WO2023054108A1 - Light-emitting element - Google Patents

Light-emitting element Download PDF

Info

Publication number
WO2023054108A1
WO2023054108A1 PCT/JP2022/035144 JP2022035144W WO2023054108A1 WO 2023054108 A1 WO2023054108 A1 WO 2023054108A1 JP 2022035144 W JP2022035144 W JP 2022035144W WO 2023054108 A1 WO2023054108 A1 WO 2023054108A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
bonded
compound
layer
same
Prior art date
Application number
PCT/JP2022/035144
Other languages
French (fr)
Japanese (ja)
Inventor
敏明 佐々田
慎一 稲員
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023054108A1 publication Critical patent/WO2023054108A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to light emitting elements.
  • Patent Document 1 describes a light-emitting element having only one layer containing compound H1 and compound B1.
  • Patent Documents 2 and 3 describe a light-emitting element having only one layer containing compound H2 and compound B1.
  • an object of the present invention is to provide a light-emitting element with excellent luminous efficiency.
  • Ar H1 and Ar H2 each independently represent an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • n H1 represents an integer of 0 or more.
  • L H1 represents a divalent group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • L H1 and Ar H2 may be directly bonded or bonded via a divalent group to form a ring.
  • L H1 and Ar H1 may be directly bonded or bonded via a divalent group to form a ring.
  • L H1 and Ar H2 may be directly bonded or bonded via a divalent group to form a ring.
  • [2] [1] wherein the compound (B) is a compound represented by formula (1-1), a compound represented by formula (1-2), or a compound represented by formula (1-3). light-emitting element.
  • Ar 1 , Ar 2 and Ar 3 each independently represent an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • Y 1 represents a group represented by -N(Ry)-.
  • Ry represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When two or more Ry are present, they may be the same or different.
  • Y 1 and Ar 1 may be directly bonded or bonded via a divalent group to form a ring.
  • Y 1 and Ar 2 may be directly bonded or bonded via a divalent group to form a ring.
  • Y 2 and Ar 1 may be directly bonded or bonded via a divalent group to form a ring.
  • Ar 1 X1 and Ar 2 X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded; and these groups may have a substituent.
  • substituents When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • Ar X2 When multiple Ar X2 are present, they may be the same or different.
  • Ar X4 When multiple Ar X4 are present, they may be the same or different.
  • R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the second layer is a layer containing a crosslinked compound of the crosslinkable group
  • the light emitting device according to [6] wherein the compound having the crosslinkable group is a polymer compound containing a structural unit having the crosslinkable group.
  • n represents an integer of 1 or more.
  • nA represents an integer of 0 or more. When multiple nAs are present, they may be the same or different.
  • Ar Z represents a hydrocarbon group, a heterocyclic group, or a group in which at least one hydrocarbon group and at least one heterocyclic group are directly bonded, and these groups may have a substituent good. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • L A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -N(R')-, an oxygen atom or a sulfur atom, and these groups have a substituent.
  • R' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • substituents they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • L A When multiple L A are present, they may be the same or different.
  • X represents a cross-linking group. When there are multiple X's, they may be the same or different.
  • mA, m and c each independently represent an integer of 0 or more. When multiple mA are present, they may be the same or different. When there are multiple m's, they may be the same or different.
  • Ar 5 represents a hydrocarbon group, a heterocyclic group, or a group in which at least one hydrocarbon group and at least one heterocyclic group are directly bonded, and these groups may have a substituent good. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple Ar 5 are present, they may be the same or different.
  • Ar 7 represents a hydrocarbon group, a heterocyclic group, or a group in which at least one hydrocarbon group and at least one heterocyclic group are directly bonded, and these groups may have a substituent good. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple Ar 7 are present, they may be the same or different.
  • L B1 represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -N(R''')-, an oxygen atom or a sulfur atom, and these groups are substituents may have When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R''' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • substituents When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple L B1 are present, they may be the same or different.
  • X'' represents a bridging group, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. Multiple X'' may be the same or different.
  • At least one of the plurality of X'' is a cross-linking group.
  • the cross-linking group is at least one cross-linking group selected from Group A of cross-linking groups.
  • Crosslinking group A group [In the formula, R XL represents a methylene group, an oxygen atom or a sulfur atom, and n XL represents an integer of 0 to 5. When multiple R XL are present, they may be the same or different. When multiple nXL are present, they may be the same or different. *1 represents the binding position.
  • the second layer further contains at least one selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material and an antioxidant, 10].
  • Room temperature means 25°C.
  • Me is a methyl group
  • Et is an ethyl group
  • Bu is a butyl group
  • i-Pr is an isopropyl group
  • t-Bu is a tert-butyl group.
  • a hydrogen atom may be a deuterium atom or a protium atom.
  • solid lines representing bonds with the central metal mean ionic bonds, covalent bonds or coordinate bonds.
  • a “low-molecular-weight compound” means a compound having no molecular weight distribution and a molecular weight of 1 ⁇ 10 4 or less.
  • a “polymer compound” means a polymer having a molecular weight distribution and a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 or more (for example, 1 ⁇ 10 3 to 1 ⁇ 10 8 ).
  • a “structural unit” means a unit that exists at least one in a polymer compound. Two or more structural units present in a polymer compound are generally called “repeating units".
  • the polymer compound may be a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or other forms.
  • the terminal group of the polymer compound is preferably a stable group because if the polymerization active group remains as it is, there is a possibility that the light-emitting properties, etc., will be lowered when the polymer compound is used for the production of a light-emitting device.
  • the terminal group of the polymer compound is preferably a group conjugated to the main chain of the polymer compound, for example, an aryl group or 1 valent heterocyclic groups.
  • the "alkyl group” may be either linear or branched.
  • the number of carbon atoms in the linear alkyl group is generally 1-50, preferably 1-20, more preferably 1-10, not including the number of carbon atoms in the substituents.
  • the number of carbon atoms in the branched alkyl group is usually 3-50, preferably 3-20, more preferably 4-10, not including the number of carbon atoms in the substituent.
  • the alkyl group may have a substituent.
  • alkyl groups are groups in which some or all of the hydrogen atoms in these groups are substituted with substituents (e.g., trifluoromethyl group, pentafluoroethyl group, perfluorobutyl group, perfluorohexyl group, perfluorohexyl group, fluorooctyl group, 3-phenylpropyl group, 3-(4-methylphenyl)propyl group, 3-(3,5-di-hexylphenyl)propyl group and 6-ethyloxyhexyl group).
  • substituents e.g., trifluoromethyl group, pentafluoroethyl group, perfluorobutyl group, perfluorohexyl group, perfluorohexyl group, fluorooctyl group, 3-phenylpropyl group, 3-(4-methylphenyl)propyl group, 3-(3,5-di-hexylphenyl
  • the number of carbon atoms in the "cycloalkyl group” is usually 3-50, preferably 3-20, more preferably 4-10, not including the number of carbon atoms in the substituents.
  • a cycloalkyl group may have a substituent.
  • Cycloalkyl groups include, for example, cyclohexyl groups and groups in which some or all of the hydrogen atoms in the groups are substituted with substituents.
  • the number of carbon atoms in the "alkylene group” is generally 1-20, preferably 1-15, more preferably 1-10, not including the number of carbon atoms in the substituents.
  • the alkylene group may have a substituent.
  • “Aromatic hydrocarbon group” means a group obtained by removing one or more hydrogen atoms directly bonded to carbon atoms constituting a ring from an aromatic hydrocarbon.
  • a group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon is also referred to as an "aryl group”.
  • a group obtained by removing two hydrogen atoms directly bonded to carbon atoms forming a ring from an aromatic hydrocarbon is also referred to as an "arylene group”.
  • the number of carbon atoms in the aromatic hydrocarbon group is generally 6-60, preferably 6-40, more preferably 6-20, not including the number of carbon atoms in the substituents.
  • aromatic hydrocarbon group includes, for example, monocyclic aromatic hydrocarbons (e.g., benzene), or polycyclic aromatic hydrocarbons (e.g., naphthalene, indene, naphthoquinone, indenone and tetralone; tricyclic aromatic hydrocarbons such as anthracene, phenanthrene, dihydrophenanthrene, fluorene, anthraquinone, phenanthoquinone and fluorenone; benzoanthracene, benzophenanthrene and benzofluorene.
  • monocyclic aromatic hydrocarbons e.g., benzene
  • polycyclic aromatic hydrocarbons e.g., naphthalene, indene, naphthoquinone, indenone and tetralone
  • tricyclic aromatic hydrocarbons such as anthracene, phenanthrene, dihydrophenanthrene, fluorene, anthraquinone,
  • alkoxy group may be either linear or branched.
  • the straight-chain alkoxy group usually has 1 to 40 carbon atoms, preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, not including the carbon atoms of the substituents.
  • the number of carbon atoms in the branched alkoxy group is usually 3-40, preferably 3-20, more preferably 4-10, not including the number of carbon atoms in the substituent.
  • the alkoxy group may have a substituent.
  • alkoxy groups include methoxy, ethoxy, isopropyloxy, butyloxy, hexyloxy, 2-ethylhexyloxy, 3,7-dimethyloctyloxy, lauryloxy, and hydrogen in these groups. Groups in which some or all of the atoms are substituted with substituents are included.
  • the number of carbon atoms in the "cycloalkoxy group" is usually 3-40, preferably 3-20, more preferably 4-10, not including the number of carbon atoms in the substituents.
  • a cycloalkoxy group may have a substituent.
  • Cycloalkoxy groups include, for example, cyclohexyloxy groups and groups in which some or all of the hydrogen atoms in the groups are substituted with substituents.
  • the number of carbon atoms in the "aryloxy group” is usually 6-60, preferably 6-40, more preferably 6-20, not including the number of carbon atoms in the substituents.
  • the aryloxy group may have a substituent. Examples of the aryloxy group include phenoxy group, naphthyloxy group, anthracenyloxy group, pyrenyloxy group, and groups in which some or all of the hydrogen atoms in these groups have been substituted with substituents.
  • a “heterocyclic group” means a group obtained by removing one or more hydrogen atoms directly bonded to atoms (carbon atoms or heteroatoms) constituting a ring from a heterocyclic compound.
  • an "aromatic heterocyclic group” which is a group obtained by removing one or more hydrogen atoms directly bonded to atoms constituting a ring from an aromatic heterocyclic compound, is preferred.
  • a group obtained by removing p hydrogen atoms (p represents an integer of 1 or more) directly bonded to atoms constituting a ring from a heterocyclic compound is also referred to as a "p-valent heterocyclic group".
  • a group obtained by removing p hydrogen atoms directly bonded to atoms constituting a ring from an aromatic heterocyclic compound is also referred to as a "p-valent aromatic heterocyclic group".
  • aromatic heterocyclic compound examples include compounds in which the heterocycle itself exhibits aromaticity, such as azole, thiophene, furan, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, and carbazole, and phenoxazine. , phenothiazine, benzopyran, and the like, compounds in which an aromatic ring is condensed to a heterocyclic ring, even if the heterocyclic ring itself does not exhibit aromaticity.
  • the number of carbon atoms in the heterocyclic group is generally 1-60, preferably 2-40, more preferably 3-20, not including the number of carbon atoms in the substituent.
  • the number of heteroatoms in the heterocyclic group, not including the number of heteroatoms in the substituent is usually 1 to 30, preferably 1 to 10, more preferably 1 to 5, and still more preferably 1 to 3. is.
  • Heterocyclic groups include, for example, monocyclic heterocyclic compounds such as furan, thiophene, oxadiazole, thiadiazole, pyrrole, diazole, triazole, tetrazole, pyridine, diazabenzene and triazine, or Polycyclic heterocyclic compounds (e.g.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the "amino group” may have a substituent, preferably a substituted amino group (that is, a secondary amino group or a tertiary amino group, more preferably a tertiary amino group).
  • Preferred substituents on the amino group are alkyl groups, cycloalkyl groups, aryl groups and monovalent heterocyclic groups, and these groups may further have substituents.
  • the amino group has a plurality of substituents, they may be the same or different, and may be bonded to each other to form a ring together with the nitrogen atom to which each is bonded.
  • Substituted amino groups include, for example, dialkylamino groups, dicycloalkylamino groups, diarylamino groups, and groups in which some or all of the hydrogen atoms in these groups are further substituted with substituents.
  • substituted amino groups include dimethylamino group, diethylamino group, diphenylamino group, bis(methylphenyl)amino group, bis(3,5-di-tert-butylphenyl)amino group, and hydrogen in these groups. Groups in which some or all of the atoms are further substituted with substituents are included.
  • alkenyl group may be either linear or branched.
  • the straight-chain alkenyl group usually has 2 to 30 carbon atoms, preferably 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms, not including the carbon atoms of the substituents.
  • the number of carbon atoms in the branched alkenyl group is generally 3-30, preferably 4-20, more preferably 4-10, not including the number of carbon atoms in the substituent.
  • the number of carbon atoms in the "cycloalkenyl group” is generally 3-30, preferably 4-20, more preferably 5-10, not including the number of carbon atoms in the substituents.
  • Alkenyl groups and cycloalkenyl groups may have a substituent.
  • alkynyl group may be either linear or branched.
  • the number of carbon atoms in the alkynyl group is usually 2-30, preferably 3-10, not including the carbon atoms of the substituents.
  • the number of carbon atoms in the branched alkynyl group is generally 4-30, preferably 4-10, not including the carbon atoms of the substituents.
  • the number of carbon atoms in the "cycloalkynyl group” is usually 4-30, preferably 4-10, not including the carbon atoms of the substituents.
  • the alkynyl group and cycloalkynyl group may have a substituent.
  • alkynyl groups include ethynyl, 1-propynyl, 2-propynyl, 2-butynyl, 3-butynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 5-hexynyl, and groups in which some or all of the hydrogen atoms in these groups have been substituted with substituents.
  • Cycloalkynyl groups include, for example, cyclooctynyl groups and groups in which some or all of the hydrogen atoms in the groups are substituted with substituents.
  • the "substituent” includes, for example, a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an amino group, a substituted amino group, Alkenyl groups, cycloalkenyl groups, alkynyl groups and cycloalkynyl groups are included.
  • a substituent may be a bridging group.
  • when multiple substituents are present they may be the same or different.
  • they may bond with each other to form a ring together with the atoms to which they are bonded, but preferably do not form a ring.
  • a hydrogen atom preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • substituents may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the absolute value of the difference between the energy level of the lowest triplet excited state and the energy level of the lowest singlet excited state (hereinafter also referred to as “ ⁇ E ST ”) is calculated by the following method. is required.
  • the ground state of the compound is structurally optimized by density functional theory at the B3LYP level.
  • 6-31G* is used as a basis function.
  • ⁇ EST of the compound is calculated by time-dependent density functional theory at the B3LYP level.
  • LANL2DZ is used for that atom.
  • Gaussian09 is used as a quantum chemical calculation program.
  • the first layer includes at least one compound (B-1) selected from the compounds (B) and at least one compound selected from the compounds represented by the formula (H-1). It is a layer containing the compound (A-1) of The first layer may contain one type of compound (B-1) alone, or may contain two or more types. The first layer may contain one type of compound (A-1) alone, or may contain two or more types.
  • the total content of compound (B-1) and compound (A-1) in the first layer may be within a range in which the function of the first layer is exhibited.
  • the total content of the compound (B-1) and the compound (A-1) in the first layer may be, for example, 1 to 100% by mass based on the total amount of the first layer. is preferably 10 to 100% by mass, more preferably 30 to 100% by mass, even more preferably 50 to 100% by mass, and particularly preferably 70 to 100% by mass. %, particularly preferably 90 to 100% by mass.
  • the content of the compound (B-1) in the first layer may be within a range in which the function as the first layer is exhibited.
  • the content of the compound (B-1) in the first layer is, for example, 0.01 to 99 when the total content of the compound (B-1) and the compound (A-1) is 100 parts by mass.
  • the amount is preferably 0.1 to 90 parts by mass, more preferably 0.5 to 70 parts by mass, and still more preferably 1 to 50 parts by mass, because the light emitting device of the present embodiment has better luminous efficiency. 3 to 30 parts by mass, particularly preferably 5 to 20 parts by mass.
  • the luminous efficiency of the light-emitting device of the present embodiment is more excellent in the first layer, and therefore the compound (A-1) has a hole injection property, a hole transport property, an electron injection property, and an electron transport property. It is preferred to have at least one function selected.
  • the compound (B-1) if the light-emitting material in the first layer is used as an example, the compound (B-1) preferably has light-emitting properties because the light-emitting element of the present embodiment has superior light-emitting efficiency.
  • the lowest excited singlet state (S 1 ) possessed by the compound (A-1) has superior luminous efficiency of the light-emitting device of the present embodiment.
  • the lowest excited triplet state (T 1 ) possessed by the compound (A-1) is superior in the luminous efficiency of the light-emitting device of the present embodiment.
  • An energy level higher than the lowest excited triplet state (T 1 ) is preferred.
  • the compound (A-1) preferably exhibits solubility in a solvent capable of dissolving the compound (B-1), since the light-emitting device of this embodiment can be produced by a wet method. .
  • the host material since the light-emitting device of this embodiment can be produced by a wet method, it is preferable that the host material is soluble in a solvent capable of dissolving the guest material.
  • the number of carbon atoms in the condensed heterocyclic skeleton (b) is usually 1 to 60, preferably 5 to 40, more preferably 7 to 35, still more preferably 7 to 35, not including the number of carbon atoms in the substituents. is 10-30, particularly preferably 10-25, most preferably 15-25.
  • the number of heteroatoms in the condensed heterocyclic skeleton (b) is usually 2 to 30, preferably 2 to 15, more preferably 2 to 10, still more preferably 2 to 10, not including the number of heteroatoms in the substituents. is 2 to 5, particularly preferably 2 or 3.
  • the number of boron atoms in the condensed heterocyclic skeleton (b) is usually 1 to 10, preferably 1 to 5, more preferably 1 to 3, not including the number of boron atoms in the substituents, and further 1 is preferred.
  • the number of nitrogen atoms in the condensed heterocyclic skeleton (b) is usually 1 to 20, preferably 1 to 10, more preferably 1 to 5, and still more preferably 1 to 5, not including the number of nitrogen atoms in the substituents. is 1 to 3, particularly preferably 2.
  • the condensed heterocyclic skeleton (b) is preferably a 3- to 12-ring condensed heterocyclic skeleton (preferably a 4- to 12-ring condensed heterocyclic skeleton), since the light-emitting device of the present embodiment has superior luminous efficiency.
  • a heterocyclic ring skeleton particularly preferably a 3- to 6-ring condensed heterocyclic ring skeleton (preferably a 4- to 6-ring condensed heterocyclic ring skeleton, more preferably a 5- or 6-ring condensed heterocyclic ring skeleton). ), and a pentacyclic condensed heterocyclic skeleton is particularly preferred.
  • the condensed heterocyclic skeleton (b) can also be said to be a compound having a heterocyclic group (b') containing the condensed heterocyclic skeleton (b).
  • the heterocyclic group (b') is a polycyclic heterocyclic compound containing a boron atom and a nitrogen atom in the ring, from which one or more hydrogen atoms directly bonded to the atoms constituting the ring are removed. and the group may have a substituent.
  • a polycyclic heterocyclic compound is preferably combined with a nitrogen atom that does not form a double bond with a boron atom, because the light emitting device of the present embodiment has superior luminous efficiency. It is a polycyclic heterocyclic compound containing in the ring.
  • pyridine diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, phenoxazine or phenothiazine, excluding one hydrogen atom directly bonded to a ring-constituting atom groups, particularly preferably carbazole, dibenzofuran, dibenzothiophene, phenoxazine or phenothiazine, excluding one hydrogen atom directly bonded to a ring-constituting atom, particularly preferably carbazole, phenoxazine or It is a group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from phenothiazine, and these groups may have a substituent.
  • the monovalent heterocyclic group in the substituents optionally possessed by the heterocyclic group (b') is a group obtained by removing one hydrogen atom directly bonded to a ring-constituting atom from pyridine, diazabenzene or triazine. may be present, and the group may have a substituent.
  • the substituent possessed by the amino group is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group.
  • the group may further have a substituent.
  • These groups may further have a substituent, but preferably have no further substituent.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in the substituent which the heterocyclic group (b′) may further have are The same as the examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in the substituents that the cyclic group (b') may have.
  • the compound (B) is preferably a thermally activated delayed fluorescence (TADF) compound, since the luminous efficiency of the light emitting device of this embodiment is superior.
  • TADF thermally activated delayed fluorescence
  • Compound (B) is preferably a low-molecular-weight compound.
  • the molecular weight of compound (B) is preferably 1 ⁇ 10 2 to 5 ⁇ 10 3 , more preferably 2 ⁇ 10 2 to 3 ⁇ 10 3 , still more preferably 3 ⁇ 10 2 to 1.5 ⁇ 10 3 , particularly preferably 4 ⁇ 10 2 to 1 ⁇ 10 3 .
  • Y 2 and Y 3 are preferably a single bond, an oxygen atom, a sulfur atom, a selenium atom, a group represented by -N(Ry)-, -B A group represented by (Ry)-, an alkylene group or a cycloalkylene group, more preferably a single bond, an oxygen atom, a sulfur atom, a group represented by -N(Ry)-, or -B(Ry)- A group or an alkylene group represented by, more preferably an oxygen atom, a sulfur atom, a group represented by -N(Ry)- or an alkylene group, particularly preferably an oxygen atom, a sulfur atom or -N It is a group represented by (Ry)-, particularly preferably a group represented by -N(Ry)-, and these groups may have a substituent.
  • the arylene group for Y 2 and Y 3 is preferably a group obtained by removing two hydrogen atoms directly bonded to the carbon atoms constituting the ring from a monocyclic or bicyclic to hexacyclic aromatic hydrocarbon. and more preferably a group obtained by removing two hydrogen atoms directly bonded to the carbon atoms constituting the ring from a monocyclic, bicyclic or tricyclic aromatic hydrocarbon, more preferably benzene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene or fluorene from which two hydrogen atoms directly bonded to carbon atoms constituting a ring are removed; particularly preferably, benzene, naphthalene or fluorene constitutes a ring; It is a group excluding two hydrogen atoms directly bonded to a carbon atom, particularly preferably a phenylene group, and these groups may have a substituent.
  • the divalent heterocyclic group for Y 2 and Y 3 is preferably a monocyclic or bicyclic to hexacyclic heterocyclic compound directly bonded to a ring-constituting atom (preferably a carbon atom).
  • a group with two atoms removed more preferably pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, carbazole, azacarbazole, diazacarbazole, phenoxazine, phenothiazine, 9,10-
  • Examples and preferred ranges of substituents that Y 1 , Y 2 and Y 3 may have are the same as examples and preferred ranges of substituents that the heterocyclic group (b′) may have.
  • Ry is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, still more preferably an aryl group; A group may have a substituent.
  • Examples and preferred ranges of the aryl group and monovalent heterocyclic group in Ry are respectively examples and preferred examples of the aryl group and monovalent heterocyclic group in the substituent that the heterocyclic group (b′) may have Same as range.
  • Examples and preferred ranges of substituents that Ry may have are the same as examples and preferred ranges of substituents that the heterocyclic group (b') may have.
  • Y 1 and Ar 1 are directly bonded or bonded via a divalent group to form a ring (for example, a ring containing Y 1 and Ar 1 , a boron atom (B), Y 1 , A ring other than the ring composed of Ar 1 and Ar 2 ) may be formed, but it is preferable not to form a ring because the synthesis of compound (B) is easy.
  • the divalent group is preferably an alkylene group, a cycloalkylene group, an arylene group, a divalent hetero a cyclic group, a group represented by -N(R 0 )-, a group represented by -B(R 0 )-, a group represented by -O-, a group represented by -S- or -Se- and more preferably an alkylene group, a cycloalkylene group, a group represented by -N(R 0 )-, a group represented by -B(R 0 )-, and a group represented by -O- a group represented by -S- or a group represented by -Se-, more preferably an alkylene group, a group represented by -N(R 0 )-, a group represented by -O- or a group represented by -S-, particularly preferably a group
  • examples and preferred ranges of the arylene group, divalent heterocyclic group and alkylene group in the divalent group are They are the same as the examples and preferred ranges of the arylene group, divalent heterocyclic group and alkylene group for Y2 and Y3 , respectively.
  • examples and preferred ranges of substituents that the divalent group may have include Y 2 and Y It is the same as the examples and preferred range of the substituent that 3 may have.
  • the preferred range of R 0 in the divalent group is the same as the preferred range of Ry.
  • Y 1 and Ar 2 are directly bonded or bonded via a divalent group to form a ring (for example, a ring containing Y 1 and Ar 2 , a boron atom (B), Y 1 , A ring other than the ring composed of Ar 1 and Ar 2 ) may be formed, but it is preferable not to form a ring because the synthesis of compound (B) is easy.
  • Examples and preferred ranges of the divalent group when Y 1 and Ar 2 are bonded via a divalent group to form a ring are Y 1 and Ar 1 via a divalent group are the same as the examples and preferred ranges of the divalent group in the case of forming a ring by combining with each other.
  • Y 2 and Ar 1 are directly bonded or bonded via a divalent group to form a ring (for example, a ring containing Y 2 and Ar 1 , a boron atom (B), Y 2 , A ring other than the ring composed of Ar 1 and Ar 3 ) may be formed, but it is preferable not to form a ring because the synthesis of the compound (B) is easy.
  • Examples and preferred ranges of the divalent group when Y 2 and Ar 1 are bonded via a divalent group to form a ring are Y 1 and Ar 1 via a divalent group are the same as the examples and preferred ranges of the divalent group in the case of forming a ring by combining with each other.
  • Y 2 and Ar 3 are directly bonded or bonded via a divalent group to form a ring (for example, a ring containing Y 2 and Ar 3 , a boron atom (B), Y 2 , A ring other than the ring composed of Ar 1 and Ar 3 ) may be formed, but it is preferable not to form a ring because the synthesis of the compound (B) is easy.
  • Examples and preferred ranges of the divalent group when Y 2 and Ar 3 are bonded via a divalent group to form a ring are Y 1 and Ar 1 via a divalent group are the same as the examples and preferred ranges of the divalent group in the case of forming a ring by combining with each other.
  • Y 3 and Ar 2 are directly bonded or bonded via a divalent group to form a ring (for example, a ring containing Y 3 and Ar 2 , a boron atom (B), Y 3 , A ring other than the ring composed of Ar 2 and Ar 3 ) may be formed, but it is preferable not to form a ring because the synthesis of the compound (B) is easy.
  • Examples and preferred ranges of the divalent group when Y 3 and Ar 2 are bonded via a divalent group to form a ring are Y 1 and Ar 1 via a divalent group are the same as the examples and preferred ranges of the divalent group in the case of forming a ring by combining with each other.
  • Y 3 and Ar 3 are directly bonded or bonded via a divalent group to form a ring (for example, a ring containing Y 3 and Ar 3 , a boron atom (B), Y 3 , A ring other than the ring composed of Ar 2 and Ar 3 ) may be formed, but it is preferable not to form a ring because the synthesis of the compound (B) is easy.
  • Examples and preferred ranges of the divalent group when Y 3 and Ar 3 are bonded via a divalent group to form a ring are Y 1 and Ar 1 via a divalent group are the same as the examples and preferred ranges of the divalent group in the case of forming a ring by combining with each other.
  • Examples of the compound (B) include compounds represented by the following formula and compounds B1 to B5 described later.
  • Z1 represents an oxygen atom or a sulfur atom. When multiple Z 1 are present, they may be the same or different.
  • the maximum peak wavelength of the emission spectrum of compound (B) at 25° C. is preferably 380 nm or longer, more preferably 400 nm or longer, even more preferably 420 nm or longer, and particularly preferably 440 nm or longer.
  • the maximum peak wavelength of the emission spectrum of compound (B) at 25° C. is preferably 750 nm or less, more preferably 620 nm or less, even more preferably 570 nm or less, particularly preferably 495 nm or less, and particularly preferably 480 nm or less.
  • the maximum peak wavelength of the emission spectrum of the compound at room temperature can be determined by dissolving the compound in an organic solvent such as xylene, toluene, chloroform, or tetrahydrofuran to prepare a dilute solution (1 ⁇ 10 ⁇ 6 mass % to 1 ⁇ 10 ⁇ 3 mass %). %), which can be evaluated by measuring the PL spectrum of the dilute solution at room temperature.
  • Xylene is preferred as the organic solvent for dissolving the compound.
  • the compound represented by formula (H-1) is preferably a low-molecular-weight compound.
  • the molecular weight of the compound represented by formula (H-1) is 500 or more, preferably 5 ⁇ 10 2 to 5 ⁇ 10 3 , more preferably 5 ⁇ 10 2 to 3 ⁇ 10 3 , and further It is preferably 5 ⁇ 10 2 to 1.5 ⁇ 10 3 , particularly preferably 5 ⁇ 10 2 to 1 ⁇ 10 3 .
  • the compound represented by formula (H-1) is preferably a compound different from compound (B), and more preferably a compound that does not have a condensed heterocyclic skeleton (b).
  • the aryl group in Ar 1 H1 and Ar 2 H2 is preferably directly bonded to an atom constituting a ring of a monocyclic or bi- to seven-ring aromatic hydrocarbon, because the luminous efficiency of the light-emitting device of this embodiment is superior.
  • the aryl groups in Ar H1 and Ar H2 are preferably benzene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, fluorene, benzanthracene, benzophenanthrene, benzofluorene, dibenzofluorene, dibenzo a group obtained by removing one hydrogen atom directly bonded to a ring-constituting atom from anthracene, dibenzophenanthrene, dibenzofluorene, indenofluorene or benzofluoranthene, more preferably benzene, naphthalene, anthracene, phenanthrene, A group obtained by removing one hydrogen atom directly bonded to a ring-constituting atom from dihydrophenanthrene, fluorene, benzanthracene, benzophenanthrene or benzofluorene, more preferably benzene, naphthalen
  • the monovalent heterocyclic group in Ar H1 and Ar H2 is a group obtained by removing one hydrogen atom directly bonded to a ring-constituting atom from a heterocyclic compound that does not contain a condensed heterocyclic skeleton (b). is preferred, and this group may have a substituent.
  • the heterocyclic compound that does not contain a condensed heterocyclic skeleton (b) includes, for example, among the heterocyclic compounds described in the section on the heterocyclic group above, , heterocyclic compounds containing no boron or nitrogen atoms in the ring.
  • the monovalent heterocyclic groups in Ar H1 and Ar H2 are preferably monocyclic or di- to hepta-cyclic heterocyclic compounds (preferably condensed A group obtained by removing one hydrogen atom directly bonded to a ring-constituting atom from a monocyclic or 2- to 7-ring heterocyclic compound containing no heterocyclic skeleton (b)), more preferably Atoms constituting a ring from a monocyclic or bi- to pentacyclic heterocyclic compound (preferably a monocyclic or bi- to pentacyclic heterocyclic compound containing no condensed heterocyclic skeleton (b)) is a group excluding one hydrogen atom directly bonded to the (monocyclic, bicyclic or tricyclic heterocyclic compound) by removing one hydrogen atom directly bonded to an atom constituting the ring, particularly preferably tricyclic heterocyclic compound (Preferably, a tricyclic heterocyclic compound that does not contain a condensed heterocyclic skeleton
  • the monovalent heterocyclic groups in Ar 1 H1 and Ar 2 H2 are preferably furan, thiophene, oxadiazole, thiadiazole, pyrrole, diazole, triazole, pyridine, diazabenzene, since the luminous efficiency of the light-emitting device of this embodiment is further improved.
  • pyridine diazabenzene, triazine, azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, carbazole, azacarbazole, diazacarbazole, phenoxazine, phenothiazine, 9,10-dihydroacridine, 5,10- dihydrophenazine, benzocarbazole, azabenzocarbazole, diazabenzocarbazole, benzonaphthofuran, benzonaphthothiophene, dibenzocarbazole, indolocarbazole, indenocarbazole, azaindolocarbazole, diazaindolocarbazole, azaindenocarbazole or di A group obtained by removing one hydrogen atom directly bonded to a ring-constituting atom from zaindenocarbazole, more preferably pyridine, diazabenzen
  • the substituent of the amino group is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups further have a substituent. good too.
  • Examples and preferred ranges of the aryl group, which is a substituent of the amino group are the same as the examples and preferred ranges of the aryl group in Ar H1 and Ar H2 .
  • Examples and preferred ranges of the monovalent heterocyclic group which is a substituent of the amino group are the same as the examples and preferred range of the monovalent heterocyclic group in Ar 1 H1 and Ar 2 H2 .
  • At least one of Ar H1 and Ar H2 is preferably an aryl group or a monovalent heterocyclic group, and both Ar H1 and Ar H2 are aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • Ar H1 and Ar H2 are monocyclic, bicyclic, or tricyclic aromatic hydrocarbons, or monocyclic, bicyclic, or tricyclic aromatic hydrocarbons, since the light-emitting element of this embodiment has superior luminous efficiency.
  • heterocyclic compound of the formula preferably a monocyclic, bicyclic or tricyclic heterocyclic compound that does not contain a condensed heterocyclic skeleton (b)
  • hydrogen directly bonded to an atom constituting the ring A group having one atom removed is preferable, and hydrogen directly bonded to a ring-constituting atom selected from benzene, naphthalene, fluorene, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, or carbazole
  • the substituents that Ar H1 and Ar H2 may have are preferably a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an aryl group, and a monovalent A heterocyclic group or a substituted amino group, more preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group, still more preferably an alkyl group , a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, particularly preferably an alkyl group, a cycloalkyl group or an aryl group, even if these groups further have a substituent good.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in the substituents that Ar H1 and Ar H2 may have are the aryl group and monovalent heterocyclic group in Ar H1 and Ar H2 , respectively. It is the same as the examples and preferred ranges of the cyclic group and the substituted amino group.
  • Preferred substituents that the substituents Ar H1 and Ar H2 may further have include a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group, more preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, still more preferably , an alkyl group, a cycloalkyl group or an aryl group, particularly preferably an alkyl group or a cycloalkyl group, and these groups may further have a substituent, but should not have a further substituent.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in the substituents which the substituents which Ar H1 and Ar H2 may further have are respectively Ar H1 and The same as the examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in Ar H2 .
  • the divalent group for L H1 is preferably an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, —N(R 0 ), since the luminous efficiency of the light emitting device of the present embodiment is more excellent.
  • At least one of the divalent groups in L H1 is preferably an alkylene group, a cycloalkylene group, an arylene group, or a divalent heterocyclic group, since the luminous efficiency of the light emitting device of the present embodiment is superior, and more An arylene group or a divalent heterocyclic group is preferable, and these groups may have a substituent.
  • the arylene group is preferably a monocyclic or bi- to seven-cyclic aromatic hydrocarbon ring-constituting atom because the luminous efficiency of the light-emitting device of the present embodiment is superior.
  • a group in which two hydrogen atoms directly bonded to are removed more preferably a monocyclic or 2- to 5-cyclic aromatic hydrocarbon in which two hydrogen atoms directly bonded to the atoms constituting the ring are removed group, more preferably a group obtained by removing two hydrogen atoms directly bonded to atoms constituting the ring from a monocyclic, bicyclic or tricyclic aromatic hydrocarbon, and these groups are substituted
  • You may have a group.
  • arylene groups are preferably benzene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, fluorene, benzoanthracene, benzophenanthrene, benzo a group obtained by removing two hydrogen atoms directly bonded to ring-constituting atoms from fluorene, dibenzoanthracene, dibenzophenanthrene, dibenzofluorene, indenofluorene or benzofluoranthene, more preferably benzene, naphthalene or anthracene , phenanthrene, dihydrophenanthrene, fluorene, benzanthracene, benzophenanthrene or benzofluorene, from which two hydrogen atoms directly bonded to atoms constituting the ring are removed, more preferably benzene, naphthalene, anthracene, phen
  • the divalent heterocyclic group is a hydrogen atom directly bonded to a ring-constituting atom (preferably a carbon atom) from a heterocyclic compound that does not contain a condensed heterocyclic skeleton (b). It is preferably a group excluding two, and this group may have a substituent.
  • the heterocyclic compound that does not contain a condensed heterocyclic skeleton (b) in the divalent heterocyclic group includes the heterocyclic compounds described in the section on the heterocyclic group above. , heterocyclic compounds containing no boron or nitrogen atoms in the ring.
  • the divalent heterocyclic group is preferably a monocyclic or di- to hepta-cyclic heterocyclic compound (preferably is a monocyclic or 2- to 7-ring heterocyclic compound that does not contain a condensed heterocyclic skeleton (b)), except for two hydrogen atoms directly bonded to the atoms (preferably carbon atoms) constituting the ring more preferably a monocyclic or bi- to pentacyclic heterocyclic compound (preferably a monocyclic or bi- to pentacyclic heterocyclic ring that does not contain a condensed heterocyclic skeleton (b)
  • a divalent heterocyclic group is preferably furan, thiophene, oxadiazole, thiadiazole, pyrrole, diazole, triazole, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, benzofuran, benzothiophene, indole, azaindole, diazaindole, benzodiazole, benzothiadiazole, benzotriazole, dibenzofuran, dibenzothiophene, carbazole, azacarbazole, diazacarbazole , phenoxazine, phenothiazine, 9,10-dihydroacridine, 5,10-dihydrophenazine, azaanthracene, diazaanthracene, azaphenanthrene, diazaphenanthrene, benzocarbazole, azabenzocarbazole, azabenzocarbazole
  • a group with two hydrogen atoms removed particularly more preferably a group from dibenzofuran, dibenzothiophene or carbazole with two hydrogen atoms directly bonded to ring-constituting atoms (preferably carbon atoms), and these groups may have a substituent.
  • the alkylene group is preferably a methylene group, an ethylene group or a propylene group, more preferably a methylene group, and these groups may have a substituent.
  • Examples and preferred ranges of substituents that L H1 may have are the same as examples and preferred ranges of substituents that Ar H1 and Ar H2 may have.
  • R 0 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, An aryl group is more preferable, and these groups may have a substituent.
  • Examples and preferred ranges of the aryl group and monovalent heterocyclic group for R 0 in the divalent group for L H1 are the examples and preferred ranges for the aryl group and monovalent heterocyclic group for Ar H1 and Ar H2 , respectively. is the same as In the divalent group for L H1 , examples and preferred ranges of substituents that R 0 may have are the same as examples and preferred ranges of substituents that Ar H1 and Ar H2 may have. .
  • n H1 is usually an integer of 0 or more and 10 or less, preferably an integer of 0 or more and 7 or less, more preferably an integer of 1 or more and 5 or less, and still more preferably an integer of 1 or more and 3 or less, 1 or 2 is particularly preferred.
  • Ar H1 and Ar H2 may be directly bonded or bonded via a divalent group to form a ring, but the compound represented by formula (H-1) is easy to synthesize. Therefore, it is preferred not to form a ring.
  • examples and preferred ranges of the arylene group, divalent heterocyclic group and alkylene group in the divalent group are They are the same as the examples and preferred ranges of the arylene group, divalent heterocyclic group and alkylene group in L H1 , respectively.
  • examples and preferred ranges of R 0 in the divalent group are R 0 in the divalent group of L H1 is the same as the example and preferred range of
  • examples and preferred ranges of substituents that the divalent group may have include Ar H1 and Ar It is the same as the example and preferred range of the substituent that H2 may have.
  • L 1 H1 and Ar 1 H1 may be directly bonded or bonded via a divalent group to form a ring, but the compound represented by formula (H-1) is easy to synthesize. Therefore, it is preferred not to form a ring.
  • Examples and preferred ranges of the divalent group in the case where L H1 and Ar H1 are bonded via a divalent group to form a ring are: are the same as the examples and preferred ranges of the divalent group in the case of forming a ring by combining with each other.
  • L H1 and Ar H2 may be directly bonded or bonded via a divalent group to form a ring, but the compound represented by formula (H-1) is easily synthesized. Therefore, it is preferred not to form a ring.
  • Examples and preferred ranges of the divalent group in the case where L H1 and Ar H2 are bonded via a divalent group to form a ring are: are the same as the examples and preferred ranges of the divalent group in the case of forming a ring by combining with each other.
  • Examples of the compound represented by formula (H-1) include compounds represented by the following formula.
  • Z1 represents an oxygen atom or a sulfur atom.
  • the first layer is selected from the group consisting of compound (B-1), compound (A-1), hole-transporting material, hole-injecting material, electron-transporting material, electron-injecting material, light-emitting material and antioxidant. It may be a layer containing a composition (hereinafter also referred to as "first composition") containing at least one selected. However, in the first composition, the hole-transporting material, hole-injecting material, electron-transporting material, electron-injecting material, and light-emitting material are different from the compound (B-1). In the first composition, the hole-transporting material, hole-injecting material, electron-transporting material, electron-injecting material and light-emitting material are different from compound (A-1).
  • the first composition contains a compound (B-1), a compound (A-1), a hole-transporting material, a hole-injecting material, an electron-transporting material, an electron-injecting material, a light-emitting material, and an antioxidant, respectively, It may be contained individually by 1 type, and may be contained 2 or more types. Total content of compound (B-1), compound (A-1), hole-transporting material, hole-injecting material, electron-transporting material, electron-injecting material, light-emitting material, and antioxidant in the first composition may be within a range in which the function as the first composition can be exhibited.
  • Total content of compound (B-1), compound (A-1), hole-transporting material, hole-injecting material, electron-transporting material, electron-injecting material, light-emitting material, and antioxidant in the first composition is, for example, based on the total amount of the first composition, may be 1 to 100% by mass, may be 10 to 100% by mass, may be 30 to 100% by mass, more preferably 50 It may be up to 100% by mass, 70 to 100% by mass, or 90 to 100% by mass.
  • Hole-transporting materials are classified into low-molecular-weight compounds and high-molecular-weight compounds.
  • the hole-transporting material may have a cross-linking group.
  • low-molecular-weight compounds include triphenylamine and derivatives thereof, N,N'-di-1-naphthyl-N,N'-diphenylbenzidine ( ⁇ -NPD), and N,N'-diphenyl-N, Aromatic amine compounds such as N'-di(m-tolyl)benzidine (TPD) can be mentioned.
  • Polymer compounds include, for example, polyvinylcarbazole and derivatives thereof; polyarylenes and derivatives thereof having aromatic amine structures in side chains or main chains.
  • the polymer compound may be a compound having electron-accepting moieties such as fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene and trinitrofluorenone bound thereto.
  • the content of the hole-transporting material is based on the total content of compound (B-1) and compound (A-1) being 100 parts by mass. , usually from 1 to 10,000 parts by mass.
  • the hole transport materials may be used singly or in combination of two or more.
  • Electron transport materials are classified into low-molecular-weight compounds and high-molecular-weight compounds.
  • the electron transport material may have a cross-linking group.
  • low-molecular-weight compounds include metal complexes having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene and diphenoquinone. , as well as derivatives thereof.
  • Polymer compounds include, for example, polyphenylene, polyfluorene, and derivatives thereof.
  • the polymeric compounds may be doped with metals.
  • the content of the electron-transporting material is usually , 1 to 10,000 parts by mass.
  • the electron transport materials may be used singly or in combination of two or more.
  • Hole-injecting materials and electron-injecting materials are classified into low-molecular-weight compounds and high-molecular-weight compounds, respectively.
  • the hole-injecting material and the electron-injecting material may have cross-linking groups.
  • Examples of low-molecular compounds include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride and potassium fluoride.
  • Polymer compounds include, for example, polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline and polyquinoxaline, and derivatives thereof; conductive polymers such as polymers containing an aromatic amine structure in the main chain or side chain; and a flexible polymer.
  • the first composition contains a hole-injection material and/or an electron-injection material
  • the contents of the hole-injection material and the electron-injection material are the compound (B-1) and the compound (A-1), respectively.
  • the total content of is 100 parts by mass, it is usually 1 to 10000 parts by mass.
  • Each of the hole injection material and the electron injection material may be used alone or in combination of two or more.
  • the hole injection material and the electron injection material may be doped with ions.
  • the electrical conductivity of the conductive polymer is preferably between 1 ⁇ 10 ⁇ 5 S/cm and 1 ⁇ 10 3 S/cm.
  • the conductive polymer can be doped with an appropriate amount of ions in order to set the electrical conductivity of the conductive polymer within this range.
  • the types of ions to be doped in the hole injection material and the electron injection material include, for example, anions in the case of hole injection materials and cations in the case of electron injection materials.
  • Anions include, for example, polystyrene sulfonate, alkylbenzene sulfonate, and camphor sulfonate.
  • Cations include, for example, lithium ion, sodium ion, potassium ion and tetrabutylammonium ion. Ions for doping may be used alone or in combination of two or more.
  • Luminous material Light-emitting materials are classified into low-molecular-weight compounds and high-molecular-weight compounds.
  • the luminescent material may have a cross-linking group.
  • low-molecular-weight compounds include naphthalene and its derivatives, anthracene and its derivatives, perylene and its derivatives, and phosphorescent compounds having iridium, platinum, or europium as a central metal.
  • polymer compounds include polymer compounds containing a structural unit represented by formula (Y) described later and/or a structural unit represented by formula (X) described later.
  • the content of the light-emitting material is usually 1 when the total content of the compound (B-1) and the compound (A-1) is 100 parts by mass. ⁇ 10000 parts by mass.
  • a luminescent material may be used individually by 1 type, or may use 2 or more types together.
  • the antioxidant may be a compound that is soluble in the same solvent as the compound (B-1) and the compound (A-1) and does not inhibit light emission and charge transport. Antioxidants are included.
  • the content of the antioxidant is usually 100 parts by mass when the total content of compound (B-1) and compound (A-1) is , 0.00001 to 10 parts by mass. Antioxidants may be used singly or in combination of two or more.
  • the first layer is formed using, for example, a composition containing the compound (B-1), the compound (A-1), and a solvent (hereinafter also referred to as "first ink”). can be done.
  • the first ink may contain one kind of compound (B-1), compound (A-1) and solvent, respectively, or may contain two or more kinds.
  • the first ink can be applied, for example, by a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating method, a spray coating method, a screen printing method, a flexographic It can be suitably used for producing a light emitting device using a wet method such as a printing method, an offset printing method, an inkjet printing method, a capillary coating method, a nozzle coating method and the like.
  • the viscosity of the first ink may be adjusted according to the type of wet method.
  • the viscosity of the first ink is preferably 1 at 25° C.
  • the solvent contained in the first ink is preferably a solvent capable of dissolving or uniformly dispersing the solid content in the ink.
  • the solvent contained in the first ink include chlorine-based solvents, ether-based solvents, aromatic hydrocarbon-based solvents, aliphatic hydrocarbon-based solvents, ketone-based solvents, ester-based solvents, polyhydric alcohol-based solvents, alcohol solvent, sulfoxide solvent, amide solvent and water.
  • the content of the solvent is usually 1000 to 10000000 parts by mass when the total content of compound (B-1) and compound (A-1) is 100 parts by mass.
  • a solvent may be used individually by 1 type, or may use 2 or more types together.
  • the first ink may further contain at least one selected from the group consisting of hole-transporting materials, hole-injecting materials, electron-transporting materials, electron-injecting materials, light-emitting materials, and antioxidants.
  • the first ink may contain one type of hole transport material, hole injection material, electron transport material, electron injection material, light emitting material, and antioxidant, respectively, or contain two or more types. may have been Examples and preferred ranges of the hole-transporting material, the electron-transporting material, the hole-injecting material, the electron-injecting material, the light-emitting material, and the antioxidant, which the first ink may further comprise, are described in the first composition, respectively.
  • the contents of the hole-transporting material, the electron-transporting material, the hole-injecting material, the electron-injecting material, and the light-emitting material, which the first ink may further contain, are respectively the compound (B-1) and the compound (A- When the total content of 1) is 100 parts by mass, it is usually 1 to 10,000 parts by mass.
  • the content of the antioxidant that the first ink may further contain is usually 0.00001 when the total content of the compound (B-1) and the compound (A-1) is 100 parts by mass. ⁇ 10 parts by mass.
  • the second layer is a layer containing at least one compound (A-2) selected from compounds represented by formula (H-1).
  • the second layer may contain only one type of compound (A-2), or may contain two or more types.
  • the content of the compound (A-2) in the second layer may be within a range in which the function as the second layer is exhibited.
  • the content of the compound (A-2) in the second layer may be, for example, 0.01 to 100% by mass based on the total amount of the second layer, and the luminous efficiency of the light emitting device of this embodiment is Since it is more excellent, it is preferably 0.1 to 90% by mass, more preferably 0.5 to 70% by mass, still more preferably 1 to 50% by mass, and particularly preferably 3 to 30% by mass. , particularly preferably 5 to 20% by weight.
  • the example and preferred range of compound (A-2) in the second layer are the same as the example and preferred range of compound (A-1) in the first layer.
  • the second layer contains at least one selected from the group consisting of structural units represented by formula (X) and structural units represented by formula (Y). (hereinafter also referred to as “second layer polymer compound”), and at least one selected from the group consisting of a crosslinked compound of a compound having a crosslinking group (hereinafter referred to as "second (also referred to as "the material of the second layer”). That is, the second layer is preferably a layer containing the compound (A-2) and the material of the second layer (hereinafter also referred to as "layer (2')").
  • the compound (A-2) and the material of the second layer are contained as separate compounds.
  • the compound (A-2) is preferably a compound containing no cross-linking group.
  • the compound (A-2) is preferably a low-molecular-weight compound.
  • the layer (2′) may contain one type of compound (A-2) alone, or may contain two or more types.
  • the layer (2') may contain one kind of material for the second layer alone, or two or more kinds thereof.
  • the total content of the compound (A-2) in the layer (2') and the material of the second layer may be within a range in which the layer (2') functions.
  • the total content of the compound (A-2) in the layer (2') and the material of the second layer may be, for example, 1 to 100% by mass based on the total amount of the layer (2'). Since the luminous efficiency of the light-emitting device of the embodiment is more excellent, it is preferably 10 to 100% by mass, more preferably 30 to 100% by mass, even more preferably 50 to 100% by mass, and particularly preferably 70 to 100% by mass. 100% by mass, particularly preferably 90 to 100% by mass.
  • the content of the compound (A-2) in the layer (2') may be within a range in which the layer (2') functions.
  • the content of the compound (A-2) in the layer (2′) is, for example, 0.01 when the total content of the compound (A-2) and the material of the second layer is 100 parts by mass. 99 parts by mass, preferably 0.1 to 90 parts by mass, more preferably 0.5 to 70 parts by mass, still more preferably 1 to 50 parts by mass, particularly preferably 3 to 30 parts by mass, particularly preferably 5 to 20 parts by mass.
  • the polymer compound of the second layer is selected from the group consisting of structural units represented by the formula (X) and structural units represented by the formula (Y), since the light-emitting device of the present embodiment has superior luminous efficiency. It is preferably a polymer compound containing at least one kind of constitutional unit.
  • the polymer compound of the second layer is preferably a polymer compound that does not contain a structural unit having a cross-linking group, and more preferably a polymer compound that does not have a cross-linking group.
  • the polymer compound of the second layer preferably contains a structural unit represented by the formula (Y), since the light emitting device of this embodiment has higher luminous efficiency.
  • the content of the structural unit represented by formula (Y) contained in the polymer compound of the second layer is Any range may be used as long as the function of the two layers as a polymer compound is exhibited.
  • the content of the structural unit represented by formula (Y) contained in the polymer compound of the second layer is It is, for example, 0.1 to 100 mol % with respect to the total content of the structural units contained in the polymer compounds of the two layers, and since the light emitting device of the present embodiment has a higher luminous efficiency, it is preferably 1 It is up to 100 mol %, more preferably 10 to 90 mol %, still more preferably 20 to 80 mol %, particularly preferably 30 to 70 mol %.
  • the structural unit represented by the formula (Y) may be contained alone or in combination of two or more in the polymer compound of the second layer.
  • the polymer compound of the second layer is represented by the formula (X) because the polymer compound of the second layer has excellent hole-transport properties and the luminous efficiency of the light-emitting device of the present embodiment is superior. It preferably contains structural units.
  • the content of the structural unit represented by formula (X) contained in the polymer compound of the second layer is Any range may be used as long as the function of the two layers as a polymer compound is exhibited.
  • the content of the structural unit represented by formula (X) contained in the polymer compound of the second layer is It is, for example, 0.1 to 100 mol% with respect to the total content of the structural units contained in the polymer compound of the second layer, and the hole transport property of the polymer compound of the second layer is excellent, and , preferably 1 to 100 mol%, more preferably 10 to 90 mol%, still more preferably 20 to 80 mol%, and particularly preferably 30 to 70 mol %.
  • the structural unit represented by the formula (X) may be contained in one type or two or more types in the polymer compound of the second layer.
  • the polymer compound of the second layer is represented by the formula (X) because the polymer compound of the second layer has excellent hole-transport properties and the luminous efficiency of the light-emitting device of the present embodiment is further excellent. It preferably contains a structural unit and a structural unit represented by formula (Y).
  • the formula (X) contained in the polymer compound of the second layer may be within a range in which the function of the polymer compound of the second layer can be exhibited.
  • the formula (X) contained in the polymer compound of the second layer contains a structural unit represented by the formula (X) and a structural unit represented by the formula (Y), the formula (X) contained in the polymer compound of the second layer.
  • the total content of the structural units represented by the formula (Y) and the structural units represented by the formula (Y) is, for example, 0.1 with respect to the total content of the structural units contained in the polymer compound of the second layer. It is preferably 1 to 100 mol %, because the hole transport property of the polymer compound of the second layer is excellent and the luminous efficiency of the light emitting device of the present embodiment is further excellent.
  • the arylene group represented by Ar Y1 is preferably a monocyclic or bicyclic to hexacyclic aromatic hydrocarbon, since the luminous efficiency of the light-emitting device of the present embodiment is superior, and the atoms constituting the ring are preferably A group excluding two hydrogen atoms directly bonded to, more preferably monocyclic, bicyclic or tricyclic aromatic hydrocarbons, two hydrogen atoms directly bonded to the atoms constituting the ring is a group excluding, more preferably benzene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene or fluorene, excluding two hydrogen atoms directly bonded to the atoms constituting the ring, particularly preferably benzene , phenanthrene, dihydrophenanthrene or fluorene from which two hydrogen atoms directly bonded to atoms constituting a ring are removed, and these
  • the divalent heterocyclic group represented by Ar Y1 is preferably selected from monocyclic or bicyclic to hexacyclic heterocyclic compounds, since the luminous efficiency of the light emitting device of the present embodiment is superior.
  • the preferred ranges of the arylene group and the divalent heterocyclic group are, respectively, It is the same as the preferred range of the arylene group and divalent heterocyclic group represented by Ar Y1 .
  • the "divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded” includes, for example, groups represented by the following formulae, A group may have a substituent.
  • Ar Y1 is preferably an arylene group optionally having a substituent, since the light emitting device of this embodiment has more excellent luminous efficiency.
  • the aryl group in the substituent that the group represented by Ar Y1 may have is preferably a monocyclic or bicyclic to hexacyclic aromatic group because the light emitting device of the present embodiment has superior luminous efficiency.
  • R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a fluorine atom, and these groups are substituents may have When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • a plurality of RY2 may be the same or different, and may be bonded to each other to form a ring together with the carbon atoms to which they are bonded.
  • R 1 Y1 is preferably an alkyl group, a cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, monovalent heterocyclic group, substituted amino group or fluorine atom, more preferably alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group It is a cyclic group or a substituted amino group, more preferably an alkyl group, a cycloalkyl group or an aryl group, particularly preferably an alkyl group, and these groups may have a substituent.
  • X Y1 is preferably a group represented by -C(R Y2 ) 2 - or -C(R Y2 ) 2 -C(R Y2 ) 2 -, since the luminous efficiency of the light emitting device of the present embodiment is more excellent. and more preferably a group represented by —C(R Y2 ) 2 —.
  • R X1 , R X2 and R X3 are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, since the light emitting device of the present embodiment has superior luminous efficiency. or a monovalent heterocyclic group, more preferably an aryl group, and these groups may have a substituent.
  • Examples and preferred ranges of the aryl group and the monovalent heterocyclic group in R X1 , R X2 and R X3 are, respectively, the aryl group and the monovalent heterocyclic group in the substituent that the group represented by Ar Y1 may have. It is the same as the example and preferred range of the cyclic group.
  • Examples and preferred arylene groups and divalent heterocyclic groups in the divalent group in which at least one arylene group and at least one divalent heterocyclic group represented by Ar X2 and Ar X4 are directly bonded The ranges are the same as the examples and preferred ranges of the arylene group and the divalent heterocyclic group in Ar Y1 , respectively.
  • the divalent group in which at least one arylene group and at least one divalent heterocyclic group in Ar X2 and Ar X4 are directly bonded includes at least one arylene group and at least one divalent heterocyclic group in Ar Y1 . Examples thereof include the same divalent groups to which a valent heterocyclic group is directly bonded.
  • Examples and preferred ranges of the substituents that the groups represented by Ar X1 to Ar X4 and R X1 to R X3 may have are the examples and preferred ranges of the substituents that the group represented by Ar Y1 may have. Same as range.
  • polymer compounds for the second layer examples include polymer compounds P-1 to P-3 shown in Table 1.
  • the polystyrene equivalent weight average molecular weight of the polymer compound of the second layer is preferably 1 ⁇ 10 4 to 2 ⁇ 10 6 , more preferably 2 ⁇ 10 4 to 1 ⁇ 10 6 , still more preferably 5 ⁇ 10 4 to 5 ⁇ 10 5 .
  • the polymer compound of the second layer can be produced using a known polymerization method described in Chemical Review (Chem. Rev.), Vol. 109, pp. 897-1091 (2009), etc. Suzuki reaction , Yamamoto reaction, Buchwald reaction, Stille reaction, Negishi reaction, and Kumada reaction.
  • the method of charging the monomers includes a method of charging the entire amount of the monomers into the reaction system at once, a method of charging a part of the monomers and reacting them, and then charging the remaining monomers all at once. Examples thereof include a method of continuously or dividedly charging, a method of continuously or dividingly charging a monomer, and the like.
  • transition metal catalysts include palladium catalysts and nickel catalysts.
  • the post-treatment of the polymerization reaction is performed by a known method, for example, a method of removing water-soluble impurities by liquid separation, adding the reaction solution after the polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate, and drying it. method, etc., is performed singly or in combination.
  • a method of removing water-soluble impurities by liquid separation adding the reaction solution after the polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate, and drying it. method, etc., is performed singly or in combination.
  • the purity of the polymer compound of the second layer is low, it can be purified by ordinary methods such as recrystallization, reprecipitation, continuous extraction using a Soxhlet extractor, column chromatography, and the like.
  • a cross-linked product of a compound having a cross-linking group can be obtained, for example, by cross-linking a compound having a cross-linking group by the method and conditions described later.
  • the compound having a cross-linking group may be a low-molecular-weight compound having a cross-linking group or a high-molecular-weight compound having a cross-linking group.
  • the cross-linking group is preferably selected from the cross-linking group A group because the cross-linking property of the compound having a cross-linking group is superior and the luminous efficiency of the light-emitting device of the present embodiment is superior.
  • At least one cross-linking group that is, at least one cross-linking group selected from cross-linking groups represented by formulas (XL-1) to (XL-19)), more preferably formula (XL-1 ) ⁇ formula (XL-4), formula (XL-7) ⁇ formula (XL-10) and formula (XL-14) ⁇ formula (XL-19) at least one cross-linking selected from the cross-linking groups a group, more preferably formula (XL-1), formula (XL-3), formula (XL-7), formula (XL-9), formula (XL-10) and formula (XL-16) ⁇ At least one cross-linking group selected from the cross-linking groups represented by formula (XL-19), particularly preferably formula (XL-1), formula (XL-9), formula (XL-10) and formula (XL-16) to at least one cross-linking group selected from the cross-linking groups represented by formulas (XL-19), particularly preferably formula (XL-1), formula (XL-16) and formula ( At least one cross-linking group
  • examples and preferred ranges of substituents that the cross-linking group may have are the same as examples and preferred ranges of substituents that the group represented by Ar Y1 may have.
  • the compound having a cross-linking group may contain only one cross-linking group, or may contain two or more cross-linking groups.
  • the polymer compound having a cross-linking group has better cross-linking properties and the luminous efficiency of the light-emitting device of the present embodiment is better. preferably included. That is, the polymer compound having a cross-linking group is preferably a polymer compound containing a structural unit having a cross-linking group. Examples and preferred ranges of the cross-linking group in the polymer compound having a cross-linking group and the structural unit having a cross-linking group are the same as the examples and preferred range of the cross-linking group in the compound having a cross-linking group.
  • the content of the structural unit having a crosslinkable group may be within a range in which the function of the polymer compound having a crosslinkable group is exhibited.
  • the content of the structural unit having a crosslinkable group is, relative to the total content of the structural units contained in the polymer compound having a crosslinkable group, For example, it is 0.1 to 100 mol%, and the polymer compound having a crosslinkable group has better crosslinkability, and the luminous efficiency of the light emitting device of the present embodiment is better, so it is preferably 1 to 99 mol%.
  • a polymer compound having a cross-linking group may contain only one type of constitutional unit having a cross-linking group, or may contain two or more types thereof.
  • Structural unit n represented by formula (Z) is usually an integer of 1 to 10, and is preferably an integer of 1 to 7, more preferably an integer of 1 to 7, since the light emitting device of the present embodiment has superior luminous efficiency. It is an integer of 1 to 4, more preferably 1 or 2, and particularly preferably 2.
  • nA is usually an integer of 0 to 10, and is preferably an integer of 0 to 7, more preferably an integer of 0 to 4, and still more preferably an integer of 0 to 4, since the light emitting device of the present embodiment has superior luminous efficiency. An integer from 0 to 2.
  • Examples and preferred ranges of the arylene group represented by LA include examples and preferred ranges of the arylene group represented by Ar Y1 .
  • the arylene group represented by LA is preferably a phenylene group or a fluorenediyl group, since the luminous efficiency of the light-emitting device of the present embodiment is more excellent, and these groups may have a substituent.
  • Examples and preferred ranges of the divalent heterocyclic group represented by LA are the same as examples and preferred ranges of the divalent heterocyclic group represented by Ar Y1 .
  • R' is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups may have a substituent.
  • Examples and preferred ranges of the aryl group and monovalent heterocyclic group for R′ are the same as examples and preferred ranges of the aryl group and monovalent heterocyclic group in the substituents Ar Y1 may have. be.
  • Examples and preferred ranges of substituents that groups represented by Ar Z , LA and R′ may have are the same as examples and preferred ranges of substituents that groups represented by Ar Y1 may have. is.
  • Examples and preferred ranges of the hydrocarbon group and heterocyclic group for Ar 5 are the same as examples and preferred ranges of the hydrocarbon group and heterocyclic group for Ar Z , respectively.
  • Examples and preferred ranges of the group in which at least one hydrocarbon group and at least one heterocyclic group are directly bonded for Ar 5 include at least one hydrocarbon group and at least one heterocyclic group for Ar Z. is the same as the example and preferred range of the group to which is directly bonded.
  • Ar 5 is preferably a hydrocarbon group or a heterocyclic group, more preferably a hydrocarbon group, and still more preferably an aromatic hydrocarbon group, because the luminous efficiency of the light-emitting device of the present embodiment is superior. and these groups may have a substituent.
  • Examples and preferred ranges of substituents that the groups represented by Ar 4 to Ar 6 may have are the same as examples and preferred ranges of substituents that the groups represented by Ar Y1 may have. .
  • Examples and preferred ranges of the cross-linking group for X' are the same as those of the cross-linking group represented by X.
  • Examples and preferred ranges of the aryl group and monovalent heterocyclic group for X′ are the examples and preferred ranges of the aryl group and monovalent heterocyclic group for R X1 , R X2 and R X3 , respectively. are the same.
  • X' is preferably a bridging group, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably a bridging group, an aryl group or a monovalent heterocyclic group, still more preferably is a bridging group or an aryl group, and these groups may have a substituent.
  • Examples and preferred ranges of substituents that the group represented by X' may have are the same as examples and preferred ranges of substituents that the group represented by Ar Y1 may have.
  • the polymer compound having a cross-linking group is selected from the group consisting of structural units represented by the formula (X) and structural units represented by the formula (Y), since the light-emitting device of the present embodiment has superior luminous efficiency. It preferably contains at least one structural unit, and at least one structural unit selected from the group consisting of structural units represented by formula (X) and structural units represented by formula (Y), and a bridging group. It is preferable to include a structural unit having A polymer compound having a cross-linking group comprises at least one structural unit selected from the group consisting of structural units represented by formula (X) and structural units represented by formula (Y), and a structural unit having a cross-linking group.
  • a polymer compound having a cross-linking group preferably contains a structural unit represented by the formula (Y) because the light emitting device of the present embodiment has superior luminous efficiency, and the structural unit represented by the formula (Y) and It is more preferable to include a structural unit having a cross-linking group.
  • the polymer compound having a cross-linking group has an excellent hole-transport property of the polymer compound having a cross-linking group, and the luminous efficiency of the light-emitting device of the present embodiment is more excellent.
  • the polymer compound having a cross-linking group has an excellent hole-transport property of the polymer compound having a cross-linking group, and the luminous efficiency of the light-emitting device of the present embodiment is further excellent. Therefore, the structural unit represented by the formula (X) And it preferably contains a structural unit represented by formula (Y), more preferably contains a structural unit represented by formula (X), a structural unit represented by formula (Y) and a structural unit having a bridging group preferable.
  • the luminous efficiency of the light emitting device of the present embodiment is superior, it is preferably 1 to 99 mol%, more preferably 10 90 mol %, more preferably 20 to 80 mol %, particularly preferably 30 to 70 mol %.
  • the structural unit represented by the formula (Y) may be contained alone or in combination of two or more in the polymer compound having a cross-linking group.
  • the polymer compound having a cross-linking group contains a structural unit represented by formula (X) and/or a structural unit represented by formula (Y), and a structural unit having a cross-linking group, in formula (X)
  • the total content of the structural unit represented by the formula (Y) and the structural unit having a cross-linking group is based on the total content of the structural units contained in the polymer compound having a cross-linking group.
  • 1 to 100 mol% preferably 10 to 100 mol% because the hole transport property of the polymer compound having a cross-linking group is excellent and the luminous efficiency of the light emitting device of the present embodiment is further excellent.
  • more preferably 30 to 100 mol% still more preferably 50 to 100 mol%, particularly preferably 70 to 100 mol%, particularly preferably 90 to 100 mol%.
  • polymer compounds having a cross-linking group examples include polymer compounds P-4 to P-15 shown in Table 2.
  • “other” means a structural unit represented by formula (Z), a structural unit represented by formula (Z'), a structural unit represented by formula (X), and a structural unit represented by formula (Y). means a structural unit other than the structural unit
  • the polymer compound having a cross-linking group may be a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or may be in other forms. It is preferably a copolymer obtained by copolymerizing raw material monomers.
  • a polymer compound having a cross-linking group can be produced by a method similar to that for producing the polymer compound of the second layer.
  • the examples and preferred ranges for m B1 are the same as the examples and preferred ranges for mA.
  • Examples and preferred ranges of m B2 are the same as those of c.
  • Examples and preferred ranges of m B3 are the same as those of m.
  • Examples and preferred ranges for Ar 7 are the same as those for Ar 5 .
  • the examples and preferred ranges of L B1 are the same as the examples and preferred ranges of L A.
  • the examples and preferred ranges of R''' are the same as the examples and preferred ranges of R'.
  • Examples and preferred ranges of X'' are the same as those of X'.
  • low-molecular-weight compounds having a cross-linking group examples include the compounds shown below.
  • the second layer is selected from the group consisting of the compound (A-2), the material of the second layer, the hole-transporting material, the hole-injecting material, the electron-transporting material, the electron-injecting material, the light-emitting material, and the antioxidant. It may be a layer containing a composition (hereinafter also referred to as “second composition”) containing at least one of However, in the second composition, the hole-transporting material, hole-injecting material, electron-transporting material, electron-injecting material, and light-emitting material are different from the compound (A-2).
  • the second composition contains the compound (A-2), the material of the second layer, the hole-transporting material, the hole-injecting material, the electron-transporting material, the electron-injecting material, the light-emitting material, and the antioxidant, respectively, It may be contained individually by 1 type, and may be contained 2 or more types. Examples and preferred ranges of the hole-transporting material, hole-injecting material, electron-transporting material, electron-injecting material, light-emitting material and antioxidant contained in the second composition are respectively contained in the first composition. Examples and preferred ranges of the hole-transporting material, hole-injecting material, electron-transporting material, electron-injecting material, and antioxidant.
  • the total content of compound (A-2), second layer material, hole transport material, hole injection material, electron transport material, electron injection material, light emitting material and antioxidant may be within a range in which the function as the second composition can be exhibited.
  • the total content of compound (A-2), second layer material, hole transport material, hole injection material, electron transport material, electron injection material, light emitting material and antioxidant is, for example, based on the total amount of the second composition, may be 1 to 100% by mass, may be 10 to 100% by mass, may be 30 to 100% by mass, more preferably 50 It may be up to 100% by mass, 70 to 100% by mass, or 90 to 100% by mass.
  • the contents of the hole-transporting material, the hole-injecting material, the electron-transporting material, the electron-injecting material, and the light-emitting material are each based on the content of the compound (A-2) being 100 parts by mass. , usually from 1 to 10,000 parts by mass.
  • the content of the antioxidant is usually from 0.00001 to 10 parts by mass based on 100 parts by mass of the compound (A-2).
  • the content of the material of the second layer is, for example, 1 to 99 when the total content of the compound (A-2) and the material of the second layer is 100 parts by mass.
  • the luminous efficiency of the light-emitting device of the present embodiment is more excellent, so it is preferably 10 to 99.9 parts by mass, more preferably 30 to 99.5 parts by mass, and still more preferably 50 parts by mass. to 99 parts by mass, particularly preferably 70 to 97 parts by mass, particularly preferably 80 to 95 parts by mass.
  • the second ink further comprises at least one selected from the group consisting of second layer materials, hole transport materials, hole injection materials, electron transport materials, electron injection materials, light emitting materials and antioxidants.
  • the second ink contains each of the material of the second layer, the hole-transporting material, the hole-injecting material, the electron-transporting material, the electron-injecting material, the light-emitting material, and the antioxidant. may be contained, or two or more may be contained. Examples and preferred ranges of the hole-transporting material, the electron-transporting material, the hole-injecting material, the electron-injecting material, the light-emitting material, and the antioxidant, which the second ink may further include, are described in the second composition, respectively.
  • the content of the hole-transporting material, electron-transporting material, hole-injecting material, electron-injecting material, and light-emitting material that the second ink may further contain is 100% of the content of compound (A-2). When expressed as parts by mass, it is usually 1 to 10,000 parts by mass.
  • the content of the antioxidant that the second ink may further contain is usually 0.00001 to 10 parts by mass when the total content of the compound (A-2) is 100 parts by mass.
  • the light emitting device of this embodiment has an anode, a cathode, a first layer provided between the anode and the cathode, and a second layer provided between the anode and the first layer. element.
  • at least one compound (A-1) and at least one compound (A-2) are the same.
  • the first layer and the second layer are adjacent to each other.
  • the light-emitting element of this embodiment has excellent luminous efficiency. Although the reason why such an effect is produced is not necessarily clear, two adjacent layers (first layer and second layer) provided between the anode and the cathode are provided with the same formula (H-1). By containing the represented compounds (compound (A-1) and compound (A-2)), for example, the charge injection barrier at the interface between the two layers is reduced and/or the charge injection property between the two layers is improved. etc., and the luminous efficiency of the light-emitting device of this embodiment is considered to be improved.
  • the light-emitting device of this embodiment when the second layer is the second light-emitting layer provided between the anode and the first layer, the light-emitting device of this embodiment has superior luminous efficiency. It is preferable to further have at least one layer of a hole injection layer and a hole transport layer between the second layer. Further, when the second layer is the second light-emitting layer provided between the anode and the first layer, the light-emitting element of the present embodiment has superior light-emitting efficiency. It is preferred to further have at least one layer of an electron injection layer and an electron transport layer in between.
  • Specific layer configurations of the light-emitting device of the present embodiment include, for example, layer configurations represented by (D1) to (D13) below.
  • the light-emitting device of this embodiment usually has a substrate, but the anode may be stacked on the substrate, or the cathode may be stacked on the substrate.
  • hole transport layer (second layer)/first light emitting layer (first layer) means the combination of the hole transport layer (second layer) and the first light emitting layer (first layer). ) means that they are stacked adjacent to each other.
  • the second light-emitting layer is usually a second layer or a layer containing a light-emitting material, preferably a layer containing a light-emitting material.
  • the light-emitting material contained in the second light-emitting layer includes, for example, the light-emitting material that the second composition may contain. be done.
  • the light-emitting material contained in the second light-emitting layer may be contained singly or in combination of two or more.
  • the second light-emitting layer is the second layer. is preferably
  • the hole-transporting layer is the second layer or a layer containing a hole-transporting material, preferably the second layer.
  • the hole-transporting material includes, for example, the hole-transporting material that the second composition may contain.
  • the hole-transporting material contained in the hole-transporting layer may be contained alone or in combination of two or more.
  • the hole-transporting layer is the second layer. Preferably.
  • the hole-injecting layer is the second layer or layer containing a hole-injecting material, preferably a layer containing a hole-injecting material.
  • the hole-injection material contained in the hole-injection layer includes, for example, the holes that the second composition may contain. Infusion materials are included.
  • the hole injection material contained in the hole injection layer may be contained singly or in combination of two or more.
  • the hole-injection layer is the second layer. Preferably.
  • An electron injection layer is a layer containing an electron injection material.
  • the electron injection material contained in the electron injection layer includes, for example, the electron injection material that the second composition may contain.
  • the electron injection material contained in the electron injection layer may be contained singly or in combination of two or more.
  • cathode materials include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, and indium; alloys of two or more of them; alloys of one or more species with one or more of silver, copper, manganese, titanium, cobalt, nickel, tungsten, tin; and graphite and graphite intercalation compounds.
  • alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, and calcium-aluminum alloys.
  • At least one of the anode and the cathode is usually transparent or translucent, and the anode is preferably transparent or translucent.
  • Methods for forming the anode and cathode include, for example, a vacuum deposition method, a sputtering method, an ion plating method, a plating method and a laminating method.
  • the first layer, the second layer, and the layers other than the first layer and the second layer are the various inks described above, the various materials described above, and the It may be formed by the wet method described in the first ink section using the ink containing the solvent described in the first ink section, or may be formed by a dry method such as a vacuum deposition method.
  • Methods for forming the first layer and the second layer include, for example, a dry method and a wet method, and the wet method is preferable because it facilitates the production of the light emitting device of this embodiment.
  • the dry method includes, for example, a vacuum deposition method.
  • examples of the wet method include the wet method described in the section on the first ink.
  • a light-emitting device can be manufactured by stacking.
  • an anode or a cathode-side base material having layers laminated on the anode and a cathode or a cathode-side base material having layers laminated on the cathode may be opposed and bonded to each other. can.
  • the layer can be insolubilized by crosslinking the crosslinkable group, A layer different from the layer (for example, a light-emitting layer) can be laminated on the layer.
  • a layer e.g., a light-emitting layer
  • an ink containing a solvent with low solubility is used for the layer, so that the layer A different layer (eg, an electron-transport layer) can be deposited.
  • the light-emitting device of the present embodiment is suitable as a light source for backlighting of a liquid crystal display device, a light source for lighting, an organic EL lighting, a display device such as a computer, a television, and a mobile terminal (for example, an organic EL display and an organic EL television).
  • a light source for backlighting of a liquid crystal display device a light source for lighting, an organic EL lighting, a display device such as a computer, a television, and a mobile terminal (for example, an organic EL display and an organic EL television).
  • the ground state of the compound was structurally optimized by density functional theory at the B3LYP level.
  • 6-31G* was used as a basis function.
  • ⁇ EST of the compound was calculated by time-dependent density functional theory at the B3LYP level. The calculation was performed using Gaussian09 as a quantum chemical calculation program.
  • the molecular weight of the compound was calculated using the Molecular Weight value of ChemDraw Professional 16.0 (manufactured by Hulinks).
  • Compound MM10 and compound MM14 were synthesized according to the method described in JP-A-2011-174062.
  • Compound MM12 was synthesized according to the method described in JP-A-2008-106241.
  • Compound MM13 and compound MM16 were synthesized according to the method described in WO2016/031639.
  • Compound MM15 was synthesized according to the method described in JP-A-2010-215886.
  • Compound MM17 was synthesized according to the method described in JP-A-2014-001328.
  • Compound MM18 was synthesized according to the method described in JP-A-2010-215886.
  • the polymer compound P1 has a structural unit derived from the compound MM1, a structural unit derived from the compound MM2, and a structural unit derived from the compound MM3, which is 45: It is a copolymer made up in a 5:50 molar ratio.
  • Compound H1 and compound B1 were manufactured by Luminescence Technology.
  • Compound H2 was synthesized according to the method described in WO2011/098030.
  • Compound H3 was synthesized according to the method described in JP-A-2015-110751.
  • Compounds B2 and B4 were synthesized according to the method described in WO2015/102118.
  • Compound B3 was synthesized according to the method described in Angewandte Chemie International Edition, 2018, Vol. 57, pp. 11316-11320.
  • Compound B5 was synthesized according to the method described in Angewandte Chemie International Edition, 2020, Vol. 59, pp. 17442-17446.
  • the ⁇ EST of compound B1 was 0.494 eV.
  • the maximum peak wavelength of the emission spectrum of compound B1 at room temperature was 452 nm.
  • the half width of the maximum peak of the emission spectrum of compound B1 at room temperature was 22 nm.
  • the ⁇ EST of compound B2 was 0.457 eV.
  • the maximum peak wavelength of the emission spectrum of compound B2 at room temperature was 454 nm.
  • the half width of the maximum peak of the emission spectrum of compound B2 at room temperature was 21 nm.
  • the ⁇ EST of compound B3 was 0.428 eV.
  • the maximum peak wavelength of the emission spectrum of compound B3 at room temperature was 465 nm.
  • the maximum peak half width of the emission spectrum of compound B3 at room temperature was 21 nm.
  • the ⁇ EST of compound B4 was 0.472 eV.
  • the maximum peak wavelength of the emission spectrum of compound B4 at room temperature was 440 nm.
  • the half width of the maximum peak of the emission spectrum of compound B4 at room temperature was 19 nm.
  • the ⁇ EST of compound B5 was 0.319 eV.
  • the maximum peak wavelength of the emission spectrum of compound B5 at room temperature was 514 nm.
  • the half width of the maximum peak of the emission spectrum of compound B5 at room temperature was 38 nm.
  • the molecular weight of compound H1 was 514.6.
  • the molecular weight of compound H2 was 582.7.
  • the molecular weight of compound H3 was 2504.6.
  • the molecular weight of compound B1 was 420.3.
  • the molecular weight of compound B2 was 896.1.
  • the molecular weight of compound B3 was 922.2.
  • the molecular weight of compound B4 was 671.7.
  • the molecular weight of compound B5 was 918.1.
  • Example D1 Production and evaluation of light emitting device D1 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to a glass substrate by a sputtering method.
  • a film of ND-3202 (manufactured by Nissan Chemical Industries, Ltd.), which is a hole injection material, was formed on the anode to a thickness of 35 nm by spin coating.
  • a hole injection layer was formed by heating the substrate having the hole injection layer laminated thereon on a hot plate at 50° C. for 3 minutes in an air atmosphere and further heating at 230° C. for 15 minutes.
  • Table 4 shows the results of Examples D1 to D4 and Comparative Example CD1.
  • the relative values of the luminous efficiencies of the light-emitting elements D1 to D4 are shown when the luminous efficiency of the light-emitting element CD1 is set to 1.00.
  • Table 5 shows the results of Comparative Examples CD2 and CD3.
  • the relative value of the luminous efficiency of the light-emitting element CD2 is shown when the luminous efficiency of the light-emitting element CD3 is set to 1.00.
  • Example D5 and Comparative Example CD4 formation of the second layer
  • the polymer compound P1 was in a crosslinked state by heating.
  • EL emission was observed by applying a voltage to the light emitting elements D5 and CD4.
  • Luminous efficiency [lm/W] at 0.1 mA/cm 2 and CIE chromaticity coordinates of the light emitting elements D5 and CD4 were measured.
  • Example D6 Production and Evaluation of Light-Emitting Element D6
  • EL light emission was observed by applying a voltage to the light emitting element D6.
  • the luminous efficiency [lm/W] of the light emitting element D6 at 0.1 mA/cm 2 and the CIE chromaticity coordinates were measured.
  • Table 6 shows the results of Examples D5 to D6 and Comparative Example CD4. The relative values of the external quantum efficiencies of the light-emitting elements D5 and D6 are shown when the external quantum efficiency of the light-emitting element CD4 is set to 1.00.
  • Light-emitting elements D7 and CD6 were fabricated in the same manner.
  • Example D7 and Comparative Example CD6 formation of the second layer
  • the polymer compound P1 was in a crosslinked state by heating.
  • EL emission was observed by applying a voltage to the light emitting elements D7 and CD6.
  • Luminous efficiency [lm/W] at 0.15 mA/cm 2 and CIE chromaticity coordinates of the light-emitting elements D7 and CD6 were measured.
  • Table 7 shows the results of Example D7 and Comparative Examples CD5 to CD6.
  • the relative values of the luminous efficiencies of the light-emitting elements D7 and CD4 are shown when the luminous efficiency of the light-emitting element CD6 is set to 1.00.
  • Example D8 and Comparative Example CD7 Production and Evaluation of Light-Emitting Elements D8 and CD7 %/10% by mass)”, except that the materials and composition ratios (% by mass) shown in Table 8 were used in the same manner as in Example D1 to fabricate light-emitting devices D8 and CD7.
  • Example D8 and Comparative Example CD7 formation of the second layer
  • compound M1 became crosslinked by heating.
  • EL emission was observed by applying a voltage to the light emitting elements D8 and CD7.
  • Luminous efficiency [lm/W] at 0.35 mA/cm 2 and CIE chromaticity coordinates of the light-emitting elements D8 and CD7 were measured.
  • Table 8 shows the results of Example D8 and Comparative Example CD7. The relative value of the luminous efficiency of the light-emitting element D8 is shown when the luminous efficiency of the light-emitting element CD7 is set to 1.00.
  • Light-emitting elements D9 and CD8 were fabricated in the same manner. In Example D9 and Comparative Example CD8 (formation of the second layer), compound M1 became crosslinked by heating. EL emission was observed by applying a voltage to the light emitting elements D9 and CD8. Luminous efficiency [lm/W] at 0.35 mA/cm 2 and CIE chromaticity coordinates of the light-emitting elements D9 and CD8 were measured.
  • Table 9 shows the results of Example D9 and Comparative Example CD8. The relative value of the luminous efficiency of the light-emitting element D9 is shown when the luminous efficiency of the light-emitting element CD8 is set to 1.00.
  • Example D10 Production and evaluation of light-emitting element D10 Light emission was performed in the same manner as in Example D1, except that (formation of the second layer) in Example D1 was changed to the following (formation of the second layer-D10). A device D10 was produced.
  • EL emission was observed by applying a voltage to the light emitting element D10.
  • the luminous efficiency [lm/W] of the light-emitting element D10 at 1 mA/cm 2 and the CIE chromaticity coordinates were measured.
  • Table 10 shows the results of Example D10 and Comparative Example CD9. The relative value of the luminous efficiency of the light-emitting element D10 is shown when the luminous efficiency of the light-emitting element CD9 is set to 1.00.
  • Light-emitting elements D11 and CD10 were manufactured in the same manner as D10. EL emission was observed by applying a voltage to the light emitting elements D11 and CD10. Luminous efficiency [lm/W] at 5 mA/cm 2 and CIE chromaticity coordinates of the light-emitting elements D11 and CD10 were measured.
  • Table 11 shows the results of Example D11 and Comparative Example CD10. The relative value of the luminous efficiency of the light-emitting element D11 is shown when the luminous efficiency of the light-emitting element CD10 is set to 1.00.
  • Example D12 and Comparative Example CD11 Production and Evaluation of Light-Emitting Elements D12 and CD11 %/10% by mass)”, except that the materials and composition ratios (% by mass) shown in Table 12 were used in the same manner as in Example D1, to produce light-emitting elements D12 and CD11.
  • Example D12 and Comparative Example CD11 formation of the second layer
  • the polymer compound P2 was in a crosslinked state by heating.
  • EL emission was observed by applying a voltage to the light emitting elements D12 and CD11.
  • Luminous efficiencies [lm/W] and CIE chromaticity coordinates of the light emitting elements D12 and CD11 at 10 mA/cm 2 were measured.
  • Table 12 shows the results of Example D12 and Comparative Example CD11. The relative value of the luminous efficiency of the light-emitting element D12 is shown when the luminous efficiency of the light-emitting element CD11 is set to 1.00.
  • Example D13 and Comparative Example CD12 Production and Evaluation of Light-Emitting Elements D13 and CD12 %/10% by mass)", except that the materials and composition ratios (% by mass) shown in Table 13 were used in the same manner as in Example D1, to produce light-emitting elements D13 and CD12.
  • Example D13 and Comparative Example CD12 formation of the second layer
  • the polymer compound P3 was in a crosslinked state by heating.
  • EL emission was observed by applying a voltage to the light emitting elements D13 and CD12.
  • Luminous efficiency [lm/W] at 2 mA/cm 2 and CIE chromaticity coordinates of the light-emitting elements D13 and CD12 were measured.
  • Table 13 shows the results of Example D13 and Comparative Example CD12. The relative value of the luminous efficiency of the light-emitting element D13 is shown when the luminous efficiency of the light-emitting element CD12 is set to 1.00.
  • Example D14 and Comparative Example CD13 Production and Evaluation of Light-Emitting Elements D14 and CD13 %/10% by mass)", except that the materials and composition ratios (% by mass) shown in Table 14 were used in the same manner as in Example D1, to produce light-emitting elements D14 and CD13.
  • Example D14 and Comparative Example CD13 formation of the second layer
  • the polymer compound P4 was in a crosslinked state by heating.
  • EL emission was observed by applying a voltage to the light emitting elements D14 and CD13.
  • Luminous efficiency [lm/W] and CIE chromaticity coordinates of the light emitting elements D14 and CD13 at 5 mA/cm 2 were measured.
  • Table 14 shows the results of Example D14 and Comparative Example CD13.
  • the relative value of the luminous efficiency of the light-emitting element D14 is shown when the luminous efficiency of the light-emitting element CD13 is set to 1.00.
  • Example D15 and Comparative Example CD14 Production and Evaluation of Light-Emitting Elements D15 and CD14 %/10% by mass)”, except that the materials and composition ratios (% by mass) shown in Table 15 were used in the same manner as in Example D1, to produce light emitting devices D15 and CD14.
  • Example D15 and Comparative Example CD14 formation of the second layer
  • the polymer compound P5 was in a crosslinked state by heating.
  • EL emission was observed by applying a voltage to the light emitting elements D15 and CD14.
  • Luminous efficiencies [lm/W] and CIE chromaticity coordinates of the light-emitting elements D15 and CD14 at 20 mA/cm 2 were measured.
  • Table 15 shows the results of Example D15 and Comparative Example CD14.
  • the relative value of the luminous efficiency of the light-emitting element D15 is shown when the luminous efficiency of the light-emitting element CD14 is set to 1.00.
  • Example D16 and Comparative Example CD15 Production and Evaluation of Light-Emitting Elements D16 and CD15 %/10% by mass)", except that the materials and composition ratios (% by mass) shown in Table 16 were used in the same manner as in Example D1, to produce light-emitting elements D16 and CD15.
  • Example D16 and Comparative Example CD15 formation of the second layer
  • the polymer compound P6 was in a crosslinked state by heating.
  • EL emission was observed by applying a voltage to the light emitting elements D16 and CD15.
  • Luminous efficiency [lm/W] at 10 mA/cm 2 and CIE chromaticity coordinates of the light emitting elements D16 and CD15 were measured.
  • Table 16 shows the results of Example D16 and Comparative Example CD15.
  • the relative value of the luminous efficiency of the light-emitting element D16 is shown when the luminous efficiency of the light-emitting element CD15 is set to 1.00.
  • Example D17 and Comparative Example CD16 Production and Evaluation of Light-Emitting Elements D17 and CD16 %/10% by mass)”, except that the materials and composition ratios (% by mass) shown in Table 17 were used in the same manner as in Example D1, to produce light emitting devices D17 and CD16.
  • Example D17 and Comparative Example CD16 formation of the second layer
  • the polymer compound P7 was in a crosslinked state by heating.
  • EL emission was observed by applying a voltage to the light emitting elements D17 and CD16.
  • Luminous efficiency [lm/W] at 1 mA/cm 2 and CIE chromaticity coordinates of the light emitting elements D17 and CD16 were measured.
  • Table 17 shows the results of Example D17 and Comparative Example CD16.
  • the relative value of the luminous efficiency of the light-emitting element D17 is shown when the luminous efficiency of the light-emitting element CD16 is set to 1.00.
  • Example D18 and Comparative Example CD17 Production and Evaluation of Light-Emitting Elements D18 and CD17 %/10% by mass)”, except that the materials and composition ratios (% by mass) shown in Table 18 were used in the same manner as in Example D1, to produce light-emitting elements D18 and CD17.
  • Example D18 and Comparative Example CD17 formation of the second layer
  • the polymer compound P8 was in a crosslinked state by heating.
  • EL emission was observed by applying a voltage to the light emitting elements D18 and CD17.
  • Luminous efficiency [lm/W] at 20 mA/cm 2 and CIE chromaticity coordinates of the light-emitting elements D18 and CD17 were measured.
  • Table 18 shows the results of Example D18 and Comparative Example CD17. The relative value of the luminous efficiency of the light-emitting element D18 is shown when the luminous efficiency of the light-emitting element CD17 is set to 1.00.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

The present invention addresses the problem of providing a light-emitting element having excellent luminous efficiency. This light-emitting element has: a positive electrode; a negative electrode; and a first layer and a second layer, both provided between the positive electrode and the negative electrode. The first layer contains: at least one compound (B-1) selected from a compound (B) having a fused heterocycle skeleton (b) including a boron atom and a nitrogen atom; and at least one compound (A-1) selected from compounds represented by formula (H-1). The second layer contains at least one compound (A-2) selected from compounds represented by formula (H-1). The molecular weight of the compound represented by formula (H-1) is 500 or more. At least one of the compounds (A-1) and at least one of the compounds (A-2) are the same. The first layer and the second layer are contiguous.

Description

発光素子light emitting element
 本発明は、発光素子に関する。 The present invention relates to light emitting elements.
 有機エレクトロルミネッセンス素子等の発光素子は、ディスプレイ及び照明の用途に好適に使用することが可能である。例えば、特許文献1には、化合物H1及び化合物B1を含有する層を1層のみ有する発光素子が記載されている。また、特許文献2及び3には、化合物H2及び化合物B1を含有する層を1層のみ有する発光素子が記載されている。 A light-emitting element such as an organic electroluminescence element can be suitably used for display and lighting applications. For example, Patent Document 1 describes a light-emitting element having only one layer containing compound H1 and compound B1. Further, Patent Documents 2 and 3 describe a light-emitting element having only one layer containing compound H2 and compound B1.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
国際公開第2019/225483号WO2019/225483 特開2020-167393号公報JP 2020-167393 A 特開2020-167149号公報JP 2020-167149 A
 しかし、上記の発光素子は、発光効率が必ずしも十分ではない。
 そこで、本発明は、発光効率が優れる発光素子を提供することを目的とする。
However, the above light-emitting element does not always have sufficient light emission efficiency.
Accordingly, an object of the present invention is to provide a light-emitting element with excellent luminous efficiency.
 本発明は、以下の[1]~[11]を提供する。 The present invention provides the following [1] to [11].
[1]
 陽極と、陰極と、前記陽極及び前記陰極の間に設けられた第1の層と、前記陽極及び前記第1の層の間に設けられた第2の層とを有する発光素子であり、
 前記第1の層が、
  ホウ素原子と窒素原子とを環内に含む縮合複素環骨格(b)を有する化合物(B)から選ばれる少なくとも1種の化合物(B-1)と、
  式(H-1)で表される化合物から選ばれる少なくとも1種の化合物(A-1)と、を含有する層であり、
 前記第2の層が、式(H-1)で表される化合物から選ばれる少なくとも1種の化合物(A-2)を含有する層であり、
 前記式(H-1)で表される化合物の分子量が500以上であり、
 前記化合物(A-1)の少なくとも1種と、前記化合物(A-2)の少なくとも1種とが同一であり、
 前記第1の層と前記第2の層とが隣接している、発光素子。
Figure JPOXMLDOC01-appb-C000010

[式中、
 ArH1及びArH2は、それぞれ独立に、アリール基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 nH1は、0以上の整数を表す。
 LH1は、2価の基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよく、それらは互いに、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。
 ArH1とArH2とは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。LH1とArH1とは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。LH1とArH2とは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。]
[2]
 前記化合物(B)が、式(1-1)で表される化合物、式(1-2)で表される化合物又は式(1-3)で表される化合物である、[1]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000011

[式中、
 Ar、Ar及びArは、それぞれ独立に、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 Yは、-N(Ry)-で表される基を表す。
 Y及びYは、それぞれ独立に、単結合、酸素原子、硫黄原子、セレン原子、-N(Ry)-で表される基、-B(Ry)-で表される基、アルキレン基、シクロアルキレン基、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 Ryは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。Ryが複数存在する場合、同一であっても異なっていてもよい。
 YとArとは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。YとArとは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。YとArとは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。YとArとは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。YとArとは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。YとArとは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。]
[3]
 前記Y及び前記Yが、酸素原子、硫黄原子又は-N(Ry)-で表される基である、[2]に記載の発光素子。
[4]
 前記Y及び前記Yが、-N(Ry)-で表される基である、[2]又は[3]に記載の発光素子。
[5]
 前記第1の層が、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群より選ばれる少なくとも1種を更に含有する、[1]~[4]のいずれかに記載の発光素子。
[6]
 前記第2の層が、式(X)で表される構成単位及び式(Y)で表される構成単位からなる群より選択される少なくとも1種の構成単位を含む高分子化合物、並びに、架橋基を有する化合物の架橋体からなる群より選択される少なくとも1種を更に含有する、[1]~[5]のいずれかに記載の発光素子。
Figure JPOXMLDOC01-appb-C000012

[式中、
 aX1及びaX2は、それぞれ独立に、0以上の整数を表す。
 ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。ArX2が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。ArX4が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 RX1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。RX2が複数存在する場合、それらは同一でも異なっていてもよい。RX3が複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000013

[式中、ArY1は、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[7]
 前記第2の層が、前記架橋基を有する化合物の架橋体を含有する層であり、
 前記架橋基を有する化合物が、前記架橋基を有する構成単位を含む高分子化合物である、[6]に記載の発光素子。
[8]
 前記架橋基を有する構成単位が、式(Z)で表される構成単位又は式(Z’)で表される構成単位である、[7]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000014

[式中、
 nは1以上の整数を表す。
 nAは0以上の整数を表す。nAが複数存在する場合、それらは同一でも異なっていてもよい。
 Arは、炭化水素基、複素環基、又は、少なくとも1種の炭化水素基と少なくとも1種の複素環基とが直接結合した基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 Lは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-N(R’)-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。Lが複数存在する場合、それらは同一でも異なっていてもよい。
 Xは架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000015

[式中、
 mA、m及びcは、それぞれ独立に、0以上の整数を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。mが複数存在する場合、それらは同一でも異なっていてもよい。
 Arは、炭化水素基、複素環基、又は、少なくとも1種の炭化水素基と少なくとも1種の複素環基とが直接結合した基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。Arが複数存在する場合、それらは同一でも異なっていてもよい。
 Ar及びArは、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 Kは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-N(R’’)-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R’’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。Kが複数存在する場合、それらは同一でも異なっていてもよい。
 X’は、水素原子、架橋基、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。X’が複数存在する場合、それらは同一でも異なっていてもよい。但し、少なくとも1つのX’は架橋基である。]
[9]
 前記第2の層が、前記架橋基を有する化合物の架橋体を含有する層であり、
 前記架橋基を有する化合物が、式(Z’’)で表される化合物である、[6]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000016

[式中、
 mB1、mB2及びmB3は、それぞれ独立に、0以上の整数を表す。mB1が複数存在する場合、それらは同一でも異なっていてもよい。mB3が複数存在する場合、それらは同一でも異なっていてもよい。
 Arは、炭化水素基、複素環基、又は、少なくとも1種の炭化水素基と少なくとも1種の複素環基とが直接結合した基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。Arが複数存在する場合、それらは同一でも異なっていてもよい。
 LB1は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-N(R’’’)-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R’’’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。LB1が複数存在する場合、それらは同一でも異なっていてもよい。
 X’’は、架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するX’’は、同一でも異なっていてもよい。但し、複数存在するX’’のうち、少なくとも1つは、架橋基である。]
[10]
 前記架橋基が、架橋基A群から選ばれる少なくとも1種の架橋基である、[6]~[9]のいずれかに記載の発光素子。
(架橋基A群)
Figure JPOXMLDOC01-appb-C000017

[式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよい。nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよく、該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[11]
 前記第2の層が、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群より選ばれる少なくとも1種を更に含有する、[1]~[10]のいずれかに記載の発光素子。
[1]
A light emitting device having an anode, a cathode, a first layer provided between the anode and the cathode, and a second layer provided between the anode and the first layer,
The first layer is
at least one compound (B-1) selected from compounds (B) having a condensed heterocyclic skeleton (b) containing a boron atom and a nitrogen atom in the ring;
A layer containing at least one compound (A-1) selected from compounds represented by formula (H-1),
The second layer is a layer containing at least one compound (A-2) selected from compounds represented by formula (H-1),
The compound represented by the formula (H-1) has a molecular weight of 500 or more,
at least one of the compounds (A-1) and at least one of the compounds (A-2) are the same,
A light-emitting device, wherein the first layer and the second layer are adjacent to each other.
Figure JPOXMLDOC01-appb-C000010

[In the formula,
Ar H1 and Ar H2 each independently represent an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
n H1 represents an integer of 0 or more.
L H1 represents a divalent group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple L H1 are present, they may be the same or different, and they may be directly bonded to each other or bonded via a divalent group to form a ring.
Ar H1 and Ar H2 may be directly bonded or bonded via a divalent group to form a ring. L H1 and Ar H1 may be directly bonded or bonded via a divalent group to form a ring. L H1 and Ar H2 may be directly bonded or bonded via a divalent group to form a ring. ]
[2]
[1], wherein the compound (B) is a compound represented by formula (1-1), a compound represented by formula (1-2), or a compound represented by formula (1-3). light-emitting element.
Figure JPOXMLDOC01-appb-C000011

[In the formula,
Ar 1 , Ar 2 and Ar 3 each independently represent an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
Y 1 represents a group represented by -N(Ry)-.
Y 2 and Y 3 each independently represent a single bond, an oxygen atom, a sulfur atom, a selenium atom, a group represented by -N(Ry)-, a group represented by -B(Ry)-, an alkylene group, It represents a cycloalkylene group, an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
Ry represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When two or more Ry are present, they may be the same or different.
Y 1 and Ar 1 may be directly bonded or bonded via a divalent group to form a ring. Y 1 and Ar 2 may be directly bonded or bonded via a divalent group to form a ring. Y 2 and Ar 1 may be directly bonded or bonded via a divalent group to form a ring. Y 2 and Ar 3 may be directly bonded or bonded via a divalent group to form a ring. Y 3 and Ar 2 may be directly bonded or bonded via a divalent group to form a ring. Y 3 and Ar 3 may be directly bonded or bonded via a divalent group to form a ring. ]
[3]
The light-emitting device according to [2], wherein the Y 2 and the Y 3 are an oxygen atom, a sulfur atom or a group represented by -N(Ry)-.
[4]
The light-emitting device according to [ 2 ] or [3], wherein the Y 2 and the Y 3 are groups represented by -N(Ry)-.
[5]
The first layer further contains at least one selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material and an antioxidant, 4].
[6]
a polymer compound in which the second layer comprises at least one structural unit selected from the group consisting of structural units represented by formula (X) and structural units represented by formula (Y); The light-emitting device according to any one of [1] to [5], further comprising at least one selected from the group consisting of crosslinked compounds having a group.
Figure JPOXMLDOC01-appb-C000012

[In the formula,
a X1 and a X2 each independently represent an integer of 0 or more.
Ar 1 X1 and Ar 2 X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded; and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple Ar X2 are present, they may be the same or different. When multiple Ar X4 are present, they may be the same or different.
R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple R X2 are present, they may be the same or different. When multiple R X3 are present, they may be the same or different. ]
Figure JPOXMLDOC01-appb-C000013

[Wherein, Ar Y represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, The group may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. ]
[7]
the second layer is a layer containing a crosslinked compound of the crosslinkable group,
The light emitting device according to [6], wherein the compound having the crosslinkable group is a polymer compound containing a structural unit having the crosslinkable group.
[8]
The light-emitting device according to [7], wherein the structural unit having the cross-linking group is a structural unit represented by formula (Z) or a structural unit represented by formula (Z').
Figure JPOXMLDOC01-appb-C000014

[In the formula,
n represents an integer of 1 or more.
nA represents an integer of 0 or more. When multiple nAs are present, they may be the same or different.
Ar Z represents a hydrocarbon group, a heterocyclic group, or a group in which at least one hydrocarbon group and at least one heterocyclic group are directly bonded, and these groups may have a substituent good. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
L A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -N(R')-, an oxygen atom or a sulfur atom, and these groups have a substituent. You may have When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. R' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple L A are present, they may be the same or different.
X represents a cross-linking group. When there are multiple X's, they may be the same or different. ]
Figure JPOXMLDOC01-appb-C000015

[In the formula,
mA, m and c each independently represent an integer of 0 or more. When multiple mA are present, they may be the same or different. When there are multiple m's, they may be the same or different.
Ar 5 represents a hydrocarbon group, a heterocyclic group, or a group in which at least one hydrocarbon group and at least one heterocyclic group are directly bonded, and these groups may have a substituent good. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple Ar 5 are present, they may be the same or different.
Ar 4 and Ar 6 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
K A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -N(R'')-, an oxygen atom or a sulfur atom, and these groups are substituents. may have. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. R'' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple K A are present, they may be the same or different.
X' represents a hydrogen atom, a bridging group, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple X' are present, they may be the same or different. However, at least one X' is a bridging group. ]
[9]
the second layer is a layer containing a crosslinked compound of the crosslinkable group,
The light-emitting device according to [6], wherein the compound having a cross-linking group is a compound represented by formula (Z'').
Figure JPOXMLDOC01-appb-C000016

[In the formula,
m B1 , m B2 and m B3 each independently represent an integer of 0 or more. When multiple mB1 are present, they may be the same or different. When multiple mB3 are present, they may be the same or different.
Ar 7 represents a hydrocarbon group, a heterocyclic group, or a group in which at least one hydrocarbon group and at least one heterocyclic group are directly bonded, and these groups may have a substituent good. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple Ar 7 are present, they may be the same or different.
L B1 represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -N(R''')-, an oxygen atom or a sulfur atom, and these groups are substituents may have When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. R''' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple L B1 are present, they may be the same or different.
X'' represents a bridging group, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. Multiple X'' may be the same or different. However, at least one of the plurality of X'' is a cross-linking group. ]
[10]
The light-emitting device according to any one of [6] to [9], wherein the cross-linking group is at least one cross-linking group selected from Group A of cross-linking groups.
(Crosslinking group A group)
Figure JPOXMLDOC01-appb-C000017

[In the formula, R XL represents a methylene group, an oxygen atom or a sulfur atom, and n XL represents an integer of 0 to 5. When multiple R XL are present, they may be the same or different. When multiple nXL are present, they may be the same or different. *1 represents the binding position. These bridging groups may have substituents, and when there are multiple substituents, they may be the same or different, and are bonded to each other to form a ring together with the atoms to which they are bonded. may ]
[11]
The second layer further contains at least one selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material and an antioxidant, 10].
 本発明によれば、発光効率が優れる発光素子を提供することができる。 According to the present invention, it is possible to provide a light-emitting element with excellent luminous efficiency.
 以下、本発明の好適な実施形態について詳細に説明する。 A preferred embodiment of the present invention will be described in detail below.
 <共通する用語の説明>
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
<Description of common terms>
Terms commonly used in this specification have the following meanings unless otherwise specified.
 「室温」とは、25℃を意味する。
 Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
 水素原子は、重水素原子であっても、軽水素原子であってもよい。
 金属錯体を表す式中、中心金属との結合を表す実線は、イオン結合、共有結合又は配位結合を意味する。
"Room temperature" means 25°C.
Me is a methyl group, Et is an ethyl group, Bu is a butyl group, i-Pr is an isopropyl group, and t-Bu is a tert-butyl group.
A hydrogen atom may be a deuterium atom or a protium atom.
In the formulas representing the metal complexes, solid lines representing bonds with the central metal mean ionic bonds, covalent bonds or coordinate bonds.
 「低分子化合物」とは、分子量分布を有さず、分子量が1×10以下の化合物を意味する。
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×10以上(例えば、1×10~1×10)である重合体を意味する。
 「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。高分子化合物中に2個以上存在する構成単位は、一般に、「繰り返し単位」とも呼ばれる。
 高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよい。
 高分子化合物の末端基は、重合活性基がそのまま残っていると、高分子化合物を発光素子の作製に用いた場合、発光特性等が低下する可能性があるので、好ましくは安定な基である。高分子化合物の末端基としては、好ましくは、高分子化合物の主鎖と共役結合している基であり、例えば、炭素-炭素結合を介して高分子化合物の主鎖と結合するアリール基又は1価の複素環基が挙げられる。
A "low-molecular-weight compound" means a compound having no molecular weight distribution and a molecular weight of 1×10 4 or less.
A "polymer compound" means a polymer having a molecular weight distribution and a polystyrene-equivalent number average molecular weight of 1×10 3 or more (for example, 1×10 3 to 1×10 8 ).
A "structural unit" means a unit that exists at least one in a polymer compound. Two or more structural units present in a polymer compound are generally called "repeating units".
The polymer compound may be a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or other forms.
The terminal group of the polymer compound is preferably a stable group because if the polymerization active group remains as it is, there is a possibility that the light-emitting properties, etc., will be lowered when the polymer compound is used for the production of a light-emitting device. . The terminal group of the polymer compound is preferably a group conjugated to the main chain of the polymer compound, for example, an aryl group or 1 valent heterocyclic groups.
 「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは1~20であり、より好ましくは1~10である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~20であり、より好ましくは4~10である。
 アルキル基は、置換基を有していてもよい。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基及びドデシル基が挙げられる。また、アルキル基は、これらの基における水素原子の一部又は全部が、置換基で置換された基(例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基及び6-エチルオキシヘキシル基)であってもよい。
 「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~20であり、より好ましくは4~10である。
 シクロアルキル基は、置換基を有していてもよい。シクロアルキル基としては、例えば、シクロヘキシル基、及び、該基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
 「アルキレン基」の炭素原子数は、置換基の炭素原子数を含めないで、通常1~20であり、好ましくは1~15であり、より好ましくは1~10である。
 アルキレン基は、置換基を有していてもよい。アルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、オクチレン基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
 「シクロアルキレン基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~20であり、好ましくは4~10であり、より好ましくは5~7である。
 シクロアルキレン基は、置換基を有していてもよい。シクロアルキレン基としては、例えば、シクロヘキシレン基、及び、該基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
The "alkyl group" may be either linear or branched. The number of carbon atoms in the linear alkyl group is generally 1-50, preferably 1-20, more preferably 1-10, not including the number of carbon atoms in the substituents. The number of carbon atoms in the branched alkyl group is usually 3-50, preferably 3-20, more preferably 4-10, not including the number of carbon atoms in the substituent.
The alkyl group may have a substituent. Examples of alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl group, hexyl group and heptyl. octyl, 2-ethylhexyl, 3-propylheptyl, decyl, 3,7-dimethyloctyl, 2-ethyloctyl, 2-hexyldecyl and dodecyl groups. In addition, alkyl groups are groups in which some or all of the hydrogen atoms in these groups are substituted with substituents (e.g., trifluoromethyl group, pentafluoroethyl group, perfluorobutyl group, perfluorohexyl group, perfluorohexyl group, fluorooctyl group, 3-phenylpropyl group, 3-(4-methylphenyl)propyl group, 3-(3,5-di-hexylphenyl)propyl group and 6-ethyloxyhexyl group).
The number of carbon atoms in the "cycloalkyl group" is usually 3-50, preferably 3-20, more preferably 4-10, not including the number of carbon atoms in the substituents.
A cycloalkyl group may have a substituent. Cycloalkyl groups include, for example, cyclohexyl groups and groups in which some or all of the hydrogen atoms in the groups are substituted with substituents.
The number of carbon atoms in the "alkylene group" is generally 1-20, preferably 1-15, more preferably 1-10, not including the number of carbon atoms in the substituents.
The alkylene group may have a substituent. The alkylene group includes, for example, methylene group, ethylene group, propylene group, butylene group, hexylene group, octylene group, and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents.
The number of carbon atoms in the "cycloalkylene group" is usually 3 to 20, preferably 4 to 10, more preferably 5 to 7, not including the number of carbon atoms in substituents.
A cycloalkylene group may have a substituent. The cycloalkylene group includes, for example, a cyclohexylene group and a group in which some or all of the hydrogen atoms in the group are substituted with substituents.
 「芳香族炭化水素基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個以上を除いた基を意味する。芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた基を「アリール基」ともいう。芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた基を「アリーレン基」ともいう。
 芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~40であり、より好ましくは6~20である。
 「芳香族炭化水素基」としては、例えば、単環式の芳香族炭化水素(例えば、ベンゼンが挙げられる。)、又は、多環式の芳香族炭化水素(例えば、ナフタレン、インデン、ナフトキノン、インデノン及びテトラロン等の2環式の芳香族炭化水素;アントラセン、フェナントレン、ジヒドロフェナントレン、フルオレン、アントラキノン、フェナントキノン及びフルオレノン等の3環式の芳香族炭化水素;ベンゾアントラセン、ベンゾフェナントレン及びベンゾフルオレン等の4環式の芳香族炭化水素;ジベンゾアントラセン、ジベンゾフェナントレン、ジベンゾフルオレン、インデノフルオレン及びベンゾフルオランテン等の5環式の芳香族炭化水素;スピロビフルオレン等の6環式の芳香族炭化水素;並びに、ベンゾスピロビフルオレン及びアセナフトフルオランテン等の7環式の芳香族炭化水素が挙げられる。)から、環を構成する炭素原子に直接結合する水素原子1個以上を除いた基が挙げられる。芳香族炭化水素基は、これらの基が複数結合した基を含む。芳香族炭化水素基は置換基を有していてもよい。
“Aromatic hydrocarbon group” means a group obtained by removing one or more hydrogen atoms directly bonded to carbon atoms constituting a ring from an aromatic hydrocarbon. A group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon is also referred to as an "aryl group". A group obtained by removing two hydrogen atoms directly bonded to carbon atoms forming a ring from an aromatic hydrocarbon is also referred to as an "arylene group".
The number of carbon atoms in the aromatic hydrocarbon group is generally 6-60, preferably 6-40, more preferably 6-20, not including the number of carbon atoms in the substituents.
The "aromatic hydrocarbon group" includes, for example, monocyclic aromatic hydrocarbons (e.g., benzene), or polycyclic aromatic hydrocarbons (e.g., naphthalene, indene, naphthoquinone, indenone and tetralone; tricyclic aromatic hydrocarbons such as anthracene, phenanthrene, dihydrophenanthrene, fluorene, anthraquinone, phenanthoquinone and fluorenone; benzoanthracene, benzophenanthrene and benzofluorene. tetracyclic aromatic hydrocarbons; pentacyclic aromatic hydrocarbons such as dibenzoanthracene, dibenzophenanthrene, dibenzofluorene, indenofluorene and benzofluoranthene; hexacyclic aromatic hydrocarbons such as spirobifluorene ; and seven-ring aromatic hydrocarbons such as benzospirobifluorene and acenaphthofluoranthene). mentioned. Aromatic hydrocarbon groups include groups in which a plurality of these groups are bonded. The aromatic hydrocarbon group may have a substituent.
 「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは1~20であり、より好ましくは1~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは3~20であり、より好ましくは4~10である。
 アルコキシ基は、置換基を有していてもよい。アルコキシ基としては、例えば、メトキシ基、エトキシ基、イソプロピルオキシ基、ブチルオキシ基、ヘキシルオキシ基、2-エチルヘキシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
 「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは3~20であり、より好ましくは4~10である。
 シクロアルコキシ基は、置換基を有していてもよい。シクロアルコキシ基としては、例えば、シクロヘキシルオキシ基、及び、該基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
 「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~40であり、より好ましくは6~20である。
 アリールオキシ基は、置換基を有していてもよい。アリールオキシ基としては、例えば、フェノキシ基、ナフチルオキシ基、アントラセニルオキシ基、ピレニルオキシ基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
An "alkoxy group" may be either linear or branched. The straight-chain alkoxy group usually has 1 to 40 carbon atoms, preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, not including the carbon atoms of the substituents. The number of carbon atoms in the branched alkoxy group is usually 3-40, preferably 3-20, more preferably 4-10, not including the number of carbon atoms in the substituent.
The alkoxy group may have a substituent. Examples of alkoxy groups include methoxy, ethoxy, isopropyloxy, butyloxy, hexyloxy, 2-ethylhexyloxy, 3,7-dimethyloctyloxy, lauryloxy, and hydrogen in these groups. Groups in which some or all of the atoms are substituted with substituents are included.
The number of carbon atoms in the "cycloalkoxy group" is usually 3-40, preferably 3-20, more preferably 4-10, not including the number of carbon atoms in the substituents.
A cycloalkoxy group may have a substituent. Cycloalkoxy groups include, for example, cyclohexyloxy groups and groups in which some or all of the hydrogen atoms in the groups are substituted with substituents.
The number of carbon atoms in the "aryloxy group" is usually 6-60, preferably 6-40, more preferably 6-20, not including the number of carbon atoms in the substituents.
The aryloxy group may have a substituent. Examples of the aryloxy group include phenoxy group, naphthyloxy group, anthracenyloxy group, pyrenyloxy group, and groups in which some or all of the hydrogen atoms in these groups have been substituted with substituents.
 「複素環基」とは、複素環式化合物から環を構成する原子(炭素原子又はヘテロ原子)に直接結合する水素原子1個以上を除いた基を意味する。複素環基の中でも、芳香族複素環式化合物から環を構成する原子に直接結合する水素原子1個以上を除いた基である「芳香族複素環基」が好ましい。複素環式化合物から環を構成する原子に直接結合する水素原子p個(pは、1以上の整数を表す。)を除いた基を「p価の複素環基」ともいう。芳香族複素環式化合物から環を構成する原子に直接結合する水素原子p個を除いた基を「p価の芳香族複素環基」ともいう。
 「芳香族複素環式化合物」としては、例えば、アゾール、チオフェン、フラン、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン及びカルバゾール等の複素環自体が芳香族性を示す化合物、並びに、フェノキサジン、フェノチアジン及びベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物が挙げられる。
 複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~60であり、好ましくは2~40であり、より好ましくは3~20である。複素環基のヘテロ原子数は、置換基のヘテロ原子数を含めないで、通常1~30であり、好ましくは1~10であり、より好ましくは1~5であり、更に好ましくは1~3である。
 複素環基としては、例えば、単環式の複素環式化合物(例えば、フラン、チオフェン、オキサジアゾール、チアジアゾール、ピロール、ジアゾール、トリアゾール、テトラゾール、ピリジン、ジアザベンゼン及びトリアジンが挙げられる。)、又は、多環式の複素環式化合物(例えば、アザナフタレン、ジアザナフタレン、ベンゾフラン、ベンゾチオフェン、インドール、アザインドール、ジアザインドール、ベンゾジアゾール、ベンゾチアジアゾール、ベンゾトリアゾール、ベンゾチオフェンジオキシド、ベンゾチオフェンオキシド及びベンゾピラノン等の2環式の複素環式化合物;ジベンゾフラン、ジベンゾチオフェン、ジベンゾチオフェンジオキシド、ジベンゾチオフェンオキシド、ジベンゾピラノン、ジベンゾボロール、ジベンゾシロール、ジベンゾホスホール、ジベンゾセレノフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、アクリドン、フェナザボリン、フェノホスファジン、フェノセレナジン、フェナザシリン、アザアントラセン、ジアザアントラセン、アザフェナントレン及びジアザフェナントレン等の3環式の複素環式化合物;ヘキサアザトリフェニレン、ベンゾカルバゾール、アザベンゾカルバゾール、ジアザベンゾカルバゾール、ベンゾナフトフラン及びベンゾナフトチオフェン等の4環式の複素環式化合物;ジベンゾカルバゾール、インドロカルバゾール、インデノカルバゾール、アザインドロカルバゾール、ジアザインドロカルバゾール、アザインデノカルバゾール及びジアザインデノカルバゾール等の5環式の複素環式化合物;カルバゾロカルバゾール、ベンゾインドロカルバゾール及びベンゾインデノカルバゾール等の6環式の複素環式化合物;並びに、ジベンゾインドロカルバゾール及びジベンゾインデノカルバゾール等の7環式の複素環式化合物が挙げられる。)から、環を構成する原子に直接結合する水素原子1個以上を除いた基が挙げられる。複素環基は、これらの基が複数結合した基を含む。複素環基は置換基を有していてもよい。
A “heterocyclic group” means a group obtained by removing one or more hydrogen atoms directly bonded to atoms (carbon atoms or heteroatoms) constituting a ring from a heterocyclic compound. Among the heterocyclic groups, an "aromatic heterocyclic group", which is a group obtained by removing one or more hydrogen atoms directly bonded to atoms constituting a ring from an aromatic heterocyclic compound, is preferred. A group obtained by removing p hydrogen atoms (p represents an integer of 1 or more) directly bonded to atoms constituting a ring from a heterocyclic compound is also referred to as a "p-valent heterocyclic group". A group obtained by removing p hydrogen atoms directly bonded to atoms constituting a ring from an aromatic heterocyclic compound is also referred to as a "p-valent aromatic heterocyclic group".
Examples of the "aromatic heterocyclic compound" include compounds in which the heterocycle itself exhibits aromaticity, such as azole, thiophene, furan, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, and carbazole, and phenoxazine. , phenothiazine, benzopyran, and the like, compounds in which an aromatic ring is condensed to a heterocyclic ring, even if the heterocyclic ring itself does not exhibit aromaticity.
The number of carbon atoms in the heterocyclic group is generally 1-60, preferably 2-40, more preferably 3-20, not including the number of carbon atoms in the substituent. The number of heteroatoms in the heterocyclic group, not including the number of heteroatoms in the substituent, is usually 1 to 30, preferably 1 to 10, more preferably 1 to 5, and still more preferably 1 to 3. is.
Heterocyclic groups include, for example, monocyclic heterocyclic compounds such as furan, thiophene, oxadiazole, thiadiazole, pyrrole, diazole, triazole, tetrazole, pyridine, diazabenzene and triazine, or Polycyclic heterocyclic compounds (e.g. azanaphthalene, diazanaphthalene, benzofuran, benzothiophene, indole, azaindole, diazaindole, benzodiazole, benzothiadiazole, benzotriazole, benzothiophene dioxide, benzothiophene oxide and bicyclic heterocyclic compounds such as benzopyranone; dibenzofuran, dibenzothiophene, dibenzothiophene dioxide, dibenzothiophene oxide, dibenzopyranone, dibenzoborol, dibenzosilol, dibenzophosphole, dibenzoselenophene, carbazole, azacarbazole , diazacarbazole, phenoxazine, phenothiazine, 9,10-dihydroacridine, 5,10-dihydrophenazine, acridone, phenazaborine, phenophosphadine, phenoselenazine, phenazacillin, azaanthracene, diazaanthracene, azaphenanthrene and diaza tricyclic heterocyclic compounds such as phenanthrene; tetracyclic heterocyclic compounds such as hexaazatriphenylene, benzocarbazole, azabenzocarbazole, diazabenzocarbazole, benzonaphthofuran and benzonaphthothiophene; dibenzocarbazole, India Pentacyclic heterocyclic compounds such as locarbazole, indenocarbazole, azaindolocarbazole, diazaindolocarbazole, azaindenocarbazole and diazaindenocarbazole; carbazolocarbazole, benzoindolocarbazole and benzoindenocarbazole Hexacyclic heterocyclic compounds such as; and heptacyclic heterocyclic compounds such as dibenzoindolocarbazole and dibenzoindenocarbazole. Groups excluding one or more are included. Heterocyclic groups include groups in which multiple of these groups are bonded. The heterocyclic group may have a substituent.
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。 "Halogen atom" means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
 「アミノ基」は、置換基を有していてもよく、置換アミノ基(即ち、第2級アミノ基又は第3級アミノ基、より好ましくは第3級アミノ基)が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基が複数存在する場合、それらは同一で異なっていてもよく、互いに結合して、それぞれが結合する窒素原子とともに環を形成していてもよい。
 置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基、ジアリールアミノ基、及び、これらの基における水素原子の一部又は全部が置換基で更に置換された基が挙げられる。
 置換アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(メチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基、及び、これらの基における水素原子の一部又は全部が置換基で更に置換された基が挙げられる。
The "amino group" may have a substituent, preferably a substituted amino group (that is, a secondary amino group or a tertiary amino group, more preferably a tertiary amino group). Preferred substituents on the amino group are alkyl groups, cycloalkyl groups, aryl groups and monovalent heterocyclic groups, and these groups may further have substituents. When the amino group has a plurality of substituents, they may be the same or different, and may be bonded to each other to form a ring together with the nitrogen atom to which each is bonded.
Substituted amino groups include, for example, dialkylamino groups, dicycloalkylamino groups, diarylamino groups, and groups in which some or all of the hydrogen atoms in these groups are further substituted with substituents.
Examples of substituted amino groups include dimethylamino group, diethylamino group, diphenylamino group, bis(methylphenyl)amino group, bis(3,5-di-tert-butylphenyl)amino group, and hydrogen in these groups. Groups in which some or all of the atoms are further substituted with substituents are included.
 「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20であり、より好ましくは3~10である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20であり、より好ましくは4~10である。
 「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20であり、より好ましくは5~10である。
 アルケニル基及びシクロアルケニル基は、置換基を有していてもよい。アルケニル基としては、例えば、ビニル基、1-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。シクロアルケニル基としては、例えば、シクロヘキセニル基、シクロヘキサジエニル基、シクロオクタトリエニル基、ノルボルニレニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
 「アルキニル基」は、直鎖及び分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~30であり、好ましくは3~10である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~10である。
 「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~10である。
 アルキニル基及びシクロアルキニル基は、置換基を有していてもよい。アルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。シクロアルキニル基としては、例えば、シクロオクチニル基、及び、該基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
An "alkenyl group" may be either linear or branched. The straight-chain alkenyl group usually has 2 to 30 carbon atoms, preferably 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms, not including the carbon atoms of the substituents. The number of carbon atoms in the branched alkenyl group is generally 3-30, preferably 4-20, more preferably 4-10, not including the number of carbon atoms in the substituent.
The number of carbon atoms in the "cycloalkenyl group" is generally 3-30, preferably 4-20, more preferably 5-10, not including the number of carbon atoms in the substituents.
Alkenyl groups and cycloalkenyl groups may have a substituent. Examples of alkenyl groups include vinyl group, 1-propenyl group, 2-butenyl group, 3-butenyl group, 3-pentenyl group, 4-pentenyl group, 1-hexenyl group, 5-hexenyl group, 7-octenyl group, and groups in which some or all of the hydrogen atoms in these groups have been substituted with substituents. The cycloalkenyl group includes, for example, a cyclohexenyl group, a cyclohexadienyl group, a cyclooctatrienyl group, a norbornylenyl group, and groups in which some or all of the hydrogen atoms in these groups are substituted with substituents. .
An "alkynyl group" may be either linear or branched. The number of carbon atoms in the alkynyl group is usually 2-30, preferably 3-10, not including the carbon atoms of the substituents. The number of carbon atoms in the branched alkynyl group is generally 4-30, preferably 4-10, not including the carbon atoms of the substituents.
The number of carbon atoms in the "cycloalkynyl group" is usually 4-30, preferably 4-10, not including the carbon atoms of the substituents.
The alkynyl group and cycloalkynyl group may have a substituent. Examples of alkynyl groups include ethynyl, 1-propynyl, 2-propynyl, 2-butynyl, 3-butynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 5-hexynyl, and groups in which some or all of the hydrogen atoms in these groups have been substituted with substituents. Cycloalkynyl groups include, for example, cyclooctynyl groups and groups in which some or all of the hydrogen atoms in the groups are substituted with substituents.
 「架橋基」とは、加熱、紫外線照射、近紫外線照射、可視光照射、赤外線照射、ラジカル反応等に供することにより、新たな結合を生成することが可能な基である。架橋基としては、架橋基A群から選ばれる少なくとも1種の架橋基(即ち、式(XL-1)~式(XL-19)で表される基から選ばれる少なくとも1種の基)が好ましい。 A "crosslinking group" is a group that can generate a new bond by subjecting it to heating, ultraviolet irradiation, near-ultraviolet irradiation, visible light irradiation, infrared irradiation, radical reaction, or the like. The cross-linking group is preferably at least one cross-linking group selected from Group A of cross-linking groups (that is, at least one group selected from groups represented by formulas (XL-1) to (XL-19)). .
 「置換基」としては、例えば、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基及びシクロアルキニル基が挙げられる。置換基は架橋基であってもよい。なお、置換基が複数存在する場合、それらは同一でも異なっていてもよい。また、置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよいが、環を形成しないことが好ましい。 The "substituent" includes, for example, a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an amino group, a substituted amino group, Alkenyl groups, cycloalkenyl groups, alkynyl groups and cycloalkynyl groups are included. A substituent may be a bridging group. In addition, when multiple substituents are present, they may be the same or different. In addition, when there are multiple substituents, they may bond with each other to form a ring together with the atoms to which they are bonded, but preferably do not form a ring.
 「2価の基」としては、例えば、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-N(R)-で表される基、-B(R)-で表される基、-P(R)-で表される基、-(O=)P(R)-で表される基、-O-で表される基、-S-で表される基、-Se-で表される基、-S(=O)-で表される基、-S(=O)-で表される基及び-C(=O)-で表される基が挙げられる。2価の基は、これらの基が複数結合した基を含む。2価の基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。Rは、水素原子又は置換基を表す。
 Rとしては、例えば、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基、ハロゲン原子及びシアノ基が挙げられ、好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
The "divalent group" includes, for example, an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -N(R 0 )-, represented by -B(R 0 )- group represented by -P(R 0 )-, group represented by -(O=)P(R 0 )-, group represented by -O-, represented by -S- a group represented by -Se-, a group represented by -S(=O)-, a group represented by -S(=O) 2 - and a group represented by -C(=O)- are mentioned. A divalent group includes groups in which a plurality of these groups are bonded. A divalent group may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. R 0 represents a hydrogen atom or a substituent.
R 0 includes, for example, a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, a halogen atom and a cyano group. , preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
 本明細書中、最低三重項励起状態のエネルギー準位と最低一重項励起状態のエネルギー準位との差の絶対値(以下、「ΔEST」ともいう。)の値の算出は、以下の方法で求められる。まず、B3LYPレベルの密度汎関数法により、化合物の基底状態を構造最適化する。その際、基底関数としては、6-31G*を用いる。そして、得られた構造最適化された構造を用いて、B3LYPレベルの時間依存密度汎関数法により、化合物のΔESTを算出する。但し、6-31G*が使用できない原子を含む場合は、該原子に対してはLANL2DZを用いる。なお、量子化学計算プログラムとしては、Gaussian09を用いて計算する。 In this specification, the absolute value of the difference between the energy level of the lowest triplet excited state and the energy level of the lowest singlet excited state (hereinafter also referred to as “ΔE ST ”) is calculated by the following method. is required. First, the ground state of the compound is structurally optimized by density functional theory at the B3LYP level. At that time, 6-31G* is used as a basis function. Then, using the obtained optimized structure, ΔEST of the compound is calculated by time-dependent density functional theory at the B3LYP level. However, when 6-31G* contains an atom that cannot be used, LANL2DZ is used for that atom. Gaussian09 is used as a quantum chemical calculation program.
 <第1の層>
 本実施形態の発光素子において、第1の層は、化合物(B)から選ばれる少なくとも1種の化合物(B-1)と、式(H-1)で表される化合物から選ばれる少なくとも1種の化合物(A-1)とを含有する層である。
 第1の層には、化合物(B-1)が1種単独で含有されていてもよく、2種以上含有されていてもよい。第1の層には、化合物(A-1)が1種単独で含有されていてもよく、2種以上含有されていてもよい。
<First layer>
In the light-emitting device of the present embodiment, the first layer includes at least one compound (B-1) selected from the compounds (B) and at least one compound selected from the compounds represented by the formula (H-1). It is a layer containing the compound (A-1) of
The first layer may contain one type of compound (B-1) alone, or may contain two or more types. The first layer may contain one type of compound (A-1) alone, or may contain two or more types.
 第1の層中の化合物(B-1)及び化合物(A-1)の合計の含有量は、第1の層としての機能が奏される範囲であればよい。第1の層中の化合物(B-1)及び化合物(A-1)の合計の含有量は、例えば、第1の層の全量基準で1~100質量%であってもよく、本実施形態の発光素子の発光効率がより優れるので、好ましくは10~100質量%であり、より好ましくは30~100質量%であり、更に好ましくは50~100質量%であり、特に好ましくは70~100質量%であり、とりわけ好ましくは90~100質量%である。
 第1の層中の化合物(B-1)の含有量は、第1の層としての機能が奏される範囲であればよい。第1の層中の化合物(B-1)の含有量は、化合物(B-1)及び化合物(A-1)の合計の含有量を100質量部とした場合、例えば、0.01~99質量部であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは0.1~90質量部であり、より好ましくは0.5~70質量部であり、更に好ましくは1~50質量部であり、特に好ましくは3~30質量部であり、とりわけ好ましくは5~20質量部である。
The total content of compound (B-1) and compound (A-1) in the first layer may be within a range in which the function of the first layer is exhibited. The total content of the compound (B-1) and the compound (A-1) in the first layer may be, for example, 1 to 100% by mass based on the total amount of the first layer. is preferably 10 to 100% by mass, more preferably 30 to 100% by mass, even more preferably 50 to 100% by mass, and particularly preferably 70 to 100% by mass. %, particularly preferably 90 to 100% by mass.
The content of the compound (B-1) in the first layer may be within a range in which the function as the first layer is exhibited. The content of the compound (B-1) in the first layer is, for example, 0.01 to 99 when the total content of the compound (B-1) and the compound (A-1) is 100 parts by mass. The amount is preferably 0.1 to 90 parts by mass, more preferably 0.5 to 70 parts by mass, and still more preferably 1 to 50 parts by mass, because the light emitting device of the present embodiment has better luminous efficiency. 3 to 30 parts by mass, particularly preferably 5 to 20 parts by mass.
 第1の層において、化合物(A-1)は、化合物(B-1)と、物理的、化学的又は電気的に相互作用することが好ましい。この相互作用により、例えば、本実施形態の発光素子の発光特性、電荷輸送特性又は電荷注入特性を向上又は調整することが可能となる。
 本実施形態の発光素子において、発光材料を一例として説明すれば、化合物(A-1)と化合物(B-1)とが電気的に相互作用し、化合物(A-1)から化合物(B-1)へ効率的に電気エネルギーを渡すことで、化合物(B-1)をより効率的に発光させることができ、本実施形態の発光素子の発光効率がより優れる。
In the first layer, compound (A-1) preferably physically, chemically or electrically interacts with compound (B-1). This interaction makes it possible, for example, to improve or adjust the emission properties, charge transport properties, or charge injection properties of the light emitting device of this embodiment.
In the light-emitting device of the present embodiment, if the light-emitting material is explained as an example, the compound (A-1) and the compound (B-1) electrically interact, By efficiently transferring electrical energy to 1), the compound (B-1) can be caused to emit light more efficiently, and the luminous efficiency of the light-emitting device of the present embodiment is more excellent.
 上記観点から、第1の層において、本実施形態の発光素子の発光効率がより優れるので、化合物(A-1)は、正孔注入性、正孔輸送性、電子注入性及び電子輸送性から選ばれる少なくとも1つの機能を有することが好ましい。
 上記観点から、第1の層において、発光材料を一例として説明すれば、本実施形態の発光素子の発光効率がより優れるので、化合物(B-1)は、発光性を有することが好ましい。
 上記観点から、第1の層において、化合物(A-1)の有する最低励起一重項状態(S)は、本実施形態の発光素子の発光効率がより優れるので、化合物(B-1)の有する最低励起一重項状態(S)より高いエネルギー準位であることが好ましい。
 上記観点から、第1の層において、化合物(A-1)の有する最低励起三重項状態(T)は、本実施形態の発光素子の発光効率がより優れるので、化合物(B-1)の有する最低励起三重項状態(T)より高いエネルギー準位であることが好ましい。
From the above viewpoint, the luminous efficiency of the light-emitting device of the present embodiment is more excellent in the first layer, and therefore the compound (A-1) has a hole injection property, a hole transport property, an electron injection property, and an electron transport property. It is preferred to have at least one function selected.
From the above point of view, if the light-emitting material in the first layer is used as an example, the compound (B-1) preferably has light-emitting properties because the light-emitting element of the present embodiment has superior light-emitting efficiency.
From the above viewpoint, in the first layer, the lowest excited singlet state (S 1 ) possessed by the compound (A-1) has superior luminous efficiency of the light-emitting device of the present embodiment. It is preferably at an energy level higher than the lowest excited singlet state (S 1 ).
From the above viewpoint, in the first layer, the lowest excited triplet state (T 1 ) possessed by the compound (A-1) is superior in the luminous efficiency of the light-emitting device of the present embodiment. An energy level higher than the lowest excited triplet state (T 1 ) is preferred.
 化合物(A-1)としては、本実施形態の発光素子を湿式法で作製できるので、化合物(B-1)を溶解することが可能な溶媒に対して溶解性を示すものであることが好ましい。 The compound (A-1) preferably exhibits solubility in a solvent capable of dissolving the compound (B-1), since the light-emitting device of this embodiment can be produced by a wet method. .
 第1の層において、化合物(A-1)は、ホスト材料又はゲスト材料であることが好ましく、ホスト材料であることが好ましい。
 第1の層において、化合物(B-1)は、ホスト材料又はゲスト材料であることが好ましく、ゲスト材料であることが好ましい。
In the first layer, the compound (A-1) is preferably a host material or guest material, preferably a host material.
In the first layer, the compound (B-1) is preferably a host material or guest material, preferably a guest material.
 本実施形態の発光素子において、ホスト材料は、ゲスト材料と、物理的、化学的又は電気的に相互作用する材料を意味する。この相互作用により、例えば、本実施形態の発光素子の発光特性、電荷輸送特性又は電荷注入特性を向上又は調整することが可能となる。
 本実施形態の発光素子において、発光材料を一例として説明すれば、ホスト材料とゲスト材料とが電気的に相互作用し、ホスト材料からゲスト材料へ効率的に電気エネルギーを渡すことで、ゲスト材料をより効率的に発光させることができ、本実施形態の発光素子の発光効率がより優れる。
In the light-emitting device of this embodiment, the host material means a material that physically, chemically or electrically interacts with the guest material. This interaction makes it possible, for example, to improve or adjust the emission properties, charge transport properties, or charge injection properties of the light emitting device of this embodiment.
In the light-emitting element of the present embodiment, taking the light-emitting material as an example, the host material and the guest material electrically interact with each other, and electric energy is efficiently transferred from the host material to the guest material. Light can be emitted more efficiently, and the luminous efficiency of the light-emitting element of this embodiment is more excellent.
 上記観点から、本実施形態の発光素子において、本実施形態の発光素子の発光効率がより優れるので、ホスト材料は、正孔注入性、正孔輸送性、電子注入性及び電子輸送性から選ばれる少なくとも1つの機能を有することが好ましい。
 上記観点から、本実施形態の発光素子において、発光材料を一例として説明すれば、本実施形態の発光素子の発光効率がより優れるので、ゲスト材料は、発光性を有することが好ましい。
 上記観点から、本実施形態の発光素子において、ホスト材料の有する最低励起三重項状態(T)は、本実施形態の発光素子の発光効率がより優れるので、ゲスト材料の有する最低励起三重項状態(T)より高いエネルギー準位であることが好ましい。
 上記観点から、本実施形態の発光素子において、ホスト材料の有する最低励起一重項状態(S)は、本実施形態の発光素子の発光効率がより優れるので、ゲスト材料の有する最低励起一重項状態(S)より高いエネルギー準位であることが好ましい。
From the above viewpoint, in the light-emitting device of this embodiment, the luminous efficiency of the light-emitting device of this embodiment is superior, so the host material is selected from hole injection properties, hole transport properties, electron injection properties, and electron transport properties. It preferably has at least one function.
From the above point of view, if the light-emitting material in the light-emitting element of the present embodiment is used as an example, the light-emitting element of the present embodiment has superior luminous efficiency, so the guest material preferably has light-emitting properties.
From the above point of view, in the light-emitting device of this embodiment, the lowest excited triplet state (T 1 ) of the host material has superior luminous efficiency of the light-emitting device of this embodiment, so the lowest excited triplet state of the guest material An energy level higher than (T 1 ) is preferred.
From the above point of view, in the light-emitting device of this embodiment, the lowest excited singlet state (S 1 ) of the host material has superior luminous efficiency of the light-emitting device of this embodiment, so the lowest excited singlet state of the guest material An energy level higher than (S 1 ) is preferred.
 本実施形態の発光素子において、第1の層が、ホスト材料とゲスト材料とを含有する層である場合、第1の層中のホスト材料及びゲスト材料の合計の含有量は、第1の層としての機能が奏される範囲であればよい。本実施形態の発光素子において、第1の層が、ホスト材料とゲスト材料とを含有する層である場合、第1の層中のホスト材料及びゲスト材料の合計の含有量は、例えば、第1の層の全量基準で1~100質量%であってもよく、本実施形態の発光素子の発光効率がより優れるので、好ましくは10~100質量%であり、より好ましくは30~100質量%であり、更に好ましくは50~100質量%であり、特に好ましくは70~100質量%であり、とりわけ好ましくは90~100質量%である。
 本実施形態の発光素子において、第1の層が、ホスト材料とゲスト材料とを含有する層である場合、第1の層中のゲスト材料の含有量は、第1の層としての機能が奏される範囲であればよい。本実施形態の発光素子において、第1の層が、ホスト材料とゲスト材料とを含有する層である場合、第1の層中のゲスト材料の含有量は、ホスト材料及びゲスト材料の合計の含有量を100質量部とした場合、例えば、0.01~99質量部であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは0.1~90質量部であり、より好ましくは0.5~70質量部であり、更に好ましくは1~50質量部であり、特に好ましくは3~30質量部であり、とりわけ好ましくは5~20質量部である。
In the light emitting device of this embodiment, when the first layer is a layer containing a host material and a guest material, the total content of the host material and the guest material in the first layer is It is sufficient if it is within the range where the function as In the light-emitting device of this embodiment, when the first layer is a layer containing a host material and a guest material, the total content of the host material and the guest material in the first layer is, for example, the first It may be 1 to 100% by mass based on the total amount of the layer, and is preferably 10 to 100% by mass, more preferably 30 to 100% by mass. more preferably 50 to 100% by mass, particularly preferably 70 to 100% by mass, particularly preferably 90 to 100% by mass.
In the light emitting device of this embodiment, when the first layer is a layer containing a host material and a guest material, the content of the guest material in the first layer is It is acceptable as long as it is within the range of In the light emitting device of the present embodiment, when the first layer is a layer containing a host material and a guest material, the content of the guest material in the first layer is the total content of the host material and the guest material. When the amount is 100 parts by mass, for example, it is 0.01 to 99 parts by mass, and since the luminous efficiency of the light emitting device of the present embodiment is more excellent, it is preferably 0.1 to 90 parts by mass, more preferably It is 0.5 to 70 parts by mass, more preferably 1 to 50 parts by mass, particularly preferably 3 to 30 parts by mass, and most preferably 5 to 20 parts by mass.
 ホスト材料としては、本実施形態の発光素子を湿式法で作製できるので、ゲスト材料を溶解することが可能な溶媒に対して溶解性を示すものであることが好ましい。 As the host material, since the light-emitting device of this embodiment can be produced by a wet method, it is preferable that the host material is soluble in a solvent capable of dissolving the guest material.
 [化合物(B)]
 化合物(B)は、ホウ素原子及び窒素原子を環内に含む縮合複素環骨格(b)を有する化合物である。
 化合物(B)において、縮合複素環骨格(b)に含まれる窒素原子のうち、少なくとも1つは二重結合を形成していない窒素原子であることが好ましく、縮合複素環骨格(b)に含まれる窒素原子の全てが二重結合を形成していない窒素原子であることがより好ましい。
 化合物(B)は、遷移金属元素を含まない化合物(即ち、典型元素のみから構成される化合物)であることが好ましい。
[Compound (B)]
Compound (B) is a compound having a condensed heterocyclic skeleton (b) containing a boron atom and a nitrogen atom in the ring.
In the compound (B), at least one of the nitrogen atoms contained in the condensed heterocyclic skeleton (b) is preferably a nitrogen atom that does not form a double bond. It is more preferable that all of the nitrogen atoms in the group are nitrogen atoms that do not form double bonds.
The compound (B) is preferably a compound containing no transition metal element (that is, a compound composed only of typical elements).
 縮合複素環骨格(b)の炭素原子数は、置換基の炭素原子数を含めないで、通常1~60であり、好ましくは5~40であり、より好ましくは7~35であり、更に好ましくは10~30であり、特に好ましくは10~25であり、とりわけ好ましくは15~25である。
 縮合複素環骨格(b)のヘテロ原子数は、置換基のヘテロ原子数を含めないで、通常2~30であり、好ましくは2~15であり、より好ましくは2~10であり、更に好ましくは2~5であり、特に好ましくは2又は3である。
 縮合複素環骨格(b)のホウ素原子数は、置換基のホウ素原子数を含めないで、通常1~10であり、好ましくは、1~5であり、より好ましくは1~3であり、更に好ましくは1である。
 縮合複素環骨格(b)の窒素原子数は、置換基の窒素原子数を含めないで、通常1~20であり、好ましくは1~10であり、より好ましくは1~5であり、更に好ましくは1~3であり、特に好ましくは2である。
The number of carbon atoms in the condensed heterocyclic skeleton (b) is usually 1 to 60, preferably 5 to 40, more preferably 7 to 35, still more preferably 7 to 35, not including the number of carbon atoms in the substituents. is 10-30, particularly preferably 10-25, most preferably 15-25.
The number of heteroatoms in the condensed heterocyclic skeleton (b) is usually 2 to 30, preferably 2 to 15, more preferably 2 to 10, still more preferably 2 to 10, not including the number of heteroatoms in the substituents. is 2 to 5, particularly preferably 2 or 3.
The number of boron atoms in the condensed heterocyclic skeleton (b) is usually 1 to 10, preferably 1 to 5, more preferably 1 to 3, not including the number of boron atoms in the substituents, and further 1 is preferred.
The number of nitrogen atoms in the condensed heterocyclic skeleton (b) is usually 1 to 20, preferably 1 to 10, more preferably 1 to 5, and still more preferably 1 to 5, not including the number of nitrogen atoms in the substituents. is 1 to 3, particularly preferably 2.
 縮合複素環骨格(b)は、本実施形態の発光素子の発光効率がより優れるので、ホウ素原子と二重結合を形成していない窒素原子とを環内に含むことが好ましい。 The condensed heterocyclic skeleton (b) preferably contains a nitrogen atom that does not form a double bond with a boron atom in the ring because the luminous efficiency of the light emitting device of the present embodiment is more excellent.
 縮合複素環骨格(b)は、本実施形態の発光素子の発光効率がより優れるので、好ましくは3~12環式縮合複素環骨格(好ましくは4~12環式縮合複素環骨格であり、より好ましくは5~12環式縮合複素環骨格である。)であり、より好ましくは3~10環式縮合複素環骨格(好ましくは4~10環式縮合複素環骨格であり、より好ましくは5~10環式縮合複素環骨格である。)であり、更に好ましくは3~8環式縮合複素環骨格(好ましくは4~8環式縮合複素環骨格であり、より好ましくは5~8環式縮合複素環骨格である。)であり、特に好ましくは3~6環式縮合複素環骨格(好ましくは4~6環式縮合複素環骨格であり、より好ましくは5又は6環式縮合複素環骨格である。)であり、とりわけ好ましくは5環式縮合複素環骨格である。 The condensed heterocyclic skeleton (b) is preferably a 3- to 12-ring condensed heterocyclic skeleton (preferably a 4- to 12-ring condensed heterocyclic skeleton), since the light-emitting device of the present embodiment has superior luminous efficiency. It is preferably a 5- to 12-ring condensed heterocyclic ring skeleton.), more preferably a 3- to 10-ring condensed heterocyclic ring skeleton (preferably a 4- to 10-ring condensed heterocyclic ring skeleton, more preferably 5 to 10-ring condensed heterocyclic skeleton), more preferably 3- to 8-ring condensed heterocyclic skeleton (preferably 4- to 8-ring condensed heterocyclic skeleton, more preferably 5- to 8-ring condensed heterocyclic skeleton). A heterocyclic ring skeleton.), particularly preferably a 3- to 6-ring condensed heterocyclic ring skeleton (preferably a 4- to 6-ring condensed heterocyclic ring skeleton, more preferably a 5- or 6-ring condensed heterocyclic ring skeleton). ), and a pentacyclic condensed heterocyclic skeleton is particularly preferred.
 縮合複素環骨格(b)は、縮合複素環骨格(b)を含む複素環基(b’)を有する化合物ということもできる。 The condensed heterocyclic skeleton (b) can also be said to be a compound having a heterocyclic group (b') containing the condensed heterocyclic skeleton (b).
 複素環基(b’)は、ホウ素原子及び窒素原子を環内に含む、多環式の複素環式化合物から、環を構成する原子に直接結合する水素原子1個以上を除いた基であってよく、該基は置換基を有していてもよい。
 複素環基(b’)において、多環式の複素環式化合物は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、ホウ素原子と二重結合を形成していない窒素原子とを環内に含む、多環式の複素環式化合物である。
 複素環基(b’)において、多環式の複素環式化合物は、本実施形態の発光素子の発光効率がより優れるので、好ましくは3~12環式の複素環式化合物(好ましくは4~12環式の複素環式化合物であり、より好ましくは5~12環式の複素環式化合物である。)であり、より好ましくは3~10環式の複素環式化合物(好ましくは4~10環式の複素環式化合物であり、より好ましくは5~10環式の複素環式化合物である。)であり、更に好ましくは3~8環式の複素環式化合物(好ましくは4~8環式の複素環式化合物であり、より好ましくは5~8環式の複素環式化合物である。)であり、特に好ましくは3~6環式の複素環式化合物(好ましくは4~6環式の複素環式化合物であり、より好ましくは5又は6環式の複素環式化合物である。)であり、とりわけ好ましくは5環式の複素環式化合物である。
The heterocyclic group (b') is a polycyclic heterocyclic compound containing a boron atom and a nitrogen atom in the ring, from which one or more hydrogen atoms directly bonded to the atoms constituting the ring are removed. and the group may have a substituent.
In the heterocyclic group (b′), a polycyclic heterocyclic compound is preferably combined with a nitrogen atom that does not form a double bond with a boron atom, because the light emitting device of the present embodiment has superior luminous efficiency. It is a polycyclic heterocyclic compound containing in the ring.
In the heterocyclic group (b′), a polycyclic heterocyclic compound is preferably a 3- to 12-ring heterocyclic compound (preferably a 4- to 12 ring heterocyclic compounds, more preferably 5 to 12 ring heterocyclic compounds.), more preferably 3 to 10 ring heterocyclic compounds (preferably 4 to 10 A cyclic heterocyclic compound, more preferably a 5- to 10-ring heterocyclic compound.), more preferably a 3- to 8-ring heterocyclic compound (preferably a 4- to 8-ring is a heterocyclic compound of the formula, more preferably a 5- to 8-ring heterocyclic compound.), particularly preferably a 3- to 6-ring heterocyclic compound (preferably a 4- to 6-ring and more preferably a penta- or six-ring heterocyclic compound), particularly preferably a pentacyclic heterocyclic compound.
 複素環基(b’)が有していてもよい置換基としては、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アリール基、1価の複素環基又は置換アミノ基が好ましく、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基が更に好ましく、アルキル基、シクロアルキル基又はアリール基が特に好ましく、これらの基は更に置換基を有していてもよい。 Examples of substituents that the heterocyclic group (b′) may have include halogen atoms, cyano groups, alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryloxy groups, aryl groups, monovalent heterocyclic groups. A cyclic group or a substituted amino group is preferable, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferable, an alkyl group, a cycloalkyl group, an aryl group, A monovalent heterocyclic group or a substituted amino group is more preferred, and an alkyl group, cycloalkyl group or aryl group is particularly preferred, and these groups may further have a substituent.
 複素環基(b’)が有していてもよい置換基における、アリール基としては、好ましくは、単環式又は2環式~6環式の芳香族炭化水素から、環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、単環式、2環式又は3環式の芳香族炭化水素から、環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン又はフルオレンから環を構成する原子に直接結合する水素原子1個を除いた基であり、特に好ましくは、フェニル基であり、これらの基は置換基を有していてもよい。
 複素環基(b’)が有していてもよい置換基における、1価の複素環基としては、好ましくは、単環式又は2環式~6環式の複素環式化合物から、環を構成する原子に直接結合する水素原子1個を除いた基であり、単環式、2環式又は3環式の複素環式化合物から、環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン又はフェノチアジンから環を構成する原子に直接結合する水素原子1個を除いた基であり、特に好ましくは、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン又はフェノチアジンから環を構成する原子に直接結合する水素原子1個を除いた基であり、とりわけ好ましくは、カルバゾール、フェノキサジン又はフェノチアジンから環を構成する原子に直接結合する水素原子1個を除いた基であり、これらの基は置換基を有していてもよい。複素環基(b’)が有していてもよい置換基における、1価の複素環基は、ピリジン、ジアザベンゼン又はトリアジンから環を構成する原子に直接結合する水素原子1個を除いた基であってもよく、該基は置換基を有していてもよい。
 複素環基(b’)が有していてもよい置換基における置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、複素環基(b’)が有していてもよい置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
The aryl group in the substituent optionally possessed by the heterocyclic group (b′) is preferably a monocyclic or bicyclic to hexacyclic aromatic hydrocarbon to an atom constituting the ring. A group excluding one directly bonded hydrogen atom, more preferably a monocyclic, bicyclic or tricyclic aromatic hydrocarbon in which one hydrogen atom directly bonded to a ring-constituting atom is more preferably benzene, naphthalene, anthracene, phenanthrene or fluorene from which one hydrogen atom directly bonded to a ring-constituting atom has been removed, particularly preferably a phenyl group; The group may have a substituent.
The monovalent heterocyclic group in the substituent that the heterocyclic group (b') may have is preferably a monocyclic or bicyclic to hexacyclic heterocyclic compound, A group in which one hydrogen atom directly bonded to a constituent atom is removed, and one hydrogen atom directly bonded to a ring-constituting atom is removed from a monocyclic, bicyclic or tricyclic heterocyclic compound. more preferably pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, phenoxazine or phenothiazine, excluding one hydrogen atom directly bonded to a ring-constituting atom groups, particularly preferably carbazole, dibenzofuran, dibenzothiophene, phenoxazine or phenothiazine, excluding one hydrogen atom directly bonded to a ring-constituting atom, particularly preferably carbazole, phenoxazine or It is a group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from phenothiazine, and these groups may have a substituent. The monovalent heterocyclic group in the substituents optionally possessed by the heterocyclic group (b') is a group obtained by removing one hydrogen atom directly bonded to a ring-constituting atom from pyridine, diazabenzene or triazine. may be present, and the group may have a substituent.
In the substituted amino group in the substituent optionally possessed by the heterocyclic group (b′), the substituent possessed by the amino group is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group. The group may further have a substituent. Examples and preferred ranges of the aryl group and the monovalent heterocyclic group in the substituents of the amino group are, respectively, the aryl group and the monovalent heterocyclic ring in the substituents that the heterocyclic group (b') may have It is the same as the example and preferred range of the group.
 複素環基(b’)が有していてもよい置換基が更に有していてもよい置換基としては、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アリール基、1価の複素環基又は置換アミノ基が好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基、シクロアルキル基又はアリール基が更に好ましく、アルキル基又はシクロアルキル基が特に好ましく、これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。
 複素環基(b’)が有していてもよい置換基が更に有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、複素環基(b’)が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
Substituents which the heterocyclic group (b′) may further have include halogen atoms, cyano groups, alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl An oxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group is preferred, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferred, an alkyl group, a cycloalkyl group or An aryl group is more preferred, and an alkyl group or a cycloalkyl group is particularly preferred. These groups may further have a substituent, but preferably have no further substituent.
Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in the substituent which the heterocyclic group (b′) may further have are The same as the examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in the substituents that the cyclic group (b') may have.
 「二重結合を形成していない窒素原子」とは、他の3つの原子とそれぞれ単結合で結合する窒素原子を意味する。
 「環内に二重結合を形成していない窒素原子を含む」とは、環内に-N(-R)-(式中、Rは水素原子又は置換基を表す。)又は式:
A "nitrogen atom that does not form a double bond" means a nitrogen atom that is bonded to three other atoms via single bonds.
"Containing a nitrogen atom that does not form a double bond in the ring" means -N(-R N )- (wherein R N represents a hydrogen atom or a substituent) or the formula:
Figure JPOXMLDOC01-appb-C000018

で表される基を含むことを意味する。
Figure JPOXMLDOC01-appb-C000018

It means that the group represented by is included.
 化合物(B)は、本実施形態の発光素子の発光効率がより優れるので、熱活性化遅延蛍光(TADF)性化合物であることが好ましい。 The compound (B) is preferably a thermally activated delayed fluorescence (TADF) compound, since the luminous efficiency of the light emitting device of this embodiment is superior.
 化合物(B)のΔESTは、2.0eV以下であってもよく、1.5eV以下であってもよく、1.0eV以下であってもよく、0.80eV以下であってもよいが、本実施形態の発光素子の発光効率がより優れるので、好ましくは0.60eV以下であり、より好ましくは0.55eV以下であり、更に好ましくは0.50eV以下である。また、化合物(B)のΔESTは、0.001eV以上であってもよく、0.01eV以上であってもよく、0.10eV以上であってもよく、0.20eV以上であってもよく、0.30eV以上であってもよく、0.40eV以上であってもよい。 ΔEST of compound (B) may be 2.0 eV or less, 1.5 eV or less, 1.0 eV or less, or 0.80 eV or less, It is preferably 0.60 eV or less, more preferably 0.55 eV or less, and still more preferably 0.50 eV or less, since the light emitting device of the present embodiment has superior luminous efficiency. ΔEST of compound (B) may be 0.001 eV or more, 0.01 eV or more, 0.10 eV or more, or 0.20 eV or more. , 0.30 eV or more, or 0.40 eV or more.
 化合物(B)は、低分子化合物であることが好ましい。
 化合物(B)の分子量は、好ましくは1×10~5×10であり、より好ましくは2×10~3×10であり、更に好ましくは3×10~1.5×10であり、特に好ましくは4×10~1×10である。
Compound (B) is preferably a low-molecular-weight compound.
The molecular weight of compound (B) is preferably 1×10 2 to 5×10 3 , more preferably 2×10 2 to 3×10 3 , still more preferably 3×10 2 to 1.5×10 3 , particularly preferably 4×10 2 to 1×10 3 .
 化合物(B)は、本実施形態の発光素子の発光効率がより優れるので、式(1-1)、式(1-2)又は式(1-3)で表される化合物であることが好ましく、式(1-2)又は式(1-3)で表される化合物であることがより好ましく、式(1-2)で表される化合物であることが更に好ましい。 Compound (B) is preferably a compound represented by formula (1-1), formula (1-2) or formula (1-3), since the light-emitting device of the present embodiment has superior luminous efficiency. , Formula (1-2) or Formula (1-3), more preferably a compound represented by Formula (1-2).
 Ar、Ar及びArは、本実施形態の発光素子の発光効率がより優れるので、好ましくは、単環式若しくは2環式~6環式の芳香族炭化水素、又は、単環式若しくは2環式~6環式の複素環式化合物から、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、より好ましくは、単環式、2環式若しくは3環式の芳香族炭化水素、又は、単環式、2環式若しくは3環式の複素環式化合物から、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、更に好ましくは、単環式の芳香族炭化水素又は単環式の複素環式化合物から、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、特に好ましくは、ベンゼン、ピリジン又はジアザベンゼンから、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、とりわけ好ましくは、ベンゼンから、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、これらの基は置換基を有していてもよい。
 Ar、Ar及びArが有していてもよい置換基の例及び好ましい範囲は、複素環基(b’)が有していてもよい置換基の例及び好ましい範囲と同じである。
Ar 1 , Ar 2 and Ar 3 are preferably monocyclic or bicyclic to hexacyclic aromatic hydrocarbons, or monocyclic or A group obtained by removing one or more hydrogen atoms directly bonded to atoms constituting a ring from a bicyclic to hexacyclic heterocyclic compound, more preferably monocyclic, bicyclic or tricyclic A group obtained by removing one or more hydrogen atoms directly bonded to the atoms constituting the ring from an aromatic hydrocarbon or a monocyclic, bicyclic or tricyclic heterocyclic compound, more preferably , a group obtained by removing one or more hydrogen atoms directly bonded to the atoms constituting the ring from a monocyclic aromatic hydrocarbon or a monocyclic heterocyclic compound, particularly preferably benzene, pyridine or diazabenzene is a group obtained by removing one or more hydrogen atoms directly bonded to ring-constituting atoms from benzene, and particularly preferably a group obtained by removing one or more hydrogen atoms directly bonded to ring-constituting atoms from benzene. , these groups may have a substituent.
Examples and preferred ranges of substituents that Ar 1 , Ar 2 and Ar 3 may have are the same as examples and preferred ranges of substituents that the heterocyclic group (b′) may have.
 Y及びYは、本実施形態の発光素子の発光効率がより優れるので、好ましくは、単結合、酸素原子、硫黄原子、セレン原子、-N(Ry)-で表される基、-B(Ry)-で表される基、アルキレン基又はシクロアルキレン基であり、より好ましくは、単結合、酸素原子、硫黄原子、-N(Ry)-で表される基、-B(Ry)-で表される基又はアルキレン基であり、更に好ましくは、酸素原子、硫黄原子、-N(Ry)-で表される基又はアルキレン基であり、特に好ましくは、酸素原子、硫黄原子又は-N(Ry)-で表される基であり、とりわけ好ましくは、-N(Ry)-で表される基であり、これらの基は置換基を有していてもよい。 Y 2 and Y 3 are preferably a single bond, an oxygen atom, a sulfur atom, a selenium atom, a group represented by -N(Ry)-, -B A group represented by (Ry)-, an alkylene group or a cycloalkylene group, more preferably a single bond, an oxygen atom, a sulfur atom, a group represented by -N(Ry)-, or -B(Ry)- A group or an alkylene group represented by, more preferably an oxygen atom, a sulfur atom, a group represented by -N(Ry)- or an alkylene group, particularly preferably an oxygen atom, a sulfur atom or -N It is a group represented by (Ry)-, particularly preferably a group represented by -N(Ry)-, and these groups may have a substituent.
 Y及びYにおけるアリーレン基としては、好ましくは、単環式又は2環式~6環式の芳香族炭化水素から、環を構成する炭素原子に直接結合する水素原子2個を除いた基であり、より好ましくは、単環式、2環式又は3環式の芳香族炭化水素から、環を構成する炭素原子に直接結合する水素原子2個を除いた基であり、更に好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン又はフルオレンから、環を構成する炭素原子に直接結合する水素原子2個を除いた基であり、特に好ましくは、ベンゼン、ナフタレン又はフルオレンから、環を構成する炭素原子に直接結合する水素原子2個を除いた基であり、とりわけ好ましくは、フェニレン基であり、これらの基は置換基を有していてもよい。
 Y及びYにおける2価の複素環基としては、好ましくは、単環式又は2環式~6環式の複素環式化合物から、環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、より好ましくは、単環式、2環式又は3環式の複素環式化合物から、環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、更に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン又は5,10-ジヒドロフェナジンから、環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、特に好ましくは、ピリジン、ジアザベンゼン、トリアジン、カルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン又は5,10-ジヒドロフェナジンから、環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、とりわけ好ましくは、ピリジン、ジアザベンゼン又はトリアジンから、環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
 Y及びYにおけるアルキレン基としては、好ましくは、メチレン基、エチレン基又はプロピレン基であり、より好ましくはメチレン基であり、これらの基は置換基を有していてもよい。
The arylene group for Y 2 and Y 3 is preferably a group obtained by removing two hydrogen atoms directly bonded to the carbon atoms constituting the ring from a monocyclic or bicyclic to hexacyclic aromatic hydrocarbon. and more preferably a group obtained by removing two hydrogen atoms directly bonded to the carbon atoms constituting the ring from a monocyclic, bicyclic or tricyclic aromatic hydrocarbon, more preferably benzene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene or fluorene from which two hydrogen atoms directly bonded to carbon atoms constituting a ring are removed; particularly preferably, benzene, naphthalene or fluorene constitutes a ring; It is a group excluding two hydrogen atoms directly bonded to a carbon atom, particularly preferably a phenylene group, and these groups may have a substituent.
The divalent heterocyclic group for Y 2 and Y 3 is preferably a monocyclic or bicyclic to hexacyclic heterocyclic compound directly bonded to a ring-constituting atom (preferably a carbon atom). A group excluding two hydrogen atoms, more preferably a monocyclic, bicyclic or tricyclic heterocyclic compound, a hydrogen directly bonded to an atom (preferably a carbon atom) constituting a ring A group with two atoms removed, more preferably pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, carbazole, azacarbazole, diazacarbazole, phenoxazine, phenothiazine, 9,10- A group obtained by removing two hydrogen atoms directly bonded to ring-constituting atoms (preferably carbon atoms) from dihydroacridine or 5,10-dihydrophenazine, particularly preferably pyridine, diazabenzene, triazine, carbazole, phenoxy a group obtained by removing two hydrogen atoms directly bonded to ring-constituting atoms (preferably carbon atoms) from sazine, phenothiazine, 9,10-dihydroacridine or 5,10-dihydrophenazine, particularly preferably pyridine , diazabenzene or triazine by removing two hydrogen atoms directly bonded to atoms (preferably carbon atoms) constituting the ring, and these groups may have a substituent.
The alkylene group for Y 2 and Y 3 is preferably a methylene group, an ethylene group or a propylene group, more preferably a methylene group, and these groups may have a substituent.
 Y、Y及びYが有していてもよい置換基の例及び好ましい範囲は、複素環基(b’)が有していてもよい置換基の例及び好ましい範囲と同じである。 Examples and preferred ranges of substituents that Y 1 , Y 2 and Y 3 may have are the same as examples and preferred ranges of substituents that the heterocyclic group (b′) may have.
 Ryは、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 Ryにおけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、複素環基(b’)が有していてもよい置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
 Ryが有していてもよい置換基の例及び好ましい範囲は、複素環基(b’)が有していてもよい置換基の例及び好ましい範囲と同じである。
Ry is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, still more preferably an aryl group; A group may have a substituent.
Examples and preferred ranges of the aryl group and monovalent heterocyclic group in Ry are respectively examples and preferred examples of the aryl group and monovalent heterocyclic group in the substituent that the heterocyclic group (b′) may have Same as range.
Examples and preferred ranges of substituents that Ry may have are the same as examples and preferred ranges of substituents that the heterocyclic group (b') may have.
 YとArとは、直接結合して、又は、2価の基を介して結合して、環(例えば、YとArとを含む環で、ホウ素原子(B)、Y、Ar及びArで構成される環とは別の環)を形成してもよいが、化合物(B)の合成が容易なので、環を形成しないことが好ましい。
 YとArとが、2価の基を介して結合して、環を形成する場合において、2価の基としては、好ましくは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-N(R)-で表される基、-B(R)-で表される基、-O-で表される基、-S-で表される基又は-Se-で表される基であり、より好ましくは、アルキレン基、シクロアルキレン基、-N(R)-で表される基、-B(R)-で表される基、-O-で表される基、-S-で表される基又は-Se-で表される基であり、更に好ましくは、アルキレン基、-N(R)-で表される基、-O-で表される基又は-S-で表される基であり、特に好ましくは、-O-で表される基、-S-で表される基又は-N(R)-で表される基であり、とりわけ好ましくは、-N(R)-で表される基であり、これらの基は置換基を有していてもよい。
 YとArとが、2価の基を介して結合して、環を形成する場合において、2価の基におけるアリーレン基、2価の複素環基及びアルキレン基の例及び好ましい範囲は、それぞれ、Y及びYにおけるアリーレン基、2価の複素環基及びアルキレン基の例及び好ましい範囲と同じである。
 YとArとが、2価の基を介して結合して、環を形成する場合において、2価の基が有していてもよい置換基の例及び好ましい範囲は、Y及びYが有していてもよい置換基の例及び好ましい範囲と同じである。
 YとArとが、2価の基を介して結合して、環を形成する場合において、2価の基におけるRの好ましい範囲等は、Ryの好ましい範囲等と同じである。
Y 1 and Ar 1 are directly bonded or bonded via a divalent group to form a ring (for example, a ring containing Y 1 and Ar 1 , a boron atom (B), Y 1 , A ring other than the ring composed of Ar 1 and Ar 2 ) may be formed, but it is preferable not to form a ring because the synthesis of compound (B) is easy.
When Y 1 and Ar 1 are bonded through a divalent group to form a ring, the divalent group is preferably an alkylene group, a cycloalkylene group, an arylene group, a divalent hetero a cyclic group, a group represented by -N(R 0 )-, a group represented by -B(R 0 )-, a group represented by -O-, a group represented by -S- or -Se- and more preferably an alkylene group, a cycloalkylene group, a group represented by -N(R 0 )-, a group represented by -B(R 0 )-, and a group represented by -O- a group represented by -S- or a group represented by -Se-, more preferably an alkylene group, a group represented by -N(R 0 )-, a group represented by -O- or a group represented by -S-, particularly preferably a group represented by -O-, a group represented by -S- or a group represented by -N(R 0 )- , particularly preferably a group represented by -N(R 0 )-, and these groups may have a substituent.
When Y 1 and Ar 1 are bonded via a divalent group to form a ring, examples and preferred ranges of the arylene group, divalent heterocyclic group and alkylene group in the divalent group are They are the same as the examples and preferred ranges of the arylene group, divalent heterocyclic group and alkylene group for Y2 and Y3 , respectively.
When Y 1 and Ar 1 are bonded via a divalent group to form a ring, examples and preferred ranges of substituents that the divalent group may have include Y 2 and Y It is the same as the examples and preferred range of the substituent that 3 may have.
When Y 1 and Ar 1 are bonded via a divalent group to form a ring, the preferred range of R 0 in the divalent group is the same as the preferred range of Ry.
 YとArとは、直接結合して、又は、2価の基を介して結合して、環(例えば、YとArとを含む環で、ホウ素原子(B)、Y、Ar及びArで構成される環とは別の環)を形成してもよいが、化合物(B)の合成が容易なので、環を形成しないことが好ましい。YとArとが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲は、YとArとが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲と同じである。
 YとArとは、直接結合して、又は、2価の基を介して結合して、環(例えば、YとArとを含む環で、ホウ素原子(B)、Y、Ar及びArで構成される環とは別の環)を形成してもよいが、化合物(B)の合成が容易なので、環を形成しないことが好ましい。YとArとが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲は、YとArとが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲と同じである。
 YとArとは、直接結合して、又は、2価の基を介して結合して、環(例えば、YとArとを含む環で、ホウ素原子(B)、Y、Ar及びArで構成される環とは別の環)を形成してもよいが、化合物(B)の合成が容易なので、環を形成しないことが好ましい。YとArとが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲は、YとArとが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲と同じである。
 YとArとは、直接結合して、又は、2価の基を介して結合して、環(例えば、YとArとを含む環で、ホウ素原子(B)、Y、Ar及びArで構成される環とは別の環)を形成してもよいが、化合物(B)の合成が容易なので、環を形成しないことが好ましい。YとArとが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲は、YとArとが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲と同じである。
 YとArとは、直接結合して、又は、2価の基を介して結合して、環(例えば、YとArとを含む環で、ホウ素原子(B)、Y、Ar及びArで構成される環とは別の環)を形成してもよいが、化合物(B)の合成が容易なので、環を形成しないことが好ましい。YとArとが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲は、YとArとが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲と同じである。
Y 1 and Ar 2 are directly bonded or bonded via a divalent group to form a ring (for example, a ring containing Y 1 and Ar 2 , a boron atom (B), Y 1 , A ring other than the ring composed of Ar 1 and Ar 2 ) may be formed, but it is preferable not to form a ring because the synthesis of compound (B) is easy. Examples and preferred ranges of the divalent group when Y 1 and Ar 2 are bonded via a divalent group to form a ring are Y 1 and Ar 1 via a divalent group are the same as the examples and preferred ranges of the divalent group in the case of forming a ring by combining with each other.
Y 2 and Ar 1 are directly bonded or bonded via a divalent group to form a ring (for example, a ring containing Y 2 and Ar 1 , a boron atom (B), Y 2 , A ring other than the ring composed of Ar 1 and Ar 3 ) may be formed, but it is preferable not to form a ring because the synthesis of the compound (B) is easy. Examples and preferred ranges of the divalent group when Y 2 and Ar 1 are bonded via a divalent group to form a ring are Y 1 and Ar 1 via a divalent group are the same as the examples and preferred ranges of the divalent group in the case of forming a ring by combining with each other.
Y 2 and Ar 3 are directly bonded or bonded via a divalent group to form a ring (for example, a ring containing Y 2 and Ar 3 , a boron atom (B), Y 2 , A ring other than the ring composed of Ar 1 and Ar 3 ) may be formed, but it is preferable not to form a ring because the synthesis of the compound (B) is easy. Examples and preferred ranges of the divalent group when Y 2 and Ar 3 are bonded via a divalent group to form a ring are Y 1 and Ar 1 via a divalent group are the same as the examples and preferred ranges of the divalent group in the case of forming a ring by combining with each other.
Y 3 and Ar 2 are directly bonded or bonded via a divalent group to form a ring (for example, a ring containing Y 3 and Ar 2 , a boron atom (B), Y 3 , A ring other than the ring composed of Ar 2 and Ar 3 ) may be formed, but it is preferable not to form a ring because the synthesis of the compound (B) is easy. Examples and preferred ranges of the divalent group when Y 3 and Ar 2 are bonded via a divalent group to form a ring are Y 1 and Ar 1 via a divalent group are the same as the examples and preferred ranges of the divalent group in the case of forming a ring by combining with each other.
Y 3 and Ar 3 are directly bonded or bonded via a divalent group to form a ring (for example, a ring containing Y 3 and Ar 3 , a boron atom (B), Y 3 , A ring other than the ring composed of Ar 2 and Ar 3 ) may be formed, but it is preferable not to form a ring because the synthesis of the compound (B) is easy. Examples and preferred ranges of the divalent group when Y 3 and Ar 3 are bonded via a divalent group to form a ring are Y 1 and Ar 1 via a divalent group are the same as the examples and preferred ranges of the divalent group in the case of forming a ring by combining with each other.
 化合物(B)としては、下記式で表される化合物、並びに、後述の化合物B1~B5が例示される。なお、式中、Zは、酸素原子又は硫黄原子を表す。Zが複数存在する場合、それらは同一でも異なっていてもよい。 Examples of the compound (B) include compounds represented by the following formula and compounds B1 to B5 described later. In the formula, Z1 represents an oxygen atom or a sulfur atom. When multiple Z 1 are present, they may be the same or different.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 化合物(B)の25℃における発光スペクトルの最大ピーク波長は、好ましくは380nm以上であり、より好ましくは400nm以上であり、更に好ましくは420nm以上であり、特に好ましくは440nm以上である。化合物(B)の25℃における発光スペクトルの最大ピーク波長は、好ましくは750nm以下であり、より好ましくは620nm以下であり、更に好ましくは570nm以下であり、特に好ましくは495nm以下であり、とりわけ好ましくは480nm以下である。
 化合物(B)の25℃における発光スペクトルの最大ピークの半値幅は、好ましくは50nm以下であり、より好ましくは40nm以下であり、更に好ましくは30nm以下であり、特に好ましくは25nm以下である。
 化合物の室温における発光スペクトルの最大ピーク波長は、化合物を、キシレン、トルエン、クロロホルム、テトラヒドロフラン等の有機溶媒に溶解させ、希薄溶液を調製し(1×10-6質量%~1×10-3質量%)、該希薄溶液のPLスペクトルを室温で測定することで評価することができる。化合物を溶解させる有機溶媒としては、キシレンが好ましい。
The maximum peak wavelength of the emission spectrum of compound (B) at 25° C. is preferably 380 nm or longer, more preferably 400 nm or longer, even more preferably 420 nm or longer, and particularly preferably 440 nm or longer. The maximum peak wavelength of the emission spectrum of compound (B) at 25° C. is preferably 750 nm or less, more preferably 620 nm or less, even more preferably 570 nm or less, particularly preferably 495 nm or less, and particularly preferably 480 nm or less.
The half width of the maximum peak of the emission spectrum of compound (B) at 25° C. is preferably 50 nm or less, more preferably 40 nm or less, even more preferably 30 nm or less, and particularly preferably 25 nm or less.
The maximum peak wavelength of the emission spectrum of the compound at room temperature can be determined by dissolving the compound in an organic solvent such as xylene, toluene, chloroform, or tetrahydrofuran to prepare a dilute solution (1×10 −6 mass % to 1×10 −3 mass %). %), which can be evaluated by measuring the PL spectrum of the dilute solution at room temperature. Xylene is preferred as the organic solvent for dissolving the compound.
 [式(H-1)で表される化合物]
 式(H-1)で表される化合物は、低分子化合物であることが好ましい。
 式(H-1)で表される化合物の分子量は、500以上であり、好ましくは5×10~5×10であり、より好ましくは5×10~3×10であり、更に好ましくは5×10~1.5×10であり、特に好ましくは5×10~1×10である。
 式(H-1)で表される化合物は、化合物(B)と異なる化合物であることが好ましく、化合物中に、縮合複素環骨格(b)を有さない化合物であることがより好ましい。
[Compound represented by formula (H-1)]
The compound represented by formula (H-1) is preferably a low-molecular-weight compound.
The molecular weight of the compound represented by formula (H-1) is 500 or more, preferably 5×10 2 to 5×10 3 , more preferably 5×10 2 to 3×10 3 , and further It is preferably 5×10 2 to 1.5×10 3 , particularly preferably 5×10 2 to 1×10 3 .
The compound represented by formula (H-1) is preferably a compound different from compound (B), and more preferably a compound that does not have a condensed heterocyclic skeleton (b).
 ArH1及びArH2におけるアリール基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、単環式又は2~7環式の芳香族炭化水素から環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、単環式又は2~5環式の芳香族炭化水素から環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、単環式、2環式又は3環式の芳香族炭化水素から環を構成する原子に直接結合する水素原子1個を除いた基であり、これらの基は置換基を有していてもよい。
 ArH1及びArH2におけるアリール基は、本実施形態の発光素子の発光効率が更に優れるので、好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン、フルオレン、ベンゾアントラセン、ベンゾフェナントレン、ベンゾフルオレン、ジベンゾアントラセン、ジベンゾフェナントレン、ジベンゾフルオレン、インデノフルオレン又はベンゾフルオランテンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン、フルオレン、ベンゾアントラセン、ベンゾフェナントレン又はベンゾフルオレンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン又はフルオレンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、特に好ましくは、ベンゼン、ナフタレン又はアントラセンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、これらの基は置換基を有していてもよい。
The aryl group in Ar 1 H1 and Ar 2 H2 is preferably directly bonded to an atom constituting a ring of a monocyclic or bi- to seven-ring aromatic hydrocarbon, because the luminous efficiency of the light-emitting device of this embodiment is superior. is a group in which one hydrogen atom is removed, more preferably a monocyclic or bi- to five-ring aromatic hydrocarbon group in which one hydrogen atom directly bonded to an atom constituting a ring is removed More preferably, it is a monocyclic, bicyclic or tricyclic aromatic hydrocarbon group in which one hydrogen atom directly bonded to a ring-constituting atom is removed, and these groups have substituents. You may have
The aryl groups in Ar H1 and Ar H2 are preferably benzene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, fluorene, benzanthracene, benzophenanthrene, benzofluorene, dibenzofluorene, dibenzo a group obtained by removing one hydrogen atom directly bonded to a ring-constituting atom from anthracene, dibenzophenanthrene, dibenzofluorene, indenofluorene or benzofluoranthene, more preferably benzene, naphthalene, anthracene, phenanthrene, A group obtained by removing one hydrogen atom directly bonded to a ring-constituting atom from dihydrophenanthrene, fluorene, benzanthracene, benzophenanthrene or benzofluorene, more preferably benzene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene or A group obtained by removing one hydrogen atom directly bonded to a ring-constituting atom from fluorene, particularly preferably benzene, naphthalene or anthracene, with one hydrogen atom directly bonded to a ring-constituting atom removed. groups, and these groups may have a substituent.
 ArH1及びArH2における1価の複素環基は、縮合複素環骨格(b)を含まない複素環式化合物から、環を構成する原子に直接結合する水素原子1個を除いた基であることが好ましく、この基は置換基を有していてもよい。ArH1及びArH2における1価の複素環基において、縮合複素環骨格(b)を含まない複素環式化合物としては、例えば、前述の複素環基の項で説明した複素環式化合物の中で、ホウ素原子及び窒素原子を環内に含まない複素環式化合物が挙げられる。
 ArH1及びArH2における1価の複素環基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、単環式又は2~7環式の複素環式化合物(好ましくは、縮合複素環骨格(b)を含まない、単環式又は2~7環式の複素環式化合物)から環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、単環式又は2~5環式の複素環式化合物(好ましくは、縮合複素環骨格(b)を含まない、単環式又は2~5環式の複素環式化合物)から環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、単環式、2環式又は3環式の複素環式化合物(好ましくは、縮合複素環骨格(b)を含まない、単環式、2環式又は3環式の複素環式化合物)から環を構成する原子に直接結合する水素原子1個を除いた基であり、特に好ましくは、3環式の複素環式化合物(好ましくは、縮合複素環骨格(b)を含まない、3環式の複素環式化合物)から環を構成する原子に直接結合する水素原子1個を除いた基であり、これらの基は置換基を有していてもよい。
 ArH1及びArH2における1価の複素環基は、本実施形態の発光素子の発光効率が更に優れるので、好ましくは、フラン、チオフェン、オキサジアゾール、チアジアゾール、ピロール、ジアゾール、トリアゾール、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ベンゾフラン、ベンゾチオフェン、インドール、アザインドール、ジアザインドール、ベンゾジアゾール、ベンゾチアジアゾール、ベンゾトリアゾール、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、アザアントラセン、ジアザアントラセン、アザフェナントレン、ジアザフェナントレン、ベンゾカルバゾール、アザベンゾカルバゾール、ジアザベンゾカルバゾール、ベンゾナフトフラン、ベンゾナフトチオフェン、ジベンゾカルバゾール、インドロカルバゾール、インデノカルバゾール、アザインドロカルバゾール、ジアザインドロカルバゾール、アザインデノカルバゾール又はジアザインデノカルバゾールから環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、ベンゾカルバゾール、アザベンゾカルバゾール、ジアザベンゾカルバゾール、ベンゾナフトフラン、ベンゾナフトチオフェン、ジベンゾカルバゾール、インドロカルバゾール、インデノカルバゾール、アザインドロカルバゾール、ジアザインドロカルバゾール、アザインデノカルバゾール又はジアザインデノカルバゾールから環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン又は5,10-ジヒドロフェナジンから環を構成する原子に直接結合する水素原子1個を除いた基であり、特に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン又はカルバゾールから環を構成する原子に直接結合する水素原子1個を除いた基であり、とりわけ好ましくは、ジベンゾフラン、ジベンゾチオフェン又はカルバゾールから環を構成する原子に直接結合する水素原子1個を除いた基であり、これらの基は置換基を有していてもよい。
The monovalent heterocyclic group in Ar H1 and Ar H2 is a group obtained by removing one hydrogen atom directly bonded to a ring-constituting atom from a heterocyclic compound that does not contain a condensed heterocyclic skeleton (b). is preferred, and this group may have a substituent. In the monovalent heterocyclic group for Ar H1 and Ar H2 , the heterocyclic compound that does not contain a condensed heterocyclic skeleton (b) includes, for example, among the heterocyclic compounds described in the section on the heterocyclic group above, , heterocyclic compounds containing no boron or nitrogen atoms in the ring.
The monovalent heterocyclic groups in Ar H1 and Ar H2 are preferably monocyclic or di- to hepta-cyclic heterocyclic compounds (preferably condensed A group obtained by removing one hydrogen atom directly bonded to a ring-constituting atom from a monocyclic or 2- to 7-ring heterocyclic compound containing no heterocyclic skeleton (b)), more preferably Atoms constituting a ring from a monocyclic or bi- to pentacyclic heterocyclic compound (preferably a monocyclic or bi- to pentacyclic heterocyclic compound containing no condensed heterocyclic skeleton (b)) is a group excluding one hydrogen atom directly bonded to the (monocyclic, bicyclic or tricyclic heterocyclic compound) by removing one hydrogen atom directly bonded to an atom constituting the ring, particularly preferably tricyclic heterocyclic compound (Preferably, a tricyclic heterocyclic compound that does not contain a condensed heterocyclic skeleton (b)) is a group in which one hydrogen atom directly bonded to an atom constituting the ring is removed, and these groups are substituted You may have a group.
The monovalent heterocyclic groups in Ar 1 H1 and Ar 2 H2 are preferably furan, thiophene, oxadiazole, thiadiazole, pyrrole, diazole, triazole, pyridine, diazabenzene, since the luminous efficiency of the light-emitting device of this embodiment is further improved. , triazine, azanaphthalene, diazanaphthalene, benzofuran, benzothiophene, indole, azaindole, diazaindole, benzodiazole, benzothiadiazole, benzotriazole, dibenzofuran, dibenzothiophene, carbazole, azacarbazole, diazacarbazole, phenoxazine , phenothiazine, 9,10-dihydroacridine, 5,10-dihydrophenazine, azaanthracene, diazaanthracene, azaphenanthrene, diazaphenanthrene, benzocarbazole, azabenzocarbazole, diazabenzocarbazole, benzonaphthofuran, benzonaphthothiophene , dibenzocarbazole, indolocarbazole, indenocarbazole, azaindolocarbazole, diazaindolocarbazole, azaindenocarbazole or diazaindenocarbazole, with one hydrogen atom directly bonded to a ring-constituting atom removed. and more preferably pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, carbazole, azacarbazole, diazacarbazole, phenoxazine, phenothiazine, 9,10-dihydroacridine, 5,10- dihydrophenazine, benzocarbazole, azabenzocarbazole, diazabenzocarbazole, benzonaphthofuran, benzonaphthothiophene, dibenzocarbazole, indolocarbazole, indenocarbazole, azaindolocarbazole, diazaindolocarbazole, azaindenocarbazole or di A group obtained by removing one hydrogen atom directly bonded to a ring-constituting atom from zaindenocarbazole, more preferably pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, carbazole, aza carbazole, diazacarbazole, phenoxazine, phenothiazine, 9,10-dihydroacridine or 5,10-dihydrophenazine with one hydrogen atom directly bonded to a ring-constituting atom removed, particularly preferably pyridine , diazabenzene, triazine, azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, or carbazole from which one hydrogen atom directly bonded to a ring-constituting atom is removed, particularly preferably dibenzofuran, dibenzothiophene, or carbazole. It is a group in which one hydrogen atom is directly bonded to a ring-constituting atom, and these groups may have a substituent.
 ArH1及びArH2における置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基であるアリール基の例及び好ましい範囲は、ArH1及びArH2におけるアリール基の例及び好ましい範囲と同じである。アミノ基が有する置換基である1価の複素環基の例及び好ましい範囲は、ArH1及びArH2における1価の複素環基の例及び好ましい範囲と同じである。 In the substituted amino group for Ar H1 and Ar H2 , the substituent of the amino group is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups further have a substituent. good too. Examples and preferred ranges of the aryl group, which is a substituent of the amino group, are the same as the examples and preferred ranges of the aryl group in Ar H1 and Ar H2 . Examples and preferred ranges of the monovalent heterocyclic group which is a substituent of the amino group are the same as the examples and preferred range of the monovalent heterocyclic group in Ar 1 H1 and Ar 2 H2 .
 本実施形態の発光素子の発光効率がより優れるので、ArH1及びArH2の少なくとも1つは、アリール基又は1価の複素環基であることが好ましく、ArH1及びArH2の両方が、アリール基又は1価の複素環基であることがより好ましく、これらの基は置換基を有していてもよい。
 ArH1及びArH2は、本実施形態の発光素子の発光効率がより優れるので、単環式、2環式若しくは3環式の芳香族炭化水素、又は、単環式、2環式若しくは3環式の複素環式化合物(好ましくは、縮合複素環骨格(b)を含まない、単環式、2環式又は3環式の複素環式化合物)から、環を構成する原子に直接結合する水素原子1個を除いた基であることが好ましく、ベンゼン、ナフタレン、フルオレン、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン又はカルバゾールから、環を構成する原子に直接結合する水素原子1個を除いた基であることがより好ましく、フェニル基、ナフチル基、フルオレニル基、カルバゾリル基、ジベンゾチエニル基又はジベンゾフリル基であることが更に好ましく、フェニル基、ナフチル基又はカルバゾリル基であることが特に好ましく、これらの基は置換基を有していてもよい。
At least one of Ar H1 and Ar H2 is preferably an aryl group or a monovalent heterocyclic group, and both Ar H1 and Ar H2 are aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
Ar H1 and Ar H2 are monocyclic, bicyclic, or tricyclic aromatic hydrocarbons, or monocyclic, bicyclic, or tricyclic aromatic hydrocarbons, since the light-emitting element of this embodiment has superior luminous efficiency. from the heterocyclic compound of the formula (preferably a monocyclic, bicyclic or tricyclic heterocyclic compound that does not contain a condensed heterocyclic skeleton (b)) hydrogen directly bonded to an atom constituting the ring A group having one atom removed is preferable, and hydrogen directly bonded to a ring-constituting atom selected from benzene, naphthalene, fluorene, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, or carbazole It is more preferably a group with one atom removed, more preferably a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzothienyl group or a dibenzofuryl group, and a phenyl group, a naphthyl group or a carbazolyl group. is particularly preferred, and these groups may have a substituent.
 ArH1及びArH2が有していてもよい置換基としては、好ましくは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、特に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
 ArH1及びArH2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、ArH1及びArH2におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
The substituents that Ar H1 and Ar H2 may have are preferably a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an aryl group, and a monovalent A heterocyclic group or a substituted amino group, more preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group, still more preferably an alkyl group , a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, particularly preferably an alkyl group, a cycloalkyl group or an aryl group, even if these groups further have a substituent good.
Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in the substituents that Ar H1 and Ar H2 may have are the aryl group and monovalent heterocyclic group in Ar H1 and Ar H2 , respectively. It is the same as the examples and preferred ranges of the cyclic group and the substituted amino group.
 ArH1及びArH2が有していてもよい置換基が更に有していてもよい置換基としては、好ましくは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、特に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。
 ArH1及びArH2が有していてもよい置換基が更に有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、ArH1及びArH2におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
Preferred substituents that the substituents Ar H1 and Ar H2 may further have include a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group, more preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, still more preferably , an alkyl group, a cycloalkyl group or an aryl group, particularly preferably an alkyl group or a cycloalkyl group, and these groups may further have a substituent, but should not have a further substituent. is preferred.
Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in the substituents which the substituents which Ar H1 and Ar H2 may further have are respectively Ar H1 and The same as the examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in Ar H2 .
 LH1における2価の基としては、好ましくは、本実施形態の発光素子の発光効率がより優れるので、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-N(R)-で表される基、-(O=)P(R)-で表される基、-O-で表される基、-S-で表される基、-S(=O)-で表される基又は-C(=O)-で表される基であり、より好ましくは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-N(R)-で表される基、-O-で表される基又は-S-で表される基であり、更に好ましくは、アルキレン基、シクロアルキレン基、アリーレン基又は2価の複素環基であり、特に好ましくは、アリーレン基又は2価の複素環基であり、これらの基は置換基を有していてもよい。
 LH1における2価の基の少なくとも1つは、本実施形態の発光素子の発光効率がより優れるので、好ましくは、アルキレン基、シクロアルキレン基、アリーレン基又は2価の複素環基であり、より好ましくは、アリーレン基又は2価の複素環基であり、これらの基は置換基を有していてもよい。
The divalent group for L H1 is preferably an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, —N(R 0 ), since the luminous efficiency of the light emitting device of the present embodiment is more excellent. A group represented by -, a group represented by -(O=)P(R 0 )-, a group represented by -O-, a group represented by -S-, and -S(=O) 2 - or a group represented by -C(=O)-, more preferably an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, or -N(R 0 )- a group represented by -O- or a group represented by -S-, more preferably an alkylene group, a cycloalkylene group, an arylene group or a divalent heterocyclic group, particularly preferably is an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
At least one of the divalent groups in L H1 is preferably an alkylene group, a cycloalkylene group, an arylene group, or a divalent heterocyclic group, since the luminous efficiency of the light emitting device of the present embodiment is superior, and more An arylene group or a divalent heterocyclic group is preferable, and these groups may have a substituent.
 LH1における2価の基において、アリーレン基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、単環式又は2~7環式の芳香族炭化水素から環を構成する原子に直接結合する水素原子2個を除いた基であり、より好ましくは、単環式又は2~5環式の芳香族炭化水素から環を構成する原子に直接結合する水素原子2個を除いた基であり、更に好ましくは、単環式、2環式又は3環式の芳香族炭化水素から環を構成する原子に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
 LH1における2価の基において、アリーレン基は、本実施形態の発光素子の発光効率が更に優れるので、好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン、フルオレン、ベンゾアントラセン、ベンゾフェナントレン、ベンゾフルオレン、ジベンゾアントラセン、ジベンゾフェナントレン、ジベンゾフルオレン、インデノフルオレン又はベンゾフルオランテンから、環を構成する原子に直接結合する水素原子2個を除いた基であり、より好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン、フルオレン、ベンゾアントラセン、ベンゾフェナントレン又はベンゾフルオレンから、環を構成する原子に直接結合する水素原子2個を除いた基であり、更に好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン又はフルオレンから、環を構成する原子に直接結合する水素原子2個を除いた基であり、特に好ましくは、ベンゼン、ナフタレン又はアントラセンから、環を構成する原子に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
Among the divalent groups in L H1 , the arylene group is preferably a monocyclic or bi- to seven-cyclic aromatic hydrocarbon ring-constituting atom because the luminous efficiency of the light-emitting device of the present embodiment is superior. A group in which two hydrogen atoms directly bonded to are removed, more preferably a monocyclic or 2- to 5-cyclic aromatic hydrocarbon in which two hydrogen atoms directly bonded to the atoms constituting the ring are removed group, more preferably a group obtained by removing two hydrogen atoms directly bonded to atoms constituting the ring from a monocyclic, bicyclic or tricyclic aromatic hydrocarbon, and these groups are substituted You may have a group.
Among the divalent groups in L H1 , arylene groups are preferably benzene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, fluorene, benzoanthracene, benzophenanthrene, benzo a group obtained by removing two hydrogen atoms directly bonded to ring-constituting atoms from fluorene, dibenzoanthracene, dibenzophenanthrene, dibenzofluorene, indenofluorene or benzofluoranthene, more preferably benzene, naphthalene or anthracene , phenanthrene, dihydrophenanthrene, fluorene, benzanthracene, benzophenanthrene or benzofluorene, from which two hydrogen atoms directly bonded to atoms constituting the ring are removed, more preferably benzene, naphthalene, anthracene, phenanthrene, A group obtained by removing two hydrogen atoms directly bonded to ring-constituting atoms from dihydrophenanthrene or fluorene, and particularly preferably benzene, naphthalene or anthracene with two hydrogen atoms directly bonded to ring-constituting atoms. These groups may have a substituent.
 LH1における2価の基において、2価の複素環基は、縮合複素環骨格(b)を含まない複素環式化合物から、環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であることが好ましく、この基は置換基を有していてもよい。LH1における2価の基において、2価の複素環基における縮合複素環骨格(b)を含まない複素環式化合物としては、前述の複素環基の項で説明した複素環式化合物の中で、ホウ素原子及び窒素原子を環内に含まない複素環式化合物が挙げられる。
 LH1における2価の基において、2価の複素環基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、単環式又は2~7環式の複素環式化合物(好ましくは、縮合複素環骨格(b)を含まない、単環式又は2~7環式の複素環式化合物)から環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、より好ましくは、単環式又は2~5環式の複素環式化合物(好ましくは、縮合複素環骨格(b)を含まない、単環式又は2~5環式の複素環式化合物)から環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、更に好ましくは、単環式、2環式又は3環式の複素環式化合物(好ましくは、縮合複素環骨格(b)を含まない、単環式、2環式又は3環式の複素環式化合物)から環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、特に好ましくは、単環式又は3環式の複素環式化合物(好ましくは、縮合複素環骨格(b)を含まない、単環式又は3環式の複素環式化合物)から環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、とりわけ好ましくは、3環式の複素環式化合物(好ましくは、縮合複素環骨格(b)を含まない、3環式の複素環式化合物)から環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
 LH1における2価の基において、2価の複素環基は、本実施形態の発光素子の発光効率が更に優れるので、好ましくは、フラン、チオフェン、オキサジアゾール、チアジアゾール、ピロール、ジアゾール、トリアゾール、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ベンゾフラン、ベンゾチオフェン、インドール、アザインドール、ジアザインドール、ベンゾジアゾール、ベンゾチアジアゾール、ベンゾトリアゾール、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、アザアントラセン、ジアザアントラセン、アザフェナントレン、ジアザフェナントレン、ベンゾカルバゾール、アザベンゾカルバゾール、ジアザベンゾカルバゾール、ベンゾナフトフラン、ベンゾナフトチオフェン、ジベンゾカルバゾール、インドロカルバゾール、インデノカルバゾール、アザインドロカルバゾール、ジアザインドロカルバゾール、アザインデノカルバゾール又はジアザインデノカルバゾールから環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、より好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、ベンゾカルバゾール、アザベンゾカルバゾール、ジアザベンゾカルバゾール、ベンゾナフトフラン、ベンゾナフトチオフェン、ジベンゾカルバゾール、インドロカルバゾール、インデノカルバゾール、アザインドロカルバゾール、ジアザインドロカルバゾール、アザインデノカルバゾール又はジアザインデノカルバゾールから環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、更に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン又は5,10-ジヒドロフェナジンから環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、特に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン又はカルバゾールから環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、とりわけ好ましくは、ピリジン、ジアザベンゼン、トリアジン、ジベンゾフラン、ジベンゾチオフェン又はカルバゾールから環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、とりわけより好ましくは、ジベンゾフラン、ジベンゾチオフェン又はカルバゾールから環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
In the divalent group in L H1 , the divalent heterocyclic group is a hydrogen atom directly bonded to a ring-constituting atom (preferably a carbon atom) from a heterocyclic compound that does not contain a condensed heterocyclic skeleton (b). It is preferably a group excluding two, and this group may have a substituent. In the divalent group in L H1 , the heterocyclic compound that does not contain a condensed heterocyclic skeleton (b) in the divalent heterocyclic group includes the heterocyclic compounds described in the section on the heterocyclic group above. , heterocyclic compounds containing no boron or nitrogen atoms in the ring.
Among the divalent groups in L H1 , the divalent heterocyclic group is preferably a monocyclic or di- to hepta-cyclic heterocyclic compound (preferably is a monocyclic or 2- to 7-ring heterocyclic compound that does not contain a condensed heterocyclic skeleton (b)), except for two hydrogen atoms directly bonded to the atoms (preferably carbon atoms) constituting the ring more preferably a monocyclic or bi- to pentacyclic heterocyclic compound (preferably a monocyclic or bi- to pentacyclic heterocyclic ring that does not contain a condensed heterocyclic skeleton (b) A group obtained by removing two hydrogen atoms directly bonded to atoms (preferably carbon atoms) constituting a ring from the formula compound), more preferably a monocyclic, bicyclic or tricyclic heterocyclic compound A hydrogen atom directly bonded to an atom (preferably a carbon atom) constituting a ring from (preferably a monocyclic, bicyclic or tricyclic heterocyclic compound that does not contain a condensed heterocyclic skeleton (b)) a group excluding two, particularly preferably a monocyclic or tricyclic heterocyclic compound (preferably a monocyclic or tricyclic heterocyclic ring containing no condensed heterocyclic skeleton (b) A group obtained by removing two hydrogen atoms directly bonded to atoms (preferably carbon atoms) constituting a ring from the formula compound), particularly preferably a tricyclic heterocyclic compound (preferably a condensed heterocyclic skeleton tricyclic heterocyclic compounds not containing (b)), excluding two hydrogen atoms directly bonded to the atoms (preferably carbon atoms) constituting the ring, and these groups are substituents may have.
Among the divalent groups for L H1 , a divalent heterocyclic group is preferably furan, thiophene, oxadiazole, thiadiazole, pyrrole, diazole, triazole, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, benzofuran, benzothiophene, indole, azaindole, diazaindole, benzodiazole, benzothiadiazole, benzotriazole, dibenzofuran, dibenzothiophene, carbazole, azacarbazole, diazacarbazole , phenoxazine, phenothiazine, 9,10-dihydroacridine, 5,10-dihydrophenazine, azaanthracene, diazaanthracene, azaphenanthrene, diazaphenanthrene, benzocarbazole, azabenzocarbazole, diazabenzocarbazole, benzonaphthofuran, directly bonded to a ring-constituting atom (preferably a carbon atom) of benzonaphthothiophene, dibenzocarbazole, indolocarbazole, indenocarbazole, azaindolocarbazole, diazaindolocarbazole, azaindenocarbazole or diazaindenocarbazole; more preferably pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, carbazole, azacarbazole, diazacarbazole, phenoxazine, phenothiazine, 9, 10-dihydroacridine, 5,10-dihydrophenazine, benzocarbazole, azabenzocarbazole, diazabenzocarbazole, benzonaphthofuran, benzonaphthothiophene, dibenzocarbazole, indolocarbazole, indenocarbazole, azaindolocarbazole, diazaine dolocarbazole, azaindenocarbazole or diazaindenocarbazole without two hydrogen atoms directly bonded to atoms (preferably carbon atoms) constituting the ring, more preferably pyridine, diazabenzene, triazine, Ring-constituting atoms (preferably carbon atoms) of azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, carbazole, azacarbazole, diazacarbazole, phenoxazine, phenothiazine, 9,10-dihydroacridine or 5,10-dihydrophenazine ) excluding two hydrogen atoms directly bonded to ), particularly preferably pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, dibenzofuran, dibenzothiophene, or carbazole atoms forming a ring (preferably carbon atoms ) is a group excluding two hydrogen atoms directly bonded to ), particularly preferably pyridine, diazabenzene, triazine, dibenzofuran, dibenzothiophene or carbazole. A group with two hydrogen atoms removed, particularly more preferably a group from dibenzofuran, dibenzothiophene or carbazole with two hydrogen atoms directly bonded to ring-constituting atoms (preferably carbon atoms), and these groups may have a substituent.
 LH1における2価の基において、アルキレン基としては、好ましくは、メチレン基、エチレン基又はプロピレン基であり、より好ましくはメチレン基であり、これらの基は置換基を有していてもよい。 In the divalent group for L H1 , the alkylene group is preferably a methylene group, an ethylene group or a propylene group, more preferably a methylene group, and these groups may have a substituent.
 LH1が有していてもよい置換基の例及び好ましい範囲は、ArH1及びArH2が有していてもよい置換基の例及び好ましい範囲と同じである。 Examples and preferred ranges of substituents that L H1 may have are the same as examples and preferred ranges of substituents that Ar H1 and Ar H2 may have.
 LH1における2価の基において、Rは、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 LH1における2価の基において、Rにおけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、ArH1及びArH2におけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
 LH1における2価の基において、Rが有していてもよい置換基の例及び好ましい範囲は、ArH1及びArH2が有していてもよい置換基の例及び好ましい範囲と同じである。
In the divalent group in L H1 , R 0 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, An aryl group is more preferable, and these groups may have a substituent.
Examples and preferred ranges of the aryl group and monovalent heterocyclic group for R 0 in the divalent group for L H1 are the examples and preferred ranges for the aryl group and monovalent heterocyclic group for Ar H1 and Ar H2 , respectively. is the same as
In the divalent group for L H1 , examples and preferred ranges of substituents that R 0 may have are the same as examples and preferred ranges of substituents that Ar H1 and Ar H2 may have. .
 nH1は、通常、0以上10以下の整数であり、好ましくは0以上7以下の整数であり、より好ましくは1以上5以下の整数であり、更に好ましくは1以上3以下の整数であり、特に好ましくは1又は2である。 n H1 is usually an integer of 0 or more and 10 or less, preferably an integer of 0 or more and 7 or less, more preferably an integer of 1 or more and 5 or less, and still more preferably an integer of 1 or more and 3 or less, 1 or 2 is particularly preferred.
 ArH1とArH2とは、直接結合して、又は、2価の基を介して結合して、環を形成してもよいが、式(H-1)で表される化合物の合成が容易なので、環を形成しないことが好ましい。
 ArH1とArH2とが、2価の基を介して結合して、環を形成する場合において、2価の基としては、好ましくは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-N(R)-で表される基、-(O=)P(R)-で表される基、-O-で表される基、-S-で表される基、-S(=O)-で表される基又は-C(=O)-で表される基であり、より好ましくは、アルキレン基、シクロアルキレン基、-N(R)-で表される基、-O-で表される基又は-S-で表される基であり、更に好ましくは、アルキレン基、-O-で表される基又は-S-で表される基であり、これらの基は置換基を有していてもよい。
 ArH1とArH2とが、2価の基を介して結合して、環を形成する場合において、2価の基におけるアリーレン基、2価の複素環基及びアルキレン基の例及び好ましい範囲は、それぞれ、LH1におけるアリーレン基、2価の複素環基及びアルキレン基の例及び好ましい範囲と同じである。
 ArH1とArH2とが、2価の基を介して結合して、環を形成する場合において、2価の基におけるRの例及び好ましい範囲は、LH1の2価の基におけるRの例及び好ましい範囲と同じである。
 ArH1とArH2とが、2価の基を介して結合して、環を形成する場合において、2価の基が有していてもよい置換基の例及び好ましい範囲は、ArH1及びArH2が有していてもよい置換基の例及び好ましい範囲と同じである。
Ar H1 and Ar H2 may be directly bonded or bonded via a divalent group to form a ring, but the compound represented by formula (H-1) is easy to synthesize. Therefore, it is preferred not to form a ring.
When Ar H1 and Ar H2 are bonded via a divalent group to form a ring, the divalent group is preferably an alkylene group, a cycloalkylene group, an arylene group, a divalent hetero A cyclic group, a group represented by -N(R 0 )-, a group represented by -(O=)P(R 0 )-, a group represented by -O-, a group represented by -S- , a group represented by -S(=O) 2 - or a group represented by -C(=O)-, more preferably an alkylene group, a cycloalkylene group, or a group represented by -N(R 0 )- a group represented by -O- or a group represented by -S-, more preferably an alkylene group, a group represented by -O- or a group represented by -S- , these groups may have a substituent.
When Ar H1 and Ar H2 are bonded via a divalent group to form a ring, examples and preferred ranges of the arylene group, divalent heterocyclic group and alkylene group in the divalent group are They are the same as the examples and preferred ranges of the arylene group, divalent heterocyclic group and alkylene group in L H1 , respectively.
When Ar H1 and Ar H2 are bonded through a divalent group to form a ring, examples and preferred ranges of R 0 in the divalent group are R 0 in the divalent group of L H1 is the same as the example and preferred range of
When Ar 1 H1 and Ar 2 H2 are bonded via a divalent group to form a ring, examples and preferred ranges of substituents that the divalent group may have include Ar H1 and Ar It is the same as the example and preferred range of the substituent that H2 may have.
 LH1とArH1とは、直接結合して、又は、2価の基を介して結合して、環を形成してもよいが、式(H-1)で表される化合物の合成が容易なので、環を形成しないことが好ましい。LH1とArH1とが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲は、ArH1とArH2とが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲と同じである。
 LH1とArH2とは、直接結合して、又は、2価の基を介して結合して、環を形成してもよいが、式(H-1)で表される化合物の合成が容易なので、環を形成しないことが好ましい。LH1とArH2とが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲は、ArH1とArH2とが、2価の基を介して結合して、環を形成する場合における2価の基の例及び好ましい範囲と同じである。
L 1 H1 and Ar 1 H1 may be directly bonded or bonded via a divalent group to form a ring, but the compound represented by formula (H-1) is easy to synthesize. Therefore, it is preferred not to form a ring. Examples and preferred ranges of the divalent group in the case where L H1 and Ar H1 are bonded via a divalent group to form a ring are: are the same as the examples and preferred ranges of the divalent group in the case of forming a ring by combining with each other.
L H1 and Ar H2 may be directly bonded or bonded via a divalent group to form a ring, but the compound represented by formula (H-1) is easily synthesized. Therefore, it is preferred not to form a ring. Examples and preferred ranges of the divalent group in the case where L H1 and Ar H2 are bonded via a divalent group to form a ring are: are the same as the examples and preferred ranges of the divalent group in the case of forming a ring by combining with each other.
 式(H-1)で表される化合物としては、例えば、下記式で表される化合物が挙げられる。なお、式中、Zは、酸素原子又は硫黄原子を表す。式中、Zは、-CH=で表される基又は-N=で表される基を表す。Zが複数存在する場合、それらは同一でも異なっていてもよい。Zが複数存在する場合、それらは同一でも異なっていてもよい。 Examples of the compound represented by formula (H-1) include compounds represented by the following formula. In the formula, Z1 represents an oxygen atom or a sulfur atom. In the formula, Z 2 represents a group represented by -CH= or a group represented by -N=. When multiple Z 1 are present, they may be the same or different. When multiple Z 2 are present, they may be the same or different.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 [第1の組成物]
 第1の層は、化合物(B-1)と、化合物(A-1)と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群から選ばれる少なくとも1種とを含む組成物(以下、「第1の組成物」ともいう。)を含有する層であってもよい。但し、第1の組成物において、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料は、化合物(B-1)とは異なる。第1の組成物において、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料は、化合物(A-1)とは異なる。
 第1の組成物には、化合物(B-1)、化合物(A-1)、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤が、それぞれ、1種単独で含有されていてもよく、2種以上含有されていてもよい。
 第1の組成物において、化合物(B-1)、化合物(A-1)、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤の合計の含有量は、第1の組成物としての機能が奏される範囲であればよい。第1の組成物において、化合物(B-1)、化合物(A-1)、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤の合計の含有量は、例えば、第1の組成物の全量基準で1~100質量%であってもよく、10~100質量%であってもよく、30~100質量%であってもよく、更に好ましくは50~100質量%であってもよく、70~100質量%であってもよく、90~100質量%であってもよい。
[First composition]
The first layer is selected from the group consisting of compound (B-1), compound (A-1), hole-transporting material, hole-injecting material, electron-transporting material, electron-injecting material, light-emitting material and antioxidant. It may be a layer containing a composition (hereinafter also referred to as "first composition") containing at least one selected. However, in the first composition, the hole-transporting material, hole-injecting material, electron-transporting material, electron-injecting material, and light-emitting material are different from the compound (B-1). In the first composition, the hole-transporting material, hole-injecting material, electron-transporting material, electron-injecting material and light-emitting material are different from compound (A-1).
The first composition contains a compound (B-1), a compound (A-1), a hole-transporting material, a hole-injecting material, an electron-transporting material, an electron-injecting material, a light-emitting material, and an antioxidant, respectively, It may be contained individually by 1 type, and may be contained 2 or more types.
Total content of compound (B-1), compound (A-1), hole-transporting material, hole-injecting material, electron-transporting material, electron-injecting material, light-emitting material, and antioxidant in the first composition may be within a range in which the function as the first composition can be exhibited. Total content of compound (B-1), compound (A-1), hole-transporting material, hole-injecting material, electron-transporting material, electron-injecting material, light-emitting material, and antioxidant in the first composition is, for example, based on the total amount of the first composition, may be 1 to 100% by mass, may be 10 to 100% by mass, may be 30 to 100% by mass, more preferably 50 It may be up to 100% by mass, 70 to 100% by mass, or 90 to 100% by mass.
 (正孔輸送材料)
 正孔輸送材料は、低分子化合物と高分子化合物とに分類される。正孔輸送材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、トリフェニルアミン及びその誘導体、N,N’-ジ-1-ナフチル-N,N’-ジフェニルベンジジン(α-NPD)、並びに、N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン(TPD)等の芳香族アミン化合物が挙げられる。
 高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン及びトリニトロフルオレノン等の電子受容性部位が結合された化合物でもよい。
 第1の組成物において、正孔輸送材料が含まれる場合、正孔輸送材料の含有量は、化合物(B-1)及び化合物(A-1)の合計の含有量を100質量部とした場合、通常、1~10000質量部である。
 正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。
(Hole transport material)
Hole-transporting materials are classified into low-molecular-weight compounds and high-molecular-weight compounds. The hole-transporting material may have a cross-linking group.
Examples of low-molecular-weight compounds include triphenylamine and derivatives thereof, N,N'-di-1-naphthyl-N,N'-diphenylbenzidine (α-NPD), and N,N'-diphenyl-N, Aromatic amine compounds such as N'-di(m-tolyl)benzidine (TPD) can be mentioned.
Polymer compounds include, for example, polyvinylcarbazole and derivatives thereof; polyarylenes and derivatives thereof having aromatic amine structures in side chains or main chains. The polymer compound may be a compound having electron-accepting moieties such as fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene and trinitrofluorenone bound thereto.
When the first composition contains a hole-transporting material, the content of the hole-transporting material is based on the total content of compound (B-1) and compound (A-1) being 100 parts by mass. , usually from 1 to 10,000 parts by mass.
The hole transport materials may be used singly or in combination of two or more.
 (電子輸送材料)
 電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン及びジフェノキノン、並びに、これらの誘導体が挙げられる。
 高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
 第1の組成物において、電子輸送材料が含まれる場合、電子輸送材料の含有量は、化合物(B-1)及び化合物(A-1)の合計の含有量を100質量部とした場合、通常、1~10000質量部である。
 電子輸送材料は、一種単独で用いても二種以上を併用してもよい。
(Electron transport material)
Electron transport materials are classified into low-molecular-weight compounds and high-molecular-weight compounds. The electron transport material may have a cross-linking group.
Examples of low-molecular-weight compounds include metal complexes having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene and diphenoquinone. , as well as derivatives thereof.
Polymer compounds include, for example, polyphenylene, polyfluorene, and derivatives thereof. The polymeric compounds may be doped with metals.
When the first composition contains an electron-transporting material, the content of the electron-transporting material is usually , 1 to 10,000 parts by mass.
The electron transport materials may be used singly or in combination of two or more.
 (正孔注入材料及び電子注入材料)
 正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料及び電子注入材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン及びポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。
 第1の組成物において、正孔注入材料及び/又は電子注入材料が含まれる場合、正孔注入材料及び電子注入材料の含有量は、各々、化合物(B-1)及び化合物(A-1)の合計の含有量を100質量部とした場合、通常、1~10000質量部である。
 正孔注入材料及び電子注入材料は、各々、一種単独で用いても二種以上を併用してもよい。
(Hole injection material and electron injection material)
Hole-injecting materials and electron-injecting materials are classified into low-molecular-weight compounds and high-molecular-weight compounds, respectively. The hole-injecting material and the electron-injecting material may have cross-linking groups.
Examples of low-molecular compounds include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride and potassium fluoride.
Polymer compounds include, for example, polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline and polyquinoxaline, and derivatives thereof; conductive polymers such as polymers containing an aromatic amine structure in the main chain or side chain; and a flexible polymer.
When the first composition contains a hole-injection material and/or an electron-injection material, the contents of the hole-injection material and the electron-injection material are the compound (B-1) and the compound (A-1), respectively. When the total content of is 100 parts by mass, it is usually 1 to 10000 parts by mass.
Each of the hole injection material and the electron injection material may be used alone or in combination of two or more.
 ・イオンドープ
 正孔注入材料及び電子注入材料は、イオンがドープされていてもよい。例えば、正孔注入材料及び電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは1×10-5S/cm~1×10S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。
 正孔注入材料及び電子注入材料にドープするイオンの種類は、例えば、正孔注入材料であればアニオンが挙げられ、電子注入材料であればカチオンが挙げられる。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン及び樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン及びテトラブチルアンモニウムイオンが挙げられる。
 ドープするイオンは、一種単独で用いても二種以上を併用してもよい。
- Ion doping The hole injection material and the electron injection material may be doped with ions. For example, when the hole-injecting material and electron-injecting material comprise a conductive polymer, the electrical conductivity of the conductive polymer is preferably between 1×10 −5 S/cm and 1×10 3 S/cm. The conductive polymer can be doped with an appropriate amount of ions in order to set the electrical conductivity of the conductive polymer within this range.
The types of ions to be doped in the hole injection material and the electron injection material include, for example, anions in the case of hole injection materials and cations in the case of electron injection materials. Anions include, for example, polystyrene sulfonate, alkylbenzene sulfonate, and camphor sulfonate. Cations include, for example, lithium ion, sodium ion, potassium ion and tetrabutylammonium ion.
Ions for doping may be used alone or in combination of two or more.
 (発光材料)
 発光材料は、低分子化合物と高分子化合物とに分類される。発光材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、並びに、イリジウム、白金又はユーロピウムを中心金属とする燐光発光性化合物が挙げられる。
 高分子化合物としては、例えば、後述の式(Y)で表される構成単位及び/又は後述の式(X)で表される構成単位を含む高分子化合物が挙げられる。
 第1の組成物において、発光材料が含まれる場合、発光材料の含有量は、化合物(B-1)及び化合物(A-1)の合計の含有量を100質量部とした場合、通常、1~10000質量部である。
 発光材料は、一種単独で用いても二種以上を併用してもよい。
(Luminous material)
Light-emitting materials are classified into low-molecular-weight compounds and high-molecular-weight compounds. The luminescent material may have a cross-linking group.
Examples of low-molecular-weight compounds include naphthalene and its derivatives, anthracene and its derivatives, perylene and its derivatives, and phosphorescent compounds having iridium, platinum, or europium as a central metal.
Examples of polymer compounds include polymer compounds containing a structural unit represented by formula (Y) described later and/or a structural unit represented by formula (X) described later.
When the first composition contains a light-emitting material, the content of the light-emitting material is usually 1 when the total content of the compound (B-1) and the compound (A-1) is 100 parts by mass. ~10000 parts by mass.
A luminescent material may be used individually by 1 type, or may use 2 or more types together.
 (酸化防止剤)
 酸化防止剤は、化合物(B-1)及び化合物(A-1)と同じ溶媒に可溶であり、発光及び電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
 第1の組成物において、酸化防止剤が含まれる場合、酸化防止剤の含有量は、化合物(B-1)及び化合物(A-1)の合計の含有量を100質量部とした場合、通常、0.00001~10質量部である。
 酸化防止剤は、一種単独で用いても二種以上を併用してもよい。
(Antioxidant)
The antioxidant may be a compound that is soluble in the same solvent as the compound (B-1) and the compound (A-1) and does not inhibit light emission and charge transport. Antioxidants are included.
When the first composition contains an antioxidant, the content of the antioxidant is usually 100 parts by mass when the total content of compound (B-1) and compound (A-1) is , 0.00001 to 10 parts by mass.
Antioxidants may be used singly or in combination of two or more.
 [第1のインク]
 第1の層は、例えば、化合物(B-1)と、化合物(A-1)と、溶媒とを含有する組成物(以下、「第1のインク」ともいう。)を用いて形成することができる。
 第1のインクには、化合物(B-1)、化合物(A-1)及び溶媒が、それぞれ、1種単独で含有されていてもよく、2種以上含有されていてもよい。
 第1のインクは、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法等の湿式法を用いた発光素子の作製に好適に使用することができる。
 第1のインクの粘度は、湿式法の種類によって調整すればよい。第1のインクの粘度は、例えば、インクジェット印刷法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目づまり及び飛行曲がりが起こりづらいので、好ましくは25℃において1~20mPa・sである。
 第1のインクに含まれる溶媒は、好ましくは、インク中の固形分を溶解又は均一に分散できる溶媒である。第1のインクに含まれる溶媒としては、例えば、塩素系溶媒、エーテル系溶媒、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、ケトン系溶媒、エステル系溶媒、多価アルコール系溶媒、アルコール系溶媒、スルホキシド系溶媒、アミド系溶媒及び水が挙げられる。
 第1のインクにおいて、溶媒の含有量は、化合物(B-1)及び化合物(A-1)の合計の含有量を100質量部とした場合、通常、1000~10000000質量部である。
 溶媒は、一種単独で用いても二種以上を併用してもよい。
[First ink]
The first layer is formed using, for example, a composition containing the compound (B-1), the compound (A-1), and a solvent (hereinafter also referred to as "first ink"). can be done.
The first ink may contain one kind of compound (B-1), compound (A-1) and solvent, respectively, or may contain two or more kinds.
The first ink can be applied, for example, by a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating method, a spray coating method, a screen printing method, a flexographic It can be suitably used for producing a light emitting device using a wet method such as a printing method, an offset printing method, an inkjet printing method, a capillary coating method, a nozzle coating method and the like.
The viscosity of the first ink may be adjusted according to the type of wet method. The viscosity of the first ink is preferably 1 at 25° C. because, for example, clogging and flight deflection during ejection are unlikely to occur when the solution is applied to a printing method such as an inkjet printing method that passes through an ejection device. ~20 mPa·s.
The solvent contained in the first ink is preferably a solvent capable of dissolving or uniformly dispersing the solid content in the ink. Examples of the solvent contained in the first ink include chlorine-based solvents, ether-based solvents, aromatic hydrocarbon-based solvents, aliphatic hydrocarbon-based solvents, ketone-based solvents, ester-based solvents, polyhydric alcohol-based solvents, alcohol solvent, sulfoxide solvent, amide solvent and water.
In the first ink, the content of the solvent is usually 1000 to 10000000 parts by mass when the total content of compound (B-1) and compound (A-1) is 100 parts by mass.
A solvent may be used individually by 1 type, or may use 2 or more types together.
 第1のインクは、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群から選ばれる少なくとも1種を更に含んでいてもよい。
 第1のインクには、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤が、それぞれ、1種単独で含有されていてもよく、2種以上含有されていてもよい。
 第1のインクが更に含んでいてもよい、正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料、発光材料及び酸化防止剤の例及び好ましい範囲は、それぞれ、第1の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料、発光材料及び酸化防止剤の例及び好ましい範囲と同じである。
 第1のインクが更に含んでいてもよい、正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の含有量は、各々、化合物(B-1)及び化合物(A-1)の合計の含有量を100質量部とした場合、通常、1~10000質量部である。第1のインクが更に含んでいてもよい酸化防止剤の含有量は、化合物(B-1)及び化合物(A-1)の合計の含有量を100質量部とした場合、通常、0.00001~10質量部である。
The first ink may further contain at least one selected from the group consisting of hole-transporting materials, hole-injecting materials, electron-transporting materials, electron-injecting materials, light-emitting materials, and antioxidants.
The first ink may contain one type of hole transport material, hole injection material, electron transport material, electron injection material, light emitting material, and antioxidant, respectively, or contain two or more types. may have been
Examples and preferred ranges of the hole-transporting material, the electron-transporting material, the hole-injecting material, the electron-injecting material, the light-emitting material, and the antioxidant, which the first ink may further comprise, are described in the first composition, respectively. are the same as the examples and preferred ranges of the hole transport material, electron transport material, hole injection material, electron injection material, light emitting material and antioxidant contained in .
The contents of the hole-transporting material, the electron-transporting material, the hole-injecting material, the electron-injecting material, and the light-emitting material, which the first ink may further contain, are respectively the compound (B-1) and the compound (A- When the total content of 1) is 100 parts by mass, it is usually 1 to 10,000 parts by mass. The content of the antioxidant that the first ink may further contain is usually 0.00001 when the total content of the compound (B-1) and the compound (A-1) is 100 parts by mass. ~10 parts by mass.
 <第2の層>
 本実施形態の発光素子において、第2の層は、式(H-1)で表される化合物から選ばれる少なくとも1種の化合物(A-2)を含有する層である。
 第2の層は、化合物(A-2)を1種のみ含有していてもよく、2種以上含有していてもよい。
<Second layer>
In the light-emitting device of this embodiment, the second layer is a layer containing at least one compound (A-2) selected from compounds represented by formula (H-1).
The second layer may contain only one type of compound (A-2), or may contain two or more types.
 第2の層中の化合物(A-2)の含有量は、第2の層としての機能が奏される範囲であればよい。第2の層中の化合物(A-2)の含有量は、例えば、第2の層の全量基準で0.01~100質量%であってもよく、本実施形態の発光素子の発光効率がより優れるので、好ましくは0.1~90質量%であり、より好ましくは0.5~70質量%であり、更に好ましくは1~50質量%であり、特に好ましくは3~30質量%であり、とりわけ好ましくは5~20質量%である。 The content of the compound (A-2) in the second layer may be within a range in which the function as the second layer is exhibited. The content of the compound (A-2) in the second layer may be, for example, 0.01 to 100% by mass based on the total amount of the second layer, and the luminous efficiency of the light emitting device of this embodiment is Since it is more excellent, it is preferably 0.1 to 90% by mass, more preferably 0.5 to 70% by mass, still more preferably 1 to 50% by mass, and particularly preferably 3 to 30% by mass. , particularly preferably 5 to 20% by weight.
 第2の層における化合物(A-2)の例及び好ましい範囲は、第1の層における化合物
(A-1)の例及び好ましい範囲と同じである。
The example and preferred range of compound (A-2) in the second layer are the same as the example and preferred range of compound (A-1) in the first layer.
 <層(2’)>
 本実施形態の発光素子の発光効率がより優れるので、第2の層は、式(X)で表される構成単位及び式(Y)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位を含む高分子化合物(以下、「第2の層の高分子化合物」ともいう。)、並びに、架橋基を有する化合物の架橋体からなる群より選ばれる少なくとも1種(以下、「第2の層の材料」ともいう。)を更に含有することが好ましい。即ち、第2の層は、化合物(A-2)と、第2の層の材料とを含有する層(以下、「層(2’)」ともいう。)であることが好ましい。
 層(2’)において、化合物(A-2)と、第2の層の材料とは別個の化合物として含有されている。
 ここで、化合物(A-2)は架橋基を含まない化合物であることが好ましい。また、化合物(A-2)は低分子化合物であることが好ましい。
 層(2’)には、化合物(A-2)が1種単独で含有されていてもよく、2種以上含有されていてもよい。層(2’)には、第2の層の材料が1種単独で含有されていてもよく、2種以上含有されていてもよい。
<Layer (2')>
Since the luminous efficiency of the light-emitting device of this embodiment is superior, the second layer contains at least one selected from the group consisting of structural units represented by formula (X) and structural units represented by formula (Y). (hereinafter also referred to as "second layer polymer compound"), and at least one selected from the group consisting of a crosslinked compound of a compound having a crosslinking group (hereinafter referred to as "second (also referred to as "the material of the second layer"). That is, the second layer is preferably a layer containing the compound (A-2) and the material of the second layer (hereinafter also referred to as "layer (2')").
In the layer (2'), the compound (A-2) and the material of the second layer are contained as separate compounds.
Here, the compound (A-2) is preferably a compound containing no cross-linking group. Also, the compound (A-2) is preferably a low-molecular-weight compound.
The layer (2′) may contain one type of compound (A-2) alone, or may contain two or more types. The layer (2') may contain one kind of material for the second layer alone, or two or more kinds thereof.
 層(2’)中の化合物(A-2)及び第2の層の材料の合計の含有量は、層(2’)としての機能が奏される範囲であればよい。層(2’)中の化合物(A-2)及び第2の層の材料の合計の含有量は、例えば、層(2’)の全量基準で1~100質量%であってもよく、本実施形態の発光素子の発光効率がより優れるので、好ましくは10~100質量%であり、より好ましくは30~100質量%であり、更に好ましくは50~100質量%であり、特に好ましくは70~100質量%であり、とりわけ好ましくは90~100質量%である。
 層(2’)中の化合物(A-2)の含有量は、層(2’)としての機能が奏される範囲であればよい。層(2’)中の化合物(A-2)の含有量は、化合物(A-2)と第2の層の材料との合計の含有量を100質量部とした場合、例えば、0.01~99質量部であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは0.1~90質量部であり、より好ましくは0.5~70質量部であり、更に好ましくは1~50質量部であり、特に好ましくは3~30質量部であり、とりわけ好ましくは5~20質量部である。
The total content of the compound (A-2) in the layer (2') and the material of the second layer may be within a range in which the layer (2') functions. The total content of the compound (A-2) in the layer (2') and the material of the second layer may be, for example, 1 to 100% by mass based on the total amount of the layer (2'). Since the luminous efficiency of the light-emitting device of the embodiment is more excellent, it is preferably 10 to 100% by mass, more preferably 30 to 100% by mass, even more preferably 50 to 100% by mass, and particularly preferably 70 to 100% by mass. 100% by mass, particularly preferably 90 to 100% by mass.
The content of the compound (A-2) in the layer (2') may be within a range in which the layer (2') functions. The content of the compound (A-2) in the layer (2′) is, for example, 0.01 when the total content of the compound (A-2) and the material of the second layer is 100 parts by mass. 99 parts by mass, preferably 0.1 to 90 parts by mass, more preferably 0.5 to 70 parts by mass, still more preferably 1 to 50 parts by mass, particularly preferably 3 to 30 parts by mass, particularly preferably 5 to 20 parts by mass.
 [第2の層の高分子化合物]
 第2の層の高分子化合物は、本実施形態の発光素子の発光効率がより優れるので、式(X)で表される構成単位及び式(Y)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位を含む高分子化合物であることが好ましい。
 第2の層の高分子化合物は、後述の架橋基を有する構成単位を含まない高分子化合物であることが好ましく、架橋基を有さない高分子化合物であることがより好ましい。
[Polymer Compound for Second Layer]
The polymer compound of the second layer is selected from the group consisting of structural units represented by the formula (X) and structural units represented by the formula (Y), since the light-emitting device of the present embodiment has superior luminous efficiency. It is preferably a polymer compound containing at least one kind of constitutional unit.
The polymer compound of the second layer is preferably a polymer compound that does not contain a structural unit having a cross-linking group, and more preferably a polymer compound that does not have a cross-linking group.
 第2の層の高分子化合物は、本実施形態の発光素子の発光効率がより優れるので、式(Y)で表される構成単位を含むことが好ましい。
 第2の層の高分子化合物が式(Y)で表される構成単位を含む場合、第2の層の高分子化合物に含まれる式(Y)で表される構成単位の含有量は、第2の層の高分子化合物としての機能が奏される範囲であればよい。第2の層の高分子化合物が式(Y)で表される構成単位を含む場合、第2の層の高分子化合物に含まれる式(Y)で表される構成単位の含有量は、第2の層の高分子化合物に含まれる構成単位の合計の含有量に対して、例えば、0.1~100モル%であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは1~100モル%であり、より好ましくは10~90モル%であり、更に好ましくは20~80モル%であり、特に好ましくは30~70モル%である。
 式(Y)で表される構成単位は、第2の層の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
The polymer compound of the second layer preferably contains a structural unit represented by the formula (Y), since the light emitting device of this embodiment has higher luminous efficiency.
When the polymer compound of the second layer contains the structural unit represented by formula (Y), the content of the structural unit represented by formula (Y) contained in the polymer compound of the second layer is Any range may be used as long as the function of the two layers as a polymer compound is exhibited. When the polymer compound of the second layer contains the structural unit represented by formula (Y), the content of the structural unit represented by formula (Y) contained in the polymer compound of the second layer is It is, for example, 0.1 to 100 mol % with respect to the total content of the structural units contained in the polymer compounds of the two layers, and since the light emitting device of the present embodiment has a higher luminous efficiency, it is preferably 1 It is up to 100 mol %, more preferably 10 to 90 mol %, still more preferably 20 to 80 mol %, particularly preferably 30 to 70 mol %.
The structural unit represented by the formula (Y) may be contained alone or in combination of two or more in the polymer compound of the second layer.
 第2の層の高分子化合物は、第2の層の高分子化合物の正孔輸送性が優れ、且つ、本実施形態の発光素子の発光効率がより優れるので、式(X)で表される構成単位を含むことが好ましい。
 第2の層の高分子化合物が式(X)で表される構成単位を含む場合、第2の層の高分子化合物に含まれる式(X)で表される構成単位の含有量は、第2の層の高分子化合物としての機能が奏される範囲であればよい。第2の層の高分子化合物が式(X)で表される構成単位を含む場合、第2の層の高分子化合物に含まれる式(X)で表される構成単位の含有量は、第2の層の高分子化合物に含まれる構成単位の合計の含有量に対して、例えば、0.1~100モル%であり、第2の層の高分子化合物の正孔輸送性が優れ、且つ、本実施形態の発光素子の発光効率がより優れるので、好ましくは1~100モル%であり、より好ましくは10~90モル%であり、更に好ましくは20~80モル%であり、特に好ましくは30~70モル%である。
 式(X)で表される構成単位は、第2の層の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
The polymer compound of the second layer is represented by the formula (X) because the polymer compound of the second layer has excellent hole-transport properties and the luminous efficiency of the light-emitting device of the present embodiment is superior. It preferably contains structural units.
When the polymer compound of the second layer contains a structural unit represented by formula (X), the content of the structural unit represented by formula (X) contained in the polymer compound of the second layer is Any range may be used as long as the function of the two layers as a polymer compound is exhibited. When the polymer compound of the second layer contains a structural unit represented by formula (X), the content of the structural unit represented by formula (X) contained in the polymer compound of the second layer is It is, for example, 0.1 to 100 mol% with respect to the total content of the structural units contained in the polymer compound of the second layer, and the hole transport property of the polymer compound of the second layer is excellent, and , preferably 1 to 100 mol%, more preferably 10 to 90 mol%, still more preferably 20 to 80 mol%, and particularly preferably 30 to 70 mol %.
The structural unit represented by the formula (X) may be contained in one type or two or more types in the polymer compound of the second layer.
 第2の層の高分子化合物は、第2の層の高分子化合物の正孔輸送性が優れ、且つ、本実施形態の発光素子の発光効率が更に優れるので、式(X)で表される構成単位及び式(Y)で表される構成単位を含むことが好ましい。
 第2の層の高分子化合物が式(X)で表される構成単位及び式(Y)で表される構成単位を含む場合、第2の層の高分子化合物に含まれる式(X)で表される構成単位及び式(Y)で表される構成単位の合計の含有量は、第2の層の高分子化合物としての機能が奏される範囲であればよい。第2の層の高分子化合物が式(X)で表される構成単位及び式(Y)で表される構成単位を含む場合、第2の層の高分子化合物に含まれる式(X)で表される構成単位及び式(Y)で表される構成単位の合計の含有量は、第2の層の高分子化合物に含まれる構成単位の合計の含有量に対して、例えば、0.1~100モル%であり、第2の層の高分子化合物の正孔輸送性が優れ、且つ、本実施形態の発光素子の発光効率が更に優れるので、好ましくは1~100モル%であり、より好ましくは10~100モル%であり、より好ましくは30~100モル%であり、更に好ましくは50~100モル%であり、特に好ましくは70~100モル%であり、とりわけ好ましくは90~100モル%である。
The polymer compound of the second layer is represented by the formula (X) because the polymer compound of the second layer has excellent hole-transport properties and the luminous efficiency of the light-emitting device of the present embodiment is further excellent. It preferably contains a structural unit and a structural unit represented by formula (Y).
When the polymer compound of the second layer contains a structural unit represented by the formula (X) and a structural unit represented by the formula (Y), the formula (X) contained in the polymer compound of the second layer The total content of the structural unit represented by the formula (Y) and the structural unit represented by the formula (Y) may be within a range in which the function of the polymer compound of the second layer can be exhibited. When the polymer compound of the second layer contains a structural unit represented by the formula (X) and a structural unit represented by the formula (Y), the formula (X) contained in the polymer compound of the second layer The total content of the structural units represented by the formula (Y) and the structural units represented by the formula (Y) is, for example, 0.1 with respect to the total content of the structural units contained in the polymer compound of the second layer. It is preferably 1 to 100 mol %, because the hole transport property of the polymer compound of the second layer is excellent and the luminous efficiency of the light emitting device of the present embodiment is further excellent. Preferably 10 to 100 mol%, more preferably 30 to 100 mol%, still more preferably 50 to 100 mol%, particularly preferably 70 to 100 mol%, particularly preferably 90 to 100 mol% %.
 (式(Y)で表される構成単位)
 ArY1で表されるアリーレン基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、単環式又は2環式~6環式の芳香族炭化水素から、環を構成する原子に直接結合する水素原子2個を除いた基であり、より好ましくは、単環式、2環式又は3環式の芳香族炭化水素から、環を構成する原子に直接結合する水素原子2個を除いた基であり、更に好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン又はフルオレンから、環を構成する原子に直接結合する水素原子2個を除いた基であり、特に好ましくは、ベンゼン、フェナントレン、ジヒドロフェナントレン又はフルオレンから、環を構成する原子に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
 ArY1で表される2価の複素環基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、単環式又は2環式~6環式の複素環式化合物から、環を構成する原子に直接結合する水素原子2個を除いた基であり、より好ましくは、単環式、2環式又は3環式の複素環式化合物から、環を構成する原子に直接結合する水素原子2個を除いた基であり、更に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン又は5,10-ジヒドロフェナジンから、環を構成する原子(好ましくは炭素原子又は窒素原子、より好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、特に好ましくは、ピリジン、ジアザベンゼン、トリアジン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン又はフェノチアジンから、環を構成する原子(好ましくは炭素原子又は窒素原子、より好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、とりわけ好ましくは、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン又はフェノチアジンから、環を構成する原子(好ましくは炭素原子又は窒素原子、より好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基の好ましい範囲は、それぞれ、ArY1で表されるアリーレン基及び2価の複素環基の好ましい範囲と同じである。
(Structural Unit Represented by Formula (Y))
The arylene group represented by Ar Y1 is preferably a monocyclic or bicyclic to hexacyclic aromatic hydrocarbon, since the luminous efficiency of the light-emitting device of the present embodiment is superior, and the atoms constituting the ring are preferably A group excluding two hydrogen atoms directly bonded to, more preferably monocyclic, bicyclic or tricyclic aromatic hydrocarbons, two hydrogen atoms directly bonded to the atoms constituting the ring is a group excluding, more preferably benzene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene or fluorene, excluding two hydrogen atoms directly bonded to the atoms constituting the ring, particularly preferably benzene , phenanthrene, dihydrophenanthrene or fluorene from which two hydrogen atoms directly bonded to atoms constituting a ring are removed, and these groups may have a substituent.
The divalent heterocyclic group represented by Ar Y1 is preferably selected from monocyclic or bicyclic to hexacyclic heterocyclic compounds, since the luminous efficiency of the light emitting device of the present embodiment is superior. is a group excluding two hydrogen atoms that are directly bonded to the atoms that constitute a group with two hydrogen atoms removed, more preferably pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, phenoxazine, phenothiazine, 9,10-dihydroacridine or 5,10 - A group obtained by removing two hydrogen atoms directly bonded to a ring-constituting atom (preferably a carbon atom or a nitrogen atom, more preferably a carbon atom) from dihydrophenazine, particularly preferably pyridine, diazabenzene, triazine, A group obtained by removing two hydrogen atoms directly bonded to a ring-constituting atom (preferably a carbon atom or a nitrogen atom, more preferably a carbon atom) from carbazole, dibenzofuran, dibenzothiophene, phenoxazine or phenothiazine, particularly preferably is a group from carbazole, dibenzofuran, dibenzothiophene, phenoxazine or phenothiazine, excluding two hydrogen atoms directly bonded to ring-constituting atoms (preferably carbon atoms or nitrogen atoms, more preferably carbon atoms), These groups may have a substituent.
In the divalent group in which at least one arylene group and at least one divalent heterocyclic group represented by Ar Y1 are directly bonded, the preferred ranges of the arylene group and the divalent heterocyclic group are, respectively, It is the same as the preferred range of the arylene group and divalent heterocyclic group represented by Ar Y1 .
 ArY1において、「少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基」としては、例えば、下記式で表される基が挙げられ、これらの基は置換基を有していてもよい。 In Ar Y1 , the "divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded" includes, for example, groups represented by the following formulae, A group may have a substituent.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 ArY1は、本実施形態の発光素子の発光効率がより優れるので、置換基を有していてもよいアリーレン基であることが好ましい。 Ar Y1 is preferably an arylene group optionally having a substituent, since the light emitting device of this embodiment has more excellent luminous efficiency.
 ArY1で表される基が有してもよい置換基は、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、特に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
 ArY1で表される基が有してもよい置換基におけるアリール基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、単環式又は2環式~6環式の芳香族炭化水素から、環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、単環式、2環式又は3環式の芳香族炭化水素から、環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン又はフルオレンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、特に好ましくは、ベンゼン、フェナントレン、ジヒドロフェナントレン又はフルオレンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、これらの基は更に置換基を有していてもよい。
 ArY1で表される基が有してもよい置換基における1価の複素環基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、単環式又は2環式~6環式の複素環式化合物から、環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、単環式、2環式又は3環式の複素環式化合物から、環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン又は5,10-ジヒドロフェナジンから、環を構成する原子(好ましくは炭素原子又は窒素原子)に直接結合する水素原子1個を除いた基であり、特に好ましくは、ピリジン、ジアザベンゼン、トリアジン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン又はフェノチアジンから、環を構成する原子(好ましくは炭素原子又は窒素原子)に直接結合する水素原子1個を除いた基であり、これらの基は更に置換基を有していてもよい。
 ArY1で表される基が有してもよい置換基における置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、ArY1で表される基が有してもよい置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
The substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino or a fluorine atom, more preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group, still more preferably an alkyl group or a cycloalkyl A group, an aryl group, a monovalent heterocyclic group or a substituted amino group, particularly preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups may further have a substituent.
The aryl group in the substituent that the group represented by Ar Y1 may have is preferably a monocyclic or bicyclic to hexacyclic aromatic group because the light emitting device of the present embodiment has superior luminous efficiency. a group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from a group hydrocarbon, more preferably a monocyclic, bicyclic or tricyclic aromatic hydrocarbon more preferably benzene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene or fluorene, excluding one hydrogen atom directly bonded to a ring-constituting atom. and particularly preferably a group obtained by removing one hydrogen atom directly bonded to a ring-constituting atom from benzene, phenanthrene, dihydrophenanthrene or fluorene, and these groups further have a substituent. may
The monovalent heterocyclic group in the substituent that the group represented by Ar Y1 may have is preferably monocyclic or bicyclic to 6 A group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from a cyclic heterocyclic compound, more preferably a monocyclic, bicyclic or tricyclic heterocyclic compound , a group in which one hydrogen atom directly bonded to a ring-constituting atom is removed, more preferably pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, phenoxazine, phenothiazine, 9,10-dihydroacridine or 5,10-dihydrophenazine, excluding one hydrogen atom directly bonded to an atom (preferably a carbon atom or a nitrogen atom) constituting a ring, particularly preferably pyridine, diazabenzene, triazine, carbazole, dibenzofuran, dibenzothiophene, phenoxazine or phenothiazine, with one hydrogen atom directly bonded to a ring-constituting atom (preferably a carbon atom or a nitrogen atom) removed, and these groups are Furthermore, it may have a substituent.
In the substituted amino group in the substituent that may be possessed by the group represented by Ar Y1 , the substituent possessed by the amino group is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group. The group may further have a substituent. Examples and preferred ranges of the aryl group and monovalent heterocyclic group in the substituent of the amino group are the aryl group and monovalent heterocyclic group in the substituent that the group represented by Ar Y1 may have, respectively. is the same as the example and preferred range of
 ArY1で表される基が有してもよい置換基が更に有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、特に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。
 ArY1で表される基が有してもよい置換基が更に有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、ArY1で表される基が有してもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
The substituent that the group represented by Ar Y1 may further have preferably has an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, monovalent heterocyclic group, substituted amino group or fluorine atom, more preferably alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group or substituted amino group, still more preferably alkyl group, a cycloalkyl group or an aryl group, particularly preferably an alkyl group or a cycloalkyl group. These groups may further have a substituent, but preferably have no further substituent. .
Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in the substituent that the group represented by Ar Y1 may further have are Ar Y1 are the same as the examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in the substituents that the group may have.
 式(Y)で表される構成単位は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、式(Y-1)又は式(Y-2)で表される構成単位である。 The structural unit represented by formula (Y) is preferably a structural unit represented by formula (Y-1) or formula (Y-2), since the luminous efficiency of the light-emitting device of the present embodiment is superior. .
Figure JPOXMLDOC01-appb-C000025

[式中、
 RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するRY1は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
 XY1は、-C(RY2-、-C(RY2)=C(RY2)-又は-C(RY2-C(RY2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するRY2は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000025

[In the formula,
R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a fluorine atom, and these groups are substituents may have When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. A plurality of R Y1 may be the same or different, and may be bonded to each other to form a ring together with the carbon atoms to which they are bonded.
X Y1 represents a group represented by -C(R Y2 ) 2 -, -C(R Y2 )=C(R Y2 )- or -C(R Y2 ) 2 -C(R Y2 ) 2 -. R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a fluorine atom, and these groups are substituents may have When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. A plurality of RY2 may be the same or different, and may be bonded to each other to form a ring together with the carbon atoms to which they are bonded. ]
 RY1は、好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基であり、更に好ましくは、水素原子又はアルキル基であり、これらの基は置換基を有していてもよい。 R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, more preferably a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group. and more preferably a hydrogen atom or an alkyl group, and these groups may have a substituent.
 式(Y-1)において、RY1の少なくとも1つは(好ましくは、RY1の少なくとも2つは)、本実施形態の発光素子の発光効率がより優れるので、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はフッ素原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、特に好ましくは、アルキル基であり、これらの基は置換基を有していてもよい。 In formula (Y-1), at least one of R 1 Y1 (preferably at least two of R 1 Y1 ) is preferably an alkyl group, a cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, monovalent heterocyclic group, substituted amino group or fluorine atom, more preferably alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group It is a cyclic group or a substituted amino group, more preferably an alkyl group, a cycloalkyl group or an aryl group, particularly preferably an alkyl group, and these groups may have a substituent.
 RY2は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、更に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。 R Y2 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group, or a substituted amino group, since the luminous efficiency of the light emitting device of the present embodiment is superior. , more preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups have a substituent. may
 RY1及びRY2におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、ArY1で表される基が有してもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 RY1及びRY2が有していてもよい置換基の例及び好ましい範囲は、ArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。
Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group for R Y1 and R Y2 are, respectively, the aryl group and the monovalent It is the same as the examples and preferred ranges of the heterocyclic group and the substituted amino group.
Examples and preferred ranges of substituents that R Y1 and R Y2 may have are the same as examples and preferred ranges of substituents that the group represented by Ar Y1 may have.
 XY1は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、-C(RY2-又は-C(RY2-C(RY2-で表される基であり、より好ましくは、-C(RY2-で表される基である。 X Y1 is preferably a group represented by -C(R Y2 ) 2 - or -C(R Y2 ) 2 -C(R Y2 ) 2 -, since the luminous efficiency of the light emitting device of the present embodiment is more excellent. and more preferably a group represented by —C(R Y2 ) 2 —.
 式(Y)で表される構成単位としては、例えば、下記式で表される構成単位が挙げられる。なお、式中、Zは、酸素原子又は硫黄原子を表す。式中、Zは、-CH=で表される基又は-N=で表される基を表す。Zが複数存在する場合、それらは同一でも異なっていてもよい。Zが複数存在する場合、それらは同一でも異なっていてもよい。 Examples of structural units represented by formula (Y) include structural units represented by the following formula. In the formula, Z 1 represents an oxygen atom or a sulfur atom. In the formula, Z 2 represents a group represented by -CH= or a group represented by -N=. When multiple Z 1 are present, they may be the same or different. When multiple Z 2 are present, they may be the same or different.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 (式(X)で表される構成単位)
 aX1及びaX2は、通常0~10の整数であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは0~5の整数であり、より好ましくは0~3の整数であり、更に好ましくは0~2の整数であり、特に好ましくは0又は1である。
(Structural Unit Represented by Formula (X))
a X1 and a X2 are usually integers of 0 to 10, and are preferably integers of 0 to 5, more preferably integers of 0 to 3, because the light emitting device of the present embodiment has superior luminous efficiency. , more preferably an integer of 0 to 2, particularly preferably 0 or 1.
 RX1、RX2及びRX3は、本実施形態の発光素子の発光効率がより優れるので、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 RX1、RX2及びRX3におけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、ArY1で表される基が有してもよい置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
R X1 , R X2 and R X3 are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, since the light emitting device of the present embodiment has superior luminous efficiency. or a monovalent heterocyclic group, more preferably an aryl group, and these groups may have a substituent.
Examples and preferred ranges of the aryl group and the monovalent heterocyclic group in R X1 , R X2 and R X3 are, respectively, the aryl group and the monovalent heterocyclic group in the substituent that the group represented by Ar Y1 may have. It is the same as the example and preferred range of the cyclic group.
 ArX1、ArX2、ArX3及びArX4は、本実施形態の発光素子の発光効率がより優れるので、好ましくは置換基を有していてもよいアリーレン基である。
 ArX1、ArX2、ArX3及びArX4におけるアリーレン基及び2価の複素環基の例及び好ましい範囲は、それぞれ、ArY1におけるアリーレン基及び2価の複素環基の例及び好ましい範囲と同じである。
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基の例及び好ましい範囲は、それぞれ、ArY1におけるアリーレン基及び2価の複素環基の例及び好ましい範囲と同じである。
 ArX2及びArX4における少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、ArY1における少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基と同様のものが挙げられる。
Ar X1 , Ar X2 , Ar X3 and Ar X4 are preferably arylene groups which may have a substituent, since the luminous efficiency of the light-emitting device of this embodiment is superior.
Examples and preferred ranges of the arylene group and divalent heterocyclic group for Ar X1 , Ar X2 , Ar X3 and Ar X4 are the same as the examples and preferred ranges of the arylene group and divalent heterocyclic group for Ar Y1 respectively. be.
Examples and preferred arylene groups and divalent heterocyclic groups in the divalent group in which at least one arylene group and at least one divalent heterocyclic group represented by Ar X2 and Ar X4 are directly bonded The ranges are the same as the examples and preferred ranges of the arylene group and the divalent heterocyclic group in Ar Y1 , respectively.
The divalent group in which at least one arylene group and at least one divalent heterocyclic group in Ar X2 and Ar X4 are directly bonded includes at least one arylene group and at least one divalent heterocyclic group in Ar Y1 . Examples thereof include the same divalent groups to which a valent heterocyclic group is directly bonded.
 ArX1~ArX4及びRX1~RX3で表される基が有してもよい置換基の例及び好ましい範囲は、ArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。 Examples and preferred ranges of the substituents that the groups represented by Ar X1 to Ar X4 and R X1 to R X3 may have are the examples and preferred ranges of the substituents that the group represented by Ar Y1 may have. Same as range.
 式(X)で表される構成単位としては、下記式で表される構成単位が挙げられる。なお、式中、Zは、酸素原子又は硫黄原子を表す。 Examples of structural units represented by formula (X) include structural units represented by the following formulas. In the formula, Z 1 represents an oxygen atom or a sulfur atom.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 第2の層の高分子化合物としては、例えば、表1に示す高分子化合物P-1~P-3が挙げられる。 Examples of polymer compounds for the second layer include polymer compounds P-1 to P-3 shown in Table 1.
Figure JPOXMLDOC01-appb-T000032

[表中、p’’、q’’及びr’’は、各構成単位のモル比率(モル%)を示す。p’’+q’’+r’’=100であり、且つ、100≧p’’+q’’≧70である。その他の構成単位とは、式(Y)で表される構成単位及び式(X)で表される構成単位以外の構成単位を意味する。]
Figure JPOXMLDOC01-appb-T000032

[In the table, p'', q'' and r'' indicate the molar ratio (mol%) of each structural unit. p″+q″+r″=100 and 100≧p″+q″≧70. Other structural units mean structural units other than the structural units represented by the formula (Y) and the structural units represented by the formula (X). ]
 第2の層の高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合した共重合体であることが好ましい。
 第2の層の高分子化合物のポリスチレン換算の数平均分子量は、好ましくは5×10~1×10であり、より好ましくは1×10~5×10であり、更に好ましくは2×10~2×10である。第2の層の高分子化合物のポリスチレン換算の重量平均分子量は、好ましくは1×10~2×10であり、より好ましくは2×10~1×10であり、更に好ましくは5×10~5×10である。
The polymer compound of the second layer may be a block copolymer, a random copolymer, an alternating copolymer, or a graft copolymer. is preferably a copolymer obtained by copolymerizing the raw material monomers.
The polystyrene equivalent number average molecular weight of the polymer compound of the second layer is preferably 5×10 3 to 1×10 6 , more preferably 1×10 4 to 5×10 5 , still more preferably 2 ×10 4 to 2×10 5 . The polystyrene equivalent weight average molecular weight of the polymer compound of the second layer is preferably 1×10 4 to 2×10 6 , more preferably 2×10 4 to 1×10 6 , still more preferably 5 ×10 4 to 5×10 5 .
 (第2の層の高分子化合物の製造方法)
 第2の層の高分子化合物は、ケミカルレビュー(Chem. Rev.),第109巻,897-1091頁(2009年)等に記載の公知の重合方法を用いて製造することができ、Suzuki反応、Yamamoto反応、Buchwald反応、Stille反応、Negishi反応及びKumada反応等の遷移金属触媒を用いるカップリング反応により重合させる方法が例示される。
 上記重合方法において、単量体を仕込む方法としては、単量体全量を反応系に一括して仕込む方法、単量体の一部を仕込んで反応させた後、残りの単量体を一括、連続又は分割して仕込む方法、単量体を連続又は分割して仕込む方法等が挙げられる。
 遷移金属触媒としては、パラジウム触媒、ニッケル触媒等が挙げられる。
 重合反応の後処理は、公知の方法、例えば、分液により水溶性不純物を除去する方法、メタノール等の低級アルコールに重合反応後の反応液を加えて、析出させた沈殿を濾過した後、乾燥させる方法等を単独又は組み合わせて行う。第2の層の高分子化合物の純度が低い場合、例えば、再結晶、再沈殿、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製することができる。
(Method for producing polymer compound for second layer)
The polymer compound of the second layer can be produced using a known polymerization method described in Chemical Review (Chem. Rev.), Vol. 109, pp. 897-1091 (2009), etc. Suzuki reaction , Yamamoto reaction, Buchwald reaction, Stille reaction, Negishi reaction, and Kumada reaction.
In the above polymerization method, the method of charging the monomers includes a method of charging the entire amount of the monomers into the reaction system at once, a method of charging a part of the monomers and reacting them, and then charging the remaining monomers all at once. Examples thereof include a method of continuously or dividedly charging, a method of continuously or dividingly charging a monomer, and the like.
Examples of transition metal catalysts include palladium catalysts and nickel catalysts.
The post-treatment of the polymerization reaction is performed by a known method, for example, a method of removing water-soluble impurities by liquid separation, adding the reaction solution after the polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate, and drying it. method, etc., is performed singly or in combination. When the purity of the polymer compound of the second layer is low, it can be purified by ordinary methods such as recrystallization, reprecipitation, continuous extraction using a Soxhlet extractor, column chromatography, and the like.
 [架橋基を有する化合物の架橋体]
 架橋基を有する化合物の架橋体は、例えば、架橋基を有する化合物を後述の方法及び条件等により架橋した状態にすることで得られる。
 架橋基を有する化合物は、架橋基を有する低分子化合物であっても、架橋基を有する高分子化合物であってもよい。
[Cross-linked product of compound having cross-linking group]
A cross-linked product of a compound having a cross-linking group can be obtained, for example, by cross-linking a compound having a cross-linking group by the method and conditions described later.
The compound having a cross-linking group may be a low-molecular-weight compound having a cross-linking group or a high-molecular-weight compound having a cross-linking group.
 架橋基を有する化合物において、架橋基としては、架橋基を有する化合物の架橋性がより優れ、且つ、本実施形態の発光素子の発光効率がより優れるので、好ましくは、架橋基A群から選ばれる少なくとも1種の架橋基(即ち、式(XL-1)~式(XL-19)で表される架橋基から選ばれる少なくとも1種の架橋基)であり、より好ましくは、式(XL-1)~式(XL-4)、式(XL-7)~式(XL-10)及び式(XL-14)~式(XL-19)で表される架橋基から選ばれる少なくとも1種の架橋基であり、更に好ましくは、式(XL-1)、式(XL-3)、式(XL-7)、式(XL-9)、式(XL-10)及び式(XL-16)~式(XL-19)で表される架橋基から選ばれる少なくとも1種の架橋基であり、特に好ましくは、式(XL-1)、式(XL-9)、式(XL-10)及び式(XL-16)~式(XL-19)で表される架橋基から選ばれる少なくとも1種の架橋基であり、とりわけ好ましくは、式(XL-1)、式(XL-16)及び式(XL-17)で表される架橋基から選ばれる少なくとも1種の架橋基である。
 架橋基A群において、架橋基が有していてもよい置換基の例及び好ましい範囲は、ArY1で表される基が有していてもよい置換基の例及び好ましい範囲と同じである。
 架橋基を有する化合物は、架橋基を1種のみ含んでいてもよく、2種以上含んでいてもよい。
In the compound having a cross-linking group, the cross-linking group is preferably selected from the cross-linking group A group because the cross-linking property of the compound having a cross-linking group is superior and the luminous efficiency of the light-emitting device of the present embodiment is superior. At least one cross-linking group (that is, at least one cross-linking group selected from cross-linking groups represented by formulas (XL-1) to (XL-19)), more preferably formula (XL-1 ) ~ formula (XL-4), formula (XL-7) ~ formula (XL-10) and formula (XL-14) ~ formula (XL-19) at least one cross-linking selected from the cross-linking groups a group, more preferably formula (XL-1), formula (XL-3), formula (XL-7), formula (XL-9), formula (XL-10) and formula (XL-16) ~ At least one cross-linking group selected from the cross-linking groups represented by formula (XL-19), particularly preferably formula (XL-1), formula (XL-9), formula (XL-10) and formula (XL-16) to at least one cross-linking group selected from the cross-linking groups represented by formulas (XL-19), particularly preferably formula (XL-1), formula (XL-16) and formula ( At least one cross-linking group selected from cross-linking groups represented by XL-17).
In Group A of the cross-linking group, examples and preferred ranges of substituents that the cross-linking group may have are the same as examples and preferred ranges of substituents that the group represented by Ar Y1 may have.
The compound having a cross-linking group may contain only one cross-linking group, or may contain two or more cross-linking groups.
 (架橋基を有する高分子化合物)
 架橋基を有する高分子化合物は、架橋基を有する高分子化合物の架橋性がより優れ、且つ、本実施形態の発光素子の発光効率がより優れるので、架橋基を、架橋基を有する構成単位として含むことが好ましい。即ち、架橋基を有する高分子化合物は、架橋基を有する構成単位を含む高分子化合物であることが好ましい。
 架橋基を有する高分子化合物及び架橋基を有する構成単位における架橋基の例及び好ましい範囲は、架橋基を有する化合物における架橋基の例及び好ましい範囲と同じである。
 架橋基を有する高分子化合物が架橋基を有する構成単位を含む場合、架橋基を有する構成単位の含有量は、架橋基を有する高分子化合物としての機能が奏される範囲であればよい。架橋基を有する高分子化合物が架橋基を有する構成単位を含む場合、架橋基を有する構成単位の含有量は、架橋基を有する高分子化合物に含まれる構成単位の合計の含有量に対して、例えば、0.1~100モル%であり、架橋基を有する高分子化合物の架橋性がより優れ、且つ、本実施形態の発光素子の発光効率がより優れるので、好ましくは1~99モル%であり、より好ましくは2~90モル%であり、更に好ましくは3~70モル%であり、特に好ましくは5~50モル%である。
 架橋基を有する構成単位は、架橋基を有する高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
(Polymer compound having a cross-linking group)
The polymer compound having a cross-linking group has better cross-linking properties and the luminous efficiency of the light-emitting device of the present embodiment is better. preferably included. That is, the polymer compound having a cross-linking group is preferably a polymer compound containing a structural unit having a cross-linking group.
Examples and preferred ranges of the cross-linking group in the polymer compound having a cross-linking group and the structural unit having a cross-linking group are the same as the examples and preferred range of the cross-linking group in the compound having a cross-linking group.
When the polymer compound having a crosslinkable group contains a structural unit having a crosslinkable group, the content of the structural unit having a crosslinkable group may be within a range in which the function of the polymer compound having a crosslinkable group is exhibited. When the polymer compound having a crosslinkable group contains a structural unit having a crosslinkable group, the content of the structural unit having a crosslinkable group is, relative to the total content of the structural units contained in the polymer compound having a crosslinkable group, For example, it is 0.1 to 100 mol%, and the polymer compound having a crosslinkable group has better crosslinkability, and the luminous efficiency of the light emitting device of the present embodiment is better, so it is preferably 1 to 99 mol%. more preferably 2 to 90 mol%, still more preferably 3 to 70 mol%, and particularly preferably 5 to 50 mol%.
A polymer compound having a cross-linking group may contain only one type of constitutional unit having a cross-linking group, or may contain two or more types thereof.
 架橋基を有する構成単位は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、式(Z)で表される構成単位又は式(Z’)で表される構成単位である。 The structural unit having a cross-linking group is preferably a structural unit represented by formula (Z) or a structural unit represented by formula (Z'), since the light-emitting device of the present embodiment has superior luminous efficiency.
 ・式(Z)で表される構成単位 nは、通常1~10の整数であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは1~7の整数であり、より好ましくは1~4の整数であり、更に好ましくは1又は2であり、特に好ましくは2である。
 nAは、通常0~10の整数であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは0~7の整数であり、より好ましくは0~4の整数であり、更に好ましくは0~2の整数である。
Structural unit n represented by formula (Z) is usually an integer of 1 to 10, and is preferably an integer of 1 to 7, more preferably an integer of 1 to 7, since the light emitting device of the present embodiment has superior luminous efficiency. It is an integer of 1 to 4, more preferably 1 or 2, and particularly preferably 2.
nA is usually an integer of 0 to 10, and is preferably an integer of 0 to 7, more preferably an integer of 0 to 4, and still more preferably an integer of 0 to 4, since the light emitting device of the present embodiment has superior luminous efficiency. An integer from 0 to 2.
 Arにおける炭化水素基としては、置換基を有していてもよい芳香族炭化水素基及び置換基を有していてもよい脂肪族炭化水素基が挙げられる。Arにおける炭化水素基は、これらの基が複数結合した基を含む。
 Arにおける脂肪族炭化水素基としては、アルキレン基又はシクロアルキレン基から水素原子n個を除いた基が挙げられ、好ましくは、アルキレン基から水素原子n個を除いた基であり、これらの基は置換基を有していてもよい。
 Arにおける芳香族炭化水素基としては、アリーレン基から水素原子n個を除いた基が挙げられ、この基は置換基を有していてもよい。このアリーレン基の例及び好ましい範囲としては、ArY1におけるアリーレン基の例及び好ましい範囲が挙げられる。
 Arにおける複素環基としては、2価の複素環基から水素原子n個を除いた基が挙げられ、この基は置換基を有していてもよい。この2価の複素環基の例及び好ましい範囲としては、ArY1における2価の複素環基の例及び好ましい範囲が挙げられる。
 Arにおける少なくとも1種の炭化水素基と少なくとも1種の複素環基とが直接結合した基における、炭化水素基及び複素環基の例及び好ましい範囲は、それぞれ、Arにおける炭化水素基及び複素環基の例及び好ましい範囲と同じである。
 Arにおける少なくとも1種の炭化水素基と少なくとも1種の複素環基とが直接結合した基としては、例えば、ArY1における少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した基から水素原子n個を除いた基が挙げられる。
 Arは、本実施形態の発光素子の発光効率がより優れるので、好ましくは、炭化水素基又は複素環基であり、より好ましくは、炭化水素基であり、更に好ましくは、芳香族炭化水素基であり、これらの基は置換基を有していてもよい。
The hydrocarbon group for Ar Z includes an optionally substituted aromatic hydrocarbon group and an optionally substituted aliphatic hydrocarbon group. The hydrocarbon group for Ar Z includes groups in which multiple of these groups are bonded.
The aliphatic hydrocarbon group for Ar Z includes a group obtained by removing n hydrogen atoms from an alkylene group or a cycloalkylene group, preferably a group obtained by removing n hydrogen atoms from an alkylene group. may have a substituent.
The aromatic hydrocarbon group for Ar 2 Z includes a group obtained by removing n hydrogen atoms from an arylene group, and this group may have a substituent. Examples and preferred ranges of the arylene group include examples and preferred ranges of the arylene group in Ar Y1 .
The heterocyclic group for Ar 2 Z includes a group obtained by removing n hydrogen atoms from a divalent heterocyclic group, and this group may have a substituent. Examples and preferred ranges of the divalent heterocyclic group include examples and preferred ranges of the divalent heterocyclic group in Ar Y1 .
Examples and preferred ranges of the hydrocarbon group and the heterocyclic group in the group in which at least one hydrocarbon group and at least one heterocyclic group in Ar Z are directly bonded are the hydrocarbon group and the heterocyclic group in Ar Z , respectively. It is the same as the example and preferred range of the cyclic group.
The group in which at least one hydrocarbon group and at least one heterocyclic group are directly bonded in Ar Z includes, for example, at least one arylene group and at least one divalent heterocyclic group in Ar Y1 . A group obtained by removing n hydrogen atoms from the group to which is directly bonded may be mentioned.
Ar 2 Z is preferably a hydrocarbon group or a heterocyclic group, more preferably a hydrocarbon group, and still more preferably an aromatic hydrocarbon group, since the light emitting device of the present embodiment has superior luminous efficiency. and these groups may have a substituent.
 Lで表されるアリーレン基の例及び好ましい範囲としては、ArY1で表されるアリーレン基の例及び好ましい範囲が挙げられる。Lで表されるアリーレン基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、フェニレン基又はフルオレンジイル基であり、これらの基は置換基を有していてもよい。
 Lで表される2価の複素環基の例及び好ましい範囲は、ArY1で表される2価の複素環基の例及び好ましい範囲と同じである。
 Lは、架橋基を有する高分子化合物の合成が容易になり、且つ、本実施形態の発光素子の発光効率がより優れるので、好ましくは、アリーレン基又はアルキレン基であり、より好ましくは、フェニレン基、フルオレンジイル基又はアルキレン基であり、これらの基は置換基を有していてもよい。
Examples and preferred ranges of the arylene group represented by LA include examples and preferred ranges of the arylene group represented by Ar Y1 . The arylene group represented by LA is preferably a phenylene group or a fluorenediyl group, since the luminous efficiency of the light-emitting device of the present embodiment is more excellent, and these groups may have a substituent. .
Examples and preferred ranges of the divalent heterocyclic group represented by LA are the same as examples and preferred ranges of the divalent heterocyclic group represented by Ar Y1 .
L A is preferably an arylene group or an alkylene group, more preferably phenylene, because it facilitates the synthesis of a polymer compound having a cross-linking group and the luminous efficiency of the light-emitting device of the present embodiment is superior. group, fluorenediyl group or alkylene group, and these groups may have a substituent.
 R’は、好ましくはアリール基又は1価の複素環基であり、より好ましくは、アリール基であり、これらの基は置換基を有していてもよい。
 R’におけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、ArY1が有していてもよい置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
R' is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups may have a substituent.
Examples and preferred ranges of the aryl group and monovalent heterocyclic group for R′ are the same as examples and preferred ranges of the aryl group and monovalent heterocyclic group in the substituents Ar Y1 may have. be.
 Ar、L及びR’で表される基が有してもよい置換基の例及び好ましい範囲は、ArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。 Examples and preferred ranges of substituents that groups represented by Ar Z , LA and R′ may have are the same as examples and preferred ranges of substituents that groups represented by Ar Y1 may have. is.
 Xにおける架橋基の例及び好ましい範囲は、架橋基を有する化合物における架橋基の例及び好ましい範囲と同じである。 The examples and preferred range of the cross-linking group for X are the same as the examples and preferred range of the cross-linking group in the compound having a cross-linking group.
 ・式(Z’)で表される構成単位
 mAは、通常0~10の整数であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは0~7の整数であり、より好ましくは0~4の整数であり、更に好ましくは0~2の整数であり、特に好ましくは0又は1であり、とりわけ好ましくは0である。
 mは、通常0~10の整数であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは0~7の整数であり、より好ましくは0~4の整数であり、更に好ましくは0~2の整数であり、特に好ましくは0である。
 cは、通常0~10の整数であり、架橋基を有する高分子化合物の合成が容易になり、且つ、本実施形態の発光素子の発光効率がより優れるので、好ましくは0~5の整数であり、より好ましくは0~2の整数であり、更に好ましくは0又は1であり、特に好ましくは0である。
Structural unit mA represented by the formula (Z') is usually an integer of 0 to 10, and is preferably an integer of 0 to 7, more preferably an integer of 0 to 7, because the light emitting device of the present embodiment has superior luminous efficiency. is an integer of 0 to 4, more preferably an integer of 0 to 2, particularly preferably 0 or 1, particularly preferably 0.
m is usually an integer of 0 to 10, preferably an integer of 0 to 7, more preferably an integer of 0 to 4, and still more preferably It is an integer of 0 to 2, and particularly preferably 0.
c is usually an integer of 0 to 10, and is preferably an integer of 0 to 5 because it facilitates the synthesis of a polymer compound having a cross-linking group and the luminous efficiency of the light emitting device of the present embodiment is superior. , more preferably an integer of 0 to 2, still more preferably 0 or 1, and particularly preferably 0.
 Arにおける炭化水素基及び複素環基の例及び好ましい範囲は、それぞれ、Arにおける炭化水素基及び複素環基の例及び好ましい範囲と同じである。
 Arにおける少なくとも1種の炭化水素基と少なくとも1種の複素環基とが直接結合した基の例及び好ましい範囲は、Arにおける少なくとも1種の炭化水素基と少なくとも1種の複素環基とが直接結合した基の例及び好ましい範囲と同じである。
 Arは、本実施形態の発光素子の発光効率がより優れるので、好ましくは、炭化水素基又は複素環基であり、より好ましくは、炭化水素基であり、更に好ましくは、芳香族炭化水素基であり、これらの基は置換基を有していてもよい。
Examples and preferred ranges of the hydrocarbon group and heterocyclic group for Ar 5 are the same as examples and preferred ranges of the hydrocarbon group and heterocyclic group for Ar Z , respectively.
Examples and preferred ranges of the group in which at least one hydrocarbon group and at least one heterocyclic group are directly bonded for Ar 5 include at least one hydrocarbon group and at least one heterocyclic group for Ar Z. is the same as the example and preferred range of the group to which is directly bonded.
Ar 5 is preferably a hydrocarbon group or a heterocyclic group, more preferably a hydrocarbon group, and still more preferably an aromatic hydrocarbon group, because the luminous efficiency of the light-emitting device of the present embodiment is superior. and these groups may have a substituent.
 Ar及びArは、本実施形態の発光素子の発光効率がより優れるので、好ましくは置換基を有していてもよいアリーレン基である。
 Ar及びArにおけるアリーレン基の例及び好ましい範囲は、ArX1、ArX2、ArX3及びArX4におけるアリーレン基の例及び好ましい範囲と同じである。
 Ar及びArにおける2価の複素環基の例及び好ましい範囲は、ArX1、ArX2、ArX3及びArX4における2価の複素環基の例及び好ましい範囲と同じである。
Ar 4 and Ar 6 are preferably an arylene group optionally having a substituent, since the luminous efficiency of the light emitting device of this embodiment is more excellent.
Examples and preferred ranges of arylene groups for Ar 4 and Ar 6 are the same as examples and preferred ranges of arylene groups for Ar X1 , Ar X2 , Ar X3 and Ar X4 .
Examples and preferred ranges of the divalent heterocyclic group for Ar 4 and Ar 6 are the same as examples and preferred ranges for the divalent heterocyclic group for Ar X1 , Ar X2 , Ar X3 and Ar X4 .
 Ar~Arで表される基が有していてもよい置換基の例及び好ましい範囲は、ArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。 Examples and preferred ranges of substituents that the groups represented by Ar 4 to Ar 6 may have are the same as examples and preferred ranges of substituents that the groups represented by Ar Y1 may have. .
 Kの例及び好ましい範囲は、Lの例及び好ましい範囲と同じである。
 R’’の例及び好ましい範囲は、R’の例及び好ましい範囲と同じである。
The examples and preferred ranges of K A are the same as the examples and preferred ranges of L A.
The examples and preferred ranges of R'' are the same as the examples and preferred ranges of R'.
 X’における架橋基の例及び好ましい範囲は、Xで表される架橋基の例及び好ましい範囲と同じである。
 X’におけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、RX1、RX2及びRX3におけるアリール基及び1価の複素環基の例及び好ましい範囲の例及び好ましい範囲と同じである。
 X’は、好ましくは、架橋基、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、架橋基、アリール基又は1価の複素環基であり、更に好ましくは、架橋基又はアリール基であり、これらの基は置換基を有していてもよい。
 X’で表される基が有していてもよい置換基の例及び好ましい範囲は、ArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。
Examples and preferred ranges of the cross-linking group for X' are the same as those of the cross-linking group represented by X.
Examples and preferred ranges of the aryl group and monovalent heterocyclic group for X′ are the examples and preferred ranges of the aryl group and monovalent heterocyclic group for R X1 , R X2 and R X3 , respectively. are the same.
X' is preferably a bridging group, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably a bridging group, an aryl group or a monovalent heterocyclic group, still more preferably is a bridging group or an aryl group, and these groups may have a substituent.
Examples and preferred ranges of substituents that the group represented by X' may have are the same as examples and preferred ranges of substituents that the group represented by Ar Y1 may have.
 架橋基を有する構成単位としては、例えば、下記式で表される構成単位が挙げられる。なお、式中、Zは、酸素原子又は硫黄原子を表す。Xは架橋基A群から選ばれる架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。Xの好ましい範囲は、架橋基を有する化合物における架橋基の好ましい範囲と同じである。 Examples of structural units having a cross-linking group include structural units represented by the following formulas. In the formula, Z 1 represents an oxygen atom or a sulfur atom. XA represents a cross-linking group selected from cross-linking group A; When multiple X A are present, they may be the same or different. The preferred range of X A is the same as the preferred range of the cross-linking group in the compound having a cross-linking group.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
  (その他の構成単位)
 架橋基を有する高分子化合物は、本実施形態の発光素子の発光効率がより優れるので、式(X)で表される構成単位及び式(Y)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位を含むことが好ましく、式(X)で表される構成単位及び式(Y)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位と、架橋基を有する構成単位とを含むことが好ましい。
 架橋基を有する高分子化合物が、式(X)で表される構成単位及び式(Y)で表される構成単位からなる群より選ばれる少なくとも1種の構成単位と、架橋基を有する構成単位とを含む場合、架橋基を有する構成単位と、式(X)で表される構成単位及び式(Y)で表される構成単位とは異なることが好ましい。
 架橋基を有する高分子化合物は、本実施形態の発光素子の発光効率がより優れるので、式(Y)で表される構成単位を含むことが好ましく、式(Y)で表される構成単位と架橋基を有する構成単位とを含むことがより好ましい。
 架橋基を有する高分子化合物は、架橋基を有する高分子化合物の正孔輸送性が優れ、且つ、本実施形態の発光素子の発光効率がより優れるので、式(X)で表される構成単位を含むことが好ましく、式(X)で表される構成単位と架橋基を有する構成単位とを含むことがより好ましい。
 架橋基を有する高分子化合物は、架橋基を有する高分子化合物の正孔輸送性が優れ、且つ、本実施形態の発光素子の発光効率が更に優れるので、式(X)で表される構成単位及び式(Y)で表される構成単位を含むことが好ましく、式(X)で表される構成単位、式(Y)で表される構成単位及び架橋基を有する構成単位を含むことがより好ましい。
(Other structural units)
The polymer compound having a cross-linking group is selected from the group consisting of structural units represented by the formula (X) and structural units represented by the formula (Y), since the light-emitting device of the present embodiment has superior luminous efficiency. It preferably contains at least one structural unit, and at least one structural unit selected from the group consisting of structural units represented by formula (X) and structural units represented by formula (Y), and a bridging group. It is preferable to include a structural unit having
A polymer compound having a cross-linking group comprises at least one structural unit selected from the group consisting of structural units represented by formula (X) and structural units represented by formula (Y), and a structural unit having a cross-linking group. and the structural unit having a cross-linking group is preferably different from the structural unit represented by the formula (X) and the structural unit represented by the formula (Y).
A polymer compound having a cross-linking group preferably contains a structural unit represented by the formula (Y) because the light emitting device of the present embodiment has superior luminous efficiency, and the structural unit represented by the formula (Y) and It is more preferable to include a structural unit having a cross-linking group.
The polymer compound having a cross-linking group has an excellent hole-transport property of the polymer compound having a cross-linking group, and the luminous efficiency of the light-emitting device of the present embodiment is more excellent. Therefore, the structural unit represented by the formula (X) and more preferably a structural unit represented by formula (X) and a structural unit having a cross-linking group.
The polymer compound having a cross-linking group has an excellent hole-transport property of the polymer compound having a cross-linking group, and the luminous efficiency of the light-emitting device of the present embodiment is further excellent. Therefore, the structural unit represented by the formula (X) And it preferably contains a structural unit represented by formula (Y), more preferably contains a structural unit represented by formula (X), a structural unit represented by formula (Y) and a structural unit having a bridging group preferable.
 架橋基を有する高分子化合物が式(X)で表される構成単位を含む場合、式(X)で表される構成単位の含有量は、架橋基を有する高分子化合物としての機能が奏される範囲であればよい。架橋基を有する高分子化合物が式(X)で表される構成単位を含む場合、式(X)で表される構成単位の含有量は、架橋基を有する高分子化合物に含まれる構成単位の合計の含有量に対して、例えば、0.1~99.9モル%であり、架橋基を有する高分子化合物の正孔輸送性が優れ、且つ、本実施形態の発光素子の発光効率がより優れるので、好ましくは1~99モル%であり、より好ましくは10~90モル%であり、更に好ましくは20~80モル%であり、特に好ましくは30~70モル%である。
 式(X)で表される構成単位は、架橋基を有する高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
When the polymer compound having a cross-linking group contains the structural unit represented by the formula (X), the content of the structural unit represented by the formula (X) is such that the polymer compound having the cross-linking group functions. It is acceptable as long as it is within the range of When the polymer compound having a cross-linking group contains the structural unit represented by formula (X), the content of the structural unit represented by formula (X) is the amount of the structural unit contained in the polymer compound having a cross-linking group. With respect to the total content, for example, 0.1 to 99.9 mol%, the hole transport property of the polymer compound having a cross-linking group is excellent, and the luminous efficiency of the light emitting device of the present embodiment is higher. Since it is excellent, it is preferably 1 to 99 mol%, more preferably 10 to 90 mol%, still more preferably 20 to 80 mol%, and particularly preferably 30 to 70 mol%.
The structural unit represented by formula (X) may be contained in one type or two or more types in the polymer compound having a cross-linking group.
 架橋基を有する高分子化合物が式(Y)で表される構成単位を含む場合、式(Y)で表される構成単位の含有量は、架橋基を有する高分子化合物としての機能が奏される範囲であればよい。架橋基を有する高分子化合物が式(Y)で表される構成単位を含む場合、式(Y)で表される構成単位の含有量は、架橋基を有する高分子化合物に含まれる構成単位の合計の含有量に対して、例えば、0.1~99.9モル%であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは1~99モル%であり、より好ましくは10~90モル%であり、更に好ましくは20~80モル%であり、特に好ましくは30~70モル%である。
 式(Y)で表される構成単位は、架橋基を有する高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
When the polymer compound having a cross-linking group contains the structural unit represented by formula (Y), the content of the structural unit represented by formula (Y) is such that the polymer compound having a cross-linking group functions. It is acceptable if it is within the range of When the polymer compound having a cross-linking group contains the structural unit represented by formula (Y), the content of the structural unit represented by formula (Y) is the amount of the structural unit contained in the polymer compound having a cross-linking group. For example, it is 0.1 to 99.9 mol% with respect to the total content, and since the luminous efficiency of the light emitting device of the present embodiment is superior, it is preferably 1 to 99 mol%, more preferably 10 90 mol %, more preferably 20 to 80 mol %, particularly preferably 30 to 70 mol %.
The structural unit represented by the formula (Y) may be contained alone or in combination of two or more in the polymer compound having a cross-linking group.
 架橋基を有する高分子化合物が、式(X)で表される構成単位及び/又は式(Y)で表される構成単位、並びに、架橋基を有する構成単位を含む場合、式(X)で表される構成単位、式(Y)で表される構成単位及び架橋基を有する構成単位の合計の含有量は、架橋基を有する高分子化合物としての機能が奏される範囲であればよい。架橋基を有する高分子化合物が、式(X)で表される構成単位及び/又は式(Y)で表される構成単位、並びに、架橋基を有する構成単位を含む場合、式(X)で表される構成単位、式(Y)で表される構成単位及び架橋基を有する構成単位の合計の含有量は、架橋基を有する高分子化合物に含まれる構成単位の合計の含有量に対して、例えば、1~100モル%であり、架橋基を有する高分子化合物の正孔輸送性が優れ、且つ、本実施形態の発光素子の発光効率が更に優れるので、好ましくは10~100モル%であり、より好ましくは30~100モル%であり、更に好ましくは50~100モル%であり、特に好ましくは70~100モル%であり、とりわけ好ましくは90~100モル%である。 When the polymer compound having a cross-linking group contains a structural unit represented by formula (X) and/or a structural unit represented by formula (Y), and a structural unit having a cross-linking group, in formula (X) The total content of the structural unit represented by the formula (Y), the structural unit having a crosslinkable group, and the structural unit having a crosslinkable group may be within a range in which the function as a polymer compound having a crosslinkable group can be exhibited. When the polymer compound having a cross-linking group contains a structural unit represented by formula (X) and/or a structural unit represented by formula (Y), and a structural unit having a cross-linking group, in formula (X) The total content of the structural unit represented by the formula (Y) and the structural unit having a cross-linking group is based on the total content of the structural units contained in the polymer compound having a cross-linking group. , For example, 1 to 100 mol%, preferably 10 to 100 mol% because the hole transport property of the polymer compound having a cross-linking group is excellent and the luminous efficiency of the light emitting device of the present embodiment is further excellent. , more preferably 30 to 100 mol%, still more preferably 50 to 100 mol%, particularly preferably 70 to 100 mol%, particularly preferably 90 to 100 mol%.
 架橋基を有する高分子化合物としては、例えば、表2に示す高分子化合物P-4~P-15が挙げられる。ここで、「その他」とは、式(Z)で表される構成単位、式(Z’)で表される構成単位、式(X)で表される構成単位及び式(Y)で表される構成単位以外の構成単位を意味する。 Examples of polymer compounds having a cross-linking group include polymer compounds P-4 to P-15 shown in Table 2. Here, "other" means a structural unit represented by formula (Z), a structural unit represented by formula (Z'), a structural unit represented by formula (X), and a structural unit represented by formula (Y). means a structural unit other than the structural unit
Figure JPOXMLDOC01-appb-T000038

[表中、p’、q’、r’、s’及びt’は、各構成単位のモル比率(モル%)を表す。p’+q’+r’+s’+t’=100であり、且つ、70≦p’+q’+r’+s’≦100である。]
Figure JPOXMLDOC01-appb-T000038

[In the table, p', q', r', s' and t' represent the molar ratio (mol%) of each structural unit. p′+q′+r′+s′+t′=100 and 70≦p′+q′+r′+s′≦100. ]
 架橋基を有する高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合した共重合体であることが好ましい。 The polymer compound having a cross-linking group may be a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, or may be in other forms. It is preferably a copolymer obtained by copolymerizing raw material monomers.
 架橋基を有する高分子化合物のポリスチレン換算の数平均分子量の例及び好ましい範囲は、第2の層の高分子化合物のポリスチレン換算の数平均分子量の例及び好ましい範囲と同じである。架橋基を有する高分子化合物のポリスチレン換算の重量平均分子量の例及び好ましい範囲は、第2の層の高分子化合物のポリスチレン換算の重量平均分子量の例及び好ましい範囲と同じである。 The example and preferred range of the polystyrene-equivalent number average molecular weight of the polymer compound having a cross-linking group are the same as the example and preferred range of the polystyrene-equivalent number average molecular weight of the polymer compound of the second layer. The example and preferred range of the polystyrene-equivalent weight average molecular weight of the polymer compound having a cross-linking group are the same as the example and preferred range of the polystyrene-equivalent weight average molecular weight of the polymer compound of the second layer.
 (架橋基を有する高分子化合物の製造方法)
 架橋基を有する高分子化合物は、第2の層の高分子化合物の製造方法と同様の方法で製造することができる。
(Method for Producing Polymer Compound Having Crosslinking Group)
A polymer compound having a cross-linking group can be produced by a method similar to that for producing the polymer compound of the second layer.
 [架橋基を有する低分子化合物]
 架橋基を有する低分子化合物は、本実施形態の発光素子の発光効率がより優れるので、式(Z’’)で表される低分子化合物であることが好ましい。
[Low-molecular compound having a cross-linking group]
A low-molecular-weight compound having a cross-linking group is preferably a low-molecular-weight compound represented by the formula (Z'') because the light-emitting device of the present embodiment has superior luminous efficiency.
 mB1の例及び好ましい範囲は、mAの例及び好ましい範囲と同じである。
 mB2の例及び好ましい範囲は、cの例及び好ましい範囲と同じである。
 mB3の例及び好ましい範囲は、mの例及び好ましい範囲と同じである。
 Arの例及び好ましい範囲は、Arの例及び好ましい範囲と同じである。
 LB1の例及び好ましい範囲は、Lの例及び好ましい範囲と同じである。
 R’’’の例及び好ましい範囲は、R’の例及び好ましい範囲と同じである。
 X’’の例及び好ましい範囲は、X’の例及び好ましい範囲と同じである。
The examples and preferred ranges for m B1 are the same as the examples and preferred ranges for mA.
Examples and preferred ranges of m B2 are the same as those of c.
Examples and preferred ranges of m B3 are the same as those of m.
Examples and preferred ranges for Ar 7 are the same as those for Ar 5 .
The examples and preferred ranges of L B1 are the same as the examples and preferred ranges of L A.
The examples and preferred ranges of R''' are the same as the examples and preferred ranges of R'.
Examples and preferred ranges of X'' are the same as those of X'.
 架橋基を有する低分子化合物としては、例えば、以下に示す化合物が挙げられる。 Examples of low-molecular-weight compounds having a cross-linking group include the compounds shown below.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 [第2の組成物]
 第2の層は、化合物(A-2)と、第2の層の材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群から選ばれる少なくとも1種とを含む組成物(以下、「第2の組成物」ともいう。)を含有する層であってもよい。但し、第2の組成物において、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料は、化合物(A-2)とは異なる。
 第2の組成物には、化合物(A-2)、第2の層の材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤が、それぞれ、1種単独で含有されていてもよく、2種以上含有されていてもよい。
 第2の組成物に含有される正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤の例及び好ましい範囲は、それぞれ、第1の組成物に含有される正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び酸化防止剤の例及び好ましい範囲と同じである。
 第2の組成物において、化合物(A-2)、第2の層の材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤の合計の含有量は、第2の組成物としての機能が奏される範囲であればよい。第2の組成物において、化合物(A-2)、第2の層の材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤の合計の含有量は、例えば、第2の組成物の全量基準で1~100質量%であってもよく、10~100質量%であってもよく、30~100質量%であってもよく、更に好ましくは50~100質量%であってもよく、70~100質量%であってもよく、90~100質量%であってもよい。
 第2の組成物において、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料の含有量は、各々、化合物(A-2)の含有量を100質量部とした場合、通常、1~10000質量部である。第2の組成物において、酸化防止剤の含有量は、化合物(A-2)の含有量を100質量部とした場合、通常、0.00001~10質量部である。第2の組成物において、第2の層の材料の含有量は、化合物(A-2)と第2の層の材料との合計の含有量を100質量部とした場合、例えば、1~99.99質量部であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは10~99.9質量部であり、より好ましくは30~99.5質量部であり、更に好ましくは50~99質量部であり、特に好ましくは70~97質量部であり、とりわけ好ましくは80~95質量部である。
[Second composition]
The second layer is selected from the group consisting of the compound (A-2), the material of the second layer, the hole-transporting material, the hole-injecting material, the electron-transporting material, the electron-injecting material, the light-emitting material, and the antioxidant. It may be a layer containing a composition (hereinafter also referred to as “second composition”) containing at least one of However, in the second composition, the hole-transporting material, hole-injecting material, electron-transporting material, electron-injecting material, and light-emitting material are different from the compound (A-2).
The second composition contains the compound (A-2), the material of the second layer, the hole-transporting material, the hole-injecting material, the electron-transporting material, the electron-injecting material, the light-emitting material, and the antioxidant, respectively, It may be contained individually by 1 type, and may be contained 2 or more types.
Examples and preferred ranges of the hole-transporting material, hole-injecting material, electron-transporting material, electron-injecting material, light-emitting material and antioxidant contained in the second composition are respectively contained in the first composition. Examples and preferred ranges of the hole-transporting material, hole-injecting material, electron-transporting material, electron-injecting material, and antioxidant.
In the second composition, the total content of compound (A-2), second layer material, hole transport material, hole injection material, electron transport material, electron injection material, light emitting material and antioxidant may be within a range in which the function as the second composition can be exhibited. In the second composition, the total content of compound (A-2), second layer material, hole transport material, hole injection material, electron transport material, electron injection material, light emitting material and antioxidant is, for example, based on the total amount of the second composition, may be 1 to 100% by mass, may be 10 to 100% by mass, may be 30 to 100% by mass, more preferably 50 It may be up to 100% by mass, 70 to 100% by mass, or 90 to 100% by mass.
In the second composition, the contents of the hole-transporting material, the hole-injecting material, the electron-transporting material, the electron-injecting material, and the light-emitting material are each based on the content of the compound (A-2) being 100 parts by mass. , usually from 1 to 10,000 parts by mass. In the second composition, the content of the antioxidant is usually from 0.00001 to 10 parts by mass based on 100 parts by mass of the compound (A-2). In the second composition, the content of the material of the second layer is, for example, 1 to 99 when the total content of the compound (A-2) and the material of the second layer is 100 parts by mass. .99 parts by mass, and the luminous efficiency of the light-emitting device of the present embodiment is more excellent, so it is preferably 10 to 99.9 parts by mass, more preferably 30 to 99.5 parts by mass, and still more preferably 50 parts by mass. to 99 parts by mass, particularly preferably 70 to 97 parts by mass, particularly preferably 80 to 95 parts by mass.
 [第2のインク]
 第2の層は、例えば、化合物(A-2)と溶媒とを含有する組成物(以下、「第2のインク」ともいう。)を用いて形成することができる。
 第2のインクには、化合物(A-2)及び溶媒が、それぞれ、1種単独で含有されていてもよく、2種以上含有されていてもよい。
 第2のインクは、第1のインクの項で説明した湿式法に好適に使用することができる。
 第2のインクの粘度の好ましい範囲は、第1のインクの粘度の好ましい範囲と同じである。
 第2のインクに含有される溶媒の例及び好ましい範囲は、第1のインクに含有される溶媒の例及び好ましい範囲と同じである。
 第2のインクにおいて、溶媒の含有量は、化合物(A-2)の含有量を100質量部とした場合、通常、1000~10000000質量部である。
[Second ink]
The second layer can be formed using, for example, a composition containing the compound (A-2) and a solvent (hereinafter also referred to as "second ink").
The second ink may contain one kind of the compound (A-2) and the solvent, or two or more kinds thereof.
The second ink can be suitably used for the wet method described in the section on the first ink.
The preferred range of viscosity for the second ink is the same as the preferred range for the viscosity of the first ink.
The example and preferred range of the solvent contained in the second ink are the same as the example and preferred range of the solvent contained in the first ink.
In the second ink, the content of the solvent is usually 1000 to 10000000 parts by mass when the content of compound (A-2) is 100 parts by mass.
 第2のインクは、第2の層の材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群から選ばれる少なくとも1種を更に含んでいてもよい。
 第2のインクには、第2の層の材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤が、それぞれ、1種単独で含有されていてもよく、2種以上含有されていてもよい。
 第2のインクが更に含んでいてもよい、正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料、発光材料及び酸化防止剤の例及び好ましい範囲は、それぞれ、第2の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料、発光材料及び酸化防止剤の例及び好ましい範囲と同じである。
 第2のインクが更に含んでいてもよい、正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の含有量は、各々、化合物(A-2)の含有量を100質量部とした場合、通常、1~10000質量部である。第2のインクが更に含んでいてもよい酸化防止剤の含有量は、化合物(A-2)の合計の含有量を100質量部とした場合、通常、0.00001~10質量部である。第2のインクが更に含んでいてもよい第2の層の材料の含有量は、化合物(A-2)と第2の層の材料との合計の含有量を100質量部とした場合、例えば、1~99.99質量部であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは10~99.9質量部であり、より好ましくは30~99.5質量部であり、更に好ましくは50~99質量部であり、特に好ましくは70~97質量部であり、とりわけ好ましくは80~95質量部である。
The second ink further comprises at least one selected from the group consisting of second layer materials, hole transport materials, hole injection materials, electron transport materials, electron injection materials, light emitting materials and antioxidants. You can
The second ink contains each of the material of the second layer, the hole-transporting material, the hole-injecting material, the electron-transporting material, the electron-injecting material, the light-emitting material, and the antioxidant. may be contained, or two or more may be contained.
Examples and preferred ranges of the hole-transporting material, the electron-transporting material, the hole-injecting material, the electron-injecting material, the light-emitting material, and the antioxidant, which the second ink may further include, are described in the second composition, respectively. are the same as the examples and preferred ranges of the hole transport material, electron transport material, hole injection material, electron injection material, light emitting material and antioxidant contained in .
The content of the hole-transporting material, electron-transporting material, hole-injecting material, electron-injecting material, and light-emitting material that the second ink may further contain is 100% of the content of compound (A-2). When expressed as parts by mass, it is usually 1 to 10,000 parts by mass. The content of the antioxidant that the second ink may further contain is usually 0.00001 to 10 parts by mass when the total content of the compound (A-2) is 100 parts by mass. The content of the second layer material that the second ink may further contain is, when the total content of the compound (A-2) and the second layer material is 100 parts by mass, for example , 1 to 99.99 parts by mass, preferably 10 to 99.9 parts by mass, more preferably 30 to 99.5 parts by mass, because the luminous efficiency of the light emitting device of the present embodiment is more excellent, More preferably 50 to 99 parts by mass, particularly preferably 70 to 97 parts by mass, particularly preferably 80 to 95 parts by mass.
 <発光素子>
 本実施形態の発光素子は、陽極と、陰極と、陽極及び前記陰極の間に設けられた第1の層と、陽極及び第1の層の間に設けられた第2の層とを有する発光素子である。
 本実施形態の発光素子において、化合物(A-1)の少なくとも1種と、化合物(A-2)の少なくとも1種とは、同一である。
 本実施形態の発光素子において、第1の層と第2の層とは、隣接している。
<Light emitting element>
The light emitting device of this embodiment has an anode, a cathode, a first layer provided between the anode and the cathode, and a second layer provided between the anode and the first layer. element.
In the light-emitting device of this embodiment, at least one compound (A-1) and at least one compound (A-2) are the same.
In the light-emitting device of this embodiment, the first layer and the second layer are adjacent to each other.
 本実施形態の発光素子は、陽極、陰極、第1の層及び第2の層以外の層を更に有していてもよい。 The light-emitting device of this embodiment may further have layers other than the anode, cathode, first layer, and second layer.
 本実施形態の発光素子は、発光効率が優れる。このような効果を奏する理由は、必ずしも明らかではないが、陽極及び陰極の間に設けられた隣接する2層(第1の層及び第2の層)に、同一の式(H-1)で表される化合物(化合物(A-1)及び化合物(A-2))を含有させることで、例えば、2層の界面における電荷注入障壁の低減、及び/又は、2層間の電荷注入性の改善等をもたらし、本実施形態の発光素子の発光効率が向上すると考えられる。 The light-emitting element of this embodiment has excellent luminous efficiency. Although the reason why such an effect is produced is not necessarily clear, two adjacent layers (first layer and second layer) provided between the anode and the cathode are provided with the same formula (H-1). By containing the represented compounds (compound (A-1) and compound (A-2)), for example, the charge injection barrier at the interface between the two layers is reduced and/or the charge injection property between the two layers is improved. etc., and the luminous efficiency of the light-emitting device of this embodiment is considered to be improved.
 本実施形態の発光素子において、第1の層は、通常、発光層(以下、「第1の発光層」と言う。)である。
 本実施形態の発光素子において、第2の層は、通常、正孔注入層、正孔輸送層又は発光層(即ち、第1の発光層とは別個の発光層であり、以下、「第2の発光層」と言う。)であり、より好ましくは、正孔注入層又は正孔輸送層であり、更に好ましくは正孔輸送層である。
In the light-emitting device of this embodiment, the first layer is usually a light-emitting layer (hereinafter referred to as "first light-emitting layer").
In the light emitting device of the present embodiment, the second layer is usually a hole injection layer, a hole transport layer or a light emitting layer (that is, a light emitting layer separate from the first light emitting layer, hereinafter referred to as "second ), more preferably a hole-injecting layer or a hole-transporting layer, and still more preferably a hole-transporting layer.
 本実施形態の発光素子において、第2の層が陽極及び第1の層の間に設けられた第2の発光層である場合、本実施形態の発光素子の発光効率がより優れるので、陽極と第2の層との間に、正孔注入層及び正孔輸送層のうちの少なくとも1つの層を更に有することが好ましい。また、第2の層が陽極及び第1の層の間に設けられた第2の発光層である場合、本実施形態の発光素子の発光効率がより優れるので、陰極と第1の層との間に、電子注入層及び電子輸送層のうちの少なくとも1つの層を更に有することが好ましい。
 本実施形態の発光素子において、第2の層が陽極及び第1の層の間に設けられた正孔輸送層である場合、本実施形態の発光素子の発光効率がより優れるので、陽極と第2の層との間に、正孔注入層を更に有することが好ましい。また、第2の層が陽極及び第1の層の間に設けられた正孔輸送層である場合、本実施形態の発光素子の発光効率がより優れるので、陰極と第1の層との間に、電子注入層及び電子輸送層のうちの少なくとも1つの層を更に有することが好ましい。
 本実施形態の発光素子において、第2の層が陽極及び第1の層の間に設けられた正孔注入層である場合、本実施形態の発光素子の発光効率がより優れるので、陰極と第1の層との間に、電子注入層及び電子輸送層のうちの少なくとも1つの層を更に有することが好ましい。
In the light-emitting device of this embodiment, when the second layer is the second light-emitting layer provided between the anode and the first layer, the light-emitting device of this embodiment has superior luminous efficiency. It is preferable to further have at least one layer of a hole injection layer and a hole transport layer between the second layer. Further, when the second layer is the second light-emitting layer provided between the anode and the first layer, the light-emitting element of the present embodiment has superior light-emitting efficiency. It is preferred to further have at least one layer of an electron injection layer and an electron transport layer in between.
In the light emitting device of this embodiment, when the second layer is a hole transport layer provided between the anode and the first layer, the luminous efficiency of the light emitting device of this embodiment is more excellent. It is preferable to further have a hole injection layer between the two layers. Further, when the second layer is a hole-transporting layer provided between the anode and the first layer, the luminous efficiency of the light-emitting device of the present embodiment is more excellent. Furthermore, it is preferable to further have at least one layer of an electron injection layer and an electron transport layer.
In the light-emitting device of this embodiment, when the second layer is a hole injection layer provided between the anode and the first layer, the light-emitting device of this embodiment has superior luminous efficiency. It is preferable to further have at least one layer of an electron injection layer and an electron transport layer between the one layer.
 本実施形態の発光素子の具体的な層構成としては、例えば、下記の(D1)~(D13)で表される層構成が挙げられる。本実施形態の発光素子は、通常、基板を有するが、基板上に陽極から積層されていてもよく、基板上に陰極から積層されていてもよい。 Specific layer configurations of the light-emitting device of the present embodiment include, for example, layer configurations represented by (D1) to (D13) below. The light-emitting device of this embodiment usually has a substrate, but the anode may be stacked on the substrate, or the cathode may be stacked on the substrate.
(D1)陽極/正孔輸送層(第2の層)/第1の発光層(第1の層)/陰極
(D2)陽極/正孔注入層/正孔輸送層(第2の層)/第1の発光層(第1の層)/陰極(D3)陽極/正孔注入層/正孔輸送層(第2の層)/第1の発光層(第1の層)/電子輸送層/陰極
(D4)陽極/正孔注入層/正孔輸送層(第2の層)/第1の発光層(第1の層)/電子注入層/陰極
(D5)陽極/正孔注入層/正孔輸送層(第2の層)/第1の発光層(第1の層)/電子輸送層/電子注入層/陰極
(D6)陽極/正孔注入層/正孔輸送層(第2の層)/第1の発光層(第1の層)/第2の発光層/電子輸送層/電子注入層/陰極
(D7)陽極/第2の発光層(第2の層)/第1の発光層(第1の層)/陰極
(D8)陽極/正孔注入層/第2の発光層(第2の層)/第1の発光層(第1の層)/電子輸送層/陰極
(D9)陽極/正孔注入層/第2の発光層(第2の層)/第1の発光層(第1の層)/電子注入層/陰極
(D10)陽極/正孔注入層/第2の発光層(第2の層)/第1の発光層(第1の層)/電子輸送層/電子注入層/陰極
(D11)陽極/正孔注入層/正孔輸送層/第2の発光層(第2の層)/第1の発光層(第1の層)/電子輸送層/電子注入層/陰極
(D12)陽極/正孔注入層(第2の層)/第1の発光層(第1の層)/陰極
(D13)陽極/正孔注入層(第2の層)/第1の発光層(第1の層)/電子輸送層/電子注入層/陰極
(D1) anode/hole-transport layer (second layer)/first light-emitting layer (first layer)/cathode (D2) anode/hole-injection layer/hole-transport layer (second layer)/ First light emitting layer (first layer)/cathode (D3) anode/hole injection layer/hole transport layer (second layer)/first light emitting layer (first layer)/electron transport layer/ Cathode (D4) anode/hole injection layer/hole transport layer (second layer)/first emitting layer (first layer)/electron injection layer/cathode (D5) anode/hole injection layer/positive hole-transporting layer (second layer)/first light-emitting layer (first layer)/electron-transporting layer/electron-injecting layer/cathode (D6) anode/hole-injecting layer/hole-transporting layer (second layer) )/first light emitting layer (first layer)/second light emitting layer/electron transport layer/electron injection layer/cathode (D7) anode/second light emitting layer (second layer)/first light emitting Layer (first layer)/cathode (D8) anode/hole injection layer/second light-emitting layer (second layer)/first light-emitting layer (first layer)/electron transport layer/cathode (D9 ) anode/hole injection layer/second emitting layer (second layer)/first emitting layer (first layer)/electron injection layer/cathode (D10) anode/hole injection layer/second Light emitting layer (second layer)/first light emitting layer (first layer)/electron transport layer/electron injection layer/cathode (D11) anode/hole injection layer/hole transport layer/second light emitting layer (Second layer)/first emitting layer (first layer)/electron transport layer/electron injection layer/cathode (D12) anode/hole injection layer (second layer)/first emitting layer ( first layer)/cathode (D13) anode/hole injection layer (second layer)/first emitting layer (first layer)/electron transport layer/electron injection layer/cathode
 上記の(D1)~(D13)中、「/」は、その前後の層が隣接して積層していることを意味する。例えば、「正孔輸送層(第2の層)/第1の発光層(第1の層)」とは、正孔輸送層(第2の層)と第1の発光層(第1の層)とが隣接して積層していることを意味する。 In (D1) to (D13) above, "/" means that the layers before and after it are laminated adjacently. For example, "hole transport layer (second layer)/first light emitting layer (first layer)" means the combination of the hole transport layer (second layer) and the first light emitting layer (first layer). ) means that they are stacked adjacent to each other.
 本実施形態の発光素子において、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層及び陰極は、それぞれ、必要に応じて、2層以上設けられていてもよい。陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層及び陰極が複数存在する場合、それらを構成する材料はそれぞれ同一でも異なっていてもよい。 In the light emitting device of this embodiment, the anode, the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, the electron injection layer and the cathode may each be provided with two or more layers, if necessary. . When there are a plurality of anodes, hole-injection layers, hole-transport layers, light-emitting layers, electron-transport layers, electron-injection layers, and cathodes, the materials constituting them may be the same or different.
 本実施形態の発光素子において、陽極、正孔注入層、正孔輸送層、第1の層、第2の層、発光層、電子輸送層、電子注入層及び陰極の厚さは、通常、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~150nmである。 In the light-emitting device of this embodiment, the thicknesses of the anode, the hole-injection layer, the hole-transport layer, the first layer, the second layer, the light-emitting layer, the electron-transport layer, the electron-injection layer, and the cathode are usually 1 nm. ~1 μm, preferably 2 nm to 500 nm, more preferably 5 nm to 150 nm.
 本実施形態の発光素子において、積層する層の順番、数、及び厚さは、発光素子の発光効率等を勘案して調整すればよい。 In the light-emitting device of this embodiment, the order, number, and thickness of the layers to be stacked may be adjusted in consideration of the luminous efficiency of the light-emitting device.
 [第1の発光層]
 第1の発光層は、通常、第1の層である。
[First light-emitting layer]
The first light-emitting layer is typically the first layer.
 [第2の発光層]
 第2の発光層は、通常、第2の層又は発光材料を含有する層であり、好ましくは、発光材料を含有する層である。第2の発光層が発光材料を含有する層である場合、第2の発光層に含有される発光材料としては、例えば、前述の第2の組成物が含有していてもよい発光材料が挙げられる。第2の発光層に含有される発光材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
 本実施形態の発光素子が第2の発光層を有し、且つ、後述の正孔注入層及び後述の正孔輸送層が第2の層ではない場合、第2の発光層は第2の層であることが好ましい。
[Second light-emitting layer]
The second light-emitting layer is usually a second layer or a layer containing a light-emitting material, preferably a layer containing a light-emitting material. When the second light-emitting layer is a layer containing a light-emitting material, the light-emitting material contained in the second light-emitting layer includes, for example, the light-emitting material that the second composition may contain. be done. The light-emitting material contained in the second light-emitting layer may be contained singly or in combination of two or more.
When the light-emitting element of this embodiment has a second light-emitting layer, and the hole injection layer and the hole transport layer described later are not the second layer, the second light-emitting layer is the second layer. is preferably
 [正孔輸送層]
 正孔輸送層は、第2の層又は正孔輸送材料を含有する層であり、好ましくは、第2の層である。正孔輸送層が正孔輸送材料を含有する層である場合、正孔輸送材料としては、例えば、前述の第2の組成物が含有していてもよい正孔輸送材料が挙げられる。正孔輸送層に含有される正孔輸送材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
 本実施形態の発光素子が正孔輸送層を有し、且つ、後述の正孔注入層及び前述の第2の発光層が第2の層ではない場合、正孔輸送層は第2の層であることが好ましい。
[Hole transport layer]
The hole-transporting layer is the second layer or a layer containing a hole-transporting material, preferably the second layer. When the hole-transporting layer is a layer containing a hole-transporting material, the hole-transporting material includes, for example, the hole-transporting material that the second composition may contain. The hole-transporting material contained in the hole-transporting layer may be contained alone or in combination of two or more.
When the light-emitting device of this embodiment has a hole-transporting layer and the hole-injecting layer described later and the second light-emitting layer described above are not the second layer, the hole-transporting layer is the second layer. Preferably.
 [電子輸送層]
 電子輸送層は、電子輸送材料を含有する層である。電子輸送層に含有される電子輸送材料としては、例えば、前述の第2の組成物が含有していてもよい電子輸送材料が挙げられる。電子輸送層に含有される電子輸送材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
[Electron transport layer]
An electron transport layer is a layer containing an electron transport material. Examples of the electron-transporting material contained in the electron-transporting layer include the electron-transporting material that the second composition may contain. The electron-transporting material contained in the electron-transporting layer may be contained alone or in combination of two or more.
 [正孔注入層]
 正孔注入層は、第2の層又は正孔注入材料を含有する層であり、好ましくは、正孔注入材料を含有する層である。正孔注入層が正孔注入材料を含有する層である場合、正孔注入層に含有される正孔注入材料としては、例えば、前述の第2の組成物が含有していてもよい正孔注入材料が挙げられる。正孔注入層に含有される正孔注入材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
 本実施形態の発光素子が正孔注入層を有し、且つ、前述の第2の発光層及び前述の正孔輸送層が第2の層ではない場合、正孔注入層は第2の層であることが好ましい。
[Hole injection layer]
The hole-injecting layer is the second layer or layer containing a hole-injecting material, preferably a layer containing a hole-injecting material. When the hole-injection layer is a layer containing a hole-injection material, the hole-injection material contained in the hole-injection layer includes, for example, the holes that the second composition may contain. Infusion materials are included. The hole injection material contained in the hole injection layer may be contained singly or in combination of two or more.
When the light-emitting device of this embodiment has a hole-injection layer and the second light-emitting layer and the hole-transport layer are not the second layer, the hole-injection layer is the second layer. Preferably.
 [電子注入層]
 電子注入層は、電子注入材料を含有する層である。電子注入層に含有される電子注入材料としては、例えば、前述の第2の組成物が含有していてもよい電子注入材料が挙げられる。電子注入層に含有される電子注入材料は、1種単独が含有されていても、2種以上が含有されていてもよい。
[Electron injection layer]
An electron injection layer is a layer containing an electron injection material. The electron injection material contained in the electron injection layer includes, for example, the electron injection material that the second composition may contain. The electron injection material contained in the electron injection layer may be contained singly or in combination of two or more.
 [基板/電極]
 発光素子における基板は、電極の形成及び有機層の形成の際に、化学的に変化しない基板であることが好ましい。基板は、例えば、ガラス、プラスチック、シリコン等の材料からなる基板であってよい。不透明な基板を使用する場合には、基板から最も遠くにある電極が透明又は半透明であることが好ましい。
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
 陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
 本実施形態の発光素子において、陽極及び陰極の少なくとも一方は、通常、透明又は半透明であるが、陽極が透明又は半透明であることが好ましい。
 陽極及び陰極の形成方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法及びラミネート法が挙げられる。
[Substrate/electrode]
The substrate in the light-emitting device is preferably a substrate that does not chemically change during the formation of the electrodes and the formation of the organic layer. The substrate may be, for example, a substrate made of materials such as glass, plastic, silicon, and the like. If an opaque substrate is used, the electrode furthest from the substrate is preferably transparent or translucent.
Examples of materials for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium-tin-oxide (ITO), indium-zinc-oxide, etc. conductive compounds of; silver-palladium-copper composite (APC); NESA, gold, platinum, silver, copper.
Examples of cathode materials include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, and indium; alloys of two or more of them; alloys of one or more species with one or more of silver, copper, manganese, titanium, cobalt, nickel, tungsten, tin; and graphite and graphite intercalation compounds. Examples of alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, and calcium-aluminum alloys.
In the light-emitting device of this embodiment, at least one of the anode and the cathode is usually transparent or translucent, and the anode is preferably transparent or translucent.
Methods for forming the anode and cathode include, for example, a vacuum deposition method, a sputtering method, an ion plating method, a plating method and a laminating method.
 [発光素子の製造方法]
 本実施形態の発光素子の製造方法において、第1の層、第2の層、並びに、第1の層及び第2の層以外の層の形成方法としては、低分子化合物を用いる場合、例えば、真空蒸着法等の乾式法及び第1のインクの項で説明した湿式法が挙げられ、また、高分子化合物を用いる場合、例えば、第1のインクの項で説明した湿式法が挙げられる。
 本実施形態の発光素子の製造方法において、第1の層、第2の層、並びに、第1の層及び第2の層以外の層は、上述した各種インク、並びに、上述した各種材料及び第1のインクの項で説明した溶媒を含むインクを用いて、第1のインクの項で説明した湿式法により形成してもよいし、真空蒸着法等の乾式法により形成してもよい。
[Method for manufacturing light-emitting element]
In the method for manufacturing the light-emitting device of the present embodiment, when using a low-molecular-weight compound as a method for forming the first layer, the second layer, and layers other than the first layer and the second layer, for example, A dry method such as a vacuum deposition method and a wet method described in the section of the first ink can be used, and when a polymer compound is used, for example, the wet method described in the section of the first ink can be used.
In the method for manufacturing a light-emitting element of the present embodiment, the first layer, the second layer, and the layers other than the first layer and the second layer are the various inks described above, the various materials described above, and the It may be formed by the wet method described in the first ink section using the ink containing the solvent described in the first ink section, or may be formed by a dry method such as a vacuum deposition method.
 第1の層及び第2の層の形成方法としては、例えば、乾式法及び湿式法が挙げられ、本実施形態の発光素子の製造が容易になるので、湿式法が好ましい。第1の層及び第2の層の形成方法において、乾式法としては、例えば、真空蒸着法が挙げられる。第1の層及び第2の層の形成方法において、湿式法としては、例えば、第1のインクの項で説明した湿式法が挙げられる。
 第1の層を湿式法により形成する場合、本実施形態の発光素子の製造が容易になるので、第1のインクを用いることが好ましい。即ち、第1の層は、第1のインクを用いた湿式法により形成することが好ましい。
 第2の層を湿式法により形成する場合、本実施形態の発光素子の製造が容易になるので、第2のインクを用いることが好ましい。即ち、第2の層は、第2のインクを用いた湿式法により形成することが好ましい。
Methods for forming the first layer and the second layer include, for example, a dry method and a wet method, and the wet method is preferable because it facilitates the production of the light emitting device of this embodiment. In the method of forming the first layer and the second layer, the dry method includes, for example, a vacuum deposition method. In the method of forming the first layer and the second layer, examples of the wet method include the wet method described in the section on the first ink.
When the first layer is formed by a wet method, it is preferable to use the first ink because it facilitates the manufacture of the light emitting device of this embodiment. That is, the first layer is preferably formed by a wet method using the first ink.
When the second layer is formed by a wet method, it is preferable to use the second ink because it facilitates the manufacture of the light emitting device of this embodiment. That is, the second layer is preferably formed by a wet method using the second ink.
 本実施形態の発光素子の製造方法において、架橋基を有する化合物の架橋体を含有する層(例えば、層(2’))は、例えば、架橋基を有する化合物を含有する層を形成後、加熱又は光照射(好ましくは、加熱)することで、該層に含有される架橋基を有する化合物を架橋させることで形成することができる。架橋基を有する化合物が架橋した状態(架橋基を有する化合物の架橋体)で、層に含有されている場合、該層は溶媒に対して実質的に不溶化されている。そのため、架橋基を有する化合物の架橋体を含有する層は、本実施形態の発光素子の製造において、層の積層化に好適に使用することができる。
 架橋させるための加熱の温度は、通常、25℃~300℃であり、好ましくは50℃~260℃であり、より好ましくは130℃~230℃であり、更に好ましくは180℃~210℃である。
 加熱の時間は、通常、0.1分~1000分であり、好ましくは0.5分~500分であり、より好ましくは1分~120分であり、更に好ましくは10分~60分である。
 光照射に用いられる光の種類は、例えば、紫外光、近紫外光、可視光である。
In the method for producing a light-emitting device of the present embodiment, the layer containing a crosslinked compound of a compound having a crosslinkable group (eg, layer (2′)) is formed by heating after forming a layer containing a compound having a crosslinkable group, for example. Alternatively, it can be formed by cross-linking a compound having a cross-linking group contained in the layer by light irradiation (preferably heating). When the compound having a cross-linking group is contained in a layer in a cross-linked state (a cross-linked product of a compound having a cross-linking group), the layer is substantially insoluble in a solvent. Therefore, the layer containing the crosslinked product of the compound having a crosslinkable group can be suitably used for lamination of layers in the production of the light emitting device of this embodiment.
The heating temperature for cross-linking is usually 25°C to 300°C, preferably 50°C to 260°C, more preferably 130°C to 230°C, still more preferably 180°C to 210°C. .
The heating time is usually 0.1 to 1000 minutes, preferably 0.5 to 500 minutes, more preferably 1 to 120 minutes, still more preferably 10 to 60 minutes. .
Types of light used for light irradiation are, for example, ultraviolet light, near-ultraviolet light, and visible light.
 第1の層、第2の層、又は、第1の層及び第2の層以外の層に含有される成分の分析方法としては、例えば、抽出等の化学的分離分析法、赤外分光法(IR)、核磁気共鳴分光法(NMR)、質量分析法(MS)等の機器分析法、並びに、化学的分離分析法及び機器分析法を組み合わせた分析法が挙げられる。
 第1の層、第2の層、又は、第1の層及び第2の層以外の層に対して、トルエン、キシレン、クロロホルム、テトラヒドロフラン等の有機溶媒を用いた固液抽出を行うことで、有機溶媒に対して実質的に不溶な成分(不溶成分)と、有機溶媒に対して溶解する成分(溶解成分)とに分離することが可能である。不溶成分は赤外分光法又は核磁気共鳴分光法により分析することが可能であり、溶解成分は核磁気共鳴分光法又は質量分析法により分析することが可能である。
Methods for analyzing components contained in the first layer, the second layer, or layers other than the first layer and the second layer include, for example, chemical separation analysis methods such as extraction, infrared spectroscopy instrumental analysis methods such as (IR), nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS), and analytical methods combining chemical separation analysis methods and instrumental analysis methods.
By performing solid-liquid extraction using an organic solvent such as toluene, xylene, chloroform, tetrahydrofuran, etc. on the first layer, the second layer, or a layer other than the first layer and the second layer, It is possible to separate into a component that is substantially insoluble in an organic solvent (insoluble component) and a component that dissolves in an organic solvent (soluble component). Insoluble components can be analyzed by infrared spectroscopy or nuclear magnetic resonance spectroscopy, and dissolved components can be analyzed by nuclear magnetic resonance spectroscopy or mass spectroscopy.
 本実施形態の発光素子は、例えば、基板上に各層を順次積層することにより製造することができる。具体的には、基板上に陽極を設け、その上に正孔注入層、正孔輸送層等の層を設け、その上に発光層を設け、その上に電子輸送層、電子注入層等の層を設け、更にその上に、陰極を積層することにより、発光素子を製造することができる。他の製造方法としては、基板上に陰極を設け、その上に電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層等の層を設け、更にその上に、陽極を積層することにより、発光素子を製造することができる。更に他の製造方法としては、陽極又は陽極上に各層を積層した陽極側基材と陰極又は陰極上に各層を積層させた陰極側基材とを、対向させて接合することにより製造することができる。 The light-emitting device of this embodiment can be manufactured, for example, by sequentially laminating each layer on a substrate. Specifically, an anode is provided on a substrate, layers such as a hole injection layer and a hole transport layer are provided thereon, a light emitting layer is provided thereon, and an electron transport layer, an electron injection layer and the like are provided thereon. A light-emitting device can be manufactured by providing a layer and further laminating a cathode thereon. As another manufacturing method, a cathode is provided on a substrate, layers such as an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, and a hole injection layer are provided thereon, and an anode is further provided thereon. A light-emitting device can be manufactured by stacking. In still another manufacturing method, an anode or a cathode-side base material having layers laminated on the anode and a cathode or a cathode-side base material having layers laminated on the cathode may be opposed and bonded to each other. can.
 本実施形態の発光素子の製造において、正孔注入層の形成に用いる材料、発光層の形成に用いる材料、正孔輸送層の形成に用いる材料、電子輸送層の形成に用いる材料、及び、電子注入層の形成に用いる材料が、各々、正孔注入層、発光層、正孔輸送層、電子輸送層及び電子注入層に隣接する層の形成時に使用される溶媒に溶解する場合、該溶媒に該材料が溶解することが回避されることが好ましい。材料の溶解を回避する方法としては、i)架橋基を有する材料を用いる方法、及び、ii)隣接する層の溶媒への溶解性に差を設ける方法が挙げられる。上記i)の方法としては、例えば、架橋基を有する材料を用いて層(例えば、正孔輸送層)を形成した後、該架橋基を架橋させることにより、該層を不溶化させることができ、該層上に、該層とは異なる層(例えば、発光層)を積層することができる。また、上記ii)の方法としては、例えば、層(例えば、発光層)を形成した後、該層に対して、溶解性の低い溶媒を含むインクを用いることで、該層上に、該層とは異なる層(例えば、電子輸送層)を積層することができる。 In the manufacture of the light emitting device of this embodiment, the material used for forming the hole injection layer, the material used for forming the light emitting layer, the material used for forming the hole transport layer, the material used for forming the electron transport layer, and the electron When the material used for forming the injection layer dissolves in the solvent used for forming the layers adjacent to the hole injection layer, the light-emitting layer, the hole transport layer, the electron transport layer, and the electron injection layer, It is preferred to avoid dissolving the material. Methods for avoiding material dissolution include i) a method of using a material having a cross-linking group, and ii) a method of providing a difference in the solubility of adjacent layers in a solvent. As the method i) above, for example, after forming a layer (for example, a hole transport layer) using a material having a crosslinkable group, the layer can be insolubilized by crosslinking the crosslinkable group, A layer different from the layer (for example, a light-emitting layer) can be laminated on the layer. Further, as the method ii), for example, after forming a layer (e.g., a light-emitting layer), an ink containing a solvent with low solubility is used for the layer, so that the layer A different layer (eg, an electron-transport layer) can be deposited.
 [用途]
 本実施形態の発光素子は、液晶表示装置のバックライト用の光源、照明用の光源、有機EL照明、コンピュータ、テレビ及び携帯端末等の表示装置(例えば、有機ELディスプレイ及び有機ELテレビ)として好適に用いることができる。
[Use]
The light-emitting device of the present embodiment is suitable as a light source for backlighting of a liquid crystal display device, a light source for lighting, an organic EL lighting, a display device such as a computer, a television, and a mobile terminal (for example, an organic EL display and an organic EL television). can be used for
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、移動相にテトラヒドロフランを用い、サイズエクスクルージョンクロマトグラフィー(SEC)により求めた。なお、SECの各測定条件は、次のとおりである。
 測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、2.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(島津製作所製、商品名:SPD-10Avp)を用いた。
In the examples, the polystyrene-equivalent number-average molecular weight (Mn) and polystyrene-equivalent weight-average molecular weight (Mw) of the polymer compound were determined by size exclusion chromatography (SEC) using tetrahydrofuran as a mobile phase. In addition, each measurement condition of SEC is as follows.
A polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.05% by mass, and 10 μL of the solution was injected into SEC. Mobile phase was run at a flow rate of 2.0 mL/min. As a column, PLgel MIXED-B (manufactured by Polymer Laboratories) was used. A UV-VIS detector (manufactured by Shimadzu Corporation, trade name: SPD-10Avp) was used as a detector.
 化合物のΔESTの値の算出は、B3LYPレベルの密度汎関数法により、化合物の基底状態を構造最適化した。その際、基底関数として、6-31G*を用いた。そして、得られた構造最適化された構造を用いて、B3LYPレベルの時間依存密度汎関数法により、化合物のΔESTを算出した。なお、量子化学計算プログラムとして、Gaussian09を用いて計算した。 For calculation of the ΔEST value of the compound, the ground state of the compound was structurally optimized by density functional theory at the B3LYP level. At that time, 6-31G* was used as a basis function. Then, using the obtained optimized structure, ΔEST of the compound was calculated by time-dependent density functional theory at the B3LYP level. The calculation was performed using Gaussian09 as a quantum chemical calculation program.
 化合物の室温における発光スペクトルの最大ピーク波長は、分光光度計(日本分光株式会社製、FP-6500)により室温にて測定した。化合物をキシレンに、約8×10-4質量%の濃度で溶解させたキシレン溶液を試料として用いた。励起光としては、波長325nmの紫外(UV)光を用いた。 The maximum peak wavelength of the emission spectrum of the compound at room temperature was measured at room temperature with a spectrophotometer (manufactured by JASCO Corporation, FP-6500). A xylene solution in which a compound was dissolved in xylene at a concentration of about 8×10 −4 mass % was used as a sample. Ultraviolet (UV) light with a wavelength of 325 nm was used as excitation light.
 実施例において、化合物の分子量は、ChemDraw Professional 16.0(ヒューリンクス社製)のMolecular Weightの値を用いて、算出した。 In the examples, the molecular weight of the compound was calculated using the Molecular Weight value of ChemDraw Professional 16.0 (manufactured by Hulinks).
 <合成例MM> 化合物MM1~MM4及びMM7~MM18の合成
 化合物MM1は、国際公開第2015/145871号に記載の方法に従って合成した。
 化合物MM2は、国際公開第2013/146806号に記載の方法に従って合成した。
 化合物MM3は、国際公開第2005/049546号に記載の方法に従って合成した。
 化合物MM4は、特開2010-189630号公報に記載の方法に従って合成した。
 化合物MM7、化合物MM8及び化合物MM11は、国際公開第2002/045184号に記載の方法に準じて合成した。
 化合物MM9は、国際公開第2011/049241号に記載の方法に従って合成した。
 化合物MM10及び化合物MM14は、特開2011-174062号公報に記載の方法に従って合成した。
 化合物MM12は、特開2008-106241号公報に記載の方法に従って合成した。
 化合物MM13及び化合物MM16は、国際公開第2016/031639号に記載の方法に従って合成した。
 化合物MM15は、特開2010-215886号公報に記載の方法に従って合成した。
 化合物MM17は、特開2014-001328号公報に記載の方法に準じて合成した。
 化合物MM18は、特開2010-215886号公報に記載の方法に準じて合成した。
<Synthesis Example MM> Synthesis of Compounds MM1 to MM4 and MM7 to MM18 Compound MM1 was synthesized according to the method described in WO2015/145871.
Compound MM2 was synthesized according to the method described in WO2013/146806.
Compound MM3 was synthesized according to the method described in WO2005/049546.
Compound MM4 was synthesized according to the method described in JP-A-2010-189630.
Compound MM7, compound MM8 and compound MM11 were synthesized according to the method described in International Publication No. 2002/045184.
Compound MM9 was synthesized according to the method described in WO2011/049241.
Compound MM10 and compound MM14 were synthesized according to the method described in JP-A-2011-174062.
Compound MM12 was synthesized according to the method described in JP-A-2008-106241.
Compound MM13 and compound MM16 were synthesized according to the method described in WO2016/031639.
Compound MM15 was synthesized according to the method described in JP-A-2010-215886.
Compound MM17 was synthesized according to the method described in JP-A-2014-001328.
Compound MM18 was synthesized according to the method described in JP-A-2010-215886.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
<合成例P> 高分子化合物P0~P8の合成
 高分子化合物P0~P8は、表3に記載の種類及びモル比の化合物を用いて、同表に記載の合成方法で合成した。得られた高分子化合物のMn及びMwは、表3に記載のとおりであった。
 なお、高分子化合物P0の合成を一例として説明すると、以下のとおりである。
 高分子化合物P0は、化合物MM4及び化合物MM3を用いて、国際公開第2015/194448号に記載の方法に従って合成した。高分子化合物P0のMnは4.5×10であり、Mwは1.5×10であった。
 高分子化合物P0は、仕込み原料の量から求めた理論値では、化合物MM4から誘導される構成単位と、化合物MM3から誘導される構成単位とが、50:50のモル比で構成された共重合体である。
 また、高分子化合物P1の合成を一例として説明すると、以下のとおりである。
 高分子化合物P1は、化合物MM1、化合物MM2及び化合物MM3を用いて、国際公開第2015/145871号に記載の方法に従って合成した。高分子化合物P1のMnは2.3×104であり、Mw=1.2×105であった。
 高分子化合物P1は、仕込み原料の量から求めた理論値では、化合物MM1から誘導される構成単位と、化合物MM2から誘導される構成単位と、化合物MM3から誘導される構成単位とが、45:5:50のモル比で構成された共重合体である。
<Synthesis Example P> Synthesis of Polymer Compounds P0 to P8 Polymer compounds P0 to P8 were synthesized by the synthesis method described in Table 3 using the compounds of the types and molar ratios described in Table 3. Mn and Mw of the obtained polymer compound were as shown in Table 3.
An example of the synthesis of the polymer compound P0 is described below.
Polymer compound P0 was synthesized using compound MM4 and compound MM3 according to the method described in International Publication No. 2015/194448. The Mn of the polymer compound P0 was 4.5×10 4 and the Mw was 1.5×10 5 .
According to the theoretical value obtained from the amount of the feedstock, the polymer compound P0 is a copolymer composed of structural units derived from the compound MM4 and structural units derived from the compound MM3 at a molar ratio of 50:50. It is a coalescence.
Further, the synthesis of the polymer compound P1 is described as an example as follows.
Polymer compound P1 was synthesized using compound MM1, compound MM2 and compound MM3 according to the method described in International Publication No. 2015/145871. Mn of the polymer compound P1 was 2.3×10 4 and Mw=1.2×10 5 .
According to the theoretical values obtained from the amounts of the raw materials, the polymer compound P1 has a structural unit derived from the compound MM1, a structural unit derived from the compound MM2, and a structural unit derived from the compound MM3, which is 45: It is a copolymer made up in a 5:50 molar ratio.
Figure JPOXMLDOC01-appb-T000048
 
Figure JPOXMLDOC01-appb-T000048
 
 <化合物M1>
 化合物M1は、Luminescence Technology社製を用いた。
<Compound M1>
The compound M1 used was manufactured by Luminescence Technology.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 <化合物H1~H3及びB1~B5>
 化合物H1及び化合物B1は、Luminescence Technology社製を用いた。
 化合物H2は、国際公開第2011/098030号に記載の方法に準じて合成した。
 化合物H3は、特開2015-110751号公報に記載の方法に従って合成した。
 化合物B2及びB4は、国際公開第2015/102118号に記載の方法に準じて合成した。
 化合物B3は、アンゲヴァンテ・ケミー・インターナショナル・エディション(Angewandte Chemie International Edition),2018年,第57巻,11316-11320頁に記載の方法に準じて合成した。
 化合物B5は、アンゲヴァンテ・ケミー・インターナショナル・エディション(Angewandte Chemie International Edition),2020年,第59巻,17442-17446頁に記載の方法に準じて合成した。
<Compounds H1 to H3 and B1 to B5>
Compound H1 and compound B1 were manufactured by Luminescence Technology.
Compound H2 was synthesized according to the method described in WO2011/098030.
Compound H3 was synthesized according to the method described in JP-A-2015-110751.
Compounds B2 and B4 were synthesized according to the method described in WO2015/102118.
Compound B3 was synthesized according to the method described in Angewandte Chemie International Edition, 2018, Vol. 57, pp. 11316-11320.
Compound B5 was synthesized according to the method described in Angewandte Chemie International Edition, 2020, Vol. 59, pp. 17442-17446.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 化合物B1のΔESTは、0.494eVであった。化合物B1の室温における発光スペクトルの最大ピーク波長は452nmであった。化合物B1の室温における発光スペクトルの最大ピークの半値幅は22nmであった。
 化合物B2のΔESTは、0.457eVであった。化合物B2の室温における発光スペクトルの最大ピーク波長は454nmであった。化合物B2の室温における発光スペクトルの最大ピークの半値幅は21nmであった。
 化合物B3のΔESTは、0.428eVであった。化合物B3の室温における発光スペクトルの最大ピーク波長は465nmであった。化合物B3の室温における発光スペクトルの最大ピークの半値幅は21nmであった。
 化合物B4のΔESTは、0.472eVであった。化合物B4の室温における発光スペクトルの最大ピーク波長は440nmであった。化合物B4の室温における発光スペクトルの最大ピークの半値幅は19nmであった。
 化合物B5のΔESTは、0.319eVであった。化合物B5の室温における発光スペクトルの最大ピーク波長は514nmであった。化合物B5の室温における発光スペクトルの最大ピークの半値幅は38nmであった。
The ΔEST of compound B1 was 0.494 eV. The maximum peak wavelength of the emission spectrum of compound B1 at room temperature was 452 nm. The half width of the maximum peak of the emission spectrum of compound B1 at room temperature was 22 nm.
The ΔEST of compound B2 was 0.457 eV. The maximum peak wavelength of the emission spectrum of compound B2 at room temperature was 454 nm. The half width of the maximum peak of the emission spectrum of compound B2 at room temperature was 21 nm.
The ΔEST of compound B3 was 0.428 eV. The maximum peak wavelength of the emission spectrum of compound B3 at room temperature was 465 nm. The maximum peak half width of the emission spectrum of compound B3 at room temperature was 21 nm.
The ΔEST of compound B4 was 0.472 eV. The maximum peak wavelength of the emission spectrum of compound B4 at room temperature was 440 nm. The half width of the maximum peak of the emission spectrum of compound B4 at room temperature was 19 nm.
The ΔEST of compound B5 was 0.319 eV. The maximum peak wavelength of the emission spectrum of compound B5 at room temperature was 514 nm. The half width of the maximum peak of the emission spectrum of compound B5 at room temperature was 38 nm.
 化合物H1の分子量は、514.6であった。化合物H2の分子量は、582.7であった。化合物H3の分子量は、2504.6であった。化合物B1の分子量は、420.3であった。化合物B2の分子量は、896.1であった。化合物B3の分子量は、922.2であった。化合物B4の分子量は、671.7であった。化合物B5の分子量は、918.1であった。 The molecular weight of compound H1 was 514.6. The molecular weight of compound H2 was 582.7. The molecular weight of compound H3 was 2504.6. The molecular weight of compound B1 was 420.3. The molecular weight of compound B2 was 896.1. The molecular weight of compound B3 was 922.2. The molecular weight of compound B4 was 671.7. The molecular weight of compound B5 was 918.1.
 <実施例D1> 発光素子D1の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚さでITO膜を付けることにより、陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜した。正孔注入層を積層した基板を大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
<Example D1> Production and evaluation of light emitting device D1 (formation of anode and hole injection layer)
An anode was formed by attaching an ITO film with a thickness of 45 nm to a glass substrate by a sputtering method. A film of ND-3202 (manufactured by Nissan Chemical Industries, Ltd.), which is a hole injection material, was formed on the anode to a thickness of 35 nm by spin coating. A hole injection layer was formed by heating the substrate having the hole injection layer laminated thereon on a hot plate at 50° C. for 3 minutes in an air atmosphere and further heating at 230° C. for 15 minutes.
(第2の層の形成)
 キシレンに、高分子化合物P1及び化合物H1(高分子化合物P1/化合物H1=90質量%/10質量%)を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱することにより、第2の層(正孔輸送層)を形成した。この加熱により、高分子化合物P1は、架橋した状態となった。
(Formation of second layer)
Polymer compound P1 and compound H1 (polymer compound P1/compound H1=90% by mass/10% by mass) were dissolved in xylene at a concentration of 0.7% by mass. Using the obtained xylene solution, a film having a thickness of 20 nm was formed on the hole injection layer by a spin coating method, and heated on a hot plate at 180° C. for 60 minutes in a nitrogen gas atmosphere. 2 layers (hole transport layers) were formed. By this heating, the polymer compound P1 was in a crosslinked state.
(第1の層の形成)
 トルエンに、化合物H1及び化合物B1(化合物H1/化合物B1=90質量%/10質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱することにより、第1の層(発光層)を形成した。
(Formation of first layer)
Compound H1 and compound B1 (compound H1/compound B1=90 mass %/10 mass %) were dissolved in toluene at a concentration of 2 mass %. Using the obtained toluene solution, a film having a thickness of 60 nm was formed on the second layer by spin coating, and the first layer ( light-emitting layer) was formed.
(陰極の形成)
 第1の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、発光層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、陰極を形成した基板をガラス基板で封止することにより、発光素子D1を作製した。
(Formation of cathode)
After reducing the pressure of the substrate on which the first layer was formed to 1.0 × 10 -4 Pa or less in a vapor deposition machine, about 4 nm of sodium fluoride was deposited on the light-emitting layer as a cathode, and then the sodium fluoride layer was deposited. About 80 nm of aluminum was evaporated on top. After vapor deposition, the substrate on which the cathode was formed was sealed with a glass substrate to produce a light-emitting device D1.
(発光素子の評価)
 発光素子D1に電圧を印加することによりEL発光が観測された。発光素子D1の200mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
(Evaluation of Light Emitting Element)
EL light emission was observed by applying a voltage to the light emitting element D1. The luminous efficiency [lm/W] and CIE chromaticity coordinates of the light-emitting element D1 at 200 mA/cm 2 were measured.
 <実施例D2~D4> 発光素子D2~D4の作製と評価
 実施例D1の(第1の層の形成)における「化合物H1及び化合物B1(化合物H1/化合物B1=90質量%/10質量%)」に代えて、表4に記載の材料及び組成比(質量%)を用いた以外は、実施例D1と同様にして、発光素子D2~D4を作製した。
 発光素子D2~D4に電圧を印加することによりEL発光が観測された。発光素子D2~D4の200mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Examples D2 to D4> Production and evaluation of light-emitting elements D2 to D4 “Compound H1 and compound B1 (compound H1/compound B1 = 90% by mass/10% by mass) in Example D1 (formation of first layer) , except that the materials and composition ratios (% by mass) shown in Table 4 were used in the same manner as in Example D1, to produce light-emitting devices D2 to D4.
EL light emission was observed by applying a voltage to the light emitting elements D2 to D4. Luminous efficiencies [lm/W] and CIE chromaticity coordinates of the light emitting elements D2 to D4 at 200 mA/cm 2 were measured.
 <比較例CD1> 発光素子CD1の作製と評価
 実施例D1の(第2の層の形成)における「高分子化合物P1及び化合物H1(高分子化合物P1/化合物H1=90質量%/10質量%)」に代えて、「高分子化合物P1(高分子化合物P1=100質量%)」を用いた以外は、実施例D1と同様にして、発光素子CD1を作製した。比較例CD1の(第2の層の形成)において、加熱により、高分子化合物P1は、架橋した状態となった。
 発光素子CD1に電圧を印加することによりEL発光が観測された。発光素子CD1の200mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Comparative Example CD1> Production and Evaluation of Light-Emitting Device CD1 "Polymer compound P1 and compound H1 (polymer compound P1/compound H1 = 90% by mass/10% by mass)" in (formation of second layer) of Example D1 A light-emitting element CD1 was produced in the same manner as in Example D1, except that "polymer compound P1 (polymer compound P1=100% by mass)" was used instead of ". In Comparative Example CD1 (formation of the second layer), the polymer compound P1 was in a crosslinked state by heating.
EL light emission was observed by applying a voltage to the light emitting element CD1. Luminous efficiency [lm/W] at 200 mA/cm 2 and CIE chromaticity coordinates of the light emitting element CD1 were measured.
 実施例D1~D4及び比較例CD1の結果を表4に示す。発光素子CD1の発光効率を1.00としたときの発光素子D1~D4の発光効率の相対値を示す。 Table 4 shows the results of Examples D1 to D4 and Comparative Example CD1. The relative values of the luminous efficiencies of the light-emitting elements D1 to D4 are shown when the luminous efficiency of the light-emitting element CD1 is set to 1.00.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
 <比較例CD2及びCD3> 発光素子CD2及びCD3の作製と評価
 実施例D1の(第2の層の形成)における「高分子化合物P1及び化合物H1(高分子化合物P1/化合物H1=90質量%/10質量%)」に代えて、表5に記載の材料及び組成比(質量%)を用いた以外は、実施例D1と同様にして、発光素子CD2及びCD3を作製した。比較例CD2及びCD3の(第2の層の形成)において、加熱により、高分子化合物P1は、架橋した状態となった。
 発光素子CD2及びCD3に電圧を印加することによりEL発光が観測された。発光素子CD2及びCD3の200mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Comparative Examples CD2 and CD3> Production and Evaluation of Light-Emitting Elements CD2 and CD3 10% by mass)”, except that the materials and composition ratios (% by mass) shown in Table 5 were used in the same manner as in Example D1, to fabricate light-emitting elements CD2 and CD3. In Comparative Examples CD2 and CD3 (formation of the second layer), the polymer compound P1 was in a crosslinked state by heating.
EL light emission was observed by applying a voltage to the light emitting elements CD2 and CD3. Luminous efficiencies [lm/W] and CIE chromaticity coordinates of the light-emitting elements CD2 and CD3 at 200 mA/cm 2 were measured.
 比較例CD2及びCD3の結果を表5に示す。発光素子CD3の発光効率を1.00としたときの発光素子CD2の発光効率の相対値を示す。 Table 5 shows the results of Comparative Examples CD2 and CD3. The relative value of the luminous efficiency of the light-emitting element CD2 is shown when the luminous efficiency of the light-emitting element CD3 is set to 1.00.
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
 <実施例D5及び比較例CD4> 発光素子D5及びCD4の作製と評価
 実施例D1の(第2の層の形成)における「高分子化合物P1及び化合物H1(高分子化合物P1/化合物H1=90質量%/10質量%)」に代えて、表6に記載の材料及び組成比(質量%)を用い、更に、実施例D1の(第1の層の形成)における「化合物H1及び化合物B1(化合物H1/化合物B1=90質量%/10質量%)」に代えて、表6に記載の材料及び組成比(質量%)を用いた以外は、実施例D1と同様にして、発光素子D5及びCD4を作製した。実施例D5及び比較例CD4の(第2の層の形成)において、加熱により、高分子化合物P1は、架橋した状態となった。
 発光素子D5及びCD4に電圧を印加することによりEL発光が観測された。発光素子D5及びCD4の0.1mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Example D5 and Comparative Example CD4> Production and Evaluation of Light-Emitting Devices D5 and CD4 %/10% by mass)”, the materials and composition ratios (% by mass) described in Table 6 were used, and further, “compound H1 and compound B1 (compound H1/compound B1 = 90% by mass/10% by mass)”, except that the materials and composition ratios (% by mass) shown in Table 6 were used in the same manner as in Example D1. was made. In Example D5 and Comparative Example CD4 (formation of the second layer), the polymer compound P1 was in a crosslinked state by heating.
EL emission was observed by applying a voltage to the light emitting elements D5 and CD4. Luminous efficiency [lm/W] at 0.1 mA/cm 2 and CIE chromaticity coordinates of the light emitting elements D5 and CD4 were measured.
 <実施例D6> 発光素子D6の作製と評価
 実施例D1の(第1の層の形成)における「化合物H1及び化合物B1(化合物H1/化合物B1=90質量%/10質量%)」に代えて、「化合物H1及び化合物B5(化合物H1/化合物B5=90質量%/10質量%)」を用いた以外は、実施例D1と同様にして、発光素子D6を作製した。
 発光素子D6に電圧を印加することによりEL発光が観測された。発光素子D6の0.1mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Example D6> Production and Evaluation of Light-Emitting Element D6 In place of “Compound H1 and Compound B1 (Compound H1/Compound B1 = 90% by mass/10% by mass)” in (Formation of first layer) of Example D1 A light-emitting element D6 was fabricated in the same manner as in Example D1, except that "Compound H1 and Compound B5 (Compound H1/Compound B5=90% by mass/10% by mass)" were used.
EL light emission was observed by applying a voltage to the light emitting element D6. The luminous efficiency [lm/W] of the light emitting element D6 at 0.1 mA/cm 2 and the CIE chromaticity coordinates were measured.
 実施例D5~D6及び比較例CD4の結果を表6に示す。発光素子CD4の外部量子効率を1.00としたときの発光素子D5及びD6の外部量子効率の相対値を示す。 Table 6 shows the results of Examples D5 to D6 and Comparative Example CD4. The relative values of the external quantum efficiencies of the light-emitting elements D5 and D6 are shown when the external quantum efficiency of the light-emitting element CD4 is set to 1.00.
Figure JPOXMLDOC01-appb-T000055
 
Figure JPOXMLDOC01-appb-T000055
 
 <実施例D7及び比較例CD6> 発光素子D7及びCD6の作製と評価
 実施例D1の(第2の層の形成)における「高分子化合物P1及び化合物H1(高分子化合物P1/化合物H1=90質量%/10質量%)」に代えて、表7に記載の材料及び組成比(質量%)を用い、更に、実施例D1の(第1の層の形成)における「化合物H1及び化合物B1(化合物H1/化合物B1=90質量%/10質量%)」に代えて、「化合物H2及び化合物B1(化合物H2/化合物B1=90質量%/10質量%)」を用いた以外は、実施例D1と同様にして、発光素子D7及びCD6を作製した。実施例D7及び比較例CD6の(第2の層の形成)において、加熱により、高分子化合物P1は、架橋した状態となった。
 発光素子D7及びCD6に電圧を印加することによりEL発光が観測された。発光素子D7及びCD6の0.15mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Example D7 and Comparative Example CD6> Production and Evaluation of Light-Emitting Elements D7 and CD6 %/10% by mass)”, using the materials and composition ratios (% by mass) shown in Table 7, and further using “compound H1 and compound B1 (compound H1 / compound B1 = 90% by mass / 10% by mass)”, except that “compound H2 and compound B1 (compound H2 / compound B1 = 90% by mass / 10% by mass)” were used. Light-emitting elements D7 and CD6 were fabricated in the same manner. In Example D7 and Comparative Example CD6 (formation of the second layer), the polymer compound P1 was in a crosslinked state by heating.
EL emission was observed by applying a voltage to the light emitting elements D7 and CD6. Luminous efficiency [lm/W] at 0.15 mA/cm 2 and CIE chromaticity coordinates of the light-emitting elements D7 and CD6 were measured.
 <比較例CD5> 発光素子CD5の作製と評価
 実施例D1の(第1の層の形成)における「化合物H1及び化合物B1(化合物H1/化合物B1=90質量%/10質量%)」に代えて、「化合物H2及び化合物B1(化合物H2/化合物B1=90質量%/10質量%)」を用いた以外は、実施例D1と同様にして、発光素子CD5を作製した。
 発光素子CD5に電圧を印加することによりEL発光が観測された。発光素子CD5の0.15mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Comparative Example CD5> Production and Evaluation of Light-Emitting Device CD5 Instead of "Compound H1 and Compound B1 (Compound H1/Compound B1 = 90% by mass/10% by mass)" in (Formation of first layer) of Example D1 A light-emitting element CD5 was fabricated in the same manner as in Example D1, except that "Compound H2 and Compound B1 (Compound H2/Compound B1=90% by mass/10% by mass)" were used.
EL light emission was observed by applying a voltage to the light emitting element CD5. Luminous efficiency [lm/W] and CIE chromaticity coordinates of the light emitting element CD5 at 0.15 mA/cm 2 were measured.
 実施例D7及び比較例CD5~CD6の結果を表7に示す。発光素子CD6の発光効率を1.00としたときの発光素子D7及びCD4の発光効率の相対値を示す。 Table 7 shows the results of Example D7 and Comparative Examples CD5 to CD6. The relative values of the luminous efficiencies of the light-emitting elements D7 and CD4 are shown when the luminous efficiency of the light-emitting element CD6 is set to 1.00.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
 <実施例D8及び比較例CD7> 発光素子D8及びCD7の作製と評価
 実施例D1の(第2の層の形成)における「高分子化合物P1及び化合物H1(高分子化合物P1/化合物H1=90質量%/10質量%)」に代えて、表8に記載の材料及び組成比(質量%)を用いた以外は、実施例D1と同様にして、発光素子D8及びCD7を作製した。実施例D8及び比較例CD7の(第2の層の形成)において、加熱により、化合物M1は、架橋した状態となった。
 発光素子D8及びCD7に電圧を印加することによりEL発光が観測された。発光素子D8及びCD7の0.35mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Example D8 and Comparative Example CD7> Production and Evaluation of Light-Emitting Elements D8 and CD7 %/10% by mass)”, except that the materials and composition ratios (% by mass) shown in Table 8 were used in the same manner as in Example D1 to fabricate light-emitting devices D8 and CD7. In Example D8 and Comparative Example CD7 (formation of the second layer), compound M1 became crosslinked by heating.
EL emission was observed by applying a voltage to the light emitting elements D8 and CD7. Luminous efficiency [lm/W] at 0.35 mA/cm 2 and CIE chromaticity coordinates of the light-emitting elements D8 and CD7 were measured.
 実施例D8及び比較例CD7の結果を表8に示す。発光素子CD7の発光効率を1.00としたときの発光素子D8の発光効率の相対値を示す。 Table 8 shows the results of Example D8 and Comparative Example CD7. The relative value of the luminous efficiency of the light-emitting element D8 is shown when the luminous efficiency of the light-emitting element CD7 is set to 1.00.
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
 <実施例D9及び比較例CD8> 発光素子D9及びCD8の作製と評価
 実施例D1の(第2の層の形成)における「高分子化合物P1及び化合物H1(高分子化合物P1/化合物H1=90質量%/10質量%)」に代えて、表9に記載の材料及び組成比(質量%)を用い、更に、実施例D1の(第1の層の形成)における「化合物H1及び化合物B1(化合物H1/化合物B1=90質量%/10質量%)」に代えて、「化合物H2及び化合物B1(化合物H2/化合物B1=90質量%/10質量%)」を用いた以外は、実施例D1と同様にして、発光素子D9及びCD8を作製した。実施例D9及び比較例CD8の(第2の層の形成)において、加熱により、化合物M1は、架橋した状態となった。
 発光素子D9及びCD8に電圧を印加することによりEL発光が観測された。発光素子D9及びCD8の0.35mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Example D9 and Comparative Example CD8> Production and Evaluation of Light-Emitting Elements D9 and CD8 %/10% by mass)”, the materials and composition ratios (% by mass) described in Table 9 were used, and further, “compound H1 and compound B1 (compound H1 / compound B1 = 90% by mass / 10% by mass)”, except that “compound H2 and compound B1 (compound H2 / compound B1 = 90% by mass / 10% by mass)” were used. Light-emitting elements D9 and CD8 were fabricated in the same manner. In Example D9 and Comparative Example CD8 (formation of the second layer), compound M1 became crosslinked by heating.
EL emission was observed by applying a voltage to the light emitting elements D9 and CD8. Luminous efficiency [lm/W] at 0.35 mA/cm 2 and CIE chromaticity coordinates of the light-emitting elements D9 and CD8 were measured.
 実施例D9及び比較例CD8の結果を表9に示す。発光素子CD8の発光効率を1.00としたときの発光素子D9の発光効率の相対値を示す。 Table 9 shows the results of Example D9 and Comparative Example CD8. The relative value of the luminous efficiency of the light-emitting element D9 is shown when the luminous efficiency of the light-emitting element CD8 is set to 1.00.
Figure JPOXMLDOC01-appb-T000058
 
Figure JPOXMLDOC01-appb-T000058
 
 <実施例D10> 発光素子D10の作製と評価
 実施例D1の(第2の層の形成)を下記(第2の層の形成―D10)とした以外は、実施例D1と同様にして、発光素子D10を作製した。
<Example D10> Production and evaluation of light-emitting element D10 Light emission was performed in the same manner as in Example D1, except that (formation of the second layer) in Example D1 was changed to the following (formation of the second layer-D10). A device D10 was produced.
(第2の層の形成―D10)
 キシレンに、高分子化合物P0及び化合物H1(高分子化合物P0/化合物H1=90質量%/10質量%)を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱することにより、第2の層(正孔輸送層)を形成した。
(Formation of the second layer-D10)
Polymer compound P0 and compound H1 (polymer compound P0/compound H1=90% by mass/10% by mass) were dissolved in xylene at a concentration of 0.7% by mass. Using the obtained xylene solution, a film having a thickness of 20 nm was formed on the hole injection layer by a spin coating method, and heated on a hot plate at 180° C. for 60 minutes in a nitrogen gas atmosphere. 2 layers (hole transport layers) were formed.
 発光素子D10に電圧を印加することによりEL発光が観測された。発光素子D10の1mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。 EL emission was observed by applying a voltage to the light emitting element D10. The luminous efficiency [lm/W] of the light-emitting element D10 at 1 mA/cm 2 and the CIE chromaticity coordinates were measured.
 <比較例CD9> 発光素子CD9の作製と評価
 実施例D10の(第2の層の形成―D10)における「高分子化合物P0及び化合物H1(高分子化合物P0/化合物H1=90質量%/10質量%)」に代えて、「高分子化合物P0(高分子化合物P0=100質量%)」を用いた以外は、実施例D10と同様にして、発光素子CD9を作製した。
 発光素子CD9に電圧を印加することによりEL発光が観測された。発光素子CD9の1mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Comparative Example CD9> Production and Evaluation of Light-Emitting Element CD9 %)” was replaced with “polymer compound P0 (polymer compound P0=100% by mass)”, in the same manner as in Example D10, to prepare a light-emitting element CD9.
EL light emission was observed by applying a voltage to the light emitting element CD9. Luminous efficiency [lm/W] at 1 mA/cm 2 and CIE chromaticity coordinates of the light emitting element CD9 were measured.
 実施例D10及び比較例CD9の結果を表10に示す。発光素子CD9の発光効率を1.00としたときの発光素子D10の発光効率の相対値を示す。 Table 10 shows the results of Example D10 and Comparative Example CD9. The relative value of the luminous efficiency of the light-emitting element D10 is shown when the luminous efficiency of the light-emitting element CD9 is set to 1.00.
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
 <実施例D11及び比較例CD10> 発光素子D11及びCD10の作製と評価
 実施例D10の(第2の層の形成―D10)における「高分子化合物P0及び化合物H1(高分子化合物P0/化合物H1=90質量%/10質量%)」に代えて、表11に記載の材料及び組成比(質量%)を用い、更に、実施例D10の(第1の層の形成)における「化合物H1及び化合物B1(化合物H1/化合物B1=90質量%/10質量%)」に代えて、「化合物H2及び化合物B1(化合物H2/化合物B1=90質量%/10質量%)」を用いた以外は、実施例D10と同様にして、発光素子D11及びCD10を作製した。
 発光素子D11及びCD10に電圧を印加することによりEL発光が観測された。発光素子D11及びCD10の5mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Example D11 and Comparative Example CD10> Production and Evaluation of Light-Emitting Elements D11 and CD10 90% by mass/10% by mass)”, the materials and composition ratios (% by mass) described in Table 11 were used, and further, “Compound H1 and Compound B1 (Compound H1/Compound B1 = 90% by mass/10% by mass)”, except that “Compound H2 and Compound B1 (Compound H2/Compound B1 = 90% by mass/10% by mass)” were used. Light-emitting elements D11 and CD10 were manufactured in the same manner as D10.
EL emission was observed by applying a voltage to the light emitting elements D11 and CD10. Luminous efficiency [lm/W] at 5 mA/cm 2 and CIE chromaticity coordinates of the light-emitting elements D11 and CD10 were measured.
 実施例D11及び比較例CD10の結果を表11に示す。発光素子CD10の発光効率を1.00としたときの発光素子D11の発光効率の相対値を示す。 Table 11 shows the results of Example D11 and Comparative Example CD10. The relative value of the luminous efficiency of the light-emitting element D11 is shown when the luminous efficiency of the light-emitting element CD10 is set to 1.00.
Figure JPOXMLDOC01-appb-T000060
 
Figure JPOXMLDOC01-appb-T000060
 
 <実施例D12及び比較例CD11> 発光素子D12及びCD11の作製と評価
 実施例D1の(第2の層の形成)における「高分子化合物P1及び化合物H1(高分子化合物P1/化合物H1=90質量%/10質量%)」に代えて、表12に記載の材料及び組成比(質量%)を用いた以外は、実施例D1と同様にして、発光素子D12及びCD11を作製した。実施例D12及び比較例CD11の(第2の層の形成)において、加熱により、高分子化合物P2は、架橋した状態となった。
 発光素子D12及びCD11に電圧を印加することによりEL発光が観測された。発光素子D12及びCD11の10mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Example D12 and Comparative Example CD11> Production and Evaluation of Light-Emitting Elements D12 and CD11 %/10% by mass)”, except that the materials and composition ratios (% by mass) shown in Table 12 were used in the same manner as in Example D1, to produce light-emitting elements D12 and CD11. In Example D12 and Comparative Example CD11 (formation of the second layer), the polymer compound P2 was in a crosslinked state by heating.
EL emission was observed by applying a voltage to the light emitting elements D12 and CD11. Luminous efficiencies [lm/W] and CIE chromaticity coordinates of the light emitting elements D12 and CD11 at 10 mA/cm 2 were measured.
 実施例D12及び比較例CD11の結果を表12に示す。発光素子CD11の発光効率を1.00としたときの発光素子D12の発光効率の相対値を示す。 Table 12 shows the results of Example D12 and Comparative Example CD11. The relative value of the luminous efficiency of the light-emitting element D12 is shown when the luminous efficiency of the light-emitting element CD11 is set to 1.00.
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
 <実施例D13及び比較例CD12> 発光素子D13及びCD12の作製と評価
 実施例D1の(第2の層の形成)における「高分子化合物P1及び化合物H1(高分子化合物P1/化合物H1=90質量%/10質量%)」に代えて、表13に記載の材料及び組成比(質量%)を用いた以外は、実施例D1と同様にして、発光素子D13及びCD12を作製した。実施例D13及び比較例CD12の(第2の層の形成)において、加熱により、高分子化合物P3は、架橋した状態となった。
 発光素子D13及びCD12に電圧を印加することによりEL発光が観測された。発光素子D13及びCD12の2mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Example D13 and Comparative Example CD12> Production and Evaluation of Light-Emitting Elements D13 and CD12 %/10% by mass)", except that the materials and composition ratios (% by mass) shown in Table 13 were used in the same manner as in Example D1, to produce light-emitting elements D13 and CD12. In Example D13 and Comparative Example CD12 (formation of the second layer), the polymer compound P3 was in a crosslinked state by heating.
EL emission was observed by applying a voltage to the light emitting elements D13 and CD12. Luminous efficiency [lm/W] at 2 mA/cm 2 and CIE chromaticity coordinates of the light-emitting elements D13 and CD12 were measured.
 実施例D13及び比較例CD12の結果を表13に示す。発光素子CD12の発光効率を1.00としたときの発光素子D13の発光効率の相対値を示す。 Table 13 shows the results of Example D13 and Comparative Example CD12. The relative value of the luminous efficiency of the light-emitting element D13 is shown when the luminous efficiency of the light-emitting element CD12 is set to 1.00.
Figure JPOXMLDOC01-appb-T000062
 
Figure JPOXMLDOC01-appb-T000062
 
 <実施例D14及び比較例CD13> 発光素子D14及びCD13の作製と評価
 実施例D1の(第2の層の形成)における「高分子化合物P1及び化合物H1(高分子化合物P1/化合物H1=90質量%/10質量%)」に代えて、表14に記載の材料及び組成比(質量%)を用いた以外は、実施例D1と同様にして、発光素子D14及びCD13を作製した。実施例D14及び比較例CD13の(第2の層の形成)において、加熱により、高分子化合物P4は、架橋した状態となった。
 発光素子D14及びCD13に電圧を印加することによりEL発光が観測された。発光素子D14及びCD13の5mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Example D14 and Comparative Example CD13> Production and Evaluation of Light-Emitting Elements D14 and CD13 %/10% by mass)", except that the materials and composition ratios (% by mass) shown in Table 14 were used in the same manner as in Example D1, to produce light-emitting elements D14 and CD13. In Example D14 and Comparative Example CD13 (formation of the second layer), the polymer compound P4 was in a crosslinked state by heating.
EL emission was observed by applying a voltage to the light emitting elements D14 and CD13. Luminous efficiency [lm/W] and CIE chromaticity coordinates of the light emitting elements D14 and CD13 at 5 mA/cm 2 were measured.
 実施例D14及び比較例CD13の結果を表14に示す。発光素子CD13の発光効率を1.00としたときの発光素子D14の発光効率の相対値を示す。 Table 14 shows the results of Example D14 and Comparative Example CD13. The relative value of the luminous efficiency of the light-emitting element D14 is shown when the luminous efficiency of the light-emitting element CD13 is set to 1.00.
Figure JPOXMLDOC01-appb-T000063
 
Figure JPOXMLDOC01-appb-T000063
 
 <実施例D15及び比較例CD14> 発光素子D15及びCD14の作製と評価
 実施例D1の(第2の層の形成)における「高分子化合物P1及び化合物H1(高分子化合物P1/化合物H1=90質量%/10質量%)」に代えて、表15に記載の材料及び組成比(質量%)を用いた以外は、実施例D1と同様にして、発光素子D15及びCD14を作製した。実施例D15及び比較例CD14の(第2の層の形成)において、加熱により、高分子化合物P5は、架橋した状態となった。
 発光素子D15及びCD14に電圧を印加することによりEL発光が観測された。発光素子D15及びCD14の20mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Example D15 and Comparative Example CD14> Production and Evaluation of Light-Emitting Elements D15 and CD14 %/10% by mass)”, except that the materials and composition ratios (% by mass) shown in Table 15 were used in the same manner as in Example D1, to produce light emitting devices D15 and CD14. In Example D15 and Comparative Example CD14 (formation of the second layer), the polymer compound P5 was in a crosslinked state by heating.
EL emission was observed by applying a voltage to the light emitting elements D15 and CD14. Luminous efficiencies [lm/W] and CIE chromaticity coordinates of the light-emitting elements D15 and CD14 at 20 mA/cm 2 were measured.
 実施例D15及び比較例CD14の結果を表15に示す。発光素子CD14の発光効率を1.00としたときの発光素子D15の発光効率の相対値を示す。 Table 15 shows the results of Example D15 and Comparative Example CD14. The relative value of the luminous efficiency of the light-emitting element D15 is shown when the luminous efficiency of the light-emitting element CD14 is set to 1.00.
Figure JPOXMLDOC01-appb-T000064
 
Figure JPOXMLDOC01-appb-T000064
 
 <実施例D16及び比較例CD15> 発光素子D16及びCD15の作製と評価
 実施例D1の(第2の層の形成)における「高分子化合物P1及び化合物H1(高分子化合物P1/化合物H1=90質量%/10質量%)」に代えて、表16に記載の材料及び組成比(質量%)を用いた以外は、実施例D1と同様にして、発光素子D16及びCD15を作製した。実施例D16及び比較例CD15の(第2の層の形成)において、加熱により、高分子化合物P6は、架橋した状態となった。
 発光素子D16及びCD15に電圧を印加することによりEL発光が観測された。発光素子D16及びCD15の10mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Example D16 and Comparative Example CD15> Production and Evaluation of Light-Emitting Elements D16 and CD15 %/10% by mass)", except that the materials and composition ratios (% by mass) shown in Table 16 were used in the same manner as in Example D1, to produce light-emitting elements D16 and CD15. In Example D16 and Comparative Example CD15 (formation of the second layer), the polymer compound P6 was in a crosslinked state by heating.
EL emission was observed by applying a voltage to the light emitting elements D16 and CD15. Luminous efficiency [lm/W] at 10 mA/cm 2 and CIE chromaticity coordinates of the light emitting elements D16 and CD15 were measured.
 実施例D16及び比較例CD15の結果を表16に示す。発光素子CD15の発光効率を1.00としたときの発光素子D16の発光効率の相対値を示す。 Table 16 shows the results of Example D16 and Comparative Example CD15. The relative value of the luminous efficiency of the light-emitting element D16 is shown when the luminous efficiency of the light-emitting element CD15 is set to 1.00.
Figure JPOXMLDOC01-appb-T000065
 
Figure JPOXMLDOC01-appb-T000065
 
 <実施例D17及び比較例CD16> 発光素子D17及びCD16の作製と評価
 実施例D1の(第2の層の形成)における「高分子化合物P1及び化合物H1(高分子化合物P1/化合物H1=90質量%/10質量%)」に代えて、表17に記載の材料及び組成比(質量%)を用いた以外は、実施例D1と同様にして、発光素子D17及びCD16を作製した。実施例D17及び比較例CD16の(第2の層の形成)において、加熱により、高分子化合物P7は、架橋した状態となった。
 発光素子D17及びCD16に電圧を印加することによりEL発光が観測された。発光素子D17及びCD16の1mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Example D17 and Comparative Example CD16> Production and Evaluation of Light-Emitting Elements D17 and CD16 %/10% by mass)”, except that the materials and composition ratios (% by mass) shown in Table 17 were used in the same manner as in Example D1, to produce light emitting devices D17 and CD16. In Example D17 and Comparative Example CD16 (formation of the second layer), the polymer compound P7 was in a crosslinked state by heating.
EL emission was observed by applying a voltage to the light emitting elements D17 and CD16. Luminous efficiency [lm/W] at 1 mA/cm 2 and CIE chromaticity coordinates of the light emitting elements D17 and CD16 were measured.
 実施例D17及び比較例CD16の結果を表17に示す。発光素子CD16の発光効率を1.00としたときの発光素子D17の発光効率の相対値を示す。 Table 17 shows the results of Example D17 and Comparative Example CD16. The relative value of the luminous efficiency of the light-emitting element D17 is shown when the luminous efficiency of the light-emitting element CD16 is set to 1.00.
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
 <実施例D18及び比較例CD17> 発光素子D18及びCD17の作製と評価
 実施例D1の(第2の層の形成)における「高分子化合物P1及び化合物H1(高分子化合物P1/化合物H1=90質量%/10質量%)」に代えて、表18に記載の材料及び組成比(質量%)を用いた以外は、実施例D1と同様にして、発光素子D18及びCD17を作製した。実施例D18及び比較例CD17の(第2の層の形成)において、加熱により、高分子化合物P8は、架橋した状態となった。
 発光素子D18及びCD17に電圧を印加することによりEL発光が観測された。発光素子D18及びCD17の20mA/cmにおける発光効率[lm/W]及びCIE色度座標を測定した。
<Example D18 and Comparative Example CD17> Production and Evaluation of Light-Emitting Elements D18 and CD17 %/10% by mass)”, except that the materials and composition ratios (% by mass) shown in Table 18 were used in the same manner as in Example D1, to produce light-emitting elements D18 and CD17. In Example D18 and Comparative Example CD17 (formation of the second layer), the polymer compound P8 was in a crosslinked state by heating.
EL emission was observed by applying a voltage to the light emitting elements D18 and CD17. Luminous efficiency [lm/W] at 20 mA/cm 2 and CIE chromaticity coordinates of the light-emitting elements D18 and CD17 were measured.
 実施例D18及び比較例CD17の結果を表18に示す。発光素子CD17の発光効率を1.00としたときの発光素子D18の発光効率の相対値を示す。 Table 18 shows the results of Example D18 and Comparative Example CD17. The relative value of the luminous efficiency of the light-emitting element D18 is shown when the luminous efficiency of the light-emitting element CD17 is set to 1.00.
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
 本発明によれば、発光効率が優れる発光素子を提供することができる。 According to the present invention, it is possible to provide a light-emitting element with excellent luminous efficiency.

Claims (11)

  1.  陽極と、陰極と、前記陽極及び前記陰極の間に設けられた第1の層と、前記陽極及び前記第1の層の間に設けられた第2の層とを有する発光素子であり、
     前記第1の層が、
      ホウ素原子と窒素原子とを環内に含む縮合複素環骨格(b)を有する化合物(B)から選ばれる少なくとも1種の化合物(B-1)と、
      式(H-1)で表される化合物から選ばれる少なくとも1種の化合物(A-1)と、を含有する層であり、
     前記第2の層が、式(H-1)で表される化合物から選ばれる少なくとも1種の化合物(A-2)を含有する層であり、
     前記式(H-1)で表される化合物の分子量が500以上であり、
     前記化合物(A-1)の少なくとも1種と、前記化合物(A-2)の少なくとも1種とが同一であり、
     前記第1の層と前記第2の層とが隣接している、発光素子。
    Figure JPOXMLDOC01-appb-C000001

    [式中、
     ArH1及びArH2は、それぞれ独立に、アリール基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     nH1は、0以上の整数を表す。
     LH1は、2価の基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよく、それらは互いに、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。
     ArH1とArH2とは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。LH1とArH1とは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。LH1とArH2とは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。]
    A light emitting device having an anode, a cathode, a first layer provided between the anode and the cathode, and a second layer provided between the anode and the first layer,
    The first layer is
    at least one compound (B-1) selected from compounds (B) having a condensed heterocyclic skeleton (b) containing a boron atom and a nitrogen atom in the ring;
    A layer containing at least one compound (A-1) selected from compounds represented by formula (H-1),
    The second layer is a layer containing at least one compound (A-2) selected from compounds represented by formula (H-1),
    The compound represented by the formula (H-1) has a molecular weight of 500 or more,
    at least one of the compounds (A-1) and at least one of the compounds (A-2) are the same,
    A light-emitting device, wherein the first layer and the second layer are adjacent to each other.
    Figure JPOXMLDOC01-appb-C000001

    [In the formula,
    Ar H1 and Ar H2 each independently represent an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
    n H1 represents an integer of 0 or more.
    L H1 represents a divalent group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple L H1 are present, they may be the same or different, and they may be directly bonded to each other or bonded via a divalent group to form a ring.
    Ar H1 and Ar H2 may be directly bonded or bonded via a divalent group to form a ring. L H1 and Ar H1 may be directly bonded or bonded via a divalent group to form a ring. L H1 and Ar H2 may be directly bonded or bonded via a divalent group to form a ring. ]
  2.  前記化合物(B)が、式(1-1)で表される化合物、式(1-2)で表される化合物又は式(1-3)で表される化合物である、請求項1に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000002

    [式中、
     Ar、Ar及びArは、それぞれ独立に、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     Yは、-N(Ry)-で表される基を表す。
     Y及びYは、それぞれ独立に、単結合、酸素原子、硫黄原子、セレン原子、-N(Ry)-で表される基、-B(Ry)-で表される基、アルキレン基、シクロアルキレン基、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     Ryは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。Ryが複数存在する場合、同一であっても異なっていてもよい。
     YとArとは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。YとArとは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。YとArとは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。YとArとは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。YとArとは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。YとArとは、直接結合して、又は、2価の基を介して結合して、環を形成してもよい。]
    2. The compound according to claim 1, wherein the compound (B) is a compound represented by formula (1-1), a compound represented by formula (1-2) or a compound represented by formula (1-3). light-emitting element.
    Figure JPOXMLDOC01-appb-C000002

    [In the formula,
    Ar 1 , Ar 2 and Ar 3 each independently represent an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
    Y 1 represents a group represented by -N(Ry)-.
    Y 2 and Y 3 each independently represent a single bond, an oxygen atom, a sulfur atom, a selenium atom, a group represented by -N(Ry)-, a group represented by -B(Ry)-, an alkylene group, It represents a cycloalkylene group, an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
    Ry represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When two or more Ry are present, they may be the same or different.
    Y 1 and Ar 1 may be directly bonded or bonded via a divalent group to form a ring. Y 1 and Ar 2 may be directly bonded or bonded via a divalent group to form a ring. Y 2 and Ar 1 may be directly bonded or bonded via a divalent group to form a ring. Y 2 and Ar 3 may be directly bonded or bonded via a divalent group to form a ring. Y 3 and Ar 2 may be directly bonded or bonded via a divalent group to form a ring. Y 3 and Ar 3 may be directly bonded or bonded via a divalent group to form a ring. ]
  3.  前記Y及び前記Yが、酸素原子、硫黄原子又は-N(Ry)-で表される基である、請求項2に記載の発光素子。 3. The light emitting device according to claim 2, wherein said Y 2 and said Y 3 are an oxygen atom, a sulfur atom or a group represented by -N(Ry)-.
  4.  前記Y及び前記Yが、-N(Ry)-で表される基である、請求項2に記載の発光素子。 3. The light-emitting device according to claim 2, wherein said Y 2 and said Y 3 are groups represented by -N(Ry)-.
  5.  前記第1の層が、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群より選ばれる少なくとも1種を更に含有する、請求項1~4のいずれか一項に記載の発光素子。 Claims 1 to 4, wherein the first layer further contains at least one selected from the group consisting of a hole-transporting material, a hole-injecting material, an electron-transporting material, an electron-injecting material, a luminescent material and an antioxidant. The light-emitting device according to any one of .
  6.  前記第2の層が、式(X)で表される構成単位及び式(Y)で表される構成単位からなる群より選択される少なくとも1種の構成単位を含む高分子化合物、並びに、架橋基を有する化合物の架橋体からなる群より選択される少なくとも1種を更に含有する、請求項1~4のいずれか一項に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000003

    [式中、
     aX1及びaX2は、それぞれ独立に、0以上の整数を表す。
     ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。ArX2が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。ArX4が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
     RX1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。RX2が複数存在する場合、それらは同一でも異なっていてもよい。RX3が複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000004

    [式中、ArY1は、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
    a polymer compound in which the second layer comprises at least one structural unit selected from the group consisting of structural units represented by formula (X) and structural units represented by formula (Y); 5. The light-emitting device according to claim 1, further comprising at least one selected from the group consisting of crosslinked compounds having groups.
    Figure JPOXMLDOC01-appb-C000003

    [In the formula,
    a X1 and a X2 each independently represent an integer of 0 or more.
    Ar 1 X1 and Ar 2 X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
    Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded; and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple Ar X2 are present, they may be the same or different. When multiple Ar X4 are present, they may be the same or different.
    R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple R X2 are present, they may be the same or different. When multiple R X3 are present, they may be the same or different. ]
    Figure JPOXMLDOC01-appb-C000004

    [Wherein, Ar Y represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, The group may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. ]
  7.  前記第2の層が、前記架橋基を有する化合物の架橋体を含有する層であり、
     前記架橋基を有する化合物が、前記架橋基を有する構成単位を含む高分子化合物である、請求項6に記載の発光素子。
    the second layer is a layer containing a crosslinked compound of the crosslinkable group,
    7. The light-emitting device according to claim 6, wherein said compound having a cross-linking group is a polymer compound containing a structural unit having said cross-linking group.
  8.  前記架橋基を有する構成単位が、式(Z)で表される構成単位又は式(Z’)で表される構成単位である、請求項7に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000005

    [式中、
     nは1以上の整数を表す。
     nAは0以上の整数を表す。nAが複数存在する場合、それらは同一でも異なっていてもよい。
     Arは、炭化水素基、複素環基、又は、少なくとも1種の炭化水素基と少なくとも1種の複素環基とが直接結合した基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     Lは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-N(R’)-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。Lが複数存在する場合、それらは同一でも異なっていてもよい。
     Xは架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000006

    [式中、
     mA、m及びcは、それぞれ独立に、0以上の整数を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。mが複数存在する場合、それらは同一でも異なっていてもよい。
     Arは、炭化水素基、複素環基、又は、少なくとも1種の炭化水素基と少なくとも1種の複素環基とが直接結合した基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。Arが複数存在する場合、それらは同一でも異なっていてもよい。
     Ar及びArは、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     Kは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-N(R’’)-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R’’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。Kが複数存在する場合、それらは同一でも異なっていてもよい。
     X’は、水素原子、架橋基、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。X’が複数存在する場合、それらは同一でも異なっていてもよい。但し、少なくとも1つのX’は架橋基である。]
    8. The light-emitting device according to claim 7, wherein the structural unit having the cross-linking group is a structural unit represented by formula (Z) or a structural unit represented by formula (Z').
    Figure JPOXMLDOC01-appb-C000005

    [In the formula,
    n represents an integer of 1 or more.
    nA represents an integer of 0 or more. When multiple nAs are present, they may be the same or different.
    Ar Z represents a hydrocarbon group, a heterocyclic group, or a group in which at least one hydrocarbon group and at least one heterocyclic group are directly bonded, and these groups may have a substituent good. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
    L A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -N(R')-, an oxygen atom or a sulfur atom, and these groups have a substituent. You may have When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. R' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple L A are present, they may be the same or different.
    X represents a cross-linking group. When there are multiple X's, they may be the same or different. ]
    Figure JPOXMLDOC01-appb-C000006

    [In the formula,
    mA, m and c each independently represent an integer of 0 or more. When multiple mA are present, they may be the same or different. When there are multiple m's, they may be the same or different.
    Ar 5 represents a hydrocarbon group, a heterocyclic group, or a group in which at least one hydrocarbon group and at least one heterocyclic group are directly bonded, and these groups may have a substituent good. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple Ar 5 are present, they may be the same or different.
    Ar 4 and Ar 6 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
    K A represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -N(R'')-, an oxygen atom or a sulfur atom, and these groups are substituents. may have. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. R'' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple K A are present, they may be the same or different.
    X' represents a hydrogen atom, a bridging group, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple X' are present, they may be the same or different. However, at least one X' is a bridging group. ]
  9.  前記第2の層が、前記架橋基を有する化合物の架橋体を含有する層であり、
     前記架橋基を有する化合物が、式(Z’’)で表される化合物である、請求項6に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000007

    [式中、
     mB1、mB2及びmB3は、それぞれ独立に、0以上の整数を表す。複数存在するmB1は、それらは同一でも異なっていてもよい。mB3が複数存在する場合、それらは同一でも異なっていてもよい。
     Arは、炭化水素基、複素環基、又は、少なくとも1種の炭化水素基と少なくとも1種の複素環基とが直接結合した基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。Arが複数存在する場合、それらは同一でも異なっていてもよい。
     LB1は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-N(R’’’)-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R’’’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。LB1が複数存在する場合、それらは同一でも異なっていてもよい。
     X’’は、架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。複数存在するX’’は、同一でも異なっていてもよい。但し、複数存在するX’’のうち、少なくとも1つは、架橋基である。]
    the second layer is a layer containing a crosslinked compound of the crosslinkable group,
    7. The light-emitting device according to claim 6, wherein the compound having a cross-linking group is a compound represented by formula (Z'').
    Figure JPOXMLDOC01-appb-C000007

    [In the formula,
    m B1 , m B2 and m B3 each independently represent an integer of 0 or more. A plurality of m B1 may be the same or different. When multiple mB3 are present, they may be the same or different.
    Ar 7 represents a hydrocarbon group, a heterocyclic group, or a group in which at least one hydrocarbon group and at least one heterocyclic group are directly bonded, and these groups may have a substituent good. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple Ar 7 are present, they may be the same or different.
    L B1 represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by -N(R''')-, an oxygen atom or a sulfur atom, and these groups are substituents may have When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. R''' represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. When multiple L B1 are present, they may be the same or different.
    X'' represents a bridging group, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are multiple such substituents, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. Multiple X'' may be the same or different. However, at least one of the plurality of X'' is a cross-linking group. ]
  10.  前記架橋基が、架橋基A群から選ばれる少なくとも1種の架橋基である、請求項6に記載の発光素子。
    (架橋基A群)
    Figure JPOXMLDOC01-appb-C000008

    [式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよい。nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよく、該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
    7. The light-emitting device according to claim 6, wherein said cross-linking group is at least one cross-linking group selected from Group A of cross-linking groups.
    (Crosslinking group A group)
    Figure JPOXMLDOC01-appb-C000008

    [In the formula, R XL represents a methylene group, an oxygen atom or a sulfur atom, and n XL represents an integer of 0 to 5. When multiple R XL are present, they may be the same or different. When multiple nXL are present, they may be the same or different. *1 represents the binding position. These bridging groups may have substituents, and when there are multiple substituents, they may be the same or different, and are bonded to each other to form a ring together with the atoms to which they are bonded. may ]
  11.  前記第2の層が、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群より選ばれる少なくとも1種を更に含有する、請求項1~4のいずれか一項に記載の発光素子。 Claims 1 to 4, wherein the second layer further contains at least one selected from the group consisting of a hole-transporting material, a hole-injecting material, an electron-transporting material, an electron-injecting material, a luminescent material and an antioxidant. The light-emitting device according to any one of .
PCT/JP2022/035144 2021-09-29 2022-09-21 Light-emitting element WO2023054108A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021158673 2021-09-29
JP2021-158673 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054108A1 true WO2023054108A1 (en) 2023-04-06

Family

ID=85780687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035144 WO2023054108A1 (en) 2021-09-29 2022-09-21 Light-emitting element

Country Status (2)

Country Link
JP (1) JP2023050133A (en)
WO (1) WO2023054108A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018061028A (en) * 2016-09-29 2018-04-12 住友化学株式会社 Light-emitting element
JP2020004947A (en) * 2018-06-20 2020-01-09 学校法人関西学院 Organic electroluminescent element
US20200058874A1 (en) * 2018-08-17 2020-02-20 Lg Display Co., Ltd. Organic electroluminescence device
JP2021014446A (en) * 2019-06-07 2021-02-12 学校法人関西学院 Amino-substituted polycyclic aromatic compound
US20210184135A1 (en) * 2019-12-12 2021-06-17 Samsung Display Co., Ltd. Organic light-emitting device and apparatus including the same
US20210184151A1 (en) * 2019-12-12 2021-06-17 Samsung Display Co, Ltd. Organic light-emitting device and apparatus including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018061028A (en) * 2016-09-29 2018-04-12 住友化学株式会社 Light-emitting element
JP2020004947A (en) * 2018-06-20 2020-01-09 学校法人関西学院 Organic electroluminescent element
US20200058874A1 (en) * 2018-08-17 2020-02-20 Lg Display Co., Ltd. Organic electroluminescence device
JP2021014446A (en) * 2019-06-07 2021-02-12 学校法人関西学院 Amino-substituted polycyclic aromatic compound
US20210184135A1 (en) * 2019-12-12 2021-06-17 Samsung Display Co., Ltd. Organic light-emitting device and apparatus including the same
US20210184151A1 (en) * 2019-12-12 2021-06-17 Samsung Display Co, Ltd. Organic light-emitting device and apparatus including the same

Also Published As

Publication number Publication date
JP2023050133A (en) 2023-04-10

Similar Documents

Publication Publication Date Title
JP6923691B2 (en) Light emitting element
WO2020203209A1 (en) Light-emitting element and composition for light-emitting element
WO2020174837A1 (en) Light emitting element
JP7015406B1 (en) Light emitting device and composition
JP6923692B2 (en) Manufacturing method of light emitting element
JP2022052727A (en) Light emitting element
WO2023054108A1 (en) Light-emitting element
JP7058792B2 (en) Light emitting device and composition
JP7086259B2 (en) Light emitting device and composition
JP7079883B2 (en) Light emitting device and composition
WO2023054107A1 (en) Light emitting element
JP2023050132A (en) Light-emitting element
JP7086258B2 (en) Light emitting device and composition
JP2023050134A (en) Light-emitting element and composition
JP2023050129A (en) Light-emitting element
JP2023050131A (en) Light-emitting element
JP6827135B2 (en) Light emitting element and composition for light emitting element
JP2023050140A (en) Light-emitting element
WO2023054109A1 (en) Composition and light-emitting element comprising same
WO2023054110A1 (en) Light-emitting element
JP2023050137A (en) Composition and light emitting element containing the same
JP2023050143A (en) Light-emitting element
JP2023050139A (en) Composition and light-emitting element containing the same
JP2023050142A (en) Light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22875975

Country of ref document: EP

Kind code of ref document: A1