WO2023053870A1 - Fan blade, engine, and structure with anti-icing and de-icing functions - Google Patents

Fan blade, engine, and structure with anti-icing and de-icing functions Download PDF

Info

Publication number
WO2023053870A1
WO2023053870A1 PCT/JP2022/033524 JP2022033524W WO2023053870A1 WO 2023053870 A1 WO2023053870 A1 WO 2023053870A1 JP 2022033524 W JP2022033524 W JP 2022033524W WO 2023053870 A1 WO2023053870 A1 WO 2023053870A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan blade
current
icing
carrying
conductive adhesive
Prior art date
Application number
PCT/JP2022/033524
Other languages
French (fr)
Japanese (ja)
Inventor
拓哉 水野
和夫 谷
正弘 北條
正也 鈴木
Original Assignee
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人宇宙航空研究開発機構 filed Critical 国立研究開発法人宇宙航空研究開発機構
Priority to JP2023550501A priority Critical patent/JPWO2023053870A1/ja
Publication of WO2023053870A1 publication Critical patent/WO2023053870A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/12De-icing or preventing icing on exterior surfaces of aircraft by electric heating

Definitions

  • the present invention relates to fan blades, engines, and structures with anti-icing/de-icing functions used in aircraft, for example.
  • fan blades have become larger and have improved fuel efficiency, and development has progressed to strengthen impact resistance and flutter resistance when foreign objects enter.
  • it had another fundamental problem of making the engine itself heavier due to the increased weight of the fan blades.
  • fan blades are characterized by the occurrence of icing phenomena corresponding to the number of blades when the aircraft flies at high altitudes in a low-temperature environment.
  • This icing phenomenon is a complex natural phenomenon that has multiple aspects of fluid and heat, but it reduces the performance of jet engines during flight, and in the worst case, surges and shedding ( This is an important problem that must be solved as soon as possible because it involves the risk of mechanical damage to the inside of the jet engine due to the phenomenon in which ice that has grown due to icing is released.
  • fan blades are made of carbon fiber reinforced composite materials that have high specific strength and specific modulus, excellent mechanical properties, and high functional properties such as weather resistance.
  • CFRP Carbon Fiber Reinforced Plastic
  • the airframe and engine are equipped with anti-icing and de-icing systems.
  • anti-icing and de-icing systems The following techniques have been disclosed as such systems.
  • Non-Patent Document 1 discloses a technique that utilizes high-temperature air (bleed air) bled from the compressor of the engine.
  • Non-Patent Document 2 discloses a technique using an electric heater to which a heating wire or the like is attached.
  • Non-Patent Document 3 discloses a technology that utilizes shape change by blowing air into the anti-icing boots (rubber membrane) provided on the leading edge of the main wing and tail wing.
  • Patent Documents 1 and 2 disclose techniques that apply a coating in advance to areas that are prone to icing, baking, or utilizing nano-sized structure pin processing.
  • Patent Document 3 discloses a technique that utilizes mechanical vibration of an actuator or the like.
  • JP 2012-26361 A WO2008/087861 U.S. Patent Application Publication No. 2013/032671 JP 2019-108818 A
  • the electric heater it is difficult to set and process the thin member of the fan, and it also has an aerodynamic effect.
  • the anti-icing boots it is necessary to install a complex mechanical structure inside the wing because it uses the air extracted from the engine's compressor to operate, and the anti-icing boots need to be replaced in a short period of 2 to 3 years. is required.
  • the conventional technology described above is a countermeasure technology that specializes in the problem of icing, and is a technology that realizes functions from the configuration and structure that are added (added) to conventional aircraft specifications later. It is obvious that the volume and weight will increase compared to the basic specifications, the configuration and structure will become more complicated, and processing and maintenance will become more difficult, and other effects will occur.
  • a fan blade includes: A fan blade arranged on the intake side of an engine, a fan blade body made of carbon fiber reinforced plastic; a pair of first current-carrying parts and second current-carrying parts for causing current to flow through the current-carrying region of the fan blade main body by causing current to flow through carbon fibers contained in the carbon fiber reinforced plastic; and When a current is passed between the pair of the first current-carrying portion and the second current-carrying portion, the amount of heat generated in the current-carrying region of the fan blade body on the first side of the fan blade body is the second level of the fan blade body. higher than the calorific value of the current-carrying region on the side.
  • the carbon fiber of carbon fiber reinforced plastic is conductive, and the resin material such as epoxy as the matrix material is insulating, so that the current flows. It utilizes the property of generating heat. That is, a pair of first current-carrying part and second current-carrying part are provided on the first side and the second side of the fan blade body made of CFRP for passing current to the current-carrying region of the fan blade body, and a voltage is generated between them. is applied to flow a current, the fan blade body itself generates heat due to its resistance, and performs anti-icing and de-icing. Therefore, anti-icing and de-icing can be performed with a simple structure.
  • CFRP carbon fiber of carbon fiber reinforced plastic
  • Airplane jet engine fan blades tend to have a large amount of icing on the leading edge side (first side) and almost no icing on the trailing edge side (second side) because supercooled droplets in the air do not collide. There is Therefore, by making the amount of heat generated on the first side of the fan blade body higher than the amount of heat generated on the second side, the first side can be more efficiently deiced.
  • the calorific value of the energized region on the first side of the fan blade body is higher than the calorific value of the energized region on the second side
  • the conductive fiber density on the first side which is the ratio of the carbon fibers conductively connected to the first conductive portion to the length of the first conductive portion in the span direction, is the length of the second conductive portion in the span direction. higher than the conductive fiber density on the second side, which is the ratio of the carbon fibers conductively connected to the second current-carrying portion to the thickness.
  • the fan blade body includes a plurality of laminated layers, and the carbon fibers contained in the plurality of layers have different orientations, By connecting one or more layers selected from the plurality of layers to the first conductive portion and the second conductive portion, the conductive fiber density on the first side is higher than the conductive fiber density on the second side. It can be expensive.
  • the orientation of carbon fibers varies depending on the required specifications and characteristics. By selecting one or more layers with different carbon fiber orientations and connecting them to the first current-carrying portion and the second current-carrying portion, it is possible to achieve a difference in conductive fiber density.
  • the one or more layers connected to the first current-carrying part and the second current-carrying part a first layer comprising carbon fibers oriented in a first direction positively inclined with respect to both the span direction and the cord direction; and/or negatively inclined with respect to both the span direction and the cord direction.
  • a second layer comprising carbon fibers oriented in a second direction may also be included.
  • the length of the second conducting portion in the span direction may be longer than the length of the first conducting portion in the span direction.
  • the number of carbon fibers conducting to the first conducting portion and the second It is the same as the number of carbon fibers conducting to the current-carrying part. Therefore, when the same number of carbon fibers are electrically connected to the short first current-carrying portion and the long second current-carrying portion, the length (short) in the span direction of the first current-carrying portion is electrically connected to the first current-carrying portion.
  • the conductive fiber density on the first side which is the ratio of the carbon fibers that are connected to the second side, is the ratio of the carbon fibers that are conducted to the second current-carrying portion with respect to the length (long) of the second current-carrying portion in the span direction. higher than the conducting fiber density of The conductive fiber density on the first side is higher than the conductive fiber density on the second side, so that the amount of heat generated on the first side of the fan blade body is higher than that on the second side.
  • the same number of carbon fibers conducting on the first side exist in a narrower area than on the second side. Therefore, the temperature of the first side becomes higher than that of the second side due to the heat generated by the carbon fibers themselves.
  • the fan blade body includes a plurality of laminated layers, a layer on the pressure side selected from the plurality of layers is connected to the first conducting portion and the second conducting portion; When a current is passed between the pair of first current-carrying parts and the second current-carrying part, the amount of heat generated on the pressure side of the fan blade body may be higher than the amount of heat generated on the suction side of the fan blade body.
  • the layer close to the pressure side it is possible to secure the heat generation area and heat generation temperature with the minimum applied power, and also to set the heat generation temperature on the pressure side and the suction side of the fan blade. Specifically, the temperature of the pressure surface on which a large amount of ice adheres can be raised to a high temperature, and the temperature of the suction surface on which a small amount of ice adheres can be lowered. With this configuration, it is possible to advantageously function in the hollow structure that accompanies the recent weight reduction of fan blades.
  • the calorific value of the energized region on the first side of the fan blade body is higher than the calorific value of the energized region on the second side
  • the resistance value of the first side conductive adhesive may be higher than the resistance value of the second side conductive adhesive.
  • the conductive adhesive is used to form a current path through selected carbon fibers, but the resistance component of the conductive adhesive is mainly in the area passing through the point where ice buildup concentrates on the fan blade. By selecting the ratio, heat generation effect and anti-icing effect can be obtained predominantly.
  • the fan blade body includes a plurality of laminated layers,
  • the first side conductive adhesive and the second side conductive adhesive may connect one or more layers selected from the plurality of layers to the first conductive portion and the second conductive portion. good.
  • the adhesiveness and contact area with the carbon fiber increase, so local temperature rise and poor conduction at the attachment point between the electrode and the fan blade body can be prevented and power consumption can be reduced. Thereby, an effective temperature rise can be obtained even at a low voltage.
  • the resistance value of the first side conductive adhesive on the pressure side of the fan blade body is higher than the resistance value of the first side conductive adhesive on the suction side of the fan blade body,
  • a resistance value of the second side conductive adhesive on the pressure side may be lower than a resistance value of the second side conductive adhesive on the suction side.
  • ice builds up on the pressure surface of the fan blade. Therefore, it is desirable to actively heat the positive pressure surface on which a large amount of ice is deposited.
  • voltage is applied to the fan blade body between the first current-carrying part and the second current-carrying part, so that current flows, and the fan blade body itself generates heat due to its resistance. Therefore, by changing the method of applying the conductive adhesive, more current can flow through the layer closer to the pressure surface, and conversely, less current can flow through the layer closer to the suction surface. As a result, the amount of heat generated on the pressure side can be increased, and the first side can be more efficiently deiced.
  • the first side is a leading edge side of the fan blade body;
  • the second side may be the trailing edge side of the fan blade body.
  • Airplane jet engine fan blades tend to have a large amount of icing on the leading edge side (first side) and almost no icing on the trailing edge side (second side) because supercooled droplets in the air do not collide. There is Therefore, by making the amount of heat generated on the first side of the fan blade body higher than the amount of heat generated on the second side, the first side can be more efficiently deiced.
  • An engine includes: a rotating shaft; a fan disk provided on the inlet side of the rotating shaft; a fan blade according to one aspect of the present invention, which is detachably attached to the fan disk; A first current-carrying part and a second current-carrying part are provided on the fan disk side and the fan blade side, respectively, and when the fan blade is attached to the fan disk, they are electrically connected to each other on the fan disk side.
  • a pair of connection terminals for energizing the power source and the first current-carrying part and the second current-carrying part Equipped with
  • a structure with anti-icing and de-icing functions includes: a plate-shaped member made of carbon fiber reinforced plastic and having an icing area due to gas flow; Provided on the first side and the second side of the plate-shaped member so as to include the icing region, current is passed through the carbon fiber contained in the carbon fiber reinforced plastic, and the current is passed through the current-carrying region of the plate-shaped member.
  • a pair of first current-carrying part and second current-carrying part for flowing the and An amount of heat generated in the energized area on the first side of the plate member is higher than that of the energized area on the second side.
  • anti-icing and de-icing can be performed efficiently with a simple structure.
  • FIG. 1 is a schematic diagram showing the configuration of a jet engine according to one embodiment of the present invention
  • FIG. FIG. 2 is a side view showing the basic configuration of a single fan blade shown in FIG. 1
  • 1 is a schematic diagram showing the configuration of a fan blade according to one embodiment of the present invention
  • FIG. FIG. 4 shows a modification of the fan blade shown in FIG. 3
  • FIG. It is a graph which shows a test result.
  • FIG. 4 is a perspective view showing a state in which fan blades are attached to the fan disk
  • FIG. 2 is a diagram for explaining the configuration of wiring for supplying power to fan blades according to an embodiment of the present invention
  • FIG. 4 is a diagram for explaining a configuration of power supply to fan blades according to an embodiment of the present invention
  • FIG. 4 is a diagram for explaining another configuration of power supply to fan blades according to an embodiment of the present invention
  • FIG. 4 is an exploded view schematically showing laminated prepregs forming a fan blade body
  • 1 schematically shows a lamination cross-section of a laminated prepreg specimen used in an experiment.
  • 1 shows a laminated prepreg specimen used in an experiment.
  • It is a schematic diagram for explaining the conductive fiber density used in the experiment.
  • Type 1 and type 2 specimens used in the experiment are shown.
  • An experimental icing wind tunnel setup is shown. It is a photograph which shows an anti-icing test result. It is a photograph which shows an anti-icing test result. It is a graph which shows an anti-icing test result.
  • thermography which shows a test result.
  • thermography which shows a windless heat generation test result.
  • Another specimen used in the experiment is schematically shown.
  • thermography which shows a test result.
  • thermography which shows a test result.
  • a specific example of layer selection used in the experiment is shown.
  • thermography which shows the layer selective draft temperature confirmation test result.
  • FIG. 1 is a schematic diagram showing the configuration of a jet engine according to one embodiment of the present invention.
  • a jet engine 1 has a low-pressure shaft 2 and a high-pressure shaft 3 as rotating shafts arranged at the center.
  • a spinner 5, a fan disk 6, a low-pressure compressor 9, and a low-pressure turbine 15 are attached to the low-pressure shaft 2 from the intake port 4 side. ing.
  • a low-pressure compressor 9 Downstream of the fan blades 8, a low-pressure compressor 9, a high-pressure compressor 11, a combustor 13, a high-pressure turbine 14, a low-pressure turbine 15, a strut 16, and a core nozzle 17 are arranged.
  • a fan outlet guide vane 10 and a bypass nozzle 12 are arranged in another flow path.
  • a high pressure compressor 11 and a high pressure turbine 14 are attached to the high pressure shaft 3 .
  • icing occurs due to supercooled water droplets on the spinner 5 and the fan blades 8 near the intake port 4 .
  • Such icing poses problems of deterioration of aerodynamic performance due to shape change and mechanical damage due to peeling ice blocks.
  • the fan blade 8 shown below solves this problem.
  • FIG. 2 is a side view showing the basic configuration of the single fan blade shown in FIG.
  • FIG. 3 is a schematic diagram showing the configuration of a fan blade according to one embodiment of the present invention.
  • the fan blades 8 are arranged on the intake port 4 side of the engine.
  • the fan blade 8 includes a fan blade main body 21, a sheath 22 arranged on the front edge 24 side (first side) of the fan blade main body 21, and a rear edge 25 side (second side) of the fan blade main body 21. and a guard 23.
  • the fan blade main body 21 is made of carbon fiber reinforced plastic (CFRP, hereinafter referred to as "CFRP"), and is typically a plate-shaped molding.
  • CFRP is constructed by laminating prepregs made of, for example, carbon fibers as reinforcing fibers and epoxy resin as a matrix, with the orientation of the carbon fibers being quasi-isotropic.
  • the sheath 22 is made of a rigid conductive metal, and covers the front edge 24 side of the fan blade body 21 from the hub side 26 as the base to the tip side 27 as the tip.
  • the guard 23 is also made of a rigid, conductive metal and covers an area extending from the hub side 26 to the tip side 27 on the trailing edge 25 side of the fan blade body 21 .
  • the sheath 22 and guard 23 are originally parts for responding to bird strikes.
  • the sheath 22 and the guard 23 are separated so as not to come into contact with each other and are electrically insulated.
  • the fan blade 8 as shown in FIG. has a pair of leading edge side conducting portion 31 (first conducting portion) and trailing edge side conducting portion 32 (second conducting portion) for applying current to the conducting region of the fan blade main body 21 .
  • leading edge side conducting portion 31 and trailing edge side conducting portion 32 schematically show approximate positions, and the shape of the leading edge side conducting portion 31 and the trailing edge side conducting portion 32 are actually different (described later). ).
  • the rotation speed of the hub side 26 of the leading edge 24 is slow, so the amount of icing is the largest, and the rotation speed of the tip side 27 is high. Since the ice is easy to peel off, it tends to be difficult to accumulate.
  • the heating region 36 is typically located on the leading edge 24 side and closer to the hub side 26 . Anti-icing and anti-icing measures in this heating area 36 are important.
  • the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 are located on the front edge 24 side and the trailing edge 25 side of the heating region 36, respectively, between the surface of the fan blade main body 21 and the back surface of the sheath 22, and the surface of the fan blade main body 21. and the rear surface of the guard 23.
  • the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 have electrodes configured by removing the insulating coating from the ends of the wires 33 and 34 with insulating coating, respectively, between the front surface of the fan blade main body 21 and the rear surface of the sheath 22 . , the front surface of the fan blade body 21 and the rear surface of the guard 23 are adhered via a paste-like conductive adhesive (not shown).
  • the fan blade main body 21 has carbon fiber exposed portions where the carbon fibers contained in the carbon fiber reinforced plastic are exposed at respective positions corresponding to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 .
  • This carbon fiber exposed portion is configured by, for example, shaving the insulating epoxy resin at the portion to expose the conductive carbon fiber.
  • a conductive adhesive it becomes possible to efficiently pass an electric current through the carbon fibers. This indicates that resistance heating can be realized by forming a current path made of conductive carbon fiber based on the material configuration of the fan blade main body 21 .
  • a negative voltage for example, is applied to the leading edge side conducting portion 31 from a power source 35 through an insulating coated wire 33
  • a positive voltage for example, is applied to the trailing edge side conducting portion 32 from a power source 35 through an insulating coated wire 34.
  • a voltage is applied to the energized region of the fan blade main body 21 between the leading edge side energizing portion 31 and the trailing edge side energizing portion 32, and current flows, and the fan blade main body 21 itself generates heat due to the resistance.
  • the area heated by heat generation includes the heating area 36, or the heating area 36 includes the area heated by heat generation.
  • a positive voltage may be applied to the leading edge side conducting portion 31 and a negative voltage may be applied to the trailing edge side conducting portion 32 .
  • the fan blade main body 21 is made of CFRP and is conductive, so the property of generating heat when an electric current flows is used. That is, a pair of front edge sides for passing an electric current through the current-carrying region of the fan blade main body 21 by applying an electric current to the carbon fibers contained in the CFRP on the front edge 24 side and the trailing edge 25 side of the fan blade main body 21 made of CFRP.
  • a current-carrying portion 31 and a trailing-edge-side current-carrying portion 32 are provided, and a voltage is applied between them from a power supply 35 to flow current through the current-carrying region, thereby heating the fan blade body 21 and preventing or deicing the heating region 36. conduct.
  • the heating region 36 for anti-icing and de-icing by such heating can be adjusted by the positions at which the pair of leading edge side current-carrying portion 31 and trailing edge side current-carrying portion 32 are attached. That is, the electric wires 33 and 34 with insulation coating are laid between the sheath 22 and the guard 23 and the fan blade body 21, and the electrodes at the tips of the electric wires 33 and 34 with insulation coating and the fan blade body are aligned with the area to be heated. 21 is adjusted.
  • the description of FIG. The positions of the electrodes (the first current-carrying portion 31 and the second current-carrying portion 32) on the front edge 24 side and the rear edge 25 side are set near the hub side 26. FIG. By doing so, the anti-icing and de-icing on the hub side 26 of the leading edge 24 side is efficiently carried out.
  • the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 attach electrodes, which are formed by removing the insulating coating from the ends of the wires 33 and 34 with insulating coating, respectively, to the target portion via a conductive adhesive (not shown). Since it is adhered to the Conductive adhesive differs from, for example, copper tape in which electrodes are attached, and the conductive material penetrates into the fine irregularities of the processed surface, increasing the conductive area, resulting in reduced resistance and easier current flow. , local temperature rise and conduction failure can be prevented, and power consumption can be suppressed. In addition, it has been confirmed that when the copper tape is used instead of the conductive adhesive, it hardly heats up even at the same voltage.
  • the heat generation temperature and the heat generation speed of the heating region 36 can be changed. can be adjusted.
  • FIG. 6 is a perspective view showing a fan blade 8 attached to the fan disk 6
  • FIG. 7 is a diagram for explaining the wiring configuration for supplying power to the fan blade 8
  • FIG. 4 is a diagram for explaining a configuration of power supply to blades 8.
  • the fan disk 6 has locking grooves 41 in which the dovetails 7 attached to the fan blades 8 are locked.
  • a gap is provided between the end surface of the dovetail 7 and the bottom of the locking groove 41 .
  • a dovetail 7 is attached to the hub side 26 of the fan blade 8 via a platform 43 and a shank 42, as shown in FIG.
  • Connection terminals 46 and 49 are attached to the end face of the dovetail 7 via insulating sheets 46a and 49a on the front edge 24 side and the rear edge 25 side, respectively.
  • the connection terminal 46 is connected to the front edge side conducting portion 31 on the front edge 24 side via the electric wire 33 with an insulation coating.
  • the insulated wire 33 is wired on the platform 43 and the shank 42 on the front edge 24 side.
  • the connection terminal 49 is connected to the trailing edge side current-carrying portion 32 on the trailing edge 25 side via the electric wire 34 with an insulating coating.
  • the insulated wire 34 is routed on the platform 43 and the shank 42 on the trailing edge 25 side.
  • V-shaped contact fittings (connecting terminals) 51 and 51 are provided at positions corresponding to the connecting terminals 46 and 49 via insulating sheets 51a and 52a, respectively. 52 are provided.
  • connection terminals 46 and 49 contact and press the V-shaped contact fittings 51 and 52, respectively.
  • the connection terminals 46, 49 and the V-shaped contact fittings 51, 52 are brought into elastic contact with each other at the bottom of the locking groove 41 and the end face of the dovetail 7, respectively.
  • a battery 53 serving as a power source is accommodated in the spinner 5, and the battery 53 and the V-shaped contact fittings 51, 52 are connected via the electric wires 45, 48 with insulation coating passing through the fan disk 6 and the spinner 5, respectively. there is Thereby, electric power for heating is supplied to the fan blade main body 21 .
  • the configuration for power supply can be simplified.
  • FIG. 9 is a diagram for explaining another configuration of power supply to the fan blades 8.
  • Fig. 10 is an exploded view schematically showing the laminated prepregs that constitute the fan blade body.
  • the fan blade body 21 is an example composed of a plurality (n layers) of laminated layers 211, 212, 213, 214, . . . 21n. Each layer 211, 212, 213, 214, . Each layer 211, 212, 213, 214...21n may be the same prepreg.
  • the orientations of the carbon fibers included in the multiple (n layers) layers 211, 212, 213, 214, . . . 21n are different.
  • the span direction (longitudinal direction) of the fan blade 8 is 0° and the cord direction (lateral direction) is 90°
  • the orientation of the carbon fibers contained in the layer 214 is 0°
  • the carbon fibers contained in the layer 211 is 90°.
  • Layer 212 includes carbon fibers oriented in a first direction (+45° in this example) that is positively angled with respect to both the span and cord directions.
  • Layer 213 comprises carbon fibers oriented in a second direction ( ⁇ 45° in this example) that is negatively angled with respect to both the span and cord directions.
  • Other layers 21n have a configuration in which a quasi-isotropic configuration in which carbon fibers are arranged with orientation directions of 90°, ⁇ 45°, 0°, or other angles is repeatedly laminated multiple times.
  • a quasi-isotropic lamination structure is used in which prepregs in which carbon fibers are oriented in one direction are used to change the orientation according to lamination in order to obtain a certain level of mechanical and mechanical properties in the outer peripheral direction.
  • the fan blade obtains the desired mechanical properties by repeatedly laminating a configuration in which the orientation directions of the carbon fibers are 90°, ⁇ 45°, and 0° with respect to the span direction (longitudinal direction).
  • pseudo-isotropy is shown in the same figure, it may not be pseudo-isotropic.
  • the rotation speed is slow on the hub side 26 of the leading edge 24, so the amount of ice accretion is the largest, and the rotation speed on the tip side 27 of the trailing edge 25 is the highest. It tends to be difficult to accumulate ice because it is fast and easy to peel off due to centrifugal force and the like.
  • voltage is applied to the current-carrying region of the fan blade body 21 between the leading edge-side current-carrying portion 31 and the trailing edge-side current-carrying portion 32, so that a current flows, and the fan blade body 21 itself is affected by the resistance. Fever.
  • the amount of heat generated on the front edge 24 side of the fan blade main body 21 is made higher than the amount of heat generated on the trailing edge 25 side.
  • the fan blades 8 of the jet engine 1 tend to concentrate icing on the hub side 26 due to the rotation of the fan blades 8 regardless of the size of the fan blades 8 (regardless of the size of the engine). It is possible to obtain an effective anti-icing effect by means described in the embodiments.
  • the amount of heat generated on the front edge 24 side of the fan blade main body 21 is less than the amount of heat generated on the trailing edge 25 side.
  • the conductive fiber density on the leading edge 24 side of the fan blade body 21 is made higher than the conductive fiber density on the trailing edge 25 side.
  • the ratio of the carbon fibers conducted to the leading edge side current-carrying portion 31 to the length of the leading edge side current-carrying portion 31 in the span direction is the same as that of the trailing edge side current-carrying portion 32 to the length of the trailing edge side current-carrying portion 32 in the span direction.
  • not only one or more layers 211 with a carbon fiber orientation of 90°, but also one or more layers 212 with a carbon fiber orientation of +45° and a carbon fiber orientation of One or more layers 213 at ⁇ 45° are connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 .
  • the spanwise length of the trailing edge side conducting portion 32 is set longer than the spanwise length of the leading edge side conducting portion 31 .
  • the leading edge-side conducting portion 31 and the trailing edge-side conducting portion 32 focus on the carbon fibers conducting to both the leading edge-side conducting portion 31 and the trailing edge-side conducting portion 32 (that is, the carbon fibers contained in the conducting region), the number of carbon fibers conducting to the leading edge-side conducting portion 31 and the number of carbon fibers conducting to the trailing edge-side conducting portion 31 The number of carbon fibers conducting to the edge-side conducting portion 32 is the same. Therefore, when the same number of carbon fibers are electrically connected to the short leading edge side current-carrying portion 31 and the long trailing edge side current-carrying portion 32, the leading edge side current-carrying portion 31 is electrically connected to the length (short) of the leading edge side current-carrying portion 31 in the span direction.
  • the conducting fiber density on the leading edge 24 side is higher than the conducting fiber density on the trailing edge 25 side, when a current is passed between the pair of leading edge side conducting parts 31 and trailing edge side conducting parts 32, the leading edge of the fan blade main body 21
  • the temperature on the side of the leading edge 24 of the fan blade main body rises.
  • the carbon fibers conducting on the leading edge 24 side exist in the same number in a narrower region than on the trailing edge 25 side. Therefore, the temperature on the leading edge 24 side becomes higher than on the trailing edge 25 side due to the heat generated by the carbon fibers themselves.
  • FIG. 11 schematically shows a lamination cross-section of a laminated prepreg specimen used in the experiment.
  • layers 211, 212, 213, and 214 having carbon fiber orientations of 90°, +45°, -45°, and 0° are laminated symmetrically.
  • layers with +30° to +60° orientation may be provided.
  • layers with -30° to -60° orientation may be provided.
  • layers with carbon fiber orientations of 90°, +60°, +30°, ⁇ 30°, ⁇ 60° and 0° may be provided.
  • the layers may be laminated in a quasi-isotropic manner, or the proportion of layers that are not quasi-isotropic and oriented at, for example, 90° may be higher than layers oriented at other angles.
  • the two end faces are, for example, a knife-edge shape consisting of two angled planes instead of one plane.
  • the thickness of each layer 211, 212, 213, 214...21n is, for example, 0.19 mm.
  • the first direction is +30° to +60°
  • the second direction is ⁇ 30° to ⁇ 60° (that is, being acute)
  • the resistivity increases due to the narrow application area of the conductive adhesive, and it becomes possible to increase the amount of heat generated by the resistance.
  • Fig. 12 shows a laminated prepreg specimen used in the experiment.
  • One layer 21n may be connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32, or a selected part of the layers 21n may be connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32, All layers 21n may be connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 .
  • anisotropic conductive film materials and insulating materials for example, masking tape in tests used in high-density mounting of electronic components may be used.
  • FIG. 13 is a schematic diagram for explaining the conductive fiber density used in the experiment.
  • Type 2 is this embodiment, one or more layers 211 with a carbon fiber orientation of 90°, one or more layers 212 with a carbon fiber orientation of +45° and a carbon fiber orientation of -45°.
  • One or more layers 213 are connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 .
  • a conductive adhesive is applied to all layers in FIG.
  • the spanwise length 31L of the trailing edge side conducting portion 32 is longer than the spanwise length 31L of the leading edge side conducting portion 31 .
  • the number of carbon fibers conducting to the leading edge-side conducting portion 31 and the number of carbon fibers conducting to the trailing edge-side conducting portion 31 is the same.
  • the leading edge side current-carrying portion 31 with respect to the length 31L (short) of the leading edge side current-carrying portion 31 in the span direction The ratio of the carbon fibers conducted is higher than the ratio of the carbon fibers conducted to the trailing edge side current-carrying portion 32 with respect to the length 32L (long) of the trailing edge side current-carrying portion 32 in the span direction.
  • the conductive fiber density on the leading edge 24 side (area within the ellipse in the figure) is higher than the conductive fiber density on the trailing edge 25 side.
  • the conductive fiber density on the leading edge 24 side is higher than the conductive fiber density on the trailing edge 25 side, so that the amount of heat generated on the front edge 24 side of the fan blade body 21 is higher than that on the trailing edge 25 side.
  • the temperature on the leading edge 24 side of the blade body increases.
  • the carbon fibers conducting on the leading edge 24 side exist in the same number in a narrower region than on the trailing edge 25 side. Therefore, the temperature on the leading edge 24 side becomes higher than on the trailing edge 25 side due to the heat generated by the carbon fibers themselves.
  • Type 1 is a comparative example, in which one or more layers 211 having carbon fibers oriented at 90° are connected to the leading edge side conducting portion 31A and the trailing edge side conducting portion 32A.
  • the conductive adhesive is applied only to the two layers (90° orientation) at the center in the thickness direction (center of symmetry) in FIG. It is connected to the portion 31 and the trailing edge side current-carrying portion 32 . Focusing on the carbon fibers conducting to both the leading edge side conducting portion 31A and the trailing edge side conducting portion 32A (that is, the carbon fibers contained in the conducting region), the number of carbon fibers conducting to the leading edge side conducting portion 31A and the trailing edge side conducting portion The number of carbon fibers conducting to the portion 32A is the same. Therefore, the conducting fiber density on the leading edge 24 side and the conducting fiber density on the trailing edge 25 side are the same.
  • Fig. 14 shows Type 1 and Type 2 specimens used in the experiment.
  • the area surrounded by lines is the area where fiber heating occurs due to conduction, and represents the area to be evaluated as an area when calculating the anti-icing effect.
  • Both type 1 and type 2 specimens are CFRP laminates having a size of 187 mm in the span direction, 58.6 mm in the cord direction, and 4.6 mm in the thickness direction.
  • the type 1 specimen has a leading edge side conducting portion 31A (span direction length 30 mm) and a trailing edge side conducting portion 32A (span direction length 30 mm) at the mid-span position. Electricity is applied between the portions 32A.
  • the type 2 specimen has a leading edge side conducting portion 31 (span direction length of 60 mm) and a trailing edge side conducting portion 32 (span direction length of 100 mm) at the mid-span position.
  • the energized region between the portions 32 is energized.
  • the leading edge side current-carrying portion 31A and the trailing edge side current-carrying portion 32A are made of a conductive adhesive.
  • Type 1 and type 2 differ in the size of the heating area. A region surrounded by a straight line in the drawing is an energization region between the leading edge side energization portion 31A and the trailing edge side energization portion 32A, as well as a heating region and an evaluation region.
  • Fig. 15 shows an experimental icing wind tunnel.
  • the icing wind tunnel device 100 has a wind tunnel 110, a droplet catcher 106, a camera (not shown), and a refrigeration room 107 that houses them.
  • the wind tunnel 110 includes, in order from upstream to downstream, a blower 101, a strainer grid 102, a spray tunnel 103, a contraction 104, and an air outlet 105, which is a test section.
  • Spray tunnel 103 houses a plurality of spray nozzles 108 .
  • a camera (not shown) photographs the test section, air outlet 105 .
  • a camera (not shown) includes at least a thermo camera and may also include a camera for taking pictures.
  • a droplet catcher 106 is installed downstream of the air outlet 105 .
  • the specifications of the icing wind tunnel device 100 are as follows. Maximum flow velocity 50m/s. Temperature -30 to -5°C.
  • the volume of the refrigeration room 107 is 2500 ⁇ 4500 ⁇ 2400 mm 3 .
  • the cross-sectional area of the spray tunnel 103 is 400 ⁇ 400 mm 2 .
  • the cross-sectional area of the air outlet 105 is 200 ⁇ 200 mm 2 .
  • a specimen 109 is installed downstream of the air outlet 105, which is the test section. Air is passed through the wind tunnel 110 and droplets are sprayed from the spray nozzle 108 toward the specimen. There are two types of air flow velocity conditions, 20 m/s and 40 m/s. The conditions for the particle size of droplets sprayed from the spray nozzle 108 are two types of 15 ⁇ m and 29 ⁇ m.
  • FIGs 16 and 17 are photographs showing the anti-icing test results.
  • FIG. 16 shows Type 1 and Type 2 anti-icing under the first test conditions (air flow rate 20 m/s, droplet size 15 ⁇ m, power (input power/area of heating area) 1.1 W/cm 2 ). It is the photograph which image
  • FIG. 17 shows the anti-icing of Type 1 and Type 2 under the second test conditions (air velocity 40 m/s, droplet size 15 ⁇ m, power (input power/area of heating area) 0.83 W/cm 2 ). It is the photograph which image
  • Figures 18 and 19 are graphs showing the anti-icing test results.
  • the horizontal axis indicates the power, specifically the input power/the area of the heating region [w/cm 2 ].
  • Type 1 and Type 2 differ in the size of the heating area, and cannot be simply compared based on input power.
  • the vertical axis is the anti-icing effect (anti-ice effect) [%], which is calculated by the following formula.
  • a anti-ice [mm 2 ] is the average value of the ice accretion areas on the front and sides of the specimen after the anti-icing test.
  • a ice [mm 2 ] is the average value of the ice accretion areas on the front and side surfaces of the specimen after the non-exothermic icing amount confirmation test. Ideally, these icing areas should be evaluated by icing weight. Evaluate by
  • FIG. 18 shows the results of an anti-icing test in which the air flow velocity was 20 m/s, the droplet diameter was 15 ⁇ m and 29 ⁇ m, and the input power was changed. At least when the power (input power/area of heating region) is 0.83 W/cm 2 or more, the anti-icing effect of type 2 is higher than the anti-icing effect of type 1.
  • FIG. 19 shows the results of an anti-icing test in which the air flow velocity is 40 m/s, the droplet diameter is 15 ⁇ m and 29 ⁇ m, and the input power is varied.
  • the anti-icing effect of type 2 is higher than the anti-icing effect of type 1 when the power (input power/area of heating area) is about 0.5 to 1.1 W/cm 2 .
  • Fig. 20 is a thermography showing the results of the windless heat generation test.
  • the specimens of case 1 and case 2 differ in the layers connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 .
  • all knife-edge surface layers are connected to the leading edge side conducting portion 31 and the trailing edge side conducting portion 32 .
  • the layer (specifically, the two-layer portion of the central portion 211 in FIG. 11) formed in the central portion in the thickness direction of the selected one or more test pieces is the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32.
  • the specimens of Case 1 and Case 2 are placed in a windless room at a room temperature of 10°C, an input power of 10 W is applied for 30 seconds, and the bottom surface of the specimen is photographed with a thermo camera to obtain the surface temperature distribution.
  • Fig. 21 is a graph showing the results of the windless heat generation test.
  • This graph shows the cross-sectional temperature distribution at the center of the bottom surface of the specimen indicated by the dashed line in FIG. 20 30 seconds after the start of energization.
  • the horizontal axis indicates the position of the specimen from the pressure side surface to the suction side surface at the position of the mid-cord. 5 pixels to 27 pixels on the horizontal axis correspond to the specimen portion.
  • the vertical axis indicates cross-sectional temperature (°C).
  • Cases 1 and 2 differed in the heat generation of the cross section. It is considered that this also applies to confirmation during an anisotropic conductive film (ACF) test.
  • the temperature of case 2 is higher than that of case 1 as a whole.
  • the temperature of the front and rear edges of the case 2 is particularly high, and it is considered that the temperature rise of the mid-cord part was affected by this.
  • the icing on the fan blades 8 of the jet engine 1 of the aircraft is concentrated on the front edge 24 of the fan blade 8 (especially the area from the hub side 26 to the midspan) and the pressure surface. This phenomenon is caused by the difference in rotational circumferential speed between the hub side 26 and the tip side 27 .
  • the hub side 26 of the front edge 24 has the slowest rotation speed, so the amount of ice accretion is the largest.
  • an icing mechanism of a supercooling phenomenon occurs in which the droplets freeze rapidly on the leading edge 24 and the pressure surface of the fan blades 8 .
  • a 90° oriented layer across the leading edge 24 and the trailing edge 25 and a layer close to the anti-icing surface are selected and energized.
  • a current may be applied to the pressure surface and the suction surface to generate a temperature difference or a different heat generation region between the pressure surface and the suction surface.
  • the length of the conductive adhesive applied to the front and rear edges, the position of the applied adhesive, etc. may be offset.
  • the current may be applied to the pressure surface and not to the suction surface.
  • the pressure surface side may have more layers through which current flows than the suction surface side, and the number of conductive fibers themselves that generate heat may be increased on the pressure surface side.
  • the heat generation temperature or the heat generation region of the pressure surface and the suction surface are different, and as a result, anti-icing can be achieved with minimum power consumption.
  • the heat generation area and heat generation temperature can be secured with the minimum applied power, and the heat generation temperature of the pressure side and the suction side of the fan blade main body 21 can be set. Specifically, the temperature of the pressure surface on which a large amount of ice adheres can be raised to a high temperature, and the temperature of the suction surface on which a small amount of ice adheres can be lowered. With this configuration, it is possible to advantageously function in the hollow structure that accompanies the recent weight reduction of fan blades.
  • the fan blades 8 of the jet engine 1 tend to concentrate icing on the hub side 26 due to the rotation of the fan blades 8 regardless of the size of the fan blades 8 (regardless of the size of the engine). It is possible to obtain an effective anti-icing effect by means described in the embodiments.
  • the minimum unit (component) that constitutes the fan blade main body 21 is the laminated prepreg.
  • the prepreg layer has specifications including the types of resin and carbon fiber that constitute it, the content of carbon fiber and resin, and the thickness.
  • one or more layers are selected to be energized.
  • the direction in which current flows in the CFRP structure through a pair of current paths between the ends of the carbon fibers of each carbon fiber layer arranged in a fixed direction in the CFRP lamination direction and the area that contributes to heat generation are specified. can do
  • the resistance component that excites the heat generation of CFRP is proportional to the length between both ends of the carbon fiber layer of the selected layer, and inversely proportional to the thickness of the selected prepreg layer and the carbon fiber content.
  • the difference in the length of the carbon fibers due to the difference in the layers selected in the thickness direction changes the resistance component and the heat generation temperature. For this reason, in order to obtain heat generation for defrosting the fan blades, heat generation efficiency can be increased by preferentially selecting a layer with a short carbon fiber length orientation straddling the leading edge and trailing edge.
  • the basic configuration of the fan blade 8 of the present embodiment includes a pair of leading edge side current-carrying portions 31 and trailing edge side current-carrying portions 32 electrically connected to the carbon fiber of the selected layer of the CFRP of the power source and the fan blade main body 21, It consists of a series circuit made up of the resistance component of the CFRP of the fan blade main body 21 . Therefore, the current flows uniformly in the circuit, and the current flowing according to each resistance component excites resistance heating, and the amount of heat generated is determined by the ratio of the resistance values of each resistance component.
  • the selection of the carbon fiber layer that straddles the leading edge 24 and the trailing edge 25 of the fan blade 9 reduces the current path at the leading edge 24 (around the hub side 26) where icing concentrates. can be formed, and the heating area can be set.
  • a current path consisting of a combination of multiple carbon fiber orientation layers (for example, 90°, +45°, ⁇ 45°) is formed with respect to the thickness direction of lamination, and the leading edge 24 is improved by increasing the conductive fiber density on the leading edge 24 side.
  • An increase in the heat generation temperature and an expansion of the heat generation area on the surface of the fan blade 8 (pressure surface) can be expected.
  • Conductive adhesives are materials manufactured by dispersing particles of highly conductive metals such as silver, copper, and nickel in a solution of a binder resin such as a polymer. to form a flexible adhesive layer.
  • the main functions of conductive adhesives are conductivity and adhesiveness, and the factors that determine the electrical and mechanical properties listed on the left include curing time, curing temperature, the content of metal particles such as silver, and the size of metal particles. and shape.
  • the adhesive strength increases. It is believed that this is because the solvent in the resin evaporates as the curing time increases, and the substrate and the paste form an intimate bond during curing.
  • conductive adhesives can be roughly divided into isotropic materials and anisotropic materials.
  • Isotropic materials like solder, conduct electricity in all directions, while anisotropic materials provide a unidirectional connection that allows current to flow only in the direction of compression between opposing electrodes.
  • an anisotropic material and an isotropic material can be selectively used when selecting layers for forming current paths.
  • anisotropic conductive film it is effective when selecting layers arranged in the direction of each laminated fiber for the purpose of improving the accuracy of current paths for a plurality of fan blades.
  • the conductive adhesive is used to form a current path through the selected carbon fibers, but the resistance component of the conductive adhesive is mainly in the area passing through the point where ice is concentrated on the fan blade.
  • the adhesiveness and contact area with the carbon fiber increase, so local temperature rise and poor conduction at the attachment point between the electrode and the fan blade body can be prevented and power consumption can be reduced. Thereby, an effective temperature rise can be obtained even at a low voltage.
  • the resistance value of the conductive adhesive that connects the fan blade main body 21 to the leading edge side conductive portion 31 (hereinafter referred to as the leading edge side conductive adhesive) connects the fan blade main body 21 to the trailing edge side conductive portion 32. It should be higher than the resistance value of the conductive adhesive (hereinafter referred to as trailing edge side conductive adhesive).
  • the resistance value of the leading edge side conductive adhesive used for the experiment is 3 ⁇ 10 ⁇ 3 to 8 ⁇ 10 ⁇ 4 ⁇ cm
  • the resistance value of the trailing edge side conductive adhesive is 8 ⁇ 10 ⁇ 4 to 2 ⁇ 10 ⁇ 4 ⁇ cm.
  • the resistance component of the conductive adhesive uses metal particles with good conductivity to ensure conductivity. It can be selected according to the characteristics, and the resistance value described in the text is not limited. Combinations are possible in terms of the basic specifications required for fan blades and the current path configuration.
  • FIG. 22 schematically shows another specimen used in the experiment.
  • the specimens of layout 1 and layout 2 differ in the type of conductive adhesive.
  • Both the layout 1 and layout 2 specimens are CFRP laminates having a size of 187 mm in the span direction, 58.6 mm in the cord direction, and 4.6 mm in the thickness direction.
  • the specimen has a leading edge side conducting portion 31A (span direction length 30 mm) and a trailing edge side conducting portion 32 (span direction length 30 mm) at the mid-span position. Energize the energized area between The leading edge side current-carrying portion 31 is connected to the leading edge LE of the specimen using a leading edge side conductive adhesive.
  • the trailing edge side current-carrying portion 32 is connected to the trailing edge TE of the specimen using a trailing edge side conductive adhesive.
  • the leading edge side conductive adhesive and the trailing edge side conductive adhesive are applied to all the laminated prepregs, and all the laminated prepregs are connected to the leading edge side current-carrying portion 31 and the trailing edge side. It is connected to the conducting portion 32 .
  • a region surrounded by a straight line in the figure is a current-carrying region between the leading edge-side current-carrying portion 31 and the trailing edge-side current-carrying portion 32, and at the same time, a heating region and an evaluation region.
  • Layout 2 is the present embodiment, and the types of the leading edge side conductive adhesive and the trailing edge side conductive adhesive are different.
  • the resistance value of the leading edge side conductive adhesive is higher than the resistance value of the trailing edge side conductive adhesive.
  • the resistance value of the leading edge side conductive adhesive is 3 ⁇ 10 ⁇ 3 to 8 ⁇ 10 ⁇ 4 ⁇ cm
  • the resistance value of the trailing edge side conductive adhesive is 8 ⁇ 10 ⁇ 4 to ⁇ cm. It is 2 ⁇ 10 ⁇ 4 ⁇ cm.
  • Layout 1 is a comparative example in which the types of the leading edge side conductive adhesive and the trailing edge side conductive adhesive are the same. Specifically, the resistance values of the leading edge side conductive adhesive and the trailing edge side conductive adhesive are 3 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 5 ⁇ cm.
  • FIG. 23 is a thermography showing test results.
  • the specimens of layout 1 and layout 2 are installed in the icing wind tunnel device 100, and air is flowed at an air velocity of 40 m/s.
  • the same input power (40 W) is applied to the specimens of layout 1 and layout 2, and the surface temperature distribution is obtained by photographing the specimens with a thermo camera.
  • FIG. 24 is a graph showing test results.
  • This graph shows the surface temperature distribution of the specimen at the mid-span position indicated by the dashed line in FIG.
  • the horizontal axis indicates the position of the specimen from the leading edge (0) to the trailing edge (1).
  • the vertical axis indicates the surface temperature (°C).
  • FIGs 25, 26, 27 and 28 are photographs showing the test results.
  • FIG. 25 shows the results of the anti-icing test for layout 1 and layout 2 under the first test conditions (air flow velocity 20 m/s, droplet diameter 15 ⁇ m, input power (10 W, 20 W, 40 W). This is a photo taken in
  • FIG. 26 shows the results of anti-icing tests for layouts 1 and 2 under the second test conditions (air flow velocity 20 m/s, droplet diameter 29 ⁇ m, input power (10 W, 20 W, 40 W). This is a photo taken in
  • FIG. 27 shows the results of the anti-icing test for layout 1 and layout 2 under the third test conditions (air flow velocity 40 m/s, droplet diameter 15 ⁇ m, input power (20 W, 30 W, 50 W). This is a photo taken in
  • FIG. 28 shows the results of anti-icing tests for layouts 1 and 2 under the fourth test conditions (air flow velocity 40 m/s, droplet diameter 29 ⁇ m, input power (20 W, 30 W, 50 W). This is a photo taken in
  • Figures 29 and 30 are graphs showing test results.
  • the horizontal axis indicates input power [w].
  • the vertical axis represents the anti-icing effect (anti-ice effect) [%], which is calculated by the above formula (Equation 1).
  • Fig. 29 shows test results with multiple changes in air flow velocity of 20 m/s, droplet diameters of 15 ⁇ m and 29 ⁇ m, and input power.
  • the anti-icing effect of layout 2 is higher than the anti-icing effect of layout 1 at all input powers. Although it is impossible for the anti-icing effect to be negative, the variation was large in layout 1, and as a result of averaging, a negative value was generated for the anti-icing effect.
  • Fig. 30 shows test results with air flow velocity of 40 m/s, droplet diameters of 15 ⁇ m and 29 ⁇ m, and multiple changes in input power.
  • the anti-icing effect of layout 2 is higher than the anti-icing effect of layout 1 at all input powers. Although it is impossible for the anti-icing effect to be negative, the variation was large in layout 1, and as a result of averaging, a negative value was generated for the anti-icing effect.
  • FIG. 31 is a thermography showing test results.
  • Both the specimens of layout 3 and layout 4 are CFRP laminates having a size of 187 mm in the span direction, 58.6 mm in the cord direction, and 4.6 mm in the thickness direction.
  • the specimen has a leading edge side conducting portion 31 (span direction length 30 mm) and a trailing edge side conducting portion 32 (span direction length 30 mm) at the mid-span position.
  • Energize the energized area between In layout 3, the leading edge side conductive adhesive and the trailing edge side conductive adhesive are applied to all the laminated prepregs, and all the laminated prepregs are connected to the leading edge side conducting portion 31 and the trailing edge side conducting portion 32. be.
  • the leading edge side conductive adhesive and the trailing edge side conductive adhesive are applied only to the two layers (90° orientation) at the center in the thickness direction (the center of symmetry), and the two layers at the center in the thickness direction are conductive to the leading edge side. It is connected to the portion 31 and the trailing edge side current-carrying portion 32 .
  • the lengths in the span direction of the leading edge side conducting portion 31 and the trailing edge side conducting portion 32 of the layouts 3 and 4 were 30 mm (same as above).
  • the specimens of layout 3 and layout 4 were installed in the icing wind tunnel apparatus 100, the room temperature was set to -10°C, and the air flow rate was 20 m/s.
  • the same input power (20 W) is applied to the specimens of layout 3 and layout 4 for 90 seconds, and after 90 seconds from the start of energization, the specimens are photographed with a thermo camera to obtain the surface temperature distribution.
  • Fig. 5 is a graph showing test results.
  • This graph shows the surface temperature distribution of the specimen at the mid-span position indicated by the dashed line in FIG.
  • the horizontal axis indicates the position of the specimen from the leading edge (0) to the trailing edge (1).
  • the vertical axis indicates the surface temperature (°C) 90 seconds after the start of energization.
  • Layout 4 had a temperature distribution in which heat generation at the front and rear edges was higher than layout 3 over the entire area. The reason for this is thought to be that in layout 4, the application area S of the conductive adhesive is small (the thickness of the conductive adhesive is the same), so the resistance R [ ⁇ ] increases and the amount of heat increases. be done.
  • the temperature of the leading edge could be higher than that of the trailing edge even during ventilation, but in layout 4, the temperature of the trailing edge was higher than that of the leading edge.
  • the applied area of the conductive adhesive was reduced, so the leading edge conductive adhesive used this time had insufficient resistance to heat loss due to convective heat transfer, resulting in this result.
  • the volume of the conductive adhesive on the leading edge can be reduced (when the applied area of the conductive By increasing the resistance value of the trailing edge), it is possible to raise the temperature of the leading edge more than the trailing edge even by layer selection.
  • the temperature on the leading edge side of the layout 4 is higher than that on the trailing edge side in the same way as the layout 3 under normal temperature and no wind conditions.
  • FIG. 40 shows the front and rear edges of the front and rear edges with different coating thicknesses of the conductive adhesive (150 ⁇ m, 300 ⁇ m, 400 ⁇ m, the front and rear edges are the same thickness) under the conditions of ⁇ 10° C., no wind, and 10 W input power. It is the graph which measured the resistance value between. As shown in the graph of FIG. 40, the smaller the coating thickness, the larger the resistance.
  • the leading edge/pressure surface (highest value), the leading edge/suction surface, the trailing edge/suction surface, the trailing edge/positive It is better to use the pressure surface (minimum value).
  • the resistance value of the leading edge side conductive adhesive on the pressure side of the fan blade body 21 may be higher than the resistance value of the leading edge side conductive adhesive on the suction side of the fan blade body 21 .
  • the resistance value of the trailing edge side conductive adhesive on the suction surface side of the fan blade body 21 may be higher than the resistance value of the trailing edge side conductive adhesive on the pressure side side of the fan blade body 21 .
  • the application amount of the conductive adhesive (The resistance of each part of the fan blade main body 21 can be changed also by the volume), the area bonded to the carbon fiber, and the size of the current path (the cross-sectional area of the path).
  • both ends of the plurality of layers 211, 212, 213, 214 both ends of the plurality of layers 211, 212, 213, 214, .
  • one or more layers selected from a plurality of layers 211 (90° orientation), 212 (+45° orientation), 213 (-45° orientation), 214 (0° orientation) can be connected to the leading edge side conducting portion 31 and the trailing edge side conducting portion 32 via a conductive adhesive.
  • One layer 21n may be connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32, or a selected part of the layers 21n may be connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32, All layers 21n may be connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 .
  • FIG. 32 shows a specific example of layer selection used in the experiment.
  • Layout 1 conducts all 90° layers by smearing conductive adhesive on all exposed layers.
  • Layer selection A assumes that the temperature of the front edge of the specimen is raised, and conducts the two layers of the 90° layer in the center of the specimen.
  • layer selection B it is assumed that the temperature on the surface side of the test piece is raised, and the two layers of the 90° layer close to the surface layer are conducted.
  • Layer selection C (second layer side) assumes that the temperature of only one side corresponding to the pressure side is raised while raising the temperature of the leading edge, and one of the 90° layers in the center of the specimen and the surface layer (pressure side ), one of the 90° layers close to ), a total of two layers, are electrically connected.
  • Layer selection C (1st layer side) raises the temperature of the front edge and makes the temperature of one side corresponding to the suction side lower than the pressure side, so only one of the 90° layers in the center of the specimen is conductive. do.
  • All the specimens have a leading edge side conducting portion 31 (span direction length 30 mm) and a trailing edge side conducting portion 32 (span direction length 30 mm) at the mid-span position. 32 is energized.
  • the resistance value of the leading edge side conductive adhesive used for the experiment is 3 ⁇ 10 ⁇ 3 to 8 ⁇ 10 ⁇ 4 ⁇ cm
  • the resistance value of the trailing edge side conductive adhesive is 8 ⁇ 10 ⁇ 4 to ⁇ cm. It is 2 ⁇ 10 ⁇ 4 ⁇ cm.
  • Fig. 33 is a thermography showing the results of the layer selection ventilation temperature confirmation test.
  • FIG. 34 is a graph showing the results of the layer selection ventilation temperature confirmation test.
  • the vertical axis of the graph of FIG. 34 is the surface temperature of the mid-span dashed line portion of the thermography of FIG.
  • the horizontal axis is the cord length dimensionless from the leading edge to the trailing edge of the specimen.
  • any layer selection can make the leading edge temperature higher than Layout 1 (solid coating).
  • layer selection A and layer selection C two-layer side have conduction between the two layers of the front edge, so the front edge can be heated intensively and the temperature of the front edge can be increased.
  • layer selection B is the closest to the surface layer, the temperature around the mid-cord of the specimen can be made the highest. Comparing layer selection C (2nd layer side) and layer selection C (1st layer side), layer selection C (2nd layer side) allows two-layer conduction near the leading edge and surface, so layer selection C (1 layer side), the temperature can be raised over the entire area.
  • the temperature of the front edge is efficiently raised, and when one side of the specimen surface is assumed to be the pressure side and the other side is assumed to be the suction side, the pressure side (layer selection C (2nd layer side)) can be made higher than the temperature of the suction surface (layer selection C (first layer side)).
  • Layout 1 solid coating
  • the applied area of the conductive adhesive was reduced, so the leading edge conductive adhesive used this time had insufficient resistance to heat loss due to convective heat transfer, resulting in this result.
  • the reduction in the volume of the adhesive if the application area of the conductive adhesive is considered to be the same, the application thickness is reduced), the ratio of the resistance of the front and rear edges (resistance value of the leading edge / resistance value of the trailing edge)
  • the layer selection it is possible to raise the temperature of the leading edge more than the trailing edge.
  • the temperature on the leading edge side is higher than on the trailing edge side for layer selection A and layer selection C (layer 2 side and layer 1 side) as well as Layout 1 (solid coating) under normal temperature and no wind conditions.
  • Fig. 35 is a graph showing the results of the layer selection ventilation temperature confirmation test.
  • the applied area of the conductive adhesive was reduced, so the leading edge conductive adhesive used this time had insufficient resistance to heat loss due to convective heat transfer, resulting in this result.
  • the reduction in the volume of the adhesive when the application area of the conductive adhesive is considered to be the same, the application thickness is reduced), the ratio of the resistance of the front and rear edges (resistance value of the leading edge ⁇ resistance value of the trailing edge)
  • the temperature on the leading edge side is higher than on the trailing edge side for layer selection A and layer selection C (layer 2 side and layer 1 side) as well as Layout 1 (solid coating) under normal temperature and no wind conditions.
  • a specimen of layout 1 and layer selection A in FIG. 32 is prepared.
  • the test conditions were: mainstream speed 20m/s, 40m/s, droplet diameter 15 ⁇ m, input power 20m/s (10W, 22W, 40W), 40m/s (20W, 30W, 49W), room temperature -10°C. be.
  • FIGS 36 and 37 are photographs showing the test results.
  • FIG. 36 shows the results of the anti-icing test for layout 1 and layer selection A under the test conditions (air flow velocity 20 m/s, droplet diameter 15 ⁇ m, input power (10 W, 22 W, 40 W). This is a photo.
  • FIG. 37 shows the results of anti-icing tests for layout 1 and layer selection A under different test conditions (air velocity 40 m/s, droplet size 15 ⁇ m, input power (20 W, 30 W, 49 W). This is a photo taken in
  • Figures 38 and 39 are graphs showing test results.
  • the horizontal axis indicates input power [w].
  • the vertical axis represents the anti-icing effect (anti-ice effect) [%], which is calculated by the above formula (Equation 1).
  • FIG. 38 shows the results of FIG. 36, showing test results at an air flow rate of 20 m/s, a droplet diameter of 15 ⁇ m, and input power of 10 W, 22 W, and 40 W. At input powers of 22 W and 40 W, the anti-icing effect of layer selection A is higher than the anti-icing effect of layout 1 .
  • FIG. 39 shows the results of FIG. 37, showing test results with an air flow rate of 40 m/s, a droplet diameter of 15 ⁇ m, and input power of 10 W, 22 W, and 40 W. At input powers of 30 W and 49 W, the anti-icing effect of layer selection A is higher than the anti-icing effect of layout 1 .
  • This embodiment is based on CFRP, which has excellent mechanical properties and has been adopted for fan blades in recent years. According to this embodiment, it is possible to perform anti-icing and de-icing efficiently with a simple structure. In addition, by making it possible to implement the anti-icing function of the fan blades with a minimum of simple additional work, long-term stability and durability of the high anti-icing effect can be obtained without adversely affecting the original aerodynamic performance.
  • Jet engine 2 Low pressure shaft 4 : Air intake 5 : Spinner 6 : Fan disk 7 : Dovetail 8 : Fan blade 21 : Fan blade body 22 : Sheath 23 : Guard 24 : Leading edge 25 : Trailing edge 31 : Leading edge side energization Portion 32 : Trailing edge side conducting portion 35 : Power source 36 : Heating region 41 : Locking groove 46 : Connection terminal 49 : Connection terminal 53 : Battery 61 : Slip ring

Abstract

[Problem] To provide a fan blade, an engine, and a structure with anti-icing and de-icing functions, having a simple structure and capable of efficiently carrying out anti-icing and de-icing. [Solution] Provided is a fan blade arranged on an intake port side of an engine and comprising: a fan blade body which is formed of carbon fiber reinforced plastic; and a pair of a first current supply portion and a second current supply portion which cause a current to flow through carbon fibers contained in the carbon fiber reinforced plastic to cause the current to flow through a current supply area of the fan blade body. The heat generation amount of the current supply area on a first side of the fan blade body is larger than the heat generation amount of the current supply area on a second side of the fan blade body when the current is caused to flow between the pair of the first current supply portion and the second current supply portion.

Description

ファンブレード、エンジン及び防氷・除氷機能付き構造体Fan blades, engines and structures with anti-icing and de-icing functions
 本発明は、例えば航空機に用いられるファンブレード、エンジン及び防氷・除氷機能付き構造体に関する。 The present invention relates to fan blades, engines, and structures with anti-icing/de-icing functions used in aircraft, for example.
 近年ファンブレードは、ファンの大型化と共に燃費効率の改善が図られ、異物突入時の耐衝撃性・耐フラッター性の強化の開発が進んできた。しかし、同時にファンブレードの重量が増すことによる、エンジン自身が重くなるという別の根本的課題を有していた。更に、ファンブレードは、航空機が低温環境である高空で飛行することにより、翼の枚数分着氷現象が発生するという特徴を持っている。この着氷現象は、流体と熱の複合的な側面を併せ持つ複雑な自然現象であるが、運航する上でジェットエンジンの性能低下をもたらすと共に、最悪の場合、流路閉塞によるサージ、シェディング(着氷により成長した氷が離脱する現象)によりジェットエンジン内部に機械的損傷を与えるリスクを伴うことから、早急に解決しなければならない重要課題である。 In recent years, fan blades have become larger and have improved fuel efficiency, and development has progressed to strengthen impact resistance and flutter resistance when foreign objects enter. However, at the same time, it had another fundamental problem of making the engine itself heavier due to the increased weight of the fan blades. Furthermore, fan blades are characterized by the occurrence of icing phenomena corresponding to the number of blades when the aircraft flies at high altitudes in a low-temperature environment. This icing phenomenon is a complex natural phenomenon that has multiple aspects of fluid and heat, but it reduces the performance of jet engines during flight, and in the worst case, surges and shedding ( This is an important problem that must be solved as soon as possible because it involves the risk of mechanical damage to the inside of the jet engine due to the phenomenon in which ice that has grown due to icing is released.
 前者の燃費効率改善や重量増に対する課題を解決するために、ファンブレードには、比強度、比弾性率が高く、力学特性に優れ、耐候性などの高機能特性を有する複合材料の炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastic:CFRP)の利用が広がっている。 In order to solve the former problem of fuel efficiency improvement and weight increase, fan blades are made of carbon fiber reinforced composite materials that have high specific strength and specific modulus, excellent mechanical properties, and high functional properties such as weather resistance. The use of plastic (Carbon Fiber Reinforced Plastic: CFRP) is spreading.
 炭素繊維強化プラスチックは1960年代から樹脂を基材とした複合材料の開発が軍用機を中心に始まり、従来から剛性に優れかつ熱膨張率も極めて低いとうい複合材料の特徴を生かして、現在の航空機では従来の金属材料から置き換わると共に、新たな航空機用途としても実用化が進んでいる。特筆すべきは、現在の複合材料特性は鉄の材料比較で強度と弾性率は2.5倍以上、そして比重は1/4以下とされ、これは機械特性の強化と軽量化が見込めることを示している。実際、近年の動向では、大型航空機、エアバスA350及びボーイング787では複合材料が機体重量の50%以上に展開されている。 In the 1960s, the development of carbon fiber reinforced plastic composite materials using resin as a base material began, mainly for military aircraft. In aircraft, it replaces conventional metal materials and is being put to practical use as a new aircraft application. It should be noted that the current composite material properties are more than 2.5 times the strength and elastic modulus of steel, and the specific gravity is less than 1/4, which is expected to enhance mechanical properties and reduce weight. showing. In fact, the trend in recent years is for large aircraft, the Airbus A350 and the Boeing 787, to deploy composite materials over 50% of the airframe weight.
 後者の着氷に関する課題に対して、機体やエンジンには防氷システムや除氷システムが搭載されている。このようなシステムとして、以下の技術が開示されている。 In response to the latter issue related to icing, the airframe and engine are equipped with anti-icing and de-icing systems. The following techniques have been disclosed as such systems.
 非特許文献1には、エンジンの圧縮機から抽気された高温空気(ブリード・エア)を活用した技術が開示されている。 Non-Patent Document 1 discloses a technique that utilizes high-temperature air (bleed air) bled from the compressor of the engine.
 非特許文献2には、電熱線等を張り付ける電熱ヒータを用いた技術が開示されている。 Non-Patent Document 2 discloses a technique using an electric heater to which a heating wire or the like is attached.
 非特許文献3には、主翼や尾翼前縁に設けた防氷ブーツ(ゴム膜)に空気を送込んで膨らませ、形状変化を活用した技術が開示されている。 Non-Patent Document 3 discloses a technology that utilizes shape change by blowing air into the anti-icing boots (rubber membrane) provided on the leading edge of the main wing and tail wing.
 特許文献1や2には、着氷し易い部位にコーティングを事前に塗布、焼付またはナノサイズ構造ピン加工を活用した技術が開示されている。 Patent Documents 1 and 2 disclose techniques that apply a coating in advance to areas that are prone to icing, baking, or utilizing nano-sized structure pin processing.
 特許文献3には、アクチュエータ等の機械的振動を活用した技術が開示されている。 Patent Document 3 discloses a technique that utilizes mechanical vibration of an actuator or the like.
特開2012-26361号公報JP 2012-26361 A 国際公開第2008/087861号WO2008/087861 米国特許出願公開第2013/032671号明細書U.S. Patent Application Publication No. 2013/032671 特開2019-108818号公報JP 2019-108818 A
 ブリード・エアを活用した技術に関しては、エンジン出力が低い時は、防除氷機能が低下することで効果のバラツキが発生し、また抽気によりエンジン出力が低下するため、燃料消費率も悪化する。 Regarding the technology that utilizes bleed air, when the engine output is low, the anti-icing function declines, causing variations in effectiveness.
 電熱ヒータに関しては、ファンの薄い部材への設定や加工が困難で、更に空力的な影響を及ぼす。 As for the electric heater, it is difficult to set and process the thin member of the fan, and it also has an aerodynamic effect.
 防氷ブーツに関しては、作動させるためにエンジンの圧縮機からの抽気を使用するため翼内部に複雑な機械構造部を設ける必要があり、また防氷ブーツは2、3年周期の短期間で交換が必要になる。 As for the anti-icing boots, it is necessary to install a complex mechanical structure inside the wing because it uses the air extracted from the engine's compressor to operate, and the anti-icing boots need to be replaced in a short period of 2 to 3 years. is required.
 防氷コーティングやナノサイズ構造ピンに関しては、経時変化による不安定性と耐久性の欠如がある。 Regarding anti-icing coatings and nano-sized structure pins, there is instability and lack of durability due to aging.
 アクチュエータ等の機械的振動に関しては、複雑な構造でメンテナンス性が劣り、重量が増す。  Regarding mechanical vibrations such as actuators, the complex structure makes maintenance difficult and increases the weight.
 上記に記載の従来技術においては、着氷の課題に特化した対策技術であり、従来型の航空機仕様に後から付加(追加)された構成および構造から機能を実現する技術であることから、基本仕様に対してより体積・重量が増し、より複雑な構成と構造となり、更に加工やメンテナンスが困難になる事や他への影響が発生することは明らかである。 The conventional technology described above is a countermeasure technology that specializes in the problem of icing, and is a technology that realizes functions from the configuration and structure that are added (added) to conventional aircraft specifications later. It is obvious that the volume and weight will increase compared to the basic specifications, the configuration and structure will become more complicated, and processing and maintenance will become more difficult, and other effects will occur.
 以上のような事情に鑑み、本発明の目的は、簡単な構造で、かつ、効率よく防氷や除氷を行うことができるファンブレード、エンジン及び防氷・除氷機能付き構造体を提供することにある。 In view of the circumstances as described above, it is an object of the present invention to provide a fan blade, an engine, and a structure with anti-icing and de-icing functions that are simple in structure and capable of efficiently performing anti-icing and de-icing. That's what it is.
 本発明の一形態に係るファンブレードは、
 エンジンの吸気口側に配置されるファンブレードであって、
 炭素繊維強化プラスチックからなるファンブレード本体と、
 前記炭素繊維強化プラスチックに含まれる炭素繊維に電流を流すことで前記ファンブレード本体の通電領域に電流を流すための一対の第1の通電部及び第2の通電部と、
 を具備し、
 前記一対の第1の通電部及び第2の通電部の間に電流を流すとき、前記ファンブレード本体の前記ファンブレード本体の第1側の前記通電領域の発熱量が前記ファンブレード本体の第2側の前記通電領域の発熱量より高い。
A fan blade according to one aspect of the present invention includes:
A fan blade arranged on the intake side of an engine,
a fan blade body made of carbon fiber reinforced plastic;
a pair of first current-carrying parts and second current-carrying parts for causing current to flow through the current-carrying region of the fan blade main body by causing current to flow through carbon fibers contained in the carbon fiber reinforced plastic;
and
When a current is passed between the pair of the first current-carrying portion and the second current-carrying portion, the amount of heat generated in the current-carrying region of the fan blade body on the first side of the fan blade body is the second level of the fan blade body. higher than the calorific value of the current-carrying region on the side.
 本発明の一形態に係るファンブレードは、炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastic:CFRP)の炭素繊維が導電性であり、マトリックス材のエポキシなどの樹脂材が絶縁性であり、そのため電流を流すことで発熱する性質を利用したものである。すなわち、CFRPからなるファンブレード本体の第1側及び第2側にファンブレード本体の通電領域に電流を流すための一対の第1の通電部及び第2の通電部を設け、これらの間に電圧を印加して電流を流すことでファンブレード本体自体がその抵抗によって発熱し、防氷や除氷を行う。従って、簡単な構造で防氷や除氷を行うことができる。航空機のジェットエンジンのファンブレードでは、前縁側(第1側)の着氷量が多く、後縁側(第2側)は空気中の過冷却液滴が衝突しないため、着氷がほぼ発生しない傾向がある。このため、ファンブレード本体の第1側の発熱量を、第2側の発熱量より高くすることで、第1側をより効率的に防氷することができる。 In the fan blade according to one aspect of the present invention, the carbon fiber of carbon fiber reinforced plastic (CFRP) is conductive, and the resin material such as epoxy as the matrix material is insulating, so that the current flows. It utilizes the property of generating heat. That is, a pair of first current-carrying part and second current-carrying part are provided on the first side and the second side of the fan blade body made of CFRP for passing current to the current-carrying region of the fan blade body, and a voltage is generated between them. is applied to flow a current, the fan blade body itself generates heat due to its resistance, and performs anti-icing and de-icing. Therefore, anti-icing and de-icing can be performed with a simple structure. Airplane jet engine fan blades tend to have a large amount of icing on the leading edge side (first side) and almost no icing on the trailing edge side (second side) because supercooled droplets in the air do not collide. There is Therefore, by making the amount of heat generated on the first side of the fan blade body higher than the amount of heat generated on the second side, the first side can be more efficiently deiced.
 前記ファンブレード本体の前記第1側の前記通電領域の発熱量が前記第2側の前記通電領域の発熱量より高いことは、
 前記第1の通電部のスパン方向の長さに対する前記第1の通電部に導通された炭素繊維の割合である第1側の導通繊維密度が、前記第2の通電部の前記スパン方向の長さに対する前記第2の通電部に導通された炭素繊維の割合である第2側の導通繊維密度より高い、ことを含んでもよい。
The calorific value of the energized region on the first side of the fan blade body is higher than the calorific value of the energized region on the second side,
The conductive fiber density on the first side, which is the ratio of the carbon fibers conductively connected to the first conductive portion to the length of the first conductive portion in the span direction, is the length of the second conductive portion in the span direction. higher than the conductive fiber density on the second side, which is the ratio of the carbon fibers conductively connected to the second current-carrying portion to the thickness.
 前記ファンブレード本体は積層された複数の層を含み、前記複数の層に含まれる炭素繊維の配向は異なり、
 前記複数の層から選択された1以上の層を前記第1の通電部及び前記第2の通電部に接続することにより、前記第1側の導通繊維密度が前記第2側の導通繊維密度より高くてもよい。
The fan blade body includes a plurality of laminated layers, and the carbon fibers contained in the plurality of layers have different orientations,
By connecting one or more layers selected from the plurality of layers to the first conductive portion and the second conductive portion, the conductive fiber density on the first side is higher than the conductive fiber density on the second side. It can be expensive.
 炭素繊維の配向は、要求される仕様や特性によって異なる。炭素繊維の配向が異なる1以上の層を選択して第1の通電部及び第2の通電部に接続することで、導通繊維密度の差を実現することが可能である。 The orientation of carbon fibers varies depending on the required specifications and characteristics. By selecting one or more layers with different carbon fiber orientations and connecting them to the first current-carrying portion and the second current-carrying portion, it is possible to achieve a difference in conductive fiber density.
 前記第1の通電部及び前記第2の通電部に接続される前記1以上の層は、
  前記スパン方向及びコード方向の両方向に対して正に傾斜した第1の方向に配向した炭素繊維を含む第1の層、及び/又は
  前記スパン方向及び前記コード方向の両方向に対して負に傾斜した第2の方向に配向した炭素繊維を含む第2の層
 を含んでもよい。
The one or more layers connected to the first current-carrying part and the second current-carrying part,
a first layer comprising carbon fibers oriented in a first direction positively inclined with respect to both the span direction and the cord direction; and/or negatively inclined with respect to both the span direction and the cord direction. A second layer comprising carbon fibers oriented in a second direction may also be included.
 炭素繊維の配向が異なる1以上の層を選択して第1の通電部及び第2の通電部に接続することで、導通繊維密度の差を実現することが可能である。 By selecting one or more layers with different orientations of carbon fibers and connecting them to the first current-carrying part and the second current-carrying part, it is possible to achieve a difference in conductive fiber density.
 前記第2の通電部の前記スパン方向の長さは、前記第1の通電部の前記スパン方向の長さより長くてもよい。 The length of the second conducting portion in the span direction may be longer than the length of the first conducting portion in the span direction.
 第1の通電部及び第2の通電部の両方に導通する炭素繊維(即ち、通電領域に含まれる炭素繊維)に着目すると、第1の通電部に導通する炭素繊維の本数と、第2の通電部に導通する炭素繊維の本数とは同じである。このため、同じ本数の炭素繊維が、短い第1の通電部及び長い第2の通電部に導通するとき、第1の通電部のスパン方向の長さ(短い)に対する第1の通電部に導通された炭素繊維の割合である第1側の導通繊維密度が、第2の通電部のスパン方向の長さ(長い)に対する第2の通電部に導通された炭素繊維の割合である第2側の導通繊維密度より高い。第1側の導通繊維密度が第2側の導通繊維密度より高いことで、ファンブレード本体の第1側の発熱量を、第2側の発熱量より高くする。第1側で導通する炭素繊維は、第2側よりも狭い領域で同本数存在する。このため、炭素繊維自身の発熱によっても、第2側より第1側の温度が高くなる。 Focusing on the carbon fibers conducting to both the first conducting portion and the second conducting portion (that is, the carbon fibers contained in the conducting region), the number of carbon fibers conducting to the first conducting portion and the second It is the same as the number of carbon fibers conducting to the current-carrying part. Therefore, when the same number of carbon fibers are electrically connected to the short first current-carrying portion and the long second current-carrying portion, the length (short) in the span direction of the first current-carrying portion is electrically connected to the first current-carrying portion. The conductive fiber density on the first side, which is the ratio of the carbon fibers that are connected to the second side, is the ratio of the carbon fibers that are conducted to the second current-carrying portion with respect to the length (long) of the second current-carrying portion in the span direction. higher than the conducting fiber density of The conductive fiber density on the first side is higher than the conductive fiber density on the second side, so that the amount of heat generated on the first side of the fan blade body is higher than that on the second side. The same number of carbon fibers conducting on the first side exist in a narrower area than on the second side. Therefore, the temperature of the first side becomes higher than that of the second side due to the heat generated by the carbon fibers themselves.
 前記ファンブレード本体は積層された複数の層を含み、
 前記複数の層から選択された正圧面側の層が前記第1の通電部及び前記第2の通電部に接続され、
 前記一対の第1の通電部及び第2の通電部の間に電流を流すとき、前記ファンブレード本体の正圧面側の発熱量が前記ファンブレード本体の負圧面側の発熱量より高くてもよい。
The fan blade body includes a plurality of laminated layers,
a layer on the pressure side selected from the plurality of layers is connected to the first conducting portion and the second conducting portion;
When a current is passed between the pair of first current-carrying parts and the second current-carrying part, the amount of heat generated on the pressure side of the fan blade body may be higher than the amount of heat generated on the suction side of the fan blade body. .
 航空機のジェットエンジンのファンブレードへの着氷は、ファンブレードの正圧面に多く氷が付着集中する。このため、着氷量の多い正圧面を積極的に加熱するのが望ましい。上記のように、第1の通電部及び第2の通電部の間のファンブレード本体には電圧が印加されたことで電流が流れ、ファンブレード本体自体がその抵抗によって発熱する。このため、ファンブレード本体の正圧面側の発熱量がファンブレード本体の負圧面側の発熱量より高くすることで、正圧面側をより効率的に防氷することができる。正圧面に近い層を選択して通電することで、最小印可電力で発熱領域と発熱温度を確保できるとともに、ファンブレードの正圧面と負圧側の発熱温度の設定が行える。具体的には、着氷量の多い正圧面の温度を高温に、量が少ない負圧面の温度を低温にできる。この構成により、近年のファンブレードの軽量化に伴う中空構造化にも優位に機能し得る。 When icing on the fan blades of an aircraft jet engine, most of the ice adheres and concentrates on the pressure surfaces of the fan blades. Therefore, it is desirable to actively heat the positive pressure surface on which a large amount of ice is deposited. As described above, voltage is applied to the fan blade body between the first current-carrying part and the second current-carrying part, so that current flows, and the fan blade body itself generates heat due to its resistance. Therefore, by making the amount of heat generated on the pressure side of the fan blade body higher than the amount of heat generated on the suction side of the fan blade body, the pressure side can be more efficiently deiced. By selecting and energizing the layer close to the pressure side, it is possible to secure the heat generation area and heat generation temperature with the minimum applied power, and also to set the heat generation temperature on the pressure side and the suction side of the fan blade. Specifically, the temperature of the pressure surface on which a large amount of ice adheres can be raised to a high temperature, and the temperature of the suction surface on which a small amount of ice adheres can be lowered. With this configuration, it is possible to advantageously function in the hollow structure that accompanies the recent weight reduction of fan blades.
 前記ファンブレード本体を前記第1の通電部及び前記第2の通電部に接続する第1側導電性接着剤及び第2側導電性接着剤
 をさらに具備し、
 前記ファンブレード本体の前記第1側の前記通電領域の発熱量が前記第2側の前記通電領域の発熱量より高いことは、
 前記第1側導電性接着剤の抵抗値が前記第2側導電性接着剤の抵抗値より高い、ことを含んでもよい。
a first side conductive adhesive and a second side conductive adhesive that connect the fan blade body to the first conductive portion and the second conductive portion;
The calorific value of the energized region on the first side of the fan blade body is higher than the calorific value of the energized region on the second side,
The resistance value of the first side conductive adhesive may be higher than the resistance value of the second side conductive adhesive.
 導電性接着剤は、選択した炭素繊維間を介した電流経路を形成する際に用いるが、導電性接着剤の抵抗成分は、ファンブレードにおける着氷の集中する箇所を経由する領域を中心に成分比を選定することにより発熱効果と防除氷の効果が優位に得られる。 The conductive adhesive is used to form a current path through selected carbon fibers, but the resistance component of the conductive adhesive is mainly in the area passing through the point where ice buildup concentrates on the fan blade. By selecting the ratio, heat generation effect and anti-icing effect can be obtained predominantly.
 前記ファンブレード本体は積層された複数の層を含み、
 前記第1側導電性接着剤及び前記第2側導電性接着剤は、前記複数の層から選択された1以上の層を前記第1の通電部及び前記第2の通電部に接続してもよい。
The fan blade body includes a plurality of laminated layers,
The first side conductive adhesive and the second side conductive adhesive may connect one or more layers selected from the plurality of layers to the first conductive portion and the second conductive portion. good.
 導電性接着剤により電極とファンブレード本体とを接着することで、炭素繊維との接着性及び接触面積が増大することから、電極とファンブレード本体との取り付け箇所における局所的な温度上昇及び導通不良を防止し、電力消費を抑えることができる。これにより、低電圧でも効果的な温度上昇を得ることができる。 By bonding the electrode and the fan blade body with a conductive adhesive, the adhesiveness and contact area with the carbon fiber increase, so local temperature rise and poor conduction at the attachment point between the electrode and the fan blade body can be prevented and power consumption can be reduced. Thereby, an effective temperature rise can be obtained even at a low voltage.
 前記ファンブレード本体の正圧面側の前記第1側導電性接着剤の抵抗値は、前記ファンブレード本体の負圧面側の前記第1側導電性接着剤の抵抗値より高く、
 前記正圧面側の前記第2側導電性接着剤の抵抗値は、前記負圧面側の前記第2側導電性接着剤の抵抗値より低くてもよい。
The resistance value of the first side conductive adhesive on the pressure side of the fan blade body is higher than the resistance value of the first side conductive adhesive on the suction side of the fan blade body,
A resistance value of the second side conductive adhesive on the pressure side may be lower than a resistance value of the second side conductive adhesive on the suction side.
 航空機のジェットエンジンのファンブレードへの着氷は、前縁とハブ部に加えて、ファンブレードの正圧面に多く氷が付着集中する。このため、着氷量の多い正圧面を積極的に加熱するのが望ましい。上記のように、第1の通電部及び第2の通電部の間のファンブレード本体には電圧が印加されたことで電流が流れ、ファンブレード本体自体がその抵抗によって発熱する。このため、導電性接着剤の塗布の仕方を変えることで、正圧面に近い側の層に多く電流を流せるようにし、逆に負圧面側に近い側の層に流す電流を少なくする。これにより、正圧面側の発熱量を上げ、第1側をより効率的に防氷することができる。 In addition to the leading edge and hub of an aircraft jet engine, ice builds up on the pressure surface of the fan blade. Therefore, it is desirable to actively heat the positive pressure surface on which a large amount of ice is deposited. As described above, voltage is applied to the fan blade body between the first current-carrying part and the second current-carrying part, so that current flows, and the fan blade body itself generates heat due to its resistance. Therefore, by changing the method of applying the conductive adhesive, more current can flow through the layer closer to the pressure surface, and conversely, less current can flow through the layer closer to the suction surface. As a result, the amount of heat generated on the pressure side can be increased, and the first side can be more efficiently deiced.
 前記第1側は、前記ファンブレード本体の前縁側であり、
 前記第2側は、前記ファンブレード本体の後縁側であってよい。
the first side is a leading edge side of the fan blade body;
The second side may be the trailing edge side of the fan blade body.
 航空機のジェットエンジンのファンブレードでは、前縁側(第1側)の着氷量が多く、後縁側(第2側)は空気中の過冷却液滴が衝突しないため、着氷がほぼ発生しない傾向がある。このため、ファンブレード本体の第1側の発熱量を、第2側の発熱量より高くすることで、第1側をより効率的に防氷することができる。 Airplane jet engine fan blades tend to have a large amount of icing on the leading edge side (first side) and almost no icing on the trailing edge side (second side) because supercooled droplets in the air do not collide. There is Therefore, by making the amount of heat generated on the first side of the fan blade body higher than the amount of heat generated on the second side, the first side can be more efficiently deiced.
 本発明の一形態に係るエンジンは、
 回転軸と、
 回転軸の吸気口側に設けられたファンディスクと、
 前記ファンディスクに対して着脱可能に取り付けられ、本発明の一形態の何れかのファンブレードと、
 第1の通電部及び第2の通電部ごとにファンディスク側及びファンブレード側にそれぞれ設けられ、前記ファンブレードが前記ファンディスクに取り付けられたときに相互に電気的に接続して前記ファンディスク側の電源と前記第1の通電部及び前記第2の通電部とを通電するための一対の接続端子と、
 を具備する。
An engine according to one aspect of the present invention includes:
a rotating shaft;
a fan disk provided on the inlet side of the rotating shaft;
a fan blade according to one aspect of the present invention, which is detachably attached to the fan disk;
A first current-carrying part and a second current-carrying part are provided on the fan disk side and the fan blade side, respectively, and when the fan blade is attached to the fan disk, they are electrically connected to each other on the fan disk side. a pair of connection terminals for energizing the power source and the first current-carrying part and the second current-carrying part;
Equipped with
 本発明の一形態に係る防氷・除氷機能付き構造体は、
 炭素繊維強化プラスチックからなり、気体が流れにより着氷領域を有する板状部材と、
 前記着氷領域を含むように前記板状部材の第1側及び第2側にそれぞれ設けられ、前記炭素繊維強化プラスチックに含まれる炭素繊維に電流を流すことで前記板状部材の通電領域に電流を流すための一対の第1の通電部及び第2の通電部と、
 を具備し、
 前記板状部材の前記第1側の前記通電領域の発熱量が前記第2側の前記通電領域の発熱量より高い。
A structure with anti-icing and de-icing functions according to one aspect of the present invention includes:
a plate-shaped member made of carbon fiber reinforced plastic and having an icing area due to gas flow;
Provided on the first side and the second side of the plate-shaped member so as to include the icing region, current is passed through the carbon fiber contained in the carbon fiber reinforced plastic, and the current is passed through the current-carrying region of the plate-shaped member. A pair of first current-carrying part and second current-carrying part for flowing the
and
An amount of heat generated in the energized area on the first side of the plate member is higher than that of the energized area on the second side.
 本発明によれば、簡単な構造で、かつ、効率よく防氷や除氷を行うことができる。 According to the present invention, anti-icing and de-icing can be performed efficiently with a simple structure.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本発明の一実施形態に係るジェットエンジンの構成を示す概略図である。1 is a schematic diagram showing the configuration of a jet engine according to one embodiment of the present invention; FIG. 図1に示したファンブレード単体の基本的な構成を示す側面図である。FIG. 2 is a side view showing the basic configuration of a single fan blade shown in FIG. 1; 本発明の一実施形態に係るファンブレードの構成を示す概略図である。1 is a schematic diagram showing the configuration of a fan blade according to one embodiment of the present invention; FIG. 図3に示したファンブレードの変形例を示すである。FIG. 4 shows a modification of the fan blade shown in FIG. 3; FIG. 試験結果を示すグラフである。It is a graph which shows a test result. ファンディスクにファンブレードを取り付けた状態を示す斜視図である。FIG. 4 is a perspective view showing a state in which fan blades are attached to the fan disk; 本発明の一実施形態に係るファンブレードへの電源供給のための配線の構成を説明するための図である。FIG. 2 is a diagram for explaining the configuration of wiring for supplying power to fan blades according to an embodiment of the present invention; 本発明の一実施形態に係るファンブレードへの電源供給の構成を説明するための図である。FIG. 4 is a diagram for explaining a configuration of power supply to fan blades according to an embodiment of the present invention; 本発明の一実施形態に係るファンブレードへの電源供給の他の構成を説明するための図である。FIG. 4 is a diagram for explaining another configuration of power supply to fan blades according to an embodiment of the present invention; ファンブレード本体を構成する積層されたプリプレグを模式的に示す分解図である。FIG. 4 is an exploded view schematically showing laminated prepregs forming a fan blade body; 実験で用いた積層されたプリプレグの供試体の積層断面を模式的に示す。1 schematically shows a lamination cross-section of a laminated prepreg specimen used in an experiment. 実験で用いた積層されたプリプレグの供試体を示す。1 shows a laminated prepreg specimen used in an experiment. 実験で用いた導通繊維密度を説明するための模式図である。It is a schematic diagram for explaining the conductive fiber density used in the experiment. 実験で用いたタイプ1及びタイプ2の供試体を示す。 Type 1 and type 2 specimens used in the experiment are shown. 実験用の着氷風洞装置を示す。An experimental icing wind tunnel setup is shown. 防氷試験結果を示す写真である。It is a photograph which shows an anti-icing test result. 防氷試験結果を示す写真である。It is a photograph which shows an anti-icing test result. 防氷試験結果を示すグラフである。It is a graph which shows an anti-icing test result. 防氷試験結果を示すグラフである。It is a graph which shows an anti-icing test result. 無風発熱試験結果を示すサーモグラフィである。It is thermography which shows a windless heat generation test result. 無風発熱試験結果を示すグラフである。It is a graph which shows a windless heat generation test result. 実験で用いた別の供試体を模式的に示す。Another specimen used in the experiment is schematically shown. 試験結果を示すサーモグラフィである。It is thermography which shows a test result. 試験結果を示すグラフである。It is a graph which shows a test result. 試験結果を示す写真である。It is a photograph showing a test result. 試験結果を示す写真である。It is a photograph showing a test result. 試験結果を示す写真である。It is a photograph showing a test result. 試験結果を示す写真である。It is a photograph showing a test result. 試験結果を示すグラフである。It is a graph which shows a test result. 試験結果を示すグラフである。It is a graph which shows a test result. 試験結果を示すサーモグラフィである。It is thermography which shows a test result. 実験で用いた層選択の具体例を示す。A specific example of layer selection used in the experiment is shown. 層選択通風温度確認試験結果を示すサーモグラフィである。It is a thermography which shows the layer selective draft temperature confirmation test result. 層選択通風温度確認試験結果を示すグラフである。It is a graph which shows a layer selective draft temperature confirmation test result. 層選択通風温度確認試験結果を示すグラフである。It is a graph which shows a layer selective draft temperature confirmation test result. 試験結果を示す写真である。It is a photograph showing a test result. 試験結果を示す写真である。It is a photograph showing a test result. 試験結果を示すグラフである。It is a graph which shows a test result. 試験結果を示すグラフである。It is a graph which shows a test result. 試験結果を示すグラフである。It is a graph which shows a test result. 試験結果を示すグラフである。It is a graph which shows a test result.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 I.概要  I. overview
 1.ジェットエンジンの構成 1. Jet engine configuration
 図1は本発明の一実施形態に係るジェットエンジンの構成を示す概略図である。 FIG. 1 is a schematic diagram showing the configuration of a jet engine according to one embodiment of the present invention.
 ジェットエンジン1は、回転軸としての低圧軸2及び高圧軸3が中心に配置されている。
 低圧軸2には、吸気口4側よりスピナー5、ファンディスク6、低圧圧縮機9及低圧タービン15が取り付けられ、ファンディスク6の外周には複数のファンブレード8がダブテール7を介して取り付けられている。
A jet engine 1 has a low-pressure shaft 2 and a high-pressure shaft 3 as rotating shafts arranged at the center.
A spinner 5, a fan disk 6, a low-pressure compressor 9, and a low-pressure turbine 15 are attached to the low-pressure shaft 2 from the intake port 4 side. ing.
 ファンブレード8の下流には、低圧圧縮機9、高圧圧縮機11、燃焼器13、高圧タービン14、低圧タービン15、ストラット16、コアノズル17が配置され、これらの外周でエンジンナセル18との間の別流路には、ファン出口案内翼10、バイパスノズル12が配置されている。
 高圧軸3には、高圧圧縮機11、高圧タービン14が取り付けられている。
Downstream of the fan blades 8, a low-pressure compressor 9, a high-pressure compressor 11, a combustor 13, a high-pressure turbine 14, a low-pressure turbine 15, a strut 16, and a core nozzle 17 are arranged. A fan outlet guide vane 10 and a bypass nozzle 12 are arranged in another flow path.
A high pressure compressor 11 and a high pressure turbine 14 are attached to the high pressure shaft 3 .
 このように構成されたジェットエンジン1では、吸気口4付近のスピナー5やファンブレード8で過冷却水滴による着氷が発生する。このような着氷によって、形状変化による空力性能の低下や剥がれた氷塊のよる機械的損傷が問題となる。下記に示すファンブレード8はこの問題を解決するものである。 In the jet engine 1 configured in this way, icing occurs due to supercooled water droplets on the spinner 5 and the fan blades 8 near the intake port 4 . Such icing poses problems of deterioration of aerodynamic performance due to shape change and mechanical damage due to peeling ice blocks. The fan blade 8 shown below solves this problem.
 2.ファンブレードの構成(概要) 2. Configuration of fan blades (overview)
 図2は図1に示したファンブレード単体の基本的な構成を示す側面図である。図3は本発明の一実施形態に係るファンブレードの構成を示す概略図である。 FIG. 2 is a side view showing the basic configuration of the single fan blade shown in FIG. FIG. 3 is a schematic diagram showing the configuration of a fan blade according to one embodiment of the present invention.
 ファンブレード8は、エンジンの吸気口4側に配置される。ファンブレード8は、ファンブレード本体21と、ファンブレード本体21の前縁24側(第1側)に配置されたシース22と、ファンブレード本体21の後縁25側(第2側)に配置されたガード23とを有する。 The fan blades 8 are arranged on the intake port 4 side of the engine. The fan blade 8 includes a fan blade main body 21, a sheath 22 arranged on the front edge 24 side (first side) of the fan blade main body 21, and a rear edge 25 side (second side) of the fan blade main body 21. and a guard 23.
 ファンブレード本体21は、炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastic:CFRP、以下「CFRP」と呼ぶ。)からなり、典型的には板状の成形品である。CFRPは、例えば強化繊維としての炭素繊維とマトリックスとしてエポキシ樹脂からなるプリプレグを、炭素繊維の配向を疑似等方性として積層し構成したものである。 The fan blade main body 21 is made of carbon fiber reinforced plastic (CFRP, hereinafter referred to as "CFRP"), and is typically a plate-shaped molding. CFRP is constructed by laminating prepregs made of, for example, carbon fibers as reinforcing fibers and epoxy resin as a matrix, with the orientation of the carbon fibers being quasi-isotropic.
 シース22は、剛性を有する導電性の金属からなり、ファンブレード本体21の前縁24側で、その基部であるハブ側26からその先端であるチップ側27に及ぶ領域を覆う。
 ガード23は、同じく剛性を有する導電性の金属からなり、ファンブレード本体21の後縁25側で、ハブ側26からチップ側27に及ぶ領域を覆う。
The sheath 22 is made of a rigid conductive metal, and covers the front edge 24 side of the fan blade body 21 from the hub side 26 as the base to the tip side 27 as the tip.
The guard 23 is also made of a rigid, conductive metal and covers an area extending from the hub side 26 to the tip side 27 on the trailing edge 25 side of the fan blade body 21 .
 シース22及びガード23は本来的にはバードストライクに対応するための部品である。本実施形態に係るファンブレード8では、シース22とガード23とは接触しないように分離され、両者は電気的に絶縁状態にある。 The sheath 22 and guard 23 are originally parts for responding to bird strikes. In the fan blade 8 according to this embodiment, the sheath 22 and the guard 23 are separated so as not to come into contact with each other and are electrically insulated.
 この実施形態に係るファンブレード8は、図3に示すように、ファンブレード本体21の加熱領域36の前縁24側及び後縁25側に設けられ、CFRPに含まれる炭素繊維に電流を流すことでファンブレード本体21の通電領域に電流を流すための一対の前縁側通電部31(第1の通電部)及び後縁側通電部32(第2の通電部)を有する。なお、図示の前縁側通電部31及び後縁側通電部32は、凡その位置を模式的に示すものであり、前縁側通電部31及び後縁側通電部32の形状等は実際には異なる(後述)。 The fan blade 8 according to this embodiment, as shown in FIG. has a pair of leading edge side conducting portion 31 (first conducting portion) and trailing edge side conducting portion 32 (second conducting portion) for applying current to the conducting region of the fan blade main body 21 . It should be noted that the illustrated leading edge side conducting portion 31 and trailing edge side conducting portion 32 schematically show approximate positions, and the shape of the leading edge side conducting portion 31 and the trailing edge side conducting portion 32 are actually different (described later). ).
 ここで、航空機のジェットエンジン1のファンブレード8では、前縁24のハブ側26は回転速度が遅いため着氷量が一番多くなり、チップ側27は回転逮度が速く、遠心力等により氷が剥がれ易いため堆積し難いという傾向がある。そのため、加熱領域36は、典型的には前縁24側でハブ側26に近い位置にある。この加熱領域36での防氷や除氷対策が重要である。 Here, in the fan blade 8 of the jet engine 1 of the aircraft, the rotation speed of the hub side 26 of the leading edge 24 is slow, so the amount of icing is the largest, and the rotation speed of the tip side 27 is high. Since the ice is easy to peel off, it tends to be difficult to accumulate. As such, the heating region 36 is typically located on the leading edge 24 side and closer to the hub side 26 . Anti-icing and anti-icing measures in this heating area 36 are important.
 前縁側通電部31及び後縁側通電部32は、加熱領域36の前縁24側及び後縁25側で、それぞれファンブレード本体21の表面とシース22の裏面との間、ファンブレード本体21の表面とガード23の裏面との間に挟まれるように配置されている。 The leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 are located on the front edge 24 side and the trailing edge 25 side of the heating region 36, respectively, between the surface of the fan blade main body 21 and the back surface of the sheath 22, and the surface of the fan blade main body 21. and the rear surface of the guard 23.
 前縁側通電部31及び後縁側通電部32は、それぞれ絶縁被覆付き電線33、34の先端の絶縁被覆を除去して構成される電極を、ファンブレード本体21の表面とシース22の裏面との間、ファンブレード本体21の表面とガード23の裏面との間を、ペースト状の導電性接着剤(図示を省略)を介して接着して構成される。ここで、ファンブレード本体21は、前縁側通電部31及び後縁側通電部32に対応する各位置に、炭素繊維強化プラスチックに含まれる炭素繊維が露出する炭素繊維露出部位を有する。この炭素繊維露出部位は、例えば当該箇所において絶縁性であるエポキシ樹脂を削り、導電性である炭素繊維剥き出しにすることにより構成される。そこに、更に導電性接着剤を使うことにより効率よく炭素繊維に電流を流せるようになる。これは、ファンブレード本体21の材料構成を基に、導電性を有する炭素繊維からなる電流経路を形成して抵抗発熱を発現出来ることを示すものである。 The leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 have electrodes configured by removing the insulating coating from the ends of the wires 33 and 34 with insulating coating, respectively, between the front surface of the fan blade main body 21 and the rear surface of the sheath 22 . , the front surface of the fan blade body 21 and the rear surface of the guard 23 are adhered via a paste-like conductive adhesive (not shown). Here, the fan blade main body 21 has carbon fiber exposed portions where the carbon fibers contained in the carbon fiber reinforced plastic are exposed at respective positions corresponding to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 . This carbon fiber exposed portion is configured by, for example, shaving the insulating epoxy resin at the portion to expose the conductive carbon fiber. In addition, by using a conductive adhesive, it becomes possible to efficiently pass an electric current through the carbon fibers. This indicates that resistance heating can be realized by forming a current path made of conductive carbon fiber based on the material configuration of the fan blade main body 21 .
 前縁側通電部31には、絶縁被覆付き電線33を介して電源35より例えばマイナス電圧が印加され、後縁側通電部32には、絶縁被覆付き電線34を介して電源35より例えばプラス電圧が印加され、前縁側通電部31及び後縁側通電部32の間のファンブレード本体21の通電領域には電圧が印加されたことで電流が流れ、ファンブレード本体21自体がその抵抗によって発熱する。発熱によって加熱される領域が加熱領域36を含む、或いは加熱領域36が発熱によって加熱される領域を含む。
 前縁側通電部31にプラス電圧が印加され、後縁側通電部32にマイナス電圧が印加されるように構成してもよい。
A negative voltage, for example, is applied to the leading edge side conducting portion 31 from a power source 35 through an insulating coated wire 33, and a positive voltage, for example, is applied to the trailing edge side conducting portion 32 from a power source 35 through an insulating coated wire 34. A voltage is applied to the energized region of the fan blade main body 21 between the leading edge side energizing portion 31 and the trailing edge side energizing portion 32, and current flows, and the fan blade main body 21 itself generates heat due to the resistance. The area heated by heat generation includes the heating area 36, or the heating area 36 includes the area heated by heat generation.
A positive voltage may be applied to the leading edge side conducting portion 31 and a negative voltage may be applied to the trailing edge side conducting portion 32 .
 本実施形態に係るファンブレード8では、ファンブレード本体21がCFRPからなり、導電性であることから、そのため電流を流すことで発熱する性質を利用したものである。すなわち、CFRPからなるファンブレード本体21の前縁24側及び後縁25側に、CFRPに含まれる炭素繊維に電流を流すことでファンブレード本体21の通電領域に電流を流すための一対の前縁側通電部31及び後縁側通電部32を設け、これらの間に電源35より電圧を印加して通電領域に電流を流すことでファンブレード本体21を加熱し、加熱領域36の防氷や除氷を行う。その際に、CFRP自身(ファンブレード本体21)による発熱とその熱がCFRP(ファンブレード本体21)を伝って流れ広がる熱伝導、また、シース22及びガード23部分に熱伝導として伝わるものがあり、それぞれの熱が防氷や除氷として働く。これにより、加熱領域36の防氷や除氷が行われる。 In the fan blade 8 according to the present embodiment, the fan blade main body 21 is made of CFRP and is conductive, so the property of generating heat when an electric current flows is used. That is, a pair of front edge sides for passing an electric current through the current-carrying region of the fan blade main body 21 by applying an electric current to the carbon fibers contained in the CFRP on the front edge 24 side and the trailing edge 25 side of the fan blade main body 21 made of CFRP. A current-carrying portion 31 and a trailing-edge-side current-carrying portion 32 are provided, and a voltage is applied between them from a power supply 35 to flow current through the current-carrying region, thereby heating the fan blade body 21 and preventing or deicing the heating region 36. conduct. At that time, the heat generated by the CFRP itself (fan blade main body 21) and the heat flow spread through the CFRP (fan blade main body 21), and there is also heat transfer to the sheath 22 and the guard 23. Each heat acts as anti-icing and de-icing. Thereby, anti-icing and de-icing of the heating area 36 are performed.
 このような加熱により防氷や除氷を行う加熱領域36については、一対の前縁側通電部31及び後縁側通電部32を取り付ける位置によって調整が可能である。すなわち、シース22及びガード23とファンブレード本体21との間に絶縁被覆付き電線33、34を敷設し、加熱対象となる領域に合わせ、絶縁被覆付き電線33、34の先端の電極とファンブレード本体21との接点(電極)位置を調整する。 The heating region 36 for anti-icing and de-icing by such heating can be adjusted by the positions at which the pair of leading edge side current-carrying portion 31 and trailing edge side current-carrying portion 32 are attached. That is, the electric wires 33 and 34 with insulation coating are laid between the sheath 22 and the guard 23 and the fan blade body 21, and the electrodes at the tips of the electric wires 33 and 34 with insulation coating and the fan blade body are aligned with the area to be heated. 21 is adjusted.
 例えば、前縁24側のハブ側26で防氷や除氷を行なう場合、図4の説明は、上で示した選択した層の炭素繊維間において電極を介した電流経路を形成した場合において、前縁24側・後縁25側双力の電極(第1の通電部31及び第2の通電部32)の位置をハブ側26寄りに設置する。そうすることで前縁24側のハブ側26での防氷や除氷が効率的に実施される。 For example, for anti-icing or de-icing on the hub side 26 of the leading edge 24, the description of FIG. The positions of the electrodes (the first current-carrying portion 31 and the second current-carrying portion 32) on the front edge 24 side and the rear edge 25 side are set near the hub side 26. FIG. By doing so, the anti-icing and de-icing on the hub side 26 of the leading edge 24 side is efficiently carried out.
 前縁側通電部31及び後縁側通電部32は、それぞれ絶縁被覆付き電線33、34の先端の絶縁被覆を除去して構成される電極を、導電性接着剤(図示を省略)を介して対象部位に接着しているので、電流が流れやすくなる。導電性接着剤は、例えば銅テープで電極を取り付けたものと異なり、加工面の細かい凹凸まで導電性物質が入り込んだことにより、導通面積が大きくなり、結果として抵抗が小さくなり電流が流れやすくなり、局所的な温度上昇及び導通不良を防止し、電力消費を抑えることができると考えられる。なお、導電性接着剤を使わず銅テープで張り付けた場合は同じ電圧でも殆ど暖まらないことを確認している。特に、ジュール熱と考えれば、電流は二乗で効いてくるので、同じ印加電圧でいかに電流を流せるようにするかということが重要である。よって、導電性接着剤により電極とファンブレード本体21等とを接着することの効果は大きいと考えられる。 The leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 attach electrodes, which are formed by removing the insulating coating from the ends of the wires 33 and 34 with insulating coating, respectively, to the target portion via a conductive adhesive (not shown). Since it is adhered to the Conductive adhesive differs from, for example, copper tape in which electrodes are attached, and the conductive material penetrates into the fine irregularities of the processed surface, increasing the conductive area, resulting in reduced resistance and easier current flow. , local temperature rise and conduction failure can be prevented, and power consumption can be suppressed. In addition, it has been confirmed that when the copper tape is used instead of the conductive adhesive, it hardly heats up even at the same voltage. In particular, when considering Joule heat, the current works in squares, so it is important to find a way to allow the current to flow with the same applied voltage. Therefore, it is considered that the effect of adhering the electrode and the fan blade main body 21 and the like with the conductive adhesive is great.
 また、本実施形態に係るファンブレード8では、絶縁被覆付き電線33、34を通してファンブレード本体21に供給される電圧もしくは電流の大きさを変えることで、加熱領域36の発熱温度及び発熱の速さの調整が可能である。 Further, in the fan blade 8 according to this embodiment, by changing the magnitude of the voltage or current supplied to the fan blade main body 21 through the wires 33 and 34 with insulation coating, the heat generation temperature and the heat generation speed of the heating region 36 can be changed. can be adjusted.
 3.ファンブレードのファンディスクへの取り付け・電源供給 3. Attaching the fan blade to the fan disk and supplying power
 図6はファンディスク6にファンブレード8を取り付けた状態を示す斜視図であり、図7はファンブレード8への電源供給のための配線の構成を説明するための図であり、図8はファンブレード8への電源供給の構成を説明するための図である。 FIG. 6 is a perspective view showing a fan blade 8 attached to the fan disk 6, FIG. 7 is a diagram for explaining the wiring configuration for supplying power to the fan blade 8, and FIG. 4 is a diagram for explaining a configuration of power supply to blades 8. FIG.
 図6に示すように、ファンディスク6は、ファンブレード8に取り付けられたダブテール7が係止される係止溝41を有する。ダブテール7の端面と係止溝41の底部との間には隙間を有する。 As shown in FIG. 6, the fan disk 6 has locking grooves 41 in which the dovetails 7 attached to the fan blades 8 are locked. A gap is provided between the end surface of the dovetail 7 and the bottom of the locking groove 41 .
 ダブテール7を前縁24側から係止溝41に入れ(図8の矢印を参照)、ファンブレード8を後縁25側に滑らせることで、ダブテール7が係止溝41に係止し、ファンブレード8がファンディスク6に取り付けられる。
 図7に示すように、ファンブレード8のハブ側26には、プラットフォーム43及びシャンク42を介してダブテール7が取り付けられている。
By inserting the dovetail 7 into the locking groove 41 from the front edge 24 side (see the arrow in FIG. 8) and sliding the fan blade 8 toward the rear edge 25 side, the dovetail 7 is locked in the locking groove 41 and the fan A blade 8 is attached to the fan disk 6 .
A dovetail 7 is attached to the hub side 26 of the fan blade 8 via a platform 43 and a shank 42, as shown in FIG.
 ダブテール7の端面には、前縁24側及び後縁25側のそれぞれに絶縁シート46a、49aを介して接続端子46、49が取り付けられている。接続端子46は、前縁24側の前縁側通電部31と絶縁被覆付き電線33を介して接続されている。絶縁被覆付き電線33は、プラットフォーム43及びシャンク42の前縁24側に配線される。接続端子49は、後縁25側の後縁側通電部32と絶縁被覆付き電線34を介して接続されている。絶縁被覆付き電線34は、プラットフォーム43及びシャンク42の後縁25側に配線される。 Connection terminals 46 and 49 are attached to the end face of the dovetail 7 via insulating sheets 46a and 49a on the front edge 24 side and the rear edge 25 side, respectively. The connection terminal 46 is connected to the front edge side conducting portion 31 on the front edge 24 side via the electric wire 33 with an insulation coating. The insulated wire 33 is wired on the platform 43 and the shank 42 on the front edge 24 side. The connection terminal 49 is connected to the trailing edge side current-carrying portion 32 on the trailing edge 25 side via the electric wire 34 with an insulating coating. The insulated wire 34 is routed on the platform 43 and the shank 42 on the trailing edge 25 side.
 図8に示すように、ファンディスク6の係止溝41の底面には、の接続端子46、49に対応する位置にそれぞれ絶縁シート51a、52aを介してV字接点金具(接続端子)51、52が設けられている。 As shown in FIG. 8, on the bottom surface of the locking groove 41 of the fan disk 6, V-shaped contact fittings (connecting terminals) 51 and 51 are provided at positions corresponding to the connecting terminals 46 and 49 via insulating sheets 51a and 52a, respectively. 52 are provided.
 ダブテール7を係止溝41に係止し、ファンブレード8がファンディスク6に取り付けられると、接続端子46、49がそれぞれV字接点金具51、52に接触して押圧する。これにより、接続端子46、49とV字接点金具51、52とは、それぞれ係止溝41の底部及びダブテール7の端面で弾性力をもって接触する。 When the dovetail 7 is locked in the locking groove 41 and the fan blade 8 is attached to the fan disk 6, the connection terminals 46 and 49 contact and press the V-shaped contact fittings 51 and 52, respectively. As a result, the connection terminals 46, 49 and the V-shaped contact fittings 51, 52 are brought into elastic contact with each other at the bottom of the locking groove 41 and the end face of the dovetail 7, respectively.
 スピナー5内には、電源となるバッテリ53が収容され、バッテリ53とV字接点金具51、52とはそれぞれファンディスク6及びスピナー5内を通る絶縁被覆付き電線45、48を介して接続されている。これにより、ファンブレード本体21に加熱用の電力が供給される。このような構成を採用することで、電力供給のための構成を簡単にすることができる。 A battery 53 serving as a power source is accommodated in the spinner 5, and the battery 53 and the V-shaped contact fittings 51, 52 are connected via the electric wires 45, 48 with insulation coating passing through the fan disk 6 and the spinner 5, respectively. there is Thereby, electric power for heating is supplied to the fan blade main body 21 . By adopting such a configuration, the configuration for power supply can be simplified.
 図9はファンブレード8への電源供給の他の構成を説明するための図である。 FIG. 9 is a diagram for explaining another configuration of power supply to the fan blades 8. FIG.
 この構成は、外部である既存の電源系統62からファンブレード本体21の加熱用の電力が供給するものである。この構成では、スリップリング61が回転軸である低圧軸2に取り付けられ、スリップリング61を介してファンブレード本体21の加熱用の電力を既存の電源系統62から供給している。これにより、外部から電力を供給することが可能となる。 In this configuration, power for heating the fan blade main body 21 is supplied from the existing power supply system 62 which is external. In this configuration, a slip ring 61 is attached to the low-pressure shaft 2 which is a rotating shaft, and power for heating the fan blade body 21 is supplied from an existing power supply system 62 via the slip ring 61 . This makes it possible to supply power from the outside.
 II.ファンブレード II. fan blade
 1.ファンブレードの構成(詳細) 1. Fan blade configuration (details)
 図10は、ファンブレード本体を構成する積層されたプリプレグを模式的に示す分解図である。 Fig. 10 is an exploded view schematically showing the laminated prepregs that constitute the fan blade body.
 ファンブレード本体21は、積層された複数(n層)の層211、212、213、214・・・21nからなる一例を示すものである。各層211、212、213、214・・・21nは、例えば強化繊維としての炭素繊維、マトリックスとしてエボキシ樹脂を使用したプリプレグである。各層211、212、213、214・・・21nは、同じプリプレグでもよい。 The fan blade body 21 is an example composed of a plurality (n layers) of laminated layers 211, 212, 213, 214, . . . 21n. Each layer 211, 212, 213, 214, . Each layer 211, 212, 213, 214...21n may be the same prepreg.
 複数(n層)の層211、212、213、214・・・21nに含まれる炭素繊維の配向は異なる。ファンブレード8のスパン方向(長手方向)を0°且つコード方向(短手方向)を90°としたとき、層214に含まれる炭素繊維の配向は0°であり、層211に含まれる炭素繊維の配向は90°である。層212は、スパン方向及びコード方向の両方向に対して正に傾斜した第1の方向(本例では、+45°)に配向した炭素繊維を含む。層213は、スパン方向及びコード方向の両方向に対して負に傾斜した第2の方向(本例では、-45°)に配向した炭素繊維を含む。その他の層21nは、配向方向90°、±45°、0°又は他の角度の炭素繊維を配置した擬似等方性構成を繰返し複数回積層した構成を有する。 The orientations of the carbon fibers included in the multiple (n layers) layers 211, 212, 213, 214, . . . 21n are different. When the span direction (longitudinal direction) of the fan blade 8 is 0° and the cord direction (lateral direction) is 90°, the orientation of the carbon fibers contained in the layer 214 is 0°, and the carbon fibers contained in the layer 211 is 90°. Layer 212 includes carbon fibers oriented in a first direction (+45° in this example) that is positively angled with respect to both the span and cord directions. Layer 213 comprises carbon fibers oriented in a second direction (−45° in this example) that is negatively angled with respect to both the span and cord directions. Other layers 21n have a configuration in which a quasi-isotropic configuration in which carbon fibers are arranged with orientation directions of 90°, ±45°, 0°, or other angles is repeatedly laminated multiple times.
 複数の層211、212、213、214・・・21nは、同じプリプレグにより作製したものであっても、各層211、212、213、214・・・21nの繊維配向角が異なれば強度や剛性は異なる値を示す。このような性質を利用し、外周方向に対し一定以上の力学機械特性を得るために一方向に炭素繊維を配向したプリプレグを、積層に応じて配向を変える擬似等方性の積層構成を用いる。具体的にはファンブレードは、スパン方向(長手方向)に対して炭素繊維配向方向90°、±45°、0°を配置した構成を繰返し複数回積層した構成で所望する機械特性を得る。同図では擬似等方性の一例を示すが、擬似等方性でなくてもよい。 Even if the plurality of layers 211, 212, 213, 214, . Show different values. Taking advantage of such properties, a quasi-isotropic lamination structure is used in which prepregs in which carbon fibers are oriented in one direction are used to change the orientation according to lamination in order to obtain a certain level of mechanical and mechanical properties in the outer peripheral direction. Specifically, the fan blade obtains the desired mechanical properties by repeatedly laminating a configuration in which the orientation directions of the carbon fibers are 90°, ±45°, and 0° with respect to the span direction (longitudinal direction). Although an example of pseudo-isotropy is shown in the same figure, it may not be pseudo-isotropic.
 上記のように、航空機のジェットエンジン1のファンブレード8では、前縁24のハブ側26は回転速度が遅いため着氷量が一番多くなり、後縁25のチップ側27は回転逮度が速く、遠心力等により氷が剥がれ易いため堆積し難いという傾向がある。また、上記のように、前縁側通電部31及び後縁側通電部32の間のファンブレード本体21の通電領域には電圧が印加されたことで電流が流れ、ファンブレード本体21自体がその抵抗によって発熱する。一対の前縁側通電部31及び後縁側通電部32の間に電流を流すとき、ファンブレード本体21の前縁24側の発熱量を、後縁25側の発熱量より高くすることで、ファンブレード本体21の前縁24側(さらに細かく言うとそのハブ側26)の発熱量を上げ、前縁24側(さらに細かく言うとそのハブ側26)をより効率的に防氷することを図る。さらに、ジェットエンジン1のファンブレード8では、ファンブレード8の大小に関わらず(エンジンの大小に関わらず)、ファンブレード8の回転によりハブ側26に着氷が集中する傾向を示すことから、本実施形態に記載した手段によって効果的な防氷効果を得ることが可能となる。 As described above, in the fan blade 8 of the jet engine 1 of the aircraft, the rotation speed is slow on the hub side 26 of the leading edge 24, so the amount of ice accretion is the largest, and the rotation speed on the tip side 27 of the trailing edge 25 is the highest. It tends to be difficult to accumulate ice because it is fast and easy to peel off due to centrifugal force and the like. In addition, as described above, voltage is applied to the current-carrying region of the fan blade body 21 between the leading edge-side current-carrying portion 31 and the trailing edge-side current-carrying portion 32, so that a current flows, and the fan blade body 21 itself is affected by the resistance. Fever. When a current is passed between the pair of leading edge-side current-carrying portion 31 and trailing edge-side current-carrying portion 32, the amount of heat generated on the front edge 24 side of the fan blade main body 21 is made higher than the amount of heat generated on the trailing edge 25 side. To increase the amount of heat generated on the front edge 24 side (more precisely, its hub side 26) of a main body 21, and to more efficiently prevent ice on the front edge 24 side (more precisely, its hub side 26). Furthermore, the fan blades 8 of the jet engine 1 tend to concentrate icing on the hub side 26 due to the rotation of the fan blades 8 regardless of the size of the fan blades 8 (regardless of the size of the engine). It is possible to obtain an effective anti-icing effect by means described in the embodiments.
 そこで、本実施形態では、一対の前縁側通電部31及び後縁側通電部32の間に電流を流すとき、ファンブレード本体21の前縁24側の発熱量を、後縁25側の発熱量より高くするために、ファンブレード本体21の前縁24側の導通繊維密度が後縁25側の導通繊維密度より高くする。具体的には、前縁側通電部31のスパン方向の長さに対する前縁側通電部31に導通された炭素繊維の割合が、後縁側通電部32のスパン方向の長さに対する後縁側通電部32に導通された炭素繊維の割合より高いようにすることで、前縁24側の導通繊維密度が後縁25側の導通繊維密度より高くなる。 Therefore, in this embodiment, when a current is passed between the pair of leading edge side current-carrying portion 31 and trailing edge side current-carrying portion 32, the amount of heat generated on the front edge 24 side of the fan blade main body 21 is less than the amount of heat generated on the trailing edge 25 side. To increase the density, the conductive fiber density on the leading edge 24 side of the fan blade body 21 is made higher than the conductive fiber density on the trailing edge 25 side. Specifically, the ratio of the carbon fibers conducted to the leading edge side current-carrying portion 31 to the length of the leading edge side current-carrying portion 31 in the span direction is the same as that of the trailing edge side current-carrying portion 32 to the length of the trailing edge side current-carrying portion 32 in the span direction. By making the proportion of carbon fibers that are conducted higher than that, the conducting fiber density on the leading edge 24 side becomes higher than the conducting fiber density on the trailing edge 25 side.
 その導通繊維密度の差を実現するために、炭素繊維の配向が90°である1以上の層211だけではなく、炭素繊維の配向が+45°である1以上の層212及び炭素繊維の配向が-45°である1以上の層213が、前縁側通電部31及び後縁側通電部32に接続される。そして、後縁側通電部32のスパン方向の長さを、前縁側通電部31のスパン方向の長さより長いものとする。一方、前縁側通電部31及び後縁側通電部32の両方に導通する炭素繊維(即ち、通電領域に含まれる炭素繊維)に着目すると、前縁側通電部31に導通する炭素繊維の本数と、後縁側通電部32に導通する炭素繊維の本数とは同じである。このため、同じ本数の炭素繊維が、短い前縁側通電部31及び長い後縁側通電部32に導通するとき、前縁側通電部31のスパン方向の長さ(短い)に対する前縁側通電部31に導通された炭素繊維の割合である前縁24側の導通繊維密度が、後縁側通電部32のスパン方向の長さ(長い)に対する後縁側通電部32に導通された炭素繊維の割合である後縁25側の導通繊維密度より高い。前縁24側の導通繊維密度が後縁25側の導通繊維密度より高いことで、一対の前縁側通電部31及び後縁側通電部32の間に電流を流すとき、ファンブレード本体21の前縁24側の発熱量を、後縁25側の発熱量より高くすることで、ファンブレード本体の前縁24側の温度が上昇する。前縁24側で導通する炭素繊維は、後縁25側よりも狭い領域で同本数存在する。このため、炭素繊維自身の発熱によっても、後縁25側より前縁24側の温度が高くなる。 To achieve that difference in conducting fiber density, not only one or more layers 211 with a carbon fiber orientation of 90°, but also one or more layers 212 with a carbon fiber orientation of +45° and a carbon fiber orientation of One or more layers 213 at −45° are connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 . The spanwise length of the trailing edge side conducting portion 32 is set longer than the spanwise length of the leading edge side conducting portion 31 . On the other hand, focusing on the carbon fibers conducting to both the leading edge-side conducting portion 31 and the trailing edge-side conducting portion 32 (that is, the carbon fibers contained in the conducting region), the number of carbon fibers conducting to the leading edge-side conducting portion 31 and the number of carbon fibers conducting to the trailing edge-side conducting portion 31 The number of carbon fibers conducting to the edge-side conducting portion 32 is the same. Therefore, when the same number of carbon fibers are electrically connected to the short leading edge side current-carrying portion 31 and the long trailing edge side current-carrying portion 32, the leading edge side current-carrying portion 31 is electrically connected to the length (short) of the leading edge side current-carrying portion 31 in the span direction. The conducting fiber density on the side of the leading edge 24, which is the ratio of the carbon fibers that are connected to the trailing edge, is the ratio of the carbon fibers that are conducted to the trailing edge-side conducting portion 32 with respect to the length (long) of the trailing edge-side conducting portion 32 in the span direction. Higher than the conductive fiber density on the 25 side. Since the conducting fiber density on the leading edge 24 side is higher than the conducting fiber density on the trailing edge 25 side, when a current is passed between the pair of leading edge side conducting parts 31 and trailing edge side conducting parts 32, the leading edge of the fan blade main body 21 By making the amount of heat generated on the side 24 higher than the amount of heat generated on the side of the trailing edge 25, the temperature on the side of the leading edge 24 of the fan blade main body rises. The carbon fibers conducting on the leading edge 24 side exist in the same number in a narrower region than on the trailing edge 25 side. Therefore, the temperature on the leading edge 24 side becomes higher than on the trailing edge 25 side due to the heat generated by the carbon fibers themselves.
 2.供試体 2. specimen
 図11は、実験で用いた積層されたプリプレグの供試体の積層断面を模式的に示す。 FIG. 11 schematically shows a lamination cross-section of a laminated prepreg specimen used in the experiment.
 積層されたプリプレグの供試体を準備する。本例では、炭素繊維の配向が90°、+45°、-45°、0°の層211、212、213、214が、シンメトリーに24層に積層されている。これはあくまでも一例であり、例えば、+30°~+60°配向の層が設けられてもよい。例えば、-30°~-60°配向の層が設けられてもよい。例えば、炭素繊維の配向が90°、+60°、+30°、-30°、-60°、0°の層が設けられてもよい。疑似等方性に積層されてもよいし、疑似等方性で無く例えば90°配向の層の割合が他の角度の配向の層より高くてもよい。積層状態において、複数の層211、212、213、214・・・21nの前縁24側及び後縁25側の両端は、層状に露出している。この両端面は、例えば、1平面ではなく、角度を持った2平面からなるナイフエッジ状である。各層211、212、213、214・・・21nの厚みは、例えば、0.19mmである。 Prepare a laminated prepreg specimen. In this example, 24 layers 211, 212, 213, and 214 having carbon fiber orientations of 90°, +45°, -45°, and 0° are laminated symmetrically. This is only an example, for example layers with +30° to +60° orientation may be provided. For example, layers with -30° to -60° orientation may be provided. For example, layers with carbon fiber orientations of 90°, +60°, +30°, −30°, −60° and 0° may be provided. The layers may be laminated in a quasi-isotropic manner, or the proportion of layers that are not quasi-isotropic and oriented at, for example, 90° may be higher than layers oriented at other angles. In the laminated state, both ends of the plurality of layers 211, 212, 213, 214, . The two end faces are, for example, a knife-edge shape consisting of two angled planes instead of one plane. The thickness of each layer 211, 212, 213, 214...21n is, for example, 0.19 mm.
 第1の方向は+30°~+60°であり、第2の方向は-30°~-60°であることで(即ち、鋭角であることで)、前縁側通電部31及び後縁側通電部32のスパン方向の長さを比較的短くすることが出来る。これにより、導電性接着剤の塗布面積が狭いことにより抵抗率が上昇し、抵抗による加熱量を上昇させることが可能となる。 The first direction is +30° to +60°, and the second direction is −30° to −60° (that is, being acute), so that the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 can be made relatively short in the span direction. As a result, the resistivity increases due to the narrow application area of the conductive adhesive, and it becomes possible to increase the amount of heat generated by the resistance.
 図12は、実験で用いた積層されたプリプレグの供試体を示す。 Fig. 12 shows a laminated prepreg specimen used in the experiment.
 積層状態において、複数の層211、212、213、214・・・21nのコード方向の前縁24側及び後縁25側の両端は、層状に露出している。このため、複数の層211、212、213、214・・・21nから選択された1以上の層を、導電性接着剤を介して前縁側通電部31及び後縁側通電部32に接続することができる。1つの層21nが前縁側通電部31及び後縁側通電部32に接続されてもよく、選択された一部の層21nが前縁側通電部31及び後縁側通電部32に接続されてもよく、全ての層21nが前縁側通電部31及び後縁側通電部32に接続されてもよい。全ての層21nではなく選択された1以上の層21nに導電性接着剤を塗布する場合、電子部品の高密度実装で用いられる異方性導電膜材や絶縁材料(試験では例えばマスキングテープ)を使用してもよい。 In the stacked state, both ends of the plurality of layers 211, 212, 213, 214, . Therefore, one or more layers selected from the plurality of layers 211, 212, 213, 214, . can. One layer 21n may be connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32, or a selected part of the layers 21n may be connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32, All layers 21n may be connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 . When applying a conductive adhesive to one or more layers 21n selected instead of all layers 21n, anisotropic conductive film materials and insulating materials (for example, masking tape in tests) used in high-density mounting of electronic components may be used.
 図13は、実験で用いた導通繊維密度を説明するための模式図である。 FIG. 13 is a schematic diagram for explaining the conductive fiber density used in the experiment.
 タイプ2は、本実施形態であり、炭素繊維の配向が90°である1以上の層211、炭素繊維の配向が+45°である1以上の層212及び炭素繊維の配向が-45°である1以上の層213が、前縁側通電部31及び後縁側通電部32に接続される。具体的には、図11の全ての層に導電性接着剤を塗布し、全ての層が前縁側通電部31及び後縁側通電部32に接続される。後縁側通電部32のスパン方向の長さ31Lは、前縁側通電部31のスパン方向の長さ31Lより長い。一方、前縁側通電部31及び後縁側通電部32の両方に導通する炭素繊維(即ち、通電領域に含まれる炭素繊維)に着目すると、前縁側通電部31に導通する炭素繊維の本数と、後縁側通電部32に導通する炭素繊維の本数とは同じである。このため、同じ本数の炭素繊維が、短い前縁側通電部31及び長い後縁側通電部32に導通するとき、前縁側通電部31のスパン方向の長さ31L(短い)に対する前縁側通電部31に導通された炭素繊維の割合が、後縁側通電部32のスパン方向の長さ32L(長い)に対する後縁側通電部32に導通された炭素繊維の割合より高い。これにより、前縁24側(図中の楕円内の領域)の導通繊維密度が後縁25側の導通繊維密度より高い。前縁24側の導通繊維密度が後縁25側の導通繊維密度より高いことで、ファンブレード本体21の前縁24側の発熱量を、後縁25側の発熱量より高くすることで、ファンブレード本体の前縁24側の温度が上昇する。前縁24側で導通する炭素繊維は、後縁25側よりも狭い領域で同本数存在する。このため、炭素繊維自身の発熱によっても、後縁25側より前縁24側の温度が高くなる。 Type 2 is this embodiment, one or more layers 211 with a carbon fiber orientation of 90°, one or more layers 212 with a carbon fiber orientation of +45° and a carbon fiber orientation of -45°. One or more layers 213 are connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 . Specifically, a conductive adhesive is applied to all layers in FIG. The spanwise length 31L of the trailing edge side conducting portion 32 is longer than the spanwise length 31L of the leading edge side conducting portion 31 . On the other hand, focusing on the carbon fibers conducting to both the leading edge-side conducting portion 31 and the trailing edge-side conducting portion 32 (that is, the carbon fibers contained in the conducting region), the number of carbon fibers conducting to the leading edge-side conducting portion 31 and the number of carbon fibers conducting to the trailing edge-side conducting portion 31 The number of carbon fibers conducting to the edge-side conducting portion 32 is the same. Therefore, when the same number of carbon fibers are electrically connected to the short leading edge side current-carrying portion 31 and the long trailing edge side current-carrying portion 32, the leading edge side current-carrying portion 31 with respect to the length 31L (short) of the leading edge side current-carrying portion 31 in the span direction The ratio of the carbon fibers conducted is higher than the ratio of the carbon fibers conducted to the trailing edge side current-carrying portion 32 with respect to the length 32L (long) of the trailing edge side current-carrying portion 32 in the span direction. As a result, the conductive fiber density on the leading edge 24 side (area within the ellipse in the figure) is higher than the conductive fiber density on the trailing edge 25 side. The conductive fiber density on the leading edge 24 side is higher than the conductive fiber density on the trailing edge 25 side, so that the amount of heat generated on the front edge 24 side of the fan blade body 21 is higher than that on the trailing edge 25 side. The temperature on the leading edge 24 side of the blade body increases. The carbon fibers conducting on the leading edge 24 side exist in the same number in a narrower region than on the trailing edge 25 side. Therefore, the temperature on the leading edge 24 side becomes higher than on the trailing edge 25 side due to the heat generated by the carbon fibers themselves.
 タイプ1は、比較例であり、炭素繊維の配向が90°である1以上の層211が前縁側通電部31A及び後縁側通電部32Aに接続される。具体的には、図11の厚み方向中央(シンメトリーの中央)の2層(90°配向)のみに導電性接着剤を塗布し、厚み方向中央の2層(90°配向)のみが前縁側通電部31及び後縁側通電部32に接続される。前縁側通電部31A及び後縁側通電部32Aの両方に導通する炭素繊維(即ち、通電領域に含まれる炭素繊維)に着目すると、前縁側通電部31Aに導通する炭素繊維の本数と、後縁側通電部32Aに導通する炭素繊維の本数とは同じである。このため、前縁24側の導通繊維密度と、後縁25側の導通繊維密度とは、同じである。 Type 1 is a comparative example, in which one or more layers 211 having carbon fibers oriented at 90° are connected to the leading edge side conducting portion 31A and the trailing edge side conducting portion 32A. Specifically, the conductive adhesive is applied only to the two layers (90° orientation) at the center in the thickness direction (center of symmetry) in FIG. It is connected to the portion 31 and the trailing edge side current-carrying portion 32 . Focusing on the carbon fibers conducting to both the leading edge side conducting portion 31A and the trailing edge side conducting portion 32A (that is, the carbon fibers contained in the conducting region), the number of carbon fibers conducting to the leading edge side conducting portion 31A and the trailing edge side conducting portion The number of carbon fibers conducting to the portion 32A is the same. Therefore, the conducting fiber density on the leading edge 24 side and the conducting fiber density on the trailing edge 25 side are the same.
 図14は、実験で用いたタイプ1及びタイプ2の供試体を示す。 Fig. 14 shows Type 1 and Type 2 specimens used in the experiment.
 図14中、線で囲まれた領域が導通により繊維加熱が発生する領域で、防氷効果を算出する際に、面積として、評価対象となる領域を表す。上記のタイプ1及びタイプ2の供試体を準備する。タイプ1及びタイプ2の供試体ともにスパン方向187mm、コード方向58.6mm、厚み方向4.6mmサイズのCFRP積層体である。タイプ1の供試体は、ミッドスパン位置に、前縁側通電部31A(スパン方向長さ30mm)及び後縁側通電部32A(スパン方向長さ30mm)を有し、前縁側通電部31A及び後縁側通電部32Aの間を通電する。タイプ2の供試体は、ミッドスパン位置に、前縁側通電部31(スパン方向長さ60mm)及び後縁側通電部32(スパン方向長さ100mm)を有し、前縁側通電部31及び後縁側通電部32の間の通電領域を通電する。前縁側通電部31A及び後縁側通電部32Aは導電性接着剤である。タイプ1とタイプ2では加熱領域のサイズが異なる。図中の直線で囲んだ領域が、前縁側通電部31A及び後縁側通電部32Aの間の通電領域であると同時に、加熱領域であり評価領域である。 In FIG. 14, the area surrounded by lines is the area where fiber heating occurs due to conduction, and represents the area to be evaluated as an area when calculating the anti-icing effect. Prepare the above type 1 and type 2 specimens. Both type 1 and type 2 specimens are CFRP laminates having a size of 187 mm in the span direction, 58.6 mm in the cord direction, and 4.6 mm in the thickness direction. The type 1 specimen has a leading edge side conducting portion 31A (span direction length 30 mm) and a trailing edge side conducting portion 32A (span direction length 30 mm) at the mid-span position. Electricity is applied between the portions 32A. The type 2 specimen has a leading edge side conducting portion 31 (span direction length of 60 mm) and a trailing edge side conducting portion 32 (span direction length of 100 mm) at the mid-span position. The energized region between the portions 32 is energized. The leading edge side current-carrying portion 31A and the trailing edge side current-carrying portion 32A are made of a conductive adhesive. Type 1 and type 2 differ in the size of the heating area. A region surrounded by a straight line in the drawing is an energization region between the leading edge side energization portion 31A and the trailing edge side energization portion 32A, as well as a heating region and an evaluation region.
 3.試験結果1 3. Test result 1
 図15は、実験用の着氷風洞装置を示す。 Fig. 15 shows an experimental icing wind tunnel.
 着氷風洞装置100は、風洞110と、ドロップレットキャッチャ106と、カメラ(不図示)と、これらを収容するリフリジレーションルーム107と、を有する。風洞110は、上流から下流への順に、ブロワ101、ストレーナグリッド102、スプレートンネル103、コントラクション104、テストセクションであるエアアウトレット105を含む。スプレートンネル103は、複数のスプレーノズル108を内蔵する。カメラ(不図示)は、テストセクションであるエアアウトレット105を撮影する。カメラ(不図示)は、少なくともサーモカメラを含み、さらに、写真を撮影するカメラを含んでもよい。ドロップレットキャッチャ106は、エアアウトレット105の下流に設置される。 The icing wind tunnel device 100 has a wind tunnel 110, a droplet catcher 106, a camera (not shown), and a refrigeration room 107 that houses them. The wind tunnel 110 includes, in order from upstream to downstream, a blower 101, a strainer grid 102, a spray tunnel 103, a contraction 104, and an air outlet 105, which is a test section. Spray tunnel 103 houses a plurality of spray nozzles 108 . A camera (not shown) photographs the test section, air outlet 105 . A camera (not shown) includes at least a thermo camera and may also include a camera for taking pictures. A droplet catcher 106 is installed downstream of the air outlet 105 .
 着氷風洞装置100のスペックは、以下の通りである。最大流速50m/s。温度-30~-5°C。リフリジレーションルーム107の体積2500×4500×2400mm。スプレートンネル103の断面積400×400mm。エアアウトレット105の断面積200×200mmThe specifications of the icing wind tunnel device 100 are as follows. Maximum flow velocity 50m/s. Temperature -30 to -5°C. The volume of the refrigeration room 107 is 2500×4500×2400 mm 3 . The cross-sectional area of the spray tunnel 103 is 400×400 mm 2 . The cross-sectional area of the air outlet 105 is 200×200 mm 2 .
 テストセクションであるエアアウトレット105の下流に供試体109を設置する。風洞110内に空気を流し、供試体に向けてスプレーノズル108から液滴を噴霧する。空気の流速条件は、20m/sと40m/sの2種類である。スプレーノズル108から噴霧する液滴粒径の条件は、15μmと29μmの2種類で実施する。 A specimen 109 is installed downstream of the air outlet 105, which is the test section. Air is passed through the wind tunnel 110 and droplets are sprayed from the spray nozzle 108 toward the specimen. There are two types of air flow velocity conditions, 20 m/s and 40 m/s. The conditions for the particle size of droplets sprayed from the spray nozzle 108 are two types of 15 μm and 29 μm.
 図16及び図17は、防氷試験結果を示す写真である。 Figures 16 and 17 are photographs showing the anti-icing test results.
 図16は、第1の試験条件(空気流速20m/s、液滴粒径15μm、電力(投入電力/加熱領域の面積)1.1W/cm)での、タイプ1及びタイプ2の防氷試験後の供試体をカメラで撮影した写真である。 FIG. 16 shows Type 1 and Type 2 anti-icing under the first test conditions (air flow rate 20 m/s, droplet size 15 μm, power (input power/area of heating area) 1.1 W/cm 2 ). It is the photograph which image|photographed the specimen after a test with the camera.
 図17は、第2の試験条件(空気流速40m/s、液滴粒径15μm、電力(投入電力/加熱領域の面積)0.83W/cm)での、タイプ1及びタイプ2の防氷試験後の供試体をカメラで撮影した写真である。 FIG. 17 shows the anti-icing of Type 1 and Type 2 under the second test conditions (air velocity 40 m/s, droplet size 15 μm, power (input power/area of heating area) 0.83 W/cm 2 ). It is the photograph which image|photographed the specimen after a test with the camera.
 図18及び図19は、防氷試験結果を示すグラフである。  Figures 18 and 19 are graphs showing the anti-icing test results.
 横軸は、電力を示し、具体的には、投入電力/加熱領域の面積[w/cm]である。タイプ1とタイプ2では加熱領域のサイズが異なり、投入電力での単純比較が出来ないため、投入電力/加熱領域の面積で評価する。縦軸は、防氷効果(アンチアイスエフェクト)[%]であり、次の式で算出する。
Figure JPOXMLDOC01-appb-M000001
The horizontal axis indicates the power, specifically the input power/the area of the heating region [w/cm 2 ]. Type 1 and Type 2 differ in the size of the heating area, and cannot be simply compared based on input power. The vertical axis is the anti-icing effect (anti-ice effect) [%], which is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000001
 上記式において、Aanti‐ice[mm]は、防氷試験後の供試体の正面と側面の着氷面積の平均値である。Aice[mm]は、は非発熱時着氷量確認試験後の供試体の正面と側面の着氷面積の平均値である。これらの着氷面積は、本来、着氷重量で評価するのが理想だが、加熱領域と非加熱領域の着氷を分離することが出来ないため、写真(図16及び図17)を画像解析することにより評価する。 In the above formula, A anti-ice [mm 2 ] is the average value of the ice accretion areas on the front and sides of the specimen after the anti-icing test. A ice [mm 2 ] is the average value of the ice accretion areas on the front and side surfaces of the specimen after the non-exothermic icing amount confirmation test. Ideally, these icing areas should be evaluated by icing weight. Evaluate by
 図18は、空気流速20m/s、液滴粒径15μm及び29μm、投入電力を複数変更した防氷試験結果を示す。少なくとも電力(投入電力/加熱領域の面積)が0.83W/cm以上のとき、タイプ2の防氷効果がタイプ1の防氷効果より高い。 FIG. 18 shows the results of an anti-icing test in which the air flow velocity was 20 m/s, the droplet diameter was 15 μm and 29 μm, and the input power was changed. At least when the power (input power/area of heating region) is 0.83 W/cm 2 or more, the anti-icing effect of type 2 is higher than the anti-icing effect of type 1.
 図19は、空気流速40m/s、液滴粒径15μm及び29μm、投入電力を複数変更した防氷試験結果を示す。電力(投入電力/加熱領域の面積)がおよそ0.5~1.1W/cmのとき、タイプ2の防氷効果がタイプ1の防氷効果より高い。 FIG. 19 shows the results of an anti-icing test in which the air flow velocity is 40 m/s, the droplet diameter is 15 μm and 29 μm, and the input power is varied. The anti-icing effect of type 2 is higher than the anti-icing effect of type 1 when the power (input power/area of heating area) is about 0.5 to 1.1 W/cm 2 .
 4.試験結果2 4. Test result 2
 図20は、無風発熱試験結果を示すサーモグラフィである。 Fig. 20 is a thermography showing the results of the windless heat generation test.
 ケース1及びケース2の供試体を準備する。ケース1及びケース2の供試体は、前縁側通電部31及び後縁側通電部32に接続される層が異なる。ケース1は、全てのナイフエッジ面の層が前縁側通電部31及び後縁側通電部32に接続される。ケース2は、選択された1以上の試験片の厚み方向の中央部分に構成された層(具体的には図11中心部211の2層部分)が前縁側通電部31及び後縁側通電部32に接続される。ケース1及びケース2の供試体を室温10°Cで無風の室内に設置し、投入電力10Wを30秒間印加し、サーモカメラで供試体底面を撮影して表面温度分布を得る。 Prepare specimens for Case 1 and Case 2. The specimens of case 1 and case 2 differ in the layers connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 . In the case 1 , all knife-edge surface layers are connected to the leading edge side conducting portion 31 and the trailing edge side conducting portion 32 . In the case 2, the layer (specifically, the two-layer portion of the central portion 211 in FIG. 11) formed in the central portion in the thickness direction of the selected one or more test pieces is the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32. connected to The specimens of Case 1 and Case 2 are placed in a windless room at a room temperature of 10°C, an input power of 10 W is applied for 30 seconds, and the bottom surface of the specimen is photographed with a thermo camera to obtain the surface temperature distribution.
 図21は、無風発熱試験結果を示すグラフである。 Fig. 21 is a graph showing the results of the windless heat generation test.
 このグラフは、図20の破線が示す供試体底面中央部の、通電開始から30秒後の断面の温度分布を示す。横軸は、ミッドコードの位置の正圧面表面から負圧面表面までの供試体の位置を示す。横軸の5ピクセル~27ピクセルが、供試体部分に相当する。縦軸は、断面温度(°C)を示す。ケース1とケース2では断面の発熱の様子が異なった。これは、異方性導電フィルム(ACF)試験時の確認でも通用すると考えられる。ケース2はケース1より全体的に温度が上昇している。ケース2は特に前後縁の温度が高くなっており、ミッドコード部の温度上昇はその影響を受けたと考えられる。 This graph shows the cross-sectional temperature distribution at the center of the bottom surface of the specimen indicated by the dashed line in FIG. 20 30 seconds after the start of energization. The horizontal axis indicates the position of the specimen from the pressure side surface to the suction side surface at the position of the mid-cord. 5 pixels to 27 pixels on the horizontal axis correspond to the specimen portion. The vertical axis indicates cross-sectional temperature (°C). Cases 1 and 2 differed in the heat generation of the cross section. It is considered that this also applies to confirmation during an anisotropic conductive film (ACF) test. The temperature of case 2 is higher than that of case 1 as a whole. The temperature of the front and rear edges of the case 2 is particularly high, and it is considered that the temperature rise of the mid-cord part was affected by this.
 5.正圧側と負圧側の層の選択 5. Choice of pressure and suction side layers
 航空機のジェットエンジン1のファンブレード8への着氷は、ファンブレード8の前縁24(特にハブ側26周辺からミッドスパン周辺までの領域)と正圧面に多く氷が付着集中する。この現象は、ハブ側26とチップ側27の回転周方向速度の差に起因する。前縁24のハブ側26は回転速度が遅いため着氷量が一番多くなり、チップ側27は回転速度が速く、遠心力により氷が剥がれ易いため堆積し難い。また、大気中の液滴がファンブレード8に衝突すると同時に、ファンブレード8の前縁24と正圧面に対して急速に液滴が氷結する過冷却現象の着氷メカニズムが発生する。 The icing on the fan blades 8 of the jet engine 1 of the aircraft is concentrated on the front edge 24 of the fan blade 8 (especially the area from the hub side 26 to the midspan) and the pressure surface. This phenomenon is caused by the difference in rotational circumferential speed between the hub side 26 and the tip side 27 . The hub side 26 of the front edge 24 has the slowest rotation speed, so the amount of ice accretion is the largest. At the same time that droplets in the atmosphere collide with the fan blades 8 , an icing mechanism of a supercooling phenomenon occurs in which the droplets freeze rapidly on the leading edge 24 and the pressure surface of the fan blades 8 .
 以上の2つの要因から、ファンブレード8独特の複数個所に集中する着氷が発生することになり、そのため複雑な現象から発生する複数の着氷個所に応じた適切な防氷・除氷対策が重要になる。 Due to the above two factors, the icing that is concentrated on multiple locations unique to the fan blade 8 occurs. become important.
 このため、着氷量の多い前縁24ハブ側26からミッドスパン近傍領域及び正圧面を積極的に加熱するのが望ましい。上記のように、前縁側通電部31及び後縁側通電部32の間のファンブレード本体21の通電領域には電圧が印加されたことで電流が流れ、ファンブレード本体21自体がその抵抗によって発熱する。 Therefore, it is desirable to actively heat the area near the midspan and the positive pressure surface from the leading edge 24 hub side 26 where a large amount of ice is deposited. As described above, voltage is applied to the current-carrying region of the fan blade main body 21 between the leading edge-side current-carrying portion 31 and the trailing edge-side current-carrying portion 32, causing current to flow and the fan blade body 21 itself to generate heat due to its resistance. .
 例えば、前縁24と後縁25を跨ぐ90°配向層と防除氷面(正圧面)に近い層を選択して通電する。また、正圧面と負圧面に電流を流し、正圧面と負圧面に温度差、又は異なる発熱領域を発現してもよい。異なる発熱領域を発現するには、前後縁の導電性接着剤の塗布長さ、塗布する位置をオフセットさせる等を行えばよい。また、正圧面に電流を流し負圧面には流さなくてもよい。また、正圧面側を負圧面側より電流を流す層を多くし、導通繊維自身の発熱する繊維の本数を正圧面側の方を多くしてもよい。電流経路を構成する層の選択により、正圧面と負圧面の発熱温度又は発熱領域に違いを発現し、結果的に最小電力化で防氷が行える。最小印可電力で発熱領域と発熱温度を確保できるとともに、ファンブレード本体21の正圧面と負圧側の発熱温度の設定が行える。具体的には、着氷量の多い正圧面の温度を高温に、量が少ない負圧面の温度を低温にできる。この構成により、近年のファンブレードの軽量化に伴う中空構造化にも優位に機能し得る。さらに、ジェットエンジン1のファンブレード8では、ファンブレード8の大小に関わらず(エンジンの大小に関わらず)、ファンブレード8の回転によりハブ側26に着氷が集中する傾向を示すことから、本実施形態に記載した手段によって効果的な防氷効果を得ることが可能となる。 For example, a 90° oriented layer across the leading edge 24 and the trailing edge 25 and a layer close to the anti-icing surface (positive pressure surface) are selected and energized. Alternatively, a current may be applied to the pressure surface and the suction surface to generate a temperature difference or a different heat generation region between the pressure surface and the suction surface. In order to generate different heat generating regions, the length of the conductive adhesive applied to the front and rear edges, the position of the applied adhesive, etc. may be offset. Also, the current may be applied to the pressure surface and not to the suction surface. Also, the pressure surface side may have more layers through which current flows than the suction surface side, and the number of conductive fibers themselves that generate heat may be increased on the pressure surface side. By selecting the layers that constitute the current path, the heat generation temperature or the heat generation region of the pressure surface and the suction surface are different, and as a result, anti-icing can be achieved with minimum power consumption. The heat generation area and heat generation temperature can be secured with the minimum applied power, and the heat generation temperature of the pressure side and the suction side of the fan blade main body 21 can be set. Specifically, the temperature of the pressure surface on which a large amount of ice adheres can be raised to a high temperature, and the temperature of the suction surface on which a small amount of ice adheres can be lowered. With this configuration, it is possible to advantageously function in the hollow structure that accompanies the recent weight reduction of fan blades. Furthermore, the fan blades 8 of the jet engine 1 tend to concentrate icing on the hub side 26 due to the rotation of the fan blades 8 regardless of the size of the fan blades 8 (regardless of the size of the engine). It is possible to obtain an effective anti-icing effect by means described in the embodiments.
 6.小括 6. Brief Summary
 ファンブレード本体21を構成する最小単位(部品)は、積層されるプリプレグである。プリプレグ層は、構成される樹脂と炭素繊維の種類、炭素繊維と樹脂の含有率、厚みを含めたスペックを有する。本実施形態では、通電する1以上の層を選択する。CFRPの積層方向に向けて一定方向に配列した各炭素繊維の層の炭素繊維の両端部間を一対とした電流経路を介してCFRP構造体に電流の流れる方向と発熱に寄与する領域の指定が行える。 The minimum unit (component) that constitutes the fan blade main body 21 is the laminated prepreg. The prepreg layer has specifications including the types of resin and carbon fiber that constitute it, the content of carbon fiber and resin, and the thickness. In this embodiment, one or more layers are selected to be energized. The direction in which current flows in the CFRP structure through a pair of current paths between the ends of the carbon fibers of each carbon fiber layer arranged in a fixed direction in the CFRP lamination direction and the area that contributes to heat generation are specified. can do
 ミクロな観点では、CFRPの発熱を励起する抵抗成分は、選択した層の炭素繊維の層の両端部間の長さに比例し、選択したプリプレグ層の厚みと炭素繊維の含有率に反比例する。例えば配向を変えて積層する擬似等方性の構成では、厚み方向に選択する層の違いにより炭素繊維の長さが異なることで、抵抗成分が変わり発熱温度も変化する。このことから、ファンブレードの防除氷の為の発熱を得るためには、前縁後縁を跨ぐ炭素繊維の長さの短い配向の層を優先的に選択すると発熱効率が高くなる。 From a microscopic point of view, the resistance component that excites the heat generation of CFRP is proportional to the length between both ends of the carbon fiber layer of the selected layer, and inversely proportional to the thickness of the selected prepreg layer and the carbon fiber content. For example, in a quasi-isotropic configuration in which layers are laminated with different orientations, the difference in the length of the carbon fibers due to the difference in the layers selected in the thickness direction changes the resistance component and the heat generation temperature. For this reason, in order to obtain heat generation for defrosting the fan blades, heat generation efficiency can be increased by preferentially selecting a layer with a short carbon fiber length orientation straddling the leading edge and trailing edge.
 マクロな観点では、本実施形態のファンブレード8の基本構成は、電源とファンブレード本体21のCFRPの選択した層の炭素繊維に導通した一対の前縁側通電部31及び後縁側通電部32と、ファンブレード本体21のCFRPの抵抗成分からなる直列回路からなる。故に、構成する回路内では電流は均一に流れ、各抵抗成分に応じて流れる電流により抵抗加熱を励起し、その発熱量は各抵抗成分の抵抗値の比で決まる。1以上の層の選択については、ファンブレード9の前縁24と後縁25を跨ぐ炭素繊維の層の選択により、着氷の集中する箇所の前縁24(ハブ側26周辺)の電流経路が形成でき、発熱領域が設定できる。 From a macroscopic point of view, the basic configuration of the fan blade 8 of the present embodiment includes a pair of leading edge side current-carrying portions 31 and trailing edge side current-carrying portions 32 electrically connected to the carbon fiber of the selected layer of the CFRP of the power source and the fan blade main body 21, It consists of a series circuit made up of the resistance component of the CFRP of the fan blade main body 21 . Therefore, the current flows uniformly in the circuit, and the current flowing according to each resistance component excites resistance heating, and the amount of heat generated is determined by the ratio of the resistance values of each resistance component. As for the selection of one or more layers, the selection of the carbon fiber layer that straddles the leading edge 24 and the trailing edge 25 of the fan blade 9 reduces the current path at the leading edge 24 (around the hub side 26) where icing concentrates. can be formed, and the heating area can be set.
 積層する厚み方向に対して複数炭素繊維配向層の組合せ(例えば、90°、+45°、-45°)からなる電流経路を形成し、前縁24側の導通繊維密度の増加による前縁24の発熱温度上昇およびファンブレード8表面部(正圧面)での発熱領域の拡大が見込める。 A current path consisting of a combination of multiple carbon fiber orientation layers (for example, 90°, +45°, −45°) is formed with respect to the thickness direction of lamination, and the leading edge 24 is improved by increasing the conductive fiber density on the leading edge 24 side. An increase in the heat generation temperature and an expansion of the heat generation area on the surface of the fan blade 8 (pressure surface) can be expected.
 III.導電性接着剤 III. conductive adhesive
 1.導電性接着剤の構成 1. Composition of conductive adhesive
 導電性接着剤は銀、銅、ニッケル等の導電性の良好な金属粒子をポリマー等のバインダー樹脂の溶液に分散させて製造される材料で、これを硬化させることにより導電性の塗膜あるいは導電性接着剤層を形成させる。導電性接着剤の主な機能は導電性と接着性であり、左記の電気的性質と機械的性質を決める因子としては、硬化時間、硬化温度、銀等の金属粒子含有量及び金属粒子のサイズと形状等があげられる。 Conductive adhesives are materials manufactured by dispersing particles of highly conductive metals such as silver, copper, and nickel in a solution of a binder resin such as a polymer. to form a flexible adhesive layer. The main functions of conductive adhesives are conductivity and adhesiveness, and the factors that determine the electrical and mechanical properties listed on the left include curing time, curing temperature, the content of metal particles such as silver, and the size of metal particles. and shape.
 例えば、硬化時間と温度の増加によって金属粒子間の分布は緻密になり、電気抵抗は全体的に減少する傾向を示すが、接着強度は増加する。これは硬化時間の増加とともに樹脂中の溶剤が蒸発し、硬化しながら基板とペーストが親密な接着を形成したと判断される。 For example, as the curing time and temperature increase, the distribution between metal particles becomes denser, and the electrical resistance tends to decrease overall, but the adhesive strength increases. It is believed that this is because the solvent in the resin evaporates as the curing time increases, and the substrate and the paste form an intimate bond during curing.
 更に、導電性接着剤は大きく分けると等方性材料と異方性材料に区分できる。等方性材料ははんだと同じようにすべての方向に電気を通すが、異方性材料は、対向電極間に圧縮された方向にのみ電流を流す一方向接続を実現する。本発明においては、電流経路を形成する際の層選択時に、異方性材料と等方性材料を選択的に用いることが出来る。異方性導電膜の利用の際は、積層された各繊維方向に配列された層を選択する際、複数のファンブレードに対し、電流経路の精度向上の目的としたい場合に有効になる。尚、導電性接着剤は、選択した炭素繊維間を介した電流経路を形成する際に用いるが、導電性接着剤の抵抗成分は、ファンブレードにおける着氷の集中する箇所を経由する領域を中心に成分比を選定することにより発熱効果と防除氷の効果が優位に得られる。 Furthermore, conductive adhesives can be roughly divided into isotropic materials and anisotropic materials. Isotropic materials, like solder, conduct electricity in all directions, while anisotropic materials provide a unidirectional connection that allows current to flow only in the direction of compression between opposing electrodes. In the present invention, an anisotropic material and an isotropic material can be selectively used when selecting layers for forming current paths. When using an anisotropic conductive film, it is effective when selecting layers arranged in the direction of each laminated fiber for the purpose of improving the accuracy of current paths for a plurality of fan blades. The conductive adhesive is used to form a current path through the selected carbon fibers, but the resistance component of the conductive adhesive is mainly in the area passing through the point where ice is concentrated on the fan blade. By selecting the ratio of components to be equal, the heat generation effect and the anti-icing effect can be obtained predominantly.
 導電性接着剤により電極とファンブレード本体とを接着することで、炭素繊維との接着性及び接触面積が増大することから、電極とファンブレード本体との取り付け箇所における局所的な温度上昇及び導通不良を防止し、電力消費を抑えることができる。これにより、低電圧でも効果的な温度上昇を得ることができる。 By bonding the electrode and the fan blade body with a conductive adhesive, the adhesiveness and contact area with the carbon fiber increase, so local temperature rise and poor conduction at the attachment point between the electrode and the fan blade body can be prevented and power consumption can be reduced. Thereby, an effective temperature rise can be obtained even at a low voltage.
 本実施形態では、一対の前縁側通電部31及び後縁側通電部32の間に電流を流すとき、ファンブレード本体21の前縁24側の発熱量を、後縁25側の発熱量より高くするために、ファンブレード本体21を前縁側通電部31に接続する導電性接着剤(以下、前縁側導電性接着剤と称する)の抵抗値が、ファンブレード本体21を後縁側通電部32に接続する導電性接着剤(以下、後縁側導電性接着剤と称する)の抵抗値より高いものとする。例えば、実験用に用いた前縁側導電性接着剤の抵抗値は、3×10-3~8×10-4Ω・cmであり、後縁側導電性接着剤の抵抗値は、8×10-4~2×10-4Ω・cmである。尚、導電性接着剤の抵抗成分は上に記載した通り、導電性の良好な金属粒子を用いて導通性を確保していることから金属粒子の平均粒径や導通性および電極部の機械的特性から適時選択でき、本文に記載した抵抗値は限定されない。ファンブレードに要求される基本仕様と電流経路構成の点から組合せることが可能である。 In the present embodiment, when a current is passed between the pair of leading edge side current-carrying portion 31 and trailing edge side current-carrying portion 32, the amount of heat generated at the leading edge 24 side of the fan blade main body 21 is made higher than the amount of heat generated at the trailing edge 25 side. Therefore, the resistance value of the conductive adhesive that connects the fan blade main body 21 to the leading edge side conductive portion 31 (hereinafter referred to as the leading edge side conductive adhesive) connects the fan blade main body 21 to the trailing edge side conductive portion 32. It should be higher than the resistance value of the conductive adhesive (hereinafter referred to as trailing edge side conductive adhesive). For example, the resistance value of the leading edge side conductive adhesive used for the experiment is 3×10 −3 to 8×10 −4 Ω·cm, and the resistance value of the trailing edge side conductive adhesive is 8×10 − 4 to 2×10 −4 Ω·cm. As described above, the resistance component of the conductive adhesive uses metal particles with good conductivity to ensure conductivity. It can be selected according to the characteristics, and the resistance value described in the text is not limited. Combinations are possible in terms of the basic specifications required for fan blades and the current path configuration.
 2.供試体 2. specimen
 図22は、実験で用いた別の供試体を模式的に示す。 FIG. 22 schematically shows another specimen used in the experiment.
 レイアウト1及びレイアウト2の供試体を準備する。レイアウト1及びレイアウト2の供試体は、導電性接着剤の種類が異なる。レイアウト1及びレイアウト2の供試体ともに、スパン方向187mm、コード方向58.6mm、厚み方向4.6mmサイズのCFRP積層体である。供試体は、ミッドスパン位置に、前縁側通電部31A(スパン方向長さ30mm)及び後縁側通電部32(スパン方向長さ30mm)を有し、前縁側通電部31及び後縁側通電部32の間の通電領域を通電する。前縁側通電部31は、供試体の前縁LEに前縁側導電性接着剤を用いて接続される。後縁側通電部32は、供試体の後縁TEに後縁側導電性接着剤を用いて接続される。レイアウト1及びレイアウト2の供試体ともに、前縁側導電性接着剤及び後縁側導電性接着剤は、積層された全てのプリプレグに塗布され、積層された全てのプリプレグが前縁側通電部31及び後縁側通電部32に接続される。図中の直線で囲んだ領域が、前縁側通電部31及び後縁側通電部32の間の通電領域であると同時に、加熱領域であり評価領域である。 Prepare specimens for layout 1 and layout 2. The specimens of layout 1 and layout 2 differ in the type of conductive adhesive. Both the layout 1 and layout 2 specimens are CFRP laminates having a size of 187 mm in the span direction, 58.6 mm in the cord direction, and 4.6 mm in the thickness direction. The specimen has a leading edge side conducting portion 31A (span direction length 30 mm) and a trailing edge side conducting portion 32 (span direction length 30 mm) at the mid-span position. Energize the energized area between The leading edge side current-carrying portion 31 is connected to the leading edge LE of the specimen using a leading edge side conductive adhesive. The trailing edge side current-carrying portion 32 is connected to the trailing edge TE of the specimen using a trailing edge side conductive adhesive. In both layout 1 and layout 2 specimens, the leading edge side conductive adhesive and the trailing edge side conductive adhesive are applied to all the laminated prepregs, and all the laminated prepregs are connected to the leading edge side current-carrying portion 31 and the trailing edge side. It is connected to the conducting portion 32 . A region surrounded by a straight line in the figure is a current-carrying region between the leading edge-side current-carrying portion 31 and the trailing edge-side current-carrying portion 32, and at the same time, a heating region and an evaluation region.
 レイアウト2は、本実施形態であり、前縁側導電性接着剤と後縁側導電性接着剤の種類が異なる。前縁側導電性接着剤の抵抗値が後縁側導電性接着剤の抵抗値より高い。具体的には、前縁側導電性接着剤の抵抗値は、3×10-3~8×10-4Ω・cmであり、後縁側導電性接着剤の抵抗値は、8×10-4~2×10-4Ω・cmである。 Layout 2 is the present embodiment, and the types of the leading edge side conductive adhesive and the trailing edge side conductive adhesive are different. The resistance value of the leading edge side conductive adhesive is higher than the resistance value of the trailing edge side conductive adhesive. Specifically, the resistance value of the leading edge side conductive adhesive is 3×10 −3 to 8×10 −4 Ω·cm, and the resistance value of the trailing edge side conductive adhesive is 8×10 −4 to Ω·cm. It is 2×10 −4 Ω·cm.
 レイアウト1は、比較例であり、前縁側導電性接着剤と後縁側導電性接着剤の種類が同じである。具体的には、前縁側導電性接着剤及び後縁側導電性接着剤の抵抗値は、3×10-4~5×10-5Ω・cmである。 Layout 1 is a comparative example in which the types of the leading edge side conductive adhesive and the trailing edge side conductive adhesive are the same. Specifically, the resistance values of the leading edge side conductive adhesive and the trailing edge side conductive adhesive are 3×10 −4 to 5×10 −5 Ω·cm.
 3.試験結果1 3. Test result 1
 図23は、試験結果を示すサーモグラフィである。 FIG. 23 is a thermography showing test results.
 着氷風洞装置100にレイアウト1及びレイアウト2の供試体を設置し、空気流速40m/sで空気を流す。レイアウト1及びレイアウト2の供試体に同じ投入電力(40W)を印加し、サーモカメラで供試体を撮影して表面温度分布を得る。 The specimens of layout 1 and layout 2 are installed in the icing wind tunnel device 100, and air is flowed at an air velocity of 40 m/s. The same input power (40 W) is applied to the specimens of layout 1 and layout 2, and the surface temperature distribution is obtained by photographing the specimens with a thermo camera.
 図24は、試験結果を示すグラフである。 FIG. 24 is a graph showing test results.
 このグラフは、図23の破線が示すミッドスパン位置の供試体の表面温度分布を示す。横軸は、前縁(0)から後縁(1)までの供試体の位置を示す。縦軸は、表面温度(°C)を示す。同じ投入電力でありながら、レイアウト2は、全域に亘ってレイアウト1より高い温度が実現でき、前縁LEの方が後縁TEより高い温度が実現できている。また、レイアウト1では前縁は対流効果により熱が奪われてしまい後縁の方が温度が高い。一方、レイアウト2では同じ試験条件にもかかわらず、後縁より前縁の方が高い温度が実現できている。 This graph shows the surface temperature distribution of the specimen at the mid-span position indicated by the dashed line in FIG. The horizontal axis indicates the position of the specimen from the leading edge (0) to the trailing edge (1). The vertical axis indicates the surface temperature (°C). Although the input power is the same, the layout 2 can achieve a higher temperature than the layout 1 over the entire area, and the leading edge LE can achieve a higher temperature than the trailing edge TE. Also, in layout 1, the leading edge is deprived of heat due to the convection effect, and the temperature of the trailing edge is higher. On the other hand, layout 2 achieves a higher temperature at the leading edge than at the trailing edge despite the same test conditions.
 図25、図26、図27及び図28は、試験結果を示す写真である。  Figures 25, 26, 27 and 28 are photographs showing the test results.
 図25は、第1の試験条件(空気流速20m/s、液滴粒径15μm、投入電力(10W、20W、40W)での、レイアウト1及びレイアウト2の防氷試験結果後の供試体をカメラで撮影した写真である。 FIG. 25 shows the results of the anti-icing test for layout 1 and layout 2 under the first test conditions (air flow velocity 20 m/s, droplet diameter 15 μm, input power (10 W, 20 W, 40 W). This is a photo taken in
 図26は、第2の試験条件(空気流速20m/s、液滴粒径29μm、投入電力(10W、20W、40W)での、レイアウト1及びレイアウト2の防氷試験結果後の供試体をカメラで撮影した写真である。 FIG. 26 shows the results of anti-icing tests for layouts 1 and 2 under the second test conditions (air flow velocity 20 m/s, droplet diameter 29 μm, input power (10 W, 20 W, 40 W). This is a photo taken in
 図27は、第3の試験条件(空気流速40m/s、液滴粒径15μm、投入電力(20W、30W、50W)での、レイアウト1及びレイアウト2の防氷試験結果後の供試体をカメラで撮影した写真である。 FIG. 27 shows the results of the anti-icing test for layout 1 and layout 2 under the third test conditions (air flow velocity 40 m/s, droplet diameter 15 μm, input power (20 W, 30 W, 50 W). This is a photo taken in
 図28は、第4の試験条件(空気流速40m/s、液滴粒径29μm、投入電力(20W、30W、50W)での、レイアウト1及びレイアウト2の防氷試験結果後の供試体をカメラで撮影した写真である。 FIG. 28 shows the results of anti-icing tests for layouts 1 and 2 under the fourth test conditions (air flow velocity 40 m/s, droplet diameter 29 μm, input power (20 W, 30 W, 50 W). This is a photo taken in
 図29及び図30は、試験結果を示すグラフである。  Figures 29 and 30 are graphs showing test results.
 横軸は、投入電力[w]を示す。縦軸は、防氷効果(アンチアイスエフェクト)[%]であり、上記の式(数1)で算出する。 The horizontal axis indicates input power [w]. The vertical axis represents the anti-icing effect (anti-ice effect) [%], which is calculated by the above formula (Equation 1).
 図29は、空気流速20m/s、液滴粒径15μm及び29μm、投入電力を複数変更した試験結果を示す。全ての投入電力において、レイアウト2の防氷効果がレイアウト1の防氷効果より高い。なお、本来防氷効果がマイナスになることはあり得ないが、レイアウト1ではバラツキが大きく、平均化した結果、防氷効果にマイナスの値が発生した。 Fig. 29 shows test results with multiple changes in air flow velocity of 20 m/s, droplet diameters of 15 µm and 29 µm, and input power. The anti-icing effect of layout 2 is higher than the anti-icing effect of layout 1 at all input powers. Although it is impossible for the anti-icing effect to be negative, the variation was large in layout 1, and as a result of averaging, a negative value was generated for the anti-icing effect.
 図30は、空気流速40m/s、液滴粒径15μm及び29μm、投入電力を複数変更した試験結果を示す。全ての投入電力において、レイアウト2の防氷効果がレイアウト1の防氷効果より高い。なお、本来防氷効果がマイナスになることはあり得ないが、レイアウト1ではバラツキが大きく、平均化した結果、防氷効果にマイナスの値が発生した。 Fig. 30 shows test results with air flow velocity of 40 m/s, droplet diameters of 15 µm and 29 µm, and multiple changes in input power. The anti-icing effect of layout 2 is higher than the anti-icing effect of layout 1 at all input powers. Although it is impossible for the anti-icing effect to be negative, the variation was large in layout 1, and as a result of averaging, a negative value was generated for the anti-icing effect.
 4.試験結果2 4. Test result 2
 図31は、試験結果を示すサーモグラフィである。 FIG. 31 is a thermography showing test results.
 レイアウト3及びレイアウト4の供試体を準備する。レイアウト3及びレイアウト4の供試体ともに、スパン方向187mm、コード方向58.6mm、厚み方向4.6mmサイズのCFRP積層体である。供試体は、ミッドスパン位置に、前縁側通電部31(スパン方向長さ30mm)及び後縁側通電部32(スパン方向長さ30mm)を有し、前縁側通電部31及び後縁側通電部32の間の通電領域を通電する。レイアウト3において、前縁側導電性接着剤及び後縁側導電性接着剤は、積層された全てのプリプレグに塗布され、積層された全てのプリプレグが前縁側通電部31及び後縁側通電部32に接続される。レイアウト4において、前縁側導電性接着剤及び後縁側導電性接着剤は、厚み方向中央(シンメトリーの中央)の2層(90°配向)のみに塗布され、厚み方向中央の2層が前縁側通電部31及び後縁側通電部32に接続される。なお、この試験では、レイアウト3及びレイアウト4の前縁側通電部31及び後縁側通電部32のスパン方向長さは30mm(上記と同じ)である。着氷風洞装置100にレイアウト3及びレイアウト4の供試体を設置し、室温-10°Cとし、空気流速20m/sで空気を流す。レイアウト3及びレイアウト4の供試体に同じ投入電力(20W)を90秒間印加し、通電開始から90秒後にサーモカメラで供試体を撮影して表面温度分布を得る。 Prepare specimens for layout 3 and layout 4. Both the specimens of layout 3 and layout 4 are CFRP laminates having a size of 187 mm in the span direction, 58.6 mm in the cord direction, and 4.6 mm in the thickness direction. The specimen has a leading edge side conducting portion 31 (span direction length 30 mm) and a trailing edge side conducting portion 32 (span direction length 30 mm) at the mid-span position. Energize the energized area between In layout 3, the leading edge side conductive adhesive and the trailing edge side conductive adhesive are applied to all the laminated prepregs, and all the laminated prepregs are connected to the leading edge side conducting portion 31 and the trailing edge side conducting portion 32. be. In layout 4, the leading edge side conductive adhesive and the trailing edge side conductive adhesive are applied only to the two layers (90° orientation) at the center in the thickness direction (the center of symmetry), and the two layers at the center in the thickness direction are conductive to the leading edge side. It is connected to the portion 31 and the trailing edge side current-carrying portion 32 . In this test, the lengths in the span direction of the leading edge side conducting portion 31 and the trailing edge side conducting portion 32 of the layouts 3 and 4 were 30 mm (same as above). The specimens of layout 3 and layout 4 were installed in the icing wind tunnel apparatus 100, the room temperature was set to -10°C, and the air flow rate was 20 m/s. The same input power (20 W) is applied to the specimens of layout 3 and layout 4 for 90 seconds, and after 90 seconds from the start of energization, the specimens are photographed with a thermo camera to obtain the surface temperature distribution.
 図5は、試験結果を示すグラフである。 Fig. 5 is a graph showing test results.
 このグラフは、図31の破線が示すミッドスパン位置の供試体の表面温度分布を示す。横軸は、前縁(0)から後縁(1)までの供試体の位置を示す。縦軸は、通電開始から90秒後の表面温度(°C)を示す。レイアウト4は、前後縁の発熱がレイアウト3より全域で高い温度分布となった。その理由は、下記の式において、レイアウト4では導電性接着剤の塗布面積Sが狭いことにより(導電性接着剤の厚さは同じ)抵抗R[Ω]が大きくなり加熱量が上昇したためと考えられる。
 また、レイアウト3は通風時でも前縁の温度を後縁より高くできたが、レイアウト4は後縁の方が前縁より温度が高くなった。層選択では導電性接着剤の塗布面積が減ったため、対流熱伝達による熱の奪われに対する今回使用した前縁の導電性接着剤の抵抗が足りず、このような結果となった。しかし、前縁の導電性接着剤の体積を減少(導電性接着剤の塗布面積を同一と考えた場合、塗布厚を減少させる)させたり、前後縁の抵抗の比率(前縁の抵抗値÷後縁の抵抗値)を大きくすることで、層選択でも前縁の温度を後縁より上げることは可能である。
 ちなみに常温・無風の条件ではレイアウト3同様、レイアウト4も前縁側の方が後縁側より温度が高くなることを確認している。
This graph shows the surface temperature distribution of the specimen at the mid-span position indicated by the dashed line in FIG. The horizontal axis indicates the position of the specimen from the leading edge (0) to the trailing edge (1). The vertical axis indicates the surface temperature (°C) 90 seconds after the start of energization. Layout 4 had a temperature distribution in which heat generation at the front and rear edges was higher than layout 3 over the entire area. The reason for this is thought to be that in layout 4, the application area S of the conductive adhesive is small (the thickness of the conductive adhesive is the same), so the resistance R [Ω] increases and the amount of heat increases. be done.
In layout 3, the temperature of the leading edge could be higher than that of the trailing edge even during ventilation, but in layout 4, the temperature of the trailing edge was higher than that of the leading edge. In layer selection, the applied area of the conductive adhesive was reduced, so the leading edge conductive adhesive used this time had insufficient resistance to heat loss due to convective heat transfer, resulting in this result. However, the volume of the conductive adhesive on the leading edge can be reduced (when the applied area of the conductive By increasing the resistance value of the trailing edge), it is possible to raise the temperature of the leading edge more than the trailing edge even by layer selection.
By the way, it has been confirmed that the temperature on the leading edge side of the layout 4 is higher than that on the trailing edge side in the same way as the layout 3 under normal temperature and no wind conditions.
 R=(ρL)/S  R = (ρL)/S
 上述の「前縁の導電性接着剤の体積を減少(導電性接着剤の塗布面積を同一と考えた場合、塗布厚を減少させる)させたりすることで、層選択でも前縁の温度を後縁より上げることは可能」について下記の様な試験結果を得た。
 図40は、-10°C、無風、10W投入電力条件にて、前縁と後縁の導電性接着剤の塗布厚を変えたもの(150μm、300μm、400μm、前後縁同じ厚み)の前後縁間の抵抗値を計測したグラフである。図40のグラフに示す様に、塗布厚を小さくした方が抵抗が大きくなる。
 図41は、図40と同じ試験条件で、CFRP供試体の側面の温度分布をサーモカメラで取得し、ミッドスパンを前縁から後縁にかけてグラフ化したものである。この結果からも、塗布厚を小さくしたことにより前後縁とも温度が高くなっている。これは図40の通り塗布厚を小さくしたことにより抵抗が大きくなったことが原因だと考えられる。何故、塗布厚を小さくすると抵抗が大きくなったかというと、電流が流れ難くなり抵抗が大きくなったと考えられる。これは、塗布厚を小さくすることで導電性接着剤の容積が減少し、その結果塗布面積が減少したときと同様である。
By reducing the volume of the conductive adhesive at the front edge (reducing the coating thickness when the application area of the conductive adhesive is assumed to be the same) as described above, the temperature at the front edge can be adjusted later in layer selection. The following test results were obtained for "It is possible to lift from the edge".
FIG. 40 shows the front and rear edges of the front and rear edges with different coating thicknesses of the conductive adhesive (150 μm, 300 μm, 400 μm, the front and rear edges are the same thickness) under the conditions of −10° C., no wind, and 10 W input power. It is the graph which measured the resistance value between. As shown in the graph of FIG. 40, the smaller the coating thickness, the larger the resistance.
FIG. 41 shows the temperature distribution on the side surface of the CFRP specimen obtained with a thermo camera under the same test conditions as in FIG. This result also shows that the temperature of both the front and rear edges is high due to the reduction in the coating thickness. It is considered that this is because the resistance was increased by reducing the coating thickness as shown in FIG. The reason why the resistance increased when the coating thickness was reduced is thought to be that the current flowed more difficultly and the resistance increased. This is similar to when the volume of the conductive adhesive is reduced by reducing the coating thickness, resulting in a reduction in the coating area.
 5.正圧側と負圧側の導電性接着剤の選択
 航空機のジェットエンジン1のファンブレード8への着氷は、ファンブレード8の前縁24(特にハブ側26周辺からミッドスパン周辺までの領域)と正圧面に多く氷が付着集中する。この現象は、ハブ側26とチップ側27の回転周方向速度の差に起因する。前縁24のハブ側26は回転速度が遅いため着氷量が一番多くなり、チップ側27は回転速度が速く、遠心力により氷が剥がれ易いため堆積し難い。また、大気中の液滴がファンブレード8に衝突すると同時に、ファンブレード8の前縁24と正圧面に対して急速に液滴が氷結する過冷却現象の着氷メカニズムが発生する。
5. Selection of Pressure Side and Suction Side Conductive Adhesive A large amount of ice adheres and concentrates on the pressing surface. This phenomenon is caused by the difference in rotational circumferential speed between the hub side 26 and the tip side 27 . The hub side 26 of the front edge 24 has the slowest rotation speed, so the amount of ice accretion is the largest. At the same time that droplets in the atmosphere collide with the fan blades 8 , an icing mechanism of a supercooling phenomenon occurs in which the droplets freeze rapidly on the leading edge 24 and the pressure surface of the fan blades 8 .
 以上の2つの要因から、ファンブレード8独特の複数個所に集中する着氷が発生することになり、そのため複雑な現象から発生する複数の着氷個所に応じた適切な防氷・除氷対策が重要になる。 Due to the above two factors, the icing that is concentrated on multiple locations unique to the fan blade 8 occurs. become important.
 このため、着氷量の多い前縁24ハブ側26からミッドスパン近傍領域及び正圧面を積極的に加熱するのが望ましい。上記のように、前縁側通電部31及び後縁側通電部32の間のファンブレード本体21の通電領域には電圧が印加されたことで電流が流れ、ファンブレード本体21自体がその抵抗によって発熱する。このため、一対の前縁側通電部31及び後縁側通電部32の間に電流を流すとき、ファンブレード本体21の正圧面側の発熱量がファンブレード本体21の負圧面側の発熱量より高いのが望ましい。 Therefore, it is desirable to actively heat the area near the midspan and the positive pressure surface from the leading edge 24 hub side 26 where a large amount of ice is deposited. As described above, voltage is applied to the current-carrying region of the fan blade main body 21 between the leading edge-side current-carrying portion 31 and the trailing edge-side current-carrying portion 32, causing current to flow and the fan blade body 21 itself to generate heat due to its resistance. . Therefore, when a current is passed between the pair of leading edge side current-carrying portion 31 and trailing edge side current-carrying portion 32, the amount of heat generated on the pressure side of the fan blade main body 21 is higher than that on the suction side of the fan blade main body 21. is desirable.
 上記した様に、このため、塗布する導電性接着剤の抵抗値の大きさが高い順に、前縁・正圧面(最高値)、前縁・負圧面、後縁・負圧面、後縁・正圧面(最低値)とするのがよい。例えば、ファンブレード本体21の正圧面側の前縁側導電性接着剤の抵抗値は、ファンブレード本体21の負圧面側の前縁側導電性接着剤の抵抗値より高いものとすればよい。ファンブレード本体21の負圧面側の後縁側導電性接着剤の抵抗値は、ファンブレード本体21の正圧面側の後縁側導電性接着剤の抵抗値より高いものとすればよい。 As described above, for this reason, the leading edge/pressure surface (highest value), the leading edge/suction surface, the trailing edge/suction surface, the trailing edge/positive It is better to use the pressure surface (minimum value). For example, the resistance value of the leading edge side conductive adhesive on the pressure side of the fan blade body 21 may be higher than the resistance value of the leading edge side conductive adhesive on the suction side of the fan blade body 21 . The resistance value of the trailing edge side conductive adhesive on the suction surface side of the fan blade body 21 may be higher than the resistance value of the trailing edge side conductive adhesive on the pressure side side of the fan blade body 21 .
 導電性接着剤の抵抗値の大小に加えて、電子部品系の基板技術ではなく、設備産業で利用されている基板技術では、大電流を流して利用することから導電性接着剤の塗布量(体積)、炭素繊維と接合している面積、電流経路の(道の断面積)サイズによっても、ファンブレード本体21の部分ごとの抵抗を変化させることを図れる。 In addition to the size of the resistance value of the conductive adhesive, the application amount of the conductive adhesive ( The resistance of each part of the fan blade main body 21 can be changed also by the volume), the area bonded to the carbon fiber, and the size of the current path (the cross-sectional area of the path).
 IV.層選択 IV. layer selection
 図11で説明したように、積層状態において、複数の層211、212、213、214・・・21nのコード方向の前縁24側及び後縁25側の両端は、層状に露出している。このため、複数の層211(90°配向)、212(+45°配向)、213(-45°配向)、214(0°配向)・・・21nから選択された1以上の層を、選択的に、導電性接着剤を介して前縁側通電部31及び後縁側通電部32に接続することができる。1つの層21nが前縁側通電部31及び後縁側通電部32に接続されてもよく、選択された一部の層21nが前縁側通電部31及び後縁側通電部32に接続されてもよく、全ての層21nが前縁側通電部31及び後縁側通電部32に接続されてもよい。 As described with reference to FIG. 11, in the laminated state, both ends of the plurality of layers 211, 212, 213, 214, . For this reason, one or more layers selected from a plurality of layers 211 (90° orientation), 212 (+45° orientation), 213 (-45° orientation), 214 (0° orientation) . In addition, it can be connected to the leading edge side conducting portion 31 and the trailing edge side conducting portion 32 via a conductive adhesive. One layer 21n may be connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32, or a selected part of the layers 21n may be connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32, All layers 21n may be connected to the leading edge side current-carrying portion 31 and the trailing edge side current-carrying portion 32 .
 1.層選択通風温度確認試験 1. Layer selection ventilation temperature confirmation test
 図32は、実験で用いた層選択の具体例を示す。 FIG. 32 shows a specific example of layer selection used in the experiment.
 4種類の供試体を準備する。レイアウト1は、層状に露出した全ての層に導電性接着剤をべた塗りすることで、全ての90°層を導通する。層選択Aは、供試体前縁の温度を上げることを想定し、供試体中央の90°層の2層を導通する。層選択Bは、供試体表面側の温度を上げることを想定し、表面層に近い90°層の2層を導通する。層選択C(2層側)は、前縁の温度を上げつつ正圧面に相当する片側の面のみ温度を上げることを想定し、供試体中央の90°層の1層及び表面層(正圧面)に近い90°層の1層、計2層分を導通する。層選択C(1層側)は、前縁の温度を上げ、負圧面に相当する片側の面の温度は正圧面より低くなるようにするため、供試体中央の90°層の1層のみ導通する。 Prepare four types of specimens. Layout 1 conducts all 90° layers by smearing conductive adhesive on all exposed layers. Layer selection A assumes that the temperature of the front edge of the specimen is raised, and conducts the two layers of the 90° layer in the center of the specimen. In layer selection B, it is assumed that the temperature on the surface side of the test piece is raised, and the two layers of the 90° layer close to the surface layer are conducted. Layer selection C (second layer side) assumes that the temperature of only one side corresponding to the pressure side is raised while raising the temperature of the leading edge, and one of the 90° layers in the center of the specimen and the surface layer (pressure side ), one of the 90° layers close to ), a total of two layers, are electrically connected. Layer selection C (1st layer side) raises the temperature of the front edge and makes the temperature of one side corresponding to the suction side lower than the pressure side, so only one of the 90° layers in the center of the specimen is conductive. do.
 全ての供試体は、ミッドスパン位置に、前縁側通電部31(スパン方向長さ30mm)及び後縁側通電部32(スパン方向長さ30mm)を有し、前縁側通電部31及び後縁側通電部32の間を通電する。実験用に用いた前縁側導電性接着剤の抵抗値は、3×10-3~8×10-4Ω・cmであり、後縁側導電性接着剤の抵抗値は、8×10-4~2×10-4Ω・cmである。主流速度20m/s、投入電力9W、室温-10°C、投入時間90秒の条件で、通風時の供試体表面温度分布を確認する。 All the specimens have a leading edge side conducting portion 31 (span direction length 30 mm) and a trailing edge side conducting portion 32 (span direction length 30 mm) at the mid-span position. 32 is energized. The resistance value of the leading edge side conductive adhesive used for the experiment is 3×10 −3 to 8×10 −4 Ω·cm, and the resistance value of the trailing edge side conductive adhesive is 8×10 −4 to Ω·cm. It is 2×10 −4 Ω·cm. Check the surface temperature distribution of the specimen during ventilation under the conditions of 20 m/s of main stream speed, 9 W of input power, -10°C room temperature, and 90 seconds of input time.
 図33は、層選択通風温度確認試験結果を示すサーモグラフィである。図34は、層選択通風温度確認試験結果を示すグラフである。 Fig. 33 is a thermography showing the results of the layer selection ventilation temperature confirmation test. FIG. 34 is a graph showing the results of the layer selection ventilation temperature confirmation test.
 図34のグラフの縦軸は、図33のサーモグラフィのミッドスパン破線部の表面温度である。横軸は、供試体前縁から後縁までをコード長で無次元化したものである。 The vertical axis of the graph of FIG. 34 is the surface temperature of the mid-span dashed line portion of the thermography of FIG. The horizontal axis is the cord length dimensionless from the leading edge to the trailing edge of the specimen.
 どの層選択もLayout1(べた塗)より前縁部の温度を高く出来る。特に層選択Aおよび層選択C(2層側)は前縁部2層の導通があるため、集中的に前縁部を加熱でき、前縁部の温度を高く出来る。。層選択Bは表面層に一番近い為、供試体ミッドコード付近前後の温度を一番高く出来る。層選択C(2層側)と層選択C(1層側)を比較すると、層選択C(2層側)は前縁および表面に近い2層の導通が可能なため、層選択C(1層側)より全領域にわたって温度を高く出来る。層選択を行うことで、前縁部の温度を効率的に上げ、さらに供試体表面の片側を正圧面、もう一方を負圧面と想定した場合、正圧面(層選択C(2層側))の温度を負圧面(層選択C(1層側))の温度より高くすることが可能である。Layout1(べた塗)は通風時でも前縁の温度を後縁より高くできたが、層選択A、層選択C(2層側及び1層側)は後縁の方が前縁より温度が高くなった。層選択では導電性接着剤の塗布面積が減ったため、対流熱伝達による熱の奪われに対する今回使用した前縁の導電性接着剤の抵抗が足りず、このような結果となった。しかし、接着剤の体積の減少(導電性接着剤の塗布面積を同一と考えた場合、塗布厚を減少させる)、前後縁の抵抗の比率(前縁の抵抗値÷後縁の抵抗値)を大きくすることで、層選択でも前縁の温度を後縁より上げることは可能である。ちなみに常温・無風の条件ではLayout1(べた塗)同様、層選択A、層選択C(2層側及び1層側)も前縁側の方が後縁側より温度が高くなることを確認している。 Any layer selection can make the leading edge temperature higher than Layout 1 (solid coating). In particular, layer selection A and layer selection C (two-layer side) have conduction between the two layers of the front edge, so the front edge can be heated intensively and the temperature of the front edge can be increased. . Since layer selection B is the closest to the surface layer, the temperature around the mid-cord of the specimen can be made the highest. Comparing layer selection C (2nd layer side) and layer selection C (1st layer side), layer selection C (2nd layer side) allows two-layer conduction near the leading edge and surface, so layer selection C (1 layer side), the temperature can be raised over the entire area. By layer selection, the temperature of the front edge is efficiently raised, and when one side of the specimen surface is assumed to be the pressure side and the other side is assumed to be the suction side, the pressure side (layer selection C (2nd layer side)) can be made higher than the temperature of the suction surface (layer selection C (first layer side)). Layout 1 (solid coating) was able to make the temperature of the leading edge higher than the trailing edge even during ventilation, but the temperature of the trailing edge was higher than that of the leading edge in layer selection A and layer selection C (2nd layer side and 1st layer side). became. In layer selection, the applied area of the conductive adhesive was reduced, so the leading edge conductive adhesive used this time had insufficient resistance to heat loss due to convective heat transfer, resulting in this result. However, the reduction in the volume of the adhesive (if the application area of the conductive adhesive is considered to be the same, the application thickness is reduced), the ratio of the resistance of the front and rear edges (resistance value of the leading edge / resistance value of the trailing edge) By increasing the layer selection, it is possible to raise the temperature of the leading edge more than the trailing edge. By the way, it has been confirmed that the temperature on the leading edge side is higher than on the trailing edge side for layer selection A and layer selection C (layer 2 side and layer 1 side) as well as Layout 1 (solid coating) under normal temperature and no wind conditions.
 図35は、層選択通風温度確認試験結果を示すグラフである。 Fig. 35 is a graph showing the results of the layer selection ventilation temperature confirmation test.
 主流速度20m/s、投入電力20W、室温-10°C、投入時間90秒の条件で、通風時の供試体表面温度分布を確認する。図35と図34との差異は、投入電力の違いのみである。投入電力9Wの時と同様な機能は投入電力20Wでも実現できる。Layout1(べた塗)は通風時でも前縁の温度を後縁より高くできたが、層選択A、層選択C(2層側及び1層側)は後縁の方が前縁より温度が高くなった。層選択では導電性接着剤の塗布面積が減ったため、対流熱伝達による熱の奪われに対する今回使用した前縁の導電性接着剤の抵抗が足りず、このような結果となった。しかし、接着剤の体積の減少(導電性接着剤の塗布面積を同一と考えた場合、塗布厚を減少させる)、前後縁の抵抗の比率(前縁の抵抗値÷後縁の抵抗値)を大きくすることで、層選択でも前縁の温度を後縁より上げることは可能である。ちなみに常温・無風の条件ではLayout1(べた塗)同様、層選択A、層選択C(2層側及び1層側)も前縁側の方が後縁側より温度が高くなることを確認している。  Confirm the surface temperature distribution of the specimen during ventilation under the conditions of a main stream speed of 20 m/s, an input power of 20 W, a room temperature of -10°C, and an input time of 90 seconds. The only difference between FIG. 35 and FIG. 34 is the input power. The same function as when the input power is 9W can be realized even when the input power is 20W. Layout 1 (solid coating) was able to make the temperature of the leading edge higher than the trailing edge even during ventilation, but the temperature of the trailing edge was higher than that of the leading edge in layer selection A and layer selection C (2nd layer side and 1st layer side). became. In layer selection, the applied area of the conductive adhesive was reduced, so the leading edge conductive adhesive used this time had insufficient resistance to heat loss due to convective heat transfer, resulting in this result. However, the reduction in the volume of the adhesive (when the application area of the conductive adhesive is considered to be the same, the application thickness is reduced), the ratio of the resistance of the front and rear edges (resistance value of the leading edge ÷ resistance value of the trailing edge) By increasing the layer selection, it is possible to raise the temperature of the leading edge more than the trailing edge. By the way, it has been confirmed that the temperature on the leading edge side is higher than on the trailing edge side for layer selection A and layer selection C (layer 2 side and layer 1 side) as well as Layout 1 (solid coating) under normal temperature and no wind conditions.
 2.層選択防氷試験 2. Layer selective anti-icing test
 図32のレイアウト1及び層選択Aの供試体を準備する。試験条件は、主流速度20m/s、40m/s、液滴粒径15μm、投入電力20m/s(10W、22W、40W)、40m/s(20W、30W、49W)、室温-10°Cである。 A specimen of layout 1 and layer selection A in FIG. 32 is prepared. The test conditions were: mainstream speed 20m/s, 40m/s, droplet diameter 15μm, input power 20m/s (10W, 22W, 40W), 40m/s (20W, 30W, 49W), room temperature -10°C. be.
 図36及び図37は、試験結果を示す写真である。  Figures 36 and 37 are photographs showing the test results.
 図36は、試験条件(空気流速20m/s、液滴粒径15μm、投入電力(10W、22W、40W)での、レイアウト1及び層選択Aの防氷試験結果後の供試体をカメラで撮影した写真である。 FIG. 36 shows the results of the anti-icing test for layout 1 and layer selection A under the test conditions (air flow velocity 20 m/s, droplet diameter 15 μm, input power (10 W, 22 W, 40 W). This is a photo.
 図37は、別の試験条件(空気流速40m/s、液滴粒径15μm、投入電力(20W、30W、49W)での、レイアウト1及び層選択Aの防氷試験結果後の供試体をカメラで撮影した写真である。 FIG. 37 shows the results of anti-icing tests for layout 1 and layer selection A under different test conditions (air velocity 40 m/s, droplet size 15 μm, input power (20 W, 30 W, 49 W). This is a photo taken in
 図38及び図39は、試験結果を示すグラフである。  Figures 38 and 39 are graphs showing test results.
 横軸は、投入電力[w]を示す。縦軸は、防氷効果(アンチアイスエフェクト)[%]であり、上記の式(数1)で算出する。 The horizontal axis indicates input power [w]. The vertical axis represents the anti-icing effect (anti-ice effect) [%], which is calculated by the above formula (Equation 1).
 図38は、図36の結果を示し、空気流速20m/s、液滴粒径15μm、投入電力10W、22W、40Wの試験結果を示す。投入電力22W、40Wにおいて、層選択Aの防氷効果がレイアウト1の防氷効果より高い。 FIG. 38 shows the results of FIG. 36, showing test results at an air flow rate of 20 m/s, a droplet diameter of 15 μm, and input power of 10 W, 22 W, and 40 W. At input powers of 22 W and 40 W, the anti-icing effect of layer selection A is higher than the anti-icing effect of layout 1 .
 図39は、図37の結果を示し、空気流速40m/s、液滴粒径15μm、投入電力10W、22W、40Wの試験結果を示す。投入電力30W、49Wにおいて、層選択Aの防氷効果がレイアウト1の防氷効果より高い。 FIG. 39 shows the results of FIG. 37, showing test results with an air flow rate of 40 m/s, a droplet diameter of 15 μm, and input power of 10 W, 22 W, and 40 W. At input powers of 30 W and 49 W, the anti-icing effect of layer selection A is higher than the anti-icing effect of layout 1 .
 図38及び図39の何れも、低電力および投入電力が大きく防氷効果が限界に達している所では効果の差が出にくいが、その間では、低電力の箇所でわずかであるが層選択Aの方が防氷効果が悪く出ているが、実は評価領域でない着氷も含めた「着氷重量[g]」として供試体全体を秤にて防氷時の着氷重量を計測すると、層選択Aの方が防氷効果が高く出る。面積計算のため、氷の成長の仕方で不利な結果が出てしまったと考えられる。レイアウト1(べた塗)よりも層選択Aの方が、同じ投入電力でも防氷効果が大きい。 In both FIGS. 38 and 39, it is difficult to see a difference in the effect at low power and at places where the input power is large and the anti-icing effect reaches its limit. Although the anti-icing effect is worse, when the entire test piece is weighed as "Icing weight [g]" including the icing that is not in the evaluation area, the icing weight during anti-icing is measured. Selection A provides a higher anti-icing effect. It is thought that due to the area calculation, a disadvantageous result was obtained due to the way the ice grew. The anti-icing effect of layer selection A is greater than that of layout 1 (solid coating) even with the same input power.
 V.結語  V. Conclusion
 本実施形態は、近年ファンブレードに採用されている優れた機械特性を有するCFRPをベースに、材料特性と構造の観点から着氷の課題解決の方法を得たものである。本実施形態によれば、簡単な構造で、かつ、効率よく防氷や除氷を行うことが可能である。また、最低限の簡便な追加工によりファンブレードの防氷機能実現が可能となることで、本来の空力性能に悪影響を及ぼすことなく、高い防氷効果の長期安定性と耐久性も得られる。 This embodiment is based on CFRP, which has excellent mechanical properties and has been adopted for fan blades in recent years. According to this embodiment, it is possible to perform anti-icing and de-icing efficiently with a simple structure. In addition, by making it possible to implement the anti-icing function of the fan blades with a minimum of simple additional work, long-term stability and durability of the high anti-icing effect can be obtained without adversely affecting the original aerodynamic performance.
 本実施形態は、特に、現行のファンブレードの仕様(CFRP)を用いて着氷の多い箇所に抵抗加熱の発現が可能である。着氷の多い箇所に抵抗加熱を集中して発現が可能である。最低限の追加加工で防除氷機能の実現が可能であり、メンテナンスも容易で長期安定性がある。等の有利な効果がある。 In this embodiment, it is possible to develop resistive heating especially in places where ice buildup is high using current fan blade specifications (CFRP). It is possible to develop by concentrating the resistance heating on the place where much icing occurs. Anti-icing function can be achieved with minimal additional processing, maintenance is easy, and long-term stability is ensured. and other advantageous effects.
 航空機業界は年々市場規模が拡大しており、機体、エンジンともにCFRPの適用割合が増加している。航空業界における防氷・除氷技術は従来からあまり変化していないが、金属を使用していた部位にCFRPが適用され、新たな防氷・除氷技術の開発が期待される。本実施形態においては、そのCFRPの特性を活かし、空力的に悪影響を及ぼすことなく、既存のCFRPファンに追加工を加えることで防氷・除氷が可能となる。また、航空業界と同じく着氷問題が生じている風力発電等に使用する風車や、CFRPの普及が進みつつある自動車業界においても寒冷地における着氷対策等に応用可能である。 The market size of the aircraft industry is expanding year by year, and the application rate of CFRP is increasing for both airframes and engines. Anti-icing and de-icing technology in the aviation industry has not changed much from the past, but CFRP is applied to parts that used metal, and development of new anti-icing and de-icing technology is expected. In the present embodiment, the characteristics of CFRP are utilized, and anti-icing and de-icing can be achieved by adding additional work to an existing CFRP fan without adversely affecting aerodynamics. In addition, it can be applied to wind turbines used for wind power generation, etc., which have the same problem of icing as in the aviation industry, and to prevent icing in cold regions in the automobile industry, where CFRP is becoming more and more popular.
 本技術の各実施形態及び各変形例について上に説明したが、本技術は上述の実施形態にのみ限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 Although the embodiments and modifications of the present technology have been described above, the present technology is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology. Of course.
1   :ジェットエンジン
2   :低圧軸
4   :吸気口
5   :スピナー
6   :ファンディスク
7   :ダブテール
8   :ファンブレード
21  :ファンブレード本体
22  :シース
23  :ガード
24  :前縁
25  :後縁
31  :前縁側通電部
32  :後縁側通電部
35  :電源
36  :加熱領域
41  :係止溝
46  :接続端子
49  :接続端子
53  :バッテリ
61  :スリップリング
1 : Jet engine 2 : Low pressure shaft 4 : Air intake 5 : Spinner 6 : Fan disk 7 : Dovetail 8 : Fan blade 21 : Fan blade body 22 : Sheath 23 : Guard 24 : Leading edge 25 : Trailing edge 31 : Leading edge side energization Portion 32 : Trailing edge side conducting portion 35 : Power source 36 : Heating region 41 : Locking groove 46 : Connection terminal 49 : Connection terminal 53 : Battery 61 : Slip ring

Claims (12)

  1.  エンジンの吸気口側に配置されるファンブレードであって、
     炭素繊維強化プラスチックからなるファンブレード本体と、
     前記炭素繊維強化プラスチックに含まれる炭素繊維に電流を流すことで前記ファンブレード本体の通電領域に電流を流すための一対の第1の通電部及び第2の通電部と、
     を具備し、
     前記一対の第1の通電部及び第2の通電部の間に電流を流すとき、前記ファンブレード本体の前記ファンブレード本体の第1側の前記通電領域の発熱量が前記ファンブレード本体の第2側の前記通電領域の発熱量より高い
     ファンブレード。
    A fan blade arranged on the intake side of an engine,
    a fan blade body made of carbon fiber reinforced plastic;
    a pair of first current-carrying parts and second current-carrying parts for causing current to flow through the current-carrying region of the fan blade main body by causing current to flow through carbon fibers contained in the carbon fiber reinforced plastic;
    and
    When a current is passed between the pair of the first current-carrying portion and the second current-carrying portion, the amount of heat generated in the current-carrying region of the fan blade body on the first side of the fan blade body is the second level of the fan blade body. higher than the calorific value of the energized area on the side of the fan blade.
  2.  請求項1に記載のファンブレードであって、
     前記ファンブレード本体の前記第1側の前記通電領域の発熱量が前記第2側の前記通電領域の発熱量より高いことは、
     前記第1の通電部のスパン方向の長さに対する前記第1の通電部に導通された炭素繊維の割合である第1側の導通繊維密度が、前記第2の通電部の前記スパン方向の長さに対する前記第2の通電部に導通された炭素繊維の割合である第2側の導通繊維密度より高い、ことを含む
     ファンブレード。
    A fan blade according to claim 1, comprising:
    The calorific value of the energized region on the first side of the fan blade body is higher than the calorific value of the energized region on the second side,
    The conductive fiber density on the first side, which is the ratio of the carbon fibers conductively connected to the first conductive portion to the length of the first conductive portion in the span direction, is the length of the second conductive portion in the span direction. higher than the conducting fiber density on the second side, which is the ratio of carbon fibers conducted to the second current carrying portion to the thickness of the fan blade.
  3.  請求項2に記載のファンブレードであって、
     前記ファンブレード本体は積層された複数の層を含み、前記複数の層に含まれる炭素繊維の配向は異なり、
     前記複数の層から選択された1以上の層を前記第1の通電部及び前記第2の通電部に接続することにより、前記第1側の導通繊維密度が前記第2側の導通繊維密度より高い
     ファンブレード。
    A fan blade according to claim 2, wherein
    The fan blade body includes a plurality of laminated layers, and the carbon fibers contained in the plurality of layers have different orientations,
    By connecting one or more layers selected from the plurality of layers to the first conductive portion and the second conductive portion, the conductive fiber density on the first side is higher than the conductive fiber density on the second side. high fan blades.
  4.  請求項1乃至3の何れか一項に記載のファンブレードであって、
     前記第1の通電部及び前記第2の通電部に接続される前記1以上の層は、
      前記スパン方向及びコード方向の両方向に対して正に傾斜した第1の方向に配向した炭素繊維を含む第1の層、及び/又は
      前記スパン方向及び前記コード方向の両方向に対して負に傾斜した第2の方向に配向した炭素繊維を含む第2の層
     を含む
     ファンブレード。
    A fan blade according to any one of claims 1 to 3,
    The one or more layers connected to the first current-carrying part and the second current-carrying part,
    a first layer comprising carbon fibers oriented in a first direction positively inclined with respect to both the span direction and the cord direction; and/or negatively inclined with respect to both the span direction and the cord direction. A fan blade comprising a second layer comprising carbon fibers oriented in a second direction.
  5.  請求項1乃至4の何れか一項に記載のファンブレードであって、
     前記第2の通電部の前記スパン方向の長さは、前記第1の通電部の前記スパン方向の長さより長い
     ファンブレード。
    A fan blade according to any one of claims 1 to 4,
    The length of the second conductive portion in the span direction is longer than the length of the first conductive portion in the span direction. Fan blade.
  6.  請求項1乃至5の何れか一項に記載のファンブレードであって、
     前記ファンブレード本体は積層された複数の層を含み、
     前記複数の層から選択された正圧面側の層が前記第1の通電部及び前記第2の通電部に接続され、
     前記一対の第1の通電部及び第2の通電部の間に電流を流すとき、前記ファンブレード本体の正圧面側の発熱量が前記ファンブレード本体の負圧面側の発熱量より高い
     ファンブレード。
    A fan blade according to any one of claims 1 to 5,
    The fan blade body includes a plurality of laminated layers,
    a layer on the pressure side selected from the plurality of layers is connected to the first conducting portion and the second conducting portion;
    A fan blade according to claim 1, wherein an amount of heat generated on the pressure surface side of the fan blade body is higher than that on the suction surface side of the fan blade body when a current is passed between the pair of the first current-carrying portion and the second current-carrying portion.
  7.  請求項1乃至6の何れか一項に記載のファンブレードであって、
     前記ファンブレード本体を前記第1の通電部及び前記第2の通電部に接続する第1側導電性接着剤及び第2側導電性接着剤
     をさらに具備し、
     前記ファンブレード本体の前記第1側の前記通電領域の発熱量が前記第2側の前記通電領域の発熱量より高いことは、
     前記第1側導電性接着剤の抵抗値が前記第2側導電性接着剤の抵抗値より高い、ことを含む
     ファンブレード。
    A fan blade according to any one of claims 1 to 6,
    a first side conductive adhesive and a second side conductive adhesive that connect the fan blade body to the first conductive portion and the second conductive portion;
    The calorific value of the energized region on the first side of the fan blade body is higher than the calorific value of the energized region on the second side,
    wherein the resistance value of the first side conductive adhesive is higher than the resistance value of the second side conductive adhesive.
  8.  請求項7に記載のファンブレードであって、
     前記ファンブレード本体は積層された複数の層を含み、
     前記第1側導電性接着剤及び前記第2側導電性接着剤は、前記複数の層から選択された1以上の層を前記第1の通電部及び前記第2の通電部に接続する
     ファンブレード。
    A fan blade according to claim 7, comprising:
    The fan blade body includes a plurality of laminated layers,
    The first side conductive adhesive and the second side conductive adhesive connect one or more layers selected from the plurality of layers to the first current-carrying portion and the second current-carrying portion. Fan Blade .
  9.  請求項7又は8に記載のファンブレードであって、
     前記ファンブレード本体の正圧面側の前記第1側導電性接着剤の抵抗値は、前記ファンブレード本体の負圧面側の前記第1側導電性接着剤の抵抗値より高く、
     前記正圧面側の前記第2側導電性接着剤の抵抗値は、前記負圧面側の前記第2側導電性接着剤の抵抗値より低い
     ファンブレード。
    A fan blade according to claim 7 or 8,
    The resistance value of the first side conductive adhesive on the pressure side of the fan blade body is higher than the resistance value of the first side conductive adhesive on the suction side of the fan blade body,
    A resistance value of the second side conductive adhesive on the pressure side is lower than a resistance value of the second side conductive adhesive on the suction side. Fan blade.
  10.  請求項1乃至9の何れか一項に記載のファンブレードであって、
     前記第1側は、前記ファンブレード本体の前縁側であり、
     前記第2側は、前記ファンブレード本体の後縁側である
     ファンブレード。
    A fan blade according to any one of claims 1 to 9,
    the first side is a leading edge side of the fan blade body;
    The second side is a trailing edge side of the fan blade body. Fan blade.
  11.  回転軸と、
     回転軸の吸気口側に設けられたファンディスクと、
     前記ファンディスクに対して着脱可能に取り付けられ、請求項1乃至10の何れか一項に記載のファンブレードと、
     第1の通電部及び第2の通電部ごとにファンディスク側及びファンブレード側にそれぞれ設けられ、前記ファンブレードが前記ファンディスクに取り付けられたときに相互に電気的に接続して前記ファンディスク側の電源と前記第1の通電部及び前記第2の通電部とを通電するための一対の接続端子と、
     を具備するエンジン。
    a rotating shaft;
    a fan disk provided on the inlet side of the rotating shaft;
    A fan blade according to any one of claims 1 to 10, which is detachably attached to the fan disk;
    A first current-carrying part and a second current-carrying part are provided on the fan disk side and the fan blade side, respectively, and when the fan blade is attached to the fan disk, they are electrically connected to each other on the fan disk side. a pair of connection terminals for energizing the power source and the first current-carrying part and the second current-carrying part;
    engine with
  12.  炭素繊維強化プラスチックからなり、気体が流れにより着氷領域を有する板状部材と、
     前記着氷領域を含むように前記板状部材の第1側及び第2側にそれぞれ設けられ、前記炭素繊維強化プラスチックに含まれる炭素繊維に電流を流すことで前記板状部材の通電領域に電流を流すための一対の第1の通電部及び第2の通電部と、
     を具備し、
     前記板状部材の前記第1側の前記通電領域の発熱量が前記第2側の前記通電領域の発熱量より高い
     防氷・除氷機能付き構造体。
    a plate-shaped member made of carbon fiber reinforced plastic and having an icing area due to gas flow;
    Provided on the first side and the second side of the plate-shaped member so as to include the icing region, current is passed through the carbon fiber contained in the carbon fiber reinforced plastic, and the current is passed through the current-carrying region of the plate-shaped member. A pair of first current-carrying part and second current-carrying part for flowing the
    and
    A structure with an anti-icing/deicing function, wherein the amount of heat generated in the energized area on the first side of the plate member is higher than the amount of heat generated by the energized area on the second side.
PCT/JP2022/033524 2021-10-01 2022-09-07 Fan blade, engine, and structure with anti-icing and de-icing functions WO2023053870A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023550501A JPWO2023053870A1 (en) 2021-10-01 2022-09-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021162473 2021-10-01
JP2021-162473 2021-10-01

Publications (1)

Publication Number Publication Date
WO2023053870A1 true WO2023053870A1 (en) 2023-04-06

Family

ID=85782383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033524 WO2023053870A1 (en) 2021-10-01 2022-09-07 Fan blade, engine, and structure with anti-icing and de-icing functions

Country Status (2)

Country Link
JP (1) JPWO2023053870A1 (en)
WO (1) WO2023053870A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203035466U (en) * 2013-01-24 2013-07-03 长沙理工大学 Carbon fiber strengthened wind machine blade with deicing and anti-freezing functions
JP2015531038A (en) * 2012-08-06 2015-10-29 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Resistance blade heating device for carbon fiber reinforced plastic
US20160353523A1 (en) * 2015-05-29 2016-12-01 Philip Jarvinen Embedded Turbofan Deicer System
JP2019108818A (en) * 2017-12-15 2019-07-04 国立研究開発法人宇宙航空研究開発機構 Fan blade, engine, and structure with anti-icing/de-icing function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531038A (en) * 2012-08-06 2015-10-29 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Resistance blade heating device for carbon fiber reinforced plastic
CN203035466U (en) * 2013-01-24 2013-07-03 长沙理工大学 Carbon fiber strengthened wind machine blade with deicing and anti-freezing functions
US20160353523A1 (en) * 2015-05-29 2016-12-01 Philip Jarvinen Embedded Turbofan Deicer System
JP2019108818A (en) * 2017-12-15 2019-07-04 国立研究開発法人宇宙航空研究開発機構 Fan blade, engine, and structure with anti-icing/de-icing function

Also Published As

Publication number Publication date
JPWO2023053870A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
JP7223386B2 (en) fan blade and engine
US6279856B1 (en) Aircraft de-icing system
JP5933919B2 (en) Turbomachine nacelle, anti-icing system and method thereof
US7078658B2 (en) Heater mat made of electrically-conductive fibers
US5947418A (en) Device for heating an aerofoil
US6237874B1 (en) Zoned aircraft de-icing system and method
US11964768B2 (en) Tailored rotor-blade ice-protection system
US8807483B2 (en) Electrothermal heater mat
US20120298803A1 (en) Electrothermal heater
US8993940B2 (en) Dielectric component with electrical connection
EP3774543B1 (en) Ice removal system
US20200361612A1 (en) Resistive heated aircraft component and method for manufacturing said aircraft component
Karpen et al. Propeller-integrated airfoil heater system for small multirotor drones in icing environments: Anti-icing feasibility study
WO2023053870A1 (en) Fan blade, engine, and structure with anti-icing and de-icing functions
EP3483068B1 (en) Ice phobic material to reduce runback ice
CN110615107A (en) Heatable leading edge device, leading edge heating system and aircraft with same
CA2375544C (en) Aircraft de-icing system
US11198513B1 (en) Anti-icing/de-icing system and method
CN216982141U (en) Deicing membrane with cold load sensing and directional heating deicing functions
Udayakumar et al. Computational analysis of Anti icing system of an aircraft wing
JP2022146520A (en) Anti-icing device and inspection method therefor
Jingxin et al. Experimental Investigation of Super-hydrophobic/Electro-thermal Synergistically Anti-icing/De-icing Strategy in Ice Wind Tunnel.
Hamed Nohbaradaran Development of a Thermally Sprayed Electrothermal Antiicing System for Inflight Ice Mitigation
KR20230170458A (en) Aircraft anti-icing or de-icing system and method making the same
CN113401348A (en) Improved deicer aerodynamic integration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875742

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550501

Country of ref document: JP