WO2023054140A1 - Method for producing plastic optical fiber and apparatus for producing plastic optical fiber - Google Patents

Method for producing plastic optical fiber and apparatus for producing plastic optical fiber Download PDF

Info

Publication number
WO2023054140A1
WO2023054140A1 PCT/JP2022/035273 JP2022035273W WO2023054140A1 WO 2023054140 A1 WO2023054140 A1 WO 2023054140A1 JP 2022035273 W JP2022035273 W JP 2022035273W WO 2023054140 A1 WO2023054140 A1 WO 2023054140A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
manufacturing
melt extrusion
material resin
less
Prior art date
Application number
PCT/JP2022/035273
Other languages
French (fr)
Japanese (ja)
Inventor
匠 入江
竜弥 荒木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202280045876.0A priority Critical patent/CN117615892A/en
Publication of WO2023054140A1 publication Critical patent/WO2023054140A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/08Conditioning or physical treatment of the material to be shaped by using wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Definitions

  • the present invention relates to a method and apparatus for manufacturing plastic optical fibers.
  • a type of optical fiber is a plastic optical fiber.
  • Plastic optical fibers are superior in flexibility and workability to optical fibers made of quartz glass, and can be manufactured at low cost. Plastic optical fibers are primarily used for short-distance (eg, 100 m or less) transmission media.
  • a plastic optical fiber is composed of multiple layers including a core and a cladding.
  • the core is the layer in the center of the optical fiber that transmits light.
  • the cladding is a layer that covers the core and is positioned outwardly of the core with respect to the central axis of the optical fiber.
  • the core has a relatively high refractive index and the cladding has a relatively low refractive index.
  • a coating layer may be arranged to cover the outer circumference of the clad.
  • a plastic optical fiber can be manufactured, for example, by a melt spinning method.
  • a raw material resin is melt-extruded to form each layer constituting the optical fiber.
  • Japanese Patent Laid-Open No. 2002-200000 discloses a melt extrusion device having an extrusion screw and a method of manufacturing a plastic optical fiber using the device.
  • Patent Literature 2 discloses a melt extrusion device using gas pressure and a method for manufacturing a plastic optical fiber using the device.
  • An object of the present invention is to provide a technique that enables further improvement in the quality of plastic optical fibers.
  • the water contained in the raw resin supplied to the melt extrusion mechanism causes hydrolysis of the raw resin and a decrease in melt viscosity, and the amount of water in the raw resin
  • the present invention A method of manufacturing a plastic optical fiber composed of multiple layers including a core and a cladding, comprising: Forming at least one layer selected from the plurality of layers by melt extrusion molding using a melt extrusion mechanism, A production method (first production method), wherein the water content of the raw material resin of the at least one layer is controlled to 400 ppm (by mass) or less at the time of supply to the melt extrusion mechanism; I will provide a.
  • the present invention provides A method of manufacturing a plastic optical fiber composed of multiple layers including a core and a cladding, comprising: Forming at least one layer selected from the plurality of layers by melt extrusion molding using a melt extrusion mechanism, The raw material resin of the at least one layer is accommodated in the raw material supply unit with a water content of 400 ppm (based on mass), and then supplied from the raw material supply unit to the melt extrusion mechanism, A manufacturing method (second manufacturing method) in which a gas having an absolute humidity of 0.03 g/m 3 or less is continuously or intermittently supplied to the interior of the raw material supply unit; I will provide a.
  • the present invention provides An apparatus for manufacturing a plastic optical fiber composed of multiple layers including a core and a clad, a melt extrusion mechanism for forming at least one layer selected from the plurality of layers by melt extrusion; a raw material supply unit that accommodates the raw material resin of the at least one layer and supplies the accommodated raw material resin to the melt extrusion mechanism; a moisture content control mechanism that maintains the atmosphere inside the raw material supply unit at an absolute humidity of 0.95 g/m 3 or less; manufacturing equipment, I will provide a.
  • the water content of the raw material resin supplied to the melt extrusion mechanism is controlled, thereby suppressing hydrolysis of the raw material resin and reduction in melt viscosity during melt extrusion molding. Therefore, according to the present invention, it is possible to further improve the quality of plastic optical fibers.
  • FIG. 1 is a schematic diagram showing an example of a manufacturing apparatus capable of implementing the manufacturing method of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of a plastic optical fiber manufactured by the manufacturing method of the present invention and/or the manufacturing apparatus of the present invention.
  • FIG. 3 is a graph showing the relationship between the nitrogen purge of the raw material supply section and the water content of the raw material resin accommodated in the raw material supply section, evaluated in the examples.
  • the manufacturing method according to the first aspect of the present invention comprises: A method of manufacturing a plastic optical fiber composed of multiple layers including a core and a cladding, comprising: Forming at least one layer selected from the plurality of layers by melt extrusion molding using a melt extrusion mechanism, The water content of the raw material resin of the at least one layer is controlled to 400 ppm (by mass) or less at the point of supply to the melt extrusion mechanism.
  • the raw material resin is accommodated, and the absolute humidity of the internal atmosphere is maintained at 0.95 g/m 3 or less.
  • the material is supplied to the melt extrusion mechanism from the raw material supply unit.
  • a gas having an absolute humidity of 0.03 g/m 3 or less is continuously or intermittently supplied to the interior of the raw material supply section.
  • a manufacturing method includes: A method of manufacturing a plastic optical fiber composed of multiple layers including a core and a cladding, comprising: Forming at least one layer selected from the plurality of layers by melt extrusion molding using a melt extrusion mechanism, The raw material resin of the at least one layer is accommodated in the raw material supply unit in a state where the water content is 400 ppm (based on mass) or less, and then supplied from the raw material supply unit to the melt extrusion mechanism, A gas having an absolute humidity of 0.03 g/m 3 or less is continuously or intermittently supplied to the inside of the raw material supply section.
  • the gas is an inert gas.
  • the gas is nitrogen.
  • the at least one layer is at least one layer selected from the core and the clad.
  • the raw material resin has hydrolyzability.
  • the raw material resin is polycarbonate.
  • the raw material resin supplied to the melt extrusion mechanism has a pellet shape, and the pellets has an average volume of 10.0 mm 3 or more.
  • the raw material resin supplied to the melt extrusion mechanism has a pellet shape, and the pellets is dried until the post-drying moisture content becomes 400 ppm (mass basis) or less, and then supplied to the melt extrusion mechanism.
  • the molding temperature of the raw material resin in the melt extrusion molding is the glass transition temperature (Tg ) +100° C. or higher.
  • the manufacturing apparatus includes An apparatus for manufacturing a plastic optical fiber composed of multiple layers including a core and a clad, a melt extrusion mechanism for forming at least one layer selected from the plurality of layers by melt extrusion; a raw material supply unit that accommodates the raw material resin of the at least one layer and supplies the accommodated raw material resin to the melt extrusion mechanism; a moisture content control mechanism that maintains the atmosphere inside the raw material supply unit at an absolute humidity of 0.95 g/m 3 or less; Prepare.
  • the moisture content control mechanism continuously or intermittently introduces gas having an absolute humidity of 0.03 g/m 3 or less into the raw material supply unit. Equipped with a gas supply mechanism for supplying to.
  • the gas is an inert gas.
  • the gas is nitrogen.
  • the at least one layer is at least one layer selected from the core and the clad.
  • the raw material resin has hydrolyzability.
  • the raw material resin is polycarbonate.
  • a first manufacturing method will be described with reference to the manufacturing apparatus of FIG.
  • a manufacturing apparatus 10 shown in FIG. 1 is a manufacturing apparatus for plastic optical fibers (hereinafter referred to as "POF").
  • the manufacturing apparatus 10 includes a plurality of melt extrusion mechanisms 1 (1a and 1b).
  • the melt extrusion mechanism 1 (each melt extrusion mechanism 1 a, 1 b) comprises an extrusion screw 11 and a gear pump 12 .
  • the extrusion screw 11 provided in the melt extrusion mechanism 1 of FIG. 1 is a single shaft.
  • the melt extrusion mechanism 1 of FIG. 1 comprises a screw cylinder 19 in which an extrusion screw 11 is accommodated.
  • the extrusion screw 11 and screw cylinder 19 constitute a single screw extruder 4 .
  • a hopper (raw material tank) as the raw material supply unit 2 is connected to the inlet 14 of the melt extrusion mechanism 1 .
  • a raw material resin 3 is accommodated inside a hopper connected to the melt extrusion mechanism 1 .
  • the contained raw material resin 3 usually has a pellet shape.
  • the raw material resin 3 is supplied from a hopper to the melt extruding mechanism 1 and heated to be softened or melted so that it can flow.
  • the raw material resin 3 in a fluid state passes through the gear pump 12 and is discharged from the discharge port 15 of the melt extrusion mechanism 1, and is melt-extruded into a predetermined layer constituting the POF.
  • the melt extrusion mechanism 1 utilizes mechanical pressure from an extrusion screw 11 . In the melt extrusion mechanism 1, kneading of the raw material resin 3 by the extrusion screw 11 may be performed.
  • the gear pump 12 is normally used for controlling the discharge amount of the raw material resin 3 .
  • Reference numeral 16 denotes a cooling block, which is arranged on the outer wall of the screw cylinder 19 in the vicinity of the inlet 14 and the connecting portion with the raw material supply section 2 in the melt extrusion mechanism 1 .
  • the cooling block 16 prevents the heat for making the raw material resin 3 flowable from being transferred to the raw material supply section 2 .
  • Reference numeral 17 is a band heater.
  • the band heater 17 is arranged on the outer wall of the screw cylinder 19 or the like on the downstream side of the connecting portion and the inlet 14 .
  • Reference numeral 18 is a screw head pressure gauge, which can be used to measure the discharge pressure of the raw material resin 3 .
  • Reference numeral 20 denotes a breaker plate, which prevents the raw material resin 3 in a solid state from being erroneously discharged.
  • Reference numeral 21 denotes a pipe through which the raw material resin 3 discharged from the discharge port 15 passes. A gear pump 12 is arranged along the path of the pipe 21 . The pipe 21 is provided inside and downstream of the block 23 .
  • Reference numeral 25 denotes a pipe for introducing gas 26 into the raw material supply section 2 .
  • the manufacturing apparatus 10 in FIG. 1 can manufacture the POF 101 composed of two layers, the core 102 and the clad 103 (see FIG. 2).
  • POF 101 is typically of the gradient index (GI) type.
  • the POF 101 is not limited to the GI type.
  • a core 102 and a clad 103 are formed by melt extrusion molding using the respective melt extrusion mechanisms 1a and 1b.
  • the clad 103 is formed by molding the raw material resin 3 discharged from the melt extrusion mechanism 1b in the first chamber 40 so as to cover the outer periphery of the core 102 .
  • the clad 103 is formed while the core 102 formed by melt extrusion molding using the melt extrusion mechanism 1 a passes through the first chamber 40 .
  • At least one layer selected from a plurality of layers constituting the POF 101 is formed by melt extrusion molding using a melt extrusion mechanism, and the moisture content of the raw material resin of the at least one layer is , and controlled to 400 ppm (based on mass; "ppm” shown below is based on mass) at the time of supply to the melt extrusion mechanism.
  • ppm based on mass
  • Hydrolysis causes the layers constituting the POF 101 to fluctuate or deteriorate in optical properties and, in some cases, to foam.
  • a decrease in melt viscosity causes variation or deterioration in optical properties of the layers constituting the POF 101 . Therefore, it is possible to further improve the quality of the POF 101 by controlling the amount of water in the raw material resin.
  • the moisture content to be controlled may be 350 ppm or less, 300 ppm or less, or even 250 ppm or less.
  • the lower limit of the water content to be controlled is not limited, it may be, for example, 50 ppm or more in consideration of industrial production costs and the like.
  • the control of the water content should be performed for at least one layer selected from the multiple layers that make up the POF 101 .
  • At least one layer is, for example, at least one layer selected from core 102 and clad 103 .
  • the moisture content can be controlled for at least one layer selected from the core 102 and the clad 103 .
  • the melt extrusion mechanism 1 in FIG. 1 is a mechanism that uses mechanical pressure from an extrusion screw 11. It is possible to control the water content as described above for mechanisms other than the melt-extrusion mechanism using mechanical pressure, for example, the melt-extrusion mechanism using gas pressure. However, in the production of POF 101, which usually has a very small wire diameter and therefore the extrusion rate of the raw material resin per unit time is negligible, the raw material is generally non-sealed and in communication with the external environment. It is preferable to apply the control of the water content to the melt extrusion molding using the melt extrusion mechanism 1 in which the raw material resin 3 can be accommodated in the supply unit 2 for a long period of time.
  • the water content of the raw resin can be evaluated using a chemical reaction moisture meter (for example, Brabender's Aquatrack series). This moisture meter heats the raw resin, reacts the moisture released from the raw resin by heating with a measurement reagent (calcium hydride), and detects the amount of carbon dioxide generated by the reaction. Moisture content can be evaluated.
  • the sample is, for example, started at room temperature and heated to 160°C.
  • the time of supply to the melt-extrusion mechanism 1 typically means the time of supply to the melt-extrusion mechanism 1 from the raw material supply section 2 connected to the melt-extrusion mechanism 1 . In the example of FIG. 1, it is the point of passage through the inlet 14 of the melt extrusion mechanism 1 .
  • the raw material resin 3 is fed from the raw material supply unit 2 in which the raw material resin 3 is accommodated and the internal absolute humidity is maintained at 0.95 g/m 3 or less, and then through the melt extrusion mechanism 1. may be supplied to
  • the absolute humidity maintained may be 0.60 g/m 3 or less, or even 0.50 g/m 3 or less.
  • the lower limit of the retained absolute humidity is not limited, it may be, for example, 0.04 g/m 2 or more in consideration of industrial manufacturing costs.
  • the raw material supply unit 2 may contain the raw material resin 3 which already has a water content of 400 ppm or less (or the water content range is smaller), in which case the water content can be more reliably controlled.
  • a gas having an absolute humidity of 0.03 g/m 3 or less may be continuously or intermittently supplied to the inside of the raw material supply unit 2.
  • the interior of the raw material supply section 2 may be continuously or intermittently purged (replaced) with a gas having a humidity of 0.03 g/m 3 or less.
  • Continuous means performing continuously for a predetermined period of time, and "intermittently” means performing for a predetermined period of time with interruptions in between.
  • the gas can be supplied to the raw material supply section 2 from a gas supply mechanism such as a nozzle arranged inside the raw material supply section 2, for example.
  • the pipe 25 may be used for gas supply.
  • the absolute humidity of the gas may be 0.02 g/m 3 or less.
  • the lower limit of the absolute humidity of the gas is not limited, it may be, for example, 0.01 g/m 3 or more in consideration of industrial production costs and the like. Absolute humidity can be evaluated with a hygrometer.
  • the gas may contain or be nitrogen.
  • the gas may be an inert gas. Examples of inert gases are nitrogen, carbon dioxide, helium and argon.
  • the gas may be substantially free of oxygen. In the present specification, substantially free of oxygen means that the oxygen content is 0.20% by volume or less, preferably 0.10% by volume or less, more preferably 0.05% by volume or less. do.
  • a dehumidifying member may be arranged inside the raw material supply section 2 in order to maintain the absolute humidity inside the raw material supply section 2 .
  • the dehumidifying member includes, for example, a hygroscopic material.
  • the gas supply mechanism and the dehumidification member may be a moisture content control mechanism that maintains the atmosphere inside the raw material supply section 2 at an absolute humidity of 0.95 g/m 3 or less (furthermore, the range described above).
  • the moisture content control mechanism is not limited to the above example.
  • the melt extrusion mechanism 1 in FIG. 1 includes a single screw extruder 4.
  • the melt extrusion mechanism 1 may comprise a multi-screw extruder with two or more extrusion screws 11 .
  • the melt extrusion mechanism 1 is not limited to the above example.
  • the melt extrusion mechanism 1 may not use gas pressure for melt extrusion.
  • An example of the raw material supply unit 2 is a hopper.
  • the raw material supply unit 2 is not limited to the above example.
  • the raw material resin 3 supplied to the melt extrusion mechanism 1 may have the shape of pellets and the average volume of the pellets may be 10.0 mm 3 or more. In this case, absorption of water by the raw material resin 3 in the raw material supply unit 2 can be suppressed.
  • the average volume may be 11.0 mm 3 or more.
  • the upper limit of the average volume is, for example, 20.0 mm 3 or less.
  • the average volume of the pellets (mm 3 ) is, for example, the weight of at least 50 pellets is measured, and the number N (grains) and weight W (g) of the measured pellets, and the specific gravity SG (g/cm 3 ), it can be obtained from the formula: ⁇ W(g)/SG(g/cm 3 ) ⁇ /N ⁇ 1000. From the viewpoint of minimizing the error, it is preferable to use an electronic balance capable of measuring 1/10000 g for the measurement of the weight W.
  • the raw material resin 3 (typically in the form of pellets) may be supplied to the melt extrusion mechanism 1 after being dried until the water content after drying is 400 ppm or less.
  • the destination of supply of the dried raw material resin 3 may be the raw material supply unit 2 .
  • the moisture content after drying may be 350 ppm or less, and the lower limit of the moisture content after drying is, for example, 10 ppm or more.
  • the moisture content after drying can be evaluated in the same manner as the moisture content of the raw material resin using a chemical reaction type moisture meter.
  • a POF having a multilayer structure of three or more layers may be manufactured by the first manufacturing method.
  • An example of a POF having a multi-layer structure of three or more layers includes a core, a clad, and a coating layer covering the clad arranged outside the clad with respect to the central axis of the POF.
  • the at least one layer that controls the water content of the raw material resin may be a coating layer.
  • the covering layer is also referred to by those skilled in the art as an overcladding.
  • a hydrolyzable resin such as polycarbonate is often used as a raw material resin.
  • the molding temperature of the raw material resin in melt extrusion molding in the melt extrusion mechanism 1 may be the glass transition temperature (Tg) of the raw material resin + 100°C or higher, or may be Tg + 130°C or higher.
  • the upper limit of the molding temperature is, for example, Tg+180° C. or less. In this case, the volatile components contained in the raw material resin can be more reliably removed during molding, thereby further improving the quality of the POF 101 .
  • the manufacturing apparatus that can implement the first manufacturing method is not limited to the example in FIG.
  • At least one layer selected from a plurality of layers constituting the POF 101 is formed by melt extrusion molding using the melt extrusion mechanism 1, and the raw material resin of the at least one layer contains water.
  • the raw material supply section 2 After being accommodated in the raw material supply section 2 in a state where the amount is 400 ppm or less, it is supplied from the raw material supply section 2 to the melt extrusion mechanism 1 .
  • a gas having an absolute humidity of 0.03 g/m 3 or less is continuously or intermittently supplied to the interior of the raw material supply unit 2 .
  • the moisture content of the raw material resin is already 400 ppm or less at the time it is accommodated in the raw material supply unit 2, and is maintained at 400 ppm or below while being accommodated in the raw material supply unit 2 by the gas supply. This suppresses hydrolysis of the raw material resin and a decrease in melt viscosity in melt extrusion molding.
  • the water content of the raw material resin accommodated in the raw material supply unit 2 may be 350 ppm or less, 300 ppm or less, or even 250 ppm or less.
  • the lower limit of the water content is not limited, it may be, for example, 50 ppm or more in consideration of industrial production costs and the like.
  • the gas supply and type are the same as in the first manufacturing method.
  • the absolute humidity of the supplied gas can take the range described above in the description of the first manufacturing method.
  • the melt extrusion mechanism in the second manufacturing method is usually the melt extrusion mechanism 1 using mechanical pressure.
  • the control of the water content of the raw material resin may be performed for at least one layer selected from a plurality of layers forming the POF 101 .
  • the at least one layer that controls the water content of the raw material resin is, for example, at least one layer selected from the core 102 and the clad 103, and may be a coating layer.
  • the manufacturing apparatus that can implement the second manufacturing method is not limited to the example in FIG.
  • the present invention provides a method for manufacturing a plastic optical fiber composed of a plurality of layers including a core and a clad, wherein at least one layer selected from the plurality of layers is melted.
  • a manufacturing method ( A third manufacturing method) is provided.
  • the third production method also suppresses hydrolysis of the raw material resin and reduction in melt viscosity in melt extrusion molding.
  • the water content of the raw material resin discharged from the melt extrusion mechanism may be 350 ppm or less, 300 ppm or less, or even 250 ppm or less.
  • the lower limit of the water content is not limited, it may be, for example, 50 ppm or more in consideration of industrial production costs and the like.
  • the time of discharge is, for example, the time of inflow into the first chamber 40 .
  • the water content of the raw material resin in the gear pump 12 may be evaluated. Since the path of the raw material resin from the gear pump 12 to the first chamber 40 is normally closed, it is considered that the water content of the raw material resin does not change substantially along the path.
  • the third manufacturing method can be implemented, for example, by controlling the amount of water in the resin raw material as described above in the description of the first manufacturing method and/or the second manufacturing method.
  • descriptions of matters common to the first manufacturing method and/or the second manufacturing method will be omitted.
  • the third manufacturing method can be implemented, for example, by the manufacturing apparatus shown in FIG.
  • the manufacturing apparatus capable of implementing the third manufacturing method is not limited to the example of FIG.
  • Raw material resins for the core 102 and the clad 103 are, for example, fluorine-containing resins, acrylic resins such as methyl methacrylate, styrene resins, and carbonate resins.
  • the refractive index of the material resin forming the clad 103 is generally lower than the refractive index of the material resin forming the core 102 .
  • Raw material resins for the coating layer are, for example, polycarbonate, various engineering plastics, cycloolefin polymers, polytetrafluoroethylene (PTFE), modified PTFE, and perfluoroalkoxyalkane (PFA).
  • the raw material resin may contain an additive such as a refractive index adjuster.
  • the raw material resin is not limited to the above examples.
  • a known resin that can form each layer of the POF may be selected as the raw material resin.
  • the raw material resin may be hydrolyzable.
  • the hydrolyzable resin may have at least one selected from an ester structure, carbonate structure, urethane structure, amide structure, ether structure and acetal structure.
  • the hydrolyzable resin is, for example, polycarbonate.
  • the fluorine-containing resin (polymer (P)) is shown below.
  • Polymers (P) shown below are suitable for use in core 102 .
  • the polymer (P) preferably contains substantially no hydrogen atoms from the viewpoint of suppressing light absorption due to stretching energy of C—H bonds, and all hydrogen atoms bonded to carbon atoms are fluorine atoms. Substitution is particularly preferred.
  • that the polymer (P) does not substantially contain hydrogen atoms means that the content of hydrogen atoms in the polymer (P) is 1 mol % or less.
  • the polymer (P) preferably has a fluorine-containing alicyclic structure.
  • the fluorine-containing alicyclic structure may be contained in the main chain of the polymer (P) or may be contained in the side chain of the polymer (P).
  • the polymer (P) has, for example, a structural unit (A) represented by the following formula (1).
  • R ff 1 to R ff 4 each independently represent a fluorine atom, a C 1-7 perfluoroalkyl group, or a C 1-7 perfluoroalkyl ether group.
  • R ff1 and R ff2 may combine to form a ring .
  • Perfluoro means that all hydrogen atoms bonded to carbon atoms are replaced with fluorine atoms.
  • the number of carbon atoms in the perfluoroalkyl group is preferably 1-5, more preferably 1-3, and even more preferably 1.
  • a perfluoroalkyl group may be linear or branched.
  • the perfluoroalkyl group includes trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group and the like.
  • the perfluoroalkyl ether group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms.
  • a perfluoroalkyl ether group may be linear or branched.
  • a perfluoromethoxymethyl group etc. are mentioned as a perfluoroalkyl ether group.
  • the ring may be a 5-membered ring or a 6-membered ring.
  • This ring includes a perfluorotetrahydrofuran ring, a perfluorocyclopentane ring, a perfluorocyclohexane ring, and the like.
  • structural unit (A) include structural units represented by the following formulas (A1) to (A8).
  • the structural unit (A) is preferably a structural unit (A2), that is, a structural unit represented by the following formula (2).
  • the polymer (P) may contain one or more of the structural units (A).
  • the content of the structural unit (A) is preferably 20 mol% or more, more preferably 40 mol% or more, based on the total of all structural units. By containing 20 mol % or more of the structural unit (A), the polymer (P) tends to have higher heat resistance. When the structural unit (A) is contained in an amount of 40 mol % or more, the polymer (P) tends to have high heat resistance as well as higher transparency and higher mechanical strength.
  • the content of the structural unit (A) is preferably 95 mol% or less, more preferably 70 mol% or less, based on the total of all structural units.
  • the structural unit (A) is derived from, for example, a compound represented by the following formula (3).
  • R ff 1 to R ff 4 are the same as in formula (1).
  • the compound represented by formula (3) can be obtained by a known production method including, for example, the production method disclosed in Japanese Patent Publication No. 2007-504125.
  • Specific examples of the compound represented by the formula (3) include compounds represented by the following formulas (M1) to (M8).
  • the polymer (P) may further contain other structural units in addition to the structural unit (A).
  • Other structural units include the following structural units (B) to (D).
  • the structural unit (B) is represented by the following formula (4).
  • R 1 to R 3 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms.
  • R 4 represents a perfluoroalkyl group having 1 to 7 carbon atoms.
  • a perfluoroalkyl group may have a ring structure.
  • a portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms.
  • Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
  • the polymer (P) may contain one or more of the structural units (B).
  • the content of the structural unit (B) is preferably 5 to 10 mol% of the total of all structural units.
  • the content of the structural unit (B) may be 9 mol% or less, or may be 8 mol% or less.
  • the structural unit (B) is derived, for example, from a compound represented by the following formula (5).
  • R 1 to R 4 are the same as in formula (4).
  • the compound represented by formula (5) is a fluorine-containing vinyl ether such as perfluorovinyl ether.
  • the structural unit (C) is represented by the following formula (6).
  • R 5 to R 8 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms.
  • a perfluoroalkyl group may have a ring structure.
  • a portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms.
  • Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
  • the polymer (P) may contain one or more of the structural units (C).
  • the content of the structural unit (C) is preferably 5 to 10 mol% of the total of all structural units.
  • the content of the structural unit (C) may be 9 mol% or less, or may be 8 mol% or less.
  • the structural unit (C) is derived from, for example, a compound represented by the following formula (7).
  • R 5 to R 8 are the same as in formula (6).
  • Compounds represented by formula (7) are fluorine-containing olefins such as tetrafluoroethylene and chlorotrifluoroethylene.
  • the structural unit (D) is represented by the following formula (8).
  • Z represents an oxygen atom, a single bond or —OC(R 19 R 20 )O—
  • each of R 9 to R 20 independently represents a fluorine atom or perfluoroalkyl having 1 to 5 carbon atoms. group, or a perfluoroalkoxy group having 1 to 5 carbon atoms.
  • a portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms.
  • Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
  • fluorine atoms in the perfluoroalkoxy group may be substituted with halogen atoms other than fluorine atoms.
  • s and t each independently represents an integer of 0 to 5 and s+t is 1 to 6 (provided that s+t may be 0 when Z is —OC(R 19 R 20 )O—); .
  • the structural unit (D) is preferably represented by the following formula (9).
  • the structural unit represented by the following formula (9) is the case where Z is an oxygen atom, s is 0, and t is 2 in the above formula (8).
  • R 141 , R 142 , R 151 and R 152 each independently represents a fluorine atom, a perfluoroalkyl group having 1 to 5 carbon atoms, or a perfluoroalkoxy group having 1 to 5 carbon atoms. .
  • a portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms.
  • Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
  • Some of the fluorine atoms in the perfluoroalkoxy group may be substituted with halogen atoms other than fluorine atoms.
  • the polymer (P) may contain one or more of the structural units (D).
  • the content of the structural unit (D) is preferably 30 to 67 mol% of the total of all structural units.
  • the content of the structural unit (D) is, for example, 35 mol% or more, may be 60 mol% or less, or may be 55 mol% or less.
  • the structural unit (D) is derived, for example, from a compound represented by the following formula (10).
  • Z, R 9 -R 18 , s and t are the same as in formula (8).
  • the compound represented by formula (10) is a fluorine-containing compound having two or more polymerizable double bonds and capable of cyclic polymerization.
  • Structural unit (D) is preferably derived from a compound represented by the following formula (11).
  • R 141 , R 142 , R 151 and R 152 are the same as in formula (9).
  • the polymer (P) may further contain structural units other than the structural units (A) to (D), but substantially contains structural units other than the structural units (A) to (D). preferably not included. Note that the polymer (P) does not substantially contain other structural units other than the structural units (A) to (D) means that the total of all structural units in the polymer (P), the structural unit (A ) to (D) is 95 mol % or more, preferably 98 mol % or more.
  • the method of polymerizing the polymer (P) is not particularly limited, and for example, a general polymerization method such as radical polymerization can be used.
  • a polymerization initiator for polymerizing the polymer (P) may be a perfluorinated compound.
  • the glass transition temperature (Tg) of the polymer (P) is not particularly limited, and is, for example, 100° C. to 140° C., may be 105° C. or higher, or may be 120° C. or higher.
  • Tg means the midpoint glass transition temperature (T mg ) determined according to the Japanese Industrial Standards (JIS) K7121:1987.
  • the manufacturing apparatus 10 of FIG. 1 is an apparatus capable of carrying out the manufacturing method of the present invention, and is also an example of the manufacturing apparatus of the present invention.
  • the manufacturing apparatus 10 matters other than those described above in the description of the first to third manufacturing methods will be described.
  • the manufacturing apparatus 10 may include a moisture content control mechanism that maintains the atmosphere inside the raw material supply unit 2 at an absolute humidity of 0.95 g/m 3 or less.
  • the moisture content control mechanism may include a gas supply mechanism that continuously or intermittently supplies gas with an absolute humidity of 0.03 g/m 3 or less to the inside of the raw material supply unit 2. It may be a dehumidifying member arranged in.
  • the absolute humidity to be held and the absolute humidity of the supplied gas can each take the range described above in the description of the first manufacturing method.
  • a known pump can be used for the gear pump 12.
  • the manufacturing apparatus 10 may further include a control mechanism (not shown).
  • the control mechanism includes, for example, a DSP (Digital Signal Processor) including an A/D conversion circuit, an input/output circuit, an arithmetic circuit, a storage device, and the like.
  • the control mechanism may store a program for properly operating the manufacturing apparatus 10 .
  • the control mechanism may, for example, control a moisture content control mechanism.
  • the manufacturing apparatus 10 may include a hygrometer that measures the absolute humidity of the atmosphere inside the raw material supply unit 2, and the control mechanism and the hygrometer may be connected.
  • the POF 101 shown in FIG. 2 can be manufactured by the manufacturing method or manufacturing apparatus of the present invention.
  • the manufactured POF is not limited to the example of FIG.
  • melt viscosity (melt viscosity) at that temperature was evaluated with a twin capillary viscometer (RH-7 manufactured by Malvern). The shear rate during evaluation was 100 sec -1 .
  • the melt viscosity was almost constant (3200 to 3300 Pa s) for samples with a water content of 400 ppm or less, but began to decrease linearly when it exceeded 400 ppm, and was 3000 Pa s for a sample with a water content of 800 ppm and 3000 ppm for a water content.
  • the sample was 2150 Pa ⁇ s.
  • Example 2 Relationship between water content and hydrolyzability of raw material resin
  • Experimental Example 2 the relationship between the water content of the starting resin and its hydrolyzability was evaluated. 5 g of each sample prepared in Experimental Example 1 was placed in a heating bath maintained at 230° C. and heated for 2 hours. ) (% by weight relative to the weight of the sample before heating) was evaluated. The proportion was almost constant (0.1 to 0.15% by weight) for samples with a water content of 400 ppm or less, but began to increase linearly above 400 ppm, reaching 0.21 weight for samples with a water content of 800 ppm. %, and a sample with a water content of 3000 ppm was 0.42% by weight.
  • Example 3 Relationship between Nitrogen Purge and Moisture Content of Raw Resin
  • the relationship between the nitrogen purge of the raw material supply section and the water content of the raw material resin accommodated in the raw material supply section was evaluated. 1000 g of the sample prepared in Experimental Example 1 and having a water content of 200 ppm was placed in a hopper having an inner volume of 5 L. The ambient temperature was 22.1° C. and the relative humidity was 53%. Next, the change in the moisture content of the sample when the interior of the hopper was continuously purged with nitrogen at an absolute humidity of 0.8 g/m 3 and the moisture content of the sample when the sample was left standing without purging with nitrogen. We evaluated the changes in The evaluation results are shown in FIG. As shown in FIG.
  • Example 1 Polymethyl methacrylate (PMMA) pellets (manufactured by Mitsubishi Chemical, ACRYPET, the average volume of pellets evaluated by the above method is 17.8 mm 3 (however, the number of pellets N when evaluating the average volume was 50; hereinafter the same)) was dried in a dry atmosphere at 100° C. for 10 hours. After drying, the water content (water content after drying) was evaluated using a chemical reaction moisture meter (Aquatrac 3E, manufactured by Brabender) and found to be 84 ppm.
  • PMMA Polymethyl methacrylate
  • PC/PET Polycarbonate/polyethylene terephthalate copolymer resin
  • the water content of each resin at the point of supply from the hopper to the melt extruder was 92 ppm for PMMA and 85 ppm for PC/PET.
  • the water content of each resin was evaluated by the method described above using the moisture meter.
  • an optical microscope Keyence VHX-300, 200x magnification
  • no air bubbles were observed, so it was judged to be good (A).
  • B unsatisfactory
  • Example 2 A POF having a length of 100 m was produced in the same manner as in Example 1, except that the PC/PET pellets were dried for 6 hours. The moisture content of the pellets after drying was 136 ppm, and the moisture content of the pellets at the screw inlet was 139 ppm.
  • Example 3 A POF having a length of 100 m was produced in the same manner as in Example 1, except that the PC/PET pellet molding temperature was changed to 210°C. The moisture content of the pellets after drying was 40 ppm, and the moisture content of the pellets at the screw inlet was 43 ppm.
  • Example 4 A POF having a length of 100 m was produced in the same manner as in Example 1, except that the PC/PET pellet molding temperature was changed to 250°C. The moisture content of the pellets after drying was 34 ppm, and the moisture content of the pellets at the screw inlet was 40 ppm.
  • Example 5 A POF having a length of 100 m was produced in the same manner as in Example 1, except that the PMMA pellets were dried for 6 hours. The moisture content of the pellets after drying was 136 ppm, and the moisture content of the pellets at the screw inlet was 141 ppm.
  • Example 6 A POF having a length of 100 m was produced in the same manner as in Example 1 except that the PMMA pellet molding temperature was changed to 210° C., and the presence or absence of bubbles in the produced POF was checked.
  • the moisture content of the pellets after drying was 40 ppm, and the moisture content of the pellets at the screw inlet was 42 ppm.
  • Example 7 A POF having a length of 100 m was produced in the same manner as in Example 1 except that the PMMA pellet molding temperature was changed to 250° C., and the presence or absence of bubbles in the produced POF was checked.
  • the moisture content of the pellets after drying was 34 ppm, and the moisture content of the pellets at the screw inlet was 41 ppm.
  • Example 1 A POF having a length of 100 m was produced in the same manner as in Example 1, except that the drying time of the PC/PET pellets was changed to 1 hour. Air bubbles were confirmed. The moisture content of the pellets after drying was 739 ppm, and the moisture content of the pellets at the screw inlet was 750 ppm.
  • Example 2 A POF having a length of 100 m was produced in the same manner as in Example 1, except that the PC/PET pellet molding temperature was changed to 250° C. and the drying time was changed to 1 hour. Air bubbles were confirmed in the clad (PC/PET layer). The moisture content of the pellets after drying was 820 ppm, and the moisture content of the pellets at the screw inlet was 840 ppm.
  • Example 3 A POF having a length of 100 m was produced in the same manner as in Example 1, except that the PMMA pellets were dried for 1 hour. rice field. The moisture content of the pellets after drying was 739 ppm, and the moisture content of the pellets at the screw inlet was 753 ppm.
  • Example 4 A POF having a length of 100 m was produced in the same manner as in Example 1, except that the PMMA pellet molding temperature was changed to 250° C. and the drying time was changed to 1 hour. Air bubbles were confirmed in the PMMA layer). The moisture content of the pellets after drying was 820 ppm, and the moisture content of the pellets at the screw inlet was 840 ppm.
  • Example 5 A POF having a length of 100 m was produced in the same manner as in Example 1, except that nitrogen was not supplied to the inside of the hopper containing the PC/PET pellets. Air bubbles were confirmed in the clad (PC/PET layer). The moisture content of the pellets at the screw inlet was 450 ppm.
  • Comparative Example 6 A POF with a length of 100 m was produced in the same manner as in Comparative Example 5 except that PC/PET pellets with an average volume of 4.8 mm 3 (same resin composition) were used, and the presence or absence of bubbles in the produced POF was checked. Air bubbles were found in the clad (PC/PET layer). The moisture content of the pellets after drying was 85 ppm, and the moisture content of the pellets at the screw inlet was 900 ppm.
  • Comparative Example 7 A POF having a length of 100 m was produced in the same manner as in Comparative Example 5 except that PC/PET pellets with an average volume of 4.8 mm 3 (same resin composition) were used and the drying time of the pellets was set to 1 hour. When the presence or absence of air bubbles in the manufactured POF was checked, air bubbles were confirmed in the clad (PC/PET layer). The moisture content of the pellets after drying was 680 ppm, and the moisture content of the pellets at the screw inlet was 900 ppm.
  • Table 1 The evaluation results of each example and comparative example are summarized in Table 1 below.
  • the upper row corresponds to the core, and the lower row corresponds to the clad.
  • the manufacturing method and manufacturing apparatus of the present invention can be used for manufacturing plastic optical fibers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

The present invention provides a technology which enables further quality improvement of a plastic optical fiber. The technology is a method for producing a plastic optical fiber that is composed of a core and a plurality of layers including a cladding; this production method comprises formation of at least one layer that is selected from among the plurality of layers by means of melt extrusion molding that uses a melt extrusion mechanism; and the water content of a starting material resin of the at least one layer is controlled to 400 ppm or less (on a mass basis) at the time when the starting material resin is supplied to the melt extrusion mechanism.

Description

プラスチック光ファイバの製造方法及びプラスチック光ファイバの製造装置Plastic optical fiber manufacturing method and plastic optical fiber manufacturing apparatus
 本発明は、プラスチック光ファイバの製造方法及び製造装置に関する。 The present invention relates to a method and apparatus for manufacturing plastic optical fibers.
 光ファイバの一種にプラスチック光ファイバがある。プラスチック光ファイバは、石英ガラス製の光ファイバに比べて、可撓性及び加工性に優れると共に、低コストでの製造が可能である。プラスチック光ファイバは、主として、短距離(例えば100m以下)の伝送媒体に使用される。プラスチック光ファイバは、コア及びクラッドを含む複数の層から構成される。コアは、光ファイバの中心に位置して光を伝送する層である。クラッドは、光ファイバの中心軸に対してコアの外方に配置されてコアを覆う層である。コアは、相対的に高い屈折率を有し、クラッドは、相対的に低い屈折率を有する。クラッドの外周を覆う被覆層が配置されることもある。 A type of optical fiber is a plastic optical fiber. Plastic optical fibers are superior in flexibility and workability to optical fibers made of quartz glass, and can be manufactured at low cost. Plastic optical fibers are primarily used for short-distance (eg, 100 m or less) transmission media. A plastic optical fiber is composed of multiple layers including a core and a cladding. The core is the layer in the center of the optical fiber that transmits light. The cladding is a layer that covers the core and is positioned outwardly of the core with respect to the central axis of the optical fiber. The core has a relatively high refractive index and the cladding has a relatively low refractive index. A coating layer may be arranged to cover the outer circumference of the clad.
 プラスチック光ファイバは、例えば、溶融紡糸法により製造できる。溶融紡糸法では、原料樹脂を溶融押出成形して、光ファイバを構成する各層を形成する。特許文献1には、押出スクリューを備える溶融押出装置及び当該装置を用いたプラスチック光ファイバの製造方法が開示されている。特許文献2には、ガス圧による溶融押出装置及び当該装置を用いたプラスチック光ファイバの製造方法が開示されている。 A plastic optical fiber can be manufactured, for example, by a melt spinning method. In the melt spinning method, a raw material resin is melt-extruded to form each layer constituting the optical fiber. Japanese Patent Laid-Open No. 2002-200000 discloses a melt extrusion device having an extrusion screw and a method of manufacturing a plastic optical fiber using the device. Patent Literature 2 discloses a melt extrusion device using gas pressure and a method for manufacturing a plastic optical fiber using the device.
特開2000-356716号公報JP-A-2000-356716 米国特許第6527986号明細書U.S. Pat. No. 6,527,986
 近年、情報伝送速度の増大に対応すべく情報伝送材に対する更なる品質向上が求められており、プラスチック光ファイバについてもこの例外ではない。本発明は、プラスチック光ファイバの更なる品質向上を可能とする技術の提供を目的とする。 In recent years, there has been a demand for further quality improvement of information transmission materials in order to cope with the increase in information transmission speed, and plastic optical fiber is no exception. An object of the present invention is to provide a technique that enables further improvement in the quality of plastic optical fibers.
 本発明者らの検討によれば、溶融押出成形では、溶融押出機構に供給する原料樹脂に含まれる水分によって原料樹脂の加水分解や溶融粘度の低下が引き起こされること、及び原料樹脂中の水分量の制御によってこれらの現象を抑えることができれば、プラスチック光ファイバの更なる品質向上が達成可能となること、を見出した。 According to the study of the present inventors, in melt extrusion molding, the water contained in the raw resin supplied to the melt extrusion mechanism causes hydrolysis of the raw resin and a decrease in melt viscosity, and the amount of water in the raw resin We have found that if these phenomena can be suppressed by controlling , further quality improvement of plastic optical fibers can be achieved.
 本発明は、
 コア及びクラッドを含む複数の層から構成されたプラスチック光ファイバの製造方法であって、
 前記複数の層から選択される少なくとも1つの層を、溶融押出機構を用いた溶融押出成形により形成することを含み、
 前記少なくとも1つの層の原料樹脂の水分量を、前記溶融押出機構への供給時点において400ppm(質量基準)以下に制御する、製造方法(第1の製造方法)、
 を提供する。
The present invention
A method of manufacturing a plastic optical fiber composed of multiple layers including a core and a cladding, comprising:
Forming at least one layer selected from the plurality of layers by melt extrusion molding using a melt extrusion mechanism,
A production method (first production method), wherein the water content of the raw material resin of the at least one layer is controlled to 400 ppm (by mass) or less at the time of supply to the melt extrusion mechanism;
I will provide a.
 別の側面から、本発明は、
 コア及びクラッドを含む複数の層から構成されたプラスチック光ファイバの製造方法であって、
 前記複数の層から選択される少なくとも1つの層を、溶融押出機構を用いた溶融押出成形により形成することを含み、
 前記少なくとも1つの層の原料樹脂は、水分量400ppm(質量基準)の状態で原料供給部に収容された後、前記原料供給部から前記溶融押出機構に供給され、
 前記原料供給部の内部に、絶対湿度0.03g/m3以下の気体を連続的又は断続的に供給する、製造方法(第2の製造方法)、
 を提供する。
From another aspect, the present invention provides
A method of manufacturing a plastic optical fiber composed of multiple layers including a core and a cladding, comprising:
Forming at least one layer selected from the plurality of layers by melt extrusion molding using a melt extrusion mechanism,
The raw material resin of the at least one layer is accommodated in the raw material supply unit with a water content of 400 ppm (based on mass), and then supplied from the raw material supply unit to the melt extrusion mechanism,
A manufacturing method (second manufacturing method) in which a gas having an absolute humidity of 0.03 g/m 3 or less is continuously or intermittently supplied to the interior of the raw material supply unit;
I will provide a.
 別の側面から、本発明は、
 コア及びクラッドを含む複数の層から構成されたプラスチック光ファイバの製造装置であって、
 前記複数の層から選択される少なくとも1つの層を溶融押出成形により形成する溶融押出機構と、
 前記少なくとも1つの層の原料樹脂を収容すると共に、収容した前記原料樹脂を前記溶融押出機構に供給する原料供給部と、
 前記原料供給部の内部の雰囲気を絶対湿度0.95g/m3以下に保持する水分量制御機構と、
を備えた、製造装置、
 を提供する。
From another aspect, the present invention provides
An apparatus for manufacturing a plastic optical fiber composed of multiple layers including a core and a clad,
a melt extrusion mechanism for forming at least one layer selected from the plurality of layers by melt extrusion;
a raw material supply unit that accommodates the raw material resin of the at least one layer and supplies the accommodated raw material resin to the melt extrusion mechanism;
a moisture content control mechanism that maintains the atmosphere inside the raw material supply unit at an absolute humidity of 0.95 g/m 3 or less;
manufacturing equipment,
I will provide a.
 本発明では、溶融押出機構に供給する原料樹脂の水分量が制御されており、これにより、溶融押出成形における原料樹脂の加水分解や溶融粘度の低下が抑制される。したがって、本発明では、プラスチック光ファイバの更なる品質向上を達成できる。 In the present invention, the water content of the raw material resin supplied to the melt extrusion mechanism is controlled, thereby suppressing hydrolysis of the raw material resin and reduction in melt viscosity during melt extrusion molding. Therefore, according to the present invention, it is possible to further improve the quality of plastic optical fibers.
図1は、本発明の製造方法を実施可能な製造装置の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of a manufacturing apparatus capable of implementing the manufacturing method of the present invention. 図2は、本発明の製造方法及び/又は本発明の製造装置により製造されるプラスチック光ファイバの一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an example of a plastic optical fiber manufactured by the manufacturing method of the present invention and/or the manufacturing apparatus of the present invention. 図3は、実施例において評価した、原料供給部の窒素パージと、原料供給部に収容された原料樹脂の水分量との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the nitrogen purge of the raw material supply section and the water content of the raw material resin accommodated in the raw material supply section, evaluated in the examples.
 本発明の第1態様にかかる製造方法は、
 コア及びクラッドを含む複数の層から構成されたプラスチック光ファイバの製造方法であって、
 前記複数の層から選択される少なくとも1つの層を、溶融押出機構を用いた溶融押出成形により形成することを含み、
 前記少なくとも1つの層の原料樹脂の水分量を、前記溶融押出機構への供給時点において400ppm(質量基準)以下に制御する。
The manufacturing method according to the first aspect of the present invention comprises:
A method of manufacturing a plastic optical fiber composed of multiple layers including a core and a cladding, comprising:
Forming at least one layer selected from the plurality of layers by melt extrusion molding using a melt extrusion mechanism,
The water content of the raw material resin of the at least one layer is controlled to 400 ppm (by mass) or less at the point of supply to the melt extrusion mechanism.
 本発明の第2態様において、例えば、第1態様にかかる製造方法では、前記原料樹脂を、前記原料樹脂が収容されると共に、内部の雰囲気の絶対湿度が0.95g/m3以下に保持された原料供給部から、前記溶融押出機構に供給する。 In the second aspect of the present invention, for example, in the manufacturing method according to the first aspect, the raw material resin is accommodated, and the absolute humidity of the internal atmosphere is maintained at 0.95 g/m 3 or less. The material is supplied to the melt extrusion mechanism from the raw material supply unit.
 本発明の第3態様において、例えば、第2態様にかかる製造方法では、前記原料供給部の内部に、絶対湿度0.03g/m3以下の気体を連続的又は断続的に供給する。 In the third aspect of the present invention, for example, in the manufacturing method according to the second aspect, a gas having an absolute humidity of 0.03 g/m 3 or less is continuously or intermittently supplied to the interior of the raw material supply section.
 本発明の第4態様にかかる製造方法は、
 コア及びクラッドを含む複数の層から構成されたプラスチック光ファイバの製造方法であって、
 前記複数の層から選択される少なくとも1つの層を、溶融押出機構を用いた溶融押出成形により形成することを含み、
 前記少なくとも1つの層の原料樹脂は、水分量400ppm(質量基準)以下の状態で原料供給部に収容された後、前記原料供給部から前記溶融押出機構に供給され、
 前記原料供給部の内部に、絶対湿度0.03g/m3以下の気体を連続的又は断続的に供給する。
A manufacturing method according to a fourth aspect of the present invention includes:
A method of manufacturing a plastic optical fiber composed of multiple layers including a core and a cladding, comprising:
Forming at least one layer selected from the plurality of layers by melt extrusion molding using a melt extrusion mechanism,
The raw material resin of the at least one layer is accommodated in the raw material supply unit in a state where the water content is 400 ppm (based on mass) or less, and then supplied from the raw material supply unit to the melt extrusion mechanism,
A gas having an absolute humidity of 0.03 g/m 3 or less is continuously or intermittently supplied to the inside of the raw material supply section.
 本発明の第5態様において、例えば、第3又は第4態様にかかる製造方法では、前記気体が不活性ガスである。 In the fifth aspect of the present invention, for example, in the manufacturing method according to the third or fourth aspect, the gas is an inert gas.
 本発明の第6態様において、例えば、第3又は第4態様にかかる製造方法では、前記気体が窒素である。 In the sixth aspect of the present invention, for example, in the manufacturing method according to the third or fourth aspect, the gas is nitrogen.
 本発明の第7態様において、例えば、第1から第6態様のいずれか1つの態様にかかる製造方法では、前記少なくとも1つの層が、前記コア及び前記クラッドから選ばれる少なくとも1つの層である。 In the seventh aspect of the present invention, for example, in the manufacturing method according to any one aspect of the first to sixth aspects, the at least one layer is at least one layer selected from the core and the clad.
 本発明の第8態様において、例えば、第1から第7態様のいずれか1つの態様にかかる製造方法では、前記原料樹脂が加水分解性を有する。 In the eighth aspect of the present invention, for example, in the production method according to any one aspect of the first to seventh aspects, the raw material resin has hydrolyzability.
 本発明の第9態様において、例えば、第1から第7態様のいずれか1つの態様にかかる製造方法では、前記原料樹脂がポリカーボネートである。 In the ninth aspect of the present invention, for example, in the production method according to any one aspect of the first to seventh aspects, the raw material resin is polycarbonate.
 本発明の第10態様において、例えば、第1から第9態様のいずれか1つの態様にかかる製造方法では、前記溶融押出機構に供給される前記原料樹脂は、ペレットの形状を有し、前記ペレットの平均体積は10.0mm3以上である。 In the tenth aspect of the present invention, for example, in the manufacturing method according to any one aspect of the first to ninth aspects, the raw material resin supplied to the melt extrusion mechanism has a pellet shape, and the pellets has an average volume of 10.0 mm 3 or more.
 本発明の第11態様において、例えば、第1から第10態様のいずれか1つの態様にかかる製造方法では、前記溶融押出機構に供給される前記原料樹脂は、ペレットの形状を有し、前記ペレットを、乾燥後水分量が400ppm(質量基準)以下となるまで乾燥させた後に、前記溶融押出機構に供給する。 In the eleventh aspect of the present invention, for example, in the production method according to any one of the first to tenth aspects, the raw material resin supplied to the melt extrusion mechanism has a pellet shape, and the pellets is dried until the post-drying moisture content becomes 400 ppm (mass basis) or less, and then supplied to the melt extrusion mechanism.
 本発明の第12態様において、例えば、第1から第11態様のいずれか1つの態様にかかる製造方法では、前記溶融押出成形における前記原料樹脂の成形温度が、前記原料樹脂のガラス転移温度(Tg)+100℃以上である。 In the twelfth aspect of the present invention, for example, in the manufacturing method according to any one aspect of the first to eleventh aspects, the molding temperature of the raw material resin in the melt extrusion molding is the glass transition temperature (Tg ) +100° C. or higher.
 本発明の第13態様にかかる製造装置は、
 コア及びクラッドを含む複数の層から構成されたプラスチック光ファイバの製造装置であって、
 前記複数の層から選択される少なくとも1つの層を溶融押出成形により形成する溶融押出機構と、
 前記少なくとも1つの層の原料樹脂を収容すると共に、収容した前記原料樹脂を前記溶融押出機構に供給する原料供給部と、
 前記原料供給部の内部の雰囲気を絶対湿度0.95g/m3以下に保持する水分量制御機構と、
を備える。
The manufacturing apparatus according to the thirteenth aspect of the present invention includes
An apparatus for manufacturing a plastic optical fiber composed of multiple layers including a core and a clad,
a melt extrusion mechanism for forming at least one layer selected from the plurality of layers by melt extrusion;
a raw material supply unit that accommodates the raw material resin of the at least one layer and supplies the accommodated raw material resin to the melt extrusion mechanism;
a moisture content control mechanism that maintains the atmosphere inside the raw material supply unit at an absolute humidity of 0.95 g/m 3 or less;
Prepare.
 本発明の第14態様において、例えば、第13態様にかかる製造装置では、前記水分量制御機構が、絶対湿度0.03g/m3以下の気体を前記原料供給部の内部に連続的又は断続的に供給する気体供給機構を備える。 In the fourteenth aspect of the present invention, for example, in the manufacturing apparatus according to the thirteenth aspect, the moisture content control mechanism continuously or intermittently introduces gas having an absolute humidity of 0.03 g/m 3 or less into the raw material supply unit. Equipped with a gas supply mechanism for supplying to.
 本発明の第15態様において、例えば、第14態様にかかる製造装置では、前記気体が不活性ガスである。 In the fifteenth aspect of the present invention, for example, in the manufacturing apparatus according to the fourteenth aspect, the gas is an inert gas.
 本発明の第16態様において、例えば、第14態様にかかる製造装置では、前記気体が窒素である。 In the sixteenth aspect of the present invention, for example, in the manufacturing apparatus according to the fourteenth aspect, the gas is nitrogen.
 本発明の第17態様において、例えば、第13から第16態様のいずれか1つの態様にかかる製造装置では、前記少なくとも1つの層が、前記コア及び前記クラッドから選ばれる少なくとも1つの層である。 In the seventeenth aspect of the present invention, for example, in the manufacturing apparatus according to any one aspect of the thirteenth to sixteenth aspects, the at least one layer is at least one layer selected from the core and the clad.
 本発明の第18態様において、例えば、第13から第17態様のいずれか1つの態様にかかる製造装置では、前記原料樹脂が加水分解性を有する。 In the eighteenth aspect of the present invention, for example, in the manufacturing apparatus according to any one aspect of the thirteenth to seventeenth aspects, the raw material resin has hydrolyzability.
 本発明の第19態様において、例えば、第13から第17態様のいずれか1つの態様にかかる製造装置では、前記原料樹脂がポリカーボネートである。 In the 19th aspect of the present invention, for example, in the manufacturing apparatus according to any one aspect of the 13th to 17th aspects, the raw material resin is polycarbonate.
 以下、本発明の実施形態を説明するが、以下の説明は、本発明を特定の実施形態に制限する趣旨ではない。 Embodiments of the present invention will be described below, but the following description is not intended to limit the present invention to specific embodiments.
 [第1の製造方法]
 図1の製造装置を参照しながら、第1の製造方法を説明する。図1の製造装置10は、プラスチック光ファイバ(以下、「POF」と記載)の製造装置である。製造装置10は、複数の溶融押出機構1(1a及び1b)を備える。溶融押出機構1(各々の溶融押出機構1a,1b)は、押出スクリュー11及びギヤポンプ12を備える。図1の溶融押出機構1が備える押出スクリュー11は、単軸である。図1の溶融押出機構1は、押出スクリュー11が内部に収容されたスクリューシリンダー19を備える。押出スクリュー11及びスクリューシリンダー19は、単軸押出機4を構成する。溶融押出機構1の投入口14には、原料供給部2であるホッパー(原料タンク)が接続されている。溶融押出機構1に接続されたホッパーの内部には原料樹脂3が収容されている。収容されている原料樹脂3は、通常、ペレットの形状を有する。原料樹脂3は、ホッパーから溶融押出機構1に供給されて加熱され、流動可能な軟化状態又は溶融状態となる。流動可能な状態となった原料樹脂3は、ギヤポンプ12を通過して溶融押出機構1の吐出口15から吐出され、POFを構成する所定の層に溶融押出成形される。溶融押出機構1は、押出スクリュー11による機械的圧力を利用している。溶融押出機構1では、押出スクリュー11による原料樹脂3の混練が実施されてもよい。ギヤポンプ12は、通常、原料樹脂3の吐出量の制御に使用される。
[First manufacturing method]
A first manufacturing method will be described with reference to the manufacturing apparatus of FIG. A manufacturing apparatus 10 shown in FIG. 1 is a manufacturing apparatus for plastic optical fibers (hereinafter referred to as "POF"). The manufacturing apparatus 10 includes a plurality of melt extrusion mechanisms 1 (1a and 1b). The melt extrusion mechanism 1 (each melt extrusion mechanism 1 a, 1 b) comprises an extrusion screw 11 and a gear pump 12 . The extrusion screw 11 provided in the melt extrusion mechanism 1 of FIG. 1 is a single shaft. The melt extrusion mechanism 1 of FIG. 1 comprises a screw cylinder 19 in which an extrusion screw 11 is accommodated. The extrusion screw 11 and screw cylinder 19 constitute a single screw extruder 4 . A hopper (raw material tank) as the raw material supply unit 2 is connected to the inlet 14 of the melt extrusion mechanism 1 . A raw material resin 3 is accommodated inside a hopper connected to the melt extrusion mechanism 1 . The contained raw material resin 3 usually has a pellet shape. The raw material resin 3 is supplied from a hopper to the melt extruding mechanism 1 and heated to be softened or melted so that it can flow. The raw material resin 3 in a fluid state passes through the gear pump 12 and is discharged from the discharge port 15 of the melt extrusion mechanism 1, and is melt-extruded into a predetermined layer constituting the POF. The melt extrusion mechanism 1 utilizes mechanical pressure from an extrusion screw 11 . In the melt extrusion mechanism 1, kneading of the raw material resin 3 by the extrusion screw 11 may be performed. The gear pump 12 is normally used for controlling the discharge amount of the raw material resin 3 .
 図1に示されたその他の部材及びその機能は、以下のとおりである。符号16は冷却ブロックであり、溶融押出機構1における原料供給部2との接続部及び投入口14の近傍においてスクリューシリンダー19の外壁に配置されている。冷却ブロック16は、原料樹脂3を流動可能な状態とするための熱が原料供給部2に伝わることを防ぐ。符号17はバンドヒーターである。バンドヒーター17は、上記接続部及び投入口14より下流側において、スクリューシリンダー19の外壁等に配置されている。符号18はスクリューヘッド圧力計であり、原料樹脂3の吐出圧の測定に使用できる。符号20はブレーカープレートであり、固形の状態にある原料樹脂3が誤って吐出されることを防ぐ。符号21は、吐出口15から吐出された原料樹脂3が通過する配管である。配管21の経路には、ギヤポンプ12が配置されている。配管21は、ブロック23の内部及びその下流に設けられている。符号25は、原料供給部2の内部に気体26を流入させるための配管である。 The other members shown in Figure 1 and their functions are as follows. Reference numeral 16 denotes a cooling block, which is arranged on the outer wall of the screw cylinder 19 in the vicinity of the inlet 14 and the connecting portion with the raw material supply section 2 in the melt extrusion mechanism 1 . The cooling block 16 prevents the heat for making the raw material resin 3 flowable from being transferred to the raw material supply section 2 . Reference numeral 17 is a band heater. The band heater 17 is arranged on the outer wall of the screw cylinder 19 or the like on the downstream side of the connecting portion and the inlet 14 . Reference numeral 18 is a screw head pressure gauge, which can be used to measure the discharge pressure of the raw material resin 3 . Reference numeral 20 denotes a breaker plate, which prevents the raw material resin 3 in a solid state from being erroneously discharged. Reference numeral 21 denotes a pipe through which the raw material resin 3 discharged from the discharge port 15 passes. A gear pump 12 is arranged along the path of the pipe 21 . The pipe 21 is provided inside and downstream of the block 23 . Reference numeral 25 denotes a pipe for introducing gas 26 into the raw material supply section 2 .
 図1の製造装置10では、コア102及びクラッド103の2層から構成されたPOF101を製造できる(図2参照)。POF101は、典型的には、屈折率分布(GI)型である。ただし、POF101は、GI型に限定されない。各溶融押出機構1a,1bを用いた溶融押出成形により、それぞれ、コア102及びクラッド103が形成される。クラッド103は、溶融押出機構1bから吐出された原料樹脂3が第1室40においてコア102の外周を覆うように成形されて形成される。溶融押出機構1aを用いた溶融押出成形により形成されたコア102が、第1室40を通過する間に、クラッド103が形成される。 The manufacturing apparatus 10 in FIG. 1 can manufacture the POF 101 composed of two layers, the core 102 and the clad 103 (see FIG. 2). POF 101 is typically of the gradient index (GI) type. However, the POF 101 is not limited to the GI type. A core 102 and a clad 103 are formed by melt extrusion molding using the respective melt extrusion mechanisms 1a and 1b. The clad 103 is formed by molding the raw material resin 3 discharged from the melt extrusion mechanism 1b in the first chamber 40 so as to cover the outer periphery of the core 102 . The clad 103 is formed while the core 102 formed by melt extrusion molding using the melt extrusion mechanism 1 a passes through the first chamber 40 .
 第1の製造方法では、POF101を構成する複数の層から選択される少なくとも1つの層を、溶融押出機構を用いた溶融押出成形により形成すると共に、上記少なくとも1つの層の原料樹脂の水分量を、溶融押出機構への供給時点において400ppm(質量基準;以下に示す「ppm」は全て質量基準)に制御する。これにより、溶融押出成形における原料樹脂の加水分解や溶融粘度の低下が抑制される。加水分解は、POF101を構成する層について、光学特性の変動や低下、場合によっては発泡を引き起こす。溶融粘度の低下は、POF101を構成する層について、光学特性の変動や低下を引き起こす。したがって、原料樹脂に対する上記水分量の制御により、POF101の更なる品質向上が可能となる。 In the first manufacturing method, at least one layer selected from a plurality of layers constituting the POF 101 is formed by melt extrusion molding using a melt extrusion mechanism, and the moisture content of the raw material resin of the at least one layer is , and controlled to 400 ppm (based on mass; "ppm" shown below is based on mass) at the time of supply to the melt extrusion mechanism. This suppresses hydrolysis of the raw material resin and a decrease in melt viscosity in melt extrusion molding. Hydrolysis causes the layers constituting the POF 101 to fluctuate or deteriorate in optical properties and, in some cases, to foam. A decrease in melt viscosity causes variation or deterioration in optical properties of the layers constituting the POF 101 . Therefore, it is possible to further improve the quality of the POF 101 by controlling the amount of water in the raw material resin.
 制御すべき水分量は、350ppm以下、300ppm以下、更には250ppm以下であってもよい。制御すべき水分量の下限は限定されないが、工業的な製造コスト等を考慮すると、例えば50ppm以上であってもよい。 The moisture content to be controlled may be 350 ppm or less, 300 ppm or less, or even 250 ppm or less. Although the lower limit of the water content to be controlled is not limited, it may be, for example, 50 ppm or more in consideration of industrial production costs and the like.
 水分量の制御は、POF101を構成する複数の層から選択される少なくとも1つの層に対して実施すればよい。少なくとも1つの層は、例えば、コア102及びクラッド103から選ばれる少なくとも1つの層である。図1の製造装置10では、コア102及びクラッド103から選ばれる少なくとも1つの層に対して、上記水分量の制御を実施できる。 The control of the water content should be performed for at least one layer selected from the multiple layers that make up the POF 101 . At least one layer is, for example, at least one layer selected from core 102 and clad 103 . In the manufacturing apparatus 10 of FIG. 1, the moisture content can be controlled for at least one layer selected from the core 102 and the clad 103 .
 図1の溶融押出機構1は、押出スクリュー11による機械的圧力を利用した機構である。機械的圧力を利用した溶融押出機構以外の機構、例えば、ガス圧を利用した溶融押出機構に対しても、上記水分量の制御を実施することが可能である。ただし、通常、非常に小さい線径を有し、それ故、単位時間あたりの原料樹脂の押出量がごく僅かであるPOF101の製造において、一般に非密閉であって外部環境と連通した状態にある原料供給部2に、長時間にわたって原料樹脂3が収容されうる溶融押出機構1を用いた溶融押出成形に対して、上記水分量の制御を適用することが好ましい。 The melt extrusion mechanism 1 in FIG. 1 is a mechanism that uses mechanical pressure from an extrusion screw 11. It is possible to control the water content as described above for mechanisms other than the melt-extrusion mechanism using mechanical pressure, for example, the melt-extrusion mechanism using gas pressure. However, in the production of POF 101, which usually has a very small wire diameter and therefore the extrusion rate of the raw material resin per unit time is negligible, the raw material is generally non-sealed and in communication with the external environment. It is preferable to apply the control of the water content to the melt extrusion molding using the melt extrusion mechanism 1 in which the raw material resin 3 can be accommodated in the supply unit 2 for a long period of time.
 原料樹脂の水分量は、化学反応式の水分計(例えば、ブラベンダー製アクアトラックシリーズ)を用いて評価できる。この水分計では、原料樹脂を加熱し、加熱により原料樹脂から放出された水分と測定試薬(水素化カルシウム)とを反応させ、反応により生じた二酸化炭素の量を検出することで、原料樹脂の水分量を評価できる。サンプルは、例えば、常温からスタートして160℃まで加熱する。 The water content of the raw resin can be evaluated using a chemical reaction moisture meter (for example, Brabender's Aquatrack series). This moisture meter heats the raw resin, reacts the moisture released from the raw resin by heating with a measurement reagent (calcium hydride), and detects the amount of carbon dioxide generated by the reaction. Moisture content can be evaluated. The sample is, for example, started at room temperature and heated to 160°C.
 溶融押出機構1を用いた溶融押出成形における水分量の制御について説明する。溶融押出機構1への供給時点とは、典型的には、溶融押出機構1に接続された原料供給部2から溶融押出機構1への供給時点を意味する。図1の例では、溶融押出機構1の投入口14の通過時点である。 The control of the water content in the melt extrusion molding using the melt extrusion mechanism 1 will be explained. The time of supply to the melt-extrusion mechanism 1 typically means the time of supply to the melt-extrusion mechanism 1 from the raw material supply section 2 connected to the melt-extrusion mechanism 1 . In the example of FIG. 1, it is the point of passage through the inlet 14 of the melt extrusion mechanism 1 .
 水分量を制御するためには、例えば、原料樹脂3を、原料樹脂3が収容されると共に、内部の絶対湿度が0.95g/m3以下に保持された原料供給部2から溶融押出機構1に供給してもよい。保持される絶対湿度は、0.60g/m3以下、更には0.50g/m3以下であってもよい。保持される絶対湿度の下限は限定されないが、工業的な製造コスト等を考慮すると、例えば0.04g/m2以上であってもよい。原料供給部2には、水分量400ppm以下(又はより小さな上記水分量の範囲)の状態に既にある原料樹脂3を収容してもよく、この場合、水分量の制御がより確実となる。原料供給部2の内部の絶対湿度を保持するためには、例えば、絶対湿度0.03g/m3以下の気体を原料供給部2の内部に連続的又は断続的に供給してもよく、絶対湿度0.03g/m3以下の気体によって原料供給部2の内部を連続的又は断続的にパージ(置換)してもよい。「連続的」とは、所定の時間にわたって絶えず実施することを意味し、「断続的」とは、途中に中断を挟みながら、所定の時間にわたって実施することを意味する。気体は、例えば、原料供給部2の内部に配置されたノズル等の気体供給機構から原料供給部2に供給できる。また、配管25を気体の供給に使用してもよい。ただし、気体の供給方法は、上記例に限定されない。気体の絶対湿度は、0.02g/m3以下であってもよい。気体の絶対湿度の下限は限定されないが、工業的な製造コスト等を考慮すると、例えば0.01g/m3以上であってもよい。絶対湿度は、湿度計により評価できる。 In order to control the moisture content, for example, the raw material resin 3 is fed from the raw material supply unit 2 in which the raw material resin 3 is accommodated and the internal absolute humidity is maintained at 0.95 g/m 3 or less, and then through the melt extrusion mechanism 1. may be supplied to The absolute humidity maintained may be 0.60 g/m 3 or less, or even 0.50 g/m 3 or less. Although the lower limit of the retained absolute humidity is not limited, it may be, for example, 0.04 g/m 2 or more in consideration of industrial manufacturing costs. The raw material supply unit 2 may contain the raw material resin 3 which already has a water content of 400 ppm or less (or the water content range is smaller), in which case the water content can be more reliably controlled. In order to maintain the absolute humidity inside the raw material supply unit 2, for example, a gas having an absolute humidity of 0.03 g/m 3 or less may be continuously or intermittently supplied to the inside of the raw material supply unit 2. The interior of the raw material supply section 2 may be continuously or intermittently purged (replaced) with a gas having a humidity of 0.03 g/m 3 or less. "Continuously" means performing continuously for a predetermined period of time, and "intermittently" means performing for a predetermined period of time with interruptions in between. The gas can be supplied to the raw material supply section 2 from a gas supply mechanism such as a nozzle arranged inside the raw material supply section 2, for example. Also, the pipe 25 may be used for gas supply. However, the gas supply method is not limited to the above example. The absolute humidity of the gas may be 0.02 g/m 3 or less. Although the lower limit of the absolute humidity of the gas is not limited, it may be, for example, 0.01 g/m 3 or more in consideration of industrial production costs and the like. Absolute humidity can be evaluated with a hygrometer.
 気体は、窒素を含んでもよく、窒素であってもよい。気体は、不活性ガスであってもよい。不活性ガスの例は、窒素、二酸化炭素、ヘリウム及びアルゴンである。気体は、酸素を実質的に含まなくてもよい。本明細書において、酸素を実質的に含まないとは、酸素の含有量が0.20体積%以下、好ましくは0.10体積%以下、より好ましくは0.05体積%以下であることを意味する。 The gas may contain or be nitrogen. The gas may be an inert gas. Examples of inert gases are nitrogen, carbon dioxide, helium and argon. The gas may be substantially free of oxygen. In the present specification, substantially free of oxygen means that the oxygen content is 0.20% by volume or less, preferably 0.10% by volume or less, more preferably 0.05% by volume or less. do.
 また、原料供給部2の内部の絶対湿度を保持するために、原料供給部2の内部に除湿部材を配置してもよい。除湿部材は、例えば、吸湿性材料を含む。気体供給機構及び除湿部材は、原料供給部2の内部の雰囲気を絶対湿度0.95g/m3以下(更には上述の範囲)に保持する水分量制御機構であってもよい。水分量制御機構は、上記例に限定されない。 Further, a dehumidifying member may be arranged inside the raw material supply section 2 in order to maintain the absolute humidity inside the raw material supply section 2 . The dehumidifying member includes, for example, a hygroscopic material. The gas supply mechanism and the dehumidification member may be a moisture content control mechanism that maintains the atmosphere inside the raw material supply section 2 at an absolute humidity of 0.95 g/m 3 or less (furthermore, the range described above). The moisture content control mechanism is not limited to the above example.
 図1の溶融押出機構1は単軸押出機4を備える。溶融押出機構1は、2以上の押出スクリュー11を備える多軸押出機を備えていてもよい。ただし、溶融押出機構1は、上記例に限定されない。なお、溶融押出機構1では、溶融押出にガス圧を利用しなくてもよい。 The melt extrusion mechanism 1 in FIG. 1 includes a single screw extruder 4. The melt extrusion mechanism 1 may comprise a multi-screw extruder with two or more extrusion screws 11 . However, the melt extrusion mechanism 1 is not limited to the above example. The melt extrusion mechanism 1 may not use gas pressure for melt extrusion.
 原料供給部2の例は、ホッパーである。ただし、原料供給部2は上記例に限定されない。 An example of the raw material supply unit 2 is a hopper. However, the raw material supply unit 2 is not limited to the above example.
 溶融押出機構1に供給される原料樹脂3がペレットの形状を有すると共に、ペレットの平均体積が10.0mm3以上であってもよい。この場合、原料供給部2での原料樹脂3の水分の吸収を抑制できる。平均体積は11.0mm3以上であってもよい。平均体積の上限は、例えば20.0mm3以下である。ペレットの平均体積(mm3)は、例えば、少なくとも50粒のペレットの重量を測定し、測定したペレットの数N(粒)及び重量W(g)と、原料樹脂3の比重SG(g/cm3)とから、式:{W(g)/SG(g/cm3)}/N×1000より求めることができる。誤差を小さくする観点からは、1/10000gを測定可能な電子天秤を重量Wの測定に使用することが好ましい。 The raw material resin 3 supplied to the melt extrusion mechanism 1 may have the shape of pellets and the average volume of the pellets may be 10.0 mm 3 or more. In this case, absorption of water by the raw material resin 3 in the raw material supply unit 2 can be suppressed. The average volume may be 11.0 mm 3 or more. The upper limit of the average volume is, for example, 20.0 mm 3 or less. The average volume of the pellets (mm 3 ) is, for example, the weight of at least 50 pellets is measured, and the number N (grains) and weight W (g) of the measured pellets, and the specific gravity SG (g/cm 3 ), it can be obtained from the formula: {W(g)/SG(g/cm 3 )}/N×1000. From the viewpoint of minimizing the error, it is preferable to use an electronic balance capable of measuring 1/10000 g for the measurement of the weight W.
 原料樹脂3(典型的には、ペレットの形状を有する)は、乾燥後水分量が400ppm以下となるまで乾燥させた後に、溶融押出機構1に供給してもよい。乾燥させた原料樹脂3の供給先は、原料供給部2であってもよい。乾燥後水分量は、350ppm以下であってもよく、乾燥後水分量の下限は、例えば10ppm以上である。乾燥後水分量は、化学反応式の水分計を用いて、上記原料樹脂の水分量と同様に評価できる。 The raw material resin 3 (typically in the form of pellets) may be supplied to the melt extrusion mechanism 1 after being dried until the water content after drying is 400 ppm or less. The destination of supply of the dried raw material resin 3 may be the raw material supply unit 2 . The moisture content after drying may be 350 ppm or less, and the lower limit of the moisture content after drying is, for example, 10 ppm or more. The moisture content after drying can be evaluated in the same manner as the moisture content of the raw material resin using a chemical reaction type moisture meter.
 第1の製造方法によって、3層以上の多層構造を有するPOFを製造してもよい。3層以上の多層構造を有するPOFの一例は、コア及びクラッド、並びにPOFの中心軸に対してクラッドの外方に配置された当該クラッドを覆う被覆層を備える。原料樹脂の水分量を制御する上記少なくとも1つの層は、被覆層であってもよい。被覆層は、オーバークラッドとも当業者に称される。被覆層は、ポリカーボネート等の加水分解性を有する樹脂が原料樹脂として使用される場合が多い。 A POF having a multilayer structure of three or more layers may be manufactured by the first manufacturing method. An example of a POF having a multi-layer structure of three or more layers includes a core, a clad, and a coating layer covering the clad arranged outside the clad with respect to the central axis of the POF. The at least one layer that controls the water content of the raw material resin may be a coating layer. The covering layer is also referred to by those skilled in the art as an overcladding. For the coating layer, a hydrolyzable resin such as polycarbonate is often used as a raw material resin.
 溶融押出機構1での溶融押出成形における原料樹脂の成形温度は、原料樹脂のガラス転移温度(Tg)+100℃以上であってもよく、Tg+130℃以上であってもよい。成形温度の上限は、例えばTg+180℃以下である。この場合、原料樹脂に含まれる揮発成分を成形時においてより確実に除去でき、これにより、POF101の更なる品質向上を達成できる。 The molding temperature of the raw material resin in melt extrusion molding in the melt extrusion mechanism 1 may be the glass transition temperature (Tg) of the raw material resin + 100°C or higher, or may be Tg + 130°C or higher. The upper limit of the molding temperature is, for example, Tg+180° C. or less. In this case, the volatile components contained in the raw material resin can be more reliably removed during molding, thereby further improving the quality of the POF 101 .
 第1の製造方法を実施可能な製造装置は、図1の例に限定されない。 The manufacturing apparatus that can implement the first manufacturing method is not limited to the example in FIG.
 [第2の製造方法]
 図1の製造装置を参照しながら、第2の製造方法の実施形態を説明する。第1の製造方法と共通する事項については、説明を省略する。
[Second manufacturing method]
An embodiment of the second manufacturing method will be described with reference to the manufacturing apparatus of FIG. Descriptions of matters common to the first manufacturing method are omitted.
 第2の製造方法では、POF101を構成する複数の層から選択される少なくとも1つの層を、溶融押出機構1を用いた溶融押出成形により形成すると共に、当該少なくとも1つの層の原料樹脂は、水分量400ppm以下の状態で原料供給部2に収容された後、原料供給部2から溶融押出機構1に供給される。原料供給部2の内部には、絶対湿度0.03g/m3以下の気体が連続的又は断続的に供給される。原料樹脂の水分量は、原料供給部2に収容される時点において既に400ppm以下であると共に、上記気体の供給により、原料供給部2に収容されている間も400ppm以下に維持される。これにより、溶融押出成形における原料樹脂の加水分解や溶融粘度の低下が抑制される。 In the second manufacturing method, at least one layer selected from a plurality of layers constituting the POF 101 is formed by melt extrusion molding using the melt extrusion mechanism 1, and the raw material resin of the at least one layer contains water. After being accommodated in the raw material supply section 2 in a state where the amount is 400 ppm or less, it is supplied from the raw material supply section 2 to the melt extrusion mechanism 1 . A gas having an absolute humidity of 0.03 g/m 3 or less is continuously or intermittently supplied to the interior of the raw material supply unit 2 . The moisture content of the raw material resin is already 400 ppm or less at the time it is accommodated in the raw material supply unit 2, and is maintained at 400 ppm or below while being accommodated in the raw material supply unit 2 by the gas supply. This suppresses hydrolysis of the raw material resin and a decrease in melt viscosity in melt extrusion molding.
 原料供給部2に収容される原料樹脂の水分量は、350ppm以下、300ppm以下、更には250ppm以下であってもよい。水分量の下限は限定されないが、工業的な製造コスト等を考慮すると、例えば50ppm以上であってもよい。 The water content of the raw material resin accommodated in the raw material supply unit 2 may be 350 ppm or less, 300 ppm or less, or even 250 ppm or less. Although the lower limit of the water content is not limited, it may be, for example, 50 ppm or more in consideration of industrial production costs and the like.
 気体の供給及び種類については、第1の製造方法と同じである。供給される気体の絶対湿度は、第1の製造方法の説明において上述した範囲をとりうる。 The gas supply and type are the same as in the first manufacturing method. The absolute humidity of the supplied gas can take the range described above in the description of the first manufacturing method.
 第2の製造方法における溶融押出機構は、通常、機械的圧力を利用した溶融押出機構1である。 The melt extrusion mechanism in the second manufacturing method is usually the melt extrusion mechanism 1 using mechanical pressure.
 原料樹脂の水分量の制御は、POF101を構成する複数の層から選択される少なくとも1つの層に対して実施すればよい。原料樹脂の水分量を制御する上記少なくとも1つの層は、例えば、コア102及びクラッド103から選ばれる少なくとも1つの層であり、被覆層であってもよい。 The control of the water content of the raw material resin may be performed for at least one layer selected from a plurality of layers forming the POF 101 . The at least one layer that controls the water content of the raw material resin is, for example, at least one layer selected from the core 102 and the clad 103, and may be a coating layer.
 第2の製造方法を実施可能な製造装置は、図1の例に限定されない。 The manufacturing apparatus that can implement the second manufacturing method is not limited to the example in FIG.
 [第3の製造方法]
 上記とは異なる側面から見て、本発明は、コア及びクラッドを含む複数の層から構成されたプラスチック光ファイバの製造方法であって、前記複数の層から選択される少なくとも1つの層を、溶融押出機構を用いた溶融押出成形により形成することを含み、前記少なくとも1つの層の原料樹脂の水分量を、前記溶融押出機構からの吐出時点において400ppm(質量基準)以下に制御する、製造方法(第3の製造方法)、を提供する。第3の製造方法によっても、溶融押出成形における原料樹脂の加水分解や溶融粘度の低下が抑制される。
[Third manufacturing method]
Viewed from a different aspect, the present invention provides a method for manufacturing a plastic optical fiber composed of a plurality of layers including a core and a clad, wherein at least one layer selected from the plurality of layers is melted. A manufacturing method ( A third manufacturing method) is provided. The third production method also suppresses hydrolysis of the raw material resin and reduction in melt viscosity in melt extrusion molding.
 溶融押出機構から吐出される原料樹脂の水分量は、350ppm以下、300ppm以下、更には250ppm以下であってもよい。水分量の下限は限定されないが、工業的な製造コスト等を考慮すると、例えば50ppm以上であってもよい。 The water content of the raw material resin discharged from the melt extrusion mechanism may be 350 ppm or less, 300 ppm or less, or even 250 ppm or less. Although the lower limit of the water content is not limited, it may be, for example, 50 ppm or more in consideration of industrial production costs and the like.
 吐出時点は、例えば、第1室40への流入時点である。なお、吐出時点の水分量を評価するために、ギヤポンプ12における原料樹脂の水分量を評価してもよい。ギヤポンプ12から第1室40に流入するまでの原料樹脂の経路は、通常、密閉状態にあるため、原料樹脂の水分量は、当該経路上でほぼ変化しないと考えられる。 The time of discharge is, for example, the time of inflow into the first chamber 40 . Incidentally, in order to evaluate the water content at the time of discharge, the water content of the raw material resin in the gear pump 12 may be evaluated. Since the path of the raw material resin from the gear pump 12 to the first chamber 40 is normally closed, it is considered that the water content of the raw material resin does not change substantially along the path.
 第3の製造方法は、例えば、第1の製造方法及び/又は第2の製造方法の説明において上述した、樹脂原料に対する水分量の制御により実施できる。第3の製造方法について、第1の製造方法及び/又は第2の製造方法と共通する事項については、説明を省略する。 The third manufacturing method can be implemented, for example, by controlling the amount of water in the resin raw material as described above in the description of the first manufacturing method and/or the second manufacturing method. Regarding the third manufacturing method, descriptions of matters common to the first manufacturing method and/or the second manufacturing method will be omitted.
 第3の製造方法は、例えば、図1の製造装置により実施できる。ただし、第3の製造方法を実施可能な製造装置は、図1の例に限定されない。 The third manufacturing method can be implemented, for example, by the manufacturing apparatus shown in FIG. However, the manufacturing apparatus capable of implementing the third manufacturing method is not limited to the example of FIG.
 [原料樹脂]
 原料樹脂は、コア102及びクラッド103について、例えば、含フッ素樹脂、メチルメタクリレート等のアクリル系樹脂、スチレン系樹脂、カーボネート系樹脂である。クラッド103を構成する原料樹脂の屈折率は、通常、コア102を構成する原料樹脂の屈折率に比べて小さい。原料樹脂は、被覆層について、例えば、ポリカーボネート、各種エンジニアリングプラスチック、シクロオレフィンポリマー、ポリテトラフルオロエチレン(PTFE)、変性PTFE、パーフルオロアルコキシアルカン(PFA)である。原料樹脂は、屈折率調整剤等の添加剤を含んでいてもよい。ただし、原料樹脂は、上記例に限定されない。原料樹脂として、POFの各層を構成しうる公知の樹脂を選択してもよい。
[Raw material resin]
Raw material resins for the core 102 and the clad 103 are, for example, fluorine-containing resins, acrylic resins such as methyl methacrylate, styrene resins, and carbonate resins. The refractive index of the material resin forming the clad 103 is generally lower than the refractive index of the material resin forming the core 102 . Raw material resins for the coating layer are, for example, polycarbonate, various engineering plastics, cycloolefin polymers, polytetrafluoroethylene (PTFE), modified PTFE, and perfluoroalkoxyalkane (PFA). The raw material resin may contain an additive such as a refractive index adjuster. However, the raw material resin is not limited to the above examples. A known resin that can form each layer of the POF may be selected as the raw material resin.
 原料樹脂は、加水分解性を有していてもよい。加水分解性を有する原料樹脂から構成される層の形成に上記製造方法を適用することで、本発明の効果がより顕著となる。加水分解性を有する樹脂は、エステル構造、カーボネート構造、ウレタン構造、アミド構造、エーテル構造及びアセタール構造から選ばれる少なくとも1種を有していてもよい。加水分解性を有する樹脂は、例えば、ポリカーボネートである。 The raw material resin may be hydrolyzable. By applying the above production method to the formation of the layer composed of the raw material resin having hydrolyzability, the effect of the present invention becomes more remarkable. The hydrolyzable resin may have at least one selected from an ester structure, carbonate structure, urethane structure, amide structure, ether structure and acetal structure. The hydrolyzable resin is, for example, polycarbonate.
 含フッ素樹脂の一例(重合体(P))を以下に示す。以下に示す重合体(P)は、コア102への使用に適している。重合体(P)は、C-H結合の伸縮エネルギーによる光吸収を抑制する観点から、実質的に水素原子を含まないことが好ましく、炭素原子に結合している全ての水素原子がフッ素原子に置換されていることが特に好ましい。本明細書において、重合体(P)が実質的に水素原子を含まないとは、重合体(P)における水素原子の含有率が1モル%以下であることを意味する。 An example of the fluorine-containing resin (polymer (P)) is shown below. Polymers (P) shown below are suitable for use in core 102 . The polymer (P) preferably contains substantially no hydrogen atoms from the viewpoint of suppressing light absorption due to stretching energy of C—H bonds, and all hydrogen atoms bonded to carbon atoms are fluorine atoms. Substitution is particularly preferred. In the present specification, that the polymer (P) does not substantially contain hydrogen atoms means that the content of hydrogen atoms in the polymer (P) is 1 mol % or less.
 重合体(P)は、含フッ素脂肪族環構造を有することが好ましい。含フッ素脂肪族環構造は、重合体(P)の主鎖に含まれていてもよく、重合体(P)の側鎖に含まれていてもよい。重合体(P)は、例えば、下記式(1)で表される構成単位(A)を有する。
Figure JPOXMLDOC01-appb-C000001
The polymer (P) preferably has a fluorine-containing alicyclic structure. The fluorine-containing alicyclic structure may be contained in the main chain of the polymer (P) or may be contained in the side chain of the polymer (P). The polymer (P) has, for example, a structural unit (A) represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Rff 1~Rff 4は各々独立に、フッ素原子、炭素数1~7のパーフルオロアルキル基、又は炭素数1~7のパーフルオロアルキルエーテル基を表す。Rff 1及びRff 2は、連結して環を形成してもよい。「パーフルオロ」は、炭素原子に結合している全ての水素原子がフッ素原子に置換されていることを意味する。式(1)において、パーフルオロアルキル基の炭素数は、1~5が好ましく、1~3がより好ましく、1であることがさらに好ましい。パーフルオロアルキル基は、直鎖状であってもよく、分岐鎖状であってもよい。パーフルオロアルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基などが挙げられる。 In formula (1), R ff 1 to R ff 4 each independently represent a fluorine atom, a C 1-7 perfluoroalkyl group, or a C 1-7 perfluoroalkyl ether group. R ff1 and R ff2 may combine to form a ring . "Perfluoro" means that all hydrogen atoms bonded to carbon atoms are replaced with fluorine atoms. In formula (1), the number of carbon atoms in the perfluoroalkyl group is preferably 1-5, more preferably 1-3, and even more preferably 1. A perfluoroalkyl group may be linear or branched. The perfluoroalkyl group includes trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group and the like.
 式(1)において、パーフルオロアルキルエーテル基の炭素数は、1~5が好ましく、1~3がより好ましい。パーフルオロアルキルエーテル基は、直鎖状であってもよく、分岐鎖状であってもよい。パーフルオロアルキルエーテル基としては、パーフルオロメトキシメチル基などが挙げられる。 In formula (1), the perfluoroalkyl ether group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms. A perfluoroalkyl ether group may be linear or branched. A perfluoromethoxymethyl group etc. are mentioned as a perfluoroalkyl ether group.
 Rff 1及びRff 2が連結して環を形成している場合、当該環は、5員環であってもよく、6員環であってもよい。この環としては、パーフルオロテトラヒドロフラン環、パーフルオロシクロペンタン環、パーフルオロシクロヘキサン環などが挙げられる。 When R ff1 and R ff2 are linked to form a ring, the ring may be a 5-membered ring or a 6-membered ring. This ring includes a perfluorotetrahydrofuran ring, a perfluorocyclopentane ring, a perfluorocyclohexane ring, and the like.
 構成単位(A)の具体例としては、例えば、下記式(A1)~(A8)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000002
Specific examples of the structural unit (A) include structural units represented by the following formulas (A1) to (A8).
Figure JPOXMLDOC01-appb-C000002
 構成単位(A)は、上記式(A1)~(A8)で表される構成単位のうち、構成単位(A2)、すなわち下記式(2)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
Among the structural units represented by formulas (A1) to (A8), the structural unit (A) is preferably a structural unit (A2), that is, a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000003
 重合体(P)は、構成単位(A)を1種又は2種以上含んでいてもよい。重合体(P)において、構成単位(A)の含有量は、全構成単位の合計に対し、20モル%以上であることが好ましく、40モル%以上であることがより好ましい。構成単位(A)が20モル%以上含まれることにより、重合体(P)は、より高い耐熱性を有する傾向がある。構成単位(A)が40モル%以上含まれる場合、重合体(P)は、高い耐熱性に加えて、より高い透明性及び高い機械的強度も有する傾向がある。重合体(P)において、構成単位(A)の含有量は、全構成単位の合計に対し、95モル%以下であることが好ましく、70モル%以下であることがより好ましい。 The polymer (P) may contain one or more of the structural units (A). In the polymer (P), the content of the structural unit (A) is preferably 20 mol% or more, more preferably 40 mol% or more, based on the total of all structural units. By containing 20 mol % or more of the structural unit (A), the polymer (P) tends to have higher heat resistance. When the structural unit (A) is contained in an amount of 40 mol % or more, the polymer (P) tends to have high heat resistance as well as higher transparency and higher mechanical strength. In the polymer (P), the content of the structural unit (A) is preferably 95 mol% or less, more preferably 70 mol% or less, based on the total of all structural units.
 構成単位(A)は、例えば、下記式(3)で表される化合物に由来する。式(3)において、Rff 1~Rff 4は、式(1)と同じである。なお、式(3)で表される化合物は、例えば特表2007-504125号公報に開示された製造方法をはじめ、すでに公知である製造方法によって得ることができる。
Figure JPOXMLDOC01-appb-C000004
The structural unit (A) is derived from, for example, a compound represented by the following formula (3). In formula (3), R ff 1 to R ff 4 are the same as in formula (1). Incidentally, the compound represented by formula (3) can be obtained by a known production method including, for example, the production method disclosed in Japanese Patent Publication No. 2007-504125.
Figure JPOXMLDOC01-appb-C000004
 上記式(3)で表される化合物の具体例としては、例えば、下記式(M1)~(M8)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005
Specific examples of the compound represented by the formula (3) include compounds represented by the following formulas (M1) to (M8).
Figure JPOXMLDOC01-appb-C000005
 重合体(P)は、構成単位(A)以外に、他の構成単位をさらに含んでいてもよい。他の構成単位としては、以下の構成単位(B)~(D)が挙げられる。 The polymer (P) may further contain other structural units in addition to the structural unit (A). Other structural units include the following structural units (B) to (D).
 構成単位(B)は、下記式(4)で表される。
Figure JPOXMLDOC01-appb-C000006
The structural unit (B) is represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000006
 式(4)中、R1~R3は各々独立に、フッ素原子、又は炭素数1~7のパーフルオロアルキル基を表す。R4は、炭素数1~7のパーフルオロアルキル基を表す。パーフルオロアルキル基は、環構造を有していてもよい。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。 In formula (4), R 1 to R 3 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms. R 4 represents a perfluoroalkyl group having 1 to 7 carbon atoms. A perfluoroalkyl group may have a ring structure. A portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms. Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
 重合体(P)は、構成単位(B)を1種又は2種以上含んでいてもよい。重合体(P)において、構成単位(B)の含有量は、全構成単位の合計に対し、5~10モル%が好ましい。構成単位(B)の含有量は、9モル%以下であってもよく、8モル%以下であってもよい。 The polymer (P) may contain one or more of the structural units (B). In the polymer (P), the content of the structural unit (B) is preferably 5 to 10 mol% of the total of all structural units. The content of the structural unit (B) may be 9 mol% or less, or may be 8 mol% or less.
 構成単位(B)は、例えば、下記式(5)で表される化合物に由来する。式(5)において、R1~R4は、式(4)と同じである。式(5)で表される化合物は、パーフルオロビニルエーテル等の含フッ素ビニルエーテルである。
Figure JPOXMLDOC01-appb-C000007
The structural unit (B) is derived, for example, from a compound represented by the following formula (5). In formula (5), R 1 to R 4 are the same as in formula (4). The compound represented by formula (5) is a fluorine-containing vinyl ether such as perfluorovinyl ether.
Figure JPOXMLDOC01-appb-C000007
 構成単位(C)は、下記式(6)で表される。
Figure JPOXMLDOC01-appb-C000008
The structural unit (C) is represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000008
 式(6)中、R5~R8は各々独立に、フッ素原子又は炭素数1~7のパーフルオロアルキル基を表す。パーフルオロアルキル基は、環構造を有していてもよい。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。 In formula (6), R 5 to R 8 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms. A perfluoroalkyl group may have a ring structure. A portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms. Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms.
 重合体(P)は、構成単位(C)を1種又は2種以上含んでいてもよい。重合体(P)において、構成単位(C)の含有量は、全構成単位の合計に対し、5~10モル%が好ましい。構成単位(C)の含有量は、9モル%以下であってもよく、8モル%以下であってもよい。 The polymer (P) may contain one or more of the structural units (C). In the polymer (P), the content of the structural unit (C) is preferably 5 to 10 mol% of the total of all structural units. The content of the structural unit (C) may be 9 mol% or less, or may be 8 mol% or less.
 構成単位(C)は、例えば、下記式(7)で表される化合物に由来する。式(7)において、R5~R8は、式(6)と同じである。式(7)で表される化合物は、テトラフルオロエチレン及びクロロトリフルオロエチレン等の含フッ素オレフィンである。
Figure JPOXMLDOC01-appb-C000009
The structural unit (C) is derived from, for example, a compound represented by the following formula (7). In formula (7), R 5 to R 8 are the same as in formula (6). Compounds represented by formula (7) are fluorine-containing olefins such as tetrafluoroethylene and chlorotrifluoroethylene.
Figure JPOXMLDOC01-appb-C000009
 構成単位(D)は、下記式(8)で表される。
Figure JPOXMLDOC01-appb-C000010
The structural unit (D) is represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000010
 式(8)中、Zは、酸素原子、単結合又は-OC(R1920)O-を表し、R9~R20は各々独立に、フッ素原子、炭素数1~5のパーフルオロアルキル基、又は炭素数1~5のパーフルオロアルコキシ基を表す。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルコキシ基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。s及びtは、それぞれ独立に、0~5でかつs+tが1~6の整数(ただし、Zが-OC(R1920)O-の場合、s+tは0であってもよい)を表す。 In formula (8), Z represents an oxygen atom, a single bond or —OC(R 19 R 20 )O—, and each of R 9 to R 20 independently represents a fluorine atom or perfluoroalkyl having 1 to 5 carbon atoms. group, or a perfluoroalkoxy group having 1 to 5 carbon atoms. A portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms. Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms. Some of the fluorine atoms in the perfluoroalkoxy group may be substituted with halogen atoms other than fluorine atoms. s and t each independently represents an integer of 0 to 5 and s+t is 1 to 6 (provided that s+t may be 0 when Z is —OC(R 19 R 20 )O—); .
 構成単位(D)は、好ましくは下記式(9)で表される。なお、下記式(9)で表される構成単位は、上記式(8)においてZが酸素原子、sが0、かつtが2の場合である。
Figure JPOXMLDOC01-appb-C000011
The structural unit (D) is preferably represented by the following formula (9). The structural unit represented by the following formula (9) is the case where Z is an oxygen atom, s is 0, and t is 2 in the above formula (8).
Figure JPOXMLDOC01-appb-C000011
 式(9)中、R141、R142、R151、及びR152は各々独立に、フッ素原子、炭素数1~5のパーフルオロアルキル基、又は炭素数1~5のパーフルオロアルコキシ基を表す。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルコキシ基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。 In formula (9), R 141 , R 142 , R 151 and R 152 each independently represents a fluorine atom, a perfluoroalkyl group having 1 to 5 carbon atoms, or a perfluoroalkoxy group having 1 to 5 carbon atoms. . A portion of fluorine atoms may be substituted with halogen atoms other than fluorine atoms. Some of the fluorine atoms in the perfluoroalkyl group may be substituted with halogen atoms other than fluorine atoms. Some of the fluorine atoms in the perfluoroalkoxy group may be substituted with halogen atoms other than fluorine atoms.
 重合体(P)は、構成単位(D)を1種又は2種以上含んでいてもよい。重合体(P)において、構成単位(D)の含有量は、全構成単位の合計に対し、30~67モル%が好ましい。構成単位(D)の含有量は、例えば35モル%以上であり、60モル%以下であってもよく、55モル%以下であってもよい。 The polymer (P) may contain one or more of the structural units (D). In the polymer (P), the content of the structural unit (D) is preferably 30 to 67 mol% of the total of all structural units. The content of the structural unit (D) is, for example, 35 mol% or more, may be 60 mol% or less, or may be 55 mol% or less.
 構成単位(D)は、例えば、下記式(10)で表される化合物に由来する。式(10)において、Z、R9~R18、s及びtは、式(8)と同じである。式(10)で表される化合物は、2個以上の重合性二重結合を有し、かつ環化重合し得る含フッ素化合物である。
Figure JPOXMLDOC01-appb-C000012
The structural unit (D) is derived, for example, from a compound represented by the following formula (10). In formula (10), Z, R 9 -R 18 , s and t are the same as in formula (8). The compound represented by formula (10) is a fluorine-containing compound having two or more polymerizable double bonds and capable of cyclic polymerization.
Figure JPOXMLDOC01-appb-C000012
 構成単位(D)は、好ましくは下記式(11)で表される化合物に由来する。式(11)において、R141、R142、R151、及びR152は、式(9)と同じである。
Figure JPOXMLDOC01-appb-C000013
Structural unit (D) is preferably derived from a compound represented by the following formula (11). In formula (11), R 141 , R 142 , R 151 and R 152 are the same as in formula (9).
Figure JPOXMLDOC01-appb-C000013
 式(10)又は式(11)で表される化合物の具体例としては、下記の化合物が挙げられる。
CF2=CFOCF2CF=CF2
CF2=CFOCF(CF3)CF=CF2
CF2=CFOCF2CF2CF=CF2
CF2=CFOCF2CF(CF3)CF=CF2
CF2=CFOCF(CF3)CF2CF=CF2
CF2=CFOCFClCF2CF=CF2
CF2=CFOCCl2CF2CF=CF2
CF2=CFOCF2OCF=CF2
CF2=CFOC(CF32OCF=CF2
CF2=CFOCF2CF(OCF3)CF=CF2
CF2=CFCF2CF=CF2
CF2=CFCF2CF2CF=CF2
CF2=CFCF2OCF2CF=CF2
CF2=CFOCF2CFClCF=CF2
CF2=CFOCF2CF2CCl=CF2
CF2=CFOCF2CF2CF=CFCl
CF2=CFOCF2CF(CF3)CCl=CF2
CF2=CFOCF2OCF=CF2
CF2=CFOCCl2OCF=CF2
CF2=CClOCF2OCCl=CF2
Specific examples of the compound represented by Formula (10) or Formula (11) include the following compounds.
CF2 = CFOCF2CF = CF2
CF2 =CFOCF( CF3 ) CF= CF2
CF2 = CFOCF2CF2CF = CF2
CF2 = CFOCF2CF ( CF3 )CF= CF2
CF2 =CFOCF( CF3 ) CF2CF = CF2
CF2 = CFOCFCClCF2CF = CF2
CF2 = CFOCCl2CF2CF = CF2
CF2 = CFOCF2OCF = CF2
CF2 =CFOC( CF3 ) 2OCF = CF2
CF2 = CFOCF2CF ( OCF3 )CF= CF2
CF2 = CFCF2CF = CF2
CF2 = CFCF2CF2CF = CF2
CF2 = CFCF2OCF2CF = CF2
CF2 = CFOCF2CFClCF = CF2
CF2 = CFOCF2CF2CCl = CF2
CF2 = CFOCF2CF2CF = CFCl
CF2 = CFOCF2CF ( CF3 )CCl= CF2
CF2 = CFOCF2OCF = CF2
CF2 = CFOCCl2OCF = CF2
CF2 = CClOCF2OCCl = CF2
 重合体(P)は、構成単位(A)~(D)以外の他の構成単位をさらに含んでいてもよいが、実質的に構成単位(A)~(D)以外の他の構成単位を含まないことが好ましい。なお、重合体(P)が実質的に構成単位(A)~(D)以外の他の構成単位を含まないとは、重合体(P)における全構成単位の合計に対し、構成単位(A)~(D)の合計が95モル%以上、好ましくは98モル%以上であることを意味する。 The polymer (P) may further contain structural units other than the structural units (A) to (D), but substantially contains structural units other than the structural units (A) to (D). preferably not included. Note that the polymer (P) does not substantially contain other structural units other than the structural units (A) to (D) means that the total of all structural units in the polymer (P), the structural unit (A ) to (D) is 95 mol % or more, preferably 98 mol % or more.
 重合体(P)の重合方法は、特に限定されず、例えば、ラジカル重合などの一般的な重合方法を利用できる。重合体(P)を重合するための重合開始剤は、全フッ素化された化合物であってもよい。 The method of polymerizing the polymer (P) is not particularly limited, and for example, a general polymerization method such as radical polymerization can be used. A polymerization initiator for polymerizing the polymer (P) may be a perfluorinated compound.
 重合体(P)のガラス転移温度(Tg)は、特に限定されず、例えば100℃~140℃であり、105℃以上であってもよく、120℃以上であってもよい。本明細書において、Tgは、日本工業規格(JIS)K7121:1987の規定に準拠して求められる中間点ガラス転移温度 (Tmg)を意味する。 The glass transition temperature (Tg) of the polymer (P) is not particularly limited, and is, for example, 100° C. to 140° C., may be 105° C. or higher, or may be 120° C. or higher. As used herein, Tg means the midpoint glass transition temperature (T mg ) determined according to the Japanese Industrial Standards (JIS) K7121:1987.
 [製造装置]
 図1の製造装置10は、本発明の製造方法を実施可能な装置であると共に、本発明の製造装置の一例でもある。製造装置10について、第1~第3の製造方法の説明において上述した以外の事項を説明する。
[Manufacturing equipment]
The manufacturing apparatus 10 of FIG. 1 is an apparatus capable of carrying out the manufacturing method of the present invention, and is also an example of the manufacturing apparatus of the present invention. Regarding the manufacturing apparatus 10, matters other than those described above in the description of the first to third manufacturing methods will be described.
 製造装置10は、原料供給部2の内部の雰囲気を絶対湿度0.95g/m3以下に保持する水分量制御機構を備えていてもよい。水分量制御機構は、絶対湿度0.03g/m3以下の気体を原料供給部2の内部に連続的又は断続的に供給する気体供給機構を備えていてもよいし、原料供給部2の内部に配置された除湿部材であってもよい。保持される絶対湿度及び供給される気体の絶対湿度は、それぞれ、第1の製造方法の説明において上述した範囲をとりうる。 The manufacturing apparatus 10 may include a moisture content control mechanism that maintains the atmosphere inside the raw material supply unit 2 at an absolute humidity of 0.95 g/m 3 or less. The moisture content control mechanism may include a gas supply mechanism that continuously or intermittently supplies gas with an absolute humidity of 0.03 g/m 3 or less to the inside of the raw material supply unit 2. It may be a dehumidifying member arranged in. The absolute humidity to be held and the absolute humidity of the supplied gas can each take the range described above in the description of the first manufacturing method.
 ギヤポンプ12には、公知のものを使用できる。 A known pump can be used for the gear pump 12.
 製造装置10は、制御機構(図示せず)を更に備えていてもよい。制御機構は、例えば、A/D変換回路、入出力回路、演算回路、記憶装置等を含むDSP(Digital Signal Processor)を備える。制御機構には、製造装置10を適切に運転するためのプログラムが格納されていてもよい。制御機構により、例えば、水分量制御機構を制御できる。製造装置10は、原料供給部2の内部の雰囲気の絶対湿度を測定する湿度計を備えていてもよく、制御機構と湿度計とが接続されていてもよい。 The manufacturing apparatus 10 may further include a control mechanism (not shown). The control mechanism includes, for example, a DSP (Digital Signal Processor) including an A/D conversion circuit, an input/output circuit, an arithmetic circuit, a storage device, and the like. The control mechanism may store a program for properly operating the manufacturing apparatus 10 . The control mechanism may, for example, control a moisture content control mechanism. The manufacturing apparatus 10 may include a hygrometer that measures the absolute humidity of the atmosphere inside the raw material supply unit 2, and the control mechanism and the hygrometer may be connected.
 [POF]
 本発明の製造方法又は製造装置により、例えば、図2のPOF101を製造できる。ただし、製造されるPOFは、図2の例に限定されない。
[POF]
For example, the POF 101 shown in FIG. 2 can be manufactured by the manufacturing method or manufacturing apparatus of the present invention. However, the manufactured POF is not limited to the example of FIG.
 以下、実施例により、本発明を更に詳細に説明する。本発明は、以下の実施例に限定されない。 The present invention will be described in more detail below with reference to examples. The invention is not limited to the following examples.
 [実験例1:原料樹脂の水分量と溶融粘度との関係]
 実験例1では、原料樹脂の水分量とその溶融粘度との関係を評価した。原料樹脂としてポリカーボネートとポリエチレンテレフタレートとの共重合体樹脂のペレット(Sabic製、Xylex7200)を準備した。準備したペレットの水分量は4000ppmを超えていた。次に、乾燥オーブン(設定温度100℃)にペレットを収容することで、水分量100ppm、200ppm、400ppm、800ppm及び3000ppmの各サンプルを得た。各サンプルの水分量は、化学反応式の水分計(ブラベンダー製、アクアトラック3E)を用いて評価した。水分量を測定する際の各サンプルの加熱は、常温からスタートして160℃までとした。
[Experimental Example 1: Relationship between water content of raw material resin and melt viscosity]
In Experimental Example 1, the relationship between the water content of the raw material resin and its melt viscosity was evaluated. Pellets of a copolymer resin of polycarbonate and polyethylene terephthalate (Xylex7200 manufactured by Sabic) were prepared as a raw material resin. The water content of the prepared pellets exceeded 4000 ppm. Next, by placing the pellets in a drying oven (set temperature 100° C.), samples with water contents of 100 ppm, 200 ppm, 400 ppm, 800 ppm and 3000 ppm were obtained. The water content of each sample was evaluated using a chemical reaction moisture meter (Aquatrac 3E, manufactured by Brabender). Each sample was heated up to 160° C. starting from room temperature when measuring the moisture content.
 次に、得られた各サンプル50gを230℃で加熱溶融し、当該温度での粘度(溶融粘度)をツインキャピラリー型粘度計(Malvern製、RH-7)により評価した。評価時のせん断速度は、100秒-1とした。溶融粘度は、水分量400ppm以下のサンプルではほぼ一定(3200~3300Pa・s)であったが、400ppmを超えると直線的に低下し始め、水分量800ppmのサンプルで3000Pa・s、水分量3000ppmのサンプルで2150Pa・sとなった。 Next, 50 g of each sample obtained was heated and melted at 230° C., and the viscosity (melt viscosity) at that temperature was evaluated with a twin capillary viscometer (RH-7 manufactured by Malvern). The shear rate during evaluation was 100 sec -1 . The melt viscosity was almost constant (3200 to 3300 Pa s) for samples with a water content of 400 ppm or less, but began to decrease linearly when it exceeded 400 ppm, and was 3000 Pa s for a sample with a water content of 800 ppm and 3000 ppm for a water content. The sample was 2150 Pa·s.
 [実験例2:原料樹脂の水分量と加水分解性との関係]
 実験例2では、原料樹脂の水分量とその加水分解性との関係を評価した。実験例1で準備した各サンプル5gを、230℃に保持した加熱槽に収容して2時間加熱し、加熱後の各サンプルの重量から、加熱により揮発した成分(主として加水分解により生じたと推定される)の割合(加熱前のサンプル重量に対する重量%)を評価した。当該割合は、水分量400ppm以下のサンプルではほぼ一定(0.1~0.15重量%)であったが、400ppmを超えると直線的に増加し始め、水分量800ppmのサンプルでは0.21重量%、水分量3000ppmのサンプルでは0.42重量%となった。
[Experimental Example 2: Relationship between water content and hydrolyzability of raw material resin]
In Experimental Example 2, the relationship between the water content of the starting resin and its hydrolyzability was evaluated. 5 g of each sample prepared in Experimental Example 1 was placed in a heating bath maintained at 230° C. and heated for 2 hours. ) (% by weight relative to the weight of the sample before heating) was evaluated. The proportion was almost constant (0.1 to 0.15% by weight) for samples with a water content of 400 ppm or less, but began to increase linearly above 400 ppm, reaching 0.21 weight for samples with a water content of 800 ppm. %, and a sample with a water content of 3000 ppm was 0.42% by weight.
 [実験例3:窒素パージと原料樹脂の水分量との関係]
 実験例3では、原料供給部の窒素パージと、原料供給部に収容された原料樹脂の水分量との関係を評価した。実験例1で準備した水分量200ppmのサンプル1000gを内容積5Lのホッパーに収容した。周囲環境の温度は22.1℃、相対湿度は53%であった。次に、ホッパーの内部を絶対湿度0.8g/m3の窒素でパージし続けたときのサンプルの水分量の変化と、窒素によるパージを行うことなく静置し続けたときのサンプルの水分量の変化とを評価した。評価結果を図3に示す。図3に示すように、窒素によるパージを行うことなく静置し続けた場合には、時間の経過と共にサンプルの水分量が増大した。一方、窒素でパージし続けた場合には、サンプルの水分量はほぼ200ppmに保持された。なお、POFの製造では、単位時間あたりの原料樹脂の押出量がごく僅かであるため、通常、原料樹脂のペレットは5~6時間程度以上、原料供給部に収容されたままとなる。
[Experimental Example 3: Relationship between Nitrogen Purge and Moisture Content of Raw Resin]
In Experimental Example 3, the relationship between the nitrogen purge of the raw material supply section and the water content of the raw material resin accommodated in the raw material supply section was evaluated. 1000 g of the sample prepared in Experimental Example 1 and having a water content of 200 ppm was placed in a hopper having an inner volume of 5 L. The ambient temperature was 22.1° C. and the relative humidity was 53%. Next, the change in the moisture content of the sample when the interior of the hopper was continuously purged with nitrogen at an absolute humidity of 0.8 g/m 3 and the moisture content of the sample when the sample was left standing without purging with nitrogen. We evaluated the changes in The evaluation results are shown in FIG. As shown in FIG. 3, when the sample was left standing without purging with nitrogen, the water content of the sample increased with the lapse of time. On the other hand, when the nitrogen purge was continued, the water content of the sample remained at approximately 200 ppm. In the production of POF, since the amount of raw material resin extruded per unit time is very small, the raw material resin pellets are usually kept in the raw material supply unit for about 5 to 6 hours or more.
 (実施例1)
 ポリメチルメタクリレート(PMMA)のペレット(三菱ケミカル製、アクリペット、上記方法により評価したペレットの平均体積は17.8mm3(ただし、平均体積を評価する際のペレットの粒数Nは50とした;以下同じ))を、100℃の乾燥雰囲気に静置して10時間乾燥させた。乾燥後、化学反応式の水分計(ブラベンダー製、アクアトラック3E)を用いて水分量(乾燥後水分量)を評価したところ、84ppmであった。
(Example 1)
Polymethyl methacrylate (PMMA) pellets (manufactured by Mitsubishi Chemical, ACRYPET, the average volume of pellets evaluated by the above method is 17.8 mm 3 (however, the number of pellets N when evaluating the average volume was 50; hereinafter the same)) was dried in a dry atmosphere at 100° C. for 10 hours. After drying, the water content (water content after drying) was evaluated using a chemical reaction moisture meter (Aquatrac 3E, manufactured by Brabender) and found to be 84 ppm.
 ポリカーボネートとポリエチレンテレフタレートの共重合体樹脂(PC/PET)のペレット(Sabic製、Xylex7200、上記方法により評価したペレットの平均体積は11.6mm3)を、100℃の乾燥雰囲気に静置して13時間乾燥させた。乾燥後、上記水分計を用いて水分量(乾燥後水分量)を評価したところ、80ppmであった。 Polycarbonate/polyethylene terephthalate copolymer resin (PC/PET) pellets (made by Sabic, Xylex7200, the average volume of the pellets evaluated by the above method is 11.6 mm 3 ) were allowed to stand in a dry atmosphere at 100° C. for 13 minutes. dried for an hour. After drying, the moisture content (the moisture content after drying) was evaluated using the above moisture meter and found to be 80 ppm.
 次に、上記乾燥後のPMMAペレット1kg及び上記乾燥後のPC/PETペレット2kgを、それぞれ、単軸の溶融押出機を備える溶融押出機構により溶融押出成形して、PMMAからなるコアとPC/PETからなるクラッドとを備える2層構造のPOFを長さ100m製造した。PMMAの成形温度は240℃、PC/PETの成形温度は230℃とした。各樹脂のペレットはホッパーに収容して溶融押出機に供給し、ホッパーの内部には、絶対湿度0.03g/m3以下の窒素(N2)を連続的に供給し続けた。100mのPOFを製造し終わるまでの間、各樹脂のペレットは5時間、ホッパーに収容されていた。ホッパーから溶融押出機への供給時点(投入口であるスクリュー入口)における各樹脂の水分量は、PMMAについて92ppm、PC/PETについて85ppmであった。各樹脂の水分量は、上記水分計を用いて上述の方法により評価した。製造したPOFの側面を光学顕微鏡(キーエンス製、VHX-300、倍率200倍)により全長にわたって観察したところ(外観検査)、気泡が見られなかったため、良(A)と判定した。なお、本実施例では、上記観察において1つでも気泡が見られた場合は、不可(B)と判定した。 Next, 1 kg of the dried PMMA pellets and 2 kg of the dried PC/PET pellets are melt-extruded by a melt-extrusion mechanism equipped with a single-screw melt extruder to form a core made of PMMA and PC/PET. A two-layer POF having a length of 100 m was manufactured. The molding temperature for PMMA was 240°C, and the molding temperature for PC/PET was 230°C. Pellets of each resin were placed in a hopper and supplied to the melt extruder, and nitrogen (N 2 ) with an absolute humidity of 0.03 g/m 3 or less was continuously supplied to the inside of the hopper. The pellets of each resin were held in the hopper for 5 hours until 100m of POF was produced. The water content of each resin at the point of supply from the hopper to the melt extruder (screw inlet, which is an inlet) was 92 ppm for PMMA and 85 ppm for PC/PET. The water content of each resin was evaluated by the method described above using the moisture meter. When the entire length of the side surface of the manufactured POF was observed with an optical microscope (Keyence VHX-300, 200x magnification) (appearance inspection), no air bubbles were observed, so it was judged to be good (A). In addition, in this example, when even one air bubble was observed in the above observation, it was judged as unsatisfactory (B).
 (実施例2)
 PC/PETペレットの乾燥時間を6時間にした以外は実施例1と同様にして長さ100mのPOFを製造し、製造したPOFについて気泡の有無を確認したところ、気泡は見られなかった。なお、当該ペレットの乾燥後水分量は136ppmであり、スクリュー入口における当該ペレットの水分量は139ppmであった。
(Example 2)
A POF having a length of 100 m was produced in the same manner as in Example 1, except that the PC/PET pellets were dried for 6 hours. The moisture content of the pellets after drying was 136 ppm, and the moisture content of the pellets at the screw inlet was 139 ppm.
 (実施例3)
 PC/PETペレットの成形温度を210℃にした以外は実施例1と同様にして長さ100mのPOFを製造し、製造したPOFについて気泡の有無を確認したところ、気泡は見られなかった。なお、当該ペレットの乾燥後水分量は40ppmであり、スクリュー入口における当該ペレットの水分量は43ppmであった。
(Example 3)
A POF having a length of 100 m was produced in the same manner as in Example 1, except that the PC/PET pellet molding temperature was changed to 210°C. The moisture content of the pellets after drying was 40 ppm, and the moisture content of the pellets at the screw inlet was 43 ppm.
 (実施例4)
 PC/PETペレットの成形温度を250℃にした以外は実施例1と同様にして長さ100mのPOFを製造し、製造したPOFについて気泡の有無を確認したところ、気泡は見られなかった。なお、当該ペレットの乾燥後水分量は34ppmであり、スクリュー入口における当該ペレットの水分量は40ppmであった。
(Example 4)
A POF having a length of 100 m was produced in the same manner as in Example 1, except that the PC/PET pellet molding temperature was changed to 250°C. The moisture content of the pellets after drying was 34 ppm, and the moisture content of the pellets at the screw inlet was 40 ppm.
 (実施例5)
 PMMAペレットの乾燥時間を6時間にした以外は実施例1と同様にして長さ100mのPOFを製造し、製造したPOFについて気泡の有無を確認したところ、気泡は見られなかった。なお、当該ペレットの乾燥後水分量は136ppmであり、スクリュー入口における当該ペレットの水分量は141ppmであった。
(Example 5)
A POF having a length of 100 m was produced in the same manner as in Example 1, except that the PMMA pellets were dried for 6 hours. The moisture content of the pellets after drying was 136 ppm, and the moisture content of the pellets at the screw inlet was 141 ppm.
 (実施例6)
 PMMAペレットの成形温度を210℃にした以外は実施例1と同様にして長さ100mのPOFを製造し、製造したPOFについて気泡の有無を確認したところ、気泡は見られなかった。なお、当該ペレットの乾燥後水分量は40ppmであり、スクリュー入口における当該ペレットの水分量は42ppmであった。
(Example 6)
A POF having a length of 100 m was produced in the same manner as in Example 1 except that the PMMA pellet molding temperature was changed to 210° C., and the presence or absence of bubbles in the produced POF was checked. The moisture content of the pellets after drying was 40 ppm, and the moisture content of the pellets at the screw inlet was 42 ppm.
 (実施例7)
 PMMAペレットの成形温度を250℃にした以外は実施例1と同様にして長さ100mのPOFを製造し、製造したPOFについて気泡の有無を確認したところ、気泡は見られなかった。なお、当該ペレットの乾燥後水分量は34ppmであり、スクリュー入口における当該ペレットの水分量は41ppmであった。
(Example 7)
A POF having a length of 100 m was produced in the same manner as in Example 1 except that the PMMA pellet molding temperature was changed to 250° C., and the presence or absence of bubbles in the produced POF was checked. The moisture content of the pellets after drying was 34 ppm, and the moisture content of the pellets at the screw inlet was 41 ppm.
 (比較例1)
 PC/PETペレットの乾燥時間を1時間にした以外は実施例1と同様にして長さ100mのPOFを製造し、製造したPOFについて気泡の有無を確認したところ、クラッド(PC/PET層)に気泡が確認された。なお、当該ペレットの乾燥後水分量は739ppmであり、スクリュー入口における当該ペレットの水分量は750ppmであった。
(Comparative example 1)
A POF having a length of 100 m was produced in the same manner as in Example 1, except that the drying time of the PC/PET pellets was changed to 1 hour. Air bubbles were confirmed. The moisture content of the pellets after drying was 739 ppm, and the moisture content of the pellets at the screw inlet was 750 ppm.
 (比較例2)
 PC/PETペレットの成形温度を250℃にすると共に乾燥時間を1時間にした以外は実施例1と同様にして長さ100mのPOFを製造し、製造したPOFについて気泡の有無を確認したところ、クラッド(PC/PET層)に気泡が確認された。なお、当該ペレットの乾燥後水分量は820ppmであり、スクリュー入口における当該ペレットの水分量は840ppmであった。
(Comparative example 2)
A POF having a length of 100 m was produced in the same manner as in Example 1, except that the PC/PET pellet molding temperature was changed to 250° C. and the drying time was changed to 1 hour. Air bubbles were confirmed in the clad (PC/PET layer). The moisture content of the pellets after drying was 820 ppm, and the moisture content of the pellets at the screw inlet was 840 ppm.
 (比較例3)
 PMMAペレットの乾燥時間を1時間にした以外は実施例1と同様にして長さ100mのPOFを製造し、製造したPOFについて気泡の有無を確認したところ、コア(PMMA層)に気泡が確認された。なお、当該ペレットの乾燥後水分量は739ppmであり、スクリュー入口における当該ペレットの水分量は753ppmであった。
(Comparative Example 3)
A POF having a length of 100 m was produced in the same manner as in Example 1, except that the PMMA pellets were dried for 1 hour. rice field. The moisture content of the pellets after drying was 739 ppm, and the moisture content of the pellets at the screw inlet was 753 ppm.
 (比較例4)
 PMMAペレットの成形温度を250℃にすると共に乾燥時間を1時間にした以外は実施例1と同様にして長さ100mのPOFを製造し、製造したPOFについて気泡の有無を確認したところ、コア(PMMA層)に気泡が確認された。なお、当該ペレットの乾燥後水分量は820ppmであり、スクリュー入口における当該ペレットの水分量は840ppmであった。
(Comparative Example 4)
A POF having a length of 100 m was produced in the same manner as in Example 1, except that the PMMA pellet molding temperature was changed to 250° C. and the drying time was changed to 1 hour. Air bubbles were confirmed in the PMMA layer). The moisture content of the pellets after drying was 820 ppm, and the moisture content of the pellets at the screw inlet was 840 ppm.
 (比較例5)
 PC/PETペレットを収容したホッパーの内部への窒素の供給を実施しなかった以外は実施例1と同様にして長さ100mのPOFを製造し、製造したPOFについて気泡の有無を確認したところ、クラッド(PC/PET層)に気泡が確認された。なお、スクリュー入口における当該ペレットの水分量は450ppmであった。
(Comparative Example 5)
A POF having a length of 100 m was produced in the same manner as in Example 1, except that nitrogen was not supplied to the inside of the hopper containing the PC/PET pellets. Air bubbles were confirmed in the clad (PC/PET layer). The moisture content of the pellets at the screw inlet was 450 ppm.
 (比較例6)
 PC/PETペレットについて平均体積4.8mm3のもの(樹脂組成は同じ)を使用した以外は比較例5と同様にして長さ100mのPOFを製造し、製造したPOFについて気泡の有無を確認したところ、クラッド(PC/PET層)に気泡が確認された。なお、当該ペレットの乾燥後水分量は85ppmであり、スクリュー入口における当該ペレットの水分量は900ppmであった。
(Comparative Example 6)
A POF with a length of 100 m was produced in the same manner as in Comparative Example 5 except that PC/PET pellets with an average volume of 4.8 mm 3 (same resin composition) were used, and the presence or absence of bubbles in the produced POF was checked. Air bubbles were found in the clad (PC/PET layer). The moisture content of the pellets after drying was 85 ppm, and the moisture content of the pellets at the screw inlet was 900 ppm.
 (比較例7)
 PC/PETペレットについて平均体積4.8mm3のもの(樹脂組成は同じ)を使用すると共に、ペレットの乾燥時間を1時間とした以外は比較例5と同様にして長さ100mのPOFを製造し、製造したPOFについて気泡の有無を確認したところ、クラッド(PC/PET層)に気泡が確認された。なお、当該ペレットの乾燥後水分量は680ppmであり、スクリュー入口における当該ペレットの水分量は900ppmであった。
(Comparative Example 7)
A POF having a length of 100 m was produced in the same manner as in Comparative Example 5 except that PC/PET pellets with an average volume of 4.8 mm 3 (same resin composition) were used and the drying time of the pellets was set to 1 hour. When the presence or absence of air bubbles in the manufactured POF was checked, air bubbles were confirmed in the clad (PC/PET layer). The moisture content of the pellets after drying was 680 ppm, and the moisture content of the pellets at the screw inlet was 900 ppm.
 各実施例及び比較例の評価結果を以下の表1にまとめる。表1に示す各々の実施例及び比較例の欄において、上の行はコア、下の行はクラッドに、それぞれ対応する。 The evaluation results of each example and comparative example are summarized in Table 1 below. In the column of each example and comparative example shown in Table 1, the upper row corresponds to the core, and the lower row corresponds to the clad.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表1に示すように、少なくとも1つの層の原料樹脂の水分量を単軸押出機への供給時点において400ppm以下に制御した実施例1~7では、当該水分量が400ppmを超える比較例1~7とは異なり、形成したPOFには気泡が見られなかった。 As shown in Table 1, in Examples 1 to 7 in which the water content of the raw material resin of at least one layer was controlled to 400 ppm or less at the time of supply to the single screw extruder, the water content exceeded 400 ppm. Unlike 7, no air bubbles were seen in the POF formed.
 本発明の製造方法及び製造装置は、プラスチック光ファイバの製造に利用できる。
 
The manufacturing method and manufacturing apparatus of the present invention can be used for manufacturing plastic optical fibers.

Claims (19)

  1.  コア及びクラッドを含む複数の層から構成されたプラスチック光ファイバの製造方法であって、
     前記複数の層から選択される少なくとも1つの層を、溶融押出機構を用いた溶融押出成形により形成することを含み、
     前記少なくとも1つの層の原料樹脂の水分量を、前記溶融押出機構への供給時点において400ppm(質量基準)以下に制御する、製造方法。
    A method of manufacturing a plastic optical fiber composed of multiple layers including a core and a cladding, comprising:
    Forming at least one layer selected from the plurality of layers by melt extrusion molding using a melt extrusion mechanism,
    The production method, wherein the water content of the raw material resin of the at least one layer is controlled to 400 ppm (by mass) or less at the time of supply to the melt extrusion mechanism.
  2.  前記原料樹脂を、前記原料樹脂が収容されると共に、内部の雰囲気の絶対湿度が0.95g/m3以下に保持された原料供給部から、前記溶融押出機構に供給する、請求項1に記載の製造方法。 2. The method according to claim 1, wherein the raw material resin is supplied to the melt extrusion mechanism from a raw material supply unit in which the raw material resin is accommodated and the absolute humidity of the internal atmosphere is maintained at 0.95 g/m 3 or less. manufacturing method.
  3.  前記原料供給部の内部に、絶対湿度0.03g/m3以下の気体を連続的又は断続的に供給する、請求項2に記載の製造方法。 3. The manufacturing method according to claim 2, wherein a gas having an absolute humidity of 0.03 g/m <3> or less is continuously or intermittently supplied to the interior of said raw material supply unit.
  4.  コア及びクラッドを含む複数の層から構成されたプラスチック光ファイバの製造方法であって、
     前記複数の層から選択される少なくとも1つの層を、溶融押出機構を用いた溶融押出成形により形成することを含み、
     前記少なくとも1つの層の原料樹脂は、水分量400ppm(質量基準)以下の状態で原料供給部に収容された後、前記原料供給部から前記溶融押出機構に供給され、
     前記原料供給部の内部に、絶対湿度0.03g/m3以下の気体を連続的又は断続的に供給する、製造方法。
    A method of manufacturing a plastic optical fiber composed of multiple layers including a core and a cladding, comprising:
    Forming at least one layer selected from the plurality of layers by melt extrusion molding using a melt extrusion mechanism,
    The raw material resin of the at least one layer is accommodated in the raw material supply unit in a state where the water content is 400 ppm (based on mass) or less, and then supplied from the raw material supply unit to the melt extrusion mechanism,
    The manufacturing method, wherein a gas having an absolute humidity of 0.03 g/m 3 or less is continuously or intermittently supplied to the interior of the raw material supply unit.
  5.  前記気体が不活性ガスである、請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein the gas is an inert gas.
  6.  前記気体が窒素である、請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein the gas is nitrogen.
  7.  前記少なくとも1つの層が、前記コア及び前記クラッドから選ばれる少なくとも1つの層である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein said at least one layer is at least one layer selected from said core and said clad.
  8.  前記原料樹脂が加水分解性を有する、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the raw material resin is hydrolyzable.
  9.  前記原料樹脂がポリカーボネートである、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the raw material resin is polycarbonate.
  10.  前記溶融押出機構に供給される前記原料樹脂は、ペレットの形状を有し、
     前記ペレットの平均体積は10.0mm3以上である、請求項1に記載の製造方法。
    The raw material resin supplied to the melt extrusion mechanism has a pellet shape,
    The manufacturing method according to claim 1, wherein the pellets have an average volume of 10.0 mm 3 or more.
  11.  前記溶融押出機構に供給される前記原料樹脂は、ペレットの形状を有し、
     前記ペレットを、乾燥後水分量が400ppm(質量基準)以下となるまで乾燥させた後に、前記溶融押出機構に供給する、請求項1に記載の製造方法。
    The raw material resin supplied to the melt extrusion mechanism has a pellet shape,
    2. The manufacturing method according to claim 1, wherein the pellets are dried until the water content after drying becomes 400 ppm (by mass) or less, and then supplied to the melt extrusion mechanism.
  12.  前記溶融押出成形における前記原料樹脂の成形温度が、前記原料樹脂のガラス転移温度(Tg)+100℃以上である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the molding temperature of the raw material resin in the melt extrusion molding is the glass transition temperature (Tg) of the raw material resin + 100°C or higher.
  13.  コア及びクラッドを含む複数の層から構成されたプラスチック光ファイバの製造装置であって、
     前記複数の層から選択される少なくとも1つの層を溶融押出成形により形成する溶融押出機構と、
     前記少なくとも1つの層の原料樹脂を収容すると共に、収容した前記原料樹脂を前記溶融押出機構に供給する原料供給部と、
     前記原料供給部の内部の雰囲気を絶対湿度0.95g/m3以下に保持する水分量制御機構と、
    を備えた、製造装置。
    An apparatus for manufacturing a plastic optical fiber composed of multiple layers including a core and a clad,
    a melt extrusion mechanism for forming at least one layer selected from the plurality of layers by melt extrusion;
    a raw material supply unit that accommodates the raw material resin of the at least one layer and supplies the accommodated raw material resin to the melt extrusion mechanism;
    a moisture content control mechanism that maintains the atmosphere inside the raw material supply unit at an absolute humidity of 0.95 g/m 3 or less;
    manufacturing equipment.
  14.  前記水分量制御機構が、絶対湿度0.03g/m3以下の気体を前記原料供給部の内部に連続的又は断続的に供給する気体供給機構を備える、請求項13に記載の製造装置。 14. The manufacturing apparatus according to claim 13, wherein said moisture content control mechanism comprises a gas supply mechanism for continuously or intermittently supplying gas having an absolute humidity of 0.03 g/m <3> or less into said raw material supply unit.
  15.  前記気体が不活性ガスである、請求項14に記載の製造装置。 The manufacturing apparatus according to claim 14, wherein the gas is an inert gas.
  16.  前記気体が窒素である、請求項14に記載の製造装置。 The manufacturing apparatus according to claim 14, wherein the gas is nitrogen.
  17.  前記少なくとも1つの層が、前記コア及び前記クラッドから選ばれる少なくとも1つの層である、請求項13に記載の製造装置。 The manufacturing apparatus according to claim 13, wherein said at least one layer is at least one layer selected from said core and said clad.
  18.  前記原料樹脂が加水分解性を有する、請求項13に記載の製造装置。 The manufacturing apparatus according to claim 13, wherein the raw resin is hydrolyzable.
  19.  前記原料樹脂がポリカーボネートである、請求項13に記載の製造装置。
     
    14. The manufacturing apparatus according to claim 13, wherein the raw material resin is polycarbonate.
PCT/JP2022/035273 2021-09-30 2022-09-21 Method for producing plastic optical fiber and apparatus for producing plastic optical fiber WO2023054140A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280045876.0A CN117615892A (en) 2021-09-30 2022-09-21 Method and apparatus for manufacturing plastic optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-162338 2021-09-30
JP2021162338 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054140A1 true WO2023054140A1 (en) 2023-04-06

Family

ID=85780680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035273 WO2023054140A1 (en) 2021-09-30 2022-09-21 Method for producing plastic optical fiber and apparatus for producing plastic optical fiber

Country Status (3)

Country Link
CN (1) CN117615892A (en)
TW (1) TW202332573A (en)
WO (1) WO2023054140A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592422A (en) * 1991-10-01 1993-04-16 Teijin Chem Ltd Manufacture of molding material for optical molded product
JP2006163031A (en) * 2004-12-08 2006-06-22 Fuji Photo Film Co Ltd Manufacturing method of plastic optical member and manufacturing equipment thereof
JP2007517235A (en) * 2003-06-13 2007-06-28 ファースト クオリティ ファイバーズ リミテッド ライアビリティ カンパニー Flat plastic optical fiber and lighting device using such a fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592422A (en) * 1991-10-01 1993-04-16 Teijin Chem Ltd Manufacture of molding material for optical molded product
JP2007517235A (en) * 2003-06-13 2007-06-28 ファースト クオリティ ファイバーズ リミテッド ライアビリティ カンパニー Flat plastic optical fiber and lighting device using such a fiber
JP2006163031A (en) * 2004-12-08 2006-06-22 Fuji Photo Film Co Ltd Manufacturing method of plastic optical member and manufacturing equipment thereof

Also Published As

Publication number Publication date
TW202332573A (en) 2023-08-16
CN117615892A (en) 2024-02-27

Similar Documents

Publication Publication Date Title
US5406641A (en) Flexible light pipe, cured composite and processes for preparation thereof
EP3541629A1 (en) Compositions including polymer and hollow ceramic microspheres and method of making a three-dimensional article
WO2021199478A1 (en) Manufacturing apparatus for plastic optical fiber and manufacturing method therefor
WO2023054140A1 (en) Method for producing plastic optical fiber and apparatus for producing plastic optical fiber
TW202339932A (en) Manufacturing method of plastic optical fiber and manufacturing device of plastic optical fiber
WO2016060114A1 (en) Water-vapor-permselective tube
JP2017119741A (en) Resin and film
WO2022070869A1 (en) Resin fiber formation nozzle, device for manufacturing resin fiber, and method for manufacturing resin fiber
TW202332572A (en) Plastic optical fiber and method for manufacturing same
WO2022054354A1 (en) Fiber production method
WO2021241760A1 (en) Optics-use resin molded body production method, resin fiber production method, and resin fiber production apparatus
JP3162800B2 (en) Thermoplastic resin composition
JP2021162735A (en) Manufacturing method of optical resin molding, manufacturing method of resin fiber, and manufacturing apparatus of resin fiber
WO2022210810A1 (en) Plastic optical fiber, hybrid cable, patch code, and active optical cable
TW202248693A (en) Plastic optical fiber and manufacturing method thereof
WO2022176864A1 (en) Plastic optical fiber and manufacturing method thereof
TW202340332A (en) Refining method for fluorine resins, production method for refined fluorine resin, fluorine resin, optical material, electronic material, and plastic optical fiber
JP2010234739A (en) Method for producing film, film, polarizing plate, film for liquid crystal display panel, and apparatus for producing film
JP2007076323A (en) Plasticization method for heat-resistant acrylic resin
JP2005292668A (en) Manufacturing method of plastic optical fiber
TW202239862A (en) Plastic optical fiber and method of manufacturing the same having a clad made of a material capable of achieving properties required for the clad and capable of being melt-spun
TW202247988A (en) Manufacturing method for plastic optical fiber
TW202346069A (en) plastic optical fiber
JP2005292656A (en) Manufacturing device and manufacturing method of plastic optical fiber
JPH01297450A (en) Polyvinylidene fluoride form

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876007

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551396

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280045876.0

Country of ref document: CN