WO2023053966A1 - Ship maneuvering system, ship control device, ship control method, and program - Google Patents

Ship maneuvering system, ship control device, ship control method, and program Download PDF

Info

Publication number
WO2023053966A1
WO2023053966A1 PCT/JP2022/034411 JP2022034411W WO2023053966A1 WO 2023053966 A1 WO2023053966 A1 WO 2023053966A1 JP 2022034411 W JP2022034411 W JP 2022034411W WO 2023053966 A1 WO2023053966 A1 WO 2023053966A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
actuator
moment
control device
input operation
Prior art date
Application number
PCT/JP2022/034411
Other languages
French (fr)
Japanese (ja)
Inventor
真人 白尾
隆史 神谷
潤 徳重
まり乃 秋田
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2023053966A1 publication Critical patent/WO2023053966A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/50Slowing-down means not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction

Definitions

  • the present invention relates to a ship maneuvering system, a ship control device, a ship control method, and a program.
  • This application claims priority based on Japanese Patent Application No. 2021-159280 filed in Japan on September 29, 2021, the content of which is incorporated herein.
  • Patent Literature 1 describes a technique that enables a ship to be operated as if it were a vehicle.
  • the hull is provided with a brake pedal that limits the moving speed of the hull.
  • the output direction of the outdrive device is reversed (that is, when the brake pedal is strongly depressed when the ship moves forward, the backward thrust is generated) and the vessel slows down.
  • a moving ship is brought to a halt by depressing the brake pedal, and when the brake pedal is continued to be depressed, the ship is kept at a fixed point. In other words, with the technique described in Patent Document 1, the operator must depress the brake pedal in order to bring the moving ship to a stopped state.
  • Patent Document 2 discloses that if the operator simply stops the engine or disengages the clutch in order to stop the ship, the ship continues to coast by inertia and travels a considerable distance before coming to a stop. It is stated that it will happen. Further, Patent Document 2 describes that when a ship is sailing forward at full speed, the operator should put the clutch in reverse to slightly increase the engine speed in order to stop the ship in a short distance. Are listed. In other words, in the technique described in Patent Document 2, in order to bring the moving vessel into a stopped state, the operator must engage the clutch in reverse to slightly increase the engine speed. That is, in the techniques described in Patent Documents 1 and 2, the operator must perform an input operation in order to stop the moving ship without continuing to move due to inertia. In other words, with the techniques described in Patent Documents 1 and 2, the operator must perform an input operation in order to cancel the inertial force generated in the ship when the ship moves from the moving state to the stopped state.
  • the present invention eliminates the need for an operator's input operation for canceling the inertial force and/or moment of inertia generated in the vessel when the actuator is shifted from the activated state to the actuator deactivated state. It is an object of the present invention to provide a ship maneuvering system, a ship control device, a ship control method, and a program capable of controlling a ship.
  • One aspect of the present invention includes an actuator having a function of generating a propulsive force for a ship and a function of generating a moment in the ship, an operation unit that receives an input operation from a ship operator, and a ship control device that operates the actuator. wherein, when the operation unit receives an input operation to stop the operation of the actuator while the ship control device is operating the actuator, the ship control device controls the inertial force generated in the ship so that the actuator generates a thrust in a direction opposite to the direction of and/or causes the ship to generate a moment in a direction opposite to the direction of the moment of inertia occurring in the ship.
  • a marine vessel maneuvering system that operates the actuator without the need to accept an input operation.
  • a marine vessel steering system includes an actuator having a function of generating a propulsive force of a vessel and a function of generating a moment in the vessel; wherein, when the operation unit receives an input operation to stop the operation of the actuator while the ship control device is operating the actuator, the inertia generated in the ship
  • the operation unit is configured such that the actuator generates a thrust in a direction opposite to the direction of the force and/or causes the ship to generate a moment in a direction opposite to the direction of the moment of inertia occurring in the ship.
  • a marine vessel steering system includes an actuator having a function of generating a propulsive force of a vessel and a function of generating a moment in the vessel; a first step of actuating the actuator in response to an input operation received by the operation unit; When the operation unit receives an input operation to stop the actuation of the actuator, the actuator generates thrust in a direction opposite to the direction of the inertial force generated in the ship, and/or the ship and a second step of actuating the actuator without the need for the operation unit to accept an input operation so as to generate a moment in the vessel in a direction opposite to the direction of the generated moment of inertia.
  • a marine vessel steering system includes an actuator having a function of generating a propulsive force of a vessel and a function of generating a moment in the vessel; a first step of causing a computer mounted on a ship control device to operate the actuator according to an input operation received by the operation unit; When the operation unit receives an input operation to stop the operation of the and a second step of actuating the actuator without the need for the operation unit to receive an input operation so as to generate a moment in the vessel in a direction opposite to the direction of the inertia moment.
  • a ship maneuvering system that eliminates the need for an input operation by a ship operator to cancel the inertial force and/or moment of inertia generated in the ship when the actuator transitions from an operating state to an actuator stop state.
  • a control device, ship control method and program can be provided.
  • FIG. 9 is a flowchart for explaining an example of processing executed by the ship control device of the first embodiment when the operation unit receives an input operation for causing the ship to go astern and then receives an input operation for stopping the ship from going astern; .
  • It is a flow chart for explaining an example of. Executed by the ship control device of the first embodiment when the operation unit receives an input operation to turn the ship counterclockwise on the spot, and then receives an input operation to stop the ship from turning counterclockwise on the spot.
  • 3 is a flow chart for explaining an example of a process for processing; Executed by the ship control device of the first embodiment when the operation unit receives an input operation to move the ship forward and turn clockwise, and then receives an input operation to stop the ship from moving forward and turning clockwise.
  • 4 is a flowchart for explaining an example of processing; Executed by the ship control device of the first embodiment when the operation unit receives an input operation to cause the ship to move astern and turn counterclockwise, and then receives an input operation to stop the ship from moving backward and turning counterclockwise.
  • 10 is a flowchart for explaining an example of processing performed; 9 is a flowchart for explaining an example of processing executed by the ship control device of the second embodiment when the operation unit receives an input operation for advancing the ship and then receives an input operation for stopping the advance of the ship; . 10 is a flowchart for explaining an example of processing executed by the ship control device of the second embodiment when the operation unit receives an input operation for causing the ship to go astern and then receives an input operation for stopping the ship from going astern; . Processing executed by the ship control device of the second embodiment when the operation unit receives an input operation for causing the ship to turn clockwise on the spot, and then receives an input operation for stopping the ship from turning clockwise on the spot. It is a flow chart for explaining an example of.
  • 3 is a flow chart for explaining an example of a process for processing; Executed by the ship control device of the second embodiment when the operation unit receives an input operation to move the ship forward and turn clockwise, and then receives an input operation to stop the ship from moving forward and turning clockwise.
  • 4 is a flowchart for explaining an example of processing; Executed by the ship control device of the second embodiment when the operation unit receives an input operation to cause the ship to move astern and turn counterclockwise, and then receives an input operation to stop the ship from moving backward and turning counterclockwise.
  • FIG. 10 is a flowchart for explaining an example of processing performed; It is a figure which shows an example of the ship maneuvering system provided with the ship to which the ship control apparatus of 3rd Embodiment was applied.
  • FIG. 12 is a diagram for explaining the behavior of the boat of the comparative example when the operation unit receives an input operation to advance the boat and then receives an input operation to stop the boat from moving forward; It is a flowchart for demonstrating the process performed in the ship of a comparative example.
  • FIG. 16 is a diagram for explaining the behavior of the ship R11 of the comparative example when the operation unit receives an input operation for advancing the ship R11 and then receives an input operation for stopping the advance of the ship R11.
  • FIG. 17 is a flow chart for explaining the processing executed in the ship R11 of the comparative example.
  • the ship control device of the ship R11 determines whether or not the operating unit has received an input operation to move the ship R11 forward.
  • step SR1 When the operation unit has not received an input operation for advancing the ship R11, step SR1 is repeatedly executed. On the other hand, when the operation unit receives an input operation for moving the ship R11 forward, the process proceeds to step SR2. In step SR2, the ship R11 generates a propulsive force that moves the ship R11 forward. As a result, as shown in FIG. 16(C), the ship R11 moves forward (that is, the ship R11 moves upward in FIG. 16). Next, at step SR3 in FIG. 17, the ship control device of the ship R11, for example, determines whether or not the operation unit has received an input operation to stop the forward movement of the ship R11.
  • step SR3 is repeatedly executed.
  • the process proceeds to step SR4.
  • step SR4 the vessel R11 stops generating upward propulsive force in FIG.
  • an upward inertial force (going forward) in FIG. 16 that tries to continue forward movement is generated, and the ship R11 moves upward in FIG. 16 (going forward).
  • the operator must perform an input operation to cancel the inertial force in order to suppress this forward movement.
  • FIG. 1 is a diagram showing an example of a ship maneuvering system 1 including a ship 11 to which a ship control device 11C of the first embodiment is applied.
  • the ship control device 11C of the first embodiment includes a PWC and a jet propulsion device having functions similar to those of the personal watercraft (PWC, personal watercraft) described in FIG. 1 of Japanese Patent No. 5196649, for example.
  • PWC personal watercraft
  • FIG. 5196649 for example.
  • the ship maneuvering system 1 includes a ship 11 .
  • the ship 11 includes an actuator 11A, an operation section 11B, a ship control device 11C, a heading detection section 11D, a ship speed detection section 11E, and a ship position detection section 11F.
  • the actuator 11A includes a rudder portion 11A1 and a thrust force generating portion 11A2.
  • the rudder portion 11A1 has a function of generating a moment in the ship 11 .
  • the thrust generator 11A2 has a function of generating a propulsive force for the ship 11 .
  • the actuator 11A includes, for example, the engine, nozzle, deflector, trim actuator, bucket, bucket actuator, etc. described in FIG. 1 of JP-A-2019-171925.
  • the operation unit 11B receives an input operation from the operator of the ship 11 .
  • the operating section 11B includes, for example, a steering section 11B1 and a throttle operating section 11B2.
  • the steering section 11B1 receives an input operation by the operator who operates the steering section 11A1.
  • the throttle operation unit 11B2 receives an input operation by the operator who operates the thrust force generation unit 11A2.
  • the steering unit 11B1 and the throttle operation unit 11B2 are, for example, the steering handle device described in FIG. It is configured in the same way as the steering unit.
  • the vessel control device 11C operates the actuator 11A based on the input operation of the operator of the vessel 11 received by the operation unit 11B. Specifically, the vessel control device 11C can operate the actuator 11A so that the thrust force generating section 11A2 of the actuator 11A generates a propulsive force that moves the vessel 11 forward. The vessel control device 11C can operate the actuator 11A so that the thrust force generating section 11A2 of the actuator 11A generates a propulsion force for moving the vessel 11 backward. Further, the vessel control device 11C can operate the actuator 11A so that the actuator 11A causes the vessel 11 to generate a moment that causes the vessel 11 to turn on the spot.
  • the vessel control device 11C can operate the actuator 11A so that the actuator 11A generates a propulsive force that moves the vessel 11 forward and a moment that causes the vessel 11 to turn.
  • the vessel control device 11C can operate the actuator 11A so that the actuator 11A generates a propulsive force that causes the vessel 11 to move astern and a moment that causes the vessel 11 to turn.
  • the heading detector 11D detects the heading of the ship 11 .
  • the heading detector 11D includes, for example, a heading sensor.
  • the azimuth sensor calculates the heading of the ship 11 by using geomagnetism, for example.
  • the orientation sensor may be a device (gyrocompass) in which a north pointing device and a damping device are added to a rapidly rotating gyroscope to always indicate north.
  • the azimuth sensor may be a GPS compass that includes multiple GPS (Global Positioning System) antennas and calculates the heading from the relative positional relationship of the multiple GPS antennas.
  • the boat speed detector 11E detects the speed of the boat 11 .
  • the ship speed detection unit 11E may be, for example, a water pressure sensing type that detects the water speed of the ship 11 or a GPS measurement type that detects the ground speed of the ship 11 .
  • the vessel position detector 11 ⁇ /b>F detects the position of the vessel 11 .
  • the vessel position detector 11F has, for example, a GPS device. The GPS device calculates the position coordinates of the vessel 11 by receiving signals from multiple GPS satellites.
  • FIG. 2 is a diagram showing an example of the behavior of the boat 11 of the first embodiment when the operation unit 11B receives an input operation to advance the boat 11 and then receives an input operation to stop the boat 11 from moving forward.
  • FIG. 3 shows an example of processing executed by the ship control device 11C of the first embodiment when the operation unit 11B receives an input operation for advancing the ship 11 and then receives an input operation for stopping the advance of the ship 11. It is a flow chart for explanation.
  • the vessel control device 11C determines whether or not the operating section 11B has received an input operation to move the vessel 11 forward.
  • step S11 is repeatedly executed.
  • the operation unit 11B receives an input operation for moving the ship 11 forward, the process proceeds to step S12.
  • step S12 the ship control device 11C operates the actuator 11A so that the thrust force generating section 11A2 of the actuator 11A generates a propulsion force for moving the ship 11 forward.
  • the ship 11 moves forward (that is, the ship 11 moves upward in FIG. 2).
  • step S13 in FIG. 3 the vessel control device 11C, for example, determines whether or not the operating section 11B has received an input operation to stop the forward movement of the vessel 11.
  • step S13 is repeatedly executed.
  • the operation unit 11B receives an input operation to stop the forward movement of the ship 11, the process proceeds to step S14.
  • step S14 the vessel control device 11C causes the actuator 11A to stop generating the propulsive force that moves the vessel 11 forward.
  • an upward inertial force (going foot) in FIG. 2 is generated, which tends to continue forward movement. Therefore, in the example shown in FIGS. 2 and 3, in step S14, the ship control device 11C generates thrust in a direction (downward in FIG. 2) opposite to the direction of the inertial force generated in the ship 11 (upward in FIG. 2).
  • the actuator 11A is operated so that the actuator 11A generates .
  • the ship control device 11C causes the actuator 11A to generate downward thrust in FIG. 2 without the operation unit 11B needing to receive an input operation for generating the downward thrust in FIG.
  • the magnitude of the reverse thrust (downward in FIG. 2) generated by the actuator 11A is set to a constant value.
  • the magnitude of the thrust (downward in FIG. 2) may be changed according to the magnitude of the inertial force generated in the ship 11 .
  • step S15 of FIG. 3 the vessel control device 11C receives an input operation to stop the operation of the actuator 11A when the operation unit 11B receives an input operation (that is, in step S13, the operation unit 11B has received an input operation to stop the forward movement of the ship 11). Specifically, in step S15, the vessel control device 11C determines whether or not the elapsed time since the operation unit 11B received an input operation to stop the operation of the actuator 11A has reached a first threshold value or more. If the elapsed time is not equal to or greater than the first threshold (that is, if it can be estimated that the ship 11 may move upward in FIG.
  • step S15 is repeated. executed.
  • the process proceeds to step S16. move on.
  • the ship control device 11C causes the actuator 11A to stop generating downward thrust in FIG.
  • a variable value may be used as the "first threshold” in other examples. For example, the smaller the ratio of the reverse (downward in FIG. 2) thrust force generated by the actuator 11A to the inertia force generated in the ship 11, the larger the value used as the “first threshold”.
  • the actuator 11A moves the ship 11 forward while generating the propulsion force for moving the ship 11 forward (that is, in the state shown in FIG. 2(C)).
  • the vessel control device 11C controls the direction of the inertial force generated in the vessel 11 (upward in FIG. 2) opposite to the direction (downward in FIG. 2). ), the actuator 11A is operated without the need for the operation unit 11B to receive an input operation.
  • the ship control device 11C sets the period during which the actuator 11A is operated so that the actuator 11A generates thrust in the direction opposite to the direction of the inertial force generated in the ship 11.
  • step S13 of FIG. 3 is set based on the elapsed time from the time when the operation unit 11B receives an input operation for stopping the operation of the actuator 11A (when YES is determined in step S13 of FIG. 3).
  • the ship control device 11C causes the actuator 11A to generate thrust in the opposite direction (downward in FIG. 2) to the direction of the inertial force generated in the ship 11 (upward in FIG. 2).
  • the actuator 11A is operated without the need for the operation unit 11B to receive an input operation. Therefore, in the examples shown in FIGS. 2 and 3, the operator's input operation for canceling the inertial force generated in the vessel 11 when the actuator 11A is shifted from the activated state to the deactivated state of the actuator 11A can be eliminated. .
  • FIG. 4 shows an example of processing executed by the ship control device 11C of the first embodiment when the operation unit 11B receives an input operation for causing the ship 11 to go astern and then receives an input operation for stopping the ship 11 from going astern. It is a flow chart for explanation.
  • the vessel control device 11C determines whether or not the operation section 11B has received an input operation to move the vessel 11 backward.
  • step S21 is repeatedly executed.
  • the process proceeds to step S22.
  • step S22 the vessel control device 11C operates the actuator 11A so that the thrust force generating section 11A2 of the actuator 11A generates a propulsive force for moving the vessel 11 backward.
  • the ship 11 moves astern.
  • step S23 the vessel control device 11C determines whether or not the operation section 11B has received an input operation to stop the backward movement of the vessel 11.
  • step S23 is repeatedly executed.
  • the operation unit 11B receives an input operation to stop the backward movement of the boat 11, the process proceeds to step S24.
  • step S24 the vessel control device 11C causes the actuator 11A to stop generating the propulsive force for moving the vessel 11 backward.
  • an inertial force (going foot) that tries to continue backward movement is generated. Therefore, in the example shown in FIG. 4, in step S24, the ship control device 11C applies thrust in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11) to the actuator 11A.
  • Actuator 11A is operated so that Specifically, in step S24, the ship control device 11C causes the actuator 11A to generate forward thrust of the ship 11 without the need for the operation unit 11B to receive an input operation for generating the forward thrust of the ship 11 in the actuator 11A.
  • step S25 when the operation unit 11B receives an input operation to stop the actuation of the actuator 11A (that is, in step S23, the operation unit 11B receives an input operation to stop the backward movement of the ship 11). monitor the elapsed time from the time when it was determined that Specifically, in step S25, the vessel control device 11C determines whether or not the elapsed time since the operation unit 11B received an input operation to stop the operation of the actuator 11A has reached a first threshold value or more.
  • step S25 is repeatedly executed.
  • the process proceeds to step S26.
  • the ship control device 11 ⁇ /b>C causes the actuator 11 ⁇ /b>A to stop generating the forward thrust of the ship 11 .
  • the operation unit 11B receives an input operation for stopping the generation of the propulsive force for moving the ship 11 in reverse.
  • the ship control device 11C causes the actuator 11A to generate a thrust force in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11). actuates actuator 11A without having to accept
  • the ship control device 11C controls the actuator 11A to generate thrust in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11).
  • the period for operating the actuator 11A is set based on the elapsed time from when the operation unit 11B receives an input operation to stop the operation of the actuator 11A (when determined as YES in step S23).
  • the ship control device 11C controls the operation unit so that the actuator 11A generates thrust in a direction (forward of the ship 11) opposite to the direction of the inertial force generated in the ship 11 (backward of the ship 11).
  • Actuator 11A is operated without 11B needing to accept an input operation. Therefore, in the example shown in FIG. 4, the operator's input operation for canceling the inertial force generated in the vessel 11 when the actuator 11A is shifted from the operating state to the non-operating state of the actuator 11A can be eliminated.
  • FIG. 5 shows the ship control of the first embodiment when the operation unit 11B receives an input operation to turn the ship 11 clockwise on the spot, and then receives an input operation to stop the clockwise on-the-spot turning of the ship 11.
  • 4 is a flowchart for explaining an example of processing executed by device 11C;
  • the vessel control device 11C determines whether or not the operation unit 11B has received an input operation for turning the vessel 11 clockwise on the spot.
  • step S31 is repeatedly executed.
  • the process proceeds to step S32.
  • step S32 the vessel control device 11C operates the actuator 11A so that the actuator 11A causes the vessel 11 to generate a moment that causes the vessel 11 to turn clockwise on the spot. As a result, the vessel 11 turns clockwise on the spot.
  • step S33 the vessel control device 11C determines whether or not the operation unit 11B has received an input operation to stop the clockwise on-the-spot turning of the vessel 11 or not. When the operation unit 11B has not received an input operation for stopping the clockwise spot turning of the ship 11, step S33 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation for stopping the clockwise spot turning of the ship 11, the process proceeds to step S34.
  • step S34 the ship control device 11C causes the actuator 11A to stop generating the moment that causes the ship 11 to turn clockwise on the spot. This results in a moment of inertia tending to continue the clockwise in-place turning. Therefore, in the example shown in FIG. 5, in step S34, the ship control device 11C causes the ship 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia occurring in the ship 11. to operate the actuator 11A. Specifically, in step S34, the ship control device 11C causes the ship 11 to generate a counterclockwise moment without the need for the operation unit 11B to receive an input operation for generating a counterclockwise moment in the ship 11.
  • step S35 when the operation unit 11B receives an input operation to stop the operation of the actuator 11A, the operation unit 11B of the ship control device 11C stops the clockwise spot turning of the ship 11 in step S33. It monitors the elapsed time from the time when it is determined that the input operation to cause the Specifically, in step S35, the vessel control device 11C determines whether or not the elapsed time since the operation unit 11B received an input operation to stop the operation of the actuator 11A has reached a first threshold value or more.
  • step S35 is repeatedly executed.
  • the process proceeds to step S36.
  • the vessel control device 11C causes the actuator 11A to stop generating the counterclockwise moment.
  • the vessel control device 11C causes the vessel 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia occurring in the vessel 11.
  • the actuator 11A is operated without the need for the operation section 11B to receive an input operation.
  • the ship control device 11C causes the ship 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia occurring in the ship 11.
  • the period for operating actuator 11A is set based on the elapsed time from when operation unit 11B receives an input operation to stop the operation of actuator 11A (when determined as YES in step S33).
  • the ship control device 11C causes the ship 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia occurring in the ship 11.
  • the operator's input operation for canceling the moment of inertia that occurs in the vessel 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated.
  • FIG. 6 shows the operation of the first embodiment when the operation unit 11B receives an input operation to turn the ship 11 counterclockwise on the spot, and then receives an input operation to stop the counterclockwise on-the-spot turning of the ship 11.
  • 4 is a flowchart for explaining an example of processing executed by a ship control device 11C;
  • the vessel control device 11C determines whether or not the operation unit 11B has received an input operation for turning the vessel 11 counterclockwise on the spot.
  • step S41 is repeatedly executed.
  • the process proceeds to step S42.
  • step S42 the vessel control device 11C operates the actuator 11A so that the actuator 11A causes the vessel 11 to generate a moment that turns the vessel 11 counterclockwise on the spot. As a result, the ship 11 turns counterclockwise on the spot.
  • step S43 the vessel control device 11C determines whether or not the operation section 11B has received an input operation to stop the counterclockwise on-the-spot turning of the vessel 11 or not. When the operation unit 11B has not received an input operation for stopping the counterclockwise spot turning of the ship 11, step S43 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation to stop the counterclockwise spot turning of the ship 11, the process proceeds to step S44.
  • step S44 the vessel control device 11C causes the actuator 11A to stop generating a moment that causes the vessel 11 to turn counterclockwise on the spot.
  • the vessel control device 11C causes the vessel 11 to generate a moment (clockwise) opposite to the direction of the moment of inertia (counterclockwise) occurring in the vessel 11. to operate the actuator 11A.
  • the vessel control device 11C causes the vessel 11 to generate a clockwise moment without the need for the operation unit 11B to receive an input operation for causing the vessel 11 to generate a clockwise moment.
  • step S45 when the operation unit 11B receives an input operation to stop the operation of the actuator 11A, the ship control device 11C causes the operation unit 11B to turn the ship 11 counterclockwise on the spot in step S43.
  • the elapsed time from the time when it is determined that the input operation to stop is accepted) is monitored.
  • the vessel control device 11C determines whether or not the elapsed time since the operation unit 11B received an input operation to stop the operation of the actuator 11A has reached a first threshold value or more.
  • step S45 is repeatedly executed. be.
  • the process proceeds to step S46.
  • the vessel control device 11C causes the actuator 11A to stop generating the clockwise moment.
  • the actuator 11A when the actuator 11A is generating a moment to turn the ship 11 counterclockwise on the spot, the actuator 11A generates a moment to turn the ship 11 counterclockwise on the spot.
  • the ship control device 11C When the operation unit 11B receives an input operation to stop, the ship control device 11C generates a moment (clockwise) on the ship 11 opposite to the direction of the moment of inertia (counterclockwise) generated in the ship 11.
  • the actuator 11A is operated without the need for the operation unit 11B to receive the input operation.
  • the ship control device 11C causes the ship 11 to generate a moment (clockwise) opposite to the direction (counterclockwise) of the moment of inertia occurring in the ship 11.
  • the period for operating actuator 11A is set based on the elapsed time from when operation unit 11B receives an input operation to stop the operation of actuator 11A (when determined as YES in step S43).
  • the ship control device 11C causes the ship 11 to generate a moment in the opposite direction (clockwise direction) to the direction of the moment of inertia (counterclockwise direction) generated in the ship 11 by the operation unit 11B.
  • the operator's input operation for canceling the moment of inertia generated in the vessel 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated.
  • FIG. 7 shows the ship of the first embodiment when the operation unit 11B receives an input operation to move the ship 11 forward and turn clockwise, and then receives an input operation to stop the ship 11 from moving forward and turning clockwise.
  • 4 is a flowchart for explaining an example of processing executed by the control device 11C;
  • the vessel control device 11C determines whether or not the operating section 11B has received an input operation to move the vessel 11 forward and turn it clockwise.
  • step S51 is repeatedly executed.
  • the operation unit 11B receives an input operation to move the ship 11 forward and turn it clockwise, the process proceeds to step S52.
  • step S52 the vessel control device 11C operates the actuator 11A so that the actuator 11A generates a propulsive force that moves the vessel 11 forward and a moment that rotates the vessel 11 clockwise. .
  • step S53 the vessel control device 11C determines whether or not the operating section 11B has received an input operation to stop the forward movement and clockwise turning of the vessel 11.
  • step S53 is repeatedly executed.
  • the operation unit 11B receives an input operation to stop the ship 11 from moving forward and turning clockwise, the process proceeds to step S54.
  • step S54 the vessel control device 11C causes the actuator 11A to stop generating the propulsive force that moves the vessel 11 forward and the moment that rotates the vessel 11 clockwise.
  • the ship control device 11C applies thrust in the opposite direction (rearward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (forwardward direction of the ship 11) to the actuator 11A.
  • the actuator 11A is actuated so that the moment of inertia generated in the ship 11 is generated in the opposite direction (counterclockwise direction) to the direction of the moment of inertia (clockwise direction) generated in the ship 11 .
  • the ship control device 11C does not require the operation unit 11B to receive an input operation that causes the ship 11 to generate a backward thrust and a counterclockwise moment to the ship 11. is generated in the actuator 11A and a counterclockwise moment is generated in the ship 11.
  • step S55 when the operation unit 11B receives an input operation to stop the operation of the actuator 11A, the operation unit 11B of the vessel control device 11C stops the forward movement and clockwise turning of the vessel 11 in step S53. It monitors the elapsed time from the time when it is determined that the input operation to cause the Specifically, in step S55, the vessel control device 11C determines whether or not the elapsed time since the operation unit 11B received an input operation to stop the operation of the actuator 11A has reached a first threshold value or more.
  • step S55 is repeatedly executed.
  • the vessel control device 11C causes the actuator 11A to stop the generation of the backward thrust and the counterclockwise moment of the vessel 11 .
  • the ship 11 when the actuator 11A is generating a propulsive force to move the ship 11 forward and generating a moment to turn the ship 11 clockwise, the ship 11 is
  • the ship control device 11C controls the direction of the inertial force generated in the ship 11 (the direction of the inertial force of the ship 11 (forward of the ship 11) so that the actuator 11A generates a thrust in the opposite direction (backward of the ship 11), and the direction (counterclockwise) of the moment of inertia occurring in the ship 11 (clockwise)
  • the actuator 11A is actuated so as to generate a moment in the ship 11 without the need for the operation section 11B to receive an input operation.
  • the ship control device 11C controls the actuator 11A to generate a thrust force in the opposite direction (rearward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (forwardward direction of the ship 11).
  • the period during which the actuator 11A is operated so as to generate a moment (counterclockwise) in the ship 11 that is opposite to the direction (clockwise) of the moment of inertia generated in the ship 11 is the operation of the actuator 11A. is set based on the elapsed time from when the operation unit 11B receives an input operation to stop the operation (when determined as YES in step S53). In other words, in the example shown in FIG.
  • the ship control device 11C causes the actuator 11A to generate a thrust in the opposite direction (rearward of the ship 11) to the direction of the inertial force generated in the ship 11 (forwardward of the ship 11), and
  • the actuator 11A is operated without the need for the operation unit 11B to receive an input operation so as to generate a moment (counterclockwise) in the ship 11 in a direction (counterclockwise) opposite to the direction (clockwise) of the moment of inertia generated in the ship 11. . Therefore, in the example shown in FIG. 7, the operator's input operation for canceling the moment of inertia generated in the ship 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated.
  • FIG. 8 shows the first embodiment when the operation unit 11B receives an input operation for causing the ship 11 to move backward and turn counterclockwise, and then receives an input operation for stopping the ship 11 from moving backward and turning counterclockwise.
  • step S61 for example, the vessel control device 11C determines whether or not the operating section 11B has received an input operation to cause the vessel 11 to move backward and turn counterclockwise.
  • step S61 is repeatedly executed.
  • the process proceeds to step S62.
  • step S62 the vessel control device 11C operates the actuator 11A so that the actuator 11A generates a propulsive force that causes the vessel 11 to move astern and a moment that causes the vessel 11 to turn counterclockwise. Let As a result, the vessel 11 moves astern and turns counterclockwise.
  • step S63 the vessel control device 11C determines whether or not the operation section 11B has received an input operation to stop the vessel 11 from moving backward and turning counterclockwise. When the operation unit 11B has not received an input operation to stop the backward movement and counterclockwise turning of the vessel 11, step S63 is repeatedly executed. On the other hand, if the operation unit 11B has received an input operation for stopping the backward movement and counterclockwise turning of the vessel 11, the process proceeds to step S64.
  • step S64 the ship control device 11C causes the actuator 11A to stop generating the propulsive force for moving the ship 11 backward and the moment for turning the ship 11 counterclockwise.
  • the ship control device 11C applies thrust in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11) to the actuator 11A.
  • the actuator 11A is actuated so that the moment of inertia generated in the ship 11 (counterclockwise) is generated in the ship 11 in the opposite direction (clockwise).
  • step S64 the ship control device 11C controls the forward thrust of the ship 11 without the operation unit 11B needing to receive an input operation that causes the ship 11 to generate a forward thrust and a clockwise moment to the ship 11.
  • a thrust force is generated in the actuator 11A and a clockwise moment is generated in the ship 11 .
  • step S65 when the operation unit 11B receives an input operation to stop the operation of the actuator 11A, the vessel control device 11C causes the operation unit 11B to cause the vessel 11 to move backward and turn counterclockwise in step S63.
  • the elapsed time from the time when it is determined that the input operation to stop is accepted) is monitored.
  • the vessel control device 11C determines whether or not the elapsed time since the operation unit 11B received an input operation to stop the operation of the actuator 11A has reached a first threshold value or more.
  • step S65 is repeatedly executed.
  • the vessel control device 11C causes the actuator 11A to stop generating the forward thrust and the clockwise moment of the vessel 11 .
  • the ship 11 when the actuator 11A is generating a propulsive force that causes the ship 11 to move astern and also generates a moment that causes the ship 11 to turn counterclockwise, the ship 11
  • the operation unit 11B receives an input operation to stop the generation of the propulsive force that causes the ship to go astern and the moment that turns the ship 11 counterclockwise, the ship control device 11C changes the direction of the inertial force generated in the ship 11 (
  • the actuator 11A generates a thrust in the direction opposite to (backward of the ship 11) (forward of the ship 11), and in the opposite direction (clockwise) to the direction of the moment of inertia occurring in the ship 11 (counterclockwise).
  • the actuator 11A is operated without the need for the operation unit 11B to receive the input operation.
  • the ship control device 11C controls the actuator 11A to generate a thrust force in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11).
  • the period during which the actuator 11A is operated so as to generate a moment (clockwise) in the ship 11 in the opposite direction (counterclockwise) to the moment of inertia generated in the ship 11 is defined as the operation of the actuator 11A. is set based on the elapsed time from when the operation unit 11B receives an input operation to stop the operation (when determined as YES in step S63).
  • the vessel control device 11C causes the actuator 11A to generate thrust in the opposite direction (forward of the vessel 11) to the direction of the inertial force generated in the vessel 11 (rearward of the vessel 11), and
  • the actuator 11A is operated without the need for the operation unit 11B to receive an input operation so as to generate a moment (clockwise) in the ship 11 in the opposite direction (counterclockwise) of the moment of inertia generated in the ship 11. . Therefore, in the example shown in FIG. 8, the operator's input operation for canceling the moment of inertia generated in the vessel 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated.
  • ⁇ Second embodiment> A second embodiment of a ship maneuvering system, a ship control device, a ship control method, and a program according to the present invention will be described below.
  • the ship maneuvering system 1 of the second embodiment is configured in the same manner as the ship maneuvering system 1 of the first embodiment described above, except for the points described later. Therefore, according to the marine vessel maneuvering system 1 of the second embodiment, it is possible to achieve the same effects as the marine vessel maneuvering system 1 of the first embodiment described above, except for the points described later.
  • a ship maneuvering system 1 including a ship 11 to which a ship control device 11C of the second embodiment is applied is configured in the same manner as the ship maneuvering system 1 of the first embodiment shown in FIG.
  • FIG. 9 shows an example of processing executed by the ship control device 11C of the second embodiment when the operation unit 11B receives an input operation for advancing the ship 11 and then receives an input operation for stopping the advance of the ship 11. It is a flow chart for explanation.
  • the vessel control device 11C determines whether or not the operating section 11B has received an input operation to move the vessel 11 forward.
  • step SA1 is repeatedly executed.
  • the process proceeds to step SA2.
  • step SA2 the ship control device 11C operates the actuator 11A so that the thrust generating section 11A2 of the actuator 11A generates a propulsive force for moving the ship 11 forward. As a result, the ship 11 moves forward.
  • step SA3 the vessel control device 11C determines whether or not the operating section 11B has received an input operation to stop the forward movement of the vessel 11. When the operation unit 11B has not received an input operation to stop the forward movement of the ship 11, step SA3 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation to stop the forward movement of the ship 11, the process proceeds to step SA4.
  • step SA4 the vessel control device 11C causes the actuator 11A to stop generating the propulsive force that moves the vessel 11 forward.
  • an inertial force (going foot) that tries to continue forward movement is generated. Therefore, in the example shown in FIG. 9, in step SA4, the ship control device 11C applies thrust in the opposite direction (rearward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (forwardward direction of the ship 11) to the actuator 11A.
  • Actuator 11A is operated so that Specifically, in step SA4, the vessel control device 11C causes the actuator 11A to generate a backward thrust of the vessel 11 without the operation unit 11B needing to receive an input operation for generating a backward thrust of the vessel 11 in the actuator 11A.
  • step SA5 the ship control device 11C monitors the speed of the ship 11.
  • the vessel control device 11C determines whether or not the velocity of the vessel 11 detected by the vessel velocity detector 11E has decreased to the second threshold or less. If the speed of the ship 11 has not decreased to the second threshold or less (that is, if the ship 11 continues to move forward due to the inertial force (going foot) of the ship 11), step SA5 is repeatedly executed.
  • step SA6 the vessel control device 11C causes the actuator 11A to stop generating the backward thrust of the vessel 11.
  • the operation unit 11B receives an input operation to stop the generation of the propulsive force to move the ship 11 forward.
  • the ship control device 11C causes the actuator 11A to generate a thrust in the opposite direction (rearward of the ship 11) to the direction of the inertial force generated in the ship 11 (forwardward of the ship 11). actuates actuator 11A without having to accept Further, in the example shown in FIG. 9, the ship control device 11C causes the actuator 11A to generate a thrust force in the opposite direction (rearward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (forwardward direction of the ship 11).
  • the period for operating the actuator 11A is set based on the speed of the ship 11 .
  • the ship control device 11C controls the operation unit so that the actuator 11A generates thrust in a direction (rearward of the ship 11) opposite to the direction of the inertial force generated in the ship 11 (forwardward of the ship 11).
  • Actuator 11A is operated without 11B needing to accept an input operation. Therefore, in the example shown in FIG. 9, the operator's input operation for canceling the inertial force generated in the vessel 11 when the actuator 11A is shifted from the operating state to the non-operating state of the actuator 11A can be eliminated.
  • FIG. 10 shows an example of processing executed by the ship control device 11C of the second embodiment when the operation unit 11B receives an input operation for causing the ship 11 to go astern and then receives an input operation for stopping the ship 11 from going astern. It is a flow chart for explanation.
  • the vessel control device 11C determines whether or not the operating section 11B has received an input operation to move the vessel 11 backward.
  • step SB1 is repeatedly executed.
  • the process proceeds to step SB2.
  • step SB2 the ship control device 11C operates the actuator 11A so that the thrust force generating section 11A2 of the actuator 11A generates a propulsive force for moving the ship 11 backward.
  • the vessel control device 11C determines whether or not the operating section 11B has received an input operation to stop the backward movement of the vessel 11 or not.
  • step SB3 is repeatedly executed.
  • the operation unit 11B receives an input operation for stopping the backward movement of the boat 11, the process proceeds to step SB4.
  • the vessel control device 11C causes the actuator 11A to stop generating the propulsive force for moving the vessel 11 backward.
  • an inertial force (going foot) that tries to continue backward movement is generated. Therefore, in the example shown in FIG. 10, in step SB4, the ship control device 11C applies thrust in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11) to the actuator 11A.
  • Actuator 11A is operated so that Specifically, at step SB4, the ship control device 11C causes the actuator 11A to generate a forward thrust of the ship 11 without the need for the operation unit 11B to receive an input operation for generating a forward thrust of the ship 11 in the actuator 11A.
  • step SB5 the ship control device 11C monitors the speed of the ship 11.
  • the ship control device 11C determines whether the speed of the ship 11 detected by the ship speed detector 11E has decreased to the second threshold or less.
  • step SB5 is repeatedly executed.
  • step SB6 the ship control device 11C causes the actuator 11A to stop generating the forward thrust of the ship 11.
  • the operation unit 11B receives an input operation for stopping the generation of the propulsive force for moving the ship 11 in reverse.
  • the ship control device 11C causes the actuator 11A to generate a thrust force in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11). actuates actuator 11A without having to accept Further, in the example shown in FIG. 10, the ship control device 11C causes the actuator 11A to generate a thrust force in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11).
  • the period for operating the actuator 11A is set based on the speed of the ship 11 .
  • the ship control device 11C controls the operation unit so that the actuator 11A generates thrust in a direction (forward of the ship 11) opposite to the direction of the inertial force generated in the ship 11 (backward of the ship 11).
  • Actuator 11A is operated without 11B needing to accept an input operation. Therefore, in the example shown in FIG. 10, the operator's input operation for canceling the inertial force generated in the vessel 11 when the actuator 11A is shifted from the operating state to the non-operating state of the actuator 11A can be eliminated.
  • FIG. 11 shows the ship control of the second embodiment when the operation unit 11B receives an input operation to turn the ship 11 clockwise on the spot, and then receives an input operation to stop the clockwise on-the-spot turning of the ship 11.
  • 4 is a flowchart for explaining an example of processing executed by device 11C;
  • the vessel control device 11C determines whether or not the operation unit 11B has received an input operation for turning the vessel 11 clockwise on the spot.
  • step SC1 is repeatedly executed.
  • the process proceeds to step SC2.
  • step SC2 the vessel control device 11C operates the actuator 11A so that the actuator 11A causes the vessel 11 to generate a moment that causes the vessel 11 to turn clockwise on the spot. As a result, the vessel 11 turns clockwise on the spot.
  • step SC3 the vessel control device 11C determines whether or not the operation section 11B has received an input operation to stop the clockwise on-the-spot turning of the vessel 11 or not.
  • step SC3 is repeatedly executed.
  • the operation unit 11B receives an input operation to stop the clockwise spot turning of the ship 11, the process proceeds to step SC4.
  • step SC4 the vessel control device 11C causes the actuator 11A to stop generating the moment that causes the vessel 11 to turn clockwise on the spot. This results in a moment of inertia tending to continue the clockwise in-place turning. Therefore, in the example shown in FIG. 11, in step SC4, the ship control device 11C causes the ship 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia occurring in the ship 11. to operate the actuator 11A. Specifically, at step SC4, the vessel control device 11C causes the vessel 11 to generate a counterclockwise moment without the need for the operation section 11B to receive an input operation for causing the vessel 11 to generate a counterclockwise moment.
  • step SC5 the ship control device 11C monitors the angular velocity of the ship 11.
  • the vessel control device 11C determines whether or not the angular velocity of the vessel 11 calculated based on the heading detected by the heading detection section 11D has decreased to the third threshold or less.
  • step SC5 is repeatedly executed.
  • step SC6 the ship control device 11C causes the actuator 11A to stop generating the counterclockwise moment.
  • the vessel control device 11C causes the vessel 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia occurring in the vessel 11.
  • the actuator 11A is operated without the operation section 11B needing to receive an input operation.
  • the ship control device 11C causes the ship 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia occurring in the ship 11.
  • the ship control device 11C causes the ship 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia occurring in the ship 11.
  • the operator's input operation for canceling the moment of inertia generated in the ship 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated.
  • FIG. 12 shows the operation of the second embodiment when the operation unit 11B receives an input operation for turning the ship 11 counterclockwise on the spot, and then receives an input operation for stopping the counterclockwise on-the-spot turning of the ship 11.
  • 4 is a flowchart for explaining an example of processing executed by a ship control device 11C;
  • the vessel control device 11C determines whether or not the operating section 11B has received an input operation to turn the vessel 11 counterclockwise on the spot.
  • step SD1 is repeatedly executed.
  • the process proceeds to step SD2.
  • step SD2 the vessel control device 11C operates the actuator 11A so that the actuator 11A causes the vessel 11 to generate a moment that turns the vessel 11 counterclockwise on the spot. As a result, the ship 11 turns counterclockwise on the spot.
  • step SD3 the vessel control device 11C determines whether or not the operating section 11B has received an input operation to stop the counterclockwise on-the-spot turning of the vessel 11 or not.
  • step SD3 is repeatedly executed.
  • the process proceeds to step SD4.
  • step SD4 the vessel control device 11C causes the actuator 11A to stop generating the moment that causes the vessel 11 to turn counterclockwise on the spot. As a result, there is a moment of inertia that tends to continue the counterclockwise in-situ turning. Therefore, in the example shown in FIG. 12, in step SD4, the vessel control device 11C causes the vessel 11 to generate a moment (clockwise) opposite to the direction (counterclockwise) of the moment of inertia occurring in the vessel 11. to operate the actuator 11A. Specifically, in step SD4, the vessel control device 11C causes the vessel 11 to generate a clockwise moment without the need for the operation section 11B to receive an input operation for causing the vessel 11 to generate a clockwise moment.
  • step SD5 the ship control device 11C monitors the angular velocity of the ship 11.
  • the ship control device 11C determines whether or not the angular velocity of the ship 11 calculated based on the heading detected by the heading detection section 11D has decreased to the third threshold or less.
  • step SD5 is repeatedly executed. .
  • step SD6 the ship control device 11C causes the actuator 11A to stop generating the clockwise moment.
  • the actuator 11A when the actuator 11A is generating a moment to turn the ship 11 counterclockwise on the spot, the moment causing the ship 11 to turn counterclockwise on the spot is generated.
  • the ship control device 11C When the operation unit 11B receives an input operation to stop, the ship control device 11C generates a moment (clockwise) on the ship 11 opposite to the direction of the moment of inertia (counterclockwise) generated in the ship 11.
  • the actuator 11A is operated without the need for the operation unit 11B to receive the input operation. Further, in the example shown in FIG.
  • the ship control device 11C causes the ship 11 to generate a moment (clockwise) opposite to the direction of the moment of inertia (counterclockwise) occurring in the ship 11, and the actuator 11A is activated based on the angular velocity of the vessel 11;
  • the ship control device 11C causes the ship 11 to generate a moment in the opposite direction (clockwise direction) to the direction of the moment of inertia (counterclockwise direction) generated in the ship 11 by the operation unit 11B.
  • the operator's input operation for canceling the moment of inertia generated in the vessel 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated.
  • FIG. 13 shows the ship of the second embodiment when the operation unit 11B receives an input operation to move the ship 11 forward and turn clockwise, and then receives an input operation to stop the ship 11 from moving forward and turning clockwise.
  • 4 is a flowchart for explaining an example of processing executed by the control device 11C;
  • the vessel control device 11C determines whether or not the operation section 11B has received an input operation to move the vessel 11 forward and turn it clockwise.
  • step SE1 is repeatedly executed.
  • the process proceeds to step SE2.
  • step SE2 the ship control device 11C operates the actuator 11A so that the actuator 11A generates a propulsive force that moves the ship 11 forward and a moment that turns the ship 11 clockwise. .
  • the vessel 11 moves forward and turns clockwise.
  • step SE3 the vessel control device 11C determines whether or not the operating section 11B has received an input operation to stop the forward movement and clockwise turning of the vessel 11.
  • step SE3 is repeatedly executed.
  • the process proceeds to step SE4.
  • step SE4 the vessel control device 11C causes the actuator 11A to stop generating the propulsive force that moves the vessel 11 forward and the moment that rotates the vessel 11 clockwise.
  • the ship control device 11C applies thrust in the opposite direction (rearward direction of the ship 11) to the direction of the inertia force generated in the ship 11 (forwardward direction of the ship 11) to the actuator 11A.
  • the actuator 11A is actuated so that the moment of inertia generated in the ship 11 is generated in the opposite direction (counterclockwise direction) to the direction of the moment of inertia (clockwise direction) generated in the ship 11 .
  • the ship control device 11C does not require the operation unit 11B to receive an input operation that causes the ship 11 to generate a backward thrust and a counterclockwise moment to the ship 11. is generated in the actuator 11A and a counterclockwise moment is generated in the ship 11.
  • step SE5 the ship control device 11C monitors the speed of the ship 11.
  • the vessel control device 11C determines whether or not the velocity of the vessel 11 detected by the vessel velocity detector 11E has decreased to the fourth threshold or less.
  • step SE5 is repeatedly executed.
  • step SE6 when the speed of the ship 11 has decreased to the fourth threshold or less (that is, when it can be estimated that the forward movement of the ship 11 due to the inertial force of the ship 11 and the clockwise turning of the ship 11 due to the moment of inertia of the ship 11 have ended) , go to step SE6.
  • the ship control device 11C causes the actuator 11A to stop the generation of the backward thrust and the counterclockwise moment of the ship 11 .
  • the ship 11 when the actuator 11A is generating a propulsive force to move the ship 11 forward and generating a moment to turn the ship 11 clockwise, the ship 11 is
  • the ship control device 11C controls the direction of the inertial force generated in the ship 11 (the direction of the inertial force of the ship 11 (forward of the ship 11) so that the actuator 11A generates a thrust in the opposite direction (backward of the ship 11), and the direction (counterclockwise) of the moment of inertia occurring in the ship 11 (clockwise)
  • the actuator 11A is actuated so as to generate a moment in the ship 11 without the need for the operation section 11B to receive an input operation.
  • the ship control device 11C controls the actuator 11A to generate a thrust force in the opposite direction (backward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (forward direction of the ship 11).
  • the period during which the actuator 11A is operated so as to generate a moment (counterclockwise) in the ship 11 that is opposite to the direction (clockwise) of the moment of inertia generated in the ship 11 is defined by the speed of the ship 11. set based on In other words, in the example shown in FIG. 13, when the operation unit 11B receives an input operation to stop the operation of the actuator 11A while the vessel control device 11C is operating the actuator 11A (it is determined as YES in step SE3).
  • the vessel control device 11C causes the actuator 11A to generate thrust in the opposite direction (rearward of the vessel 11) to the direction of the inertial force generated in the vessel 11 (forwardward of the vessel 11), and
  • the actuator 11A is operated without the need for the operation unit 11B to receive an input operation so as to generate a moment (counterclockwise) in the ship 11 in the opposite direction (clockwise) of the moment of inertia generated in the ship 11. . Therefore, in the example shown in FIG. 13, the operator's input operation for canceling the inertial force and moment of inertia generated in the ship 11 when the actuator 11A is shifted from the operating state to the non-operating state of the actuator 11A can be eliminated. .
  • FIG. 14 shows the second embodiment when the operation unit 11B receives an input operation to cause the ship 11 to move backward and turn counterclockwise, and then receives an input operation to stop the ship 11 from moving backward and turning counterclockwise.
  • step SF1 the vessel control device 11C determines whether or not the operating section 11B has received an input operation for causing the vessel 11 to move backward and turn counterclockwise.
  • step SF1 is repeatedly executed.
  • the process proceeds to step SF2.
  • step SF2 the ship control device 11C operates the actuator 11A so that the actuator 11A generates a propulsive force to move the ship 11 backward and a moment to turn the ship 11 counterclockwise.
  • the vessel 11 moves astern and turns counterclockwise.
  • step SF3 the vessel control device 11C determines whether or not the operation section 11B has received an input operation to stop the vessel 11 from moving backward and turning counterclockwise.
  • step SF3 is repeatedly executed.
  • the process proceeds to step SF4.
  • step SF4 the vessel control device 11C causes the actuator 11A to stop generating the propulsive force for moving the vessel 11 backward and the moment for turning the vessel 11 counterclockwise.
  • the ship control device 11C applies a thrust force in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11) to the actuator 11A.
  • the actuator 11A is actuated so that the moment of inertia generated in the ship 11 (counterclockwise) is generated in the ship 11 in the opposite direction (clockwise).
  • step SF4 the ship control device 11C controls the forward thrust of the ship 11 without the operation unit 11B needing to receive an input operation that causes the ship 11 to generate a forward thrust and a clockwise moment to the ship 11.
  • a thrust force is generated in the actuator 11A and a clockwise moment is generated in the ship 11 .
  • the ship control device 11C monitors the speed of the ship 11. FIG.
  • step SF5 the ship control device 11C determines whether or not the speed of the ship 11 detected by the ship speed detector 11E has decreased to the fourth threshold or less. If the speed of the ship 11 has not decreased to the fourth threshold or less (that is, the inertial force of the ship 11 causes the ship 11 to go astern, and the moment of inertia of the ship 11 causes the ship 11 to continue turning counterclockwise). case), step SF5 is repeatedly executed.
  • step SF6 when the speed of the ship 11 decreases to the fourth threshold or less (that is, when it can be estimated that the ship 11 moves backward due to the inertial force of the ship 11 and the counterclockwise turning of the ship 11 due to the moment of inertia of the ship 11 ends) ), go to step SF6.
  • the ship control device 11C causes the actuator 11A to stop generating forward thrust and clockwise moment of the ship 11.
  • the ship 11 when the actuator 11A is generating a propulsive force that causes the ship 11 to move astern and also generates a moment that causes the ship 11 to turn counterclockwise, the ship 11
  • the operation unit 11B receives an input operation to stop the generation of the propulsive force that causes the ship to go astern and the moment that turns the ship 11 counterclockwise, the ship control device 11C changes the direction of the inertial force generated in the ship 11 (
  • the actuator 11A generates a thrust in the direction opposite to (backward of the ship 11) (forward of the ship 11), and in the opposite direction (clockwise) to the direction of the moment of inertia occurring in the ship 11 (counterclockwise).
  • the actuator 11A is operated without the need for the operation unit 11B to receive the input operation.
  • the ship control device 11C controls the actuator 11A to generate a thrust force in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11).
  • the period during which the actuator 11A is operated so as to generate a moment (clockwise) in the ship 11 opposite to the direction of the moment of inertia (counterclockwise) generated in the ship 11 is defined by the speed of the ship 11. set based on In other words, in the example shown in FIG.
  • the vessel control device 11C causes the actuator 11A to generate thrust in the opposite direction (forward of the vessel 11) to the direction of the inertial force generated in the vessel 11 (rearward of the vessel 11), and
  • the actuator 11A is operated without the need for the operation unit 11B to receive an input operation so as to generate a moment (clockwise) in the ship 11 in the opposite direction (counterclockwise) of the moment of inertia generated in the ship 11. . Therefore, in the example shown in FIG. 14, the operator's input operation for canceling the inertial force and moment of inertia generated in the ship 11 when the actuator 11A is shifted from the operating state to the non-operating state of the actuator 11A can be eliminated. .
  • a third embodiment of a ship maneuvering system, a ship control device, a ship control method, and a program according to the present invention will be described below.
  • the ship maneuvering system 1 of the third embodiment is configured in the same manner as the ship maneuvering system 1 of the first embodiment described above, except for the points described later. Therefore, according to the marine vessel maneuvering system 1 of the third embodiment, it is possible to obtain the same effects as the marine vessel maneuvering system 1 of the first embodiment described above, except for the points described later.
  • FIG. 15 is a diagram showing an example of a ship maneuvering system 1 including a ship 11 to which a ship control device 11C of the third embodiment is applied.
  • a ship maneuvering system 1 includes a ship 11 and an input device 12 .
  • the vessel 11 includes an actuator 11A, an operation section 11B, a vessel control device 11C, a heading detection section 11D, a vessel speed detection section 11E, a vessel position detection section 11F, and a communication section 11G.
  • the actuator 11A is configured similarly to the actuator 11A shown in FIG.
  • the operating section 11B is configured similarly to the operating section 11B shown in FIG. 11 C of ship control apparatuses are comprised similarly to 11 C of ship control apparatuses shown in FIG.
  • the heading detection section 11D is configured in the same manner as the heading detection section 11D shown in FIG.
  • the boat speed detector 11E is configured in the same manner as the boat speed detector 11E shown in FIG.
  • the vessel position detection section 11F is configured in the same manner as the vessel position detection section 11F shown in FIG.
  • the communication unit 11G communicates with the input device 12 .
  • the input device 12 is provided separately from the ship 11 . That is, the input device 12 can be used by the operator of the vessel 11 at a location remote from the vessel 11, for example.
  • the input device 12 includes an operation section 12A and a communication section 12B.
  • the operation unit 12 ⁇ /b>A receives an input operation from the operator of the ship 11 .
  • the communication unit 12B transmits to the ship 11 information indicating input operations by the operator of the ship 11 received by the operation unit 12A.
  • the communication unit 11 ⁇ /b>G of the ship 11 receives the information indicating the input operation transmitted by the communication unit 12 ⁇ /b>B of the input device 12 .
  • the ship control device 11C of the ship 11 operates the actuator 11A based on the input operation received by the operation unit 12A of the input device 12.
  • the vessel control device 11C determines whether or not the operating section 12A of the input device 12 has received an input operation to move the vessel 11 forward.
  • the step corresponding to step S11 in FIG. 3 is repeatedly executed.
  • the process proceeds to a step corresponding to step S12 in FIG.
  • step S12 in FIG. 3 the ship control device 11C operates the actuator 11A so that the thrust force generating section 11A2 of the actuator 11A generates a propulsive force that moves the ship 11 forward.
  • the ship 11 moves forward (that is, the ship 11 moves upward in FIG. 2).
  • step S13 in FIG. 3 the vessel control device 11C, for example, determines whether or not the operating section 12A of the input device 12 has received an input operation to stop the forward movement of the vessel 11.
  • the step corresponding to step S13 in FIG. 3 is repeatedly executed.
  • the process proceeds to a step corresponding to step S14 in FIG.
  • the vessel control device 11C causes the actuator 11A to stop generating the propulsive force that propels the vessel 11 forward.
  • an upward inertial force (going foot) in FIG. 2 is generated, which tends to continue forward movement. Therefore, in the ship maneuvering system 1 of the third embodiment, in a step corresponding to step S14 in FIG.
  • the actuator 11A is actuated so that the actuator 11A generates a thrust (downward in FIG. 2).
  • the vessel control device 11C does not require the operation unit 12A to receive an input operation for causing the actuator 11A to generate a downward thrust force in FIG. is generated in the actuator 11A.
  • FIGS. 2(A) and 2(B) it is possible to prevent the ship 11 from moving upward in FIG. .
  • step S15 in FIG. 3 when the operation unit 12A of the input device 12 receives an input operation for stopping the operation of the actuator 11A, the vessel control device 11C (that is, step S13 in FIG. The elapsed time from when it is determined that the operation unit 12A has received an input operation to stop the forward movement of the ship 11 in the step to be performed) is monitored. Specifically, in a step corresponding to step S15 in FIG. 3, the vessel control device 11C determines whether the elapsed time from when the operation unit 12A received an input operation to stop the operation of the actuator 11A has become equal to or greater than the first threshold value.
  • the steps in FIG. A step corresponding to S15 is repeatedly executed.
  • the elapsed time is equal to or greater than the first threshold value (that is, when it can be estimated that there is no risk of the ship 11 moving upward in FIG. 2 due to the inertial force (going foot) of the ship 11)
  • the The process proceeds to a step corresponding to step S16.
  • the vessel control device 11C causes the actuator 11A to stop generating downward thrust in FIG.
  • the vessel control device 11C controls the direction of the inertial force generated in the vessel 11 (upward in FIG. 2) opposite to the direction (downward in FIG. 2).
  • the actuator 11A is operated so that the actuator 11A generates thrust without the need for the operation unit 12A to receive an input operation. Therefore, in the marine vessel maneuvering system 1 of the third embodiment, the operator's input operation for canceling the inertial force generated in the marine vessel 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated.
  • the state of the marine vessel 11 can be changed from the operating state of the actuator 11A to the deactivation of the actuator 11A. state can be transitioned appropriately.
  • the ship control device 11C receives an input operation in which the operation unit 12A of the input device 12 turns the ship 11 clockwise on the spot. determine whether or not When the operation unit 12A has not received an input operation for turning the vessel 11 clockwise on the spot, the step corresponding to step S31 in FIG. 5 is repeatedly executed. On the other hand, when the operation unit 12A receives an input operation for turning the ship 11 clockwise on the spot, the process proceeds to a step corresponding to step S32 in FIG.
  • the vessel control device 11C operates the actuator 11A so that the actuator 11A causes the vessel 11 to generate a moment that causes the vessel 11 to turn clockwise on the spot. As a result, the vessel 11 turns clockwise on the spot.
  • the vessel control device 11C determines whether or not the operation section 12A of the input device 12 has received an input operation to stop the clockwise spot turning of the vessel 11. . If the operation unit 12A has not received an input operation for stopping the clockwise spot turning of the ship 11, the step corresponding to step S33 in FIG. 5 is repeatedly executed. On the other hand, when the operation unit 12A receives an input operation for stopping the clockwise spot turning of the ship 11, the process proceeds to a step corresponding to step S34 in FIG.
  • the ship control device 11C causes the actuator 11A to stop generating a moment that causes the ship 11 to turn clockwise on the spot. This results in a moment of inertia tending to continue the clockwise in-place turning. Therefore, in the ship maneuvering system 1 of the third embodiment, in a step corresponding to step S34 in FIG.
  • the actuator 11 ⁇ /b>A is operated so as to generate a moment in the vessel 11 .
  • a step corresponding to step S34 of FIG. 11 As a result, it is possible to prevent the ship 11 from turning excessively clockwise on the spot due to the moment of inertia generated in the ship 11 .
  • the vessel control device 11C determines whether the elapsed time since the operation unit 12A received an input operation to stop the operation of the actuator 11A has become equal to or greater than the first threshold.
  • step S35 determines whether or not If the elapsed time is not equal to or greater than the first threshold value (that is, if it can be estimated that the moment of inertia of the ship 11 may cause the ship 11 to turn excessively clockwise on the spot), this corresponds to step S35 in FIG.
  • the steps to do are repeatedly executed.
  • the process proceeds to step S36 in FIG. Proceed to the corresponding step.
  • the vessel control device 11C causes the actuator 11A to stop generating the counterclockwise moment.
  • the ship control device 11C transfers the moment of inertia generated in the ship 11 in the opposite direction (counterclockwise) to the direction (clockwise) of the moment of inertia to the ship 11, the actuator 11A is operated without the need for the operation unit 12A to receive the input operation.
  • the operator's input operation for canceling the moment of inertia generated in the marine vessel 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated.
  • the ship steering system 1 of the third embodiment even if the ship operator who is away from the ship 11 cannot grasp the moment of inertia generated in the ship 11, the state of the ship 11 can be changed from the operating state of the actuator 11A to the deactivation of the actuator 11A. state can be transitioned appropriately.
  • the operation of the third embodiment is performed.
  • the ship control device 11C in a step corresponding to step S51 in FIG. 7, the ship control device 11C, for example, causes the operation unit 12A of the input device 12 to move the ship 11 forward and turn clockwise. is received.
  • the step corresponding to step S51 in FIG. 7 is repeatedly executed.
  • the process proceeds to a step corresponding to step S52 in FIG.
  • step S52 in FIG. 7 the vessel control device 11C causes the actuator 11A to generate a propulsive force to move the vessel 11 forward and a moment to turn the vessel 11 clockwise. Then, the actuator 11A is operated. As a result, the vessel 11 moves forward and turns clockwise.
  • step S53 in FIG. 7 the vessel control device 11C determines whether or not the operating section 12A of the input device 12 has received an input operation to stop the forward movement and clockwise turning of the vessel 11. .
  • the step corresponding to step S53 in FIG. 7 is repeatedly executed.
  • the process proceeds to a step corresponding to step S54 in FIG.
  • the vessel control device 11C causes the actuator 11A to stop generating the propulsive force that moves the vessel 11 forward and the moment that rotates the vessel 11 clockwise.
  • an inertial force that tends to keep moving forward and a moment of inertia that tends to keep clockwise turning are generated. Therefore, in the marine vessel maneuvering system 1 of the third embodiment, in a step corresponding to step S54 in FIG.
  • the actuator 11A generates a thrust in the rearward direction of the ship 11, and the ship 11 generates a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia generated in the ship 11. Then, the actuator 11A is operated.
  • the vessel control device 11C receives an input operation for causing the operation section 12A to generate a backward thrust force on the vessel 11 and to generate a counterclockwise moment on the vessel 11.
  • the actuator 11A generates a backward thrust of the vessel 11 and a counterclockwise moment is generated on the vessel 11 .
  • the vessel control device 11C determines whether the elapsed time from when the operation unit 12A received an input operation to stop the operation of the actuator 11A has become equal to or greater than the first threshold value.
  • step corresponding to step S55 in FIG. 7 is repeatedly executed.
  • the process proceeds to a step corresponding to step S56 in FIG.
  • the vessel control device 11C causes the actuator 11A to stop the generation of the backward thrust and the counterclockwise moment of the vessel 11 .
  • the ship control device 11C controls the direction of the inertial force generated in the ship 11 (forward direction of the ship 11) opposite to the direction (backward direction of the ship 11).
  • the operation unit 12A is configured to cause the actuator 11A to generate a thrust force and to cause the ship 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia generated in the ship 11. Actuator 11A is operated without needing to accept an input operation.
  • the operator's input operation for canceling the inertial force and moment of inertia generated in the vessel 11 when the actuator 11A is shifted from the operating state to the non-operating state of the actuator 11A is unnecessary. be able to.
  • the state of the marine vessel 11 can be changed from the operating state of the actuator 11A to the actuator 11A. can be properly transitioned to the deactivation state of
  • a fourth embodiment of a ship maneuvering system, a ship control device, a ship control method, and a program according to the present invention will be described below.
  • the ship maneuvering system 1 of the fourth embodiment is configured in the same manner as the ship maneuvering systems 1 of the second and third embodiments described above, except for the points described later. Therefore, according to the ship maneuvering system 1 of the fourth embodiment, the same effects as those of the above-described ship maneuvering systems 1 of the second and third embodiments can be obtained, except for the points described later.
  • the ship maneuvering system 1 of the fourth embodiment is configured in the same manner as the ship maneuvering system 1 of the third embodiment shown in FIG.
  • step SA1 in FIG. 9 the vessel control device 11C determines whether or not the operating section 12A of the input device 12 has received an input operation for moving the vessel 11 forward.
  • step corresponding to step SA1 in FIG. 9 is repeatedly executed.
  • the process proceeds to a step corresponding to step SA2 in FIG.
  • step SA2 in FIG. 9 the ship control device 11C operates the actuator 11A so that the thrust force generating section 11A2 of the actuator 11A generates a propulsion force for moving the ship 11 forward. As a result, the ship 11 moves forward.
  • the vessel control device 11C determines whether or not the operation section 12A of the input device 12 has received an input operation to stop the forward movement of the vessel 11.
  • the step corresponding to step SA3 in FIG. 9 is repeatedly executed.
  • the process proceeds to a step corresponding to step SA4 in FIG.
  • the vessel control device 11C causes the actuator 11A to stop generating the propulsive force that moves the vessel 11 forward.
  • an inertial force (going foot) that tries to continue forward movement is generated. Therefore, in the marine vessel maneuvering system 1 of the fourth embodiment, in a step corresponding to step SA4 in FIG.
  • the actuator 11A is actuated so that the actuator 11A generates thrust in the rearward direction of the ship 11 .
  • the vessel control device 11C does not require the operation unit 12A to receive an input operation for causing the actuator 11A to generate a backward thrust of the vessel 11. is generated in the actuator 11A.
  • step SA5 in FIG. 9 the ship control device 11C monitors the speed of the ship 11.
  • the vessel control device 11C determines whether the speed of the vessel 11 detected by the vessel speed detector 11E has decreased to the second threshold or less. If the speed of the ship 11 has not decreased to the second threshold or less (that is, if the ship 11 continues to move forward due to the inertial force (going foot) of the ship 11), a step corresponding to step SA5 in FIG. is executed repeatedly.
  • step SA6 in FIG. proceed to the step to In a step corresponding to step SA6 in FIG. 9 , the vessel control device 11C causes the actuator 11A to stop generating the backward thrust of the vessel 11 .
  • the vessel control device 11C controls the direction of the inertial force generated in the vessel 11 (forward of the vessel 11) opposite to the direction (backward of the vessel 11).
  • the actuator 11A is operated so that the actuator 11A generates thrust without the need for the operation unit 12A to receive an input operation.
  • the operator's input operation for canceling the inertial force generated in the marine vessel 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated.
  • the state of the marine vessel 11 can be changed from the operating state of the actuator 11A to the deactivation of the actuator 11A. state can be transitioned appropriately.
  • the ship control device 11C accepts an input operation for causing the operation section 12A of the input device 12 to turn the ship 11 clockwise on the spot. determine whether or not When the operation unit 12A has not received an input operation for turning the vessel 11 clockwise on the spot, the step corresponding to step SC1 in FIG. 11 is repeatedly executed. On the other hand, when the operation unit 12A receives an input operation for turning the ship 11 clockwise on the spot, the process proceeds to a step corresponding to step SC2 in FIG.
  • the vessel control device 11C operates the actuator 11A so that the actuator 11A causes the vessel 11 to generate a moment that causes the vessel 11 to turn clockwise on the spot. As a result, the vessel 11 turns clockwise on the spot.
  • the vessel control device 11C determines whether or not the operating section 12A of the input device 12 has received an input operation to stop the clockwise spot turning of the vessel 11. . If the operation unit 12A has not received an input operation to stop the clockwise spot turning of the ship 11, the step corresponding to step SC3 in FIG. 11 is repeatedly executed. On the other hand, when the operation unit 12A receives an input operation to stop the clockwise spot turning of the ship 11, the process proceeds to a step corresponding to step SC4 in FIG.
  • the vessel control device 11C causes the actuator 11A to stop generating a moment that causes the vessel 11 to turn clockwise on the spot. This results in a moment of inertia tending to continue the clockwise in-place turning. Therefore, in the ship maneuvering system 1 of the fourth embodiment, in a step corresponding to step SC4 in FIG.
  • the actuator 11 ⁇ /b>A is operated so as to generate a moment in the vessel 11 .
  • the vessel control device 11C applies a counterclockwise moment to the vessel 11 without the operation unit 12A needing to receive an input operation that causes the vessel 11 to generate a counterclockwise moment. 11.
  • the ship control device 11C monitors the angular velocity of the ship 11.
  • the ship control device 11C determines that the angular velocity of the ship 11 calculated based on the heading detected by the heading detection unit 11D has decreased to the third threshold or less.
  • step SC5 determines whether or not If the angular velocity of the ship 11 has not decreased to the third threshold or less (that is, if the ship 11 continues to turn clockwise due to the moment of inertia of the ship 11), this corresponds to step SC5 in FIG. Steps are executed repeatedly.
  • the process proceeds to step SC6 of FIG. Proceed to the corresponding step.
  • the vessel control device 11C causes the actuator 11A to stop generating the counterclockwise moment.
  • the vessel control device 11C applies a moment of inertia generated in the vessel 11 in a direction (counterclockwise) opposite to the direction (clockwise) of the moment of inertia to the vessel 11, the actuator 11A is operated without the need for the operation unit 12A to receive the input operation.
  • the operator's input operation for canceling the moment of inertia generated in the marine vessel 11 when the actuator 11A is shifted from the operating state to the non-operating state of the actuator 11A can be eliminated.
  • the ship steering system 1 of the fourth embodiment even if the ship operator who is away from the ship 11 cannot grasp the moment of inertia generated in the ship 11, the state of the ship 11 can be changed from the operating state of the actuator 11A to the deactivation of the actuator 11A. state can be transitioned appropriately.
  • the operation of the fourth embodiment is performed.
  • the ship control device 11C in a step corresponding to step SE1 in FIG. 13, the ship control device 11C, for example, causes the operation section 12A of the input device 12 to move the ship 11 forward and turn clockwise. is received.
  • the step corresponding to step SE1 in FIG. 13 is repeatedly executed.
  • the process proceeds to a step corresponding to step SE2 in FIG.
  • the vessel control device 11C causes the actuator 11A to generate a propulsive force to move the vessel 11 forward and a moment to turn the vessel 11 clockwise. Then, the actuator 11A is operated. As a result, the vessel 11 moves forward and turns clockwise.
  • the vessel control device 11C determines whether or not the operating section 12A of the input device 12 has received an input operation to stop the forward movement and clockwise turning of the vessel 11. . If the operation unit 12A has not received an input operation to stop the ship 11 from moving forward and turning clockwise, the step corresponding to step SE3 in FIG. 13 is repeatedly executed. On the other hand, when the operation unit 12A receives an input operation to stop the ship 11 from moving forward and turning clockwise, the process proceeds to a step corresponding to step SE4 in FIG.
  • the vessel control device 11C causes the actuator 11A to stop generating the propulsive force that moves the vessel 11 forward and the moment that rotates the vessel 11 clockwise.
  • an inertial force that tends to keep moving forward and a moment of inertia that tends to keep clockwise turning are generated. Therefore, in the marine vessel maneuvering system 1 of the fourth embodiment, in a step corresponding to step SE4 in FIG.
  • the actuator 11A generates a thrust in the rearward direction of the ship 11, and the ship 11 generates a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia generated in the ship 11. Then, the actuator 11A is operated.
  • the ship control device 11C receives an input operation in which the operation unit 12A causes the ship 11 to generate a backward thrust and a counterclockwise moment to the ship 11. Unnecessarily, the actuator 11A generates a backward thrust of the vessel 11 and a counterclockwise moment is generated on the vessel 11 . As a result, it is possible to prevent the ship 11 from moving forward due to the inertial force generated in the ship 11 and from turning the ship 11 excessively clockwise due to the moment of inertia generated in the ship 11. .
  • the ship control device 11C monitors the speed of the ship 11. FIG.
  • step SE5 in FIG. 13 the ship control device 11C determines whether the speed of the ship 11 detected by the ship speed detector 11E has decreased to the fourth threshold or less.
  • the speed of the ship 11 has not decreased to the fourth threshold or less (that is, when the ship 11 moves forward due to the inertial force of the ship 11 and the ship 11 continues to turn clockwise due to the moment of inertia of the ship 11 )
  • a step corresponding to step SE5 in FIG. 13 is repeatedly executed.
  • step SE6 the vessel control device 11C causes the actuator 11A to stop the generation of the backward thrust and the counterclockwise moment of the vessel 11 .
  • the ship control device 11C applies thrust in the opposite direction (rearward of the ship 11) to the direction of the inertial force generated in the ship 11 (forwardward of the ship 11) to the actuator 11A. and to generate a moment (counterclockwise) in the ship 11 opposite to the direction of the moment of inertia (clockwise) generated in the ship 11. Actuator 11A is activated without need.
  • the operator's input operation for canceling the inertial force and moment of inertia generated in the marine vessel 11 when the actuator 11A is shifted from the operating state to the non-operating state of the actuator 11A is unnecessary. be able to.
  • the state of the marine vessel 11 can be changed from the operating state of the actuator 11A to the actuator 11A. can be properly transitioned to the deactivation state of
  • a computer-readable recording medium by recording a program for realizing these functions. It may be realized by loading the program into a computer system and executing it.
  • the “computer system” here includes hardware such as an OS and peripheral devices.
  • the term "computer-readable recording medium” refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage units such as hard discs built into computer systems.
  • “computer-readable recording medium” refers to a program that dynamically retains programs for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include a device that retains the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

Provided is a ship maneuvering system comprising: an actuator having a function of generating thrust for a ship and a function of generating a moment in the ship; an operating unit that receives input operations by a ship operator; and a ship control device that operates the actuator, wherein when the operating unit receives the input operation for stopping the operation of the actuator while the ship control device is operating the actuator, the ship control device operates the actuator such that the actuator generates thrust in the opposite direction of an inertial force occurring to the ship and/or generates, in the ship, a moment in the opposite direction of a moment of inertia occurring to the ship, without the need for the operating unit to receive the input operation.

Description

操船システム、船舶制御装置、船舶制御方法およびプログラムShip maneuvering system, ship control device, ship control method and program
 本発明は、操船システム、船舶制御装置、船舶制御方法およびプログラムに関する。
 本願は、2021年9月29日に、日本に出願された特願2021-159280号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a ship maneuvering system, a ship control device, a ship control method, and a program.
This application claims priority based on Japanese Patent Application No. 2021-159280 filed in Japan on September 29, 2021, the content of which is incorporated herein.
 特許文献1には、船舶を車両感覚で操作可能とする技術について記載されている。特許文献1に記載された技術では、船体の移動速度を制限するブレーキペダルが船体に設けられている。また、特許文献1に記載された技術では、ブレーキペダルが強く踏み込まれた場合に、アウトドライブ装置の出力方向が逆向きにされ(つまり、船舶の前進時にブレーキペダルが強く踏み込まれると、後進推力が発生させられ)、船舶が減速する。更に、特許文献1に記載された技術では、移動している船舶が、ブレーキペダルの踏み込みによって停船状態にされ、ブレーキペダルの踏み込みが継続されると、船舶の定点保持制御が行われる。
 つまり、特許文献1に記載された技術では、移動している船舶を停船状態にするために、操船者がブレーキペダルを踏み込まなければならない。
Patent Literature 1 describes a technique that enables a ship to be operated as if it were a vehicle. In the technique described in Patent Literature 1, the hull is provided with a brake pedal that limits the moving speed of the hull. In addition, in the technique described in Patent Document 1, when the brake pedal is strongly depressed, the output direction of the outdrive device is reversed (that is, when the brake pedal is strongly depressed when the ship moves forward, the backward thrust is generated) and the vessel slows down. Furthermore, in the technique described in Patent Literature 1, a moving ship is brought to a halt by depressing the brake pedal, and when the brake pedal is continued to be depressed, the ship is kept at a fixed point.
In other words, with the technique described in Patent Document 1, the operator must depress the brake pedal in order to bring the moving ship to a stopped state.
 特許文献2には、船舶を停止させるため、操船者が単に機関を停止させるか又はクラッチを切る操作だけでは、船舶が惰性で航行を継続し、船舶が停止するまでには相当の距離を動くことになる旨が記載されている。また、特許文献2には、船舶が前進全速で航行している場合、操船者が、短距離で船舶を停止させるために、クラッチを後進に入れて機関回転数を少し上げる操作を行う旨が記載されている。
 つまり、特許文献2に記載された技術では、移動している船舶を停船状態にするために、操船者がクラッチを後進に入れて機関回転数を少し上げる操作を行わなければならない。
 すなわち、特許文献1、2に記載された技術では、移動している船舶を、惰性で移動し続けることなく停船状態にするために、操船者が入力操作を行わなければならない。換言すれば、特許文献1、2に記載された技術では、船舶の移動状態から停船状態への移行時に船舶に生じる慣性力を打ち消すために、操船者が入力操作を行わなければならない。
Patent Document 2 discloses that if the operator simply stops the engine or disengages the clutch in order to stop the ship, the ship continues to coast by inertia and travels a considerable distance before coming to a stop. It is stated that it will happen. Further, Patent Document 2 describes that when a ship is sailing forward at full speed, the operator should put the clutch in reverse to slightly increase the engine speed in order to stop the ship in a short distance. Are listed.
In other words, in the technique described in Patent Document 2, in order to bring the moving vessel into a stopped state, the operator must engage the clutch in reverse to slightly increase the engine speed.
That is, in the techniques described in Patent Documents 1 and 2, the operator must perform an input operation in order to stop the moving ship without continuing to move due to inertia. In other words, with the techniques described in Patent Documents 1 and 2, the operator must perform an input operation in order to cancel the inertial force generated in the ship when the ship moves from the moving state to the stopped state.
特許第6642898号公報Japanese Patent No. 6642898 特開平5-124586号公報JP-A-5-124586
 上述した問題点に鑑み、本発明は、アクチュエータの作動状態からアクチュエータの作動停止状態への移行時に船舶に生じる慣性力および/または慣性モーメントを打ち消すための操船者の入力操作を不要にすることができる操船システム、船舶制御装置、船舶制御方法およびプログラムを提供することを目的とする。 In view of the above-described problems, the present invention eliminates the need for an operator's input operation for canceling the inertial force and/or moment of inertia generated in the vessel when the actuator is shifted from the activated state to the actuator deactivated state. It is an object of the present invention to provide a ship maneuvering system, a ship control device, a ship control method, and a program capable of controlling a ship.
 本発明の一態様は、船舶の推進力を発生する機能と前記船舶にモーメントを発生させる機能とを有するアクチュエータと、操船者の入力操作を受け付ける操作部と、前記アクチュエータを作動させる船舶制御装置とを備え、前記船舶制御装置が前記アクチュエータを作動させている時に、前記アクチュエータの作動を停止させる入力操作を前記操作部が受け付けた場合に、前記船舶制御装置は、前記船舶に生じている慣性力の向きとは逆向きの推力を前記アクチュエータが発生するように、および/または、前記船舶に生じている慣性モーメントの向きとは逆向きのモーメントを前記船舶に発生させるように、前記操作部が入力操作を受け付ける必要なく、前記アクチュエータを作動させる、操船システムである。 One aspect of the present invention includes an actuator having a function of generating a propulsive force for a ship and a function of generating a moment in the ship, an operation unit that receives an input operation from a ship operator, and a ship control device that operates the actuator. wherein, when the operation unit receives an input operation to stop the operation of the actuator while the ship control device is operating the actuator, the ship control device controls the inertial force generated in the ship so that the actuator generates a thrust in a direction opposite to the direction of and/or causes the ship to generate a moment in a direction opposite to the direction of the moment of inertia occurring in the ship. A marine vessel maneuvering system that operates the actuator without the need to accept an input operation.
 本発明の一態様は、船舶の推進力を発生する機能と前記船舶にモーメントを発生させる機能とを有するアクチュエータと、操船者の入力操作を受け付ける操作部とを備える操船システムに備えられ、前記アクチュエータを作動させる船舶制御装置であって、前記船舶制御装置が前記アクチュエータを作動させている時に、前記アクチュエータの作動を停止させる入力操作を前記操作部が受け付けた場合に、前記船舶に生じている慣性力の向きとは逆向きの推力を前記アクチュエータが発生するように、および/または、前記船舶に生じている慣性モーメントの向きとは逆向きのモーメントを前記船舶に発生させるように、前記操作部が入力操作を受け付ける必要なく、前記アクチュエータを作動させる、船舶制御装置である。 According to one aspect of the present invention, a marine vessel steering system includes an actuator having a function of generating a propulsive force of a vessel and a function of generating a moment in the vessel; wherein, when the operation unit receives an input operation to stop the operation of the actuator while the ship control device is operating the actuator, the inertia generated in the ship The operation unit is configured such that the actuator generates a thrust in a direction opposite to the direction of the force and/or causes the ship to generate a moment in a direction opposite to the direction of the moment of inertia occurring in the ship. is a ship control device that operates the actuator without the need to accept an input operation.
 本発明の一態様は、船舶の推進力を発生する機能と前記船舶にモーメントを発生させる機能とを有するアクチュエータと、操船者の入力操作を受け付ける操作部とを備える操船システムに備えられ、前記アクチュエータを作動させる船舶制御装置の船舶制御方法であって、前記操作部が受け付けた入力操作に応じて前記アクチュエータを作動させる第1ステップと、前記船舶制御装置が前記アクチュエータを作動させている時に、前記アクチュエータの作動を停止させる入力操作を前記操作部が受け付けた場合に、前記船舶に生じている慣性力の向きとは逆向きの推力を前記アクチュエータが発生するように、および/または、前記船舶に生じている慣性モーメントの向きとは逆向きのモーメントを前記船舶に発生させるように、前記操作部が入力操作を受け付ける必要なく、前記アクチュエータを作動させる第2ステップとを備える、船舶制御方法である。 According to one aspect of the present invention, a marine vessel steering system includes an actuator having a function of generating a propulsive force of a vessel and a function of generating a moment in the vessel; a first step of actuating the actuator in response to an input operation received by the operation unit; When the operation unit receives an input operation to stop the actuation of the actuator, the actuator generates thrust in a direction opposite to the direction of the inertial force generated in the ship, and/or the ship and a second step of actuating the actuator without the need for the operation unit to accept an input operation so as to generate a moment in the vessel in a direction opposite to the direction of the generated moment of inertia. .
 本発明の一態様は、船舶の推進力を発生する機能と前記船舶にモーメントを発生させる機能とを有するアクチュエータと、操船者の入力操作を受け付ける操作部とを備える操船システムに備えられ、前記アクチュエータを作動させる船舶制御装置に搭載されたコンピュータに、前記操作部が受け付けた入力操作に応じて前記アクチュエータを作動させる第1ステップと、前記船舶制御装置が前記アクチュエータを作動させている時に、前記アクチュエータの作動を停止させる入力操作を前記操作部が受け付けた場合に、前記船舶に生じている慣性力の向きとは逆向きの推力を前記アクチュエータが発生するように、および/または、前記船舶に生じている慣性モーメントの向きとは逆向きのモーメントを前記船舶に発生させるように、前記操作部が入力操作を受け付ける必要なく、前記アクチュエータを作動させる第2ステップとを実行させるためのプログラムである。 According to one aspect of the present invention, a marine vessel steering system includes an actuator having a function of generating a propulsive force of a vessel and a function of generating a moment in the vessel; a first step of causing a computer mounted on a ship control device to operate the actuator according to an input operation received by the operation unit; When the operation unit receives an input operation to stop the operation of the and a second step of actuating the actuator without the need for the operation unit to receive an input operation so as to generate a moment in the vessel in a direction opposite to the direction of the inertia moment.
 本発明によれば、アクチュエータの作動状態からアクチュエータの作動停止状態への移行時に船舶に生じる慣性力および/または慣性モーメントを打ち消すための操船者の入力操作を不要にすることができる操船システム、船舶制御装置、船舶制御方法およびプログラムを提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a ship maneuvering system that eliminates the need for an input operation by a ship operator to cancel the inertial force and/or moment of inertia generated in the ship when the actuator transitions from an operating state to an actuator stop state. A control device, ship control method and program can be provided.
第1実施形態の船舶制御装置が適用された船舶を備える操船システムの一例を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows an example of the ship maneuvering system provided with the ship to which the ship control apparatus of 1st Embodiment was applied. 操作部が船舶を前進させる入力操作を受け付け、次いで、船舶の前進を停止させる入力操作を受け付けた場合における第1実施形態の船舶の挙動の一例を示す図である。It is a figure which shows an example of the behavior of the ship of 1st Embodiment when an operation part receives input operation which advances a ship, and then receives input operation which stops advancing of a ship. 操作部が船舶を前進させる入力操作を受け付け、次いで、船舶の前進を停止させる入力操作を受け付けた場合に第1実施形態の船舶制御装置によって実行される処理の一例を説明するためのフローチャートである。9 is a flowchart for explaining an example of processing executed by the ship control device of the first embodiment when the operation unit receives an input operation for advancing the ship and then receives an input operation for stopping the advance of the ship; . 操作部が船舶を後進させる入力操作を受け付け、次いで、船舶の後進を停止させる入力操作を受け付けた場合に第1実施形態の船舶制御装置によって実行される処理の一例を説明するためのフローチャートである。9 is a flowchart for explaining an example of processing executed by the ship control device of the first embodiment when the operation unit receives an input operation for causing the ship to go astern and then receives an input operation for stopping the ship from going astern; . 操作部が船舶を時計回りにその場回頭させる入力操作を受け付け、次いで、船舶の時計回りのその場回頭を停止させる入力操作を受け付けた場合に第1実施形態の船舶制御装置によって実行される処理の一例を説明するためのフローチャートである。Processing executed by the ship control device of the first embodiment when the operation unit receives an input operation for causing the ship to turn clockwise on the spot, and then receives an input operation for stopping the ship from turning clockwise on the spot. It is a flow chart for explaining an example of. 操作部が船舶を反時計回りにその場回頭させる入力操作を受け付け、次いで、船舶の反時計回りのその場回頭を停止させる入力操作を受け付けた場合に第1実施形態の船舶制御装置によって実行される処理の一例を説明するためのフローチャートである。Executed by the ship control device of the first embodiment when the operation unit receives an input operation to turn the ship counterclockwise on the spot, and then receives an input operation to stop the ship from turning counterclockwise on the spot. 3 is a flow chart for explaining an example of a process for processing; 操作部が船舶を前進させかつ時計回りに旋回させる入力操作を受け付け、次いで、船舶の前進および時計回りの旋回を停止させる入力操作を受け付けた場合に第1実施形態の船舶制御装置によって実行される処理の一例を説明するためのフローチャートである。Executed by the ship control device of the first embodiment when the operation unit receives an input operation to move the ship forward and turn clockwise, and then receives an input operation to stop the ship from moving forward and turning clockwise. 4 is a flowchart for explaining an example of processing; 操作部が船舶を後進させかつ反時計回りに旋回させる入力操作を受け付け、次いで、船舶の後進および反時計回りの旋回を停止させる入力操作を受け付けた場合に第1実施形態の船舶制御装によって実行される処理の一例を説明するためのフローチャートである。Executed by the ship control device of the first embodiment when the operation unit receives an input operation to cause the ship to move astern and turn counterclockwise, and then receives an input operation to stop the ship from moving backward and turning counterclockwise. 10 is a flowchart for explaining an example of processing performed; 操作部が船舶を前進させる入力操作を受け付け、次いで、船舶の前進を停止させる入力操作を受け付けた場合に第2実施形態の船舶制御装置によって実行される処理の一例を説明するためのフローチャートである。9 is a flowchart for explaining an example of processing executed by the ship control device of the second embodiment when the operation unit receives an input operation for advancing the ship and then receives an input operation for stopping the advance of the ship; . 操作部が船舶を後進させる入力操作を受け付け、次いで、船舶の後進を停止させる入力操作を受け付けた場合に第2実施形態の船舶制御装置によって実行される処理の一例を説明するためのフローチャートである。10 is a flowchart for explaining an example of processing executed by the ship control device of the second embodiment when the operation unit receives an input operation for causing the ship to go astern and then receives an input operation for stopping the ship from going astern; . 操作部が船舶を時計回りにその場回頭させる入力操作を受け付け、次いで、船舶の時計回りのその場回頭を停止させる入力操作を受け付けた場合に第2実施形態の船舶制御装置によって実行される処理の一例を説明するためのフローチャートである。Processing executed by the ship control device of the second embodiment when the operation unit receives an input operation for causing the ship to turn clockwise on the spot, and then receives an input operation for stopping the ship from turning clockwise on the spot. It is a flow chart for explaining an example of. 操作部が船舶を反時計回りにその場回頭させる入力操作を受け付け、次いで、船舶の反時計回りのその場回頭を停止させる入力操作を受け付けた場合に第2実施形態の船舶制御装置によって実行される処理の一例を説明するためのフローチャートである。Executed by the ship control device of the second embodiment when the operation unit receives an input operation to turn the ship counterclockwise on the spot, and then receives an input operation to stop the ship from turning counterclockwise on the spot. 3 is a flow chart for explaining an example of a process for processing; 操作部が船舶を前進させかつ時計回りに旋回させる入力操作を受け付け、次いで、船舶の前進および時計回りの旋回を停止させる入力操作を受け付けた場合に第2実施形態の船舶制御装置によって実行される処理の一例を説明するためのフローチャートである。Executed by the ship control device of the second embodiment when the operation unit receives an input operation to move the ship forward and turn clockwise, and then receives an input operation to stop the ship from moving forward and turning clockwise. 4 is a flowchart for explaining an example of processing; 操作部が船舶を後進させかつ反時計回りに旋回させる入力操作を受け付け、次いで、船舶の後進および反時計回りの旋回を停止させる入力操作を受け付けた場合に第2実施形態の船舶制御装置によって実行される処理の一例を説明するためのフローチャートである。Executed by the ship control device of the second embodiment when the operation unit receives an input operation to cause the ship to move astern and turn counterclockwise, and then receives an input operation to stop the ship from moving backward and turning counterclockwise. 10 is a flowchart for explaining an example of processing performed; 第3実施形態の船舶制御装置が適用された船舶を備える操船システムの一例を示す図である。It is a figure which shows an example of the ship maneuvering system provided with the ship to which the ship control apparatus of 3rd Embodiment was applied. 操作部が船舶を前進させる入力操作を受け付け、次いで、船舶の前進を停止させる入力操作を受け付けた場合における比較例の船舶の挙動を説明するための図である。FIG. 12 is a diagram for explaining the behavior of the boat of the comparative example when the operation unit receives an input operation to advance the boat and then receives an input operation to stop the boat from moving forward; 比較例の船舶において実行される処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process performed in the ship of a comparative example.
 本発明の操船システム、船舶制御装置、船舶制御方法およびプログラムの実施形態について説明する前に、比較例の船舶制御方法について説明する。
 図16は操作部が船舶R11を前進させる入力操作を受け付け、次いで、船舶R11の前進を停止させる入力操作を受け付けた場合における比較例の船舶R11の挙動を説明するための図である。図17は比較例の船舶R11において実行される処理を説明するためのフローチャートである。
 図16および図17に示す比較例では、図17のステップSR1において、船舶R11の例えば船舶制御装置は、操作部が船舶R11を前進させる入力操作を受け付けたか否かを判定する。操作部が船舶R11を前進させる入力操作を受け付けていない場合には、ステップSR1が繰り返し実行される。一方、操作部が船舶R11を前進させる入力操作を受け付けた場合には、ステップSR2に進む。
 ステップSR2において、船舶R11は、船舶R11を前進させる推進力を発生する。その結果、図16(C)に示すように、船舶R11が前進する(つまり、船舶R11が図16の上向きに移動する)。
 次いで、図17のステップSR3において、船舶R11の例えば船舶制御装置は、操作部が船舶R11の前進を停止させる入力操作を受け付けたか否かを判定する。操作部が船舶R11の前進を停止させる入力操作を受け付けていない場合には、ステップSR3が繰り返し実行される。一方、操作部が船舶R1の前進を停止させる入力操作を受け付けた場合には、ステップSR4に進む。
 ステップSR4において、船舶R11が、図16の上向きの推進力の発生を停止する。その結果、前進を継続しようとする図16の上向きの慣性力(行き足)が生じ、船舶R11が図16の上向きに移動してしまう(行き足で進んでしまう)。
 比較例の船舶R11では、この行き足を抑制するために、操船者が、慣性力を打ち消す入力操作を行わなければならない。
Before describing embodiments of a ship maneuvering system, a ship control device, a ship control method, and a program according to the present invention, a ship control method of a comparative example will be explained.
FIG. 16 is a diagram for explaining the behavior of the ship R11 of the comparative example when the operation unit receives an input operation for advancing the ship R11 and then receives an input operation for stopping the advance of the ship R11. FIG. 17 is a flow chart for explaining the processing executed in the ship R11 of the comparative example.
In the comparative example shown in FIGS. 16 and 17, in step SR1 of FIG. 17, for example, the ship control device of the ship R11 determines whether or not the operating unit has received an input operation to move the ship R11 forward. When the operation unit has not received an input operation for advancing the ship R11, step SR1 is repeatedly executed. On the other hand, when the operation unit receives an input operation for moving the ship R11 forward, the process proceeds to step SR2.
In step SR2, the ship R11 generates a propulsive force that moves the ship R11 forward. As a result, as shown in FIG. 16(C), the ship R11 moves forward (that is, the ship R11 moves upward in FIG. 16).
Next, at step SR3 in FIG. 17, the ship control device of the ship R11, for example, determines whether or not the operation unit has received an input operation to stop the forward movement of the ship R11. When the operation unit has not received an input operation to stop the forward movement of the ship R11, step SR3 is repeatedly executed. On the other hand, when the operation unit receives an input operation to stop the forward movement of the ship R1, the process proceeds to step SR4.
In step SR4, the vessel R11 stops generating upward propulsive force in FIG. As a result, an upward inertial force (going forward) in FIG. 16 that tries to continue forward movement is generated, and the ship R11 moves upward in FIG. 16 (going forward).
In the ship R11 of the comparative example, the operator must perform an input operation to cancel the inertial force in order to suppress this forward movement.
<第1実施形態>
 以下、本発明の操船システム、船舶制御装置、船舶制御方法およびプログラムの第1実施形態について説明する。
 図1は第1実施形態の船舶制御装置11Cが適用された船舶11を備える操船システム1の一例を示す図である。
 第1実施形態の船舶制御装置11Cは、例えば特許第5196649号公報の図1に記載されたパーソナルウォータークラフト(PWC、水上オートバイ)が有する機能と同様の機能を有するPWC、ジェット推進機を備えていない船舶(例えば特許第6198192号公報、特開2007-22284号公報などに記載された船外機を装備した船舶、船内外機または船内エンジンを備える船舶、サイドスラスタを備える大型船舶など)等のような任意のタイプの船舶11に適用可能である。
 図1に示す例では、操船システム1が船舶11を備えている。船舶11は、アクチュエータ11Aと、操作部11Bと、船舶制御装置11Cと、船首方位検出部11Dと、船速検出部11Eと、船舶位置検出部11Fとを備えている。
 アクチュエータ11Aは、舵部11A1と、推力発生部11A2とを備えている。舵部11A1は、船舶11にモーメントを発生させる機能を有する。推力発生部11A2は、船舶11の推進力を発生する機能を有する。
 船舶11がPWCである例では、アクチュエータ11Aには、例えば特開2019-171925号公報の図1に記載されたエンジン、ノズル、デフレクタ、トリムアクチュエータ、バケット、バケットアクチュエータなどが含まれる。
<First Embodiment>
A first embodiment of a ship maneuvering system, a ship control device, a ship control method, and a program according to the present invention will be described below.
FIG. 1 is a diagram showing an example of a ship maneuvering system 1 including a ship 11 to which a ship control device 11C of the first embodiment is applied.
The ship control device 11C of the first embodiment includes a PWC and a jet propulsion device having functions similar to those of the personal watercraft (PWC, personal watercraft) described in FIG. 1 of Japanese Patent No. 5196649, for example. (For example, ships equipped with outboard motors described in Japanese Patent No. 6198192, Japanese Patent Application Laid-Open No. 2007-22284, ships equipped with inboard/outboard motors or inboard engines, large ships equipped with side thrusters, etc.) It is applicable to any type of vessel 11 such as
In the example shown in FIG. 1 , the ship maneuvering system 1 includes a ship 11 . The ship 11 includes an actuator 11A, an operation section 11B, a ship control device 11C, a heading detection section 11D, a ship speed detection section 11E, and a ship position detection section 11F.
The actuator 11A includes a rudder portion 11A1 and a thrust force generating portion 11A2. The rudder portion 11A1 has a function of generating a moment in the ship 11 . The thrust generator 11A2 has a function of generating a propulsive force for the ship 11 .
In an example where the vessel 11 is a PWC, the actuator 11A includes, for example, the engine, nozzle, deflector, trim actuator, bucket, bucket actuator, etc. described in FIG. 1 of JP-A-2019-171925.
 図1に示す例では、操作部11Bが、船舶11の操船者の入力操作を受け付ける。操作部11Bは、例えば操舵部11B1と、スロットル操作部11B2とを備えている。操舵部11B1は、舵部11A1を作動させる操船者の入力操作を受け付ける。スロットル操作部11B2は、推力発生部11A2を作動させる操船者の入力操作を受け付ける。
 船舶11がPWCである例では、操舵部11B1およびスロットル操作部11B2が、例えば特許第5196649号公報の図1に記載されたステアリングハンドル装置、特開2019-171925号公報の図1に記載されたステアリングユニットなどと同様に構成されている。
In the example shown in FIG. 1 , the operation unit 11B receives an input operation from the operator of the ship 11 . The operating section 11B includes, for example, a steering section 11B1 and a throttle operating section 11B2. The steering section 11B1 receives an input operation by the operator who operates the steering section 11A1. The throttle operation unit 11B2 receives an input operation by the operator who operates the thrust force generation unit 11A2.
In an example where the ship 11 is a PWC, the steering unit 11B1 and the throttle operation unit 11B2 are, for example, the steering handle device described in FIG. It is configured in the same way as the steering unit.
 図1に示す例では、船舶制御装置11Cが、操作部11Bが受け付けた船舶11の操船者の入力操作などに基づいてアクチュエータ11Aを作動させる。
 詳細には、アクチュエータ11Aの推力発生部11A2が、船舶11を前進させる推進力を発生するように、船舶制御装置11Cはアクチュエータ11Aを作動させることができる。アクチュエータ11Aの推力発生部11A2が、船舶11を後進させる推進力を発生するように、船舶制御装置11Cはアクチュエータ11Aを作動させることができる。
 また、アクチュエータ11Aが船舶11をその場回頭させるモーメントを船舶11に発生させるように、船舶制御装置11Cはアクチュエータ11Aを作動させることができる。
 更に、アクチュエータ11Aが、船舶11を前進させる推進力を発生し、かつ、船舶11を旋回させるモーメントを船舶11に発生させるように、船舶制御装置11Cはアクチュエータ11Aを作動させることができる。アクチュエータ11Aが、船舶11を後進させる推進力を発生し、かつ、船舶11を旋回させるモーメントを船舶11に発生させるように、船舶制御装置11Cはアクチュエータ11Aを作動させることができる。
In the example shown in FIG. 1, the vessel control device 11C operates the actuator 11A based on the input operation of the operator of the vessel 11 received by the operation unit 11B.
Specifically, the vessel control device 11C can operate the actuator 11A so that the thrust force generating section 11A2 of the actuator 11A generates a propulsive force that moves the vessel 11 forward. The vessel control device 11C can operate the actuator 11A so that the thrust force generating section 11A2 of the actuator 11A generates a propulsion force for moving the vessel 11 backward.
Further, the vessel control device 11C can operate the actuator 11A so that the actuator 11A causes the vessel 11 to generate a moment that causes the vessel 11 to turn on the spot.
Furthermore, the vessel control device 11C can operate the actuator 11A so that the actuator 11A generates a propulsive force that moves the vessel 11 forward and a moment that causes the vessel 11 to turn. The vessel control device 11C can operate the actuator 11A so that the actuator 11A generates a propulsive force that causes the vessel 11 to move astern and a moment that causes the vessel 11 to turn.
 船首方位検出部11Dは、船舶11の船首方位を検出する。船首方位検出部11Dは、例えば方位センサを備えている。方位センサは、例えば地磁気を利用することによって、船舶11の船首方位を算出する。
 他の例では、方位センサが、高速回転するジャイロスコープに指北装置と制振装置とを付加し、常に北を示すようにした装置(ジャイロコンパス)であってもよい。
 更に他の例では、方位センサが、複数のGPS(Global Positioning System)アンテナを備え、複数のGPSアンテナの相対的な位置関係から船首方位を算出するGPSコンパスであってもよい。
The heading detector 11D detects the heading of the ship 11 . The heading detector 11D includes, for example, a heading sensor. The azimuth sensor calculates the heading of the ship 11 by using geomagnetism, for example.
In another example, the orientation sensor may be a device (gyrocompass) in which a north pointing device and a damping device are added to a rapidly rotating gyroscope to always indicate north.
In yet another example, the azimuth sensor may be a GPS compass that includes multiple GPS (Global Positioning System) antennas and calculates the heading from the relative positional relationship of the multiple GPS antennas.
 図1に示す例では、船速検出部11Eが、船舶11の速度を検出する。船速検出部11Eは、例えば船舶11の対水速度を検出する水圧感知式であっても、船舶11の対地速度を検出するGPS計測式であってもよい。
 船舶位置検出部11Fは、船舶11の位置を検出する。船舶位置検出部11Fは、例えばGPS装置を備えている。GPS装置は、複数のGPS衛星からの信号を受信することによって、船舶11の位置座標を算出する。
In the example shown in FIG. 1 , the boat speed detector 11E detects the speed of the boat 11 . The ship speed detection unit 11E may be, for example, a water pressure sensing type that detects the water speed of the ship 11 or a GPS measurement type that detects the ground speed of the ship 11 .
The vessel position detector 11</b>F detects the position of the vessel 11 . The vessel position detector 11F has, for example, a GPS device. The GPS device calculates the position coordinates of the vessel 11 by receiving signals from multiple GPS satellites.
 図2は操作部11Bが船舶11を前進させる入力操作を受け付け、次いで、船舶11の前進を停止させる入力操作を受け付けた場合における第1実施形態の船舶11の挙動の一例を示す図である。図3は操作部11Bが船舶11を前進させる入力操作を受け付け、次いで、船舶11の前進を停止させる入力操作を受け付けた場合に第1実施形態の船舶制御装置11Cによって実行される処理の一例を説明するためのフローチャートである。
 図2および図3に示す例では、図3のステップS11において、例えば船舶制御装置11Cは、操作部11Bが船舶11を前進させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11を前進させる入力操作を受け付けていない場合には、ステップS11が繰り返し実行される。一方、操作部11Bが船舶11を前進させる入力操作を受け付けた場合には、ステップS12に進む。
FIG. 2 is a diagram showing an example of the behavior of the boat 11 of the first embodiment when the operation unit 11B receives an input operation to advance the boat 11 and then receives an input operation to stop the boat 11 from moving forward. FIG. 3 shows an example of processing executed by the ship control device 11C of the first embodiment when the operation unit 11B receives an input operation for advancing the ship 11 and then receives an input operation for stopping the advance of the ship 11. It is a flow chart for explanation.
In the example shown in FIGS. 2 and 3, in step S11 of FIG. 3, the vessel control device 11C, for example, determines whether or not the operating section 11B has received an input operation to move the vessel 11 forward. When the operation unit 11B has not received an input operation to move the ship 11 forward, step S11 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation for moving the ship 11 forward, the process proceeds to step S12.
 ステップS12において、船舶制御装置11Cは、アクチュエータ11Aの推力発生部11A2が、船舶11を前進させる推進力を発生するように、アクチュエータ11Aを作動させる。その結果、図2(C)に示すように、船舶11が前進する(つまり、船舶11が図2の上向きに移動する)。
 次いで、図3のステップS13において、例えば船舶制御装置11Cは、操作部11Bが船舶11の前進を停止させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11の前進を停止させる入力操作を受け付けていない場合には、ステップS13が繰り返し実行される。一方、操作部11Bが船舶11の前進を停止させる入力操作を受け付けた場合には、ステップS14に進む。
In step S12, the ship control device 11C operates the actuator 11A so that the thrust force generating section 11A2 of the actuator 11A generates a propulsion force for moving the ship 11 forward. As a result, as shown in FIG. 2(C), the ship 11 moves forward (that is, the ship 11 moves upward in FIG. 2).
Next, at step S13 in FIG. 3, the vessel control device 11C, for example, determines whether or not the operating section 11B has received an input operation to stop the forward movement of the vessel 11. When the operation unit 11B has not received an input operation to stop the forward movement of the ship 11, step S13 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation to stop the forward movement of the ship 11, the process proceeds to step S14.
 ステップS14において、船舶制御装置11Cは、船舶11を前進させる推進力の発生をアクチュエータ11Aに停止させる。その結果、前進を継続しようとする図2の上向きの慣性力(行き足)が生じる。そこで、図2および図3に示す例では、ステップS14において、船舶制御装置11Cは、船舶11に生じている慣性力の向き(図2の上向き)とは逆向き(図2の下向き)の推力をアクチュエータ11Aが発生するように、アクチュエータ11Aを作動させる。詳細には、ステップS14において、船舶制御装置11Cは、操作部11Bが図2の下向きの推力をアクチュエータ11Aに発生させる入力操作を受け付ける必要なく、図2の下向きの推力をアクチュエータ11Aに発生させる。その結果、図2(A)および図2(B)に示すように、船舶11に生じた慣性力によって船舶11が図2の上向きに移動してしまうこと(行き足)を抑制することができる。
 図2および図3に示す例では、アクチュエータ11Aが発生する逆向き(図2の下向き)の推力の大きさが一定値に設定されているが、他の例では、アクチュエータ11Aが発生する逆向き(図2の下向き)の推力の大きさが、船舶11に生じる慣性力の大きさに応じて変更されてもよい。
In step S14, the vessel control device 11C causes the actuator 11A to stop generating the propulsive force that moves the vessel 11 forward. As a result, an upward inertial force (going foot) in FIG. 2 is generated, which tends to continue forward movement. Therefore, in the example shown in FIGS. 2 and 3, in step S14, the ship control device 11C generates thrust in a direction (downward in FIG. 2) opposite to the direction of the inertial force generated in the ship 11 (upward in FIG. 2). The actuator 11A is operated so that the actuator 11A generates . Specifically, in step S14, the ship control device 11C causes the actuator 11A to generate downward thrust in FIG. 2 without the operation unit 11B needing to receive an input operation for generating the downward thrust in FIG. 2 to the actuator 11A. As a result, as shown in FIGS. 2(A) and 2(B), it is possible to prevent the ship 11 from moving upward in FIG. .
In the examples shown in FIGS. 2 and 3, the magnitude of the reverse thrust (downward in FIG. 2) generated by the actuator 11A is set to a constant value. The magnitude of the thrust (downward in FIG. 2) may be changed according to the magnitude of the inertial force generated in the ship 11 .
 図2および図3に示す例では、次いで、図3のステップS15において、船舶制御装置11Cが、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時(つまり、ステップS13において操作部11Bが船舶11の前進を停止させる入力操作を受け付けたと判定された時)からの経過時間を監視する。詳細には、ステップS15において、船舶制御装置11Cは、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時からの経過時間が第1閾値以上になったか否かを判定する。経過時間が第1閾値以上になっていない場合(つまり、船舶11の慣性力(行き足)によって船舶11が図2の上向きに移動するおそれがあると推定できる場合)には、ステップS15が繰り返し実行される。一方、経過時間が第1閾値以上になった場合(つまり、船舶11の慣性力(行き足)によって船舶11が図2の上向きに移動するおそれがないと推定できる場合)には、ステップS16に進む。
 ステップS16において、船舶制御装置11Cが、図2の下向きの推力の発生をアクチュエータ11Aに停止させる。
 図2および図3に示す例では、「第1閾値」として固定値が用いられるが、他の例では、「第1閾値」として可変値が用いられてもよい。例えば、船舶11に生じる慣性力の大きさに対するアクチュエータ11Aが発生する逆向き(図2の下向き)の推力の大きさの割合が小さいほど、「第1閾値」として大きい値を用いてもよい。
In the example shown in FIGS. 2 and 3, next, in step S15 of FIG. 3, the vessel control device 11C receives an input operation to stop the operation of the actuator 11A when the operation unit 11B receives an input operation (that is, in step S13, the operation unit 11B has received an input operation to stop the forward movement of the ship 11). Specifically, in step S15, the vessel control device 11C determines whether or not the elapsed time since the operation unit 11B received an input operation to stop the operation of the actuator 11A has reached a first threshold value or more. If the elapsed time is not equal to or greater than the first threshold (that is, if it can be estimated that the ship 11 may move upward in FIG. 2 due to the inertial force (going foot) of the ship 11), step S15 is repeated. executed. On the other hand, if the elapsed time is equal to or greater than the first threshold (that is, if it can be estimated that there is no risk of the ship 11 moving upward in FIG. 2 due to the inertial force (going foot) of the ship 11), the process proceeds to step S16. move on.
In step S16, the ship control device 11C causes the actuator 11A to stop generating downward thrust in FIG.
Although a fixed value is used as the "first threshold" in the examples shown in FIGS. 2 and 3, a variable value may be used as the "first threshold" in other examples. For example, the smaller the ratio of the reverse (downward in FIG. 2) thrust force generated by the actuator 11A to the inertia force generated in the ship 11, the larger the value used as the “first threshold”.
 つまり、図2および図3に示す例では、アクチュエータ11Aが、船舶11を前進させる推進力を発生している時(つまり、図2(C)に示す状態の時)に、船舶11を前進させる推進力の発生を停止させる入力操作を操作部11Bが受け付けた場合に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(図2の上向き)とは逆向き(図2の下向き)の推力をアクチュエータ11Aが発生するように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 また、図2および図3に示す例では、船舶制御装置11Cは、船舶11に生じている慣性力の向きとは逆向きの推力をアクチュエータ11Aが発生するように、アクチュエータ11Aを作動させる期間を、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時(図3のステップS13においてYESと判定された時)からの経過時間に基づいて設定する。
 換言すれば、図2および図3に示す例では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた場合(図3のステップS13においてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(図2の上向き)とは逆向き(図2の下向き)の推力をアクチュエータ11Aが発生するように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、図2および図3に示す例では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性力を打ち消すための操船者の入力操作を不要にすることができる。
That is, in the example shown in FIGS. 2 and 3, the actuator 11A moves the ship 11 forward while generating the propulsion force for moving the ship 11 forward (that is, in the state shown in FIG. 2(C)). When the operation unit 11B receives an input operation to stop the generation of the propulsive force, the vessel control device 11C controls the direction of the inertial force generated in the vessel 11 (upward in FIG. 2) opposite to the direction (downward in FIG. 2). ), the actuator 11A is operated without the need for the operation unit 11B to receive an input operation.
In the example shown in FIGS. 2 and 3, the ship control device 11C sets the period during which the actuator 11A is operated so that the actuator 11A generates thrust in the direction opposite to the direction of the inertial force generated in the ship 11. , is set based on the elapsed time from the time when the operation unit 11B receives an input operation for stopping the operation of the actuator 11A (when YES is determined in step S13 of FIG. 3).
In other words, in the example shown in FIGS. 2 and 3, when the operation unit 11B receives an input operation to stop the operation of the actuator 11A while the vessel control device 11C is operating the actuator 11A (step If the determination is YES in S13), the ship control device 11C causes the actuator 11A to generate thrust in the opposite direction (downward in FIG. 2) to the direction of the inertial force generated in the ship 11 (upward in FIG. 2). , the actuator 11A is operated without the need for the operation unit 11B to receive an input operation.
Therefore, in the examples shown in FIGS. 2 and 3, the operator's input operation for canceling the inertial force generated in the vessel 11 when the actuator 11A is shifted from the activated state to the deactivated state of the actuator 11A can be eliminated. .
 図4は操作部11Bが船舶11を後進させる入力操作を受け付け、次いで、船舶11の後進を停止させる入力操作を受け付けた場合に第1実施形態の船舶制御装置11Cによって実行される処理の一例を説明するためのフローチャートである。
 図4に示す例では、ステップS21において、例えば船舶制御装置11Cは、操作部11Bが船舶11を後進させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11を後進させる入力操作を受け付けていない場合には、ステップS21が繰り返し実行される。一方、操作部11Bが船舶11を後進させる入力操作を受け付けた場合には、ステップS22に進む。
FIG. 4 shows an example of processing executed by the ship control device 11C of the first embodiment when the operation unit 11B receives an input operation for causing the ship 11 to go astern and then receives an input operation for stopping the ship 11 from going astern. It is a flow chart for explanation.
In the example shown in FIG. 4, in step S21, for example, the vessel control device 11C determines whether or not the operation section 11B has received an input operation to move the vessel 11 backward. When the operation unit 11B has not received an input operation for moving the ship 11 astern, step S21 is repeatedly executed. On the other hand, if the operation unit 11B has received an input operation to move the ship 11 backward, the process proceeds to step S22.
 ステップS22において、船舶制御装置11Cは、アクチュエータ11Aの推力発生部11A2が、船舶11を後進させる推進力を発生するように、アクチュエータ11Aを作動させる。その結果、船舶11が後進する。
 次いで、ステップS23において、例えば船舶制御装置11Cは、操作部11Bが船舶11の後進を停止させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11の後進を停止させる入力操作を受け付けていない場合には、ステップS23が繰り返し実行される。一方、操作部11Bが船舶11の後進を停止させる入力操作を受け付けた場合には、ステップS24に進む。
In step S22, the vessel control device 11C operates the actuator 11A so that the thrust force generating section 11A2 of the actuator 11A generates a propulsive force for moving the vessel 11 backward. As a result, the ship 11 moves astern.
Next, in step S23, for example, the vessel control device 11C determines whether or not the operation section 11B has received an input operation to stop the backward movement of the vessel 11. When the operation unit 11B has not received an input operation for stopping the backward movement of the boat 11, step S23 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation to stop the backward movement of the boat 11, the process proceeds to step S24.
 ステップS24において、船舶制御装置11Cは、船舶11を後進させる推進力の発生をアクチュエータ11Aに停止させる。その結果、後進を継続しようとする慣性力(行き足)が生じる。そこで、図4に示す例では、ステップS24において、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の後向き)とは逆向き(船舶11の前向き)の推力をアクチュエータ11Aが発生するように、アクチュエータ11Aを作動させる。詳細には、ステップS24において、船舶制御装置11Cは、操作部11Bが船舶11の前向きの推力をアクチュエータ11Aに発生させる入力操作を受け付ける必要なく、船舶11の前向きの推力をアクチュエータ11Aに発生させる。その結果、船舶11に生じた慣性力によって船舶11が後向きに移動してしまうこと(行き足)を抑制することができる。
 次いで、ステップS25では、船舶制御装置11Cが、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時(つまり、ステップS23において操作部11Bが船舶11の後進を停止させる入力操作を受け付けたと判定された時)からの経過時間を監視する。詳細には、ステップS25において、船舶制御装置11Cは、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時からの経過時間が第1閾値以上になったか否かを判定する。経過時間が第1閾値以上になっていない場合(つまり、船舶11の慣性力(行き足)によって船舶11が後向きに移動するおそれがあると推定できる場合)には、ステップS25が繰り返し実行される。一方、経過時間が第1閾値以上になった場合(つまり、船舶11の慣性力(行き足)によって船舶11が後向きに移動するおそれがないと推定できる場合)には、ステップS26に進む。
 ステップS26において、船舶制御装置11Cが、船舶11の前向きの推力の発生をアクチュエータ11Aに停止させる。
In step S24, the vessel control device 11C causes the actuator 11A to stop generating the propulsive force for moving the vessel 11 backward. As a result, an inertial force (going foot) that tries to continue backward movement is generated. Therefore, in the example shown in FIG. 4, in step S24, the ship control device 11C applies thrust in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11) to the actuator 11A. Actuator 11A is operated so that Specifically, in step S24, the ship control device 11C causes the actuator 11A to generate forward thrust of the ship 11 without the need for the operation unit 11B to receive an input operation for generating the forward thrust of the ship 11 in the actuator 11A. As a result, it is possible to prevent the ship 11 from moving backward due to the inertial force generated in the ship 11 (going forward).
Next, in step S25, when the operation unit 11B receives an input operation to stop the actuation of the actuator 11A (that is, in step S23, the operation unit 11B receives an input operation to stop the backward movement of the ship 11). monitor the elapsed time from the time when it was determined that Specifically, in step S25, the vessel control device 11C determines whether or not the elapsed time since the operation unit 11B received an input operation to stop the operation of the actuator 11A has reached a first threshold value or more. If the elapsed time is not equal to or greater than the first threshold (that is, if it can be estimated that the ship 11 may move backward due to the inertial force (going foot) of the ship 11), step S25 is repeatedly executed. . On the other hand, if the elapsed time is equal to or greater than the first threshold (that is, if it can be estimated that there is no risk of the ship 11 moving backward due to the inertial force (going foot) of the ship 11), the process proceeds to step S26.
In step S<b>26 , the ship control device 11</b>C causes the actuator 11</b>A to stop generating the forward thrust of the ship 11 .
 つまり、図4に示す例では、アクチュエータ11Aが、船舶11を後進させる推進力を発生している時に、船舶11を後進させる推進力の発生を停止させる入力操作を操作部11Bが受け付けた場合に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の後向き)とは逆向き(船舶11の前向き)の推力をアクチュエータ11Aが発生するように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 また、図4に示す例では、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の後向き)とは逆向き(船舶11の前向き)の推力をアクチュエータ11Aが発生するように、アクチュエータ11Aを作動させる期間を、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時(ステップS23においてYESと判定された時)からの経過時間に基づいて設定する。
 換言すれば、図4に示す例では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた場合(ステップS23においてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の後向き)とは逆向き(船舶11の前向き)の推力をアクチュエータ11Aが発生するように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、図4に示す例では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性力を打ち消すための操船者の入力操作を不要にすることができる。
That is, in the example shown in FIG. 4, when the actuator 11A is generating a propulsive force for moving the ship 11 in reverse, the operation unit 11B receives an input operation for stopping the generation of the propulsive force for moving the ship 11 in reverse. , the ship control device 11C causes the actuator 11A to generate a thrust force in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11). actuates actuator 11A without having to accept
In the example shown in FIG. 4, the ship control device 11C controls the actuator 11A to generate thrust in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11). Second, the period for operating the actuator 11A is set based on the elapsed time from when the operation unit 11B receives an input operation to stop the operation of the actuator 11A (when determined as YES in step S23).
In other words, in the example shown in FIG. 4, when the operation unit 11B receives an input operation to stop the operation of the actuator 11A while the vessel control device 11C is operating the actuator 11A (it is determined as YES in step S23). ), the ship control device 11C controls the operation unit so that the actuator 11A generates thrust in a direction (forward of the ship 11) opposite to the direction of the inertial force generated in the ship 11 (backward of the ship 11). Actuator 11A is operated without 11B needing to accept an input operation.
Therefore, in the example shown in FIG. 4, the operator's input operation for canceling the inertial force generated in the vessel 11 when the actuator 11A is shifted from the operating state to the non-operating state of the actuator 11A can be eliminated.
 図5は操作部11Bが船舶11を時計回りにその場回頭させる入力操作を受け付け、次いで、船舶11の時計回りのその場回頭を停止させる入力操作を受け付けた場合に第1実施形態の船舶制御装置11Cによって実行される処理の一例を説明するためのフローチャートである。
 図5に示す例では、ステップS31において、例えば船舶制御装置11Cは、操作部11Bが船舶11を時計回りにその場回頭させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11を時計回りにその場回頭させる入力操作を受け付けていない場合には、ステップS31が繰り返し実行される。一方、操作部11Bが船舶11を時計回りにその場回頭させる入力操作を受け付けた場合には、ステップS32に進む。
FIG. 5 shows the ship control of the first embodiment when the operation unit 11B receives an input operation to turn the ship 11 clockwise on the spot, and then receives an input operation to stop the clockwise on-the-spot turning of the ship 11. 4 is a flowchart for explaining an example of processing executed by device 11C;
In the example shown in FIG. 5, in step S31, for example, the vessel control device 11C determines whether or not the operation unit 11B has received an input operation for turning the vessel 11 clockwise on the spot. When the operation unit 11B has not received an input operation for turning the ship 11 clockwise on the spot, step S31 is repeatedly executed. On the other hand, when the operation unit 11B has received an input operation for turning the ship 11 clockwise on the spot, the process proceeds to step S32.
 ステップS32において、船舶制御装置11Cは、アクチュエータ11Aが、船舶11を時計回りにその場回頭させるモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。その結果、船舶11が時計回りにその場回頭する。
 次いで、ステップS33において、例えば船舶制御装置11Cは、操作部11Bが船舶11の時計回りのその場回頭を停止させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11の時計回りのその場回頭を停止させる入力操作を受け付けていない場合には、ステップS33が繰り返し実行される。一方、操作部11Bが船舶11の時計回りのその場回頭を停止させる入力操作を受け付けた場合には、ステップS34に進む。
In step S32, the vessel control device 11C operates the actuator 11A so that the actuator 11A causes the vessel 11 to generate a moment that causes the vessel 11 to turn clockwise on the spot. As a result, the vessel 11 turns clockwise on the spot.
Next, in step S33, for example, the vessel control device 11C determines whether or not the operation unit 11B has received an input operation to stop the clockwise on-the-spot turning of the vessel 11 or not. When the operation unit 11B has not received an input operation for stopping the clockwise spot turning of the ship 11, step S33 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation for stopping the clockwise spot turning of the ship 11, the process proceeds to step S34.
 ステップS34において、船舶制御装置11Cは、船舶11を時計回りにその場回頭させるモーメントの発生をアクチュエータ11Aに停止させる。その結果、時計回りのその場回頭を継続しようとする慣性モーメントが生じる。そこで、図5に示す例では、ステップS34において、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。詳細には、ステップS34において、船舶制御装置11Cは、操作部11Bが反時計回りのモーメントを船舶11に発生させる入力操作を受け付ける必要なく、反時計回りのモーメントを船舶11に発生させる。その結果、船舶11に生じた慣性モーメントによって船舶11が時計回りにその場回頭しすぎてしまうことを抑制することができる。
 次いで、ステップS35では、船舶制御装置11Cが、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時(つまり、ステップS33において操作部11Bが船舶11の時計回りのその場回頭を停止させる入力操作を受け付けたと判定された時)からの経過時間を監視する。詳細には、ステップS35において、船舶制御装置11Cは、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時からの経過時間が第1閾値以上になったか否かを判定する。経過時間が第1閾値以上になっていない場合(つまり、船舶11の慣性モーメントによって船舶11が時計回りにその場回頭しすぎるおそれがあると推定できる場合)には、ステップS35が繰り返し実行される。一方、経過時間が第1閾値以上になった場合(つまり、船舶11の慣性モーメントによって船舶11が時計回りにその場回頭しすぎるおそれがないと推定できる場合)には、ステップS36に進む。
 ステップS36において、船舶制御装置11Cが、反時計回りのモーメントの発生をアクチュエータ11Aに停止させる。
In step S34, the ship control device 11C causes the actuator 11A to stop generating the moment that causes the ship 11 to turn clockwise on the spot. This results in a moment of inertia tending to continue the clockwise in-place turning. Therefore, in the example shown in FIG. 5, in step S34, the ship control device 11C causes the ship 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia occurring in the ship 11. to operate the actuator 11A. Specifically, in step S34, the ship control device 11C causes the ship 11 to generate a counterclockwise moment without the need for the operation unit 11B to receive an input operation for generating a counterclockwise moment in the ship 11. As a result, it is possible to prevent the ship 11 from turning excessively clockwise on the spot due to the moment of inertia generated in the ship 11 .
Next, in step S35, when the operation unit 11B receives an input operation to stop the operation of the actuator 11A, the operation unit 11B of the ship control device 11C stops the clockwise spot turning of the ship 11 in step S33. It monitors the elapsed time from the time when it is determined that the input operation to cause the Specifically, in step S35, the vessel control device 11C determines whether or not the elapsed time since the operation unit 11B received an input operation to stop the operation of the actuator 11A has reached a first threshold value or more. If the elapsed time has not reached the first threshold value or more (that is, if it can be estimated that the moment of inertia of the ship 11 may cause the ship 11 to turn excessively clockwise on the spot), step S35 is repeatedly executed. . On the other hand, if the elapsed time is equal to or greater than the first threshold (that is, if it can be estimated that there is no risk that the vessel 11 will turn excessively clockwise on the spot due to the moment of inertia of the vessel 11), the process proceeds to step S36.
In step S36, the vessel control device 11C causes the actuator 11A to stop generating the counterclockwise moment.
 つまり、図5に示す例では、アクチュエータ11Aが、船舶11を時計回りにその場回頭させるモーメントを船舶11に発生させている時に、船舶11を時計回りにその場回頭させるモーメントの発生を停止させる入力操作を操作部11Bが受け付けた場合に、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 また、図5に示す例では、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる期間を、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時(ステップS33においてYESと判定された時)からの経過時間に基づいて設定する。
 換言すれば、図5に示す例では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた場合(ステップS33においてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、図5に示す例では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性モーメントを打ち消すための操船者の入力操作を不要にすることができる。
That is, in the example shown in FIG. 5, when the actuator 11A is generating a moment in the ship 11 that causes the ship 11 to turn clockwise on the spot, the generation of the moment that causes the ship 11 to turn clockwise on the spot is stopped. When the operation unit 11B receives an input operation, the vessel control device 11C causes the vessel 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia occurring in the vessel 11. In addition, the actuator 11A is operated without the need for the operation section 11B to receive an input operation.
Further, in the example shown in FIG. 5, the ship control device 11C causes the ship 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia occurring in the ship 11. The period for operating actuator 11A is set based on the elapsed time from when operation unit 11B receives an input operation to stop the operation of actuator 11A (when determined as YES in step S33).
In other words, in the example shown in FIG. 5, when the operation unit 11B receives an input operation to stop the operation of the actuator 11A while the vessel control device 11C is operating the actuator 11A (it is determined as YES in step S33). ), the ship control device 11C causes the ship 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia occurring in the ship 11. To operate the actuator 11A without having to accept the operation.
Therefore, in the example shown in FIG. 5, the operator's input operation for canceling the moment of inertia that occurs in the vessel 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated.
 図6は操作部11Bが船舶11を反時計回りにその場回頭させる入力操作を受け付け、次いで、船舶11の反時計回りのその場回頭を停止させる入力操作を受け付けた場合に第1実施形態の船舶制御装置11Cによって実行される処理の一例を説明するためのフローチャートである。
 図6に示す例では、ステップS41において、例えば船舶制御装置11Cは、操作部11Bが船舶11を反時計回りにその場回頭させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11を反時計回りにその場回頭させる入力操作を受け付けていない場合には、ステップS41が繰り返し実行される。一方、操作部11Bが船舶11を反時計回りにその場回頭させる入力操作を受け付けた場合には、ステップS42に進む。
FIG. 6 shows the operation of the first embodiment when the operation unit 11B receives an input operation to turn the ship 11 counterclockwise on the spot, and then receives an input operation to stop the counterclockwise on-the-spot turning of the ship 11. 4 is a flowchart for explaining an example of processing executed by a ship control device 11C;
In the example shown in FIG. 6, in step S41, for example, the vessel control device 11C determines whether or not the operation unit 11B has received an input operation for turning the vessel 11 counterclockwise on the spot. When the operation unit 11B has not received an input operation for turning the ship 11 counterclockwise on the spot, step S41 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation for turning the ship 11 counterclockwise on the spot, the process proceeds to step S42.
 ステップS42において、船舶制御装置11Cは、アクチュエータ11Aが、船舶11を反時計回りにその場回頭させるモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。その結果、船舶11が反時計回りにその場回頭する。
 次いで、ステップS43において、例えば船舶制御装置11Cは、操作部11Bが船舶11の反時計回りのその場回頭を停止させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11の反時計回りのその場回頭を停止させる入力操作を受け付けていない場合には、ステップS43が繰り返し実行される。一方、操作部11Bが船舶11の反時計回りのその場回頭を停止させる入力操作を受け付けた場合には、ステップS44に進む。
In step S42, the vessel control device 11C operates the actuator 11A so that the actuator 11A causes the vessel 11 to generate a moment that turns the vessel 11 counterclockwise on the spot. As a result, the ship 11 turns counterclockwise on the spot.
Next, in step S43, for example, the vessel control device 11C determines whether or not the operation section 11B has received an input operation to stop the counterclockwise on-the-spot turning of the vessel 11 or not. When the operation unit 11B has not received an input operation for stopping the counterclockwise spot turning of the ship 11, step S43 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation to stop the counterclockwise spot turning of the ship 11, the process proceeds to step S44.
 ステップS44において、船舶制御装置11Cは、船舶11を反時計回りにその場回頭させるモーメントの発生をアクチュエータ11Aに停止させる。その結果、反時計回りのその場回頭を継続しようとする慣性モーメントが生じる。そこで、図6に示す例では、ステップS44において、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(反時計回り)とは逆向き(時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。詳細には、ステップS44において、船舶制御装置11Cは、操作部11Bが時計回りのモーメントを船舶11に発生させる入力操作を受け付ける必要なく、時計回りのモーメントを船舶11に発生させる。その結果、船舶11に生じた慣性モーメントによって船舶11が反時計回りにその場回頭しすぎてしまうことを抑制することができる。
 次いで、ステップS45では、船舶制御装置11Cが、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時(つまり、ステップS43において操作部11Bが船舶11の反時計回りのその場回頭を停止させる入力操作を受け付けたと判定された時)からの経過時間を監視する。詳細には、ステップS45において、船舶制御装置11Cは、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時からの経過時間が第1閾値以上になったか否かを判定する。経過時間が第1閾値以上になっていない場合(つまり、船舶11の慣性モーメントによって船舶11が反時計回りにその場回頭しすぎるおそれがあると推定できる場合)には、ステップS45が繰り返し実行される。一方、経過時間が第1閾値以上になった場合(つまり、船舶11の慣性モーメントによって船舶11が反時計回りにその場回頭しすぎるおそれがないと推定できる場合)には、ステップS46に進む。
 ステップS46において、船舶制御装置11Cが、時計回りのモーメントの発生をアクチュエータ11Aに停止させる。
In step S44, the vessel control device 11C causes the actuator 11A to stop generating a moment that causes the vessel 11 to turn counterclockwise on the spot. As a result, there is a moment of inertia that tends to continue the counterclockwise in-situ turning. Therefore, in the example shown in FIG. 6, in step S44, the vessel control device 11C causes the vessel 11 to generate a moment (clockwise) opposite to the direction of the moment of inertia (counterclockwise) occurring in the vessel 11. to operate the actuator 11A. Specifically, in step S44, the vessel control device 11C causes the vessel 11 to generate a clockwise moment without the need for the operation unit 11B to receive an input operation for causing the vessel 11 to generate a clockwise moment. As a result, it is possible to prevent the ship 11 from turning too counterclockwise on the spot due to the moment of inertia generated in the ship 11 .
Next, in step S45, when the operation unit 11B receives an input operation to stop the operation of the actuator 11A, the ship control device 11C causes the operation unit 11B to turn the ship 11 counterclockwise on the spot in step S43. The elapsed time from the time when it is determined that the input operation to stop is accepted) is monitored. Specifically, in step S45, the vessel control device 11C determines whether or not the elapsed time since the operation unit 11B received an input operation to stop the operation of the actuator 11A has reached a first threshold value or more. If the elapsed time has not reached the first threshold value or more (that is, if it can be estimated that the moment of inertia of the ship 11 may cause the ship 11 to turn too counterclockwise on the spot), step S45 is repeatedly executed. be. On the other hand, if the elapsed time is equal to or greater than the first threshold (that is, if it can be estimated that there is no risk of the ship 11 turning too counterclockwise on the spot due to the moment of inertia of the ship 11), the process proceeds to step S46.
In step S46, the vessel control device 11C causes the actuator 11A to stop generating the clockwise moment.
 つまり、図6に示す例では、アクチュエータ11Aが、船舶11を反時計回りにその場回頭させるモーメントを船舶11に発生させている時に、船舶11を反時計回りにその場回頭させるモーメントの発生を停止させる入力操作を操作部11Bが受け付けた場合に、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(反時計回り)とは逆向き(時計回り)のモーメントを船舶11に発生させるように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 また、図6に示す例では、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(反時計回り)とは逆向き(時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる期間を、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時(ステップS43においてYESと判定された時)からの経過時間に基づいて設定する。
 換言すれば、図6に示す例では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた場合(ステップS43においてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(反時計回り)とは逆向き(時計回り)のモーメントを船舶11に発生させるように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、図6に示す例では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性モーメントを打ち消すための操船者の入力操作を不要にすることができる。
That is, in the example shown in FIG. 6, when the actuator 11A is generating a moment to turn the ship 11 counterclockwise on the spot, the actuator 11A generates a moment to turn the ship 11 counterclockwise on the spot. When the operation unit 11B receives an input operation to stop, the ship control device 11C generates a moment (clockwise) on the ship 11 opposite to the direction of the moment of inertia (counterclockwise) generated in the ship 11. The actuator 11A is operated without the need for the operation unit 11B to receive the input operation.
Further, in the example shown in FIG. 6, the ship control device 11C causes the ship 11 to generate a moment (clockwise) opposite to the direction (counterclockwise) of the moment of inertia occurring in the ship 11. The period for operating actuator 11A is set based on the elapsed time from when operation unit 11B receives an input operation to stop the operation of actuator 11A (when determined as YES in step S43).
In other words, in the example shown in FIG. 6, when the operation unit 11B receives an input operation to stop the operation of the actuator 11A while the vessel control device 11C is operating the actuator 11A (it is determined as YES in step S43). ), the ship control device 11C causes the ship 11 to generate a moment in the opposite direction (clockwise direction) to the direction of the moment of inertia (counterclockwise direction) generated in the ship 11 by the operation unit 11B. To operate the actuator 11A without having to accept the operation.
Therefore, in the example shown in FIG. 6, the operator's input operation for canceling the moment of inertia generated in the vessel 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated.
 図7は操作部11Bが船舶11を前進させかつ時計回りに旋回させる入力操作を受け付け、次いで、船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けた場合に第1実施形態の船舶制御装置11Cによって実行される処理の一例を説明するためのフローチャートである。
 図7に示す例では、ステップS51において、例えば船舶制御装置11Cは、操作部11Bが船舶11を前進させかつ時計回りに旋回させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11を前進させかつ時計回りに旋回させる入力操作を受け付けていない場合には、ステップS51が繰り返し実行される。一方、操作部11Bが船舶11を前進させかつ時計回りに旋回させる入力操作を受け付けた場合には、ステップS52に進む。
FIG. 7 shows the ship of the first embodiment when the operation unit 11B receives an input operation to move the ship 11 forward and turn clockwise, and then receives an input operation to stop the ship 11 from moving forward and turning clockwise. 4 is a flowchart for explaining an example of processing executed by the control device 11C;
In the example shown in FIG. 7, in step S51, for example, the vessel control device 11C determines whether or not the operating section 11B has received an input operation to move the vessel 11 forward and turn it clockwise. When the operation unit 11B has not received an input operation to move the ship 11 forward and turn it clockwise, step S51 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation to move the ship 11 forward and turn it clockwise, the process proceeds to step S52.
 ステップS52において、船舶制御装置11Cは、アクチュエータ11Aが、船舶11を前進させる推進力を発生し、かつ、船舶11を時計回りに旋回させるモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。その結果、船舶11が前進しかつ時計回りに旋回する。
 次いで、ステップS53において、例えば船舶制御装置11Cは、操作部11Bが船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けていない場合には、ステップS53が繰り返し実行される。一方、操作部11Bが船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けた場合には、ステップS54に進む。
In step S52, the vessel control device 11C operates the actuator 11A so that the actuator 11A generates a propulsive force that moves the vessel 11 forward and a moment that rotates the vessel 11 clockwise. . As a result, the vessel 11 moves forward and turns clockwise.
Next, in step S53, for example, the vessel control device 11C determines whether or not the operating section 11B has received an input operation to stop the forward movement and clockwise turning of the vessel 11. When the operation unit 11B has not received an input operation to stop the ship 11 from moving forward and turning clockwise, step S53 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation to stop the ship 11 from moving forward and turning clockwise, the process proceeds to step S54.
 ステップS54において、船舶制御装置11Cは、船舶11を前進させる推進力の発生および船舶11を時計回りに旋回させるモーメントの発生をアクチュエータ11Aに停止させる。その結果、前進を継続しようとする慣性力および時計回りの旋回を継続しようとする慣性モーメントが生じる。そこで、図7に示す例では、ステップS54において、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。詳細には、ステップS54において、船舶制御装置11Cは、操作部11Bが船舶11の後向きの推力を発生させかつ反時計回りのモーメントを船舶11に発生させる入力操作を受け付ける必要なく、船舶11の後向きの推力をアクチュエータ11Aに発生させると共に反時計回りのモーメントを船舶11に発生させる。その結果、船舶11に生じた慣性力によって船舶11が前向きに移動してしまうこと、および、船舶11に生じた慣性モーメントによって船舶11が時計回りに旋回しすぎてしまうことを抑制することができる。
 次いで、ステップS55では、船舶制御装置11Cが、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時(つまり、ステップS53において操作部11Bが船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けたと判定された時)からの経過時間を監視する。詳細には、ステップS55において、船舶制御装置11Cは、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時からの経過時間が第1閾値以上になったか否かを判定する。経過時間が第1閾値以上になっていない場合(つまり、船舶11の慣性力によって船舶11が前向きに移動するおそれがあり、かつ、船舶11の慣性モーメントによって船舶11が時計回りに旋回しすぎるおそれがあると推定できる場合)には、ステップS55が繰り返し実行される。一方、経過時間が第1閾値以上になった場合(つまり、船舶11の慣性力によって船舶11が前向きに移動するおそれがなく、船舶11の慣性モーメントによって船舶11が時計回りに旋回しすぎるおそれがないと推定できる場合)には、ステップS56に進む。
 ステップS56において、船舶制御装置11Cが、船舶11の後向きの推力の発生および反時計回りのモーメントの発生をアクチュエータ11Aに停止させる。
In step S54, the vessel control device 11C causes the actuator 11A to stop generating the propulsive force that moves the vessel 11 forward and the moment that rotates the vessel 11 clockwise. As a result, an inertial force that tends to keep moving forward and a moment of inertia that tends to keep clockwise turning are generated. Therefore, in the example shown in FIG. 7, in step S54, the ship control device 11C applies thrust in the opposite direction (rearward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (forwardward direction of the ship 11) to the actuator 11A. The actuator 11A is actuated so that the moment of inertia generated in the ship 11 is generated in the opposite direction (counterclockwise direction) to the direction of the moment of inertia (clockwise direction) generated in the ship 11 . Specifically, in step S54, the ship control device 11C does not require the operation unit 11B to receive an input operation that causes the ship 11 to generate a backward thrust and a counterclockwise moment to the ship 11. is generated in the actuator 11A and a counterclockwise moment is generated in the ship 11. As a result, it is possible to prevent the ship 11 from moving forward due to the inertial force generated in the ship 11 and from turning the ship 11 excessively clockwise due to the moment of inertia generated in the ship 11. .
Next, in step S55, when the operation unit 11B receives an input operation to stop the operation of the actuator 11A, the operation unit 11B of the vessel control device 11C stops the forward movement and clockwise turning of the vessel 11 in step S53. It monitors the elapsed time from the time when it is determined that the input operation to cause the Specifically, in step S55, the vessel control device 11C determines whether or not the elapsed time since the operation unit 11B received an input operation to stop the operation of the actuator 11A has reached a first threshold value or more. If the elapsed time is not equal to or greater than the first threshold (that is, the ship 11 may move forward due to the inertial force of the ship 11 and the moment of inertia of the ship 11 may cause the ship 11 to turn excessively clockwise). ), step S55 is repeatedly executed. On the other hand, when the elapsed time is equal to or greater than the first threshold value (that is, there is no possibility that the inertial force of the ship 11 will cause the ship 11 to move forward, and the moment of inertia of the ship 11 will cause the ship 11 to turn excessively clockwise). If it can be estimated that there is no case), the process proceeds to step S56.
In step S56, the vessel control device 11C causes the actuator 11A to stop the generation of the backward thrust and the counterclockwise moment of the vessel 11 .
 つまり、図7に示す例では、アクチュエータ11Aが、船舶11を前進させる推進力を発生しており、かつ、船舶11を時計回りに旋回させるモーメントを船舶11に発生させている時に、船舶11を前進させる推進力および船舶11を時計回りに旋回させるモーメントの発生を停止させる入力操作を操作部11Bが受け付けた場合に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 また、図7に示す例では、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる期間を、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時(ステップS53においてYESと判定された時)からの経過時間に基づいて設定する。
 換言すれば、図7に示す例では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた場合(ステップS53においてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、図7に示す例では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性モーメントを打ち消すための操船者の入力操作を不要にすることができる。
That is, in the example shown in FIG. 7, when the actuator 11A is generating a propulsive force to move the ship 11 forward and generating a moment to turn the ship 11 clockwise, the ship 11 is When the operation unit 11B receives an input operation to stop the generation of the forward propulsive force and the moment that rotates the ship 11 clockwise, the ship control device 11C controls the direction of the inertial force generated in the ship 11 (the direction of the inertial force of the ship 11 (forward of the ship 11) so that the actuator 11A generates a thrust in the opposite direction (backward of the ship 11), and the direction (counterclockwise) of the moment of inertia occurring in the ship 11 (clockwise) The actuator 11A is actuated so as to generate a moment in the ship 11 without the need for the operation section 11B to receive an input operation.
In the example shown in FIG. 7, the ship control device 11C controls the actuator 11A to generate a thrust force in the opposite direction (rearward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (forwardward direction of the ship 11). In addition, the period during which the actuator 11A is operated so as to generate a moment (counterclockwise) in the ship 11 that is opposite to the direction (clockwise) of the moment of inertia generated in the ship 11 is the operation of the actuator 11A. is set based on the elapsed time from when the operation unit 11B receives an input operation to stop the operation (when determined as YES in step S53).
In other words, in the example shown in FIG. 7, when the operation unit 11B receives an input operation to stop the operation of the actuator 11A while the vessel control device 11C is operating the actuator 11A (it is determined as YES in step S53). ), the ship control device 11C causes the actuator 11A to generate a thrust in the opposite direction (rearward of the ship 11) to the direction of the inertial force generated in the ship 11 (forwardward of the ship 11), and The actuator 11A is operated without the need for the operation unit 11B to receive an input operation so as to generate a moment (counterclockwise) in the ship 11 in a direction (counterclockwise) opposite to the direction (clockwise) of the moment of inertia generated in the ship 11. .
Therefore, in the example shown in FIG. 7, the operator's input operation for canceling the moment of inertia generated in the ship 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated.
 図8は操作部11Bが船舶11を後進させかつ反時計回りに旋回させる入力操作を受け付け、次いで、船舶11の後進および反時計回りの旋回を停止させる入力操作を受け付けた場合に第1実施形態の船舶制御装置11Cによって実行される処理の一例を説明するためのフローチャートである。
 図8に示す例では、ステップS61において、例えば船舶制御装置11Cは、操作部11Bが船舶11を後進させかつ反時計回りに旋回させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11を後進させかつ反時計回りに旋回させる入力操作を受け付けていない場合には、ステップS61が繰り返し実行される。一方、操作部11Bが船舶11を後進させかつ反時計回りに旋回させる入力操作を受け付けた場合には、ステップS62に進む。
FIG. 8 shows the first embodiment when the operation unit 11B receives an input operation for causing the ship 11 to move backward and turn counterclockwise, and then receives an input operation for stopping the ship 11 from moving backward and turning counterclockwise. is a flow chart for explaining an example of a process executed by the ship control device 11C.
In the example shown in FIG. 8, in step S61, for example, the vessel control device 11C determines whether or not the operating section 11B has received an input operation to cause the vessel 11 to move backward and turn counterclockwise. When the operation unit 11B has not received an input operation for causing the ship 11 to move backward and turn counterclockwise, step S61 is repeatedly executed. On the other hand, if the operation unit 11B has received an input operation for causing the ship 11 to move backward and turn counterclockwise, the process proceeds to step S62.
 ステップS62において、船舶制御装置11Cは、アクチュエータ11Aが、船舶11を後進させる推進力を発生し、かつ、船舶11を反時計回りに旋回させるモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。その結果、船舶11が後進しかつ反時計回りに旋回する。
 次いで、ステップS63において、例えば船舶制御装置11Cは、操作部11Bが船舶11の後進および反時計回りの旋回を停止させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11の後進および反時計回りの旋回を停止させる入力操作を受け付けていない場合には、ステップS63が繰り返し実行される。一方、操作部11Bが船舶11の後進および反時計回りの旋回を停止させる入力操作を受け付けた場合には、ステップS64に進む。
In step S62, the vessel control device 11C operates the actuator 11A so that the actuator 11A generates a propulsive force that causes the vessel 11 to move astern and a moment that causes the vessel 11 to turn counterclockwise. Let As a result, the vessel 11 moves astern and turns counterclockwise.
Next, in step S63, for example, the vessel control device 11C determines whether or not the operation section 11B has received an input operation to stop the vessel 11 from moving backward and turning counterclockwise. When the operation unit 11B has not received an input operation to stop the backward movement and counterclockwise turning of the vessel 11, step S63 is repeatedly executed. On the other hand, if the operation unit 11B has received an input operation for stopping the backward movement and counterclockwise turning of the vessel 11, the process proceeds to step S64.
 ステップS64において、船舶制御装置11Cは、船舶11を後進させる推進力の発生および船舶11を反時計回りに旋回させるモーメントの発生をアクチュエータ11Aに停止させる。その結果、後進を継続しようとする慣性力および反時計回りの旋回を継続しようとする慣性モーメントが生じる。そこで、図8に示す例では、ステップS64において、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の後向き)とは逆向き(船舶11の前向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(反時計回り)とは逆向き(時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。詳細には、ステップS64において、船舶制御装置11Cは、操作部11Bが船舶11の前向きの推力を発生させかつ時計回りのモーメントを船舶11に発生させる入力操作を受け付ける必要なく、船舶11の前向きの推力をアクチュエータ11Aに発生させると共に時計回りのモーメントを船舶11に発生させる。その結果、船舶11に生じた慣性力によって船舶11が後向きに移動してしまうこと、および、船舶11に生じた慣性モーメントによって船舶11が反時計回りに旋回しすぎてしまうことを抑制することができる。
 次いで、ステップS65では、船舶制御装置11Cが、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時(つまり、ステップS63において操作部11Bが船舶11の後進および反時計回りの旋回を停止させる入力操作を受け付けたと判定された時)からの経過時間を監視する。詳細には、ステップS65において、船舶制御装置11Cは、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時からの経過時間が第1閾値以上になったか否かを判定する。経過時間が第1閾値以上になっていない場合(つまり、船舶11の慣性力によって船舶11が後向きに移動するおそれがあり、かつ、船舶11の慣性モーメントによって船舶11が反時計回りに旋回しすぎるおそれがあると推定できる場合)には、ステップS65が繰り返し実行される。一方、経過時間が第1閾値以上になった場合(つまり、船舶11の慣性力によって船舶11が後向きに移動するおそれがなく、船舶11の慣性モーメントによって船舶11が反時計回りに旋回しすぎるおそれがないと推定できる場合)には、ステップS66に進む。
 ステップS66において、船舶制御装置11Cが、船舶11の前向きの推力の発生および時計回りのモーメントの発生をアクチュエータ11Aに停止させる。
In step S64, the ship control device 11C causes the actuator 11A to stop generating the propulsive force for moving the ship 11 backward and the moment for turning the ship 11 counterclockwise. As a result, an inertial force that tends to continue backward movement and an inertial moment that tends to continue counterclockwise turning are generated. Therefore, in the example shown in FIG. 8, in step S64, the ship control device 11C applies thrust in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11) to the actuator 11A. The actuator 11A is actuated so that the moment of inertia generated in the ship 11 (counterclockwise) is generated in the ship 11 in the opposite direction (clockwise). Specifically, in step S64, the ship control device 11C controls the forward thrust of the ship 11 without the operation unit 11B needing to receive an input operation that causes the ship 11 to generate a forward thrust and a clockwise moment to the ship 11. A thrust force is generated in the actuator 11A and a clockwise moment is generated in the ship 11 . As a result, it is possible to prevent the ship 11 from moving backward due to the inertial force generated in the ship 11 and from turning the ship 11 excessively counterclockwise due to the moment of inertia generated in the ship 11. can.
Next, in step S65, when the operation unit 11B receives an input operation to stop the operation of the actuator 11A, the vessel control device 11C causes the operation unit 11B to cause the vessel 11 to move backward and turn counterclockwise in step S63. The elapsed time from the time when it is determined that the input operation to stop is accepted) is monitored. Specifically, in step S65, the vessel control device 11C determines whether or not the elapsed time since the operation unit 11B received an input operation to stop the operation of the actuator 11A has reached a first threshold value or more. If the elapsed time is not equal to or greater than the first threshold value (that is, the inertia of the ship 11 may cause the ship 11 to move backward, and the moment of inertia of the ship 11 causes the ship 11 to turn too counterclockwise). If it can be estimated that there is a risk), step S65 is repeatedly executed. On the other hand, if the elapsed time is equal to or greater than the first threshold value (that is, there is no risk of the ship 11 moving backward due to the inertial force of the ship 11, and the inertial moment of the ship 11 may cause the ship 11 to turn too counterclockwise). If it can be estimated that there is no ), the process proceeds to step S66.
In step S66, the vessel control device 11C causes the actuator 11A to stop generating the forward thrust and the clockwise moment of the vessel 11 .
 つまり、図8に示す例では、アクチュエータ11Aが、船舶11を後進させる推進力を発生しており、かつ、船舶11を反時計回りに旋回させるモーメントを船舶11に発生させている時に、船舶11を後進させる推進力および船舶11を反時計回りに旋回させるモーメントの発生を停止させる入力操作を操作部11Bが受け付けた場合に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の後向き)とは逆向き(船舶11の前向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(反時計回り)とは逆向き(時計回り)のモーメントを船舶11に発生させるように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 また、図8に示す例では、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の後向き)とは逆向き(船舶11の前向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(反時計回り)とは逆向き(時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる期間を、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた時(ステップS63においてYESと判定された時)からの経過時間に基づいて設定する。
 換言すれば、図8に示す例では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた場合(ステップS63においてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の後向き)とは逆向き(船舶11の前向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(反時計回り)とは逆向き(時計回り)のモーメントを船舶11に発生させるように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、図8に示す例では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性モーメントを打ち消すための操船者の入力操作を不要にすることができる。
That is, in the example shown in FIG. 8, when the actuator 11A is generating a propulsive force that causes the ship 11 to move astern and also generates a moment that causes the ship 11 to turn counterclockwise, the ship 11 When the operation unit 11B receives an input operation to stop the generation of the propulsive force that causes the ship to go astern and the moment that turns the ship 11 counterclockwise, the ship control device 11C changes the direction of the inertial force generated in the ship 11 ( The actuator 11A generates a thrust in the direction opposite to (backward of the ship 11) (forward of the ship 11), and in the opposite direction (clockwise) to the direction of the moment of inertia occurring in the ship 11 (counterclockwise). ) is generated in the ship 11, the actuator 11A is operated without the need for the operation unit 11B to receive the input operation.
In the example shown in FIG. 8, the ship control device 11C controls the actuator 11A to generate a thrust force in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11). In addition, the period during which the actuator 11A is operated so as to generate a moment (clockwise) in the ship 11 in the opposite direction (counterclockwise) to the moment of inertia generated in the ship 11 is defined as the operation of the actuator 11A. is set based on the elapsed time from when the operation unit 11B receives an input operation to stop the operation (when determined as YES in step S63).
In other words, in the example shown in FIG. 8, when the operation unit 11B receives an input operation to stop the operation of the actuator 11A while the vessel control device 11C is operating the actuator 11A (it is determined as YES in step S63). ), the vessel control device 11C causes the actuator 11A to generate thrust in the opposite direction (forward of the vessel 11) to the direction of the inertial force generated in the vessel 11 (rearward of the vessel 11), and The actuator 11A is operated without the need for the operation unit 11B to receive an input operation so as to generate a moment (clockwise) in the ship 11 in the opposite direction (counterclockwise) of the moment of inertia generated in the ship 11. .
Therefore, in the example shown in FIG. 8, the operator's input operation for canceling the moment of inertia generated in the vessel 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated.
<第2実施形態>
 以下、本発明の操船システム、船舶制御装置、船舶制御方法およびプログラムの第2実施形態について説明する。
 第2実施形態の操船システム1は、後述する点を除き、上述した第1実施形態の操船システム1と同様に構成されている。従って、第2実施形態の操船システム1によれば、後述する点を除き、上述した第1実施形態の操船システム1と同様の効果を奏することができる。
<Second embodiment>
A second embodiment of a ship maneuvering system, a ship control device, a ship control method, and a program according to the present invention will be described below.
The ship maneuvering system 1 of the second embodiment is configured in the same manner as the ship maneuvering system 1 of the first embodiment described above, except for the points described later. Therefore, according to the marine vessel maneuvering system 1 of the second embodiment, it is possible to achieve the same effects as the marine vessel maneuvering system 1 of the first embodiment described above, except for the points described later.
 第2実施形態の船舶制御装置11Cが適用された船舶11を備える操船システム1は、図1に示す第1実施形態の操船システム1と同様に構成されている。 A ship maneuvering system 1 including a ship 11 to which a ship control device 11C of the second embodiment is applied is configured in the same manner as the ship maneuvering system 1 of the first embodiment shown in FIG.
 図9は操作部11Bが船舶11を前進させる入力操作を受け付け、次いで、船舶11の前進を停止させる入力操作を受け付けた場合に第2実施形態の船舶制御装置11Cによって実行される処理の一例を説明するためのフローチャートである。
 図9に示す例では、ステップSA1において、例えば船舶制御装置11Cは、操作部11Bが船舶11を前進させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11を前進させる入力操作を受け付けていない場合には、ステップSA1が繰り返し実行される。一方、操作部11Bが船舶11を前進させる入力操作を受け付けた場合には、ステップSA2に進む。
FIG. 9 shows an example of processing executed by the ship control device 11C of the second embodiment when the operation unit 11B receives an input operation for advancing the ship 11 and then receives an input operation for stopping the advance of the ship 11. It is a flow chart for explanation.
In the example shown in FIG. 9, at step SA1, for example, the vessel control device 11C determines whether or not the operating section 11B has received an input operation to move the vessel 11 forward. When the operation unit 11B has not received an input operation to move the ship 11 forward, step SA1 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation for moving the ship 11 forward, the process proceeds to step SA2.
 ステップSA2において、船舶制御装置11Cは、アクチュエータ11Aの推力発生部11A2が、船舶11を前進させる推進力を発生するように、アクチュエータ11Aを作動させる。その結果、船舶11が前進する。
 次いで、ステップSA3において、例えば船舶制御装置11Cは、操作部11Bが船舶11の前進を停止させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11の前進を停止させる入力操作を受け付けていない場合には、ステップSA3が繰り返し実行される。一方、操作部11Bが船舶11の前進を停止させる入力操作を受け付けた場合には、ステップSA4に進む。
In step SA2, the ship control device 11C operates the actuator 11A so that the thrust generating section 11A2 of the actuator 11A generates a propulsive force for moving the ship 11 forward. As a result, the ship 11 moves forward.
Next, at step SA3, for example, the vessel control device 11C determines whether or not the operating section 11B has received an input operation to stop the forward movement of the vessel 11. When the operation unit 11B has not received an input operation to stop the forward movement of the ship 11, step SA3 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation to stop the forward movement of the ship 11, the process proceeds to step SA4.
 ステップSA4において、船舶制御装置11Cは、船舶11を前進させる推進力の発生をアクチュエータ11Aに停止させる。その結果、前進を継続しようとする慣性力(行き足)が生じる。そこで、図9に示す例では、ステップSA4において、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、アクチュエータ11Aを作動させる。詳細には、ステップSA4において、船舶制御装置11Cは、操作部11Bが船舶11の後向きの推力をアクチュエータ11Aに発生させる入力操作を受け付ける必要なく、船舶11の後向きの推力をアクチュエータ11Aに発生させる。その結果、船舶11に生じた慣性力によって船舶11が前向きに移動してしまうこと(行き足)を抑制することができる。
 次いで、ステップSA5では、船舶制御装置11Cが、船舶11の速度を監視する。詳細には、ステップSA5において、船舶制御装置11Cは、船速検出部11Eによって検出される船舶11の速度が第2閾値以下まで低下したか否かを判定する。船舶11の速度が第2閾値以下まで低下していない場合(つまり、船舶11の慣性力(行き足)によって船舶11が前進し続けている場合)には、ステップSA5が繰り返し実行される。一方、船舶11の速度が第2閾値以下まで低下した場合(つまり、船舶11の慣性力(行き足)による船舶11の前進が終了したと推定できる場合)には、ステップSA6に進む。
 ステップSA6において、船舶制御装置11Cが、船舶11の後向きの推力の発生をアクチュエータ11Aに停止させる。
In step SA4, the vessel control device 11C causes the actuator 11A to stop generating the propulsive force that moves the vessel 11 forward. As a result, an inertial force (going foot) that tries to continue forward movement is generated. Therefore, in the example shown in FIG. 9, in step SA4, the ship control device 11C applies thrust in the opposite direction (rearward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (forwardward direction of the ship 11) to the actuator 11A. Actuator 11A is operated so that Specifically, in step SA4, the vessel control device 11C causes the actuator 11A to generate a backward thrust of the vessel 11 without the operation unit 11B needing to receive an input operation for generating a backward thrust of the vessel 11 in the actuator 11A. As a result, it is possible to prevent the ship 11 from moving forward due to the inertial force generated in the ship 11 (going forward).
Next, at step SA5, the ship control device 11C monitors the speed of the ship 11. FIG. Specifically, in step SA5, the vessel control device 11C determines whether or not the velocity of the vessel 11 detected by the vessel velocity detector 11E has decreased to the second threshold or less. If the speed of the ship 11 has not decreased to the second threshold or less (that is, if the ship 11 continues to move forward due to the inertial force (going foot) of the ship 11), step SA5 is repeatedly executed. On the other hand, when the speed of the ship 11 has decreased to the second threshold or less (that is, when it can be estimated that the forward movement of the ship 11 due to the inertial force (going foot) of the ship 11 has ended), the process proceeds to step SA6.
In step SA6, the vessel control device 11C causes the actuator 11A to stop generating the backward thrust of the vessel 11. FIG.
 つまり、図9に示す例では、アクチュエータ11Aが、船舶11を前進させる推進力を発生している時に、船舶11を前進させる推進力の発生を停止させる入力操作を操作部11Bが受け付けた場合に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 また、図9に示す例では、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、アクチュエータ11Aを作動させる期間を、船舶11の速度に基づいて設定する。
 換言すれば、図9に示す例では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた場合(ステップSA3においてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、図9に示す例では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性力を打ち消すための操船者の入力操作を不要にすることができる。
In other words, in the example shown in FIG. 9, when the actuator 11A is generating a propulsive force to move the ship 11 forward, the operation unit 11B receives an input operation to stop the generation of the propulsive force to move the ship 11 forward. , the ship control device 11C causes the actuator 11A to generate a thrust in the opposite direction (rearward of the ship 11) to the direction of the inertial force generated in the ship 11 (forwardward of the ship 11). actuates actuator 11A without having to accept
Further, in the example shown in FIG. 9, the ship control device 11C causes the actuator 11A to generate a thrust force in the opposite direction (rearward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (forwardward direction of the ship 11). Secondly, the period for operating the actuator 11A is set based on the speed of the ship 11 .
In other words, in the example shown in FIG. 9, when the operation unit 11B receives an input operation to stop the operation of the actuator 11A while the vessel control device 11C is operating the actuator 11A (it is determined as YES in step SA3). ), the ship control device 11C controls the operation unit so that the actuator 11A generates thrust in a direction (rearward of the ship 11) opposite to the direction of the inertial force generated in the ship 11 (forwardward of the ship 11). Actuator 11A is operated without 11B needing to accept an input operation.
Therefore, in the example shown in FIG. 9, the operator's input operation for canceling the inertial force generated in the vessel 11 when the actuator 11A is shifted from the operating state to the non-operating state of the actuator 11A can be eliminated.
 図10は操作部11Bが船舶11を後進させる入力操作を受け付け、次いで、船舶11の後進を停止させる入力操作を受け付けた場合に第2実施形態の船舶制御装置11Cによって実行される処理の一例を説明するためのフローチャートである。
 図10に示す例では、ステップSB1において、例えば船舶制御装置11Cは、操作部11Bが船舶11を後進させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11を後進させる入力操作を受け付けていない場合には、ステップSB1が繰り返し実行される。一方、操作部11Bが船舶11を後進させる入力操作を受け付けた場合には、ステップSB2に進む。
FIG. 10 shows an example of processing executed by the ship control device 11C of the second embodiment when the operation unit 11B receives an input operation for causing the ship 11 to go astern and then receives an input operation for stopping the ship 11 from going astern. It is a flow chart for explanation.
In the example shown in FIG. 10, in step SB1, for example, the vessel control device 11C determines whether or not the operating section 11B has received an input operation to move the vessel 11 backward. When the operation unit 11B has not received an input operation for moving the ship 11 astern, step SB1 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation to move the ship 11 backward, the process proceeds to step SB2.
 ステップSB2において、船舶制御装置11Cは、アクチュエータ11Aの推力発生部11A2が、船舶11を後進させる推進力を発生するように、アクチュエータ11Aを作動させる。その結果、船舶11が後進する。
 次いで、ステップSB3において、例えば船舶制御装置11Cは、操作部11Bが船舶11の後進を停止させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11の後進を停止させる入力操作を受け付けていない場合には、ステップSB3が繰り返し実行される。一方、操作部11Bが船舶11の後進を停止させる入力操作を受け付けた場合には、ステップSB4に進む。
In step SB2, the ship control device 11C operates the actuator 11A so that the thrust force generating section 11A2 of the actuator 11A generates a propulsive force for moving the ship 11 backward. As a result, the ship 11 moves astern.
Next, at step SB3, the vessel control device 11C, for example, determines whether or not the operating section 11B has received an input operation to stop the backward movement of the vessel 11 or not. When the operation unit 11B has not received an input operation for stopping the backward movement of the boat 11, step SB3 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation for stopping the backward movement of the boat 11, the process proceeds to step SB4.
 ステップSB4において、船舶制御装置11Cは、船舶11を後進させる推進力の発生をアクチュエータ11Aに停止させる。その結果、後進を継続しようとする慣性力(行き足)が生じる。そこで、図10に示す例では、ステップSB4において、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の後向き)とは逆向き(船舶11の前向き)の推力をアクチュエータ11Aが発生するように、アクチュエータ11Aを作動させる。詳細には、ステップSB4において、船舶制御装置11Cは、操作部11Bが船舶11の前向きの推力をアクチュエータ11Aに発生させる入力操作を受け付ける必要なく、船舶11の前向きの推力をアクチュエータ11Aに発生させる。その結果、船舶11に生じた慣性力によって船舶11が後向きに移動してしまうこと(行き足)を抑制することができる。
 次いで、ステップSB5では、船舶制御装置11Cが、船舶11の速度を監視する。詳細には、ステップSB5において、船舶制御装置11Cは、船速検出部11Eによって検出される船舶11の速度が第2閾値以下まで低下したか否かを判定する。船舶11の速度が第2閾値以下まで低下していない場合(つまり、船舶11の慣性力(行き足)によって船舶11が後進し続けている場合)には、ステップSB5が繰り返し実行される。一方、船舶11の速度が第2閾値以下まで低下した場合(つまり、船舶11の慣性力(行き足)による船舶11の後進が終了したと推定できる場合)には、ステップSB6に進む。
 ステップSB6において、船舶制御装置11Cが、船舶11の前向きの推力の発生をアクチュエータ11Aに停止させる。
At step SB4, the vessel control device 11C causes the actuator 11A to stop generating the propulsive force for moving the vessel 11 backward. As a result, an inertial force (going foot) that tries to continue backward movement is generated. Therefore, in the example shown in FIG. 10, in step SB4, the ship control device 11C applies thrust in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11) to the actuator 11A. Actuator 11A is operated so that Specifically, at step SB4, the ship control device 11C causes the actuator 11A to generate a forward thrust of the ship 11 without the need for the operation unit 11B to receive an input operation for generating a forward thrust of the ship 11 in the actuator 11A. As a result, it is possible to prevent the ship 11 from moving backward due to the inertial force generated in the ship 11 (going forward).
Next, at step SB5, the ship control device 11C monitors the speed of the ship 11. FIG. Specifically, at step SB5, the ship control device 11C determines whether the speed of the ship 11 detected by the ship speed detector 11E has decreased to the second threshold or less. When the speed of the ship 11 has not decreased to the second threshold or less (that is, when the ship 11 continues to move astern due to the inertial force (going foot) of the ship 11), step SB5 is repeatedly executed. On the other hand, if the speed of the ship 11 has decreased to the second threshold or less (that is, if it can be estimated that the backward movement of the ship 11 due to the inertial force (going foot) of the ship 11 has ended), the process proceeds to step SB6.
In step SB6, the ship control device 11C causes the actuator 11A to stop generating the forward thrust of the ship 11. FIG.
 つまり、図10に示す例では、アクチュエータ11Aが、船舶11を後進させる推進力を発生している時に、船舶11を後進させる推進力の発生を停止させる入力操作を操作部11Bが受け付けた場合に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の後向き)とは逆向き(船舶11の前向き)の推力をアクチュエータ11Aが発生するように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 また、図10に示す例では、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の後向き)とは逆向き(船舶11の前向き)の推力をアクチュエータ11Aが発生するように、アクチュエータ11Aを作動させる期間を、船舶11の速度に基づいて設定する。
 換言すれば、図10に示す例では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた場合(ステップSB3においてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の後向き)とは逆向き(船舶11の前向き)の推力をアクチュエータ11Aが発生するように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、図10に示す例では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性力を打ち消すための操船者の入力操作を不要にすることができる。
That is, in the example shown in FIG. 10, when the actuator 11A is generating a propulsive force for moving the ship 11 in reverse, the operation unit 11B receives an input operation for stopping the generation of the propulsive force for moving the ship 11 in reverse. , the ship control device 11C causes the actuator 11A to generate a thrust force in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11). actuates actuator 11A without having to accept
Further, in the example shown in FIG. 10, the ship control device 11C causes the actuator 11A to generate a thrust force in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11). Secondly, the period for operating the actuator 11A is set based on the speed of the ship 11 .
In other words, in the example shown in FIG. 10, when the operation unit 11B receives an input operation to stop the operation of the actuator 11A while the vessel control device 11C is operating the actuator 11A (YES is determined in step SB3). ), the ship control device 11C controls the operation unit so that the actuator 11A generates thrust in a direction (forward of the ship 11) opposite to the direction of the inertial force generated in the ship 11 (backward of the ship 11). Actuator 11A is operated without 11B needing to accept an input operation.
Therefore, in the example shown in FIG. 10, the operator's input operation for canceling the inertial force generated in the vessel 11 when the actuator 11A is shifted from the operating state to the non-operating state of the actuator 11A can be eliminated.
 図11は操作部11Bが船舶11を時計回りにその場回頭させる入力操作を受け付け、次いで、船舶11の時計回りのその場回頭を停止させる入力操作を受け付けた場合に第2実施形態の船舶制御装置11Cによって実行される処理の一例を説明するためのフローチャートである。
 図11に示す例では、ステップSC1において、例えば船舶制御装置11Cは、操作部11Bが船舶11を時計回りにその場回頭させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11を時計回りにその場回頭させる入力操作を受け付けていない場合には、ステップSC1が繰り返し実行される。一方、操作部11Bが船舶11を時計回りにその場回頭させる入力操作を受け付けた場合には、ステップSC2に進む。
FIG. 11 shows the ship control of the second embodiment when the operation unit 11B receives an input operation to turn the ship 11 clockwise on the spot, and then receives an input operation to stop the clockwise on-the-spot turning of the ship 11. 4 is a flowchart for explaining an example of processing executed by device 11C;
In the example shown in FIG. 11 , in step SC1, for example, the vessel control device 11C determines whether or not the operation unit 11B has received an input operation for turning the vessel 11 clockwise on the spot. When the operation unit 11B has not received an input operation for turning the vessel 11 clockwise on the spot, step SC1 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation to turn the ship 11 clockwise on the spot, the process proceeds to step SC2.
 ステップSC2において、船舶制御装置11Cは、アクチュエータ11Aが、船舶11を時計回りにその場回頭させるモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。その結果、船舶11が時計回りにその場回頭する。
 次いで、ステップSC3において、例えば船舶制御装置11Cは、操作部11Bが船舶11の時計回りのその場回頭を停止させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11の時計回りのその場回頭を停止させる入力操作を受け付けていない場合には、ステップSC3が繰り返し実行される。一方、操作部11Bが船舶11の時計回りのその場回頭を停止させる入力操作を受け付けた場合には、ステップSC4に進む。
In step SC2, the vessel control device 11C operates the actuator 11A so that the actuator 11A causes the vessel 11 to generate a moment that causes the vessel 11 to turn clockwise on the spot. As a result, the vessel 11 turns clockwise on the spot.
Next, at step SC3, for example, the vessel control device 11C determines whether or not the operation section 11B has received an input operation to stop the clockwise on-the-spot turning of the vessel 11 or not. When the operation unit 11B has not received an input operation for stopping the clockwise spot turning of the ship 11, step SC3 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation to stop the clockwise spot turning of the ship 11, the process proceeds to step SC4.
 ステップSC4において、船舶制御装置11Cは、船舶11を時計回りにその場回頭させるモーメントの発生をアクチュエータ11Aに停止させる。その結果、時計回りのその場回頭を継続しようとする慣性モーメントが生じる。そこで、図11に示す例では、ステップSC4において、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。詳細には、ステップSC4において、船舶制御装置11Cは、操作部11Bが反時計回りのモーメントを船舶11に発生させる入力操作を受け付ける必要なく、反時計回りのモーメントを船舶11に発生させる。その結果、船舶11に生じた慣性モーメントによって船舶11が時計回りにその場回頭しすぎてしまうことを抑制することができる。
 次いで、ステップSC5では、船舶制御装置11Cが、船舶11の角速度を監視する。詳細には、ステップSC5において、船舶制御装置11Cは、船首方位検出部11Dによって検出される船首方位に基づいて算出される船舶11の角速度が第3閾値以下まで低下したか否かを判定する。船舶11の角速度が第3閾値以下まで低下していない場合(つまり、船舶11の慣性モーメントによって船舶11が時計回りにその場回頭し続けている場合)には、ステップSC5が繰り返し実行される。一方、船舶11の角速度が第3閾値以下まで低下した場合(つまり、船舶11の慣性モーメントによる船舶11の時計回りのその場回頭が終了したと推定できる場合)には、ステップSC6に進む。
 ステップSC6において、船舶制御装置11Cが、反時計回りのモーメントの発生をアクチュエータ11Aに停止させる。
In step SC4, the vessel control device 11C causes the actuator 11A to stop generating the moment that causes the vessel 11 to turn clockwise on the spot. This results in a moment of inertia tending to continue the clockwise in-place turning. Therefore, in the example shown in FIG. 11, in step SC4, the ship control device 11C causes the ship 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia occurring in the ship 11. to operate the actuator 11A. Specifically, at step SC4, the vessel control device 11C causes the vessel 11 to generate a counterclockwise moment without the need for the operation section 11B to receive an input operation for causing the vessel 11 to generate a counterclockwise moment. As a result, it is possible to prevent the ship 11 from turning excessively clockwise on the spot due to the moment of inertia generated in the ship 11 .
Next, at step SC5, the ship control device 11C monitors the angular velocity of the ship 11. FIG. Specifically, at step SC5, the vessel control device 11C determines whether or not the angular velocity of the vessel 11 calculated based on the heading detected by the heading detection section 11D has decreased to the third threshold or less. When the angular velocity of the ship 11 has not decreased to the third threshold or less (that is, when the ship 11 continues to turn clockwise due to the moment of inertia of the ship 11), step SC5 is repeatedly executed. On the other hand, if the angular velocity of the ship 11 has decreased to the third threshold or less (that is, if it can be estimated that the ship 11 has finished turning in place clockwise due to the moment of inertia of the ship 11), the process proceeds to step SC6.
At step SC6, the ship control device 11C causes the actuator 11A to stop generating the counterclockwise moment.
 つまり、図11に示す例では、アクチュエータ11Aが、船舶11を時計回りにその場回頭させるモーメントを船舶11に発生させている時に、船舶11を時計回りにその場回頭させるモーメントの発生を停止させる入力操作を操作部11Bが受け付けた場合に、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 また、図11に示す例では、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる期間を、船舶11の角速度に基づいて設定する。
 換言すれば、図11に示す例では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた場合(ステップSC3においてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、図11に示す例では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性モーメントを打ち消すための操船者の入力操作を不要にすることができる。
That is, in the example shown in FIG. 11, when the actuator 11A is generating a moment in the ship 11 that causes the ship 11 to turn clockwise on the spot, the generation of the moment that causes the ship 11 to turn clockwise on the spot is stopped. When the operation unit 11B receives an input operation, the vessel control device 11C causes the vessel 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia occurring in the vessel 11. In addition, the actuator 11A is operated without the operation section 11B needing to receive an input operation.
Further, in the example shown in FIG. 11, the ship control device 11C causes the ship 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia occurring in the ship 11. 11A is activated based on the angular velocity of the vessel 11;
In other words, in the example shown in FIG. 11, when the operation unit 11B receives an input operation for stopping the operation of the actuator 11A while the vessel control device 11C is operating the actuator 11A (YES is determined in step SC3). ), the ship control device 11C causes the ship 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia occurring in the ship 11. To operate the actuator 11A without having to accept the operation.
Therefore, in the example shown in FIG. 11, the operator's input operation for canceling the moment of inertia generated in the ship 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated.
 図12は操作部11Bが船舶11を反時計回りにその場回頭させる入力操作を受け付け、次いで、船舶11の反時計回りのその場回頭を停止させる入力操作を受け付けた場合に第2実施形態の船舶制御装置11Cによって実行される処理の一例を説明するためのフローチャートである。
 図12に示す例では、ステップSD1において、例えば船舶制御装置11Cは、操作部11Bが船舶11を反時計回りにその場回頭させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11を反時計回りにその場回頭させる入力操作を受け付けていない場合には、ステップSD1が繰り返し実行される。一方、操作部11Bが船舶11を反時計回りにその場回頭させる入力操作を受け付けた場合には、ステップSD2に進む。
FIG. 12 shows the operation of the second embodiment when the operation unit 11B receives an input operation for turning the ship 11 counterclockwise on the spot, and then receives an input operation for stopping the counterclockwise on-the-spot turning of the ship 11. 4 is a flowchart for explaining an example of processing executed by a ship control device 11C;
In the example shown in FIG. 12, at step SD1, for example, the vessel control device 11C determines whether or not the operating section 11B has received an input operation to turn the vessel 11 counterclockwise on the spot. When the operation unit 11B has not received an input operation to turn the ship 11 counterclockwise on the spot, step SD1 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation to turn the ship 11 counterclockwise on the spot, the process proceeds to step SD2.
 ステップSD2において、船舶制御装置11Cは、アクチュエータ11Aが、船舶11を反時計回りにその場回頭させるモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。その結果、船舶11が反時計回りにその場回頭する。
 次いで、ステップSD3において、例えば船舶制御装置11Cは、操作部11Bが船舶11の反時計回りのその場回頭を停止させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11の反時計回りのその場回頭を停止させる入力操作を受け付けていない場合には、ステップSD3が繰り返し実行される。一方、操作部11Bが船舶11の反時計回りのその場回頭を停止させる入力操作を受け付けた場合には、ステップSD4に進む。
In step SD2, the vessel control device 11C operates the actuator 11A so that the actuator 11A causes the vessel 11 to generate a moment that turns the vessel 11 counterclockwise on the spot. As a result, the ship 11 turns counterclockwise on the spot.
Next, in step SD3, for example, the vessel control device 11C determines whether or not the operating section 11B has received an input operation to stop the counterclockwise on-the-spot turning of the vessel 11 or not. When the operation unit 11B has not received an input operation to stop the counterclockwise spot turning of the ship 11, step SD3 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation to stop the counterclockwise spot turning of the ship 11, the process proceeds to step SD4.
 ステップSD4において、船舶制御装置11Cは、船舶11を反時計回りにその場回頭させるモーメントの発生をアクチュエータ11Aに停止させる。その結果、反時計回りのその場回頭を継続しようとする慣性モーメントが生じる。そこで、図12に示す例では、ステップSD4において、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(反時計回り)とは逆向き(時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。詳細には、ステップSD4において、船舶制御装置11Cは、操作部11Bが時計回りのモーメントを船舶11に発生させる入力操作を受け付ける必要なく、時計回りのモーメントを船舶11に発生させる。その結果、船舶11に生じた慣性モーメントによって船舶11が反時計回りにその場回頭しすぎてしまうことを抑制することができる。
 次いで、ステップSD5では、船舶制御装置11Cが、船舶11の角速度を監視する。詳細には、ステップSD5において、船舶制御装置11Cは、船首方位検出部11Dによって検出される船首方位に基づいて算出される船舶11の角速度が第3閾値以下まで低下したか否かを判定する。船舶11の角速度が第3閾値以下まで低下していない場合(つまり、船舶11の慣性モーメントによって船舶11が反時計回りにその場回頭し続けている場合)には、ステップSD5が繰り返し実行される。一方、船舶11の角速度が第3閾値以下まで低下した場合(つまり、船舶11の慣性モーメントによる船舶11の反時計回りのその場回頭が終了したと推定できる場合)には、ステップSD6に進む。
 ステップSD6において、船舶制御装置11Cが、時計回りのモーメントの発生をアクチュエータ11Aに停止させる。
In step SD4, the vessel control device 11C causes the actuator 11A to stop generating the moment that causes the vessel 11 to turn counterclockwise on the spot. As a result, there is a moment of inertia that tends to continue the counterclockwise in-situ turning. Therefore, in the example shown in FIG. 12, in step SD4, the vessel control device 11C causes the vessel 11 to generate a moment (clockwise) opposite to the direction (counterclockwise) of the moment of inertia occurring in the vessel 11. to operate the actuator 11A. Specifically, in step SD4, the vessel control device 11C causes the vessel 11 to generate a clockwise moment without the need for the operation section 11B to receive an input operation for causing the vessel 11 to generate a clockwise moment. As a result, it is possible to prevent the ship 11 from turning too counterclockwise on the spot due to the moment of inertia generated in the ship 11 .
Next, at step SD5, the ship control device 11C monitors the angular velocity of the ship 11. FIG. Specifically, in step SD5, the ship control device 11C determines whether or not the angular velocity of the ship 11 calculated based on the heading detected by the heading detection section 11D has decreased to the third threshold or less. When the angular velocity of the ship 11 has not decreased to the third threshold or less (that is, when the ship 11 continues to turn counterclockwise on the spot due to the moment of inertia of the ship 11), step SD5 is repeatedly executed. . On the other hand, when the angular velocity of the ship 11 has decreased to the third threshold or less (that is, when it can be estimated that the counterclockwise on-the-spot turning of the ship 11 due to the moment of inertia of the ship 11 has ended), the process proceeds to step SD6.
At step SD6, the ship control device 11C causes the actuator 11A to stop generating the clockwise moment.
 つまり、図12に示す例では、アクチュエータ11Aが、船舶11を反時計回りにその場回頭させるモーメントを船舶11に発生させている時に、船舶11を反時計回りにその場回頭させるモーメントの発生を停止させる入力操作を操作部11Bが受け付けた場合に、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(反時計回り)とは逆向き(時計回り)のモーメントを船舶11に発生させるように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 また、図12に示す例では、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(反時計回り)とは逆向き(時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる期間を、船舶11の角速度に基づいて設定する。
 換言すれば、図12に示す例では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた場合(ステップSD3においてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(反時計回り)とは逆向き(時計回り)のモーメントを船舶11に発生させるように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、図12に示す例では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性モーメントを打ち消すための操船者の入力操作を不要にすることができる。
That is, in the example shown in FIG. 12, when the actuator 11A is generating a moment to turn the ship 11 counterclockwise on the spot, the moment causing the ship 11 to turn counterclockwise on the spot is generated. When the operation unit 11B receives an input operation to stop, the ship control device 11C generates a moment (clockwise) on the ship 11 opposite to the direction of the moment of inertia (counterclockwise) generated in the ship 11. The actuator 11A is operated without the need for the operation unit 11B to receive the input operation.
Further, in the example shown in FIG. 12, the ship control device 11C causes the ship 11 to generate a moment (clockwise) opposite to the direction of the moment of inertia (counterclockwise) occurring in the ship 11, and the actuator 11A is activated based on the angular velocity of the vessel 11;
In other words, in the example shown in FIG. 12, when the operation unit 11B receives an input operation to stop the operation of the actuator 11A while the vessel control device 11C is operating the actuator 11A (YES is determined in step SD3). ), the ship control device 11C causes the ship 11 to generate a moment in the opposite direction (clockwise direction) to the direction of the moment of inertia (counterclockwise direction) generated in the ship 11 by the operation unit 11B. To operate the actuator 11A without needing to accept an operation.
Therefore, in the example shown in FIG. 12, the operator's input operation for canceling the moment of inertia generated in the vessel 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated.
 図13は操作部11Bが船舶11を前進させかつ時計回りに旋回させる入力操作を受け付け、次いで、船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けた場合に第2実施形態の船舶制御装置11Cによって実行される処理の一例を説明するためのフローチャートである。
 図13に示す例では、ステップSE1において、例えば船舶制御装置11Cは、操作部11Bが船舶11を前進させかつ時計回りに旋回させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11を前進させかつ時計回りに旋回させる入力操作を受け付けていない場合には、ステップSE1が繰り返し実行される。一方、操作部11Bが船舶11を前進させかつ時計回りに旋回させる入力操作を受け付けた場合には、ステップSE2に進む。
FIG. 13 shows the ship of the second embodiment when the operation unit 11B receives an input operation to move the ship 11 forward and turn clockwise, and then receives an input operation to stop the ship 11 from moving forward and turning clockwise. 4 is a flowchart for explaining an example of processing executed by the control device 11C;
In the example shown in FIG. 13, in step SE1, for example, the vessel control device 11C determines whether or not the operation section 11B has received an input operation to move the vessel 11 forward and turn it clockwise. When the operation unit 11B has not received an input operation to move the ship 11 forward and turn it clockwise, step SE1 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation to move the ship 11 forward and turn it clockwise, the process proceeds to step SE2.
 ステップSE2において、船舶制御装置11Cは、アクチュエータ11Aが、船舶11を前進させる推進力を発生し、かつ、船舶11を時計回りに旋回させるモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。その結果、船舶11が前進しかつ時計回りに旋回する。
 次いで、ステップSE3において、例えば船舶制御装置11Cは、操作部11Bが船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けていない場合には、ステップSE3が繰り返し実行される。一方、操作部11Bが船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けた場合には、ステップSE4に進む。
In step SE2, the ship control device 11C operates the actuator 11A so that the actuator 11A generates a propulsive force that moves the ship 11 forward and a moment that turns the ship 11 clockwise. . As a result, the vessel 11 moves forward and turns clockwise.
Next, at step SE3, for example, the vessel control device 11C determines whether or not the operating section 11B has received an input operation to stop the forward movement and clockwise turning of the vessel 11. When the operation unit 11B has not received an input operation to stop the ship 11 from moving forward and turning clockwise, step SE3 is repeatedly executed. On the other hand, when the operation unit 11B receives an input operation to stop the ship 11 from moving forward and turning clockwise, the process proceeds to step SE4.
 ステップSE4において、船舶制御装置11Cは、船舶11を前進させる推進力の発生および船舶11を時計回りに旋回させるモーメントの発生をアクチュエータ11Aに停止させる。その結果、前進を継続しようとする慣性力および時計回りの旋回を継続しようとする慣性モーメントが生じる。そこで、図13に示す例では、ステップSE4において、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。詳細には、ステップSE4において、船舶制御装置11Cは、操作部11Bが船舶11の後向きの推力を発生させかつ反時計回りのモーメントを船舶11に発生させる入力操作を受け付ける必要なく、船舶11の後向きの推力をアクチュエータ11Aに発生させると共に反時計回りのモーメントを船舶11に発生させる。その結果、船舶11に生じた慣性力によって船舶11が前向きに移動してしまうこと、および、船舶11に生じた慣性モーメントによって船舶11が時計回りに旋回しすぎてしまうことを抑制することができる。
 次いで、ステップSE5では、船舶制御装置11Cが、船舶11の速度を監視する。詳細には、ステップSE5において、船舶制御装置11Cは、船速検出部11Eによって検出される船舶11の速度が第4閾値以下まで低下したか否かを判定する。船舶11の速度が第4閾値以下まで低下していない場合(つまり、船舶11の慣性力によって船舶11が前進し、かつ、船舶11の慣性モーメントによって船舶11が時計回りに旋回し続けている場合)には、ステップSE5が繰り返し実行される。一方、船舶11の速度が第4閾値以下まで低下した場合(つまり、船舶11の慣性力による船舶11の前進および船舶11の慣性モーメントによる船舶11の時計回りの旋回が終了したと推定できる場合)には、ステップSE6に進む。
 ステップSE6において、船舶制御装置11Cが、船舶11の後向きの推力の発生および反時計回りのモーメントの発生をアクチュエータ11Aに停止させる。
In step SE4, the vessel control device 11C causes the actuator 11A to stop generating the propulsive force that moves the vessel 11 forward and the moment that rotates the vessel 11 clockwise. As a result, an inertial force that tends to keep moving forward and a moment of inertia that tends to keep clockwise turning are generated. Therefore, in the example shown in FIG. 13, in step SE4, the ship control device 11C applies thrust in the opposite direction (rearward direction of the ship 11) to the direction of the inertia force generated in the ship 11 (forwardward direction of the ship 11) to the actuator 11A. The actuator 11A is actuated so that the moment of inertia generated in the ship 11 is generated in the opposite direction (counterclockwise direction) to the direction of the moment of inertia (clockwise direction) generated in the ship 11 . Specifically, in step SE4, the ship control device 11C does not require the operation unit 11B to receive an input operation that causes the ship 11 to generate a backward thrust and a counterclockwise moment to the ship 11. is generated in the actuator 11A and a counterclockwise moment is generated in the ship 11. As a result, it is possible to prevent the ship 11 from moving forward due to the inertial force generated in the ship 11 and from turning the ship 11 excessively clockwise due to the moment of inertia generated in the ship 11. .
Next, at step SE5, the ship control device 11C monitors the speed of the ship 11. FIG. Specifically, in step SE5, the vessel control device 11C determines whether or not the velocity of the vessel 11 detected by the vessel velocity detector 11E has decreased to the fourth threshold or less. When the speed of the ship 11 has not decreased to the fourth threshold or less (that is, when the ship 11 moves forward due to the inertial force of the ship 11 and the ship 11 continues to turn clockwise due to the moment of inertia of the ship 11 ), step SE5 is repeatedly executed. On the other hand, when the speed of the ship 11 has decreased to the fourth threshold or less (that is, when it can be estimated that the forward movement of the ship 11 due to the inertial force of the ship 11 and the clockwise turning of the ship 11 due to the moment of inertia of the ship 11 have ended) , go to step SE6.
In step SE6, the ship control device 11C causes the actuator 11A to stop the generation of the backward thrust and the counterclockwise moment of the ship 11 .
 つまり、図13に示す例では、アクチュエータ11Aが、船舶11を前進させる推進力を発生しており、かつ、船舶11を時計回りに旋回させるモーメントを船舶11に発生させている時に、船舶11を前進させる推進力および船舶11を時計回りに旋回させるモーメントの発生を停止させる入力操作を操作部11Bが受け付けた場合に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 また、図13に示す例では、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる期間を、船舶11の速度に基づいて設定する。
 換言すれば、図13に示す例では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた場合(ステップSE3においてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、図13に示す例では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性力および慣性モーメントを打ち消すための操船者の入力操作を不要にすることができる。
That is, in the example shown in FIG. 13, when the actuator 11A is generating a propulsive force to move the ship 11 forward and generating a moment to turn the ship 11 clockwise, the ship 11 is When the operation unit 11B receives an input operation to stop the generation of the forward propulsive force and the moment that rotates the ship 11 clockwise, the ship control device 11C controls the direction of the inertial force generated in the ship 11 (the direction of the inertial force of the ship 11 (forward of the ship 11) so that the actuator 11A generates a thrust in the opposite direction (backward of the ship 11), and the direction (counterclockwise) of the moment of inertia occurring in the ship 11 (clockwise) The actuator 11A is actuated so as to generate a moment in the ship 11 without the need for the operation section 11B to receive an input operation.
In the example shown in FIG. 13, the ship control device 11C controls the actuator 11A to generate a thrust force in the opposite direction (backward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (forward direction of the ship 11). In addition, the period during which the actuator 11A is operated so as to generate a moment (counterclockwise) in the ship 11 that is opposite to the direction (clockwise) of the moment of inertia generated in the ship 11 is defined by the speed of the ship 11. set based on
In other words, in the example shown in FIG. 13, when the operation unit 11B receives an input operation to stop the operation of the actuator 11A while the vessel control device 11C is operating the actuator 11A (it is determined as YES in step SE3). ), the vessel control device 11C causes the actuator 11A to generate thrust in the opposite direction (rearward of the vessel 11) to the direction of the inertial force generated in the vessel 11 (forwardward of the vessel 11), and The actuator 11A is operated without the need for the operation unit 11B to receive an input operation so as to generate a moment (counterclockwise) in the ship 11 in the opposite direction (clockwise) of the moment of inertia generated in the ship 11. .
Therefore, in the example shown in FIG. 13, the operator's input operation for canceling the inertial force and moment of inertia generated in the ship 11 when the actuator 11A is shifted from the operating state to the non-operating state of the actuator 11A can be eliminated. .
 図14は操作部11Bが船舶11を後進させかつ反時計回りに旋回させる入力操作を受け付け、次いで、船舶11の後進および反時計回りの旋回を停止させる入力操作を受け付けた場合に第2実施形態の船舶制御装置11Cによって実行される処理の一例を説明するためのフローチャートである。
 図14に示す例では、ステップSF1において、例えば船舶制御装置11Cは、操作部11Bが船舶11を後進させかつ反時計回りに旋回させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11を後進させかつ反時計回りに旋回させる入力操作を受け付けていない場合には、ステップSF1が繰り返し実行される。一方、操作部11Bが船舶11を後進させかつ反時計回りに旋回させる入力操作を受け付けた場合には、ステップSF2に進む。
FIG. 14 shows the second embodiment when the operation unit 11B receives an input operation to cause the ship 11 to move backward and turn counterclockwise, and then receives an input operation to stop the ship 11 from moving backward and turning counterclockwise. is a flow chart for explaining an example of a process executed by the ship control device 11C.
In the example shown in FIG. 14, in step SF1, for example, the vessel control device 11C determines whether or not the operating section 11B has received an input operation for causing the vessel 11 to move backward and turn counterclockwise. When the operation unit 11B has not received an input operation for causing the ship 11 to move backward and turn counterclockwise, step SF1 is repeatedly executed. On the other hand, if the operation unit 11B has received an input operation for causing the ship 11 to move backward and turn counterclockwise, the process proceeds to step SF2.
 ステップSF2において、船舶制御装置11Cは、アクチュエータ11Aが、船舶11を後進させる推進力を発生し、かつ、船舶11を反時計回りに旋回させるモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。その結果、船舶11が後進しかつ反時計回りに旋回する。
 次いで、ステップSF3において、例えば船舶制御装置11Cは、操作部11Bが船舶11の後進および反時計回りの旋回を停止させる入力操作を受け付けたか否かを判定する。操作部11Bが船舶11の後進および反時計回りの旋回を停止させる入力操作を受け付けていない場合には、ステップSF3が繰り返し実行される。一方、操作部11Bが船舶11の後進および反時計回りの旋回を停止させる入力操作を受け付けた場合には、ステップSF4に進む。
In step SF2, the ship control device 11C operates the actuator 11A so that the actuator 11A generates a propulsive force to move the ship 11 backward and a moment to turn the ship 11 counterclockwise. Let As a result, the vessel 11 moves astern and turns counterclockwise.
Next, in step SF3, for example, the vessel control device 11C determines whether or not the operation section 11B has received an input operation to stop the vessel 11 from moving backward and turning counterclockwise. When the operation unit 11B has not received an input operation to stop the backward movement and counterclockwise turning of the vessel 11, step SF3 is repeatedly executed. On the other hand, if the operation unit 11B has received an input operation for stopping the backward movement and counterclockwise turning of the vessel 11, the process proceeds to step SF4.
 ステップSF4において、船舶制御装置11Cは、船舶11を後進させる推進力の発生および船舶11を反時計回りに旋回させるモーメントの発生をアクチュエータ11Aに停止させる。その結果、後進を継続しようとする慣性力および反時計回りの旋回を継続しようとする慣性モーメントが生じる。そこで、図14に示す例では、ステップSF4において、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の後向き)とは逆向き(船舶11の前向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(反時計回り)とは逆向き(時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。詳細には、ステップSF4において、船舶制御装置11Cは、操作部11Bが船舶11の前向きの推力を発生させかつ時計回りのモーメントを船舶11に発生させる入力操作を受け付ける必要なく、船舶11の前向きの推力をアクチュエータ11Aに発生させると共に時計回りのモーメントを船舶11に発生させる。その結果、船舶11に生じた慣性力によって船舶11が後向きに移動してしまうこと、および、船舶11に生じた慣性モーメントによって船舶11が反時計回りに旋回しすぎてしまうことを抑制することができる。
 次いで、ステップSF5では、船舶制御装置11Cが、船舶11の速度を監視する。詳細には、ステップSF5において、船舶制御装置11Cは、船速検出部11Eによって検出される船舶11の速度が第4閾値以下まで低下したか否かを判定する。船舶11の速度が第4閾値以下まで低下していない場合(つまり、船舶11の慣性力によって船舶11が後進し、かつ、船舶11の慣性モーメントによって船舶11が反時計回りに旋回し続けている場合)には、ステップSF5が繰り返し実行される。一方、船舶11の速度が第4閾値以下まで低下した場合(つまり、船舶11の慣性力による船舶11の後進および船舶11の慣性モーメントによる船舶11の反時計回りの旋回が終了したと推定できる場合)には、ステップSF6に進む。
 ステップSF6において、船舶制御装置11Cが、船舶11の前向きの推力の発生および時計回りのモーメントの発生をアクチュエータ11Aに停止させる。
In step SF4, the vessel control device 11C causes the actuator 11A to stop generating the propulsive force for moving the vessel 11 backward and the moment for turning the vessel 11 counterclockwise. As a result, an inertial force that tends to continue backward movement and an inertial moment that tends to continue counterclockwise turning are generated. Therefore, in the example shown in FIG. 14, in step SF4, the ship control device 11C applies a thrust force in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11) to the actuator 11A. The actuator 11A is actuated so that the moment of inertia generated in the ship 11 (counterclockwise) is generated in the ship 11 in the opposite direction (clockwise). Specifically, in step SF4, the ship control device 11C controls the forward thrust of the ship 11 without the operation unit 11B needing to receive an input operation that causes the ship 11 to generate a forward thrust and a clockwise moment to the ship 11. A thrust force is generated in the actuator 11A and a clockwise moment is generated in the ship 11 . As a result, it is possible to prevent the ship 11 from moving backward due to the inertial force generated in the ship 11 and from turning the ship 11 excessively counterclockwise due to the moment of inertia generated in the ship 11. can.
Next, in step SF5, the ship control device 11C monitors the speed of the ship 11. FIG. Specifically, in step SF5, the ship control device 11C determines whether or not the speed of the ship 11 detected by the ship speed detector 11E has decreased to the fourth threshold or less. If the speed of the ship 11 has not decreased to the fourth threshold or less (that is, the inertial force of the ship 11 causes the ship 11 to go astern, and the moment of inertia of the ship 11 causes the ship 11 to continue turning counterclockwise). case), step SF5 is repeatedly executed. On the other hand, when the speed of the ship 11 decreases to the fourth threshold or less (that is, when it can be estimated that the ship 11 moves backward due to the inertial force of the ship 11 and the counterclockwise turning of the ship 11 due to the moment of inertia of the ship 11 ends) ), go to step SF6.
In step SF6, the ship control device 11C causes the actuator 11A to stop generating forward thrust and clockwise moment of the ship 11. FIG.
 つまり、図14に示す例では、アクチュエータ11Aが、船舶11を後進させる推進力を発生しており、かつ、船舶11を反時計回りに旋回させるモーメントを船舶11に発生させている時に、船舶11を後進させる推進力および船舶11を反時計回りに旋回させるモーメントの発生を停止させる入力操作を操作部11Bが受け付けた場合に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の後向き)とは逆向き(船舶11の前向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(反時計回り)とは逆向き(時計回り)のモーメントを船舶11に発生させるように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 また、図14に示す例では、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の後向き)とは逆向き(船舶11の前向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(反時計回り)とは逆向き(時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる期間を、船舶11の速度に基づいて設定する。
 換言すれば、図14に示す例では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた場合(ステップSF3においてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の後向き)とは逆向き(船舶11の前向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(反時計回り)とは逆向き(時計回り)のモーメントを船舶11に発生させるように、操作部11Bが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、図14に示す例では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性力および慣性モーメントを打ち消すための操船者の入力操作を不要にすることができる。
That is, in the example shown in FIG. 14, when the actuator 11A is generating a propulsive force that causes the ship 11 to move astern and also generates a moment that causes the ship 11 to turn counterclockwise, the ship 11 When the operation unit 11B receives an input operation to stop the generation of the propulsive force that causes the ship to go astern and the moment that turns the ship 11 counterclockwise, the ship control device 11C changes the direction of the inertial force generated in the ship 11 ( The actuator 11A generates a thrust in the direction opposite to (backward of the ship 11) (forward of the ship 11), and in the opposite direction (clockwise) to the direction of the moment of inertia occurring in the ship 11 (counterclockwise). ) is generated in the ship 11, the actuator 11A is operated without the need for the operation unit 11B to receive the input operation.
In the example shown in FIG. 14, the ship control device 11C controls the actuator 11A to generate a thrust force in the opposite direction (forward direction of the ship 11) to the direction of the inertial force generated in the ship 11 (backward direction of the ship 11). In addition, the period during which the actuator 11A is operated so as to generate a moment (clockwise) in the ship 11 opposite to the direction of the moment of inertia (counterclockwise) generated in the ship 11 is defined by the speed of the ship 11. set based on
In other words, in the example shown in FIG. 14, when the operation unit 11B receives an input operation to stop the operation of the actuator 11A while the vessel control device 11C is operating the actuator 11A (it is determined as YES in step SF3). ), the vessel control device 11C causes the actuator 11A to generate thrust in the opposite direction (forward of the vessel 11) to the direction of the inertial force generated in the vessel 11 (rearward of the vessel 11), and The actuator 11A is operated without the need for the operation unit 11B to receive an input operation so as to generate a moment (clockwise) in the ship 11 in the opposite direction (counterclockwise) of the moment of inertia generated in the ship 11. .
Therefore, in the example shown in FIG. 14, the operator's input operation for canceling the inertial force and moment of inertia generated in the ship 11 when the actuator 11A is shifted from the operating state to the non-operating state of the actuator 11A can be eliminated. .
<第3実施形態>
 以下、本発明の操船システム、船舶制御装置、船舶制御方法およびプログラムの第3実施形態について説明する。
 第3実施形態の操船システム1は、後述する点を除き、上述した第1実施形態の操船システム1と同様に構成されている。従って、第3実施形態の操船システム1によれば、後述する点を除き、上述した第1実施形態の操船システム1と同様の効果を奏することができる。
<Third Embodiment>
A third embodiment of a ship maneuvering system, a ship control device, a ship control method, and a program according to the present invention will be described below.
The ship maneuvering system 1 of the third embodiment is configured in the same manner as the ship maneuvering system 1 of the first embodiment described above, except for the points described later. Therefore, according to the marine vessel maneuvering system 1 of the third embodiment, it is possible to obtain the same effects as the marine vessel maneuvering system 1 of the first embodiment described above, except for the points described later.
 図15は第3実施形態の船舶制御装置11Cが適用された船舶11を備える操船システム1の一例を示す図である。
 図15に示す例では、操船システム1が、船舶11と、入力装置12とを備えている。船舶11は、アクチュエータ11Aと、操作部11Bと、船舶制御装置11Cと、船首方位検出部11Dと、船速検出部11Eと、船舶位置検出部11Fと、通信部11Gとを備えている。アクチュエータ11Aは、図1に示すアクチュエータ11Aと同様に構成されている。操作部11Bは、図1に示す操作部11Bと同様に構成されている。船舶制御装置11Cは、図1に示す船舶制御装置11Cと同様に構成されている。船首方位検出部11Dは、図1に示す船首方位検出部11Dと同様に構成されている。船速検出部11Eは、図1に示す船速検出部11Eと同様に構成されている。船舶位置検出部11Fは、図1に示す船舶位置検出部11Fと同様に構成されている。通信部11Gは、入力装置12との通信を行う。
 入力装置12は、船舶11とは別個に設けられている。つまり、入力装置12は、例えば船舶11から離れた位置において船舶11の操船者によって利用可能である。入力装置12は、操作部12Aと、通信部12Bとを備えている。操作部12Aは、船舶11の操船者の入力操作を受け付ける。通信部12Bは、操作部12Aが受け付けた船舶11の操船者の入力操作を示す情報を船舶11に送信する。船舶11の通信部11Gは、入力装置12の通信部12Bによって送信された入力操作を示す情報を受信する。船舶11の船舶制御装置11Cは、入力装置12の操作部12Aが受け付けた入力操作に基づいてアクチュエータ11Aを作動させる。
FIG. 15 is a diagram showing an example of a ship maneuvering system 1 including a ship 11 to which a ship control device 11C of the third embodiment is applied.
In the example shown in FIG. 15 , a ship maneuvering system 1 includes a ship 11 and an input device 12 . The vessel 11 includes an actuator 11A, an operation section 11B, a vessel control device 11C, a heading detection section 11D, a vessel speed detection section 11E, a vessel position detection section 11F, and a communication section 11G. The actuator 11A is configured similarly to the actuator 11A shown in FIG. The operating section 11B is configured similarly to the operating section 11B shown in FIG. 11 C of ship control apparatuses are comprised similarly to 11 C of ship control apparatuses shown in FIG. The heading detection section 11D is configured in the same manner as the heading detection section 11D shown in FIG. The boat speed detector 11E is configured in the same manner as the boat speed detector 11E shown in FIG. The vessel position detection section 11F is configured in the same manner as the vessel position detection section 11F shown in FIG. The communication unit 11G communicates with the input device 12 .
The input device 12 is provided separately from the ship 11 . That is, the input device 12 can be used by the operator of the vessel 11 at a location remote from the vessel 11, for example. The input device 12 includes an operation section 12A and a communication section 12B. The operation unit 12</b>A receives an input operation from the operator of the ship 11 . The communication unit 12B transmits to the ship 11 information indicating input operations by the operator of the ship 11 received by the operation unit 12A. The communication unit 11</b>G of the ship 11 receives the information indicating the input operation transmitted by the communication unit 12</b>B of the input device 12 . The ship control device 11C of the ship 11 operates the actuator 11A based on the input operation received by the operation unit 12A of the input device 12. FIG.
 入力装置12の操作部12Aが船舶11を前進させる入力操作を受け付け、次いで、船舶11の前進を停止させる入力操作を受け付けた場合に第3実施形態の船舶制御装置11Cによって実行される処理では、図3のステップS11に相当するステップにおいて、例えば船舶制御装置11Cは、入力装置12の操作部12Aが船舶11を前進させる入力操作を受け付けたか否かを判定する。操作部12Aが船舶11を前進させる入力操作を受け付けていない場合には、図3のステップS11に相当するステップが繰り返し実行される。一方、操作部12Aが船舶11を前進させる入力操作を受け付けた場合には、図3のステップS12に相当するステップに進む。 In the process executed by the ship control device 11C of the third embodiment when the operation unit 12A of the input device 12 receives an input operation for advancing the ship 11 and then receives an input operation for stopping the advance of the ship 11, In a step corresponding to step S11 in FIG. 3 , for example, the vessel control device 11C determines whether or not the operating section 12A of the input device 12 has received an input operation to move the vessel 11 forward. When the operation unit 12A has not received an input operation to move the ship 11 forward, the step corresponding to step S11 in FIG. 3 is repeatedly executed. On the other hand, when the operation unit 12A receives an input operation for moving the ship 11 forward, the process proceeds to a step corresponding to step S12 in FIG.
 図3のステップS12に相当するステップにおいて、船舶制御装置11Cは、アクチュエータ11Aの推力発生部11A2が、船舶11を前進させる推進力を発生するように、アクチュエータ11Aを作動させる。その結果、図2(C)に示すように、船舶11が前進する(つまり、船舶11が図2の上向きに移動する)。
 次いで、図3のステップS13に相当するステップにおいて、例えば船舶制御装置11Cは、入力装置12の操作部12Aが船舶11の前進を停止させる入力操作を受け付けたか否かを判定する。操作部12Aが船舶11の前進を停止させる入力操作を受け付けていない場合には、図3のステップS13に相当するステップが繰り返し実行される。一方、操作部12Aが船舶11の前進を停止させる入力操作を受け付けた場合には、図3のステップS14に相当するステップに進む。
In a step corresponding to step S12 in FIG. 3, the ship control device 11C operates the actuator 11A so that the thrust force generating section 11A2 of the actuator 11A generates a propulsive force that moves the ship 11 forward. As a result, as shown in FIG. 2(C), the ship 11 moves forward (that is, the ship 11 moves upward in FIG. 2).
Next, in a step corresponding to step S13 in FIG. 3, the vessel control device 11C, for example, determines whether or not the operating section 12A of the input device 12 has received an input operation to stop the forward movement of the vessel 11. When the operation unit 12A has not received an input operation to stop the forward movement of the ship 11, the step corresponding to step S13 in FIG. 3 is repeatedly executed. On the other hand, when the operation unit 12A receives an input operation to stop the forward movement of the ship 11, the process proceeds to a step corresponding to step S14 in FIG.
 図3のステップS14に相当するステップにおいて、船舶制御装置11Cは、船舶11を前進させる推進力の発生をアクチュエータ11Aに停止させる。その結果、前進を継続しようとする図2の上向きの慣性力(行き足)が生じる。そこで、第3実施形態の操船システム1では、図3のステップS14に相当するステップにおいて、船舶制御装置11Cは、船舶11に生じている慣性力の向き(図2の上向き)とは逆向き(図2の下向き)の推力をアクチュエータ11Aが発生するように、アクチュエータ11Aを作動させる。詳細には、図3のステップS14に相当するステップにおいて、船舶制御装置11Cは、操作部12Aが図2の下向きの推力をアクチュエータ11Aに発生させる入力操作を受け付ける必要なく、図2の下向きの推力をアクチュエータ11Aに発生させる。その結果、図2(A)および図2(B)に示すように、船舶11に生じた慣性力によって船舶11が図2の上向きに移動してしまうこと(行き足)を抑制することができる。 In a step corresponding to step S14 in FIG. 3, the vessel control device 11C causes the actuator 11A to stop generating the propulsive force that propels the vessel 11 forward. As a result, an upward inertial force (going foot) in FIG. 2 is generated, which tends to continue forward movement. Therefore, in the ship maneuvering system 1 of the third embodiment, in a step corresponding to step S14 in FIG. The actuator 11A is actuated so that the actuator 11A generates a thrust (downward in FIG. 2). Specifically, in a step corresponding to step S14 in FIG. 3, the vessel control device 11C does not require the operation unit 12A to receive an input operation for causing the actuator 11A to generate a downward thrust force in FIG. is generated in the actuator 11A. As a result, as shown in FIGS. 2(A) and 2(B), it is possible to prevent the ship 11 from moving upward in FIG. .
 次いで、図3のステップS15に相当するステップにおいて、船舶制御装置11Cが、アクチュエータ11Aの作動を停止させる入力操作を入力装置12の操作部12Aが受け付けた時(つまり、図3のステップS13に相当するステップにおいて操作部12Aが船舶11の前進を停止させる入力操作を受け付けたと判定された時)からの経過時間を監視する。詳細には、図3のステップS15に相当するステップにおいて、船舶制御装置11Cは、アクチュエータ11Aの作動を停止させる入力操作を操作部12Aが受け付けた時からの経過時間が第1閾値以上になったか否かを判定する。経過時間が第1閾値以上になっていない場合(つまり、船舶11の慣性力(行き足)によって船舶11が図2の上向きに移動するおそれがあると推定できる場合)には、図3のステップS15に相当するステップが繰り返し実行される。一方、経過時間が第1閾値以上になった場合(つまり、船舶11の慣性力(行き足)によって船舶11が図2の上向きに移動するおそれがないと推定できる場合)には、図3のステップS16に相当するステップに進む。
 図3のステップS16に相当するステップにおいて、船舶制御装置11Cが、図2の下向きの推力の発生をアクチュエータ11Aに停止させる。
Next, in a step corresponding to step S15 in FIG. 3, when the operation unit 12A of the input device 12 receives an input operation for stopping the operation of the actuator 11A, the vessel control device 11C (that is, step S13 in FIG. The elapsed time from when it is determined that the operation unit 12A has received an input operation to stop the forward movement of the ship 11 in the step to be performed) is monitored. Specifically, in a step corresponding to step S15 in FIG. 3, the vessel control device 11C determines whether the elapsed time from when the operation unit 12A received an input operation to stop the operation of the actuator 11A has become equal to or greater than the first threshold value. determine whether or not If the elapsed time is not equal to or greater than the first threshold (that is, if it can be estimated that the ship 11 may move upward in FIG. 2 due to the inertial force (going foot) of the ship 11), the steps in FIG. A step corresponding to S15 is repeatedly executed. On the other hand, when the elapsed time is equal to or greater than the first threshold value (that is, when it can be estimated that there is no risk of the ship 11 moving upward in FIG. 2 due to the inertial force (going foot) of the ship 11), the The process proceeds to a step corresponding to step S16.
In a step corresponding to step S16 in FIG. 3, the vessel control device 11C causes the actuator 11A to stop generating downward thrust in FIG.
 つまり、第3実施形態の操船システム1では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を入力装置12の操作部12Aが受け付けた場合(図3のステップS13に相当するステップにおいてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(図2の上向き)とは逆向き(図2の下向き)の推力をアクチュエータ11Aが発生するように、操作部12Aが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、第3実施形態の操船システム1では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性力を打ち消すための操船者の入力操作を不要にすることができる。
 また、第3実施形態の操船システム1では、船舶11から離れている操船者が船舶11に生じる慣性力を把握できなくても、船舶11の状態をアクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態に適切に移行させることができる。
That is, in the marine vessel maneuvering system 1 of the third embodiment, when the operation unit 12A of the input device 12 receives an input operation to stop the operation of the actuator 11A while the vessel control device 11C is operating the actuator 11A (Fig. 3 2), the vessel control device 11C controls the direction of the inertial force generated in the vessel 11 (upward in FIG. 2) opposite to the direction (downward in FIG. 2). The actuator 11A is operated so that the actuator 11A generates thrust without the need for the operation unit 12A to receive an input operation.
Therefore, in the marine vessel maneuvering system 1 of the third embodiment, the operator's input operation for canceling the inertial force generated in the marine vessel 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated. .
Further, in the marine vessel maneuvering system 1 of the third embodiment, even if the operator who is away from the marine vessel 11 cannot grasp the inertial force generated in the marine vessel 11, the state of the marine vessel 11 can be changed from the operating state of the actuator 11A to the deactivation of the actuator 11A. state can be transitioned appropriately.
 入力装置12の操作部12Aが船舶11を時計回りにその場回頭させる入力操作を受け付け、次いで、船舶11の時計回りのその場回頭を停止させる入力操作を受け付けた場合に第3実施形態の船舶制御装置11Cによって実行される処理では、図5のステップS31に相当するステップにおいて、例えば船舶制御装置11Cは、入力装置12の操作部12Aが船舶11を時計回りにその場回頭させる入力操作を受け付けたか否かを判定する。操作部12Aが船舶11を時計回りにその場回頭させる入力操作を受け付けていない場合には、図5のステップS31に相当するステップが繰り返し実行される。一方、操作部12Aが船舶11を時計回りにその場回頭させる入力操作を受け付けた場合には、図5のステップS32に相当するステップに進む。 When the operation unit 12A of the input device 12 receives an input operation to turn the ship 11 clockwise on the spot, and then receives an input operation to stop the clockwise on-the-spot turning of the ship 11, the ship of the third embodiment In the process executed by the control device 11C, in a step corresponding to step S31 in FIG. 5, for example, the ship control device 11C receives an input operation in which the operation unit 12A of the input device 12 turns the ship 11 clockwise on the spot. determine whether or not When the operation unit 12A has not received an input operation for turning the vessel 11 clockwise on the spot, the step corresponding to step S31 in FIG. 5 is repeatedly executed. On the other hand, when the operation unit 12A receives an input operation for turning the ship 11 clockwise on the spot, the process proceeds to a step corresponding to step S32 in FIG.
 図5のステップS32に相当するステップにおいて、船舶制御装置11Cは、アクチュエータ11Aが、船舶11を時計回りにその場回頭させるモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。その結果、船舶11が時計回りにその場回頭する。
 次いで、図5のステップS33に相当するステップにおいて、例えば船舶制御装置11Cは、入力装置12の操作部12Aが船舶11の時計回りのその場回頭を停止させる入力操作を受け付けたか否かを判定する。操作部12Aが船舶11の時計回りのその場回頭を停止させる入力操作を受け付けていない場合には、図5のステップS33に相当するステップが繰り返し実行される。一方、操作部12Aが船舶11の時計回りのその場回頭を停止させる入力操作を受け付けた場合には、図5のステップS34に相当するステップに進む。
In a step corresponding to step S32 in FIG. 5, the vessel control device 11C operates the actuator 11A so that the actuator 11A causes the vessel 11 to generate a moment that causes the vessel 11 to turn clockwise on the spot. As a result, the vessel 11 turns clockwise on the spot.
Next, in a step corresponding to step S33 in FIG. 5, for example, the vessel control device 11C determines whether or not the operation section 12A of the input device 12 has received an input operation to stop the clockwise spot turning of the vessel 11. . If the operation unit 12A has not received an input operation for stopping the clockwise spot turning of the ship 11, the step corresponding to step S33 in FIG. 5 is repeatedly executed. On the other hand, when the operation unit 12A receives an input operation for stopping the clockwise spot turning of the ship 11, the process proceeds to a step corresponding to step S34 in FIG.
 図5のステップS34に相当するステップにおいて、船舶制御装置11Cは、船舶11を時計回りにその場回頭させるモーメントの発生をアクチュエータ11Aに停止させる。その結果、時計回りのその場回頭を継続しようとする慣性モーメントが生じる。そこで、第3実施形態の操船システム1では、図5のステップS34に相当するステップにおいて、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。詳細には、図5のステップS34に相当するステップにおいて、船舶制御装置11Cは、操作部12Aが反時計回りのモーメントを船舶11に発生させる入力操作を受け付ける必要なく、反時計回りのモーメントを船舶11に発生させる。その結果、船舶11に生じた慣性モーメントによって船舶11が時計回りにその場回頭しすぎてしまうことを抑制することができる。
 次いで、図5のステップS35に相当するステップでは、船舶制御装置11Cが、アクチュエータ11Aの作動を停止させる入力操作を入力装置12の操作部12Aが受け付けた時(つまり、図5のステップS33に相当するステップにおいて操作部12Aが船舶11の時計回りのその場回頭を停止させる入力操作を受け付けたと判定された時)からの経過時間を監視する。詳細には、図5のステップS35に相当するステップにおいて、船舶制御装置11Cは、アクチュエータ11Aの作動を停止させる入力操作を操作部12Aが受け付けた時からの経過時間が第1閾値以上になったか否かを判定する。経過時間が第1閾値以上になっていない場合(つまり、船舶11の慣性モーメントによって船舶11が時計回りにその場回頭しすぎるおそれがあると推定できる場合)には、図5のステップS35に相当するステップが繰り返し実行される。一方、経過時間が第1閾値以上になった場合(つまり、船舶11の慣性モーメントによって船舶11が時計回りにその場回頭しすぎるおそれがないと推定できる場合)には、図5のステップS36に相当するステップに進む。
 図5のステップS36に相当するステップにおいて、船舶制御装置11Cが、反時計回りのモーメントの発生をアクチュエータ11Aに停止させる。
In a step corresponding to step S34 in FIG. 5, the ship control device 11C causes the actuator 11A to stop generating a moment that causes the ship 11 to turn clockwise on the spot. This results in a moment of inertia tending to continue the clockwise in-place turning. Therefore, in the ship maneuvering system 1 of the third embodiment, in a step corresponding to step S34 in FIG. The actuator 11</b>A is operated so as to generate a moment in the vessel 11 . Specifically, in a step corresponding to step S34 of FIG. 11. As a result, it is possible to prevent the ship 11 from turning excessively clockwise on the spot due to the moment of inertia generated in the ship 11 .
Next, in a step corresponding to step S35 in FIG. 5, when the operation unit 12A of the input device 12 receives an input operation to stop the operation of the actuator 11A, the vessel control device 11C (that is, step S33 in FIG. The elapsed time from the time when it is determined that the operation unit 12A has received an input operation to stop the clockwise spot turning of the ship 11 in the step to be performed) is monitored. Specifically, in a step corresponding to step S35 in FIG. 5, the vessel control device 11C determines whether the elapsed time since the operation unit 12A received an input operation to stop the operation of the actuator 11A has become equal to or greater than the first threshold. determine whether or not If the elapsed time is not equal to or greater than the first threshold value (that is, if it can be estimated that the moment of inertia of the ship 11 may cause the ship 11 to turn excessively clockwise on the spot), this corresponds to step S35 in FIG. The steps to do are repeatedly executed. On the other hand, if the elapsed time is equal to or greater than the first threshold (that is, if it can be estimated that there is no risk that the vessel 11 will turn excessively clockwise on the spot due to the moment of inertia of the vessel 11), the process proceeds to step S36 in FIG. Proceed to the corresponding step.
In a step corresponding to step S36 in FIG. 5, the vessel control device 11C causes the actuator 11A to stop generating the counterclockwise moment.
 つまり、第3実施形態の操船システム1では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を入力装置12の操作部12Aが受け付けた場合(図5のステップS33に相当するステップにおいてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、操作部12Aが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、第3実施形態の操船システム1では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性モーメントを打ち消すための操船者の入力操作を不要にすることができる。
 また、第3実施形態の操船システム1では、船舶11から離れている操船者が船舶11に生じる慣性モーメントを把握できなくても、船舶11の状態をアクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態に適切に移行させることができる。
That is, in the ship maneuvering system 1 of the third embodiment, when the operation unit 12A of the input device 12 receives an input operation to stop the operation of the actuator 11A while the ship control device 11C is operating the actuator 11A (Fig. 5 11), the ship control device 11C transfers the moment of inertia generated in the ship 11 in the opposite direction (counterclockwise) to the direction (clockwise) of the moment of inertia to the ship 11, the actuator 11A is operated without the need for the operation unit 12A to receive the input operation.
Therefore, in the marine vessel maneuvering system 1 of the third embodiment, the operator's input operation for canceling the moment of inertia generated in the marine vessel 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated. .
Further, in the ship steering system 1 of the third embodiment, even if the ship operator who is away from the ship 11 cannot grasp the moment of inertia generated in the ship 11, the state of the ship 11 can be changed from the operating state of the actuator 11A to the deactivation of the actuator 11A. state can be transitioned appropriately.
 入力装置12の操作部12Aが船舶11を前進させかつ時計回りに旋回させる入力操作を受け付け、次いで、船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けた場合に第3実施形態の船舶制御装置11Cによって実行される処理では、図7のステップS51に相当するステップにおいて、例えば船舶制御装置11Cは、入力装置12の操作部12Aが船舶11を前進させかつ時計回りに旋回させる入力操作を受け付けたか否かを判定する。操作部12Aが船舶11を前進させかつ時計回りに旋回させる入力操作を受け付けていない場合には、図7のステップS51に相当するステップが繰り返し実行される。一方、操作部12Aが船舶11を前進させかつ時計回りに旋回させる入力操作を受け付けた場合には、図7のステップS52に相当するステップに進む。 When the operation unit 12A of the input device 12 receives an input operation to move the ship 11 forward and turn clockwise, and then receives an input operation to stop the ship 11 from moving forward and turning clockwise, the operation of the third embodiment is performed. In the process executed by the ship control device 11C, in a step corresponding to step S51 in FIG. 7, the ship control device 11C, for example, causes the operation unit 12A of the input device 12 to move the ship 11 forward and turn clockwise. is received. When the operation unit 12A has not received an input operation to move the ship 11 forward and turn it clockwise, the step corresponding to step S51 in FIG. 7 is repeatedly executed. On the other hand, when the operation unit 12A receives an input operation for moving the ship 11 forward and turning clockwise, the process proceeds to a step corresponding to step S52 in FIG.
 図7のステップS52に相当するステップにおいて、船舶制御装置11Cは、アクチュエータ11Aが、船舶11を前進させる推進力を発生し、かつ、船舶11を時計回りに旋回させるモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。その結果、船舶11が前進しかつ時計回りに旋回する。
 次いで、図7のステップS53に相当するステップにおいて、例えば船舶制御装置11Cは、入力装置12の操作部12Aが船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けたか否かを判定する。操作部12Aが船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けていない場合には、図7のステップS53に相当するステップが繰り返し実行される。一方、操作部12Aが船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けた場合には、図7のステップS54に相当するステップに進む。
In a step corresponding to step S52 in FIG. 7, the vessel control device 11C causes the actuator 11A to generate a propulsive force to move the vessel 11 forward and a moment to turn the vessel 11 clockwise. Then, the actuator 11A is operated. As a result, the vessel 11 moves forward and turns clockwise.
Next, in a step corresponding to step S53 in FIG. 7, for example, the vessel control device 11C determines whether or not the operating section 12A of the input device 12 has received an input operation to stop the forward movement and clockwise turning of the vessel 11. . When the operation unit 12A has not received an input operation to stop the ship 11 from moving forward and turning clockwise, the step corresponding to step S53 in FIG. 7 is repeatedly executed. On the other hand, when the operation unit 12A receives an input operation to stop the ship 11 from moving forward and turning clockwise, the process proceeds to a step corresponding to step S54 in FIG.
 図7のステップS54に相当するステップにおいて、船舶制御装置11Cは、船舶11を前進させる推進力の発生および船舶11を時計回りに旋回させるモーメントの発生をアクチュエータ11Aに停止させる。その結果、前進を継続しようとする慣性力および時計回りの旋回を継続しようとする慣性モーメントが生じる。そこで、第3実施形態の操船システム1では、図7のステップS54に相当するステップにおいて、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。詳細には、図7のステップS54に相当するステップにおいて、船舶制御装置11Cは、操作部12Aが船舶11の後向きの推力を発生させかつ反時計回りのモーメントを船舶11に発生させる入力操作を受け付ける必要なく、船舶11の後向きの推力をアクチュエータ11Aに発生させると共に反時計回りのモーメントを船舶11に発生させる。その結果、船舶11に生じた慣性力によって船舶11が前向きに移動してしまうこと、および、船舶11に生じた慣性モーメントによって船舶11が時計回りに旋回しすぎてしまうことを抑制することができる。
 次いで、図7のステップS55に相当するステップでは、船舶制御装置11Cが、アクチュエータ11Aの作動を停止させる入力操作を入力装置12の操作部12Aが受け付けた時(つまり、図7のステップS53に相当するステップにおいて操作部12Aが船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けたと判定された時)からの経過時間を監視する。詳細には、図5のステップS55に相当するステップにおいて、船舶制御装置11Cは、アクチュエータ11Aの作動を停止させる入力操作を操作部12Aが受け付けた時からの経過時間が第1閾値以上になったか否かを判定する。経過時間が第1閾値以上になっていない場合(つまり、船舶11の慣性力によって船舶11が前向きに移動するおそれがあり、かつ、船舶11の慣性モーメントによって船舶11が時計回りに旋回しすぎるおそれがあると推定できる場合)には、図7のステップS55に相当するステップが繰り返し実行される。一方、経過時間が第1閾値以上になった場合(つまり、船舶11の慣性力によって船舶11が前向きに移動するおそれがなく、船舶11の慣性モーメントによって船舶11が時計回りに旋回しすぎるおそれがないと推定できる場合)には、図7のステップS56に相当するステップに進む。
 図7のステップS56に相当するステップにおいて、船舶制御装置11Cが、船舶11の後向きの推力の発生および反時計回りのモーメントの発生をアクチュエータ11Aに停止させる。
In a step corresponding to step S54 in FIG. 7, the vessel control device 11C causes the actuator 11A to stop generating the propulsive force that moves the vessel 11 forward and the moment that rotates the vessel 11 clockwise. As a result, an inertial force that tends to keep moving forward and a moment of inertia that tends to keep clockwise turning are generated. Therefore, in the marine vessel maneuvering system 1 of the third embodiment, in a step corresponding to step S54 in FIG. The actuator 11A generates a thrust in the rearward direction of the ship 11, and the ship 11 generates a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia generated in the ship 11. Then, the actuator 11A is operated. Specifically, in a step corresponding to step S54 in FIG. 7, the vessel control device 11C receives an input operation for causing the operation section 12A to generate a backward thrust force on the vessel 11 and to generate a counterclockwise moment on the vessel 11. Unnecessarily, the actuator 11A generates a backward thrust of the vessel 11 and a counterclockwise moment is generated on the vessel 11 . As a result, it is possible to prevent the ship 11 from moving forward due to the inertial force generated in the ship 11 and from turning the ship 11 excessively clockwise due to the moment of inertia generated in the ship 11. .
Next, in a step corresponding to step S55 in FIG. 7, when the operation unit 12A of the input device 12 receives an input operation for stopping the operation of the actuator 11A, the vessel control device 11C (that is, step S53 in FIG. The elapsed time from the time when it is determined that the operation unit 12A has received an input operation for stopping the forward movement and clockwise turning of the ship 11 in the step to be performed) is monitored. Specifically, in a step corresponding to step S55 in FIG. 5, the vessel control device 11C determines whether the elapsed time from when the operation unit 12A received an input operation to stop the operation of the actuator 11A has become equal to or greater than the first threshold value. determine whether or not If the elapsed time is not equal to or greater than the first threshold (that is, the ship 11 may move forward due to the inertial force of the ship 11 and the moment of inertia of the ship 11 may cause the ship 11 to turn excessively clockwise). ), the step corresponding to step S55 in FIG. 7 is repeatedly executed. On the other hand, when the elapsed time is equal to or greater than the first threshold value (that is, there is no possibility that the inertial force of the ship 11 will cause the ship 11 to move forward, and the moment of inertia of the ship 11 may cause the ship 11 to turn excessively clockwise). If it can be estimated that there is no case), the process proceeds to a step corresponding to step S56 in FIG.
In a step corresponding to step S56 in FIG. 7, the vessel control device 11C causes the actuator 11A to stop the generation of the backward thrust and the counterclockwise moment of the vessel 11 .
 つまり、第3実施形態の操船システム1では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を入力装置12の操作部12Aが受け付けた場合(図7のステップS53に相当するステップにおいてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、操作部12Aが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、第3実施形態の操船システム1では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性力および慣性モーメントを打ち消すための操船者の入力操作を不要にすることができる。
 また、第3実施形態の操船システム1では、船舶11から離れている操船者が船舶11に生じる慣性力および慣性モーメントを把握できなくても、船舶11の状態をアクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態に適切に移行させることができる。
That is, in the marine vessel maneuvering system 1 of the third embodiment, when the operation unit 12A of the input device 12 receives an input operation for stopping the operation of the actuator 11A while the vessel control device 11C is operating the actuator 11A (Fig. 7 (if determined YES in the step corresponding to step S53 in step S53), the ship control device 11C controls the direction of the inertial force generated in the ship 11 (forward direction of the ship 11) opposite to the direction (backward direction of the ship 11). The operation unit 12A is configured to cause the actuator 11A to generate a thrust force and to cause the ship 11 to generate a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia generated in the ship 11. Actuator 11A is operated without needing to accept an input operation.
Therefore, in the marine vessel maneuvering system 1 of the third embodiment, the operator's input operation for canceling the inertial force and moment of inertia generated in the vessel 11 when the actuator 11A is shifted from the operating state to the non-operating state of the actuator 11A is unnecessary. be able to.
Further, in the marine vessel maneuvering system 1 of the third embodiment, even if the operator who is away from the marine vessel 11 cannot grasp the inertial force and moment of inertia generated in the marine vessel 11, the state of the marine vessel 11 can be changed from the operating state of the actuator 11A to the actuator 11A. can be properly transitioned to the deactivation state of
<第4実施形態>
 以下、本発明の操船システム、船舶制御装置、船舶制御方法およびプログラムの第4実施形態について説明する。
 第4実施形態の操船システム1は、後述する点を除き、上述した第2および第3実施形態の操船システム1と同様に構成されている。従って、第4実施形態の操船システム1によれば、後述する点を除き、上述した第2および第3実施形態の操船システム1と同様の効果を奏することができる。
<Fourth Embodiment>
A fourth embodiment of a ship maneuvering system, a ship control device, a ship control method, and a program according to the present invention will be described below.
The ship maneuvering system 1 of the fourth embodiment is configured in the same manner as the ship maneuvering systems 1 of the second and third embodiments described above, except for the points described later. Therefore, according to the ship maneuvering system 1 of the fourth embodiment, the same effects as those of the above-described ship maneuvering systems 1 of the second and third embodiments can be obtained, except for the points described later.
 第4実施形態の操船システム1は、図15に示す第3実施形態の操船システム1と同様に構成されている。 The ship maneuvering system 1 of the fourth embodiment is configured in the same manner as the ship maneuvering system 1 of the third embodiment shown in FIG.
 入力装置12の操作部12Aが船舶11を前進させる入力操作を受け付け、次いで、船舶11の前進を停止させる入力操作を受け付けた場合に第4実施形態の船舶制御装置11Cによって実行される処理では、図9のステップSA1に相当するステップにおいて、例えば船舶制御装置11Cは、入力装置12の操作部12Aが船舶11を前進させる入力操作を受け付けたか否かを判定する。操作部12Aが船舶11を前進させる入力操作を受け付けていない場合には、図9のステップSA1に相当するステップが繰り返し実行される。一方、操作部12Aが船舶11を前進させる入力操作を受け付けた場合には、図9のステップSA2に相当するステップに進む。 In the process executed by the ship control device 11C of the fourth embodiment when the operation unit 12A of the input device 12 receives an input operation for advancing the ship 11 and then receives an input operation for stopping the advance of the ship 11, In a step corresponding to step SA1 in FIG. 9, for example, the vessel control device 11C determines whether or not the operating section 12A of the input device 12 has received an input operation for moving the vessel 11 forward. When the operation unit 12A has not received an input operation for moving the ship 11 forward, the step corresponding to step SA1 in FIG. 9 is repeatedly executed. On the other hand, when the operation unit 12A receives an input operation for moving the ship 11 forward, the process proceeds to a step corresponding to step SA2 in FIG.
 図9のステップSA2に相当するステップにおいて、船舶制御装置11Cは、アクチュエータ11Aの推力発生部11A2が、船舶11を前進させる推進力を発生するように、アクチュエータ11Aを作動させる。その結果、船舶11が前進する。
 次いで、図9のステップSA3に相当するステップにおいて、例えば船舶制御装置11Cは、入力装置12の操作部12Aが船舶11の前進を停止させる入力操作を受け付けたか否かを判定する。操作部12Aが船舶11の前進を停止させる入力操作を受け付けていない場合には、図9のステップSA3に相当するステップが繰り返し実行される。一方、操作部12Aが船舶11の前進を停止させる入力操作を受け付けた場合には、図9のステップSA4に相当するステップに進む。
In a step corresponding to step SA2 in FIG. 9, the ship control device 11C operates the actuator 11A so that the thrust force generating section 11A2 of the actuator 11A generates a propulsion force for moving the ship 11 forward. As a result, the ship 11 moves forward.
Next, in a step corresponding to step SA3 in FIG. 9, the vessel control device 11C, for example, determines whether or not the operation section 12A of the input device 12 has received an input operation to stop the forward movement of the vessel 11. When the operation unit 12A has not received an input operation to stop the forward movement of the ship 11, the step corresponding to step SA3 in FIG. 9 is repeatedly executed. On the other hand, when the operation unit 12A receives an input operation to stop the forward movement of the ship 11, the process proceeds to a step corresponding to step SA4 in FIG.
 図9のステップSA4に相当するステップにおいて、船舶制御装置11Cは、船舶11を前進させる推進力の発生をアクチュエータ11Aに停止させる。その結果、前進を継続しようとする慣性力(行き足)が生じる。そこで、第4実施形態の操船システム1では、図9のステップSA4に相当するステップにおいて、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、アクチュエータ11Aを作動させる。詳細には、図9のステップSA4に相当するステップにおいて、船舶制御装置11Cは、操作部12Aが船舶11の後向きの推力をアクチュエータ11Aに発生させる入力操作を受け付ける必要なく、船舶11の後向きの推力をアクチュエータ11Aに発生させる。その結果、船舶11に生じた慣性力によって船舶11が前向きに移動してしまうこと(行き足)を抑制することができる。
 次いで、図9のステップSA5に相当するステップでは、船舶制御装置11Cが、船舶11の速度を監視する。詳細には、図9のステップSA5に相当するステップにおいて、船舶制御装置11Cは、船速検出部11Eによって検出される船舶11の速度が第2閾値以下まで低下したか否かを判定する。船舶11の速度が第2閾値以下まで低下していない場合(つまり、船舶11の慣性力(行き足)によって船舶11が前進し続けている場合)には、図9のステップSA5に相当するステップが繰り返し実行される。一方、船舶11の速度が第2閾値以下まで低下した場合(つまり、船舶11の慣性力(行き足)による船舶11の前進が終了したと推定できる場合)には、図9のステップSA6に相当するステップに進む。
 図9のステップSA6に相当するステップにおいて、船舶制御装置11Cが、船舶11の後向きの推力の発生をアクチュエータ11Aに停止させる。
In a step corresponding to step SA4 in FIG. 9, the vessel control device 11C causes the actuator 11A to stop generating the propulsive force that moves the vessel 11 forward. As a result, an inertial force (going foot) that tries to continue forward movement is generated. Therefore, in the marine vessel maneuvering system 1 of the fourth embodiment, in a step corresponding to step SA4 in FIG. The actuator 11A is actuated so that the actuator 11A generates thrust in the rearward direction of the ship 11 . Specifically, in a step corresponding to step SA4 in FIG. 9 , the vessel control device 11C does not require the operation unit 12A to receive an input operation for causing the actuator 11A to generate a backward thrust of the vessel 11. is generated in the actuator 11A. As a result, it is possible to prevent the ship 11 from moving forward due to the inertial force generated in the ship 11 (going forward).
Next, in a step corresponding to step SA5 in FIG. 9, the ship control device 11C monitors the speed of the ship 11. FIG. Specifically, in a step corresponding to step SA5 in FIG. 9, the vessel control device 11C determines whether the speed of the vessel 11 detected by the vessel speed detector 11E has decreased to the second threshold or less. If the speed of the ship 11 has not decreased to the second threshold or less (that is, if the ship 11 continues to move forward due to the inertial force (going foot) of the ship 11), a step corresponding to step SA5 in FIG. is executed repeatedly. On the other hand, if the speed of the ship 11 has decreased to the second threshold or less (that is, if it can be estimated that the forward movement of the ship 11 due to the inertial force (going foot) of the ship 11 has ended), this corresponds to step SA6 in FIG. proceed to the step to
In a step corresponding to step SA6 in FIG. 9 , the vessel control device 11C causes the actuator 11A to stop generating the backward thrust of the vessel 11 .
 つまり、第4実施形態の操船システム1では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を入力装置12の操作部12Aが受け付けた場合(図9のステップSA3に相当するステップにおいてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、操作部12Aが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、第4実施形態の操船システム1では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性力を打ち消すための操船者の入力操作を不要にすることができる。
 また、第4実施形態の操船システム1では、船舶11から離れている操船者が船舶11に生じる慣性力を把握できなくても、船舶11の状態をアクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態に適切に移行させることができる。
That is, in the ship maneuvering system 1 of the fourth embodiment, when the operation unit 12A of the input device 12 receives an input operation to stop the operation of the actuator 11A while the ship control device 11C is operating the actuator 11A (Fig. 9 (if determined YES in the step corresponding to step SA3 in step SA3), the vessel control device 11C controls the direction of the inertial force generated in the vessel 11 (forward of the vessel 11) opposite to the direction (backward of the vessel 11). The actuator 11A is operated so that the actuator 11A generates thrust without the need for the operation unit 12A to receive an input operation.
Therefore, in the marine vessel maneuvering system 1 of the fourth embodiment, the operator's input operation for canceling the inertial force generated in the marine vessel 11 when the actuator 11A transitions from the operating state to the non-operating state of the actuator 11A can be eliminated. .
Further, in the marine vessel maneuvering system 1 of the fourth embodiment, even if the operator who is away from the marine vessel 11 cannot grasp the inertial force generated in the marine vessel 11, the state of the marine vessel 11 can be changed from the operating state of the actuator 11A to the deactivation of the actuator 11A. state can be transitioned appropriately.
 入力装置12の操作部12Aが船舶11を時計回りにその場回頭させる入力操作を受け付け、次いで、船舶11の時計回りのその場回頭を停止させる入力操作を受け付けた場合に第4実施形態の船舶制御装置11Cによって実行される処理では、図11のステップSC1に相当するステップにおいて、例えば船舶制御装置11Cは、入力装置12の操作部12Aが船舶11を時計回りにその場回頭させる入力操作を受け付けたか否かを判定する。操作部12Aが船舶11を時計回りにその場回頭させる入力操作を受け付けていない場合には、図11のステップSC1に相当するステップが繰り返し実行される。一方、操作部12Aが船舶11を時計回りにその場回頭させる入力操作を受け付けた場合には、図11のステップSC2に相当するステップに進む。 When the operation unit 12A of the input device 12 receives an input operation to turn the ship 11 clockwise on the spot, and then receives an input operation to stop the clockwise on-the-spot turning of the ship 11, the ship of the fourth embodiment In the process executed by the control device 11C, in a step corresponding to step SC1 in FIG. 11, for example, the ship control device 11C accepts an input operation for causing the operation section 12A of the input device 12 to turn the ship 11 clockwise on the spot. determine whether or not When the operation unit 12A has not received an input operation for turning the vessel 11 clockwise on the spot, the step corresponding to step SC1 in FIG. 11 is repeatedly executed. On the other hand, when the operation unit 12A receives an input operation for turning the ship 11 clockwise on the spot, the process proceeds to a step corresponding to step SC2 in FIG.
 図11のステップSC2に相当するステップにおいて、船舶制御装置11Cは、アクチュエータ11Aが、船舶11を時計回りにその場回頭させるモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。その結果、船舶11が時計回りにその場回頭する。
 次いで、図11のステップSC3に相当するステップにおいて、例えば船舶制御装置11Cは、入力装置12の操作部12Aが船舶11の時計回りのその場回頭を停止させる入力操作を受け付けたか否かを判定する。操作部12Aが船舶11の時計回りのその場回頭を停止させる入力操作を受け付けていない場合には、図11のステップSC3に相当するステップが繰り返し実行される。一方、操作部12Aが船舶11の時計回りのその場回頭を停止させる入力操作を受け付けた場合には、図11のステップSC4に相当するステップに進む。
In a step corresponding to step SC2 in FIG. 11, the vessel control device 11C operates the actuator 11A so that the actuator 11A causes the vessel 11 to generate a moment that causes the vessel 11 to turn clockwise on the spot. As a result, the vessel 11 turns clockwise on the spot.
Next, in a step corresponding to step SC3 in FIG. 11, the vessel control device 11C, for example, determines whether or not the operating section 12A of the input device 12 has received an input operation to stop the clockwise spot turning of the vessel 11. . If the operation unit 12A has not received an input operation to stop the clockwise spot turning of the ship 11, the step corresponding to step SC3 in FIG. 11 is repeatedly executed. On the other hand, when the operation unit 12A receives an input operation to stop the clockwise spot turning of the ship 11, the process proceeds to a step corresponding to step SC4 in FIG.
 図11のステップSC4に相当するステップにおいて、船舶制御装置11Cは、船舶11を時計回りにその場回頭させるモーメントの発生をアクチュエータ11Aに停止させる。その結果、時計回りのその場回頭を継続しようとする慣性モーメントが生じる。そこで、第4実施形態の操船システム1では、図11のステップSC4に相当するステップにおいて、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。詳細には、図11のステップSC4に相当するステップにおいて、船舶制御装置11Cは、操作部12Aが反時計回りのモーメントを船舶11に発生させる入力操作を受け付ける必要なく、反時計回りのモーメントを船舶11に発生させる。その結果、船舶11に生じた慣性モーメントによって船舶11が時計回りにその場回頭しすぎてしまうことを抑制することができる。
 次いで、図11のステップSC5に相当するステップでは、船舶制御装置11Cが、船舶11の角速度を監視する。詳細には、図11のステップSC5に相当するステップにおいて、船舶制御装置11Cは、船首方位検出部11Dによって検出される船首方位に基づいて算出される船舶11の角速度が第3閾値以下まで低下したか否かを判定する。船舶11の角速度が第3閾値以下まで低下していない場合(つまり、船舶11の慣性モーメントによって船舶11が時計回りにその場回頭し続けている場合)には、図11のステップSC5に相当するステップが繰り返し実行される。一方、船舶11の角速度が第3閾値以下まで低下した場合(つまり、船舶11の慣性モーメントによる船舶11の時計回りのその場回頭が終了したと推定できる場合)には、図11のステップSC6に相当するステップに進む。
 図11のステップSC6に相当するステップにおいて、船舶制御装置11Cが、反時計回りのモーメントの発生をアクチュエータ11Aに停止させる。
In a step corresponding to step SC4 in FIG. 11, the vessel control device 11C causes the actuator 11A to stop generating a moment that causes the vessel 11 to turn clockwise on the spot. This results in a moment of inertia tending to continue the clockwise in-place turning. Therefore, in the ship maneuvering system 1 of the fourth embodiment, in a step corresponding to step SC4 in FIG. The actuator 11</b>A is operated so as to generate a moment in the vessel 11 . Specifically, in a step corresponding to step SC4 in FIG. 11 , the vessel control device 11C applies a counterclockwise moment to the vessel 11 without the operation unit 12A needing to receive an input operation that causes the vessel 11 to generate a counterclockwise moment. 11. As a result, it is possible to prevent the ship 11 from turning excessively clockwise on the spot due to the moment of inertia generated in the ship 11 .
Next, in a step corresponding to step SC5 in FIG. 11, the ship control device 11C monitors the angular velocity of the ship 11. FIG. Specifically, in a step corresponding to step SC5 in FIG. 11, the ship control device 11C determines that the angular velocity of the ship 11 calculated based on the heading detected by the heading detection unit 11D has decreased to the third threshold or less. Determine whether or not If the angular velocity of the ship 11 has not decreased to the third threshold or less (that is, if the ship 11 continues to turn clockwise due to the moment of inertia of the ship 11), this corresponds to step SC5 in FIG. Steps are executed repeatedly. On the other hand, when the angular velocity of the ship 11 has decreased to the third threshold or less (that is, when it can be estimated that the ship 11 has finished turning in place clockwise due to the moment of inertia of the ship 11), the process proceeds to step SC6 of FIG. Proceed to the corresponding step.
In a step corresponding to step SC6 in FIG. 11, the vessel control device 11C causes the actuator 11A to stop generating the counterclockwise moment.
 つまり、第4実施形態の操船システム1では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を入力装置12の操作部12Aが受け付けた場合(図11のステップSC3に相当するステップにおいてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、操作部12Aが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、第4実施形態の操船システム1では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性モーメントを打ち消すための操船者の入力操作を不要にすることができる。
 また、第4実施形態の操船システム1では、船舶11から離れている操船者が船舶11に生じる慣性モーメントを把握できなくても、船舶11の状態をアクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態に適切に移行させることができる。
That is, in the ship maneuvering system 1 of the fourth embodiment, when the operation unit 12A of the input device 12 receives an input operation to stop the operation of the actuator 11A while the ship control device 11C is operating the actuator 11A (Fig. 11 2), the vessel control device 11C applies a moment of inertia generated in the vessel 11 in a direction (counterclockwise) opposite to the direction (clockwise) of the moment of inertia to the vessel 11, the actuator 11A is operated without the need for the operation unit 12A to receive the input operation.
Therefore, in the marine vessel maneuvering system 1 of the fourth embodiment, the operator's input operation for canceling the moment of inertia generated in the marine vessel 11 when the actuator 11A is shifted from the operating state to the non-operating state of the actuator 11A can be eliminated. .
Further, in the ship steering system 1 of the fourth embodiment, even if the ship operator who is away from the ship 11 cannot grasp the moment of inertia generated in the ship 11, the state of the ship 11 can be changed from the operating state of the actuator 11A to the deactivation of the actuator 11A. state can be transitioned appropriately.
 入力装置12の操作部12Aが船舶11を前進させかつ時計回りに旋回させる入力操作を受け付け、次いで、船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けた場合に第4実施形態の船舶制御装置11Cによって実行される処理では、図13のステップSE1に相当するステップにおいて、例えば船舶制御装置11Cは、入力装置12の操作部12Aが船舶11を前進させかつ時計回りに旋回させる入力操作を受け付けたか否かを判定する。操作部12Aが船舶11を前進させかつ時計回りに旋回させる入力操作を受け付けていない場合には、図13のステップSE1に相当するステップが繰り返し実行される。一方、操作部12Aが船舶11を前進させかつ時計回りに旋回させる入力操作を受け付けた場合には、図13のステップSE2に相当するステップに進む。 When the operation unit 12A of the input device 12 receives an input operation to move the ship 11 forward and turn clockwise, and then receives an input operation to stop the ship 11 from moving forward and turning clockwise, the operation of the fourth embodiment is performed. In the process executed by the ship control device 11C, in a step corresponding to step SE1 in FIG. 13, the ship control device 11C, for example, causes the operation section 12A of the input device 12 to move the ship 11 forward and turn clockwise. is received. When the operation unit 12A has not received an input operation to move the ship 11 forward and turn it clockwise, the step corresponding to step SE1 in FIG. 13 is repeatedly executed. On the other hand, when the operation unit 12A receives an input operation to move the ship 11 forward and turn it clockwise, the process proceeds to a step corresponding to step SE2 in FIG.
 図13のステップSE2に相当するステップにおいて、船舶制御装置11Cは、アクチュエータ11Aが、船舶11を前進させる推進力を発生し、かつ、船舶11を時計回りに旋回させるモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。その結果、船舶11が前進しかつ時計回りに旋回する。
 次いで、図13のステップSE3に相当するステップにおいて、例えば船舶制御装置11Cは、入力装置12の操作部12Aが船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けたか否かを判定する。操作部12Aが船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けていない場合には、図13のステップSE3に相当するステップが繰り返し実行される。一方、操作部12Aが船舶11の前進および時計回りの旋回を停止させる入力操作を受け付けた場合には、図13のステップSE4に相当するステップに進む。
In a step corresponding to step SE2 in FIG. 13, the vessel control device 11C causes the actuator 11A to generate a propulsive force to move the vessel 11 forward and a moment to turn the vessel 11 clockwise. Then, the actuator 11A is operated. As a result, the vessel 11 moves forward and turns clockwise.
Next, in a step corresponding to step SE3 in FIG. 13, the vessel control device 11C, for example, determines whether or not the operating section 12A of the input device 12 has received an input operation to stop the forward movement and clockwise turning of the vessel 11. . If the operation unit 12A has not received an input operation to stop the ship 11 from moving forward and turning clockwise, the step corresponding to step SE3 in FIG. 13 is repeatedly executed. On the other hand, when the operation unit 12A receives an input operation to stop the ship 11 from moving forward and turning clockwise, the process proceeds to a step corresponding to step SE4 in FIG.
 図13のステップSE4に相当するステップにおいて、船舶制御装置11Cは、船舶11を前進させる推進力の発生および船舶11を時計回りに旋回させるモーメントの発生をアクチュエータ11Aに停止させる。その結果、前進を継続しようとする慣性力および時計回りの旋回を継続しようとする慣性モーメントが生じる。そこで、第4実施形態の操船システム1では、図13のステップSE4に相当するステップにおいて、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、アクチュエータ11Aを作動させる。詳細には、図13のステップSE4に相当するステップにおいて、船舶制御装置11Cは、操作部12Aが船舶11の後向きの推力を発生させかつ反時計回りのモーメントを船舶11に発生させる入力操作を受け付ける必要なく、船舶11の後向きの推力をアクチュエータ11Aに発生させると共に反時計回りのモーメントを船舶11に発生させる。その結果、船舶11に生じた慣性力によって船舶11が前向きに移動してしまうこと、および、船舶11に生じた慣性モーメントによって船舶11が時計回りに旋回しすぎてしまうことを抑制することができる。
 次いで、図13のステップSE5に相当するステップでは、船舶制御装置11Cが、船舶11の速度を監視する。詳細には、図13のステップSE5に相当するステップにおいて、船舶制御装置11Cは、船速検出部11Eによって検出される船舶11の速度が第4閾値以下まで低下したか否かを判定する。船舶11の速度が第4閾値以下まで低下していない場合(つまり、船舶11の慣性力によって船舶11が前進し、かつ、船舶11の慣性モーメントによって船舶11が時計回りに旋回し続けている場合)には、図13のステップSE5に相当するステップが繰り返し実行される。一方、船舶11の速度が第4閾値以下まで低下した場合(つまり、船舶11の慣性力による船舶11の前進および船舶11の慣性モーメントによる船舶11の時計回りの旋回が終了したと推定できる場合)には、図13のステップSE6に相当するステップに進む。
 図13のステップSE6に相当するステップにおいて、船舶制御装置11Cが、船舶11の後向きの推力の発生および反時計回りのモーメントの発生をアクチュエータ11Aに停止させる。
In a step corresponding to step SE4 in FIG. 13, the vessel control device 11C causes the actuator 11A to stop generating the propulsive force that moves the vessel 11 forward and the moment that rotates the vessel 11 clockwise. As a result, an inertial force that tends to keep moving forward and a moment of inertia that tends to keep clockwise turning are generated. Therefore, in the marine vessel maneuvering system 1 of the fourth embodiment, in a step corresponding to step SE4 in FIG. The actuator 11A generates a thrust in the rearward direction of the ship 11, and the ship 11 generates a moment (counterclockwise) opposite to the direction (clockwise) of the moment of inertia generated in the ship 11. Then, the actuator 11A is operated. Specifically, in a step corresponding to step SE4 in FIG. 13 , the ship control device 11C receives an input operation in which the operation unit 12A causes the ship 11 to generate a backward thrust and a counterclockwise moment to the ship 11. Unnecessarily, the actuator 11A generates a backward thrust of the vessel 11 and a counterclockwise moment is generated on the vessel 11 . As a result, it is possible to prevent the ship 11 from moving forward due to the inertial force generated in the ship 11 and from turning the ship 11 excessively clockwise due to the moment of inertia generated in the ship 11. .
Next, in a step corresponding to step SE5 in FIG. 13, the ship control device 11C monitors the speed of the ship 11. FIG. Specifically, in a step corresponding to step SE5 in FIG. 13, the ship control device 11C determines whether the speed of the ship 11 detected by the ship speed detector 11E has decreased to the fourth threshold or less. When the speed of the ship 11 has not decreased to the fourth threshold or less (that is, when the ship 11 moves forward due to the inertial force of the ship 11 and the ship 11 continues to turn clockwise due to the moment of inertia of the ship 11 ), a step corresponding to step SE5 in FIG. 13 is repeatedly executed. On the other hand, when the speed of the ship 11 has decreased to the fourth threshold or less (that is, when it can be estimated that the forward movement of the ship 11 due to the inertial force of the ship 11 and the clockwise turning of the ship 11 due to the moment of inertia of the ship 11 have ended) , the process proceeds to a step corresponding to step SE6 in FIG.
In a step corresponding to step SE6 in FIG. 13 , the vessel control device 11C causes the actuator 11A to stop the generation of the backward thrust and the counterclockwise moment of the vessel 11 .
 つまり、第4実施形態の操船システム1では、船舶制御装置11Cがアクチュエータ11Aを作動させている時に、アクチュエータ11Aの作動を停止させる入力操作を操作部11Bが受け付けた場合(図13のステップSE3に相当するステップにおいてYESと判定された場合)に、船舶制御装置11Cは、船舶11に生じている慣性力の向き(船舶11の前向き)とは逆向き(船舶11の後向き)の推力をアクチュエータ11Aが発生するように、かつ、船舶11に生じている慣性モーメントの向き(時計回り)とは逆向き(反時計回り)のモーメントを船舶11に発生させるように、操作部12Aが入力操作を受け付ける必要なく、アクチュエータ11Aを作動させる。
 そのため、第4実施形態の操船システム1では、アクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態への移行時に船舶11に生じる慣性力および慣性モーメントを打ち消すための操船者の入力操作を不要にすることができる。
 また、第4実施形態の操船システム1では、船舶11から離れている操船者が船舶11に生じる慣性力および慣性モーメントを把握できなくても、船舶11の状態をアクチュエータ11Aの作動状態からアクチュエータ11Aの作動停止状態に適切に移行させることができる。
That is, in the ship maneuvering system 1 of the fourth embodiment, when the operation unit 11B receives an input operation to stop the operation of the actuator 11A while the ship control device 11C is operating the actuator 11A (at step SE3 in FIG. 13 If the determination is YES in the corresponding step), the ship control device 11C applies thrust in the opposite direction (rearward of the ship 11) to the direction of the inertial force generated in the ship 11 (forwardward of the ship 11) to the actuator 11A. and to generate a moment (counterclockwise) in the ship 11 opposite to the direction of the moment of inertia (clockwise) generated in the ship 11. Actuator 11A is activated without need.
Therefore, in the marine vessel maneuvering system 1 of the fourth embodiment, the operator's input operation for canceling the inertial force and moment of inertia generated in the marine vessel 11 when the actuator 11A is shifted from the operating state to the non-operating state of the actuator 11A is unnecessary. be able to.
Further, in the marine vessel maneuvering system 1 of the fourth embodiment, even if the operator who is away from the marine vessel 11 cannot grasp the inertial force and moment of inertia generated in the marine vessel 11, the state of the marine vessel 11 can be changed from the operating state of the actuator 11A to the actuator 11A. can be properly transitioned to the deactivation state of
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。上述した各実施形態および各例に記載の構成を組み合わせてもよい。 As described above, the mode for carrying out the present invention has been described using the embodiments, but the present invention is not limited to such embodiments at all, and various modifications and replacements can be made without departing from the scope of the present invention. can be added. You may combine the structure as described in each embodiment and each example which were mentioned above.
 なお、上述した実施形態における操船システム1が備える各部の機能全体あるいはその一部は、これらの機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶部のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
It should be noted that all or part of the functions of the units provided in the ship maneuvering system 1 in the above-described embodiment are recorded on a computer-readable recording medium by recording a program for realizing these functions. It may be realized by loading the program into a computer system and executing it. It should be noted that the “computer system” here includes hardware such as an OS and peripheral devices.
The term "computer-readable recording medium" refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage units such as hard discs built into computer systems. Furthermore, "computer-readable recording medium" refers to a program that dynamically retains programs for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include a device that retains the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system.
1…操船システム、11…船舶、11A…アクチュエータ、11A1…舵部、11A2…推力発生部、11B…操作部、11B1…操舵部、11B2…スロットル操作部、11C…船舶制御装置、11D…船首方位検出部、11E…船速検出部、11F…船舶位置検出部、11G…通信部、12…入力装置、12A…操作部、12B…通信部 DESCRIPTION OF SYMBOLS 1... Ship steering system, 11... Ship, 11A... Actuator, 11A1... Rudder part, 11A2... Thrust generation part, 11B... Operation part, 11B1... Steering part, 11B2... Throttle operation part, 11C... Vessel control device, 11D... Heading Detector 11E Ship speed detector 11F Ship position detector 11G Communication unit 12 Input device 12A Operation unit 12B Communication unit

Claims (11)

  1.  船舶の推進力を発生する機能と前記船舶にモーメントを発生させる機能とを有するアクチュエータと、
     操船者の入力操作を受け付ける操作部と、
     前記アクチュエータを作動させる船舶制御装置とを備え、
     前記船舶制御装置が前記アクチュエータを作動させている時に、前記アクチュエータの作動を停止させる入力操作を前記操作部が受け付けた場合に、
     前記船舶制御装置は、前記船舶に生じている慣性力の向きとは逆向きの推力を前記アクチュエータが発生するように、および/または、前記船舶に生じている慣性モーメントの向きとは逆向きのモーメントを前記船舶に発生させるように、前記操作部が入力操作を受け付ける必要なく、前記アクチュエータを作動させる、
     操船システム。
    an actuator having a function of generating a propulsion force for a vessel and a function of generating a moment on the vessel;
    an operation unit that receives an input operation from an operator;
    A ship control device that operates the actuator,
    When the operation unit receives an input operation to stop the operation of the actuator while the ship control device is operating the actuator,
    The ship control device causes the actuator to generate thrust in a direction opposite to the direction of the inertia force occurring in the ship, and/or causes the actuator to generate a thrust force in the direction opposite to the direction of the moment of inertia occurring in the ship. actuating the actuator without the need for the operation unit to accept an input operation so as to generate a moment on the vessel;
    ship steering system.
  2.  前記船舶制御装置は、
     前記船舶に生じている慣性力の向きとは逆向きの推力を前記アクチュエータが発生するように、および/または、前記船舶に生じている慣性モーメントの向きとは逆向きのモーメントを前記船舶に発生させるように、前記アクチュエータを作動させる期間を、
     前記アクチュエータの作動を停止させる入力操作を前記操作部が受け付けた時からの経過時間に基づいて設定する、
     請求項1に記載の操船システム。
    The ship control device includes:
    The actuator generates a thrust in the direction opposite to the direction of the inertia force generated in the ship, and/or the ship generates a moment in the direction opposite to the direction of the moment of inertia generated in the ship. A period of time for actuating the actuator so as to
    setting based on the elapsed time from the time when the operation unit receives an input operation for stopping the operation of the actuator;
    The ship maneuvering system according to claim 1.
  3.  前記船舶制御装置は、
     前記船舶に生じている慣性力の向きとは逆向きの推力を前記アクチュエータが発生するように、および/または、前記船舶に生じている慣性モーメントの向きとは逆向きのモーメントを前記船舶に発生させるように、前記アクチュエータを作動させる期間を、前記船舶の速度または角速度に基づいて設定する、
     請求項1に記載の操船システム。
    The ship control device includes:
    The actuator generates a thrust in the direction opposite to the direction of the inertia force generated in the ship, and/or the ship generates a moment in the direction opposite to the direction of the moment of inertia generated in the ship. setting a period of time for activating the actuator based on the velocity or angular velocity of the vessel,
    The ship maneuvering system according to claim 1.
  4.  前記操船システムは、前記船舶と、前記船舶とは別個に設けられた入力装置とを備え、
     前記船舶は、前記アクチュエータと、前記船舶制御装置とを備え、
     前記入力装置は、前記操作部を備え、
     前記船舶制御装置が前記アクチュエータを作動させている時に、前記アクチュエータの作動を停止させる入力操作を前記入力装置の前記操作部が受け付けた場合に、
     前記船舶制御装置は、前記船舶に生じている慣性力の向きとは逆向きの推力を前記アクチュエータが発生するように、および/または、前記船舶に生じている慣性モーメントの向きとは逆向きのモーメントを前記船舶に発生させるように、前記入力装置の前記操作部が入力操作を受け付ける必要なく、前記アクチュエータを作動させる、
     請求項1に記載の操船システム。
    The ship maneuvering system includes the ship and an input device provided separately from the ship,
    The ship includes the actuator and the ship control device,
    The input device includes the operation unit,
    When the operation unit of the input device receives an input operation to stop the operation of the actuator while the ship control device is operating the actuator,
    The ship control device is configured to cause the actuator to generate a thrust force in a direction opposite to the direction of the inertia force occurring in the ship, and/or to generate a thrust force in the direction opposite to the direction of the moment of inertia occurring in the ship. actuating the actuator without the need for the operation unit of the input device to accept an input operation so as to generate a moment on the vessel;
    The marine vessel maneuvering system according to claim 1.
  5.  前記アクチュエータが、前記船舶を前進または後進させる推進力を発生している時に、前記船舶を前進または後進させる推進力の発生を停止させる入力操作を前記操作部が受け付けた場合に、
     前記船舶制御装置は、前記船舶に生じている慣性力の向きとは逆向きの推力を前記アクチュエータが発生するように、前記操作部が入力操作を受け付ける必要なく、前記アクチュエータを作動させる、
     請求項1に記載の操船システム。
    When the operation unit receives an input operation for stopping the generation of the propulsive force for advancing or reversing the marine vessel while the actuator is generating the propulsive force for advancing or reversing the marine vessel,
    The ship control device operates the actuator so that the actuator generates thrust in a direction opposite to the direction of the inertial force generated in the ship, without the need for the operation unit to receive an input operation.
    The ship maneuvering system according to claim 1.
  6.  前記アクチュエータが、前記船舶をその場回頭させるモーメントを前記船舶に発生させている時に、前記船舶をその場回頭させるモーメントの発生を停止させる入力操作を前記操作部が受け付けた場合に、
     前記船舶制御装置は、前記船舶に生じている慣性モーメントの向きとは逆向きのモーメントを前記船舶に発生させるように、前記操作部が入力操作を受け付ける必要なく、前記アクチュエータを作動させる、
     請求項1に記載の操船システム。
    When the operation unit receives an input operation for stopping generation of the moment for turning the ship on the spot while the actuator is causing the ship to generate a moment for turning the ship on the spot,
    The ship control device operates the actuator so that the ship generates a moment in the ship in a direction opposite to the direction of the moment of inertia generated in the ship, without the need for the operation unit to receive an input operation.
    The marine vessel maneuvering system according to claim 1.
  7.  前記アクチュエータが、前記船舶を前進させる推進力を発生しており、かつ、前記船舶を旋回させるモーメントを前記船舶に発生させている時に、前記船舶を前進させる推進力および前記船舶を旋回させるモーメントの発生を停止させる入力操作を前記操作部が受け付けた場合に、
     前記船舶制御装置は、前記船舶に生じている慣性力の向きとは逆向きの推力を前記アクチュエータが発生するように、かつ、前記船舶に生じている慣性モーメントの向きとは逆向きのモーメントを前記船舶に発生させるように、前記操作部が入力操作を受け付ける必要なく、前記アクチュエータを作動させる、
     請求項1に記載の操船システム。
    When the actuator is generating a propulsive force to move the ship forward and generating a moment to turn the ship, the propulsive force to move the ship forward and the moment to turn the ship When the operation unit receives an input operation to stop generation,
    The ship control device generates a moment in a direction opposite to the moment of inertia produced in the ship so that the actuator generates a thrust in a direction opposite to the direction of the inertia force produced in the ship. actuating the actuator without the need for the operation unit to accept an input operation so as to occur on the ship;
    The marine vessel maneuvering system according to claim 1.
  8.  前記アクチュエータが、前記船舶を後進させる推進力を発生しており、かつ、前記船舶を旋回させるモーメントを前記船舶に発生させている時に、前記船舶を後進させる推進力および前記船舶を旋回させるモーメントの発生を停止させる入力操作を前記操作部が受け付けた場合に、
     前記船舶制御装置は、前記船舶に生じている慣性力の向きとは逆向きの推力を前記アクチュエータが発生するように、かつ、前記船舶に生じている慣性モーメントの向きとは逆向きのモーメントを前記船舶に発生させるように、前記操作部が入力操作を受け付ける必要なく、前記アクチュエータを作動させる、
     請求項1に記載の操船システム。
    When the actuator is generating a propulsive force for moving the ship astern and generating a moment for turning the ship, the propulsive force for moving the ship astern and the moment for turning the ship are generated. When the operation unit receives an input operation to stop generation,
    The ship control device is configured to cause the actuator to generate a thrust in a direction opposite to the direction of the inertia force generated in the ship, and to generate a moment in the direction opposite to the direction of the moment of inertia generated in the ship. actuating the actuator without the need for the operation unit to accept an input operation so as to occur on the ship;
    The ship maneuvering system according to claim 1.
  9.  船舶の推進力を発生する機能と前記船舶にモーメントを発生させる機能とを有するアクチュエータと、操船者の入力操作を受け付ける操作部とを備える操船システムに備えられ、前記アクチュエータを作動させる船舶制御装置であって、
     前記船舶制御装置が前記アクチュエータを作動させている時に、前記アクチュエータの作動を停止させる入力操作を前記操作部が受け付けた場合に、
     前記船舶に生じている慣性力の向きとは逆向きの推力を前記アクチュエータが発生するように、および/または、前記船舶に生じている慣性モーメントの向きとは逆向きのモーメントを前記船舶に発生させるように、前記操作部が入力操作を受け付ける必要なく、前記アクチュエータを作動させる、
     船舶制御装置。
    A ship control device provided in a ship maneuvering system comprising an actuator having a function of generating a propulsive force of a ship and a function of generating a moment in the ship, and an operation section for receiving an input operation by a ship operator, and operating the actuator. There is
    When the operation unit receives an input operation to stop the operation of the actuator while the ship control device is operating the actuator,
    The actuator generates a thrust in the direction opposite to the direction of the inertia force generated in the ship, and/or the ship generates a moment in the direction opposite to the direction of the moment of inertia generated in the ship. actuating the actuator without the need for the operation unit to accept an input operation,
    Ship control device.
  10.  船舶の推進力を発生する機能と前記船舶にモーメントを発生させる機能とを有するアクチュエータと、操船者の入力操作を受け付ける操作部とを備える操船システムに備えられ、前記アクチュエータを作動させる船舶制御装置の船舶制御方法であって、
     前記操作部が受け付けた入力操作に応じて前記アクチュエータを作動させる第1ステップと、
     前記船舶制御装置が前記アクチュエータを作動させている時に、前記アクチュエータの作動を停止させる入力操作を前記操作部が受け付けた場合に、
     前記船舶に生じている慣性力の向きとは逆向きの推力を前記アクチュエータが発生するように、および/または、前記船舶に生じている慣性モーメントの向きとは逆向きのモーメントを前記船舶に発生させるように、前記操作部が入力操作を受け付ける必要なく、前記アクチュエータを作動させる第2ステップとを備える、
     船舶制御方法。
    A ship control device provided in a ship maneuvering system comprising an actuator having a function of generating a propulsive force of a ship and a function of generating a moment in the ship, and an operation section for receiving an input operation by a ship operator, and operating the actuator. A ship control method comprising:
    a first step of operating the actuator according to the input operation received by the operation unit;
    When the operation unit receives an input operation to stop the operation of the actuator while the ship control device is operating the actuator,
    The actuator generates a thrust in the direction opposite to the direction of the inertia force generated in the ship, and/or the ship generates a moment in the direction opposite to the direction of the moment of inertia generated in the ship. a second step of actuating the actuator without the need for the operation unit to accept an input operation so as to cause the
    Vessel control method.
  11.  船舶の推進力を発生する機能と前記船舶にモーメントを発生させる機能とを有するアクチュエータと、操船者の入力操作を受け付ける操作部とを備える操船システムに備えられ、前記アクチュエータを作動させる船舶制御装置に搭載されたコンピュータに、
     前記操作部が受け付けた入力操作に応じて前記アクチュエータを作動させる第1ステップと、
     前記船舶制御装置が前記アクチュエータを作動させている時に、前記アクチュエータの作動を停止させる入力操作を前記操作部が受け付けた場合に、
     前記船舶に生じている慣性力の向きとは逆向きの推力を前記アクチュエータが発生するように、および/または、前記船舶に生じている慣性モーメントの向きとは逆向きのモーメントを前記船舶に発生させるように、前記操作部が入力操作を受け付ける必要なく、前記アクチュエータを作動させる第2ステップとを実行させるためのプログラム。
    A ship control device provided in a ship maneuvering system comprising an actuator having a function of generating a propulsive force of a ship and a function of generating a moment in the ship, and an operation section for receiving an input operation by a ship operator, and operating the actuator. on the computer equipped with
    a first step of operating the actuator according to the input operation received by the operation unit;
    When the operation unit receives an input operation to stop the operation of the actuator while the ship control device is operating the actuator,
    The actuator generates a thrust in the direction opposite to the direction of the inertia force generated in the ship, and/or the ship generates a moment in the direction opposite to the direction of the moment of inertia generated in the ship. and a second step of operating the actuator without the need for the operation unit to accept an input operation.
PCT/JP2022/034411 2021-09-29 2022-09-14 Ship maneuvering system, ship control device, ship control method, and program WO2023053966A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021159280A JP2023049504A (en) 2021-09-29 2021-09-29 Ship maneuvering system, ship control device, ship control method and program
JP2021-159280 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023053966A1 true WO2023053966A1 (en) 2023-04-06

Family

ID=85782431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034411 WO2023053966A1 (en) 2021-09-29 2022-09-14 Ship maneuvering system, ship control device, ship control method, and program

Country Status (2)

Country Link
JP (1) JP2023049504A (en)
WO (1) WO2023053966A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124586A (en) 1991-07-23 1993-05-21 Niigata Eng Co Ltd Emergency stop device of marine vessel
JP2000006891A (en) * 1998-06-25 2000-01-11 Kennosuke Miyazaki Wireless control device for marine vessel
US6361385B1 (en) * 2000-03-31 2002-03-26 Bombardier Motor Corporation Of America Dual electric motor stern drive with forward rudder control
JP2007022284A (en) 2005-07-15 2007-02-01 Unikas Industrial Inc Steering mechanism of two or three-unit outboard motor
US20080096447A1 (en) * 2006-10-18 2008-04-24 De Masi Douglas D Stern drive motor or out board motor that can rotate 360 degrees and still go vertical or horizontal or both at the same time at any given time
US20100076633A1 (en) * 2007-05-04 2010-03-25 Marco Murru Automatic system for controlling the propulsive units for the turn of a boat
JP5196649B2 (en) 2008-07-02 2013-05-15 日本発條株式会社 Water motorcycle steering handle device
JP6198192B2 (en) 2014-03-04 2017-09-20 日本発條株式会社 Operation lever and remote control device
JP2017171086A (en) * 2016-03-23 2017-09-28 ヤマハ発動機株式会社 Jet propulsion boat
JP2018192923A (en) * 2017-05-18 2018-12-06 ジャパン・ハムワージ株式会社 Trolling vessel maneuvering system
JP2019171925A (en) 2018-03-27 2019-10-10 ヤマハ発動機株式会社 Small ship and personal watercraft
JP6642898B2 (en) 2016-03-25 2020-02-12 ヤンマー株式会社 Ship
JP2021159280A (en) 2020-03-31 2021-10-11 大和ハウス工業株式会社 Excretion processing device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124586A (en) 1991-07-23 1993-05-21 Niigata Eng Co Ltd Emergency stop device of marine vessel
JP2000006891A (en) * 1998-06-25 2000-01-11 Kennosuke Miyazaki Wireless control device for marine vessel
US6361385B1 (en) * 2000-03-31 2002-03-26 Bombardier Motor Corporation Of America Dual electric motor stern drive with forward rudder control
JP2007022284A (en) 2005-07-15 2007-02-01 Unikas Industrial Inc Steering mechanism of two or three-unit outboard motor
US20080096447A1 (en) * 2006-10-18 2008-04-24 De Masi Douglas D Stern drive motor or out board motor that can rotate 360 degrees and still go vertical or horizontal or both at the same time at any given time
US20100076633A1 (en) * 2007-05-04 2010-03-25 Marco Murru Automatic system for controlling the propulsive units for the turn of a boat
JP5196649B2 (en) 2008-07-02 2013-05-15 日本発條株式会社 Water motorcycle steering handle device
JP6198192B2 (en) 2014-03-04 2017-09-20 日本発條株式会社 Operation lever and remote control device
JP2017171086A (en) * 2016-03-23 2017-09-28 ヤマハ発動機株式会社 Jet propulsion boat
JP6642898B2 (en) 2016-03-25 2020-02-12 ヤンマー株式会社 Ship
JP2018192923A (en) * 2017-05-18 2018-12-06 ジャパン・ハムワージ株式会社 Trolling vessel maneuvering system
JP2019171925A (en) 2018-03-27 2019-10-10 ヤマハ発動機株式会社 Small ship and personal watercraft
JP2021159280A (en) 2020-03-31 2021-10-11 大和ハウス工業株式会社 Excretion processing device

Also Published As

Publication number Publication date
JP2023049504A (en) 2023-04-10

Similar Documents

Publication Publication Date Title
JP2926533B2 (en) Automatic fixed point return control method for ships
EP1981757B1 (en) A method and arrangement for controlling a drive arrangement in a watercraft
US20070017426A1 (en) Marine vessel maneuvering supporting apparatus, marine vessel including the marine vessel maneuvering supporting apparatus, and marine vessel maneuvering supporting method
EP2328801A1 (en) Joystick controlled marine maneuvering system
JP2022179145A (en) Ship propulsion control system and ship
JP4633919B2 (en) Two floating body relative position holding device
JP7288791B2 (en) A method for controlling movement of a vessel in the vicinity of an object
WO2023053966A1 (en) Ship maneuvering system, ship control device, ship control method, and program
JP6876816B2 (en) Ship maneuvering support device
JP4295645B2 (en) Automatic fixed point holding device for water jet propulsion ship
JPH08192794A (en) Sea route holding control method and device of ship
JP6397844B2 (en) Ship
WO2023053963A1 (en) Ship, ship control device, ship control method, and program
WO2023203959A1 (en) Ship, ship control device, ship control method, and program
WO2022270235A1 (en) Ship control system, ship control device, ship control method, and program
JP2022180886A (en) System and boat for boat propulsion control
WO2023171658A1 (en) Ship, ship control device, ship control method, and program
WO2023048177A1 (en) Ship maneuvering system
JP7130015B2 (en) AUTOMATIC SHIPMANOPERATION SYSTEM, SHIP CONTROL DEVICE, SHIP CONTROL METHOD AND PROGRAM
JP4688571B2 (en) Method for maneuvering a ship having a pod propeller propeller
WO2021251382A1 (en) Ship, ship control device, ship control method, and program
WO2023190032A1 (en) Remote ship steering system, ship control device, input device, remote ship steering method, and program
JP7090664B2 (en) Automatic ship maneuvering system, ship control device, ship control method and program
US20240149999A1 (en) Watercraft propulsion system, and watercraft including the watercraft propulsion system
US20230227135A1 (en) Watercraft control system, watercraft control method, program, and vehicle control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022875837

Country of ref document: EP

Effective date: 20240429