 shows control example 4 of the power of each part and the voltage VD of the DC power line when the present invention is applied. 2, 3, and 4 show the response when the voltage VD of the DC power line rises, while FIGS. 5 and 6 show the response when the voltage VD of the DC power line rises and falls.
 図5の例では、時刻0において、AC/DCインバータ5の変換電力の下限が-50kWに設定され、蓄電装置4は充放電電力上限値が60kW、充放電電力下限値が-60kWに設定される。また、電力供給設備制御部7の指令により蓄電装置4は-60kWで放電している。また、時刻0において第1のDC/DCコンバータ3の出力は20kWとする。このとき、第1のDC/DCコンバータ3の出力と蓄電装置4の放電電力の合計は-40kWであり、AC/DCインバータ5の変換電力の下限以上であるため、AC/DCインバータ5は-40kWだけ電力変換(40kWだけ配電線8から受電)することで、直流電力線6の電圧VDを第1の電圧VD1に制御できる。 In the example of FIG. 5, at time 0, the lower limit of the converted power of the AC/DC inverter 5 is set to −50 kW, and the charge/discharge power upper limit of the power storage device 4 is set to 60 kW, and the charge/discharge power lower limit is set to −60 kW. be. In addition, the power storage device 4 is discharged at -60 kW according to a command from the power supply equipment control unit 7 . Also, at time 0, the output of the first DC/DC converter 3 is assumed to be 20 kW. At this time, the sum of the output of the first DC/DC converter 3 and the discharge power of the power storage device 4 is -40 kW, which is equal to or higher than the lower limit of the converted power of the AC/DC inverter 5. Therefore, the AC/DC inverter 5 is - By converting 40 kW of power (receiving 40 kW of power from the distribution line 8), the voltage VD of the DC power line 6 can be controlled to the first voltage VD1.
 時刻0から時刻T1にかけて、日射の変動により第1のDC/DCコンバータ3の出力電力が減少すると、AC/DCインバータ5は変換電力を減少させることで直流電力線6の電圧VDを第1の電圧VDに制御する。時刻T1になると、第1のDC/DCコンバータ3の出力電力が10kWになり、AC/DCインバータ5の変換電力は下限値-50kWに到達する。 From time 0 to time T1, when the output power of the first DC/DC converter 3 decreases due to fluctuations in solar radiation, the AC/DC inverter 5 reduces the converted power to convert the voltage VD of the DC power line 6 to the first voltage. Control to VD. At time T1, the output power of the first DC/DC converter 3 becomes 10 kW, and the converted power of the AC/DC inverter 5 reaches the lower limit value of -50 kW.
 時刻T1以降、さらに第1のDC/DCコンバータ3の出力電力が減少すると、AC/DCインバータ5は変換電力を-50kWから減少させることができず、直流電力線6の電圧VDが第1の電圧VD1から低下する。そして、時刻T2には第1の電圧VD1より低い電圧である第4の電圧VD4(例えば、340V)に到達する。第4の電圧VD4は電力供給設備1の最低直流電圧より高い値に設定される。最低直流電圧はAC/DCインバータ5の交流出力端の交流電圧最大値(例えば220√2V)より高い値(例えば320V)が設定される。直流電力線6の電圧VDが最低直流電圧以下になると、直流電力線6に接続されている機器(第1のDC/DCコンバータ3、蓄電装置4、AC/DCインバータ5)はすべて動作を停止する。 After time T1, when the output power of the first DC/DC converter 3 further decreases, the AC/DC inverter 5 cannot decrease the converted power from -50 kW, and the voltage VD of the DC power line 6 becomes the first voltage. Decrease from VD1. Then, at time T2, it reaches a fourth voltage VD4 (for example, 340 V) that is lower than the first voltage VD1. The fourth voltage VD4 is set to a value higher than the lowest DC voltage of the power supply facility 1. The minimum DC voltage is set to a value (eg, 320 V) higher than the maximum AC voltage value (eg, 220 2 V) at the AC output terminal of the AC/DC inverter 5 . When the voltage VD of the DC power line 6 becomes equal to or lower than the minimum DC voltage, the devices connected to the DC power line 6 (first DC/DC converter 3, power storage device 4, AC/DC inverter 5) all stop operating.
 直流電力線6の電圧VDが第4の電圧VD4以下のとき、蓄電装置4は電力供給設備制御部7から指令された充放電電力制御を中止し、直流電力線6の電圧制御を実行する。このとき本実施例では、蓄電装置4は、第4の電圧VD4を目標値として、充放電電力上限値未満の放電電力または充放電電流上限値未満の放電電流で電圧制御を実行する。また、蓄電池41のSOCが電力供給設備制御部7から指令されたSOC下限値以上の時のみ電圧制御を実行する。この動作により直流電力線6に接続される機器の稼働に必要な電圧を確保する。 When the voltage VD of the DC power line 6 is equal to or lower than the fourth voltage VD4, the power storage device 4 stops the charge/discharge power control commanded by the power supply facility control unit 7 and executes the voltage control of the DC power line 6. At this time, in the present embodiment, the power storage device 4 uses the fourth voltage VD4 as a target value and performs voltage control with a discharge power less than the charge/discharge power upper limit value or a discharge current less than the charge/discharge current upper limit value. Further, voltage control is executed only when the SOC of the storage battery 41 is equal to or higher than the SOC lower limit commanded by the power supply facility control unit 7 . This operation secures the voltage necessary for the operation of the equipment connected to the DC power line 6 .
 時刻T2以降、蓄電装置4は、放電電力の増加により第4の電圧を目標値とした電圧制御を継続する。 After time T2, the power storage device 4 continues voltage control with the fourth voltage as the target value due to an increase in discharge power.
 時刻T3以降、第1のDC/DCコンバータ3の出力電力が増加すると、蓄電装置4は、放電電力の減少により第4の電圧VD4を目標値とした電圧制御を継続する。そして、さらに第1のDC/DCコンバータ3の出力電力が増加すると、時刻T4で、直流電力線6の電圧VDが第4の電圧VD4以上となる。このとき、蓄電装置4は直流電力線6の電圧制御を終了し、電力供給設備制御部7から指令されていた充放電電力制御を再開する。そして、直流電力線6の電圧VDはAC/DCインバータの電圧制御により、時刻T5以降、第1の電圧VD1に制御される。 After time T3, when the output power of the first DC/DC converter 3 increases, the power storage device 4 continues voltage control with the fourth voltage VD4 as the target value due to the decrease in discharge power. Then, when the output power of the first DC/DC converter 3 further increases, the voltage VD of the DC power line 6 becomes equal to or higher than the fourth voltage VD4 at time T4. At this time, the power storage device 4 terminates the voltage control of the DC power line 6 and restarts the charge/discharge power control instructed by the power supply equipment control unit 7 . After time T5, the voltage VD of the DC power line 6 is controlled to the first voltage VD1 by voltage control of the AC/DC inverter.
 電力供給設備制御部7から新しい指令を受信する時刻Tにおいて、直流電力線6の電圧VDが第1の電圧VD1である。このとき、AC/DCインバータ5の変換電力の上限は、AC/DCインバータ5の定格電力と、時刻Tで電力供給設備制御部7から受信した変換電力上限値の最小値に更新される。また、AC/DCインバータ5の変換電力の下限は、AC/DCインバータ5の定格電力×(-1)と電力供給設備制御部7から指令される変換電力下限値の最大値に更新される。 At time T when a new command is received from the power supply facility control unit 7, the voltage VD of the DC power line 6 is the first voltage VD1. At this time, the upper limit of the converted power of the AC/DC inverter 5 is updated to the minimum value of the rated power of the AC/DC inverter 5 and the upper limit of the converted power received from the power supply facility control unit 7 at time T. Also, the lower limit of the converted power of the AC/DC inverter 5 is updated to the maximum value of the rated power of the AC/DC inverter 5×(−1) and the lower limit of the converted power commanded from the power supply equipment control unit 7 .
 蓄電装置4は、時刻Tで電力供給設備制御部7から受信した充放電電力指令または充放電電流指令に従って動作する。また、充放電電力上下限値または充放電電流上下限値、SOC上下限値を更新する。図5における時刻T以降の電力は、AC/DCインバータ5の変換電力の下限が-50kWに更新され、蓄電装置4が新しい充放電電力指令値-50kWで放電した場合を示している。 The power storage device 4 operates according to the charge/discharge power command or the charge/discharge current command received from the power supply facility control unit 7 at time T. In addition, the charge/discharge power upper/lower limit value, the charge/discharge current upper/lower limit value, and the SOC upper/lower limit value are updated. The power after time T in FIG. 5 shows the case where the lower limit of the converted power of AC/DC inverter 5 is updated to −50 kW, and power storage device 4 discharges with the new charge/discharge power command value of −50 kW.
 図6に、本発明適用時の各部電力と直流電力線の電圧VDの制御事例5を示す。時刻T3までは、図5に示した制御事例4と同様であるため説明を割愛する。図6では、時刻Tにおいて、第1のDC/DCコンバータ3はMPPT制御を実行し、蓄電装置4は直流電力線6の電圧VDを第4の電圧に制御している。本実施例では、蓄電装置4は放電電力-55kW(充電電力55kW)で動作しているものとする。 FIG. 6 shows control example 5 of the power of each part and the voltage VD of the DC power line when the present invention is applied. Since the process up to time T3 is the same as control case 4 shown in FIG. 5, the description is omitted. In FIG. 6, at time T, first DC/DC converter 3 executes MPPT control, and power storage device 4 controls voltage VD of DC power line 6 to a fourth voltage. In this embodiment, it is assumed that the power storage device 4 is operating with a discharge power of -55 kW (charge power of 55 kW).
 直流電力線6の電圧VDが第4の電圧VD4以上第1の電圧VD1未満のときに時刻Tを迎え、AC/DCインバータ5および蓄電装置4が電力供給設備制御部7から新しい指令を受信した場合、AC/DCインバータ5の変換電力の上限は、図5での説明と同様に、AC/DCインバータ5の定格電力と、時刻Tで電力供給設備制御部7から受信した変換電力上限電力の最小値に更新される。また、AC/DCインバータ5の変換電力の下限は、AC/DCインバータ5の定格電力×(-1)と電力供給設備制御部7から指令される変換電力下限値の最大値に更新される。 AC/DC inverter 5 and power storage device 4 receive a new command from power supply facility control unit 7 at time T when voltage VD of DC power line 6 is greater than or equal to fourth voltage VD4 and less than first voltage VD1 , the upper limit of the converted power of the AC/DC inverter 5 is the minimum of the rated power of the AC/DC inverter 5 and the upper limit of the converted power received from the power supply equipment control unit 7 at time T, as described in FIG. value. Also, the lower limit of the converted power of the AC/DC inverter 5 is updated to the maximum value of the rated power of the AC/DC inverter 5×(−1) and the lower limit of the converted power commanded from the power supply equipment control unit 7 .
 蓄電装置4は、充放電電力上下限値または充放電電流上下限値、SOC上下限値を電力供給設備制御部7から受信した新しい値に更新する。また、蓄電装置4は、時刻Tで電力供給設備制御部7から受信した充放電電力指令または充放電電流指令(本実施例において、指令値と呼ぶ)と、時刻Tにおける実際の充放電電力または充放電電流(本実施例において、実際の値と呼ぶ)とを、放電方向の電力、電流を正として比較する。そして、指令値が実際の値より大きい場合は、蓄電装置4は直流電力線6の電圧制御を終了し、指令値に従って充放電電力制御を実施する。指令値が実際の値より小さい場合は、直流電力線6の電圧制御を継続する。ただし、時刻Tで受信した指令値は保持され、蓄電装置4は直流電力線6の電圧制御を終了し、充放電電力制御を再開する際の電力供給設備制御部7から指令値として使用される。 The power storage device 4 updates the charge/discharge power upper/lower limit value, the charge/discharge current upper/lower limit value, and the SOC upper/lower limit value to the new values received from the power supply facility control unit 7 . In addition, the power storage device 4 stores the charge/discharge power command or charge/discharge current command (referred to as a command value in the present embodiment) received from the power supply facility control unit 7 at time T, and the actual charge/discharge power at time T or The charge/discharge current (referred to as the actual value in this embodiment) is compared with the power and current in the discharge direction as positive. Then, when the command value is larger than the actual value, power storage device 4 terminates voltage control of DC power line 6 and performs charge/discharge power control according to the command value. If the command value is smaller than the actual value, voltage control of the DC power line 6 is continued. However, the command value received at time T is retained and used as a command value from power supply equipment control unit 7 when power storage device 4 terminates voltage control of DC power line 6 and restarts charge/discharge power control.
 図6において、蓄電装置4の時刻Tの直前における放電電力は-55kWである。時刻Tで、蓄電装置4は電力供給設備制御部7から放電-40kWの充放電電力指令を受信すると、実際の値-55kWに対して指令値が-40kWと大きいため、蓄電装置4は直流電力線6の電圧制御を終了し、指令値-40kWに従って放電電力制御を実施する。このとき、直流電力線6の電圧VDはAC/DCインバータの電圧制御により第1の電圧VD1に制御される。 In FIG. 6, the discharge power of the power storage device 4 immediately before time T is -55 kW. At time T, when the power storage device 4 receives a charge/discharge power command of -40 kW from the power supply facility control unit 7, the command value is -40 kW, which is larger than the actual value of -55 kW. After completing the voltage control in step 6, discharge power control is performed according to the command value of -40 kW. At this time, the voltage VD of the DC power line 6 is controlled to the first voltage VD1 by voltage control of the AC/DC inverter.
 図7に、本発明の実施例1に係る電力供給設備の他の構成例を示す。図7では、直流電力線6に電動移動体接続部611が設置される。そして、電動移動体接続部611を介して電動移動体11が直流電力線6に接続される。電動移動体接続部611は、直流電力線6から分岐したケーブル・コネクタであり、電動移動体11と直流電力線6の電気接点である。電動移動体11は、例えば、電動自動車や、電動農機、ドローン等であり、必ずしも電力供給設備1に常時備えられるものではない。電動移動体11は蓄電池41とDC/DCコンバータ42を有し、直流給電により自身で充電電力を制御して蓄電池41を充電できる。また、DC/DCコンバータ42の制御により蓄電池41に蓄電した電力を直流放電することができる。 FIG. 7 shows another configuration example of the power supply facility according to the first embodiment of the present invention. In FIG. 7 , an electric vehicle connector 611 is installed on the DC power line 6 . Then, the electric vehicle 11 is connected to the DC power line 6 via the electric vehicle connecting portion 611 . The electric vehicle connecting part 611 is a cable connector branched from the DC power line 6 and is an electrical contact between the electric vehicle 11 and the DC power line 6 . The electric vehicle 11 is, for example, an electric vehicle, an electric agricultural machine, a drone, or the like, and is not always provided in the power supply facility 1 . The electric vehicle 11 has a storage battery 41 and a DC/DC converter 42, and can charge the storage battery 41 by controlling the charging power by itself by DC power supply. Also, the electric power stored in the storage battery 41 can be discharged by direct current through the control of the DC/DC converter 42 .
 電力供給設備7は、電動移動体11に対して充放電電力指令または充放電電流指令、充放電電流上下限値、SOC上下限値を指令でき、図1に示した構成例および図2~6に示した電力供給設備の電力と直流電力線電圧の例と同様に動作することができる。 The electric power supply facility 7 can issue charge/discharge power commands or charge/discharge current commands, charge/discharge current upper/lower limits, and SOC upper/lower limits to the electric vehicle 11. The configuration example shown in FIG. 1 and FIGS. can operate in the same manner as the power supply facility power and DC power line voltage example shown in .
 なお図7において、電動移動体11はDC/DCコンバータ42を有していない構造のものであってもよく、この場合には別途外部のDC/DCコンバータ42を介して接続するものであってもよい。 In FIG. 7, the electric vehicle 11 may have a structure that does not have the DC/DC converter 42. In this case, the DC/DC converter 42 is separately provided externally. good too.
 図8に、本発明の実施例1に係る電力供給設備のさらに他の構成例を示すが、これは電動移動体11がDC/DCコンバータ42を有していない場合の接続例である。図8では、直流電力線6にDC/DCコンバータ42の一端が接続され、DC/DCコンバータ42の他の一端には電動移動体接続部611が設置される。そして、DC/DCコンバータ42と電動移動体接続部611を介して電動移動体12が直流電力線6に接続される。電動移動体接続部611は、DC/DCコンバータ42の出力を電動移動体12に供給するためのケーブル・コネクタである。電動移動体12は、例えば、電動自動車や、電動農機、ドローン等であり、必ずしも電力供給設備1に常時備えられるものではない。電動移動体12は蓄電池41を有し、DC/DCコンバータ42の充放電電力制御により蓄電池41を充放電する。図8に示す構成でも、図7に示した構成と同様の動作が可能である。 FIG. 8 shows still another configuration example of the power supply facility according to Embodiment 1 of the present invention, which is a connection example when the electric vehicle 11 does not have the DC/DC converter 42 . In FIG. 8 , one end of the DC/DC converter 42 is connected to the DC power line 6 , and the other end of the DC/DC converter 42 is provided with a motor-driven vehicle connection section 611 . Then, the electric vehicle 12 is connected to the DC power line 6 via the DC/DC converter 42 and the electric vehicle connection section 611 . The electric vehicle connection unit 611 is a cable connector for supplying the output of the DC/DC converter 42 to the electric vehicle 12 . The electric vehicle 12 is, for example, an electric vehicle, an electric agricultural machine, a drone, or the like, and is not always provided in the power supply facility 1 . The electric vehicle 12 has a storage battery 41 , and charges and discharges the storage battery 41 under charge/discharge power control of the DC/DC converter 42 . The configuration shown in FIG. 8 can also operate in the same manner as the configuration shown in FIG.
 図9に、本発明の実施例2に係る電力供給設備の構成例を示す。本実施例において、電力供給設備1は、実施例1で示した構成に加えて、受電電力計測部12を備える。以下では、実施例1と異なる部分について説明する。 FIG. 9 shows a configuration example of a power supply facility according to Embodiment 2 of the present invention. In this embodiment, the power supply facility 1 includes a received power measuring unit 12 in addition to the configuration shown in the first embodiment. Below, portions different from the first embodiment will be described.
 本実施例は逆潮流しないことを条件として交流電源9に連系している電力供給設備1および負荷10において適用される。逆潮流不可の連系では、受電点に逆潮流継電器が設置され、逆潮流が発生すると遮断器が開放される。太陽電池2の発電電力および蓄電装置4の放電電力で負荷10への給電を行う際、遮断器が開放されないよう、逆潮流の発生を防止しなければならない。 This embodiment is applied to the power supply facility 1 and the load 10 interconnected to the AC power supply 9 on the condition that reverse power flow does not occur. In an interconnection that does not allow reverse power flow, a reverse power flow relay is installed at the power receiving point, and the circuit breaker is opened when a reverse power flow occurs. When supplying power to the load 10 with the power generated by the solar cell 2 and the discharged power of the storage device 4, the occurrence of reverse power flow must be prevented so that the circuit breaker is not opened.
 電力供給設備7によるAC/DCインバータ5への変換電力上限値の指令および蓄電装置4への充放電電力指令または充放電電流指令は一定周期(例えば1分)で行われるため、一定周期以上の時間を要する負荷10の消費電力が緩やかに減少した場合は、逆潮流を防止できる。しかし、一定周期未満の時間で負荷10の消費電力が急激に減少した場合は、電力供給設備7の指令値更新が間に合わず、逆潮流が発生して遮断器が開放される。逆潮流を防止するために、電力供給設備7の指令周期を短時間(例えば0.1秒)に設定すると、電力供給設備7の設備費用が増大する。 Since the conversion power upper limit command to the AC/DC inverter 5 and the charging/discharging power command or charging/discharging current command to the power storage device 4 by the power supply facility 7 are performed at a constant cycle (for example, 1 minute), a constant cycle or more Reverse power flow can be prevented when the power consumption of the load 10, which requires time, gradually decreases. However, if the power consumption of the load 10 suddenly decreases within a period of less than a certain period, the update of the command value of the power supply facility 7 will not be in time, causing a reverse power flow and opening the circuit breaker. If the command cycle of the power supply facility 7 is set to a short period (for example, 0.1 second) in order to prevent reverse power flow, the facility cost of the power supply facility 7 will increase.
 そこで、本実施例では受電電力計測部12は交流電源9の受電点91の電力を計測し、受電電力が所定値(例えば1kW)以下の間、AC/DCインバータ5に交流出力停止指令13を送信する。AC/DCインバータ5は交流出力停止指令13を受信すると、受信時刻から電力供給設備7の新しい変換電力上限値指令を受信するまでの間、変換電力の上限を0kWに設定する。電力供給設備7の新しい変換電力上限値指令を受信した時刻以降は、AC/DCインバータ5の変換電力の上限は、AC/DCインバータ5の定格電力と電力供給設備制御部7から指令される変換電力上限値の最小値に設定される。 Therefore, in this embodiment, the received power measurement unit 12 measures the power at the power receiving point 91 of the AC power supply 9, and issues an AC output stop command 13 to the AC/DC inverter 5 while the received power is equal to or less than a predetermined value (for example, 1 kW). Send. When the AC/DC inverter 5 receives the AC output stop command 13, it sets the upper limit of the converted power to 0 kW from the time of reception until it receives the new converted power upper limit value command of the power supply facility 7. After the time when the new conversion power upper limit command for the power supply facility 7 is received, the upper limit of the conversion power of the AC/DC inverter 5 is the rated power of the AC/DC inverter 5 and the conversion commanded by the power supply facility control unit 7. It is set to the minimum power cap value.
 図10に、本発明の実施例2適用時の各部電力と直流電力線の電圧VDの制御事例を示す。本実施例では、実施例1と同様に、AC/DCインバータ5の変換電力P5は交流側への出力を正、交流側からの入力(受電)を負とする。また、蓄電装置4の充放電電力P4は放電を正、充電を負とする。第1のDC/DCコンバータ3の出力P3は正とする。 FIG. 10 shows an example of controlling the power of each part and the voltage VD of the DC power line when the second embodiment of the present invention is applied. In this embodiment, as in the first embodiment, the converted power P5 of the AC/DC inverter 5 is positive when output to the AC side and negative when input (power reception) from the AC side. Also, the charge/discharge power P4 of the power storage device 4 is positive when discharged and negative when charged. Assume that the output P3 of the first DC/DC converter 3 is positive.
 蓄電装置4、AC/DCインバータ5が電力供給設備制御部7から指令を受信した時刻を0とする。電力供給設備制御部7は一定周期Tで指令を送信する。したがって、蓄電装置4、AC/DCインバータ5が次に指令を受信するのは時刻Tである。 Let 0 be the time when the power storage device 4 and the AC/DC inverter 5 receive the command from the power supply facility control unit 7 . The power supply equipment control unit 7 transmits a command at a fixed cycle T. Therefore, it is time T that power storage device 4 and AC/DC inverter 5 next receive a command.
 時刻0において、電力供給設備制御部7の指令により、AC/DCインバータ5の変換電力P5の上限が50kWに設定される。蓄電装置4は充放電電力上限値が30kW、充放電電力下限値が-30kWに設定され、負荷10への給電のため30kWで放電している。また、時刻0において第1のDC/DCコンバータ3の出力は簡単のため10kW一定とする。このとき、第1のDC/DCコンバータ3の出力P3と蓄電装置4の放電電力P4の合計は40kWであり、AC/DCインバータ5の変換電力P5の上限未満であるため、AC/DCインバータ5は40kWだけ電力変換することで、直流電力線6の電圧VDを第1の電圧VD1に制御できる。 At time 0, the upper limit of the converted power P5 of the AC/DC inverter 5 is set to 50 kW by a command from the power supply facility control unit 7. The power storage device 4 has an upper limit of charge/discharge power of 30 kW and a lower limit of charge/discharge power of -30 kW, and discharges at 30 kW to supply power to the load 10 . Also, at time 0, the output of the first DC/DC converter 3 is assumed to be constant at 10 kW for simplicity. At this time, the sum of the output P3 of the first DC/DC converter 3 and the discharged power P4 of the power storage device 4 is 40 kW, which is less than the upper limit of the converted power P5 of the AC/DC inverter 5. is power conversion of 40 kW, the voltage VD of the DC power line 6 can be controlled to the first voltage VD1.
 時刻T1でAC/DCインバータ5は交流出力停止指令13を受信すると、AC/DCインバータ5の変換電力P5の上限は0kWに更新される。したがって、AC/DCインバータ5は時刻T1までは変換電力は40kWであったが、時刻T1以降は0kWとなる。そして、直流電力線6の電圧VDは上昇し、時刻T2で直流電力線6の電圧VDが第2の電圧VD2を超過する。 When the AC/DC inverter 5 receives the AC output stop command 13 at time T1, the upper limit of the converted power P5 of the AC/DC inverter 5 is updated to 0 kW. Therefore, the converted power of the AC/DC inverter 5 was 40 kW until time T1, but becomes 0 kW after time T1. Then, the voltage VD of the DC power line 6 rises, and the voltage VD of the DC power line 6 exceeds the second voltage VD2 at time T2.
 直流電力線6の電圧VDが第2の電圧VD2以上のとき、蓄電装置4は電力供給設備制御部7から指令された充放電電力制御を中止し、直流電力線6の電圧制御を実行する。このとき本実施例では、蓄電装置4は、第2の電圧VD2を目標値とした電圧制御を実行する。また、蓄電装置4は、電力供給設備制御部7から指令された充放電電力下限値以上の放電電力または指令された充放電電流下限値以上の放電電流で電圧制御を実行する。本実施例では、充放電電力下限値として-30kWが指令されているものとする。 When the voltage VD of the DC power line 6 is equal to or higher than the second voltage VD2, the power storage device 4 stops charging/discharging power control instructed by the power supply facility control unit 7 and executes voltage control of the DC power line 6. At this time, in the present embodiment, the power storage device 4 performs voltage control with the second voltage VD2 as the target value. In addition, the power storage device 4 performs voltage control with a discharge power equal to or higher than the charge/discharge power lower limit commanded by the power supply facility control unit 7 or a discharge current equal to or higher than the charge/discharge current lower limit commanded. In this embodiment, it is assumed that -30 kW is commanded as the charge/discharge power lower limit.
 時刻Tになると、AC/DCインバータ5の変換電力P5の上限は、AC/DCインバータ5の定格電力と、電力供給設備制御部7から受信した変換電力上限値の最小値に更新される。本実施例では30kWに更新されたとする。 At time T, the upper limit of the converted power P5 of the AC/DC inverter 5 is updated to the minimum value of the rated power of the AC/DC inverter 5 and the upper limit of the converted power received from the power supply equipment control unit 7. In this embodiment, it is assumed that the power is updated to 30 kW.
 蓄電装置4は、充放電電力上下限値または充放電電流上下限値、SOC上下限値を電力供給設備制御部7から受信した新しい上下限値に更新する。 The power storage device 4 updates the charge/discharge power upper/lower limit value, the charge/discharge current upper/lower limit value, or the SOC upper/lower limit value to the new upper/lower limit value received from the power supply facility control unit 7 .
 時刻Tにおいて、直流電力線6の電圧VDが第2の電圧VD2以上第3の電圧VD3未満であるため、蓄電装置4は、時刻Tで電力供給設備制御部7から受信した充放電電力指令または充放電電流指令(本実施例において、指令値と呼ぶ)と、時刻Tにおける実際の充放電電力または充放電電流(本実施例において、実際の値と呼ぶ)とを、放電方向の電力、電流を正として比較する。 At time T, the voltage VD of the DC power line 6 is greater than or equal to the second voltage VD2 and less than the third voltage VD3. The discharge current command (referred to as the command value in this embodiment) and the actual charge/discharge power or charge/discharge current at time T (referred to as the actual value in this embodiment) are the power and current in the discharge direction. Compare as positive.
 そして、指令値が実際の値より小さい場合は、蓄電装置4は直流電力線6の電圧制御を終了し、指令値に従って充放電電力制御を実施する。指令値が実際の値より大きい場合は、直流電力線6の電圧制御を継続する。本実施例では、実際の値よりも大きな値である10kWを指令値として受信したとする。このとき、蓄電装置4は直流電力線6の電圧制御を継続する。 Then, if the command value is smaller than the actual value, the power storage device 4 terminates the voltage control of the DC power line 6 and performs charge/discharge power control according to the command value. If the command value is greater than the actual value, voltage control of the DC power line 6 is continued. In this embodiment, it is assumed that a command value of 10 kW, which is larger than the actual value, is received. At this time, power storage device 4 continues voltage control of DC power line 6 .
 時刻T以降において、AC/DCインバータ5は変換電力30kWを上限に直流電力線6の電圧VDの第1の電圧VD1への制御を開始する。一方、蓄電装置4は直流電力線6の電圧制御を継続するため、AC/DCインバータ5の変換電力の増加にあわせて放電電力を増加させる。時刻T3で、蓄電装置4の充放電放電電力が時刻Tにおいて電力供給設備制御部7から指令された充放電電力10kWに到達すると、蓄電装置4は直流電力線6の電圧制御を終了し、電力供給設備制御部7から指令された10kWで充放電電力制御を実施する。そして、直流電力線6の電圧VDはAC/DCインバータの電圧制御により第1の電圧VD1に制御される。 After time T, the AC/DC inverter 5 starts controlling the voltage VD of the DC power line 6 to the first voltage VD1 with the converted power of 30 kW as the upper limit. On the other hand, since the power storage device 4 continues to control the voltage of the DC power line 6 , the discharge power is increased in accordance with the increase in the converted power of the AC/DC inverter 5 . At time T3, when the charge/discharge power of the power storage device 4 reaches the charge/discharge power of 10 kW commanded by the power supply facility control unit 7 at time T, the power storage device 4 ends the voltage control of the DC power line 6 and supplies power. Charge/discharge power control is performed at 10 kW commanded from the facility control unit 7 . The voltage VD of the DC power line 6 is controlled to the first voltage VD1 by voltage control of the AC/DC inverter.
 なお本実施例において、蓄電装置4は、実施例1の図7で示した電動移動体接続部611および電動移動体11の構成に置換可能である。 Note that in this embodiment, the power storage device 4 can be replaced with the configuration of the electric vehicle connection unit 611 and the electric vehicle 11 shown in FIG. 7 of the first embodiment.
 図11に、本発明の実施例3に係る電力供給設備の構成例を示す。本実施例では、直流電力線6に蓄電装置4のほかに蓄電装置4Aが接続されている。蓄電装置4Aは、蓄電装置4と同様に蓄電池41AとDC/DCコンバータ42Aから構成され、DC/DCコンバータ42Aの制御により蓄電池4Aを充放電することができる。以下では、実施例1および実施例2と異なる部分について説明する。 FIG. 11 shows a configuration example of a power supply facility according to Embodiment 3 of the present invention. In this embodiment, a power storage device 4A is connected to the DC power line 6 in addition to the power storage device 4. FIG. Like the power storage device 4, the power storage device 4A includes a storage battery 41A and a DC/DC converter 42A, and can charge and discharge the storage battery 4A under the control of the DC/DC converter 42A. Below, portions different from the first and second embodiments will be described.
 本実施例において、直流電力線6の電圧VDが第2の電圧VD2以上または第4の電圧VD4未満になったとき、蓄電装置4と蓄電装置4Aがそれぞれ単独で直流電力線6の電圧制御を実施するとそれぞれの電圧制御が干渉し、直流電力線6の電圧VDが安定しない恐れがある。そのため、直流電力線6に蓄電装置が2個以上接続されている場合は、蓄電装置による直流電力線6の電圧制御は以下の2通りのいずれかにより実施される。 In this embodiment, when the voltage VD of the DC power line 6 becomes equal to or higher than the second voltage VD2 or less than the fourth voltage VD4, if the power storage device 4 and the power storage device 4A independently control the voltage of the DC power line 6, Each voltage control interferes, and there exists a possibility that the voltage VD of the DC power line 6 may not be stabilized. Therefore, when two or more power storage devices are connected to the DC power line 6, voltage control of the DC power line 6 by the power storage devices is performed in one of the following two ways.
 1つ目はドループ制御である。電力供給設備制御部7は蓄電装置4、蓄電装置4Aに充放電電力指令または充放電電流指令、充放電電力上下限値指令または充放電電流上下限値指令、SOC上下限値指令を送信する。また、蓄電装置4と蓄電装置4Aにはあらかじめドループゲインが設定される。そして、蓄電装置4と蓄電装置4Aは、直流電力線6の電圧VDが第2の電圧VD2以上または第4の電圧VD4以下のとき、ドループゲインにより直流電力線6の電圧VDを第2の電圧VD2または第4の電圧VD4に制御する。 The first is droop control. The power supply facility control unit 7 transmits a charge/discharge power command or a charge/discharge current command, a charge/discharge power upper/lower limit value command or a charge/discharge current upper/lower limit value command, and an SOC upper/lower limit value command to the power storage device 4 and the power storage device 4A. A droop gain is set in advance for the power storage device 4 and the power storage device 4A. When the voltage VD of the DC power line 6 is equal to or higher than the second voltage VD2 or the fourth voltage VD4 or lower, the power storage device 4 and the power storage device 4A change the voltage VD of the DC power line 6 to the second voltage VD2 or Control to the fourth voltage VD4.
 なお、ドループゲインは電力供給設備制御部7から逐次送信されていても良い。すなわち、電力供給設備制御部7は蓄電装置4、蓄電装置4Aに充放電電力指令または充放電電流指令、充放電電力上下限値指令または充放電電流上下限値指令、SOC上下限値指令と、ドループゲインを送信する。そして、蓄電装置4と蓄電装置4Aは、直流電力線6の電圧VDが第2の電圧VD2以上または第4の電圧VD4以下のとき、電力供給設備制御部7から受信したドループゲインに従って、ドループ制御を実施し、直流電力線6の電圧VDを第2の電圧VD2または第4の電圧VD4に制御する。 Note that the droop gain may be sequentially transmitted from the power supply facility control unit 7. That is, the power supply facility control unit 7 sends a charge/discharge power command or a charge/discharge current command to the power storage device 4 or the power storage device 4A, a charge/discharge power upper/lower limit value command or a charge/discharge current upper/lower limit value command, an SOC upper/lower limit value command, Send droop gain. Power storage device 4 and power storage device 4A perform droop control according to the droop gain received from power supply facility control unit 7 when voltage VD of DC power line 6 is equal to or higher than second voltage VD2 or equal to or lower than fourth voltage VD4. and controls the voltage VD of the DC power line 6 to the second voltage VD2 or the fourth voltage VD4.
 ただし、ドループゲインに従って決定される充放電電力または充放電電流が、電力供給設備制御部7から指令された充放電電力上下限値または充放電電流上下限値の範囲外の値を取るときは、蓄電装置4、蓄電装置4Aは指令された充放電電力上下限値または充放電電流上下限値で充放電を実施する。また、蓄電池41、蓄電池41AのSOCが指令されたSOC上限値に到達した場合は放電電力の下限値を0kWとし充電を行わず、指令されたSOC下限値に到達した場合は放電電力の上限値を0kWとし放電を行わない。 However, when the charging/discharging power or charging/discharging current determined according to the droop gain takes a value outside the range of the charging/discharging power upper/lower limit value or the charging/discharging current upper/lower limit value commanded from the power supply facility control unit 7, Power storage device 4 and power storage device 4A perform charging and discharging at the commanded upper and lower limits of charge/discharge power or upper and lower limits of charge/discharge current. When the SOC of the storage battery 41 or the storage battery 41A reaches the commanded SOC upper limit value, the lower limit value of the discharge power is set to 0 kW and charging is not performed, and when the commanded SOC lower limit value is reached, the discharge power upper limit value is set to 0 kW and no discharge is performed.
 2つ目は蓄電装置に電圧制御切替優先度を設定する方法である。この方法では蓄電装置が電力供給設備制御部7から指令された充放電電力制御を中止し、直流電力線6の電圧制御を実行する閾値である第2の電圧DV2および第4の電圧DV4を、直流電力線6に接続される蓄電装置ごとに設定する。 The second method is to set the voltage control switching priority for the power storage device. In this method, the power storage device stops the charge/discharge power control commanded by the power supply facility control unit 7, and the second voltage DV2 and the fourth voltage DV4, which are the thresholds for executing the voltage control of the DC power line 6, are changed to the DC It is set for each power storage device connected to the power line 6 .
 本実施例では、蓄電装置4は第2の電圧VD2および第4の電圧VD4で電力供給設備制御部7から指令された充放電電力制御を中止し、直流電力線6の電圧制御を実行する。また、蓄電装置4Aは第2の電圧VD2Aおよび第4の電圧VD4Aで電力供給設備制御部7から指令された充放電電力制御を中止し、直流電力線6の電圧制御を実行する。 In this embodiment, the power storage device 4 stops charge/discharge power control commanded by the power supply facility control unit 7 at the second voltage VD2 and the fourth voltage VD4, and executes voltage control of the DC power line 6. Further, power storage device 4A stops charge/discharge power control instructed by power supply facility control unit 7 at second voltage VD2A and fourth voltage VD4A, and executes voltage control of DC power line 6. FIG.
 第2の電圧VD2と第2の電圧VD2Aの大小関係と、第4の電圧VD4と第4の電圧VD4Aの大小関係はそれぞれ独立に決定され、電圧制御切替優先度はこの大小関係に表れる。ここで、第2の電圧VD2と第2の電圧VD2Aの最大値は第3の電圧未満に、第2の電圧VD2と第2の電圧VD2Aの最小値は第1の電圧より高く設定される。また、第4の電圧VD4と第4の電圧VD4Aの最大値は第1の電圧未満に、第4の電圧VD4と第4の電圧VD4Aの最小値は最低直流電圧より高く設定される。 The magnitude relationship between the second voltage VD2 and the second voltage VD2A and the magnitude relationship between the fourth voltage VD4 and the fourth voltage VD4A are independently determined, and the voltage control switching priority appears in this magnitude relationship. Here, the maximum values of the second voltage VD2 and the second voltage VD2A are set below the third voltage, and the minimum values of the second voltage VD2 and the second voltage VD2A are set above the first voltage. Further, the maximum values of the fourth voltage VD4 and the fourth voltage VD4A are set below the first voltage, and the minimum values of the fourth voltage VD4 and the fourth voltage VD4A are set above the minimum DC voltage.
 第2の電圧VD2、第2の電圧VD2A、第4の電圧VD4、第4の電圧VD4Aは電力供給設備制御部7からの指令、蓄電装置4および蓄電装置4Aの有する電力供給設備制御部7以外からの入力、蓄電装置4および蓄電装置4A自身のいずれかにより決定される。本実施例では、電力供給設備制御部7からの指令により決定されるものとし、第1の電圧VD1<第2の電圧VD2<第2の電圧VD2A<第3の電圧VD3、第1の電圧VD1>第4の電圧VD4>第4の電圧VD4A>最低直流電圧とする。 The second voltage VD2, the second voltage VD2A, the fourth voltage VD4, and the fourth voltage VD4A are commands from the power supply equipment control unit 7, the power storage device 4, and the power supply equipment control unit 7 of the power storage device 4A. , power storage device 4 or power storage device 4A itself. In the present embodiment, it is assumed that the voltage is determined by a command from the power supply facility control unit 7. First voltage VD1<second voltage VD2<second voltage VD2A<third voltage VD3, first voltage VD1 >fourth voltage VD4>fourth voltage VD4A>lowest DC voltage.
 図12に、本発明の実施例3適用時の各部電力と直流電力線の電圧VDの制御事例を示す。この図では、蓄電装置4、4A、AC/DCインバータ5が電力供給設備制御部7から指令を受信した時刻を0とする。電力供給設備制御部7は一定周期Tで指令を送信する。したがって、蓄電装置4、4A、AC/DCインバータ5が次に指令を受信するのは時刻Tである。 FIG. 12 shows an example of controlling the power of each part and the voltage VD of the DC power line when the third embodiment of the present invention is applied. In this figure, the time at which power storage devices 4 and 4A and AC/DC inverter 5 receive a command from power supply facility control unit 7 is defined as zero. The power supply equipment control unit 7 transmits a command at a fixed cycle T. Therefore, it is time T that power storage devices 4, 4A and AC/DC inverter 5 next receive a command.
 時刻0において、電力供給設備制御部7の指令により、AC/DCインバータ5の変換電力P5の上限が50kWに設定される。蓄電装置4および蓄電装置4Aは充放電電力上限値が10kW、充放電電力下限値が-20kWに設定され、負荷10への給電のため10kWで放電している。また、時刻0において第1のDC/DCコンバータ3の出力は20kWとする。このとき、第1のDC/DCコンバータ3の出力と蓄電装置4、蓄電装置4Aの放電電力の合計は40kWであり、AC/DCインバータ5の変換電力P5の上限未満であるため、AC/DCインバータ5は40kWだけ電力変換することで、直流電力線6の電圧VDを第1の電圧VD1に制御できる。 At time 0, the upper limit of the converted power P5 of the AC/DC inverter 5 is set to 50 kW by a command from the power supply facility control unit 7. The power storage device 4 and the power storage device 4A are set to have a charge/discharge power upper limit value of 10 kW and a charge/discharge power lower limit value of -20 kW, and are discharged at 10 kW to supply power to the load 10 . Also, at time 0, the output of the first DC/DC converter 3 is assumed to be 20 kW. At this time, the sum of the output of the first DC/DC converter 3 and the discharge power of the power storage device 4 and the power storage device 4A is 40 kW, which is less than the upper limit of the converted power P5 of the AC/DC inverter 5. The inverter 5 can control the voltage VD of the DC power line 6 to the first voltage VD1 by converting the power by 40 kW.
 時刻0から時刻T1にかけて、日射の変動により第1のDC/DCコンバータ3の出力電力P3が増加すると、AC/DCインバータ5は変換電力P5を増加させることで直流電力線6の電圧VDを第1の電圧VD1に制御する。時刻T1になると、第1のDC/DCコンバータ3の出力電力P3が30kWになり、AC/DCインバータ5の変換電力P5は上限値50kWに到達する。 From time 0 to time T1, when the output power P3 of the first DC/DC converter 3 increases due to fluctuations in solar radiation, the AC/DC inverter 5 increases the converted power P5 to bring the voltage VD of the DC power line 6 to the first level. is controlled to VD1. At time T1, the output power P3 of the first DC/DC converter 3 becomes 30 kW, and the converted power P5 of the AC/DC inverter 5 reaches the upper limit value of 50 kW.
 時刻T1以降、さらに第1のDC/DCコンバータ3の出力電力が増加すると、AC/DCインバータ5は変換電力P5を50kWから増加させることができず、直流電力線6の電圧VDが第1の電圧VD1から上昇する。そして、時刻T2には第1の電圧VD1より高い電圧である第2の電圧VD2(例えば、365V)に到達する。 After time T1, when the output power of the first DC/DC converter 3 further increases, the AC/DC inverter 5 cannot increase the converted power P5 from 50 kW, and the voltage VD of the DC power line 6 becomes the first voltage. Rise from VD1. Then, at time T2, it reaches a second voltage VD2 (for example, 365 V) that is higher than the first voltage VD1.
 直流電力線6の電圧VDが第2の電圧VD2以上のとき、蓄電装置4は電力供給設備制御部7から指令された充放電電力制御を中止し、直流電力線6の電圧制御を実行する。このとき本実施例では、蓄電装置4は、第2の電圧VD2を目標値とした電圧制御を実行する。また、蓄電装置4は、電力供給設備制御部7から指令された充放電電力下限値以上の放電電力または指令された充放電電流下限値以上の放電電流で電圧制御を実行する。本実施例では、充放電電力下限値として-20kWが指令されている。 When the voltage VD of the DC power line 6 is equal to or higher than the second voltage VD2, the power storage device 4 stops charging/discharging power control instructed by the power supply facility control unit 7 and executes voltage control of the DC power line 6. At this time, in the present embodiment, the power storage device 4 performs voltage control with the second voltage VD2 as the target value. In addition, the power storage device 4 performs voltage control with a discharge power equal to or higher than the charge/discharge power lower limit commanded by the power supply facility control unit 7 or a discharge current equal to or higher than the charge/discharge current lower limit commanded. In this embodiment, -20 kW is commanded as the charge/discharge power lower limit.
 之に対し、この時蓄電装置4Aは、電力供給設備制御部7から指令された充放電電力制御を継続する。時刻T2以降、蓄電装置4は、放電電力の減少により第2の電圧VD2を目標値とした電圧制御を実行する。 On the other hand, at this time, the power storage device 4A continues the charge/discharge power control commanded by the power supply facility control unit 7. After time T2, power storage device 4 executes voltage control with second voltage VD2 as a target value due to a decrease in discharge power.
 時刻T3になると、蓄電装置4の放電電力が-20kWに到達する。時刻T3以降、さらに第1のDC/DCコンバータ3の出力電力P3が増加しても、蓄電装置4は充電電力を増加させることができないため、直流電力線6の電圧VDは第2の電圧VD2からさらに上昇し、時刻T4になると、第2の電圧VD2より高い電圧である第2の電圧VD2A(例えば、375V)に到達する。 At time T3, the discharged power of the power storage device 4 reaches -20 kW. After time T3, even if the output power P3 of the first DC/DC converter 3 further increases, the power storage device 4 cannot increase the charging power. It further rises and reaches a second voltage VD2A (for example, 375 V) higher than the second voltage VD2 at time T4.
 直流電力線6の電圧VDが第2の電圧VD2A以上のとき、蓄電装置4Aは電力供給設備制御部7から指令された充放電電力制御を中止し、直流電力線6の電圧制御を実行する。このとき本実施例では、蓄電装置4Aは、第2の電圧VD2Aを目標値とした電圧制御を実行する。また、蓄電装置4Aは、電力供給設備制御部7から指令された充放電電力下限値以上の放電電力または指令された充放電電流下限値以上の放電電流で電圧制御を実行する。本実施例では、充放電電力下限値として-20kWが指令されている。 When the voltage VD of the DC power line 6 is equal to or higher than the second voltage VD2A, the power storage device 4A stops charging/discharging power control instructed by the power supply facility control unit 7 and executes voltage control of the DC power line 6. At this time, in this embodiment, the power storage device 4A performs voltage control with the second voltage VD2A as the target value. Further, the power storage device 4A performs voltage control with a discharge power equal to or higher than the charge/discharge power lower limit commanded from the power supply facility control unit 7 or a discharge current equal to or higher than the charge/discharge current lower limit commanded. In this embodiment, -20 kW is commanded as the charge/discharge power lower limit.
 時刻T4以降、蓄電装置4Aは、放電電力の減少により第2の電圧VD2Aを目標値とした電圧制御を実行する。このとき日射が減少し太陽電池2の発電電力が減少すると、時刻T5で、直流電力線6の電圧VDが第2の電圧VD2A未満となる。このとき、蓄電装置4Aは直流電力線6の電圧制御を終了し、電力供給設備制御部7から指令されていた充放電電力制御を再開する。そして、直流電力線6の電圧VDは、蓄電装置4の電圧制御により第2の電圧VD2に制御される。 After time T4, the power storage device 4A executes voltage control with the second voltage VD2A as the target value due to the decrease in the discharge power. At this time, when the solar radiation decreases and the power generated by the solar cell 2 decreases, the voltage VD of the DC power line 6 becomes less than the second voltage VD2A at time T5. At this time, the power storage device 4</b>A ends the voltage control of the DC power line 6 and restarts the charge/discharge power control instructed by the power supply facility control section 7 . Then, the voltage VD of the DC power line 6 is controlled to the second voltage VD2 by voltage control of the power storage device 4 .
 同様に、時刻T5以降、日射が減少し太陽電池2の発電電力が減少すると、時刻T6で、直流電力線6の電圧VDが第2の電圧VD2未満となる。このとき、蓄電装置4は直流電力線6の電圧制御を終了し、電力供給設備制御部7から指令されていた充放電電力制御を再開する。そして、直流電力線6の電圧VDはAC/DCインバータ5の電圧制御により第1の電圧VD1に制御される。 Similarly, after time T5, when the solar radiation decreases and the power generated by the solar cell 2 decreases, the voltage VD of the DC power line 6 becomes less than the second voltage VD2 at time T6. At this time, the power storage device 4 terminates the voltage control of the DC power line 6 and restarts the charge/discharge power control instructed by the power supply equipment control unit 7 . The voltage VD of the DC power line 6 is controlled to the first voltage VD1 by voltage control of the AC/DC inverter 5 .
 電力供給設備制御部7から新しい指令を受信する時刻Tにおいて、直流電力線6の電圧VDが第1の電圧VD1である。このとき、AC/DCインバータ5の変換電力P5の上限は、AC/DCインバータ5の定格電力P5と、時刻Tで電力供給設備制御部7から受信した変換電力上限値の最小値に更新される。また、AC/DCインバータ5の変換電力P5の下限は、AC/DCインバータ5の定格電力×(-1)と電力供給設備制御部7から指令される変換電力下限値の最大値となる。蓄電装置4は、時刻Tで電力供給設備制御部7から受信した充放電電力指令または充放電電流指令に従って動作する。また、充放電電力上下限値または充放電電流上下限値、SOC上下限値を更新する。 At time T when a new command is received from the power supply facility control unit 7, the voltage VD of the DC power line 6 is the first voltage VD1. At this time, the upper limit of the converted power P5 of the AC/DC inverter 5 is updated to the minimum value of the rated power P5 of the AC/DC inverter 5 and the upper limit of the converted power received from the power supply facility control unit 7 at time T. . Also, the lower limit of the converted power P5 of the AC/DC inverter 5 is the maximum value of the rated power of the AC/DC inverter 5×(−1) and the lower limit of the converted power commanded from the power supply equipment control unit 7 . Power storage device 4 operates according to the charge/discharge power command or the charge/discharge current command received from power supply facility control unit 7 at time T. FIG. In addition, the charge/discharge power upper/lower limit value, the charge/discharge current upper/lower limit value, and the SOC upper/lower limit value are updated.
 以上のように、複数の蓄電装置が直流電力線6に接続される構成において蓄電装置に電圧制御切替優先度を設定する場合、実施例1および実施例2における第2の電圧を蓄電装置ごとに第2の電圧VD2、第2の電圧VD2A、…と設定することにより、直流電力線6の電圧VDを制御できる。 As described above, when voltage control switching priority is set for each power storage device in a configuration in which a plurality of power storage devices are connected to the DC power line 6, the second voltage in the first and second embodiments is set to the second voltage for each power storage device. 2 voltage VD2, the second voltage VD2A, . . . , the voltage VD of the DC power line 6 can be controlled.
 また、蓄電装置が3個以上接続されている構成においては、ドループ制御を行う蓄電装置群と、ドループ制御を行わない各蓄電装置に電圧制御切替優先度を設定することもできる。 Also, in a configuration in which three or more power storage devices are connected, voltage control switching priority can be set for a power storage device group that performs droop control and each power storage device that does not perform droop control.
 例えば、蓄電装置4、蓄電装置4A、蓄電装置4B、蓄電装置4Cが直流電力線6に接続されているとき、蓄電装置4、蓄電装置4Aはドループ制御を実行し、蓄電装置4B、蓄電装置4Cは実行しないものと設定できる。このとき、蓄電装置4、蓄電装置4Aのドループ制御を開始する電圧は第2の電圧VD2および第4の電圧VD4に設定され、蓄電装置4B、蓄電装置4Cが直流電力線6の電圧制御を開始する電圧は第2の電圧VD2Bおよび第4の電圧VD4B、第2の電圧VD2Cおよび第4の電圧VD4Cにそれぞれ設定される。 For example, when power storage device 4, power storage device 4A, power storage device 4B, and power storage device 4C are connected to DC power line 6, power storage device 4 and power storage device 4A perform droop control, and power storage device 4B and power storage device 4C perform droop control. Can be set to never run. At this time, the voltages for starting droop control of power storage device 4 and power storage device 4A are set to second voltage VD2 and fourth voltage VD4, and power storage device 4B and power storage device 4C start voltage control of DC power line 6. The voltages are set to a second voltage VD2B and a fourth voltage VD4B, a second voltage VD2C and a fourth voltage VD4C, respectively.
 そして、第2の電圧VD2、第2の電圧VD2B、第2の電圧VD2Cの大小関係と、第4の電圧VD4、第4の電圧VD4B、第4の電圧VD4Cの大小関係はそれぞれ独立して任意に設定できる。ただし、第2の電圧VD2、第2の電圧VD2B、第2の電圧VD2Cの最大値は第3の電圧VD3未満であり、最小値は第1の電圧VD1より高く設定される。また、第4の電圧VD4、第4の電圧VD4B、第4の電圧VD4Cの最大値は第1の電圧VD1未満であり、第4の電圧VD4、第4の電圧VD4B、第4の電圧VD4Cの最小値は最低直流電圧より高く設定される。 The magnitude relationship between the second voltage VD2, the second voltage VD2B, and the second voltage VD2C and the magnitude relationship between the fourth voltage VD4, the fourth voltage VD4B, and the fourth voltage VD4C are independently arbitrary. can be set to However, the maximum values of the second voltage VD2, the second voltage VD2B, and the second voltage VD2C are less than the third voltage VD3, and the minimum values are set higher than the first voltage VD1. Further, the maximum values of the fourth voltage VD4, the fourth voltage VD4B, and the fourth voltage VD4C are less than the first voltage VD1, and the maximum values of the fourth voltage VD4, the fourth voltage VD4B, and the fourth voltage VD4C are The minimum value is set higher than the minimum DC voltage.
 なお本実施例において、蓄電装置4および蓄電装置4Aはそれぞれ、実施例1の図7で示した電動移動体接続部611および電動移動体11の構成に置換可能である。 In this embodiment, the power storage device 4 and the power storage device 4A can be replaced with the configurations of the electric movable body connecting portion 611 and the electric movable body 11 shown in FIG. 7 of the first embodiment, respectively.
 図13に、本発明の実施例4に係る電力供給設備の構成例を示す。本実施例では、第1のDC/DCコンバータ3とAC/DCインバータ5とが接続される第1の直流電力線61に第2のDC/DCコンバータ60の一端(1次側とする)を接続する。そして、第2のDC/DCコンバータ60の他端(2次側とする)に第2の直流電力線62を接続する。 FIG. 13 shows a configuration example of a power supply facility according to Embodiment 4 of the present invention. In this embodiment, one end (primary side) of the second DC/DC converter 60 is connected to the first DC power line 61 to which the first DC/DC converter 3 and the AC/DC inverter 5 are connected. do. A second DC power line 62 is connected to the other end (secondary side) of the second DC/DC converter 60 .
 すなわち、第2のDC/DCコンバータ60は、実施例1における電力供給設備の構成例での直流電力線6を分割する。第2のDC/DCコンバータ60は双方向コンバータであり、太陽電池2の発電電力またはAC/DCインバータ5を介して受電した交流電源9の電力を蓄電装置4に充電でき、蓄電装置4の電力をAC/DCインバータ5を介して負荷10へ給電できる。 That is, the second DC/DC converter 60 divides the DC power line 6 in the configuration example of the power supply facility in the first embodiment. The second DC/DC converter 60 is a bi-directional converter, and can charge the power storage device 4 with the power generated by the solar cell 2 or the power of the AC power supply 9 received via the AC/DC inverter 5. can be fed to the load 10 via the AC/DC inverter 5 .
 太陽電池2の構成によっては、第1のDC/DCコンバータ3の出力電圧が高く(例えば、1000V)なるため、実施例1~実施例3に記載の構成の場合、AC/DCインバータ5の電圧制御目標値である第1の電圧を高電圧に設定する(例えば、1000V)こととなり、結果として蓄電装置4の耐圧を高くする必要がある。しかし、第2のDC/DCコンバータ60を設置し、第1のDC/DCコンバータ3の出力電圧(1次側電圧)を降圧することで、蓄電装置4の高耐圧化を防止できる。 Depending on the configuration of the solar cell 2, the output voltage of the first DC/DC converter 3 is high (eg, 1000 V). The first voltage, which is the control target value, is set to a high voltage (for example, 1000 V), and as a result, the withstand voltage of the power storage device 4 must be increased. However, by installing the second DC/DC converter 60 and stepping down the output voltage (primary side voltage) of the first DC/DC converter 3, it is possible to prevent the electric storage device 4 from increasing the breakdown voltage.
 また、第2のDC/DCコンバータ60を絶縁型双方向コンバータとすることで、第1のDC/DCコンバータ3と、蓄電装置4との絶縁を取ることができる。これにより、例えば、第2の直流電力線62が劣化し導体部分が露出した箇所を人体が触れたとしても、電源である太陽電池2から人体までの電流経路が形成されないため、第1のDC/DCコンバータ3が非絶縁型(例えば昇圧チョッパ回路)であっても感電を防止できる。 In addition, by making the second DC/DC converter 60 an insulated bidirectional converter, the first DC/DC converter 3 and the power storage device 4 can be insulated. As a result, for example, even if the second DC power line 62 deteriorates and the human body touches the exposed conductor portion, a current path from the solar battery 2 as the power source to the human body is not formed, so the first DC power line Electric shock can be prevented even if the DC converter 3 is a non-insulated type (for example, a boost chopper circuit).
 本実施例において、第2のDC/DCコンバータ60は、動作時は常に1次側電圧と2次側電圧V2との比率を一定値Nにする制御を行う。すなわち(1次側電圧)=N×(2次側電圧)である。ここでは、N=20/7とする。また、第2のDC/DCコンバータ60の定格電力は、蓄電装置4の有するDC/DCコンバータ42の定格電力に等しい。 In this embodiment, the second DC/DC converter 60 always controls the ratio between the primary side voltage and the secondary side voltage V2 to be a constant value N during operation. That is, (primary side voltage)=N×(secondary side voltage). Here, N=20/7. The rated power of second DC/DC converter 60 is equal to the rated power of DC/DC converter 42 of power storage device 4 .
 前述の第2のDC/DCコンバータ60による電圧比一定制御により、第2の直流電力線62の電圧が、実施例1で示した第1の電圧VD1(350V)、第2の電圧VD2(370V)、第3の電圧VD3(390V)、第4の電圧VD4(340V)のとき、第2のDC/DCコンバータ60の1次側電圧、すなわち第1の直流電力線61の電圧は、それぞれ第1の電圧VD1´(1000V)、第2の電圧VD2´(1057V)、第3の電圧VD3´(1114V)、第4の電圧VD4´(971V)となる。 By the voltage ratio constant control by the second DC/DC converter 60 described above, the voltage of the second DC power line 62 becomes the first voltage VD1 (350 V) and the second voltage VD2 (370 V) shown in the first embodiment. , the third voltage VD3 (390 V), and the fourth voltage VD4 (340 V), the primary side voltage of the second DC/DC converter 60, that is, the voltage of the first DC power line 61 is the first They are the voltage VD1' (1000 V), the second voltage VD2' (1057 V), the third voltage VD3' (1114 V), and the fourth voltage VD4' (971 V).
 本実施例において、蓄電装置4は実施例1と同様の動作を行う。すなわち、第2の直流電力線62の電圧値が、第1の電圧より高い電圧である第2の電圧以上のときと、第1の電圧より低い電圧である第4の電圧未満のとき、第2の直流電力線62の電圧制御を実施する。 In this embodiment, the power storage device 4 operates in the same manner as in the first embodiment. That is, when the voltage value of the second DC power line 62 is equal to or higher than the second voltage that is higher than the first voltage, and is lower than the fourth voltage that is lower than the first voltage, the second voltage control of the DC power line 62 is performed.
 AC/DCインバータ5の電圧制御目標値を第1の電圧VD1´に、第1のDC/DCコンバータ3がMPPT制御を終了して電圧制御を実施する閾値電圧を第3の電圧VD3´に設定する。AC/DCインバータ5が第1の直流電力線61の電圧を第1の電圧VD1´に制御できているとき、第2の直流電力線62の電圧は第1の電圧VD1となる。 The voltage control target value of the AC/DC inverter 5 is set to the first voltage VD1′, and the threshold voltage at which the first DC/DC converter 3 ends MPPT control and performs voltage control is set to the third voltage VD3′. do. When the AC/DC inverter 5 can control the voltage of the first DC power line 61 to the first voltage VD1', the voltage of the second DC power line 62 becomes the first voltage VD1.
 実施例1で説明したように、AC/DCインバータ5は変換電力の上下限値により、第1の直流電力線61の電圧を第1の電圧VD1´に制御できず、第1の電圧VD1´から第2の電圧VD2´(1057V)に上昇または第4の電圧VD4´(971V)に下降する場合がある。このとき、第1の直流電力線61の電圧の上昇または下降に対応して、第2の直流電力線62の電圧も上昇または下降する。第1の直流電力線61の電圧が第2の電圧VD2´まで上昇したとすると、そのとき第2の直流電力線62の電圧は第2の電圧VD2に上昇し、蓄電装置4が第2の直流電力線62の電圧制御を開始する。蓄電装置4が電圧制御を実行しても、第2の直流電力線62の電圧が上昇し、第3の電圧VD3に到達したとすると、そのとき第1の直流電力線61の電圧は第3の電圧VD3´に上昇する。このとき、第1のDC/DCコンバータ3はMPPT制御を終了して第1の直流電力線61の電圧を制御する。 As described in the first embodiment, the AC/DC inverter 5 cannot control the voltage of the first DC power line 61 to the first voltage VD1' due to the upper and lower limit values of the converted power, and the first voltage VD1' It may rise to the second voltage VD2' (1057V) or fall to the fourth voltage VD4' (971V). At this time, the voltage of the second DC power line 62 also rises or falls corresponding to the rise or fall of the voltage of the first DC power line 61 . Assuming that the voltage of the first DC power line 61 rises to the second voltage VD2′, the voltage of the second DC power line 62 then rises to the second voltage VD2, and the power storage device 4 is charged to the second DC power line. 62 voltage control is started. Even if the power storage device 4 executes voltage control, if the voltage of the second DC power line 62 rises and reaches the third voltage VD3, then the voltage of the first DC power line 61 reaches the third voltage It rises to VD3'. At this time, the first DC/DC converter 3 ends the MPPT control and controls the voltage of the first DC power line 61 .
 以上の通り、AC/DCインバータ5の電圧制御目標値を第1の電圧VD1´に、第1のDC/DCコンバータ3がMPPT制御を終了して電圧制御を実施する閾値電圧を第3の電圧VD3´に設定し、その他の制御、動作は実施例1に準じることで、本実施例における電力供給設備の構成例においても、実施例1と同様の効果を得ることができる。また、実施例2および実施例3についても同様である。 As described above, the voltage control target value of the AC/DC inverter 5 is set to the first voltage VD1′, and the threshold voltage at which the first DC/DC converter 3 ends MPPT control and performs voltage control is set to the third voltage. By setting it to VD3′ and applying other controls and operations according to the first embodiment, the same effects as in the first embodiment can be obtained even in the configuration example of the power supply facility in the present embodiment. The same applies to the second and third embodiments.
 図14に、本発明の実施例5における電力供給設備の構成例を示す。本実施例では、第2のDC/DCコンバータ60の1次側である第1の直流電力線61に第1のDC/DCコンバータ3、AC/DCインバータ5と蓄電装置4が接続されており、第2のDC/DCコンバータ60の2次側である第2の直流電力線62に蓄電装置4Aが接続されている。すなわち、第2のDC/DCコンバータ60の1次側、2次側のそれぞれに蓄電装置が接続されている。第2のDC/DCコンバータ60の定格電力は、蓄電装置4Aの有するDC/DCコンバータ422の定格電力に等しい。 FIG. 14 shows a configuration example of power supply equipment according to Embodiment 5 of the present invention. In this embodiment, the first DC/DC converter 3, the AC/DC inverter 5, and the power storage device 4 are connected to the first DC power line 61, which is the primary side of the second DC/DC converter 60. A power storage device 4A is connected to a second DC power line 62 on the secondary side of the second DC/DC converter 60 . That is, the power storage device is connected to each of the primary side and the secondary side of the second DC/DC converter 60 . The rated power of second DC/DC converter 60 is equal to the rated power of DC/DC converter 422 of power storage device 4A.
 第2のDC/DCコンバータ60は、実施例4と同様に電圧比一定制御(N=20/7)を実施する。すなわち、第2の直流電力線62の電圧が、実施例3で示した第1の電圧VD1(350V)、第2の電圧VD2(370V)、第3の電圧VD3(390V)、第4の電圧VD4(340V)、第2の電圧VD2(365V)、第2の電圧VD2A(375V)のとき、第1の直流電力線61の電圧は、それぞれ第1の電圧VD1´(1000V)、第2の電圧VD2´(1057V)、第3の電圧VD3´(1114V)、第4の電圧VD4´(971V)、第2の電圧VD2´(1043V)、第2の電圧VD2A´(1071V)となる。 The second DC/DC converter 60 performs constant voltage ratio control (N=20/7) as in the fourth embodiment. That is, the voltage of the second DC power line 62 is the first voltage VD1 (350 V), the second voltage VD2 (370 V), the third voltage VD3 (390 V), and the fourth voltage VD4 shown in the third embodiment. (340 V), the second voltage VD2 (365 V), and the second voltage VD2A (375 V), the voltage of the first DC power line 61 is the first voltage VD1' (1000 V), the second voltage VD2 ' (1057 V), a third voltage VD3' (1114 V), a fourth voltage VD4' (971 V), a second voltage VD2' (1043 V), and a second voltage VD2A' (1071 V).
 AC/DCインバータ5の電圧制御目標値を第1の電圧VD1´に、第1のDC/DCコンバータ3がMPPT制御を終了して電圧制御を実施する閾値電圧を第3の電圧VD3´に設定する。また蓄電装置4が、電力供給設備制御部7から指令された充放電電力制御を中止し第1の直流電力線61の電圧制御を実行する閾値電圧を第2の電圧VD2´または第2の電圧VD2´、および第4の電圧VD4´に設定する。そして、その他の制御、動作は実施例3に準じることで、本実施例における電力供給設備の構成例においても、実施例3と同様の効果を得ることができる。 The voltage control target value of the AC/DC inverter 5 is set to the first voltage VD1′, and the threshold voltage at which the first DC/DC converter 3 ends MPPT control and performs voltage control is set to the third voltage VD3′. do. Further, the power storage device 4 suspends the charge/discharge power control commanded by the power supply facility control unit 7 and sets the threshold voltage at which the voltage control of the first DC power line 61 is executed to the second voltage VD2′ or the second voltage VD2 ', and the fourth voltage VD4'. Other controls and operations conform to those of the third embodiment, so that the same effects as those of the third embodiment can be obtained even in the configuration example of the power supply facility in the present embodiment.
 なお本実施例において、蓄電装置4および蓄電装置4Aはそれぞれ、実施例1の図7で示した電動移動体接続部611および電動移動体11の構成に置換可能である。 In this embodiment, the power storage device 4 and the power storage device 4A can be replaced with the configurations of the electric movable body connecting portion 611 and the electric movable body 11 shown in FIG. 7 of the first embodiment, respectively.
1…電力供給設備、2…太陽電池(再生可能エネルギー電源)、3…第1のDC/DCコンバータ、4、4A…蓄電装置、5…AC/DCインバータ、6…直流電力線、7…電力供給設備制御部、8…配電線、9…交流電源、10…負荷、12…受電電力系側部、13…交流出力停止指令、60…第2のDC/DCコンバータ、61…第1の直流電力線、62…第2の直流電力線 DESCRIPTION OF SYMBOLS 1... Power supply facility, 2... Solar cell (renewable energy power supply), 3... First DC/DC converter, 4, 4A... Power storage device, 5... AC/DC inverter, 6... DC power line, 7... Power supply Equipment control unit 8 Distribution line 9 AC power supply 10 Load 12 Power receiving power system side 13 AC output stop command 60 Second DC/DC converter 61 First DC power line , 62 ... second DC power line

Claims (17)

  1.  交流電力線と直流電力線の間に配置されて電力変換を行う第1の変換装置と、前記直流電力線と蓄電池の間に配置されて電力変換を行う第2の変換装置と、前記直流電力線と再生可能エネルギー電源の間に配置されて電力変換を行う第3の変換装置を含む電力供給設備であって、
     前記第1の変換装置は、前記直流電力線の電圧を第1の電圧に制御し、前記第2の変換装置は、前記第1の変換装置が前記直流電力線の電圧を第1の電圧に制御できず、前記直流電力線の電圧が前記第1の電圧より高く設定される第2の電圧を超過したとき、前記直流電力線の電圧を第2の電圧に制御することを特徴とする電力供給設備。
    A first conversion device that is arranged between an AC power line and a DC power line and performs power conversion, a second conversion device that is arranged between the DC power line and a storage battery and performs power conversion, and can be regenerated with the DC power line A power supply facility including a third conversion device that is arranged between energy power sources and performs power conversion,
    The first converter controls the voltage of the DC power line to a first voltage, and the second converter controls the voltage of the DC power line to the first voltage. First, when the voltage of the DC power line exceeds a second voltage set higher than the first voltage, the voltage of the DC power line is controlled to a second voltage.
  2.  請求項1に記載の電力供給設備であって、
     前記第3の変換装置は、前記第2の変換装置が前記直流電力線の電圧を第2の電圧に制御できず、前記直流電力線の電圧が前記第2の電圧より高く設定される第3の電圧を超過したとき、前記直流電力線の電圧を第3の電圧に制御することを特徴とする電力供給設備。
    The power supply facility according to claim 1,
    The third converter is a third voltage in which the second converter cannot control the voltage of the DC power line to a second voltage and the voltage of the DC power line is set higher than the second voltage power supply equipment, wherein the voltage of the DC power line is controlled to a third voltage when the voltage exceeds .
  3.  請求項2に記載の電力供給設備であって、
     前記第3の変換装置は、前記直流電力線の電圧が前記第3の電圧以下のとき、前記再生可能エネルギー電源が出力する発電電力を最大電力点追従(MPPT)制御することを特徴とする電力供給設備。
    The power supply facility according to claim 2,
    The power supply characterized in that the third converter performs maximum power point tracking (MPPT) control on the generated power output from the renewable energy power supply when the voltage of the DC power line is equal to or lower than the third voltage. Facility.
  4.  請求項1から請求項3のいずれか1項に記載の電力供給設備であって、
     前記第2の変換装置は、前記第1の変換装置が前記直流電力線の電圧を第1の電圧に制御できず、前記直流電力線の電圧が前記第1の電圧より低く設定される第4の電圧を下回ったとき、前記直流電力線の電圧を第4の電圧に制御を実施することを特徴とする電力供給設備。
    The power supply facility according to any one of claims 1 to 3,
    In the second conversion device, the first conversion device cannot control the voltage of the DC power line to a first voltage, and the voltage of the DC power line is set lower than the first voltage. A fourth voltage and controlling the voltage of the DC power line to a fourth voltage when the voltage falls below.
  5.  交流電力線と直流電力線の間に配置されて電力変換を行う第1の変換装置と、前記直流電力線と蓄電池の間に配置されて電力変換を行う第2の変換装置と、前記直流電力線と再生可能エネルギー電源の間に配置されて電力変換を行う第3の変換装置と、前記第1の変換装置、前記第2の変換装置、前記第3の変換装置に対して制御指令を与える電力供給設備制御部と、を含む電力供給設備であって、
     前記電力供給設備制御部は、前記第1の変換装置に前記制御指令として最大電力変換容量指令を送信し、前記第1の変換装置は、前記最大電力変換容量指令により指定された電力容量を限度として、前記直流電力線の電圧を第1の電圧に制御することを特徴とする電力供給設備。
    A first conversion device that is arranged between an AC power line and a DC power line and performs power conversion, a second conversion device that is arranged between the DC power line and a storage battery and performs power conversion, and can be regenerated with the DC power line Power supply facility control for giving control commands to a third conversion device arranged between energy power sources to perform power conversion, and to the first conversion device, the second conversion device, and the third conversion device and a power supply facility comprising:
    The power supply facility control unit transmits a maximum power conversion capacity command as the control command to the first conversion device, and the first conversion device limits the power capacity specified by the maximum power conversion capacity command. as a power supply facility, wherein the voltage of the DC power line is controlled to a first voltage.
  6.  請求項5に記載の電力供給設備であって、
     前記電力供給設備制御部は、前記第2の変換装置に前記制御指令として充放電電力指令または充放電電流指令を送信し、前記第2の変換装置は、前記第1の変換装置が前記直流電力線の電圧を第1の電圧に制御できず、前記直流電力線の電圧が第2の電圧を超過したときまたは前記第1の電圧より低い第4の電圧を下回ったとき、前記充放電電力指令または前記充放電電流指令を除外して、前記直流電力線の電圧を前記第2の電圧または前記第4の電圧に制御することを特徴とする電力供給設備。
    The power supply facility according to claim 5,
    The power supply facility control unit transmits a charge/discharge power command or a charge/discharge current command as the control command to the second conversion device, and the second conversion device is such that the first conversion device is the DC power line When the voltage of the DC power line cannot be controlled to the first voltage, and the voltage of the DC power line exceeds the second voltage or falls below the fourth voltage lower than the first voltage, the charge/discharge power command or the A power supply facility characterized by controlling the voltage of the DC power line to the second voltage or the fourth voltage by excluding a charge/discharge current command.
  7.  請求項1に記載の電力供給設備であって、
     前記電力供給設備は、受電電力計測部を備え、前記受電電力計測部は、計測した受電電力が所定値を下回ったとき、出力停止指令を前記第1の変換装置に送信し、
     前記第1の変換装置は、前記出力停止指令を受信する前は前記直流電力線の電圧を第1の電圧に制御し、前記出力停止指令を受信した後は動作を停止し、
     前記第2の変換装置は、前記直流電力線の電圧が前記第2の電圧を超過したとき、前記直流電力線の電圧を前記第2の電圧に制御することを特徴とする電力供給設備。
    The power supply facility according to claim 1,
    The power supply facility includes a received power measurement unit, and the received power measurement unit transmits an output stop command to the first conversion device when the measured received power falls below a predetermined value,
    The first conversion device controls the voltage of the DC power line to a first voltage before receiving the output stop command, and stops operation after receiving the output stop command,
    The power supply facility, wherein the second converter controls the voltage of the DC power line to the second voltage when the voltage of the DC power line exceeds the second voltage.
  8.  請求項1に記載の電力供給設備であって、
     前記第1の変換装置と前記第3の変換装置が第1の直流電力線で第4の変換装置の一方端に接続され、前記第4の変換装置の他方端が第1の直流電力線を介して前記第2の変換装置に接続され、
     前記第4の変換装置は、前記第1の直流電力線の電圧の、第2の直流電力線の電圧に対する比率を一定値に制御し、
     前記第1の変換装置は、前記第1の直流電力線の電圧を前記第1の電圧に前記一定値を乗じた電圧値に制御し、
     前記第2の変換装置は、前記第1の変換装置が前記第1の直流電力線の電圧を前記第1の電圧に前記一定値を乗じた電圧値に制御できず、前記第2の直流電力線の電圧が前記第2の電圧を超過したとき、前記第2の直流電力線の電圧を前記第2の電圧に制御することを特徴とする電力供給設備。
    The power supply facility according to claim 1,
    The first conversion device and the third conversion device are connected to one end of the fourth conversion device by a first DC power line, and the other end of the fourth conversion device is the first DC power line Via connected to the second conversion device;
    The fourth converter controls the ratio of the voltage of the first DC power line to the voltage of the second DC power line to a constant value,
    The first converter controls the voltage of the first DC power line to a voltage value obtained by multiplying the first voltage by the constant value,
    In the second conversion device, the first conversion device cannot control the voltage of the first DC power line to a voltage value obtained by multiplying the first voltage by the constant value, and the voltage of the second DC power line A power supply facility characterized by controlling the voltage of the second DC power line to the second voltage when the voltage exceeds the second voltage.
  9.  請求項8に記載の電力供給設備であって、
     前記第3の変換装置は、前記第1の直流電力線の電圧が、第3の電圧に前記一定値を乗じた電圧値を超過したとき、前記直流電力線の電圧を前記第3の電圧に制御することを特徴とする電力供給設備。
    The power supply facility according to claim 8,
    The third converter controls the voltage of the DC power line to the third voltage when the voltage of the first DC power line exceeds a voltage value obtained by multiplying the third voltage by the constant value. A power supply facility characterized by:
  10.  請求項9に記載の電力供給設備であって、
     前記第3の変換装置は、前記第1の直流電力線の電圧が、前記第3の電圧に前記一定値を乗じた電圧値以下のとき、前記再生可能エネルギー電源が出力する発電電力を最大電力点追従(MPPT)制御することを特徴とする電力供給設備。
    The power supply facility according to claim 9,
    When the voltage of the first DC power line is equal to or lower than the voltage value obtained by multiplying the third voltage by the constant value, the third converter converts the generated power output from the renewable energy power source to the maximum power point A power supply facility characterized by follow-up (MPPT) control.
  11.  請求項8に記載の電力供給設備であって、
     前記第4の変換装置は、前記第2の直流電力線の電圧が前記第1の電圧よりも低い第4の電圧を下回ったとき、前記第2の直流電力線の電圧制御を実施することを特徴とする電力供給設備。
    The power supply facility according to claim 8,
    The fourth converter is characterized in that, when the voltage of the second DC power line falls below a fourth voltage lower than the first voltage, voltage control of the second DC power line is performed. power supply equipment.
  12.  請求項8に記載の電力供給設備であって、
     蓄電池と、蓄電池の出力を電力変換する第2の変換装置で構成された蓄電装置が前記第1の直流電力線と前記第2の直流電力線に接続されており、
     前記第1の直流電力線に接続された前記蓄電装置は、前記第1の直流電力線の電圧が、前記第2の電圧に前記一定値を乗じた電圧値を超過したとき、前記第1の直流電力線の電圧制御を実施することを特徴とする電力供給設備。
    The power supply facility according to claim 8,
    a power storage device including a storage battery and a second conversion device for power conversion of the output of the storage battery is connected to the first DC power line and the second DC power line,
    When the voltage of the first DC power line exceeds the voltage value obtained by multiplying the second voltage by the constant value, the power storage device connected to the first DC power line is connected to the first DC power line. A power supply facility characterized by implementing voltage control of
  13.  請求項12に記載の電力供給設備であって、
     前記第1の直流電力線に接続された前記蓄電装置は、前記第1の直流電力線の電圧が、前記第1の電圧よりも低い第4の電圧に前記一定値を乗じた電圧値を下回ったとき、前記第1の直流電力線の電圧制御を実施することを特徴とする電力供給設備。
    The power supply facility according to claim 12,
    When the voltage of the first DC power line falls below a voltage value obtained by multiplying a fourth voltage lower than the first voltage by the constant value, the power storage device connected to the first DC power line , a power supply facility characterized by implementing voltage control of the first DC power line.
  14.  請求項1に記載の電力供給設備であって、
     前記蓄電池は、電動移動体に搭載されることを特徴とする電力供給設備。
    The power supply facility according to claim 1,
    A power supply facility, wherein the storage battery is mounted on an electric vehicle.
  15.  請求項1に記載の電力供給設備であって、
     蓄電池と、蓄電池の出力を電力変換する第2の変換装置で構成された蓄電装置が複数組前記直流電力線に接続されており、前記蓄電装置は指令された充放電電力制御を中止し、直流電力線の電圧制御を実行する閾値を、前記蓄電装置ごとに設定することを特徴とする電力供給設備。
    The power supply facility according to claim 1,
    A plurality of sets of power storage devices each including a storage battery and a second conversion device that converts the output of the storage battery into power are connected to the DC power line, and the power storage device stops the commanded charge/discharge power control and the DC power line. A power supply facility characterized in that a threshold value for executing voltage control of is set for each power storage device.
  16.  交流電力線と直流電力線の間に配置されて電力変換を行う第1の変換装置と、前記直流電力線と蓄電池の間に配置されて電力変換を行う第2の変換装置と、前記直流電力線と再生可能エネルギー電源の間に配置されて電力変換を行う第3の変換装置を含む電力供給設備であって、
     前記第1の変換装置、前記第2の変換装置、前記第3の変換装置に対して制御指令を与える電力供給設備制御部と、前記第1の変換装置、前記第2の変換装置、前記第3の変換装置の夫々に設けられ、前記直流電力線の電圧を第1の電圧、第2の電圧、第3の電圧に夫々制御する電圧調整部を備え、電圧調整部により前記直流電力線の電圧を第1の電圧、第2の電圧、第3の電圧のいずれかに制御することを特徴とする電力供給設備。
    A first conversion device that is arranged between an AC power line and a DC power line and performs power conversion, a second conversion device that is arranged between the DC power line and a storage battery and performs power conversion, and can be regenerated with the DC power line A power supply facility including a third conversion device that is arranged between energy power sources and performs power conversion,
    A power supply facility control unit that gives a control command to the first conversion device, the second conversion device, and the third conversion device, and the first conversion device, the second conversion device, and the third conversion device. 3, each of the converters is provided with a voltage adjusting unit that controls the voltage of the DC power line to a first voltage, a second voltage, and a third voltage, respectively, and the voltage of the DC power line is adjusted by the voltage adjusting unit A power supply facility characterized by controlling to any one of a first voltage, a second voltage, and a third voltage.
  17.  請求項16に記載の電力供給設備であって、
     前記電力供給設備制御部は長周期での制御を行い、前記電圧調整部は短周期での制御を行うことを特徴とする電力供給設備。
    The power supply facility according to claim 16,
    The power supply facility, wherein the power supply facility control section performs long-cycle control, and the voltage adjustment section performs short-cycle control.
PCT/JP2022/035884 2021-09-28 2022-09-27 Power supply facility WO2023054335A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021157985A JP2023048576A (en) 2021-09-28 2021-09-28 Power supply facility
JP2021-157985 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023054335A1 true WO2023054335A1 (en) 2023-04-06

Family

ID=85780181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035884 WO2023054335A1 (en) 2021-09-28 2022-09-27 Power supply facility

Country Status (2)

Country Link
JP (1) JP2023048576A (en)
WO (1) WO2023054335A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161190A (en) * 2011-02-01 2012-08-23 Tabuchi Electric Co Ltd Photovoltaic power generation system
JP2012200060A (en) * 2011-03-18 2012-10-18 Toshiba Corp Feeding control system and feeding control method
JP2018019481A (en) * 2016-07-26 2018-02-01 山洋電気株式会社 Power conversion device
JP2020014370A (en) * 2018-07-10 2020-01-23 パナソニックIpマネジメント株式会社 Power conversion system, control method of conversion circuit, and program
JP2021052488A (en) * 2019-09-24 2021-04-01 株式会社Yamabishi Power control device, power control method, bidirectional invertor, and power control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161190A (en) * 2011-02-01 2012-08-23 Tabuchi Electric Co Ltd Photovoltaic power generation system
JP2012200060A (en) * 2011-03-18 2012-10-18 Toshiba Corp Feeding control system and feeding control method
JP2018019481A (en) * 2016-07-26 2018-02-01 山洋電気株式会社 Power conversion device
JP2020014370A (en) * 2018-07-10 2020-01-23 パナソニックIpマネジメント株式会社 Power conversion system, control method of conversion circuit, and program
JP2021052488A (en) * 2019-09-24 2021-04-01 株式会社Yamabishi Power control device, power control method, bidirectional invertor, and power control system

Also Published As

Publication number Publication date
JP2023048576A (en) 2023-04-07

Similar Documents

Publication Publication Date Title
US10464441B2 (en) Charging facility and energy management method for charging facility
CN102630361A (en) Power conversion apparatus, power generating system, and charge/discharge control method
KR101550875B1 (en) Active type energy storage system
JP2015195674A (en) Power storage battery assembly control system
KR101417669B1 (en) System for controlling bidirectional converter
CN102687033A (en) Method for controlling secondary battery and power storage device
CN112994131B (en) Battery cluster control system and control method thereof
CN113489123A (en) Optical storage control module, optical storage control method and optical storage system
EP4057472A1 (en) Photovoltaic energy storage system and control method thereof
US9608449B2 (en) Power system and control method of the power system
KR20180136177A (en) An energy storage system
CN110829464A (en) Photovoltaic energy storage battery frequency modulation system and method based on direct current side
JP2013099207A (en) Control apparatus and control method
WO2023054335A1 (en) Power supply facility
KR101215396B1 (en) Hybrid smart grid uninterruptible power supply using discharge current control
US20220344968A1 (en) Electric drive system
CN112600216B (en) Bus voltage and power control method
JP2018121468A (en) Dc power feeding system
WO2018155442A1 (en) Dc power supply system
JP2016174477A (en) Input control power storage system
JP6055968B2 (en) Power system
JP2023110252A (en) Power supply facility
KR101978136B1 (en) Hybrid power conversion apparatus and system and method for controlling hybrid power conversion apparatus
JP5694012B2 (en) Power storage system
RU95191U1 (en) AUTONOMOUS POWER SUPPLY SYSTEM WITH A SECTIONAL SOLAR BATTERY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876201

Country of ref document: EP

Kind code of ref document: A1