WO2023053819A1 - Resin microparticles and method for producing same - Google Patents

Resin microparticles and method for producing same Download PDF

Info

Publication number
WO2023053819A1
WO2023053819A1 PCT/JP2022/032504 JP2022032504W WO2023053819A1 WO 2023053819 A1 WO2023053819 A1 WO 2023053819A1 JP 2022032504 W JP2022032504 W JP 2022032504W WO 2023053819 A1 WO2023053819 A1 WO 2023053819A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
meth
resin fine
fine particles
group
Prior art date
Application number
PCT/JP2022/032504
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 田中
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to KR1020247004076A priority Critical patent/KR20240028518A/en
Priority to CN202280055151.XA priority patent/CN117940469A/en
Priority to JP2023550476A priority patent/JPWO2023053819A1/ja
Publication of WO2023053819A1 publication Critical patent/WO2023053819A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to resin fine particles and a method for producing the same. Specifically, (a) a hydrolyzable silicon compound unit having a hydrolyzable silyl group and a radically polymerizable unsaturated group-reactive group, (b) a monofunctional (meth)acrylic monomer unit, (c) a poly
  • the present invention relates to a resin fine particle containing a functional (meth)acrylic monomer unit and (d) a thiol compound unit, and a method for producing the resin fine particle.
  • Resin films have long been widely used for applications such as packaging materials. In recent years, the applications thereof have been further expanded, and in particular, in applications such as optical members and electronic devices, the characteristics required of resin films are becoming more sophisticated. And it is required to improve productivity while maintaining the high quality. Resin films are often stored in roll form. When stored in a roll form, the resin films may stick to each other at the overlapping portions, resulting in a problem of poor slipperiness and peelability. For this problem, it is known to add various fillers such as organic particles and inorganic particles to the resin film as an anti-sticking agent (anti-blocking agent). Typical fillers include inorganic particles such as silica, and organic particles such as (meth)acrylic resin fine particles.
  • the merits include high hardness and the ability to impart sticking prevention properties with the addition of a small amount.
  • the material due to the material, there is a demerit that a difference in refractive index occurs with the resin film, which is a factor that impairs transparency.
  • organic particles when used as a filler, there is an advantage that sticking prevention can be imparted while maintaining the transparency of the resin film. For this reason, various organic particles have been developed and used in resin films and the like that require high quality.
  • Patent Document 1 describes the use of organic polymer particles containing an antioxidant as an anti-blocking agent for films. Heat resistance can be improved by including an antioxidant in the organic polymer particles.
  • Patent Document 2 describes core-shell shaped silicone polymer particles that maintain high transparency and hardness.
  • Patent Document 3 describes swollen seed polymer particles using polysiloxane particles as seed particles.
  • the organic polymer particles described in Patent Document 1 contain an antioxidant. Many antioxidants with high antioxidant functions have a bulky molecular structure, and therefore are difficult to apply to polymerization methods using water as a medium other than suspension polymerization. Therefore, it is difficult to obtain organic polymer particles that have sufficient properties in terms of particle size distribution and particle size and have more precise optical properties.
  • the polymer particles described in Patent Document 2 are expected to have better optical properties than inorganic particles, since they are composed of a silicone polymer, there is a difference in refractive index within the film due to the silicone component. There is a possibility that the haze may be increased due to the occurrence of haze. Therefore, it is difficult to obtain highly transparent polymer particles.
  • the swelling seed polymer particles described in Patent Document 3 are produced by sol-gel seed polymerization using polysiloxane particles as seed particles, and are expected to have better optical properties.
  • the hurdles for required properties such as transparency have been raised, and the effect of polysiloxane seed particles on film haze cannot be ignored, and swelling seed polymer particles with high transparency are used. is difficult.
  • the problem to be solved by the present invention is to provide fine resin particles that are excellent in heat resistance and transparency, have a narrow particle size distribution, and have a small particle size.
  • the present invention provides the following resin fine particles and a method for producing resin fine particles.
  • Item 1 (a) a hydrolyzable silicon compound unit having a hydrolyzable silyl group and a radically polymerizable unsaturated group-reactive group, (b) a monofunctional (meth)acrylic monomer unit, (c) a poly Resin fine particles containing functional (meth)acrylic monomer units and (d) thiol compound units.
  • Item 2 The resin fine particles according to Item 1, wherein the content of silicon element in the resin fine particles measured by fluorescent X-ray analysis is 0.03% by mass or more and 1% by mass or less.
  • Item 3 The fine resin particles according to Item 1 or 2, further comprising (e) a monofunctional vinyl-based monomer unit having an aromatic ring in the molecular structure.
  • Item 4 Any one of Items 1 to 3, wherein the (b) monofunctional (meth)acrylic monomer unit comprises a (meth)acrylic acid alkyl ester unit having an alkyl group having 2 or more carbon atoms. fine resin particles.
  • Item 5 The fine resin particles according to any one of Items 1 to 4, which have a heat weight loss rate of 2.5% or less when heat-treated at 280° C. for 1 hour in a nitrogen atmosphere.
  • Item 6 The fine resin particles according to any one of Items 1 to 5, having a 3% thermal decomposition temperature of 350° C. or higher in a nitrogen atmosphere.
  • Item 7 The fine resin particles according to any one of Items 1 to 6, having a volume average particle diameter of 0.05 ⁇ m or more and 3 ⁇ m or less.
  • Item 8 The fine resin particles according to any one of Items 1 to 7, wherein the coefficient of variation of the volume average particle size is 25% or less.
  • Item 9 the following measurement range; (Measurement range) Particle size measurement range: 0.5 ⁇ m to 200 ⁇ m, Particle circularity measurement range: 0.97 to 1.00, Item 9.
  • Item 10 The resin fine particles according to any one of Items 1 to 9, further comprising (f) a reactive surfactant unit.
  • Item 11 A resin fine particle granule formed by aggregating a plurality of the resin fine particles according to any one of Items 1 to 10.
  • Item 12 The fine resin particles according to any one of Items 1 to 11, which are used as an anti-sticking agent for resin films.
  • Item 13 The resin fine particles according to Item 12, wherein the resin film is a resin film for optical use.
  • Item 14 A first step of preparing seed particles by emulsion polymerization or soap-free polymerization of a monomer component containing a monofunctional (meth)acrylic monomer, and A hydrolyzable silicon compound having a group that reacts with a hydrolyzable silyl group and a radically polymerizable unsaturated group, a monofunctional (meth)acrylic monomer, a polyfunctional (meth)acrylic monomer and a thiol compound a second step of polymerizing by absorbing the mixture containing the seed particles;
  • a method for producing resin fine particles having Item 15 The method for producing fine resin particles according to Item 14, wherein the mixture used in the second step further contains a monofunctional vinyl-based monomer having an aromatic ring in its molecular structure.
  • Item 16 The method for producing resin fine particles according to Item 14 or 15, comprising a step of classifying the obtained resin fine particles with a filter having an absolute filtration accuracy of 5 ⁇ m or less.
  • Item 17 A method for producing resin fine particle granules, comprising granulating and drying the resin fine particles obtained by the method for producing resin fine particles according to any one of Items 14 to 16.
  • the present invention it is possible to provide fine resin particles having excellent heat resistance and transparency, a narrow particle size distribution, and a small particle size.
  • the fine resin particles as an anti-sticking agent for resin films, particularly as an anti-sticking agent for optical-use resin films, it is possible to stably produce highly transparent resin films for optical-use.
  • a (meth)acrylic monomer means an acrylic monomer or a methacrylic monomer
  • a (meth)acrylate means an acrylate or a methacrylate
  • the resin fine particles of the present invention comprise (a) a hydrolyzable silicon compound unit having a hydrolyzable silyl group and a radically polymerizable unsaturated group-reactive group, (b) a monofunctional (meth)acrylic monomer unit, (c) polyfunctional (meth)acrylic monomer units and (d) thiol compound units.
  • the resin fine particles of the present invention may further contain (e) a monofunctional vinyl-based monomer unit having an aromatic ring in its molecular structure and/or (f) a reactive surfactant unit.
  • the (a) unit in the fine resin particles of the present invention is a unit derived from a hydrolyzable silicon compound having a group that reacts with a hydrolyzable silyl group and a radically polymerizable unsaturated group.
  • Hydrolyzable silyl groups possessed by hydrolyzable silicon compounds are those in which 1 to 3 hydrolyzable groups are bonded to a silicon atom. is a silicon-containing group capable of undergoing a condensation reaction to form a siloxane bond and be crosslinked.
  • the hydrolyzable group of the hydrolyzable silyl group is not particularly limited. One or more selected from the group consisting of an acid amide group, an aminooxy group, an iminooxy group, a mercapto group, an alkenyloxy group, an oxime group and the like. Among them, an alkoxysilyl group is preferable because the hydrolysis reaction is mild and the handling is easy.
  • Alkoxysilyl groups include trialkoxysilyl groups such as trimethoxysilyl group, triethoxysilyl group, triisopropoxysilyl group, and triphenoxysilyl group; propyldimethoxysilyl group, methyldimethoxysilyl group, and methyldiethoxysilyl group; and monoalkoxysilyl groups such as dimethylmethoxysilyl and dimethylethoxysilyl groups.
  • a trialkoxysilyl group is preferable, and a trimethoxysilyl group and a triethoxysilyl group are more preferable.
  • the group other than the hydrolyzable group bonded to the silicon atom in the hydrolyzable silyl group is not particularly limited.
  • alkyl groups having 20 or less carbon atoms such as methyl group, ethyl group, propyl group and isopropyl group, alkenyl groups having 20 or less carbon atoms, aryl groups having 6 to 30 carbon atoms, arylalkyl groups having 7 to 30 carbon atoms, etc.
  • alkyl groups having 20 or less carbon atoms such as methyl group, ethyl group, propyl group and isopropyl group
  • alkenyl groups having 20 or less carbon atoms such as methyl group, ethyl group, propyl group and isopropyl group
  • alkenyl groups having 20 or less carbon atoms such as methyl group, ethyl group, propyl group and isopropyl group
  • alkenyl groups having 20 or less carbon atoms such as methyl group,
  • the group that the hydrolyzable silicon compound has has a radically polymerizable unsaturated group that reacts with a radically polymerizable unsaturated group such as a (meth)acryloyl group, a (meth)acrylamide group, a vinyl group, and a styryl group. It is not particularly limited as long as it is a group.
  • groups that react with radically polymerizable unsaturated groups possessed by the hydrolyzable silicon compound of the present invention include radically polymerizable groups such as (meth)acryloyl groups, (meth)acrylamide groups, vinyl groups, and styryl groups.
  • One or more selected from the group consisting of unsaturated groups, mercapto groups, hydroxyl groups, amino groups and the like can be mentioned.
  • the hydrolyzable silicon compound having a hydrolyzable silyl group and a radically polymerizable unsaturated group-reactive group includes, for example, vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane, 3 -methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-mercaptopropylmethyl One or more selected from the group consisting of dimethoxysilane and 3-mercaptopropyltrimethoxysilane. These may be used individually by 1 type, and may be used in mixture of 2 or more types.
  • the (b) unit in the fine resin particles of the present invention is a unit derived from a monofunctional (meth)acrylic monomer.
  • the monofunctional (meth)acrylic monomer is not particularly limited as long as it is a compound having only one (meth)acryloyl group in the molecule.
  • One or more acid alkyl esters One or
  • the (c) unit in the fine resin particles of the present invention is a unit derived from a polyfunctional (meth)acrylic monomer.
  • the polyfunctional (meth)acrylic monomer is not particularly limited as long as it is a compound having two or more radically polymerizable unsaturated groups such as (meth)acryloyl groups in the molecule.
  • ethylene glycol di(meth)acrylate especially ethylene glycol dimethacrylate
  • allyl (meth)acrylate allyl methacrylate
  • These polyfunctional (meth)acrylic monomers may be used singly or in combination of two or more.
  • the (d) unit in the fine resin particles of the present invention is a unit derived from a thiol compound.
  • the thiol-based compound is not particularly limited as long as it is a compound having a thiol group in the molecule, and includes monofunctional thiol-based compounds and polyfunctional thiol-based compounds.
  • a thiol-based compound functions as a chain transfer agent and becomes a structural unit of polymer fine particles.
  • the thiol compound is a hydrolyzable silicon compound having a hydrolyzable silyl group and a group that reacts with a radically polymerizable unsaturated group, a monofunctional (meth)acrylic monomer and a polyfunctional (meth)acrylic monomer.
  • the radical polymerization system in which is polymerized, it receives radicals from the growing polymer chain to terminate the elongation of the polymer chain and generates new radicals to initiate the growth reaction of another polymer chain.
  • the molecular weight of the resin fine particles can be made uniform, and the particle size distribution can be made uniform.
  • the monofunctional thiol-based compound is not particularly limited as long as it is a compound having one thiol group in the molecule.
  • Thiol compounds such as, for example, 1-butanethiol, 1-octanethiol, 1-decanethiol, 1-dodecanethiol, 1-hexadecanethiol, tert-dodecanethiol; thioglycolic acid, 3-mercaptopropionic acid, mercaptosuccinic acid, etc. and one or more selected from the group consisting of acid compounds having a thiol group, esters thereof, and the like.
  • These monofunctional thiol compounds may be used singly or in combination of two or more.
  • the polyfunctional thiol-based compound is not particularly limited as long as it is a compound having two or more thiol groups in the molecule.
  • polyfunctional thiol compounds may be used singly or in combination of two or more.
  • ethylene glycol bisthioglycolate (EGTG), 1,4-butanediol bisthiopropionate (BDTP), trimethylolpropane tristhioglycolate (TMTG), pentaerythritol tetrakisthioglycolate (PETG) One or more selected from the group consisting of is preferable.
  • the resin fine particles of the present invention may contain the (e) unit in addition to the (a) to (d) units.
  • the (e) unit is a unit derived from a monofunctional vinyl-based monomer having an aromatic ring in its molecular structure.
  • Monofunctional vinyl-based monomers having an aromatic ring in the molecular structure include those having an aromatic ring in the molecule as well as radically polymerizable non-monomers such as (meth)acryloyl groups, (meth)acrylamide groups, vinyl groups, and styryl groups. It is a monomer having one saturated group. Examples include one or more selected from the group consisting of monofunctional aromatic hydrocarbon-based monomers, polyfunctional aromatic hydrocarbon-based monomers, aromatic ring-containing (meth)acrylic acid ester-based monomers, and the like. . These monofunctional vinyl-based monomer units having an aromatic ring in the molecular structure may be used singly or in combination of two or more.
  • monofunctional aromatic hydrocarbon monomers examples include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene (vinyltoluene), ⁇ -methylstyrene, m-ethylvinylbenzene, p-ethyl
  • vinyl benzene vinyl benzoic acid, styrene sulfonic acid, styrene sulfonates such as sodium styrene sulfonate and ammonium styrene sulfonate, vinyl naphthalene, allylbenzene and the like.
  • styrene, ⁇ -methylstyrene and sodium styrenesulfonate are preferred.
  • These monofunctional aromatic hydrocarbon-based monomers may be used alone or in combination of two or more.
  • aromatic ring-containing (meth)acrylic acid ester monomers examples include benzyl (meth)acrylate, phenyl (meth)acrylate and phenoxyethyl (meth)acrylate, 2-(meth)acryloyloxyethyl phthalate, and the like.
  • a (meth)acrylic acid ester-based monomer having an aromatic ring in its molecular structure such as benzyl (meth)acrylate
  • a monofunctional vinyl-based monomer having an aromatic ring in its molecular structure shall be treated as "body”.
  • the fine resin particles of the present invention may contain the (f) unit in addition to the (a) to (d) units.
  • the (f) units are units derived from reactive surfactants.
  • reactive surfactants include one or more selected from the group consisting of anionic reactive surfactants and nonionic reactive surfactants.
  • anionic reactive surfactant include one or more selected from the group consisting of the anionic reactive surfactants exemplified in ⁇ Surfactant> in [Method for producing fine resin particles] below.
  • the nonionic reactive surfactant include one or more selected from the group consisting of nonionic reactive surfactants exemplified in ⁇ Surfactant> in [Method for producing fine resin particles] below.
  • the resin fine particles of the present invention may contain units other than the units (a) to (f) (hereinafter referred to as "other units").
  • Other units include, for example, fatty acid vinyl ester-based monomers, halogenated olefin-based monomers, vinyl cyanide-based monomers, unsaturated carboxylic acid-based monomers, and unsaturated polycarboxylic acid ester-based monomers. isomers, unsaturated carboxylic acid amide-based monomers, unsaturated carboxylic acid amide methylol compound-based monomers, polyfunctional aromatic hydrocarbon-based monomers, polyfunctional allyl-based monomers, etc. Units derived from one or more monomers are included.
  • fatty acid vinyl ester monomers examples include vinyl acetate and vinyl propionate. These fatty acid vinyl ester monomers may be used singly or in combination of two or more.
  • halogenated olefinic monomers examples include vinyl chloride, vinylidene chloride, tetrafluoroethylene, and vinylidene fluoride. These halogenated olefinic monomers may be used singly or in combination of two or more.
  • Vinyl cyanide-based monomers include, for example, (meth)acrylonitrile.
  • Unsaturated carboxylic acid-based monomers include unsaturated carboxylic acids, their salts or anhydrides, such as (meth)acrylic acid, crotonic acid, maleic acid, fumaric acid, their ammonium and metal salts. , maleic anhydride, and the like. These unsaturated carboxylic acid-based monomers may be used singly or in combination of two or more.
  • the unsaturated polycarboxylic acid ester monomers include unsaturated dicarboxylic acid monoesters, salts thereof, and unsaturated dicarboxylic acid diesters. Examples include monobutyl maleic acid, their ammonium and metal salts, maleic acid dimethyl and the like. These unsaturated polycarboxylic acid ester-based monomers may be used singly or in combination of two or more. Examples of unsaturated carboxylic acid amide-based monomers include (meth)acrylamide and diacetone (meth)acrylamide. These unsaturated carboxylic acid amide-based monomers may be used singly or in combination of two or more.
  • unsaturated carboxylic acid amide methylolated monomers examples include N-methylolacrylamide, N-methylolmethacrylamide, methylolated diacetoneacrylamide, and these monomers and alcohols having 1 to 8 carbon atoms. and the like. These unsaturated carboxylic acid amide methylol compound monomers may be used singly or in combination of two or more.
  • polyfunctional aromatic hydrocarbon monomers examples include m- or p-divinylbenzene, 1,3-, 1,8-, 1,4-, 1,5-, 2,3-, 2, 6- or 2,7-divinylnaphthalene, 4,4'-, 4,3'-, 2,2'- or 2,4-divinylbiphenyl, 1,2-, 1,3-, 1,4-di At least one selected from the group consisting of isopropenylbenzene, 1,2-divinyl-3,4-dimethylbenzene, derivatives thereof, and the like.
  • polyfunctional aromatic hydrocarbon-based monomers may be used singly or in combination of two or more.
  • polyfunctional allylic monomers examples include diallyl phthalate and triallyl cyanurate. These polyfunctional allylic monomers may be used singly or in combination of two or more.
  • the amount ratio of each unit constituting the resin fine particles can be appropriately determined according to the use of the resin fine particles, desired properties, etc., and is not particularly limited.
  • the hydrolyzable silicon compound unit having a hydrolyzable silyl group and a radically polymerizable unsaturated group-reactive group is, for example, 0 when the total of (a) to (d) units is 100% by mass. .1% by mass or more, preferably 0.5% by mass or more, and for example 10% by mass or less, preferably 5% by mass or less.
  • the monofunctional (meth)acrylic monomer unit is, for example, 10% by mass or more, preferably 15% by mass or more, when the total of (a) to (d) units is 100% by mass; For example, it is 90% by mass or less, preferably 85% by mass or less.
  • the polyfunctional (meth)acrylic monomer unit is, for example, 3% by mass or more, preferably 5% by mass or more, when the total of (a) to (d) units is 100% by mass; For example, it is 50% by mass or less, preferably 40% by mass or less.
  • the thiol-based compound unit is, for example, 0.1% by mass or more, preferably 0.3% by mass or more, when the total of (a) to (d) units is 100% by mass, for example 5% by mass % or less, preferably 3 mass % or less.
  • the monofunctional vinyl-based monomer unit having an aromatic ring in the molecular structure is 0% by mass or more, for example 5% by mass or more, when the total of units (a) to (e) is taken as 100% by mass. and is, for example, 70% by mass or less, preferably 60% by mass or less.
  • the reactive surfactant unit is 0% by mass or more, for example 0.1% by mass or more, preferably 0% by mass when the total of (a) to (d) and (f) units is 100% by mass. .3% by mass or more, for example, 5% by mass or less, preferably 3% by mass or less.
  • the content of silicon element in the resin fine particles measured by fluorescent X-ray analysis is preferably 0.03% by mass or more and 1% by mass or less, and preferably 0.05% by mass or more and 0.5% by mass. It is more preferably 0.50% by mass or less.
  • the fine resin particles exhibiting such properties are extremely excellent in heat resistance and do not affect haze or the like when formed into a film.
  • the silicon element in the resin fine particles in the present invention is defined as "a hydrolyzable silicon compound unit having a group that reacts with a hydrolyzable silyl group and a radically polymerizable unsaturated group, a monofunctional (meth)acrylic unit," which constitutes the resin fine particles. It means a silicon element in a "resin containing a monomer unit, a polyfunctional (meth)acrylic monomer unit, and a thiol compound unit".
  • a method for measuring the content of silicon element in the resin microparticles by fluorescent X-ray analysis for example, the method described in Examples below can be used.
  • the fine resin particles of the present invention have a heat weight loss rate of 2.5% or less when heat-treated at 280° C. for 1 hour in a nitrogen atmosphere.
  • the fine resin particles exhibiting such properties are extremely excellent in heat resistance.
  • the method described in Examples below can be used as a method for measuring the weight loss ratio upon heating at 280° C. for 1 hour in a nitrogen atmosphere.
  • the resin fine particles of the present invention preferably have a 3% thermal decomposition temperature of 350° C. or higher in a nitrogen atmosphere.
  • the 3% thermal decomposition temperature in a nitrogen atmosphere means that the temperature at which the mass of the fine resin particles decreases by 3% when the fine resin particles are heated from around room temperature is 350° C. or higher.
  • the fine resin particles exhibiting such properties are extremely excellent in heat resistance.
  • the method described in Examples below can be used as a method for measuring the 3% thermal decomposition temperature in a nitrogen atmosphere.
  • the volume-average particle size (volume-average primary particle size) of the resin fine particles of the present invention is not particularly limited, and can be appropriately set according to the purpose and application. For example, it is 0.05 ⁇ m or more, preferably 0.07 ⁇ m or more, more preferably 0.1 ⁇ m or more, and for example 3 ⁇ m or less, preferably 2 ⁇ m or less, more preferably 1.5 ⁇ m or less.
  • a method for measuring the volume average particle size for example, it can be measured using a laser scattering/diffraction particle size distribution analyzer manufactured by Beckman Coulter.
  • the method described in Examples below can be used.
  • the variation coefficient of the volume-average particle size of the resin fine particles of the present invention is not particularly limited, and can be appropriately set according to the purpose and application. For example, it is 25% or less, preferably 20% or less, more preferably 17% or less.
  • the coefficient of variation of the volume-average particle size of resin fine particles is a numerical value obtained from the following equation (1), and represents the distribution width of data.
  • Variation coefficient (%) standard deviation x 100/volume average primary particle size (1)
  • the volume average particle size (volume average primary particle size) and its standard deviation of the fine resin particles can be measured using, for example, a laser scattering/diffraction particle size distribution analyzer manufactured by Beckman Coulter.
  • the coefficient of variation of the volume average particle size can be obtained, for example, by the method described in Examples below.
  • the number of particles having a diameter of 5 ⁇ m or more in 300,000 particles in the following measurement range is preferably 1 or less.
  • Classification methods include, but are not particularly limited to, a method of classifying by centrifugal force such as a centrifuge or an air classifier, and a method of classifying by passing through a mesh or filter with a desired opening and absolute filtration accuracy.
  • the polymer fine particle slurry obtained by the polymerization reaction is passed through a filter with a desired absolute filtration accuracy to perform wet classification of the resin fine particles, thereby adjusting the number of particles of 5 ⁇ m or more in 300,000 resin fine particles. can do.
  • the method described in Examples below can be used.
  • the resin fine particle granule of the present invention is formed by aggregating a plurality of resin fine particles.
  • the resin fine particle granules can be obtained by spray drying, freeze granulation drying, or the like of the resin fine particle slurry obtained in the polymerization step.
  • a spray dryer having an inlet temperature of the fine resin particle slurry of 80° C. or higher and 220° C. or lower and an outlet temperature of the resin fine particle granules of 50° C. or higher and 100° C. or lower may be used. can be done.
  • the obtained granules may be superior in handleability to the fine resin particles themselves.
  • the resin fine particle granules can be classified as necessary to make the particle size uniform. Classification can be performed by known means.
  • the volume average particle size of the resin fine particle granules is not particularly limited. For example, it can be 5 to 200 ⁇ m, preferably 10 to 100 ⁇ m.
  • the obtained resin fine particle granules may be pulverized into resin fine particles.
  • a wet crushing method using The fine resin particles that are pulverized and dispersed may have good dispersibility in a solvent.
  • the resin fine particles of the present invention are excellent in heat resistance and transparency, have a narrow particle size distribution, and have a small particle diameter.
  • the fine resin particles of the present invention can be used for various purposes by taking advantage of such characteristics.
  • anti-sticking agents for resin molded products (resin films), modifiers for various resin molded products, optical components such as light diffusers, anti-glare, low-reflection, etc., additives for paints, various electronic It can be used as a spacer between minute portions of devices, as a pore-forming agent for various battery members, as a core particle of conductive fine particles responsible for electrical connection, and the like.
  • resin fine particles themselves can be mixed with a resin as an anti-sticking agent (anti-blocking agent) for a resin film to form a resin composition, thereby forming a resin molding such as a film.
  • the resin fine particles of the present invention are excellent in heat resistance and transparency, have a narrow particle size distribution, and have a small particle diameter. It is possible to suppress the influence on haze and the like. In addition, the occurrence of resin build-up caused by the heat load or the like applied during resin compounding is suppressed, and there is little possibility that the yield will deteriorate.
  • the resin fine particles as an anti-sticking agent for resin films, particularly as an anti-sticking agent for resin films for optical applications, highly transparent optical members, for example, optical films such as anti-glare films and light diffusion films, and light It becomes possible to stably produce diffusers and the like.
  • the method for producing fine resin particles of the present invention comprises at least a hydrolyzable silicon compound having a group that reacts with a hydrolyzable silyl group and a radically polymerizable unsaturated group, a monofunctional (meth)acrylic monomer, and a polyfunctional (The method is not particularly limited as long as the resin fine particles are formed by reacting the meth)acrylic monomer and the thiol compound.
  • seed particles that serve as nuclei are prepared before obtaining the desired resin fine particles.
  • the seed particles are generally prepared by emulsion polymerization or soap-free polymerization.
  • Seed particles are generally obtained by polymerizing a monomer mixture containing one or more of the aforementioned monofunctional (meth)acrylic monomers and monofunctional vinyl monomers having an aromatic ring in the molecular structure. be able to. At this time, it is preferable to add a monomer having a functional group condensable with the hydrolyzable silicon compound unit to the monomer mixture.
  • the monomer having a functional group capable of condensing with the hydrolyzable silicon compound unit is not particularly limited, it may be a vinyl monomer having an epoxy group in the molecular chain or a vinyl monomer having a hydroxyl group in the molecular chain.
  • examples include monomers and hydrolyzable silicon compound units having a reactive group copolymerizable with the aforementioned vinyl-based monomers.
  • Examples of the vinyl-based monomer having an epoxy group in the molecular chain include one or more selected from the group consisting of glycidyl methacrylate, allyl glycidyl ether, allyl glycidyl phthalate, allyl glycidyl hexahydrophthalate, and the like.
  • Vinyl monomers having a hydroxyl group in the molecular chain include, for example, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl methacrylate, 2- Hydroxybutyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, glycerin monoallyl ether, neopentyl glycol monoallyl ether, o-allylphenol, glycerin monomethacrylate, polyethylene glycol monomethacrylate, polypropylene glycol monomethacrylate, polyethylene glycol propylene glycol mono One or more selected from the group consisting of methacrylate, polyethylene glycol tetramethylene glycol monomethacrylate, propylene glycol polybutylene glycol monomethacrylate, polyethylene glycol monoacrylate, polypropylene glycol monoacrylate and the like.
  • any known polymerization initiator can be used without any particular limitation.
  • a thermally decomposable water-soluble polymerization initiator in the case of emulsion polymerization or soap-free polymerization, it is preferable to use a thermally decomposable water-soluble polymerization initiator, and in the case of seed polymerization or suspension polymerization, it is preferable to use a thermally decomposable oil-soluble polymerization initiator.
  • a radical polymerization initiator particularly a thermal polymerization initiator.
  • water-soluble polymerization initiators include, for example, persulfates (e.g., ammonium persulfate, potassium persulfate, sodium persulfate, etc.), hydrogen peroxide, organic peroxides, nitrile-azo compounds.
  • persulfates e.g., ammonium persulfate, potassium persulfate, sodium persulfate, etc.
  • hydrogen peroxide e.g., sodium persulfate, etc.
  • organic peroxides e.g., nitrile-azo compounds.
  • oil-soluble polymerization initiators include, for example, cumene hydroperoxide, di-tert-butyl peroxide, dicumyl peroxide, benzoyl peroxide, lauroyl peroxide, dimethylbis(tert-butyl peroxide, oxy)hexane, dimethylbis(tert-butylperoxy)hexyne-3, bis(tert-butylperoxyisopropyl)benzene, bis(tert-butylperoxy)trimethylcyclohexane, butyl-bis(tert-butylperoxy)valerate , tert-butyl 2-ethylhexaneperoxyate, dibenzoyl peroxide, paramenthane hydroperoxide and organic peroxides such as tert-butyl peroxybenzoate; 2,2′-azobisisobutyronitrile, 2,2 '-
  • the polymerization initiator of the above persulfate and organic peroxide, sodium sulfoxylate formaldehyde, sodium hydrogen sulfite, ammonium hydrogen sulfite, sodium thiosulfate, ammonium thiosulfate, hydrogen peroxide, sodium hydroxymethanesulfinate, L - Redox polymerization initiators may be used in combination with reducing agents such as ascorbic acid and its salts, cuprous salts, and ferrous salts.
  • 2,2′-azobisisobutyronitrile 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis(2,4-dimethylvaleronitrile)
  • 2,2′-azobis isobutyronitrile 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile)
  • 4,4′-azobis At least one selected from the group consisting of (4-cyanopentanoic acid), cumene hydroperoxide, di-tert-butyl peroxide, dicumyl peroxide, benzoyl peroxide and lauroyl peroxide is preferred.
  • These polymerization initiators may be used singly or in combination of two or more.
  • the amount of the polymerization initiator used can be appropriately determined according to its type, and is not particularly limited. For example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, for example 5 parts by mass or less, preferably 3 parts by mass or less, relative to 100 parts by mass of the total amount of all monomers used during polymerization. is within the range of
  • the surfactant that may be used in the method for producing resin fine particles of the present invention is not particularly limited, and known surfactants can be used.
  • the surfactant is appropriately selected in kind and used in an appropriate amount, taking into account the particle size of the resin fine particles to be obtained, the dispersion stability of the monomer during polymerization, and the like.
  • an anionic surfactant such as an anionic non-reactive surfactant or an anionic reactive surfactant can be used. These anionic surfactants may be used singly or in combination of two or more.
  • non-reactive anionic surfactants include sodium oleate; fatty acid soaps such as castor oil potash soap; alkyl sulfate ester salts such as sodium lauryl sulfate and ammonium lauryl sulfate; alkyl benzene sulfonates such as sodium dodecylbenzene sulfonate.
  • alkylnaphthalenesulfonate alkanesulfonate; dialkylsulfosuccinate; alkyl phosphate; naphthalenesulfonic acid formalin condensate; polyoxyethylene alkylphenyl ether sulfate; One or more selected from the group consisting of polyoxyethylene alkyl sulfate ester salts and the like can be mentioned.
  • anionic reactive surfactants examples include JS-20 and RS-3000 of Eleminol (registered trademark) manufactured by Sanyo Kasei Co., Ltd., KH-10 and KH-10 of Aqualon (registered trademark) manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • nonionic surfactants such as nonionic non-reactive surfactants and nonionic reactive surfactants can be used. These nonionic surfactants may be used singly or in combination of two or more.
  • nonionic non-reactive surfactants include polyoxyalkylene branched decyl ether, polyoxyethylene tridecyl ether, polyoxyalkylene alkyl ether, polyoxyalkylene tridecyl ether, polyoxyethylene isodecyl ether, polyoxyalkylene Lauryl ether, polyether polyol, polyoxyethylene styrenated phenyl ether, polyoxyethylene naphthyl ether, polyoxyethylene phenyl ether, polyoxyethylene polyoxypropylene glycol, polyoxyethylene lauryl ether, polyoxyethylene oleyl cetyl ether, isostearic acid Polyoxyethylene glyceryl, polyoxyethylene alkyl ether, polyoxyethylene alkylphen
  • nonionic reactive surfactants include, for example, alkyl ether-based surfactants (commercially available products such as ADEKA Corporation, Adekaria Soap ER-10, ER-20, ER-30, ER-40, etc.; Kao Corporation , Latemul PD-420, PD-430, PD-450, etc.); -30, RN-50, AN-10, AN-20, AN-30, AN-5065, etc.; manufactured by ADEKA, Adekaria Soap NE-10, NE-20, NE-30, NE-40, etc.); One or more selected from the group consisting of meth)acrylate sulfate esters (commercially available products include RMA-564, RMA-568, RMA-1114, etc. manufactured by Nippon Nyukazai Co., Ltd.). Among them, those having an oxyalkylene chain in the molecular chain are preferable from the viewpoint of particle dispersion stability.
  • alkyl ether-based surfactants commercially available products such as
  • a cationic surfactant or an amphoteric surfactant can be used in the method for producing resin fine particles of the present invention.
  • These cationic surfactants and amphoteric surfactants may be used singly or in combination of two or more.
  • cationic surfactants include one or more selected from the group consisting of alkylamine salts such as laurylamine acetate and stearylamine acetate; quaternary ammonium salts such as lauryltrimethylammonium chloride and the like.
  • Amphoteric surfactants include, for example, one or more selected from the group consisting of lauryldimethylamine oxide, betaine laurylaminoacetate, and the like.
  • reactive surfactants in particular, one or more selected from the group consisting of anionic reactive surfactants and nonionic reactive surfactants can be used.
  • f) Will contain reactive surfactant units.
  • the amount of surfactant to be used can be appropriately determined according to its type, and is not particularly limited. For example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, for example 5 parts by mass or less, preferably 3 parts by mass or less, relative to 100 parts by mass of the total amount of all monomers used during polymerization. is within the range of
  • the liquid medium used in the method for producing fine resin particles of the present invention is not particularly limited.
  • water, organic solvents, and mixtures thereof can be used.
  • an aqueous medium is preferable, and for example, water, lower alcohols having 5 or less carbon atoms such as methyl alcohol and ethyl alcohol, mixtures of water and lower alcohols, and the like can be used.
  • a monomer component containing a monofunctional (meth)acrylic monomer is subjected to emulsion polymerization or soap-free polymerization in the first step to prepare seed particles, and then the second step is carried out.
  • a hydrolyzable silicon compound unit having a reactive group copolymerizable with a vinyl monomer in the process, a monofunctional (meth)acrylic monomer unit, and a polyfunctional (meth)acrylic monomer unit a method of allowing the seed particles to absorb a monomer mixture containing thiol-based compound units for polymerization.
  • the monomer mixture in the second step preferably further contains a monofunctional vinyl-based monomer unit having an aromatic ring in its molecular structure.
  • the method for producing fine resin particles of the present invention it is preferable to classify the fine resin particles with a filter having a desired absolute filtration accuracy, for example, an absolute filtration accuracy of 5 ⁇ m or less. Further, in the method for producing resin fine particles of the present invention, the resin fine particles may be granulated and dried to obtain resin fine particle agglomerates.
  • the content of silicon element in the fine resin particles was obtained by measuring the peak height of silicon element by fluorescent X-ray spectroscopy, and determining the content of silicon element by the order analysis method (FP bulk method). Specifically, using a fluorescent X-ray analyzer (manufactured by Rigaku Corporation, ZSX Primus IV), the intensity of Si-K ⁇ was measured under the following device conditions and qualitative element conditions, and the resin fine particles were determined by the order analysis method. The content of elemental silicon in the sample was measured.
  • a conductive carbon double-sided tape (manufactured by Nissin EM) was pasted on a carbon sample stand (manufactured by Nissin EM). 20 mg of a sample (resin fine particles produced in each example and comparative example) was weighed out on the attached conductive carbon double-sided tape, and the sample was adjusted so as not to expand by 10 mm ⁇ or more. After that, it was covered with a PP film (polypropylene film) and set in a 10 mm diameter sample case attached to the apparatus to obtain a measurement sample. Next, the peak height of silicon element was measured under the following conditions, and the content of silicon element was determined by the order analysis method.
  • sample preparation method About 15 mg of fine resin particles (measurement sample) were filled into the bottom of a platinum measurement container so as not to create a gap, thereby preparing a sample.
  • Measurement condition A nitrogen gas flow rate of 230 mL/min was used, and alumina was used as a reference substance. The temperature was raised from 40° C.
  • the analysis software attached to the apparatus was used to determine the heating weight loss rate at the end of the measurement, and this was defined as the "heating weight loss rate after heat treatment at 280 ° C. for 1 hour in a nitrogen atmosphere.” .
  • the "3% thermal decomposition temperature in a nitrogen atmosphere" of the fine resin particles was measured using a simultaneous differential thermogravimetric analyzer (TG/DTA6200, manufactured by SII Nano Technology Co., Ltd.).
  • the sample preparation method and measurement conditions are as follows. (Sample preparation method) About 15 mg of fine resin particles (measurement sample) were filled into the bottom of a platinum measurement container so as not to create a gap, thereby preparing a sample. (Measurement condition) A nitrogen gas flow rate of 230 mL/min was used, and alumina was used as a reference material. The temperature is raised from 300°C to 500°C at 10°C/min to obtain a TG/DTA curve. From the obtained TG / DTA curve, using the analysis software attached to the apparatus, the temperature when the mass of the sample decreases by 3% from the start of measurement is obtained, and this is called the "3% thermal decomposition temperature in a nitrogen atmosphere". bottom.
  • the measurement conditions of the laser diffraction scattering type particle size distribution analyzer are as follows.
  • Refractive index of solid Refractive index of fine resin particles
  • the optical model at the time of measurement was adapted to the refractive index of the manufactured resin fine particles.
  • the refractive index of a homopolymer of that monomer was used as the refractive index of the resin fine particles.
  • the refractive index of the resin fine particles is the average value obtained by weighting and averaging the refractive indices of the homopolymers of each monomer by the amount of each monomer used. was used.
  • Variation coefficient of volume average particle size [(standard deviation of volume-based particle size distribution of resin fine particles)/(volume average particle diameter of resin fine particles)] ⁇ 100
  • a surfactant aqueous solution was prepared by adding 0.01 part of a surfactant (dodecylbenzenesulfonate) to 4.94 parts of ion-exchanged water. 0.06 parts of resin fine particles are added to the surfactant aqueous solution, and the resin fine particles are dispersed in the surfactant aqueous solution over 10 minutes using a dispersing machine (ultrasonic cleaner (VS-150, manufactured by Vervoclea)). Then, an aqueous dispersion of resin fine particles was obtained.
  • a surfactant dodecylbenzenesulfonate
  • the obtained resin fine particle aqueous dispersion was subjected to a flow type particle image analyzer (manufactured by Sysmex Corporation, FPIA-3000S; equipped with a standard objective lens (10x), and a particle sheath (manufactured by Sysmex Corporation, PSE-900A) as a sheath liquid. used.) and measured under the following measurement conditions.
  • Measurement mode HPF measurement mode
  • Particle size measurement range 0.5 to 200 ⁇ m
  • Particle circularity measurement range 0.2 to 1.0 Number of particles measured: 100,000
  • a suspension of standard polymer particles for example, Thermo Fisher Scientific, 5200A (standard polystyrene particles diluted with ion-exchanged water)
  • Thermo Fisher Scientific, 5200A standard polystyrene particles diluted with ion-exchanged water
  • the degree of circularity is a value obtained by dividing the perimeter calculated from the diameter of a perfect circle having the same projected area as the image of the fine resin particles by the perimeter of the image of the fine resin particles.
  • the number of resin fine particles having a volume average particle diameter of 5 ⁇ m or more was counted.
  • a monomer mixture a monomer mixture obtained by mixing monomer components so that the ratio of 120 parts of methyl methacrylate, 1.2 parts of 3-mercaptopropyltrimethoxysilane, and 2.4 parts of 1-octanethiol is used.
  • a seed particle B-containing slurry was obtained in the same manner as in Production Example 1, except that The volume average particle diameter of the seed particles B was 177 nm.
  • Seed was prepared in the same manner as in Production Example 1, except that the monomer mixture was obtained by mixing the monomer components so that the ratio of 120 parts of methyl methacrylate and 2.4 parts of 1-octanethiol was used as the monomer mixture. A particle C-containing slurry was obtained. The volume average particle diameter of the seed particles C was 175 nm.
  • Example/Comparative example ⁇ Example 1> In a polymerization vessel equipped with a stirrer, a thermometer and a cooling mechanism, 280 parts of ion-exchanged water, 20% sodium dodecylbenzenesulfonate solution (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Neogen S-20D) 2.8 parts, polyoxyethylene 0.7 parts of styrenated phenyl ether (Daiichi Kogyo Seiyaku Co., Ltd., Noigen EA-167) and 0.014 parts of sodium nitrite were mixed to prepare an aqueous phase.
  • the oil phase was added to the water phase in the polymerization vessel and stirred at 8000 rpm for 10 minutes using TK Homomixer (manufactured by Primix) to obtain a monomer mixture.
  • 33.3 parts of the seed particles A produced in Production Example 1 were added to this monomer mixture and stirred for 3 hours to swell the mixture.
  • the temperature was raised to 65° C., and polymerization was carried out by stirring at 65° C. for 6 hours.
  • After adding 0.021 part of sulfamic acid the temperature was raised to 100° C., held for 3 hours, and then cooled to prepare a slurry containing fine resin particles.
  • the resulting resin fine particle-containing slurry is passed through a 500-mesh SUS mesh, and then through a filter (manufactured by Asahi Kasei Corporation, KDGF-030) with an absolute filtration accuracy of 3 ⁇ m, whereby the resin fine particles are wet-classified and classified. A fine resin particle slurry was obtained.
  • the classified resin fine particle slurry was spray-dried using an atomizer take-up type spray dryer (manufactured by Sakamoto Giken, TRS-3WK) under the following spray drying conditions to obtain resin fine particles. . (Spray drying conditions) Slurry supply rate containing fine resin particles: 25 mL/min Atomizer rotation speed: 12000rpm Air volume: 2 m 3 /min Inlet temperature (temperature of inlet into which sprayed slurry containing fine resin particles is introduced): 150°C Outlet temperature (powder outlet temperature at which fine resin particles are discharged): 70°C
  • the obtained resin fine particles exhibited the following characteristics. Content of silicon element in resin fine particles measured by fluorescent X-ray analysis: 0.17% by mass Heating weight loss ratio when heat treated for 1 hour at 280°C in a nitrogen atmosphere: 1.8% 3% pyrolysis temperature under nitrogen atmosphere: 356°C Volume average particle size: 350 nm Variation coefficient of volume average particle size: 14.5% Number of particles of 5 ⁇ m or more in 300,000 resin fine particles: 0
  • Example 2 to 5 Resin fine particles were obtained in the same manner as in Example 1, except that the monomer composition having the composition shown in Table 1 was used as the monomer composition. Table 1 also shows the properties of the obtained resin fine particles.
  • Example 6 As a surfactant component, "20% solution of sodium dodecylbenzenesulfonate (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Neogen S-20D) 2.8 parts, polyoxyethylene styrenated phenyl ether (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Neugen EA -167) Resin fine particles were added in the same manner as in Example 4, except that "5 parts of Aqualon KH-1025 (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., 25% of the main component)" was used instead of "0.7 parts". Obtained. Table 1 also shows the properties of the obtained resin fine particles.
  • Example 1 A slurry containing fine resin particles was obtained in the same manner as in Example 1, except that the monomer composition having the composition shown in Table 1 was used as the monomer composition. The resulting slurry containing fine resin particles was passed through a 500-mesh SUS mesh and then spray-dried in the same manner as in Example 1 to obtain fine resin particles. Table 1 also shows the properties of the obtained resin fine particles.

Abstract

The present invention addresses the problem of providing resin microparticles having excellent heat resistance and transparency, a narrow particle size distribution, and small particle diameters. As a means for solving the problem, the present invention provides resin microparticles containing hydrolyzable silicon compound units having a group that reacts with a radical-polymerizable unsaturated group and a hydrolyzable silyl group, a monofunctional (meth)acrylic monomer unit, a polyfunctional (meth)acrylic monomer unit, and a thiol compound unit.

Description

樹脂微粒子及びその製造方法Resin microparticles and method for producing the same
 本発明は、樹脂微粒子及びその製造方法に関する。詳しくは、(a)加水分解性シリル基及びラジカル重合性不飽和基と反応する基を有する加水分解性珪素化合物単位、(b)単官能(メタ)アクリル系単量体単位、(c)多官能(メタ)アクリル系単量体単位、及び(d)チオール系化合物単位を含む樹脂微粒子、及び当該樹脂微粒子の製造方法に関する。 The present invention relates to resin fine particles and a method for producing the same. Specifically, (a) a hydrolyzable silicon compound unit having a hydrolyzable silyl group and a radically polymerizable unsaturated group-reactive group, (b) a monofunctional (meth)acrylic monomer unit, (c) a poly The present invention relates to a resin fine particle containing a functional (meth)acrylic monomer unit and (d) a thiol compound unit, and a method for producing the resin fine particle.
 樹脂フィルムは、古くから包装資材などの用途で広く用いられている。近年は、その用途がさらに拡大しており、中でも光学部材用途や電子デバイス用途等においては、樹脂フィルムに要求される特性が高度化されている。そして、その高度な品質を保ちつつ、生産性を高めていくことが求められている。
 樹脂フィルムは、多くの場合、ロール状で保管される。ロール状で保管した場合、重なり部分において樹脂フィルム同士の貼り付きが生じ、滑り性や剥離性が悪くなる問題が発生するおそれがある。この問題に対して、貼り付き防止剤(アンチブロッキング剤)として有機粒子や無機粒子などの種々のフィラーを樹脂フィルムに添加することが知られている。代表的なフィラーとしては、無機粒子ではシリカ、有機粒子では(メタ)アクリル系の樹脂微粒子などが挙げられる。
Resin films have long been widely used for applications such as packaging materials. In recent years, the applications thereof have been further expanded, and in particular, in applications such as optical members and electronic devices, the characteristics required of resin films are becoming more sophisticated. And it is required to improve productivity while maintaining the high quality.
Resin films are often stored in roll form. When stored in a roll form, the resin films may stick to each other at the overlapping portions, resulting in a problem of poor slipperiness and peelability. For this problem, it is known to add various fillers such as organic particles and inorganic particles to the resin film as an anti-sticking agent (anti-blocking agent). Typical fillers include inorganic particles such as silica, and organic particles such as (meth)acrylic resin fine particles.
 無機粒子をフィラーとして用いた場合、硬度が高いこと、少量の添加で貼り付き防止性を付与できることがメリットとして挙げられる。しかしながら、その材質上、樹脂フィルムとの間に屈折率差が生じてしまい、透明性を損なう要因となるデメリットが存在する。
 一方、有機粒子をフィラーとして用いた場合、樹脂フィルムの透明性を維持しつつ貼り付き防止性を付与できることがメリットとして挙げられる。このため、各種の有機粒子が開発されており、これにより、高度な品質を要求される樹脂フィルムなどにおいても使用されている。
When inorganic particles are used as a filler, the merits include high hardness and the ability to impart sticking prevention properties with the addition of a small amount. However, due to the material, there is a demerit that a difference in refractive index occurs with the resin film, which is a factor that impairs transparency.
On the other hand, when organic particles are used as a filler, there is an advantage that sticking prevention can be imparted while maintaining the transparency of the resin film. For this reason, various organic particles have been developed and used in resin films and the like that require high quality.
 特許文献1には、酸化防止剤を含む有機重合体粒子を、フィルム用アンチブロッキング剤として用いることが記載されている。有機重合体粒子に酸化防止剤を含む構成とすることで、耐熱性を向上させることができる。
 特許文献2には、高い透明性と硬度を維持したコアシェル形状のシリコーン系重合体粒子が記載されている。
 特許文献3には、ポリシロキサン粒子をシード粒子として用いた、膨潤シード重合体粒子が記載されている。
Patent Document 1 describes the use of organic polymer particles containing an antioxidant as an anti-blocking agent for films. Heat resistance can be improved by including an antioxidant in the organic polymer particles.
Patent Document 2 describes core-shell shaped silicone polymer particles that maintain high transparency and hardness.
Patent Document 3 describes swollen seed polymer particles using polysiloxane particles as seed particles.
特許第5572383号公報Japanese Patent No. 5572383 特開2009-173694号公報JP 2009-173694 A 特許第5599674号公報Japanese Patent No. 5599674
 光学フィルム等の貼り付き防止剤(アンチブロッキング剤)として、有機粒子、特に樹脂微粒子を用いる場合、粒度分布が狭くかつ粒子径がより小さい方が、フィルムヘイズに与える影響が少なく好ましいことが知られている。また、貼り付き防止剤(アンチブロッキング剤)として、樹脂微粒子を用いる場合、樹脂コンパウンド時にかかる熱負荷などにより、樹脂メヤニが発生し、フィルム生産時の歩留まりが悪化するという問題がある。そのため、熱負荷に耐性があり耐熱性に優れる樹脂微粒子とする必要がある。 When organic particles, particularly resin fine particles, are used as an anti-sticking agent (anti-blocking agent) for optical films, etc., it is known that a narrower particle size distribution and a smaller particle size are preferred because they have less effect on film haze. ing. In addition, when resin fine particles are used as an anti-sticking agent (anti-blocking agent), there is a problem that the heat load applied during resin compounding causes resin build-up, which deteriorates the yield during film production. Therefore, it is necessary to use resin fine particles that are resistant to heat loads and have excellent heat resistance.
 特許文献1に記載されている有機重合体粒子は、酸化防止剤を含むものである。酸化防止機能が高い酸化防止剤は、その分子構造が嵩高いものが多いため、懸濁重合以外の水を媒体とする重合方法には適用し難い。そのため、粒度分布や粒子径において十分な特性を有し、より精密な光学特性を持つ有機重合体粒子を得ることが困難である。
 特許文献2に記載されている重合体粒子は、無機粒子に比べて光学特性は期待されるものの、シリコーン系重合体で構成されているため、シリコーン成分に起因してフィルム内で屈折率差が生じてヘイズが上がってしまうおそれがある。このため、透明性が高い重合体粒子とすることが困難である。
 特許文献3に記載されている膨潤シード重合体粒子は、シード粒子にポリシロキサン粒子を採用したゾルゲルシード重合により作成されており、より良好な光学特性が期待できる。一方で、昨今の光学フィルムは、透明性などの要求特性のハードルが上がっており、ポリシロキサンシード粒子部が与えるフィルムヘイズへの影響を無視できなくなり、透明性が高い膨潤シード重合体粒子とすることが困難である。
The organic polymer particles described in Patent Document 1 contain an antioxidant. Many antioxidants with high antioxidant functions have a bulky molecular structure, and therefore are difficult to apply to polymerization methods using water as a medium other than suspension polymerization. Therefore, it is difficult to obtain organic polymer particles that have sufficient properties in terms of particle size distribution and particle size and have more precise optical properties.
Although the polymer particles described in Patent Document 2 are expected to have better optical properties than inorganic particles, since they are composed of a silicone polymer, there is a difference in refractive index within the film due to the silicone component. There is a possibility that the haze may be increased due to the occurrence of haze. Therefore, it is difficult to obtain highly transparent polymer particles.
The swelling seed polymer particles described in Patent Document 3 are produced by sol-gel seed polymerization using polysiloxane particles as seed particles, and are expected to have better optical properties. On the other hand, in recent optical films, the hurdles for required properties such as transparency have been raised, and the effect of polysiloxane seed particles on film haze cannot be ignored, and swelling seed polymer particles with high transparency are used. is difficult.
 本発明が解決しようとする課題は、耐熱性及び透明性に優れ、粒度分布が狭く、粒子径が小さい樹脂微粒子を提供することである。 The problem to be solved by the present invention is to provide fine resin particles that are excellent in heat resistance and transparency, have a narrow particle size distribution, and have a small particle size.
 発明者等は、上記課題を解決するために鋭意検討した結果、(a)ビニル系単量体と共重合可能な反応性基を有する加水分解性珪素化合物単位、(b)単官能(メタ)アクリル系単量体単位、(c)多官能(メタ)アクリル系単量体単位、及び(d)チオール系化合物単位を含む樹脂微粒子によって、上記課題の解決が達成できることを見出し、本発明を完成するに至った。
 即ち、本発明は、以下の樹脂微粒子及び樹脂微粒子の製造方法を提供するものである。
項1:(a)加水分解性シリル基及びラジカル重合性不飽和基と反応する基を有する加水分解性珪素化合物単位、(b)単官能(メタ)アクリル系単量体単位、(c)多官能(メタ)アクリル系単量体単位、及び(d)チオール系化合物単位、を含む樹脂微粒子。
項2:蛍光X線分析により測定される樹脂微粒子中の珪素元素の含有量が0.03質量%以上、1質量%以下である、項1に記載の樹脂微粒子。
項3:(e)分子構造内に芳香環を有する単官能ビニル系単量体単位をさらに含む、項1又は2に記載の樹脂微粒子。
項4:前記(b)単官能(メタ)アクリル系単量体単位が、アルキル基炭素数2以上の(メタ)アクリル酸アルキルエステル単位を含む、項1~3のいずれか1項に記載の樹脂微粒子。
項5:窒素雰囲気下、280℃で1時間加熱処理時の加熱減量割合が2.5%以下である、項1~4のいずれか1項に記載の樹脂微粒子。
項6:窒素雰囲気下での3%熱分解温度が350℃以上である、項1~5のいずれか1項に記載の樹脂微粒子。
項7:体積平均粒子径が0.05μm以上3μm以下である、項1~6のいずれか1項に記載の樹脂微粒子。
項8:体積平均粒子径の変動係数が25%以下である、項1~7のいずれか1項に記載の樹脂微粒子。
項9:下記測定範囲;
(測定範囲)
 粒子径の測定範囲:0.5μm~200μm、
 粒子の円形度の測定範囲:0.97~1.00、
における樹脂微粒子30万個中の5μm以上の粒子個数が1個以下である、項1~8のいずれか1項に記載の樹脂微粒子。
項10:(f)反応性界面活性剤単位をさらに含む、項1~9のいずれか1項に記載の樹脂微粒子。
項11:項1~10のいずれか1項に記載の樹脂微粒子が複数個凝集して構成される樹脂微粒子造粒体。
項12:樹脂フィルム用貼り付き防止剤として用いられる、項1~11のいずれか1項に記載の樹脂微粒子。
項13:樹脂フィルムが光学用途向け樹脂フィルムである、項12に記載の樹脂微粒子。
項14:単官能(メタ)アクリル系単量体を含む単量体成分を乳化重合又はソープフリー重合してシード粒子を作成する第1工程、及び、
 加水分解性シリル基及びラジカル重合性不飽和基と反応する基を有する加水分解性珪素化合物、単官能(メタ)アクリル系単量体、多官能(メタ)アクリル系単量体及びチオール系化合物を含む混合物を前記シード粒子に吸収させて重合する第2工程、
を有する樹脂微粒子の製造方法。
項15:前記第2工程で用いる混合物が、分子構造内に芳香環を有する単官能ビニル系単量体をさらに含む、項14に記載の樹脂微粒子の製造方法。
項16:得られた樹脂微粒子を絶対濾過精度5μm以下のフィルターで分級する工程を有する、項14又は15に記載の樹脂微粒子の製造方法。
項17:項14~16のいずれか1項に記載の樹脂微粒子の製造方法で得られた樹脂微粒子を造粒乾燥する、樹脂微粒子造粒体の製造方法。
As a result of intensive studies to solve the above problems, the inventors found that (a) a hydrolyzable silicon compound unit having a reactive group copolymerizable with a vinyl monomer, (b) a monofunctional (meta) It was found that the resin fine particles containing acrylic monomer units, (c) polyfunctional (meth)acrylic monomer units, and (d) thiol compound units could solve the above problems, and the present invention was completed. came to.
That is, the present invention provides the following resin fine particles and a method for producing resin fine particles.
Item 1: (a) a hydrolyzable silicon compound unit having a hydrolyzable silyl group and a radically polymerizable unsaturated group-reactive group, (b) a monofunctional (meth)acrylic monomer unit, (c) a poly Resin fine particles containing functional (meth)acrylic monomer units and (d) thiol compound units.
Item 2: The resin fine particles according to Item 1, wherein the content of silicon element in the resin fine particles measured by fluorescent X-ray analysis is 0.03% by mass or more and 1% by mass or less.
Item 3: The fine resin particles according to Item 1 or 2, further comprising (e) a monofunctional vinyl-based monomer unit having an aromatic ring in the molecular structure.
Item 4: Any one of Items 1 to 3, wherein the (b) monofunctional (meth)acrylic monomer unit comprises a (meth)acrylic acid alkyl ester unit having an alkyl group having 2 or more carbon atoms. fine resin particles.
Item 5: The fine resin particles according to any one of Items 1 to 4, which have a heat weight loss rate of 2.5% or less when heat-treated at 280° C. for 1 hour in a nitrogen atmosphere.
Item 6: The fine resin particles according to any one of Items 1 to 5, having a 3% thermal decomposition temperature of 350° C. or higher in a nitrogen atmosphere.
Item 7: The fine resin particles according to any one of Items 1 to 6, having a volume average particle diameter of 0.05 μm or more and 3 μm or less.
Item 8: The fine resin particles according to any one of Items 1 to 7, wherein the coefficient of variation of the volume average particle size is 25% or less.
Item 9: the following measurement range;
(Measurement range)
Particle size measurement range: 0.5 μm to 200 μm,
Particle circularity measurement range: 0.97 to 1.00,
Item 9. The resin fine particle according to any one of Items 1 to 8, wherein the number of particles having a diameter of 5 μm or more is 1 or less out of 300,000 resin fine particles.
Item 10: The resin fine particles according to any one of Items 1 to 9, further comprising (f) a reactive surfactant unit.
Item 11: A resin fine particle granule formed by aggregating a plurality of the resin fine particles according to any one of Items 1 to 10.
Item 12: The fine resin particles according to any one of Items 1 to 11, which are used as an anti-sticking agent for resin films.
Item 13: The resin fine particles according to Item 12, wherein the resin film is a resin film for optical use.
Item 14: A first step of preparing seed particles by emulsion polymerization or soap-free polymerization of a monomer component containing a monofunctional (meth)acrylic monomer, and
A hydrolyzable silicon compound having a group that reacts with a hydrolyzable silyl group and a radically polymerizable unsaturated group, a monofunctional (meth)acrylic monomer, a polyfunctional (meth)acrylic monomer and a thiol compound a second step of polymerizing by absorbing the mixture containing the seed particles;
A method for producing resin fine particles having
Item 15: The method for producing fine resin particles according to Item 14, wherein the mixture used in the second step further contains a monofunctional vinyl-based monomer having an aromatic ring in its molecular structure.
Item 16: The method for producing resin fine particles according to Item 14 or 15, comprising a step of classifying the obtained resin fine particles with a filter having an absolute filtration accuracy of 5 μm or less.
Item 17: A method for producing resin fine particle granules, comprising granulating and drying the resin fine particles obtained by the method for producing resin fine particles according to any one of Items 14 to 16.
 本発明により、耐熱性及び透明性に優れ、粒度分布が狭く、粒子径が小さい樹脂微粒子を提供することができる。この樹脂微粒子を樹脂フィルム用貼り付き防止剤、特に光学用途向け樹脂フィルム用貼り付き防止剤として用いることで、高い透明性の光学用途向け樹脂フィルムを安定的に生産することが可能となる。 According to the present invention, it is possible to provide fine resin particles having excellent heat resistance and transparency, a narrow particle size distribution, and a small particle size. By using the fine resin particles as an anti-sticking agent for resin films, particularly as an anti-sticking agent for optical-use resin films, it is possible to stably produce highly transparent resin films for optical-use.
 以下、本発明の樹脂微粒子及び樹脂微粒子の製造方法について、詳細に説明する。
 本明細書において、(メタ)アクリル系単量体は、アクリル系単量体又はメタクリル系単量体を、(メタ)アクリレートは、アクリレート又はメタクリレートを意味する。
Hereinafter, the resin fine particles and the method for producing the resin fine particles of the present invention will be described in detail.
In this specification, a (meth)acrylic monomer means an acrylic monomer or a methacrylic monomer, and a (meth)acrylate means an acrylate or a methacrylate.
[樹脂微粒子]
 本発明の樹脂微粒子は、(a)加水分解性シリル基及びラジカル重合性不飽和基と反応する基を有する加水分解性珪素化合物単位、(b)単官能(メタ)アクリル系単量体単位、(c)多官能(メタ)アクリル系単量体単位、及び(d)チオール系化合物単位、を含む樹脂微粒子である。
 本発明の樹脂微粒子は、(e)分子構造内に芳香環を有する単官能ビニル系単量体単位及び/又は(f)反応性界面活性剤単位をさらに含んでいてもよい。
[Resin fine particles]
The resin fine particles of the present invention comprise (a) a hydrolyzable silicon compound unit having a hydrolyzable silyl group and a radically polymerizable unsaturated group-reactive group, (b) a monofunctional (meth)acrylic monomer unit, (c) polyfunctional (meth)acrylic monomer units and (d) thiol compound units.
The resin fine particles of the present invention may further contain (e) a monofunctional vinyl-based monomer unit having an aromatic ring in its molecular structure and/or (f) a reactive surfactant unit.
<(a)単位>
 本発明の樹脂微粒子における(a)単位は、加水分解性シリル基及びラジカル重合性不飽和基と反応する基を有する加水分解性珪素化合物から誘導される単位である。
<(a) unit>
The (a) unit in the fine resin particles of the present invention is a unit derived from a hydrolyzable silicon compound having a group that reacts with a hydrolyzable silyl group and a radically polymerizable unsaturated group.
 加水分解性珪素化合物が有している加水分解性シリル基は、珪素原子に1~3個の加水分解性基が結合したもので、湿気や架橋剤等の存在下、必要に応じて触媒等を用いて縮合反応を起こしシロキサン結合を形成して架橋し得る珪素含有基である。
 加水分解性シリル基の加水分解性基としては、特に限定されず、例えば、水素原子、ハロゲン原子、水酸基、アルコキシ基、フェノキシ基、アリールオキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、イミノオキシ基、メルカプト基、アルケニルオキシ基、オキシム基等からなる群より選ばれる1種以上が挙げられる。中でも、加水分解反応が穏やかであり取扱いが容易である点で、アルコキシシリル基が好ましい。アルコキシシリル基としては、トリメトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、及びトリフェノキシシリル基などのトリアルコキシシリル基;プロピルジメトキシシリル基、メチルジメトキシシリル基、及びメチルジエトキシシリル基などのジアルコキシシリル基;並びに、ジメチルメトキシシリル基、及びジメチルエトキシシリル基などのモノアルコキシシリル基が挙げられる。好ましくはトリアルコキシシリル基であり、より好ましくはトリメトキシシリル基及びトリエトキシシリル基である。
Hydrolyzable silyl groups possessed by hydrolyzable silicon compounds are those in which 1 to 3 hydrolyzable groups are bonded to a silicon atom. is a silicon-containing group capable of undergoing a condensation reaction to form a siloxane bond and be crosslinked.
The hydrolyzable group of the hydrolyzable silyl group is not particularly limited. One or more selected from the group consisting of an acid amide group, an aminooxy group, an iminooxy group, a mercapto group, an alkenyloxy group, an oxime group and the like. Among them, an alkoxysilyl group is preferable because the hydrolysis reaction is mild and the handling is easy. Alkoxysilyl groups include trialkoxysilyl groups such as trimethoxysilyl group, triethoxysilyl group, triisopropoxysilyl group, and triphenoxysilyl group; propyldimethoxysilyl group, methyldimethoxysilyl group, and methyldiethoxysilyl group; and monoalkoxysilyl groups such as dimethylmethoxysilyl and dimethylethoxysilyl groups. A trialkoxysilyl group is preferable, and a trimethoxysilyl group and a triethoxysilyl group are more preferable.
 加水分解性シリル基における珪素原子に結合する加水分解性基以外の基は、特に限定されない。例えば、メチル基、エチル基、プロピル基、イソプロピル基等の炭素数20以下のアルキル基、炭素数20以下のアルケニル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基等からなる群より選ばれる1種以上が挙げられる。 The group other than the hydrolyzable group bonded to the silicon atom in the hydrolyzable silyl group is not particularly limited. For example, alkyl groups having 20 or less carbon atoms such as methyl group, ethyl group, propyl group and isopropyl group, alkenyl groups having 20 or less carbon atoms, aryl groups having 6 to 30 carbon atoms, arylalkyl groups having 7 to 30 carbon atoms, etc. One or more selected from the group consisting of
 加水分解性珪素化合物が有しているラジカル重合性不飽和基と反応する基は、(メタ)アクリロイル基、(メタ)アクリルアミド基、ビニル基、スチリル基等のラジカル重合性不飽和基と反応する基であれば、特に限定されない。
 本発明の加水分解性珪素化合物が有しているラジカル重合性不飽和基と反応する基としては、例えば、(メタ)アクリロイル基、(メタ)アクリルアミド基、ビニル基、スチリル基等のラジカル重合性不飽和基、メルカプト基、ヒドロキシル基、アミノ基等からなる群より選ばれる1種以上が挙げられる。
The group that the hydrolyzable silicon compound has has a radically polymerizable unsaturated group that reacts with a radically polymerizable unsaturated group such as a (meth)acryloyl group, a (meth)acrylamide group, a vinyl group, and a styryl group. It is not particularly limited as long as it is a group.
Examples of groups that react with radically polymerizable unsaturated groups possessed by the hydrolyzable silicon compound of the present invention include radically polymerizable groups such as (meth)acryloyl groups, (meth)acrylamide groups, vinyl groups, and styryl groups. One or more selected from the group consisting of unsaturated groups, mercapto groups, hydroxyl groups, amino groups and the like can be mentioned.
 本発明において、加水分解性シリル基及びラジカル重合性不飽和基と反応する基を有する加水分解性珪素化合物としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシランからなる群より選ばれる1種以上が挙げられる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 In the present invention, the hydrolyzable silicon compound having a hydrolyzable silyl group and a radically polymerizable unsaturated group-reactive group includes, for example, vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane, 3 -methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-mercaptopropylmethyl One or more selected from the group consisting of dimethoxysilane and 3-mercaptopropyltrimethoxysilane. These may be used individually by 1 type, and may be used in mixture of 2 or more types.
<(b)単位>
 本発明の樹脂微粒子における(b)単位は、単官能(メタ)アクリル系単量体から誘導される単位である。
 単官能(メタ)アクリル系単量体としては、分子内に(メタ)アクリロイル基を1つだけ有する化合物であれば特に限定されない。例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸イソステアリル、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸エイコシル等のアルキル基炭素数1~20の(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の脂環構造をエステル部に有する(メタ)アクリル酸脂環式エステル;等からなる群より選ばれる1種以上が挙げられる。好ましくは、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル等のアルキル基炭素数1~10の(メタ)アクリル酸アルキルエステルの1種以上が汎用的で好ましく、耐熱性が求められる用途においては、(メタ)アクリル酸ブチル、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等のアルキル基炭素数2以上の(メタ)アクリル酸アルキルエステルが特に好ましい。これら単官能(メタ)アクリル系単量体は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
<(b) unit>
The (b) unit in the fine resin particles of the present invention is a unit derived from a monofunctional (meth)acrylic monomer.
The monofunctional (meth)acrylic monomer is not particularly limited as long as it is a compound having only one (meth)acryloyl group in the molecule. For example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, (meth) acrylic s-butyl acid, t-butyl (meth)acrylate, pentyl (meth)acrylate, isopentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, ( 2-ethylhexyl methacrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, undecyl (meth)acrylate, Dodecyl (meth)acrylate, Tridecyl (meth)acrylate, Tetradecyl (meth)acrylate, Pentadecyl (meth)acrylate, Hexadecyl (meth)acrylate, Heptadecyl (meth)acrylate, Octadecyl (meth)acrylate, ( (Meth)acrylic acid alkyl esters having alkyl groups of 1 to 20 carbon atoms such as isostearyl (meth)acrylate, nonadecyl (meth)acrylate, and eicosyl (meth)acrylate; cyclohexyl (meth)acrylate, (meth)acrylic acid One or more selected from the group consisting of (meth)acrylic acid alicyclic esters having an alicyclic structure in the ester portion, such as isobornyl and dicyclopentanyl (meth)acrylate; and the like. Preferably, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, (meth)acrylate s-butyl acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, isopentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, 2-Ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, and other (meth)acryl groups having 1 to 10 carbon atoms in the alkyl group One or more acid alkyl esters are preferred for general use, and in applications where heat resistance is required, butyl (meth)acrylate, alkyl (meth)acrylate, cyclohexyl (meth)acrylate, and isobornyl (meth)acrylate. , Dicyclopentanyl (meth)acrylate and the like are particularly preferable. These monofunctional (meth)acrylic monomers may be used singly or in combination of two or more.
<(c)単位>
 本発明の樹脂微粒子における(c)単位は、多官能(メタ)アクリル系単量体から誘導される単位である。
 多官能(メタ)アクリル系単量体としては、分子内に(メタ)アクリロイル基等のラジカル重合性不飽和基を2つ以上有する化合物であれば、特に限定されない。例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、デカエチレングリコールジ(メタ)アクリレート、ペンタデカエチレングリコールジ(メタ)アクリレート、ペンタコンタヘクタエチレングリコールジ(メタ)アクリレート、1,3-ブチレンジ(メタ)アクリレート、アリル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等からなる群より選ばれる1種以上が挙げられる。これらの中でも、エチレングリコールジ(メタ)アクリレート(特に、エチレングリコールジメタクリレート)、アリル(メタ)アクリレート(メタクリル酸アリル)が好ましい。これら多官能(メタ)アクリル系単量体は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
<(c) unit>
The (c) unit in the fine resin particles of the present invention is a unit derived from a polyfunctional (meth)acrylic monomer.
The polyfunctional (meth)acrylic monomer is not particularly limited as long as it is a compound having two or more radically polymerizable unsaturated groups such as (meth)acryloyl groups in the molecule. For example, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, decaethylene glycol di(meth)acrylate, pentadecaethylene glycol di(meth)acrylate, pentacontahectorethylene glycol Selected from the group consisting of di(meth)acrylate, 1,3-butylene di(meth)acrylate, allyl(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tetraacrylate, dipentaerythritol hexa(meth)acrylate, etc. 1 or more types are included. Among these, ethylene glycol di(meth)acrylate (especially ethylene glycol dimethacrylate) and allyl (meth)acrylate (allyl methacrylate) are preferred. These polyfunctional (meth)acrylic monomers may be used singly or in combination of two or more.
<(d)単位>
 本発明の樹脂微粒子における(d)単位は、チオール系化合物から誘導される単位である。
 チオール系化合物としては、分子内にチオール基を有する化合物であれば特に限定されず、単官能チオール系化合物及び多官能チオール系化合物が挙げられる。
 チオール系化合物は、連鎖移動剤として機能し、重合体微粒子の構成単位となる。チオール系化合物は、加水分解性シリル基及びラジカル重合性不飽和基と反応する基を有する加水分解性珪素化合物、単官能(メタ)アクリル系単量体及び多官能(メタ)アクリル系単量体が重合するラジカル重合系において、成長ポリマー鎖からラジカルを受け取ることでポリマー鎖の伸長を停止させるとともに、新たなラジカルを発生させて別のポリマー鎖の成長反応を開始させるものである。それにより、樹脂微粒子の分子量を揃えることが可能となり、粒度分布を揃えることが可能となる。
<(d) unit>
The (d) unit in the fine resin particles of the present invention is a unit derived from a thiol compound.
The thiol-based compound is not particularly limited as long as it is a compound having a thiol group in the molecule, and includes monofunctional thiol-based compounds and polyfunctional thiol-based compounds.
A thiol-based compound functions as a chain transfer agent and becomes a structural unit of polymer fine particles. The thiol compound is a hydrolyzable silicon compound having a hydrolyzable silyl group and a group that reacts with a radically polymerizable unsaturated group, a monofunctional (meth)acrylic monomer and a polyfunctional (meth)acrylic monomer. In the radical polymerization system in which is polymerized, it receives radicals from the growing polymer chain to terminate the elongation of the polymer chain and generates new radicals to initiate the growth reaction of another polymer chain. As a result, the molecular weight of the resin fine particles can be made uniform, and the particle size distribution can be made uniform.
 単官能チオール系化合物としては、分子内にチオール基を1つ有する化合物であれば特に限定されない。例えば、1-ブタンチオール、1-オクタンチオール、1-デカンチオール、1-ドデカンチオール、1-ヘキサデカンチオール、tert-ドデカンチオール等のチオール化合物;チオグリコール酸、3-メルカプトプロピオン酸、メルカプトこはく酸等のチオール基を有する酸化合物又はそのエステル等からなる群より選ばれる1種以上が挙げられる。これらの単官能チオール系化合物は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The monofunctional thiol-based compound is not particularly limited as long as it is a compound having one thiol group in the molecule. Thiol compounds such as, for example, 1-butanethiol, 1-octanethiol, 1-decanethiol, 1-dodecanethiol, 1-hexadecanethiol, tert-dodecanethiol; thioglycolic acid, 3-mercaptopropionic acid, mercaptosuccinic acid, etc. and one or more selected from the group consisting of acid compounds having a thiol group, esters thereof, and the like. These monofunctional thiol compounds may be used singly or in combination of two or more.
 多官能チオール系化合物としては、分子内にチオール基を2つ以上有する化合物であれば特に限定されない。例えば、1,2-エタンジチオール、1,3-プロパンジチオール、1,4-ブタンジチオール、1,6-へキサンジチオール、1,8-オクタンジチオール、1,2-シクロヘキサンジチオール、デカンジチオール、エチレングリコールビスチオグリコレート、エチレングリコールビスチオプロピオネレート、エチレングリコールビスチオグリコレート(EGTG)、1,4-ブタンジオールビスチオプロピオネート(BDTP)、トリメチロールプロパントリスチオグリコレート(TMTG)、トリメチロールプロパントリスチオプロピオネート、ペンタエリスリトールテトラキスチオグリコレート(PETG)、ペンタエリスリトールテトラキスチオプロピオネート、ジペンタエリスリトールヘキサチオプロピオネート、トリメルカプトプロピオン酸トリス(2-ヒドロキシエチル)イソシアヌレート、1,4-ジメチルメルカプトベンゼン、2,4,6-トリメルカプト-s-トリアジン、2-(N,N-ジブチルアミノ)-4,6-ジメルカプト-s-トリアジン等からなる群より選ばれる1種以上が挙げられる。これらの多官能チオール系化合物は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 これらの中でも、エチレングリコールビスチオグリコレート(EGTG)、1,4-ブタンジオールビスチオプロピオネート(BDTP)、トリメチロールプロパントリスチオグリコレート(TMTG)、ペンタエリスリトールテトラキスチオグリコレート(PETG)からなる群より選ばれる1種以上が好ましい。
The polyfunctional thiol-based compound is not particularly limited as long as it is a compound having two or more thiol groups in the molecule. For example, 1,2-ethanedithiol, 1,3-propanedithiol, 1,4-butanedithiol, 1,6-hexanedithiol, 1,8-octanedithiol, 1,2-cyclohexanedithiol, decanedithiol, ethylene glycol Bisthioglycolate, ethylene glycol bisthiopropionate, ethylene glycol bisthioglycolate (EGTG), 1,4-butanediol bisthiopropionate (BDTP), trimethylolpropane tristhioglycolate (TMTG), tri methylolpropane tristhiopropionate, pentaerythritol tetrakisthioglycolate (PETG), pentaerythritol tetrakisthiopropionate, dipentaerythritol hexathiopropionate, trimercaptopropionate tris(2-hydroxyethyl) isocyanurate, 1 ,4-dimethylmercaptobenzene, 2,4,6-trimercapto-s-triazine, 2-(N,N-dibutylamino)-4,6-dimercapto-s-triazine and the like. is mentioned. These polyfunctional thiol compounds may be used singly or in combination of two or more.
Among these, from ethylene glycol bisthioglycolate (EGTG), 1,4-butanediol bisthiopropionate (BDTP), trimethylolpropane tristhioglycolate (TMTG), pentaerythritol tetrakisthioglycolate (PETG) One or more selected from the group consisting of is preferable.
<(e)単位>
 本発明の樹脂微粒子は、(a)~(d)単位に加えて、(e)単位を含んでいてもよい。
 (e)単位は、分子構造内に芳香環を有する単官能ビニル系単量体から誘導される単位である。
<(e) unit>
The resin fine particles of the present invention may contain the (e) unit in addition to the (a) to (d) units.
The (e) unit is a unit derived from a monofunctional vinyl-based monomer having an aromatic ring in its molecular structure.
 分子構造内に芳香環を有する単官能ビニル系単量体としては、分子内に芳香環を有するとともに、(メタ)アクリロイル基、(メタ)アクリルアミド基、ビニル基、スチリル基等のラジカル重合性不飽和基を1つ有する単量体である。例えば、単官能芳香族炭化水素系単量体、多官能芳香族炭化水素系単量体、芳香環含有(メタ)アクリル酸エステル系単量体等からなる群より選ばれる1種以上が挙げられる。これらの分子構造内に芳香環を有する単官能ビニル系単量体単位は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 Monofunctional vinyl-based monomers having an aromatic ring in the molecular structure include those having an aromatic ring in the molecule as well as radically polymerizable non-monomers such as (meth)acryloyl groups, (meth)acrylamide groups, vinyl groups, and styryl groups. It is a monomer having one saturated group. Examples include one or more selected from the group consisting of monofunctional aromatic hydrocarbon-based monomers, polyfunctional aromatic hydrocarbon-based monomers, aromatic ring-containing (meth)acrylic acid ester-based monomers, and the like. . These monofunctional vinyl-based monomer units having an aromatic ring in the molecular structure may be used singly or in combination of two or more.
 単官能芳香族炭化水素系単量体としては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン(ビニルトルエン)、α-メチルスチレン、m-エチルビニルベンゼン、p-エチルビニルベンゼン、ビニル安息香酸、スチレンスルホン酸、スチレンスルホン酸ナトリウム、スチレンスルホン酸アンモニウム等のスチレンスルホン酸塩、ビニルナフタレン、アリルベンゼン等からなる群より選ばれる1種以上が挙げられる。これらの中でも、スチレン、α-メチルスチレン、スチレンスルホン酸ナトリウムが好ましい。これら単官能芳香族炭化水素系単量体は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 Examples of monofunctional aromatic hydrocarbon monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene (vinyltoluene), α-methylstyrene, m-ethylvinylbenzene, p-ethyl One or more selected from the group consisting of vinyl benzene, vinyl benzoic acid, styrene sulfonic acid, styrene sulfonates such as sodium styrene sulfonate and ammonium styrene sulfonate, vinyl naphthalene, allylbenzene and the like. Among these, styrene, α-methylstyrene and sodium styrenesulfonate are preferred. These monofunctional aromatic hydrocarbon-based monomers may be used alone or in combination of two or more.
 芳香環含有(メタ)アクリル酸エステル系単量体としては、例えば、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニル及びフェノキシエチル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルフタル酸等の分子構造内に芳香環を有する(メタ)アクリル酸エステル等からなる群より選ばれる1種以上が挙げられる。なお、本発明においては、(メタ)アクリル酸ベンジル等の分子構造内に芳香環を有する(メタ)アクリル酸エステル系単量体は、「分子構造内に芳香環を有する単官能ビニル系単量体」として取り扱うものとする。 Examples of aromatic ring-containing (meth)acrylic acid ester monomers include benzyl (meth)acrylate, phenyl (meth)acrylate and phenoxyethyl (meth)acrylate, 2-(meth)acryloyloxyethyl phthalate, and the like. One or more selected from the group consisting of (meth)acrylic acid esters having an aromatic ring in the molecular structure. In the present invention, a (meth)acrylic acid ester-based monomer having an aromatic ring in its molecular structure, such as benzyl (meth)acrylate, is defined as "a monofunctional vinyl-based monomer having an aromatic ring in its molecular structure. shall be treated as "body".
<(f)単位>
 本発明の樹脂微粒子は、(a)~(d)単位に加えて、(f)単位を含んでいてもよい。
 (f)単位は、反応性界面活性剤から誘導される単位である。
 反応性界面活性剤としては、例えば、アニオン系反応性界面活性剤及びノニオン系反応性界面活性剤からなる群より選ばれる1種以上が挙げられる。アニオン系反応性界面活性剤としては、後述の[樹脂微粒子の製造方法]の<界面活性剤>で挙げられているアニオン系反応性界面活性剤からなる群より選ばれる1種以上が挙げられる。ノニオン系反応性界面活性剤としては、後述の[樹脂微粒子の製造方法]の<界面活性剤>で挙げられているノニオン系反応性界面活性剤からなる群より選ばれる1種以上が挙げられる。
<(f) unit>
The fine resin particles of the present invention may contain the (f) unit in addition to the (a) to (d) units.
The (f) units are units derived from reactive surfactants.
Examples of reactive surfactants include one or more selected from the group consisting of anionic reactive surfactants and nonionic reactive surfactants. Examples of the anionic reactive surfactant include one or more selected from the group consisting of the anionic reactive surfactants exemplified in <Surfactant> in [Method for producing fine resin particles] below. Examples of the nonionic reactive surfactant include one or more selected from the group consisting of nonionic reactive surfactants exemplified in <Surfactant> in [Method for producing fine resin particles] below.
<その他の単位>
 本発明の樹脂微粒子は、(a)~(f)単位以外の単位(以下、「その他の単位」)を含んでいてもよい。
 その他の単位としては、例えば、脂肪酸ビニルエステル系単量体、ハロゲン化オレフィン系単量体、シアン化ビニル系単量体、不飽和カルボン酸系単量体、不飽和ポリカルボン酸エステル系単量体、不飽和カルボン酸アミド系単量体、不飽和カルボン酸アミド類メチロール化物系単量体、多官能芳香族炭化水素系単量体、多官能アリル系単量体等からなる群より選ばれる1種以上の単量体から誘導される単位が挙げられる。
<Other units>
The resin fine particles of the present invention may contain units other than the units (a) to (f) (hereinafter referred to as "other units").
Other units include, for example, fatty acid vinyl ester-based monomers, halogenated olefin-based monomers, vinyl cyanide-based monomers, unsaturated carboxylic acid-based monomers, and unsaturated polycarboxylic acid ester-based monomers. isomers, unsaturated carboxylic acid amide-based monomers, unsaturated carboxylic acid amide methylol compound-based monomers, polyfunctional aromatic hydrocarbon-based monomers, polyfunctional allyl-based monomers, etc. Units derived from one or more monomers are included.
 脂肪酸ビニルエステル系単量体としては、例えば、酢酸ビニル、プロピオン酸ビニル等が挙げられる。これら脂肪酸ビニルエステル系単量体は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 ハロゲン化オレフィン系単量体としては、例えば、塩化ビニル、塩化ビニリデン、テトラフルオロエチレン、フッ化ビニリデン等が挙げられる。これらハロゲン化オレフィン系単量体は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 シアン化ビニル系単量体としては、例えば、(メタ)アクリロニトリル等が挙げられる。
 不飽和カルボン酸系単量体としては、不飽和カルボン酸、その塩又は無水物を含むものであり、例えば、(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、それらのアンモニウムや金属塩、無水マレイン酸等が挙げられる。これら不飽和カルボン酸系単量体は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
Examples of fatty acid vinyl ester monomers include vinyl acetate and vinyl propionate. These fatty acid vinyl ester monomers may be used singly or in combination of two or more.
Examples of halogenated olefinic monomers include vinyl chloride, vinylidene chloride, tetrafluoroethylene, and vinylidene fluoride. These halogenated olefinic monomers may be used singly or in combination of two or more.
Vinyl cyanide-based monomers include, for example, (meth)acrylonitrile.
Unsaturated carboxylic acid-based monomers include unsaturated carboxylic acids, their salts or anhydrides, such as (meth)acrylic acid, crotonic acid, maleic acid, fumaric acid, their ammonium and metal salts. , maleic anhydride, and the like. These unsaturated carboxylic acid-based monomers may be used singly or in combination of two or more.
 不飽和ポリカルボン酸エステル系単量体としては、不飽和ジカルボン酸モノエステル、その塩、不飽和ジカルボン酸ジエステルを含むものであり、例えば、モノブチルマレイン酸、それらのアンモニウムや金属塩、マレイン酸ジメチル等が挙げられる。これら不飽和ポリカルボン酸エステル系単量体は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 不飽和カルボン酸アミド系単量体としては、例えば、(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド等が挙げられる。これら不飽和カルボン酸アミド系単量体は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 不飽和カルボン酸アミド類メチロール化物系単量体としては、例えば、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、メチロール化ジアセトンアクリルアミド、及び、これら単量体と炭素数1~8のアルコール類とのエーテル化物等が挙げられる。これら不飽和カルボン酸アミド類メチロール化物系単量体は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
The unsaturated polycarboxylic acid ester monomers include unsaturated dicarboxylic acid monoesters, salts thereof, and unsaturated dicarboxylic acid diesters. Examples include monobutyl maleic acid, their ammonium and metal salts, maleic acid dimethyl and the like. These unsaturated polycarboxylic acid ester-based monomers may be used singly or in combination of two or more.
Examples of unsaturated carboxylic acid amide-based monomers include (meth)acrylamide and diacetone (meth)acrylamide. These unsaturated carboxylic acid amide-based monomers may be used singly or in combination of two or more.
Examples of unsaturated carboxylic acid amide methylolated monomers include N-methylolacrylamide, N-methylolmethacrylamide, methylolated diacetoneacrylamide, and these monomers and alcohols having 1 to 8 carbon atoms. and the like. These unsaturated carboxylic acid amide methylol compound monomers may be used singly or in combination of two or more.
 多官能芳香族炭化水素系単量体としては、例えば、m-又はp-ジビニルベンゼン、1,3-、1,8-、1,4-、1,5-、2,3-、2,6-又は2,7-ジビニルナフタレン、4,4’-、4,3’-、2,2’-又は2,4-ジビニルビフェニル、1,2-、1,3-、1,4-ジイソプロペニルベンゼン、1,2-ジビニル-3,4-ジメチルベンゼン及びこれらの誘導体等からなる群より選ばれる1種以上が挙げられる。これらの多官能芳香族炭化水素系単量体は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 多官能アリル系単量体としては、例えば、ジアリルフタレート、トリアリルシアヌレート等が挙げられる。これらの多官能アリル系単量体は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
Examples of polyfunctional aromatic hydrocarbon monomers include m- or p-divinylbenzene, 1,3-, 1,8-, 1,4-, 1,5-, 2,3-, 2, 6- or 2,7-divinylnaphthalene, 4,4'-, 4,3'-, 2,2'- or 2,4-divinylbiphenyl, 1,2-, 1,3-, 1,4-di At least one selected from the group consisting of isopropenylbenzene, 1,2-divinyl-3,4-dimethylbenzene, derivatives thereof, and the like. These polyfunctional aromatic hydrocarbon-based monomers may be used singly or in combination of two or more.
Examples of polyfunctional allylic monomers include diallyl phthalate and triallyl cyanurate. These polyfunctional allylic monomers may be used singly or in combination of two or more.
<樹脂微粒子の組成>
 樹脂微粒子を構成する各単位の量比は、樹脂微粒子の用途や求める特性等に応じて適宜定めることができ、特に限定されない。
 (a)加水分解性シリル基及びラジカル重合性不飽和基と反応する基を有する加水分解性珪素化合物単位は、(a)~(d)単位の合計を100質量%としたときに、例えば0.1質量%以上、好ましくは0.5質量%以上であり、例えば10質量%以下、好ましくは5質量%以下である。
 (b)単官能(メタ)アクリル系単量体単位は、(a)~(d)単位の合計を100質量%としたときに、例えば10質量%以上、好ましくは15質量%以上であり、例えば90質量%以下、好ましくは85質量%以下である。
 (c)多官能(メタ)アクリル系単量体単位は、(a)~(d)単位の合計を100質量%としたときに、例えば3質量%以上、好ましくは5質量%以上であり、例えば50質量%以下、好ましくは40質量%以下である。
 (d)チオール系化合物単位は、(a)~(d)単位の合計を100質量%としたときに、例えば0.1質量%以上、好ましくは0.3質量%以上であり、例えば5質量%以下、好ましくは3質量%以下である。
 (e)分子構造内に芳香環を有する単官能ビニル系単量体単位は、(a)~(e)単位の合計を100質量%としたときに、0質量%以上、例えば5質量%以上であり、例えば70質量%以下、好ましくは60質量%以下である。
 (f)反応性界面活性剤単位は、(a)~(d)及び(f)単位の合計を100質量%としたときに、0質量%以上、例えば0.1質量%以上、好ましくは0.3質量%以上であり、例えば5質量%以下、好ましくは3質量%以下である。
<Composition of fine resin particles>
The amount ratio of each unit constituting the resin fine particles can be appropriately determined according to the use of the resin fine particles, desired properties, etc., and is not particularly limited.
(a) The hydrolyzable silicon compound unit having a hydrolyzable silyl group and a radically polymerizable unsaturated group-reactive group is, for example, 0 when the total of (a) to (d) units is 100% by mass. .1% by mass or more, preferably 0.5% by mass or more, and for example 10% by mass or less, preferably 5% by mass or less.
(b) the monofunctional (meth)acrylic monomer unit is, for example, 10% by mass or more, preferably 15% by mass or more, when the total of (a) to (d) units is 100% by mass; For example, it is 90% by mass or less, preferably 85% by mass or less.
(c) the polyfunctional (meth)acrylic monomer unit is, for example, 3% by mass or more, preferably 5% by mass or more, when the total of (a) to (d) units is 100% by mass; For example, it is 50% by mass or less, preferably 40% by mass or less.
(d) The thiol-based compound unit is, for example, 0.1% by mass or more, preferably 0.3% by mass or more, when the total of (a) to (d) units is 100% by mass, for example 5% by mass % or less, preferably 3 mass % or less.
(e) the monofunctional vinyl-based monomer unit having an aromatic ring in the molecular structure is 0% by mass or more, for example 5% by mass or more, when the total of units (a) to (e) is taken as 100% by mass. and is, for example, 70% by mass or less, preferably 60% by mass or less.
(f) The reactive surfactant unit is 0% by mass or more, for example 0.1% by mass or more, preferably 0% by mass when the total of (a) to (d) and (f) units is 100% by mass. .3% by mass or more, for example, 5% by mass or less, preferably 3% by mass or less.
<蛍光X線分析により測定される樹脂微粒子中の珪素元素の含有量>
 本発明の樹脂微粒子は、蛍光X線分析により測定される樹脂微粒子中の珪素元素の含有量が0.03質量%以上、1質量%以下であることが好ましく、0.05質量%以上、0.50質量%以下であることがより好ましい。このような特性を示す樹脂微粒子は、耐熱性に非常に優れ、かつフィルム化した際にヘイズなどに影響を与えないものである。
 本発明における樹脂微粒子中の珪素元素は、樹脂微粒子を構成する「加水分解性シリル基及びラジカル重合性不飽和基と反応する基を有する加水分解性珪素化合物単位、単官能(メタ)アクリル系単量体単位、多官能(メタ)アクリル系単量体単位、及びチオール系化合物単位、を含む樹脂」中の珪素元素を意味する。蛍光X線分析による樹脂微粒子中の珪素元素の含有量の測定方法としては、例えば後述の実施例において記載した方法を用いることができる。
<Content of Silicon Element in Resin Fine Particles Measured by Fluorescent X-ray Analysis>
In the resin fine particles of the present invention, the content of silicon element in the resin fine particles measured by fluorescent X-ray analysis is preferably 0.03% by mass or more and 1% by mass or less, and preferably 0.05% by mass or more and 0.5% by mass. It is more preferably 0.50% by mass or less. The fine resin particles exhibiting such properties are extremely excellent in heat resistance and do not affect haze or the like when formed into a film.
The silicon element in the resin fine particles in the present invention is defined as "a hydrolyzable silicon compound unit having a group that reacts with a hydrolyzable silyl group and a radically polymerizable unsaturated group, a monofunctional (meth)acrylic unit," which constitutes the resin fine particles. It means a silicon element in a "resin containing a monomer unit, a polyfunctional (meth)acrylic monomer unit, and a thiol compound unit". As a method for measuring the content of silicon element in the resin microparticles by fluorescent X-ray analysis, for example, the method described in Examples below can be used.
<窒素雰囲気下、280℃で1時間加熱処理時の加熱減量割合>
 本発明の樹脂微粒子は、窒素雰囲気下、280℃で1時間加熱処理時の加熱減量割合が2.5%以下であることが好ましい。このような特性を示す樹脂微粒子は、耐熱性が非常に優れたものである。
 窒素雰囲気下、280℃で1時間加熱処理時の加熱減量割合の測定方法としては、例えば後述の実施例において記載した方法を用いることができる。
<Percentage of weight loss on heating after heat treatment at 280°C for 1 hour under nitrogen atmosphere>
It is preferable that the fine resin particles of the present invention have a heat weight loss rate of 2.5% or less when heat-treated at 280° C. for 1 hour in a nitrogen atmosphere. The fine resin particles exhibiting such properties are extremely excellent in heat resistance.
As a method for measuring the weight loss ratio upon heating at 280° C. for 1 hour in a nitrogen atmosphere, for example, the method described in Examples below can be used.
<窒素雰囲気下での3%熱分解温度>
 本発明の樹脂微粒子は、窒素雰囲気下での3%熱分解温度が350℃以上であることが好ましい。
 窒素雰囲気下での3%熱分解温度は、室温付近から樹脂微粒子を加熱した場合において、樹脂微粒子の質量が3%減少した際の温度が350℃以上であることを意味する。このような特性を示す樹脂微粒子は、耐熱性が非常に優れたものである。
 窒素雰囲気下での3%熱分解温度の測定方法としては、例えば後述の実施例において記載した方法を用いることができる。
<3% thermal decomposition temperature in nitrogen atmosphere>
The resin fine particles of the present invention preferably have a 3% thermal decomposition temperature of 350° C. or higher in a nitrogen atmosphere.
The 3% thermal decomposition temperature in a nitrogen atmosphere means that the temperature at which the mass of the fine resin particles decreases by 3% when the fine resin particles are heated from around room temperature is 350° C. or higher. The fine resin particles exhibiting such properties are extremely excellent in heat resistance.
As a method for measuring the 3% thermal decomposition temperature in a nitrogen atmosphere, for example, the method described in Examples below can be used.
<体積平均粒子径>
 本発明の樹脂微粒子の体積平均粒子径(体積平均一次粒子径)は、特に限定されず、目的や用途に応じて適宜設定することができる。例えば0.05μm以上、好ましくは0.07μm以上、より好ましくは0.1μm以上であり、例えば3μm以下、好ましくは2μm以下、より好ましくは1.5μm以下である。
 体積平均粒子径の測定方法としては、例えば、ベックマンコールター社製のレーザー散乱・回折式粒度分布測定装置を用いて測定することができる。具体的な体積平均粒子径の測定方法としては、例えば後述の実施例において記載した方法を用いることができる。
<Volume average particle size>
The volume-average particle size (volume-average primary particle size) of the resin fine particles of the present invention is not particularly limited, and can be appropriately set according to the purpose and application. For example, it is 0.05 μm or more, preferably 0.07 μm or more, more preferably 0.1 μm or more, and for example 3 μm or less, preferably 2 μm or less, more preferably 1.5 μm or less.
As a method for measuring the volume average particle size, for example, it can be measured using a laser scattering/diffraction particle size distribution analyzer manufactured by Beckman Coulter. As a specific method for measuring the volume-average particle size, for example, the method described in Examples below can be used.
<体積平均粒子径の変動係数>
 本発明の樹脂微粒子の体積平均粒子径の変動係数は、特に限定されず、目的や用途に応じて適宜設定することができる。例えば25%以下、好ましくは20%以下、より好ましくは17%以下である。
 樹脂微粒子の体積平均粒子径の変動係数は、次式(1)から求められる数値であり、データの分布幅を表す。
  変動係数(%)=標準偏差×100/体積平均一次粒子径   (1)
 ここで、樹脂微粒子の体積平均粒子径(体積平均一次粒子径)及びその標準偏差は、例えば、ベックマンコールター社製のレーザー散乱・回折式粒度分布測定装置を用いて測定し得ることができる。
 体積平均粒子径の変動係数は、例えば後述の実施例において記載した方法で得ることができる。
<Variation coefficient of volume average particle size>
The variation coefficient of the volume-average particle size of the resin fine particles of the present invention is not particularly limited, and can be appropriately set according to the purpose and application. For example, it is 25% or less, preferably 20% or less, more preferably 17% or less.
The coefficient of variation of the volume-average particle size of resin fine particles is a numerical value obtained from the following equation (1), and represents the distribution width of data.
Variation coefficient (%) = standard deviation x 100/volume average primary particle size (1)
Here, the volume average particle size (volume average primary particle size) and its standard deviation of the fine resin particles can be measured using, for example, a laser scattering/diffraction particle size distribution analyzer manufactured by Beckman Coulter.
The coefficient of variation of the volume average particle size can be obtained, for example, by the method described in Examples below.
<30万個中の5μm以上の粒子個数>
 本発明の樹脂微粒子は、下記測定範囲における30万個中の5μm以上の粒子個数が1個以下であることが好ましい。
(測定範囲)
 粒子径の測定範囲:0.5μm~200μm
 粒子の円形度の測定範囲:0.97~1.00
<Number of particles of 5 µm or more in 300,000>
In the resin fine particles of the present invention, the number of particles having a diameter of 5 μm or more in 300,000 particles in the following measurement range is preferably 1 or less.
(Measurement range)
Measurement range of particle size: 0.5 μm to 200 μm
Particle circularity measurement range: 0.97 to 1.00
 樹脂微粒子30万個中の5μm以上の粒子個数が1個以下とする方法としては、例えば、樹脂微粒子を分級する方法が挙げられる。分級方法としては、遠心分離機や気流分級機などの遠心力で分級する方法や、所望の目開き、絶対濾過精度のメッシュやフィルターを通過させることで分級する方法などがあるが、特に限定されない。
 特に、重合反応により得られた重合体微粒子スラリーを、所望の絶対濾過精度のフィルターを通過させることで樹脂微粒子の湿式分級を行うことにより、樹脂微粒子30万個中の5μm以上の粒子個数を調整することができる。
 30万個中の5μm以上の粒子個数の測定方法としては、例えば後述の実施例において記載した方法を用いることができる。
As a method for reducing the number of particles having a diameter of 5 μm or more in 300,000 resin fine particles to 1 or less, for example, a method of classifying resin fine particles can be mentioned. Classification methods include, but are not particularly limited to, a method of classifying by centrifugal force such as a centrifuge or an air classifier, and a method of classifying by passing through a mesh or filter with a desired opening and absolute filtration accuracy. .
In particular, the polymer fine particle slurry obtained by the polymerization reaction is passed through a filter with a desired absolute filtration accuracy to perform wet classification of the resin fine particles, thereby adjusting the number of particles of 5 μm or more in 300,000 resin fine particles. can do.
As a method for measuring the number of particles of 5 μm or more in 300,000 particles, for example, the method described in Examples below can be used.
<樹脂微粒子造粒体>
 本発明の樹脂微粒子造粒体は、樹脂微粒子が複数個凝集することで構成されたものである。
 樹脂微粒子造粒体は、重合工程で得られた樹脂微粒子スラリーを、噴霧乾燥・凍結造粒乾燥等の手段により得ることができる。噴霧乾燥に際しては、例えば、樹脂微粒子スラリーの入口温度が80℃以上220℃以下であり、樹脂微粒子造粒体の出口温度が50℃以上100℃以下である噴霧乾燥機(スプレードライヤー)を用いることができる。得られた造粒体は、樹脂微粒子自体よりも、取扱性に優れる場合がある。
 樹脂微粒子造粒体は、必要に応じて分級して、粒子径を揃えることができる。分級は、公知の手段で行うことができる。
 樹脂微粒子造粒体の体積平均粒子径は、特に限定されない。例えば5~200μm、好ましくは10~100μmとすることができる。
<Resin fine particle granule>
The resin fine particle granule of the present invention is formed by aggregating a plurality of resin fine particles.
The resin fine particle granules can be obtained by spray drying, freeze granulation drying, or the like of the resin fine particle slurry obtained in the polymerization step. For spray drying, for example, a spray dryer having an inlet temperature of the fine resin particle slurry of 80° C. or higher and 220° C. or lower and an outlet temperature of the resin fine particle granules of 50° C. or higher and 100° C. or lower may be used. can be done. The obtained granules may be superior in handleability to the fine resin particles themselves.
The resin fine particle granules can be classified as necessary to make the particle size uniform. Classification can be performed by known means.
The volume average particle size of the resin fine particle granules is not particularly limited. For example, it can be 5 to 200 μm, preferably 10 to 100 μm.
 得られた樹脂微粒子造粒体は、解砕して樹脂微粒子としてもよい。解砕方法としては、例えば、機械式粉砕機であるブレードミル、スーパーローター、ハンマーミル及び気流式粉砕機であるナノグラインディングミル(ジェットミル)等を用いる乾式解砕方法や、ビーズミル及びボールミル等を用いる湿式解砕方法が挙げられる。解砕して分散された樹脂微粒子は、溶剤への分散性がよい場合がある。 The obtained resin fine particle granules may be pulverized into resin fine particles. As the crushing method, for example, a dry crushing method using a mechanical crusher such as a blade mill, a super rotor, a hammer mill, and an airflow crusher such as a nano grinding mill (jet mill), a bead mill, a ball mill, etc. A wet crushing method using The fine resin particles that are pulverized and dispersed may have good dispersibility in a solvent.
<樹脂微粒子の用途>
 本発明の樹脂微粒子は、耐熱性及び透明性に優れ、粒度分布が狭く、粒子径が小さい。本発明の樹脂微粒子は、このような特徴を生かして、各種の用途に供することができる。例えば、樹脂成型品(樹脂フィルム)用貼り付き防止剤(アンチブロッキング剤)、各種樹脂成型品の改質剤、光拡散体や防眩・低反射等の光学部材、塗料用添加剤、各種電子デバイスの微小部位間のスペーサー用途、各種電池部材の造孔剤、電気接続を担う導電性微粒子のコア粒子等として用いることができる。
 例えば、樹脂微粒子自体を樹脂フィルム用貼り付き防止剤(アンチブロッキング剤)として樹脂に混合して樹脂組成物とし、フィルム等の樹脂成形体を形成することができる。特に、本発明の樹脂微粒子は、耐熱性及び透明性に優れ、粒度分布が狭く、粒子径が小さいことから、フィルム形成用樹脂組成物を作製する際に、添加量を増やしても、フィルムのヘイズ等に与える影響を抑えることができる。また、樹脂コンパウンド時にかかる熱負荷等に起因する樹脂メヤニの発生が抑制されており、歩留まりが悪化するおそれが少ない。
 この樹脂微粒子を樹脂フィルム用貼り付き防止剤、特に光学用途向け樹脂フィルム用貼り付き防止剤として用いることで、高い透明性の光学部材、例えば、防眩フィルムや光拡散フィルム等の光学フィルムや光拡散体等を安定的に生産することが可能となる。
<Uses of fine resin particles>
The resin fine particles of the present invention are excellent in heat resistance and transparency, have a narrow particle size distribution, and have a small particle diameter. The fine resin particles of the present invention can be used for various purposes by taking advantage of such characteristics. For example, anti-sticking agents (anti-blocking agents) for resin molded products (resin films), modifiers for various resin molded products, optical components such as light diffusers, anti-glare, low-reflection, etc., additives for paints, various electronic It can be used as a spacer between minute portions of devices, as a pore-forming agent for various battery members, as a core particle of conductive fine particles responsible for electrical connection, and the like.
For example, resin fine particles themselves can be mixed with a resin as an anti-sticking agent (anti-blocking agent) for a resin film to form a resin composition, thereby forming a resin molding such as a film. In particular, the resin fine particles of the present invention are excellent in heat resistance and transparency, have a narrow particle size distribution, and have a small particle diameter. It is possible to suppress the influence on haze and the like. In addition, the occurrence of resin build-up caused by the heat load or the like applied during resin compounding is suppressed, and there is little possibility that the yield will deteriorate.
By using the resin fine particles as an anti-sticking agent for resin films, particularly as an anti-sticking agent for resin films for optical applications, highly transparent optical members, for example, optical films such as anti-glare films and light diffusion films, and light It becomes possible to stably produce diffusers and the like.
[樹脂微粒子の製造方法]
 本発明の樹脂微粒子の製造方法は、少なくとも、加水分解性シリル基及びラジカル重合性不飽和基と反応する基を有する加水分解性珪素化合物、単官能(メタ)アクリル系単量体、多官能(メタ)アクリル系単量体、及びチオール系化合物が反応することで、樹脂微粒子が形成される方法であれば、特に限定されない。例えば、前記化合物に加えて、必要に応じて重合開始剤、液状媒体、界面活性剤等を用いて、懸濁重合、シード重合、膨潤シード重合、シード乳化重合、乳化重合、ソープフリー重合、ミニエマルション重合、マイクロエマルション重合、溶液重合及び分散重合等の公知の重合方法が挙げられる。
 中でも目的のかつ粒度分布の揃った樹脂微粒子が得られることから、乳化重合、ソープフリー重合、膨潤シード重合、シード乳化重合又は分散重合が好ましい。
[Method for producing fine resin particles]
The method for producing fine resin particles of the present invention comprises at least a hydrolyzable silicon compound having a group that reacts with a hydrolyzable silyl group and a radically polymerizable unsaturated group, a monofunctional (meth)acrylic monomer, and a polyfunctional ( The method is not particularly limited as long as the resin fine particles are formed by reacting the meth)acrylic monomer and the thiol compound. For example, in addition to the above compounds, suspension polymerization, seed polymerization, swelling seed polymerization, seed emulsion polymerization, emulsion polymerization, soap-free polymerization, mini Known polymerization methods such as emulsion polymerization, microemulsion polymerization, solution polymerization and dispersion polymerization can be mentioned.
Among them, emulsion polymerization, soap-free polymerization, swelling seed polymerization, seed emulsion polymerization, or dispersion polymerization is preferred because it is possible to obtain fine resin particles having a desired particle size distribution.
 膨潤シード重合やシード乳化重合を選定する場合、目的の樹脂微粒子を得る前に核となるシード粒子を作成する。このシード粒子は一般的に乳化重合やソープフリー重合で作成される。
 シード粒子は一般的に、前述した単官能(メタ)アクリル系単量体や分子構造内に芳香環を有する単官能ビニル系単量体の1種以上を含む単量体混合物を重合して得ることができる。この際、前記単量体混合物に、加水分解性珪素化合物単位と縮合可能な官能基を有する単量体を添加しておくことが好ましい。
 前記加水分解性珪素化合物単位と縮合可能な官能基を有する単量体としては特に限定されないが、分子鎖中にエポキシ基を有するビニル系単量体や、分子鎖中にヒドロキシル基を有するビニル系単量体、また前述したビニル系単量体と共重合可能な反応性基を有する加水分解性珪素化合物単位などが挙げられる。
When swelling seed polymerization or seed emulsion polymerization is selected, seed particles that serve as nuclei are prepared before obtaining the desired resin fine particles. The seed particles are generally prepared by emulsion polymerization or soap-free polymerization.
Seed particles are generally obtained by polymerizing a monomer mixture containing one or more of the aforementioned monofunctional (meth)acrylic monomers and monofunctional vinyl monomers having an aromatic ring in the molecular structure. be able to. At this time, it is preferable to add a monomer having a functional group condensable with the hydrolyzable silicon compound unit to the monomer mixture.
Although the monomer having a functional group capable of condensing with the hydrolyzable silicon compound unit is not particularly limited, it may be a vinyl monomer having an epoxy group in the molecular chain or a vinyl monomer having a hydroxyl group in the molecular chain. Examples include monomers and hydrolyzable silicon compound units having a reactive group copolymerizable with the aforementioned vinyl-based monomers.
 分子鎖中にエポキシ基を有するビニル系単量体としては、例えば、グリシジルメタクリレート、アリルグリシジルエーテル、アリルグリシジルフタレート、アリルグリシジルヘキサヒドロフタレート等からなる群より選ばれる1種以上が挙げられる。
 分子鎖中にヒドロキシル基を有するビニル系単量体としては、例えば、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシルエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルメタクリレート、2-ヒドロキシブチルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、グリセリンモノアリルエーテル、ネオペンチルグリコールモノアリルエーテル、о-アリルフェノール、グリセリンモノメタクリレート、ポリエチレングリコールモノメタクリレート、ポリプロピレングリコールモノメタクリレート、ポリエチレングリコールプロピレングリコールモノメタクリレート、ポリエチレングリコールテトラメチレングリコールモノメタクリレート、プロピレングリコールポリブチレングリコールモノメタクリレート、ポリエチレングリコールモノアクリレート、ポリプロピレングリコールモノアクリレート等からなる群より選ばれる1種以上が挙げられる。
 これら加水分解性珪素化合物単位と縮合可能な官能基を有する単量体としては、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
Examples of the vinyl-based monomer having an epoxy group in the molecular chain include one or more selected from the group consisting of glycidyl methacrylate, allyl glycidyl ether, allyl glycidyl phthalate, allyl glycidyl hexahydrophthalate, and the like.
Vinyl monomers having a hydroxyl group in the molecular chain include, for example, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl methacrylate, 2- Hydroxybutyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, glycerin monoallyl ether, neopentyl glycol monoallyl ether, o-allylphenol, glycerin monomethacrylate, polyethylene glycol monomethacrylate, polypropylene glycol monomethacrylate, polyethylene glycol propylene glycol mono One or more selected from the group consisting of methacrylate, polyethylene glycol tetramethylene glycol monomethacrylate, propylene glycol polybutylene glycol monomethacrylate, polyethylene glycol monoacrylate, polypropylene glycol monoacrylate and the like.
As the monomer having a functional group condensable with these hydrolyzable silicon compound units, one type may be used alone, or two or more types may be used in combination.
<重合開始剤>
 本発明の樹脂微粒子を作製するための重合開始剤としては、特に制限なく、公知の重合開始剤を用いることができる。乳化重合又はソープフリー重合の場合は、熱分解性の水溶性重合開始剤を用いるのが好ましく、シード重合や懸濁重合の場合は、熱分解性の油溶性重合開始剤を用いるのが好ましい。
 本発明の樹脂微粒子を作製するための重合開始剤としては、ラジカル重合開始剤、特に、熱重合開始剤を用いるのが好ましい。
<Polymerization initiator>
As the polymerization initiator for producing the resin fine particles of the present invention, any known polymerization initiator can be used without any particular limitation. In the case of emulsion polymerization or soap-free polymerization, it is preferable to use a thermally decomposable water-soluble polymerization initiator, and in the case of seed polymerization or suspension polymerization, it is preferable to use a thermally decomposable oil-soluble polymerization initiator.
As the polymerization initiator for producing the resin fine particles of the present invention, it is preferable to use a radical polymerization initiator, particularly a thermal polymerization initiator.
 ラジカル重合開始剤のうち、水溶性重合開始剤としては、例えば、過硫酸塩(例えば、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等)、過酸化水素、有機過酸化物、ニトリル-アゾ系化合物等からなる群より選ばれる1種以上が挙げられる。
 ラジカル重合開始剤のうち、油溶性重合開始剤としては、例えば、クメンハイドロパーオキサイド、ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、ジメチルビス(tert-ブチルパーオキシ)ヘキサン、ジメチルビス(tert-ブチルパーオキシ)ヘキシン-3、ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、ビス(tert-ブチルパーオキシ)トリメチルシクロヘキサン、ブチル-ビス(tert-ブチルパーオキシ)バレラート、2-エチルヘキサンペルオキシ酸tert-ブチル、ジベンゾイルパーオキサイド、パラメンタンハイドロパーオキサイド及びtert-ブチルパーオキシベンゾエート等の有機過酸化物;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2-イソプロピルブチロニトリル)、2,2’-アゾビス(2,3-ジメチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルブチロニトリル)、2,2’-アゾビス(2-メチルカプロニトリル)、2,2’-アゾビス(2,3,3-トリメチルブチロニトリル)、2,2’-アゾビス(2,4,4-トリメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-エトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-n-ブトキシ-2,4-ジメチルバレロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、4,4’-アゾビス(4-シアノペンタン酸)等のニトリル-アゾ系化合物等からなる群より選ばれる1種以上が挙げられる。
 また、前記の過硫酸塩及び有機過酸化物の重合開始剤と、ナトリウムスルホキシレートホルムアルデヒド、亜硫酸水素ナトリウム、亜硫酸水素アンモニウム、チオ硫酸ナトリウム、チオ硫酸アンモニウム、過酸化水素、ヒドロキシメタンスルフィン酸ナトリウム、L-アスコルビン酸及びその塩、第一銅塩、第一鉄塩等の還元剤とを組み合わせた、レドックス系重合開始剤を用いてもよい。
Among radical polymerization initiators, water-soluble polymerization initiators include, for example, persulfates (e.g., ammonium persulfate, potassium persulfate, sodium persulfate, etc.), hydrogen peroxide, organic peroxides, nitrile-azo compounds. 1 or more selected from the group consisting of
Among radical polymerization initiators, oil-soluble polymerization initiators include, for example, cumene hydroperoxide, di-tert-butyl peroxide, dicumyl peroxide, benzoyl peroxide, lauroyl peroxide, dimethylbis(tert-butyl peroxide, oxy)hexane, dimethylbis(tert-butylperoxy)hexyne-3, bis(tert-butylperoxyisopropyl)benzene, bis(tert-butylperoxy)trimethylcyclohexane, butyl-bis(tert-butylperoxy)valerate , tert-butyl 2-ethylhexaneperoxyate, dibenzoyl peroxide, paramenthane hydroperoxide and organic peroxides such as tert-butyl peroxybenzoate; 2,2′-azobisisobutyronitrile, 2,2 '-azobis(2-methylbutyronitrile), 2,2'-azobis(2-isopropylbutyronitrile), 2,2'-azobis(2,3-dimethylbutyronitrile), 2,2'-azobis (2,4-dimethylbutyronitrile), 2,2′-azobis(2-methylcapronitrile), 2,2′-azobis(2,3,3-trimethylbutyronitrile), 2,2′- azobis(2,4,4-trimethylvaleronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2 , 2′-azobis(4-ethoxy-2,4-dimethylvaleronitrile), 2,2′-azobis(4-n-butoxy-2,4-dimethylvaleronitrile), 1,1′-azobis(cyclohexane- 1-carbonitrile), 2-(carbamoyl azo) isobutyronitrile, nitrile-azo compounds such as 4,4'-azobis (4-cyanopentanoic acid), and the like. .
In addition, the polymerization initiator of the above persulfate and organic peroxide, sodium sulfoxylate formaldehyde, sodium hydrogen sulfite, ammonium hydrogen sulfite, sodium thiosulfate, ammonium thiosulfate, hydrogen peroxide, sodium hydroxymethanesulfinate, L - Redox polymerization initiators may be used in combination with reducing agents such as ascorbic acid and its salts, cuprous salts, and ferrous salts.
 これらの中でも、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、4,4’-アゾビス(4-シアノペンタン酸)、クメンハイドロパーオキサイド、ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイドからなる群より選ばれる1種以上が好ましい。
 これら重合開始剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
Among these, 2,2′-azobisisobutyronitrile, 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis(2,4-dimethylvaleronitrile) ), 2,2′-azobis isobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 4,4′-azobis At least one selected from the group consisting of (4-cyanopentanoic acid), cumene hydroperoxide, di-tert-butyl peroxide, dicumyl peroxide, benzoyl peroxide and lauroyl peroxide is preferred.
These polymerization initiators may be used singly or in combination of two or more.
 重合開始剤の使用量は、その種類により適宜定めることができ、特に限定されない。重合時に使用する全ての単量体の合計量100質量部に対して、例えば0.1質量部以上、好ましくは0.3質量部以上であり、例えば5質量部以下、好ましくは3質量部以下の範囲内である。 The amount of the polymerization initiator used can be appropriately determined according to its type, and is not particularly limited. For example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, for example 5 parts by mass or less, preferably 3 parts by mass or less, relative to 100 parts by mass of the total amount of all monomers used during polymerization. is within the range of
<界面活性剤>
 本発明の樹脂微粒子の製造方法において用いてもよい界面活性剤としては、特に制限なく、公知の界面活性剤を用いることができる。
 界面活性剤は、得られる樹脂微粒子の粒子径や重合時におけるモノマーの分散安定性等を考慮して、種類が適宜選択され、使用量が適宜調整される。
<Surfactant>
The surfactant that may be used in the method for producing resin fine particles of the present invention is not particularly limited, and known surfactants can be used.
The surfactant is appropriately selected in kind and used in an appropriate amount, taking into account the particle size of the resin fine particles to be obtained, the dispersion stability of the monomer during polymerization, and the like.
 本発明の樹脂微粒子の製造方法においては、アニオン系界面活性剤、例えば、アニオン系非反応性界面活性剤やアニオン系反応性界面活性剤を用いることができる。これらアニオン性の界面活性剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 In the method for producing resin fine particles of the present invention, an anionic surfactant such as an anionic non-reactive surfactant or an anionic reactive surfactant can be used. These anionic surfactants may be used singly or in combination of two or more.
 アニオン系非反応性界面活性剤としては、例えば、オレイン酸ナトリウム;ヒマシ油カリ石鹸等の脂肪酸石鹸;ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;アルキルナフタレンスルホン酸塩;アルカンスルホン酸塩;ジアルキルスルホコハク酸塩;アルキルリン酸エステル塩;ナフタレンスルホン酸ホルマリン縮合物;ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩;ポリオキシエチレンスルホン化フェニルエーテルリン酸;ポリオキシエチレンアルキル硫酸エステル塩等からなる群より選ばれる1種以上が挙げられる。 Examples of non-reactive anionic surfactants include sodium oleate; fatty acid soaps such as castor oil potash soap; alkyl sulfate ester salts such as sodium lauryl sulfate and ammonium lauryl sulfate; alkyl benzene sulfonates such as sodium dodecylbenzene sulfonate. alkylnaphthalenesulfonate; alkanesulfonate; dialkylsulfosuccinate; alkyl phosphate; naphthalenesulfonic acid formalin condensate; polyoxyethylene alkylphenyl ether sulfate; One or more selected from the group consisting of polyoxyethylene alkyl sulfate ester salts and the like can be mentioned.
 アニオン系反応性界面活性剤としては、例えば、三洋化成社製のエレミノール(登録商標)のJS-20やRS-3000、第一工業製薬社製のアクアロン(登録商標)のKH-10、KH-1025、KH-05、HS-10、HS-1025、BC-0515、BC-10、BC-1025、BC-20、BC-2020、AR-1025、AR-2025、日本乳化剤社製のアントックス(登録商標)MS-60、花王社製のラテムル(登録商標)のS-120、S-180A、S-180、PD-104、ADEKA社製のアデカリアソープ(登録商標)のSR-1025、SE-10N等からなる群より選ばれる1種以上が挙げられる。中でも分子鎖中にオキシアルキレン鎖を有するものが、粒子の分散性向上の観点から好ましい。 Examples of anionic reactive surfactants include JS-20 and RS-3000 of Eleminol (registered trademark) manufactured by Sanyo Kasei Co., Ltd., KH-10 and KH-10 of Aqualon (registered trademark) manufactured by Daiichi Kogyo Seiyaku Co., Ltd. 1025, KH-05, HS-10, HS-1025, BC-0515, BC-10, BC-1025, BC-20, BC-2020, AR-1025, AR-2025, Antox (Nippon Emulsifier Co., Ltd.) Registered trademark) MS-60, S-120, S-180A, S-180, PD-104 of Latemul (registered trademark) manufactured by Kao Corporation, SR-1025 and SE of Adekaria Soap (registered trademark) manufactured by ADEKA One or more selected from the group consisting of -10N and the like. Among them, those having an oxyalkylene chain in the molecular chain are preferable from the viewpoint of improving the dispersibility of particles.
 本発明の樹脂微粒子の製造方法においては、ノニオン系界面活性剤、例えば、ノニオン系非反応性界面活性剤やノニオン系反応性界面活性剤を用いることができる。これらノニオン性の界面活性剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 ノニオン系非反応性界面活性剤としては、例えば、ポリオキシアルキレン分岐デシルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレントリデシルエーテル、ポリオキシエチレンイソデシルエーテル、ポリオキシアルキレンラウリルエーテル、ポリエーテルポリオール、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンナフチルエーテル、ポリオキシエチレンフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルセチルエーテル、イソステアリン酸ポリオキシエチレングリセリル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレン-オキシプロピレンブロックポリマー等からなる群より選ばれる1種以上が挙げられる。
In the method for producing resin fine particles of the present invention, nonionic surfactants such as nonionic non-reactive surfactants and nonionic reactive surfactants can be used. These nonionic surfactants may be used singly or in combination of two or more.
Examples of nonionic non-reactive surfactants include polyoxyalkylene branched decyl ether, polyoxyethylene tridecyl ether, polyoxyalkylene alkyl ether, polyoxyalkylene tridecyl ether, polyoxyethylene isodecyl ether, polyoxyalkylene Lauryl ether, polyether polyol, polyoxyethylene styrenated phenyl ether, polyoxyethylene naphthyl ether, polyoxyethylene phenyl ether, polyoxyethylene polyoxypropylene glycol, polyoxyethylene lauryl ether, polyoxyethylene oleyl cetyl ether, isostearic acid Polyoxyethylene glyceryl, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, oxyethylene-oxypropylene block One or more selected from the group consisting of polymers and the like can be mentioned.
 ノニオン系反応性界面活性剤としては、例えば、アルキルエーテル系(市販品としては、例えば、ADEKA社製、アデカリアソープER-10、ER-20、ER-30、ER-40等;花王社製、ラテムルPD-420、PD-430、PD-450等);アルキルフェニルエーテル系もしくはアルキルフェニルエステル系(市販品としては、例えば、第一工業製薬社製、アクアロンRN-10、RN-20、RN-30、RN-50、AN-10、AN-20、AN-30、AN-5065等;ADEKA社製、アデカリアソープNE-10、NE-20、NE-30、NE-40等);(メタ)アクリレート硫酸エステル系(市販品としては、例えば、日本乳化剤社製、RMA-564、RMA-568、RMA-1114等)等からなる群より選ばれる1種以上が挙げられる。中でも分子鎖中にオキシアルキレン鎖を有するものが、粒子の分散安定性の観点から好ましい。 Examples of nonionic reactive surfactants include, for example, alkyl ether-based surfactants (commercially available products such as ADEKA Corporation, Adekaria Soap ER-10, ER-20, ER-30, ER-40, etc.; Kao Corporation , Latemul PD-420, PD-430, PD-450, etc.); -30, RN-50, AN-10, AN-20, AN-30, AN-5065, etc.; manufactured by ADEKA, Adekaria Soap NE-10, NE-20, NE-30, NE-40, etc.); One or more selected from the group consisting of meth)acrylate sulfate esters (commercially available products include RMA-564, RMA-568, RMA-1114, etc. manufactured by Nippon Nyukazai Co., Ltd.). Among them, those having an oxyalkylene chain in the molecular chain are preferable from the viewpoint of particle dispersion stability.
 本発明の樹脂微粒子の製造方法においては、カチオン系界面活性剤や両性界面活性剤を用いることができる。これらカチオン系界面活性剤や両性界面活性剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 A cationic surfactant or an amphoteric surfactant can be used in the method for producing resin fine particles of the present invention. These cationic surfactants and amphoteric surfactants may be used singly or in combination of two or more.
 カチオン系界面活性剤としては、例えば、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩;ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩等からなる群より選ばれる1種以上が挙げられる。
 両性界面活性剤としては、例えば、ラウリルジメチルアミンオキサイド、ラウリルアミノ酢酸ベタイン等からなる群より選ばれる1種以上が挙げられる。
Examples of cationic surfactants include one or more selected from the group consisting of alkylamine salts such as laurylamine acetate and stearylamine acetate; quaternary ammonium salts such as lauryltrimethylammonium chloride and the like.
Amphoteric surfactants include, for example, one or more selected from the group consisting of lauryldimethylamine oxide, betaine laurylaminoacetate, and the like.
 本発明においては、反応性界面活性剤、特に、アニオン系反応性界面活性剤及びノニオン系反応性界面活性剤からなる群より選ばれる1種以上を用いることができ、これにより、樹脂微粒子が(f)反応性界面活性剤単位を含むこととなる。
 界面活性剤の使用量は、その種類により適宜定めることができ、特に限定されない。重合時に使用する全ての単量体の合計量100質量部に対して、例えば0.1質量部以上、好ましくは0.3質量部以上であり、例えば5質量部以下、好ましくは3質量部以下の範囲内である。
In the present invention, reactive surfactants, in particular, one or more selected from the group consisting of anionic reactive surfactants and nonionic reactive surfactants can be used. f) Will contain reactive surfactant units.
The amount of surfactant to be used can be appropriately determined according to its type, and is not particularly limited. For example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, for example 5 parts by mass or less, preferably 3 parts by mass or less, relative to 100 parts by mass of the total amount of all monomers used during polymerization. is within the range of
<液状媒体>
 本発明の樹脂微粒子の製造方法において用いる液状媒体は、特に限定されない。例えば、水、有機溶剤、及びこれらの混合物のいずれを用いることができる。本発明においては、水性媒体が好ましく、例えば、水、メチルアルコール、エチルアルコール等の炭素数5以下の低級アルコール、水と低級アルコールとの混合物等を用いることができる。
<Liquid medium>
The liquid medium used in the method for producing fine resin particles of the present invention is not particularly limited. For example, water, organic solvents, and mixtures thereof can be used. In the present invention, an aqueous medium is preferable, and for example, water, lower alcohols having 5 or less carbon atoms such as methyl alcohol and ethyl alcohol, mixtures of water and lower alcohols, and the like can be used.
<樹脂微粒子の好ましい製造方法>
 本発明の樹脂微粒子の製造方法としては、特に、第1工程で単官能(メタ)アクリル系単量体を含む単量体成分を乳化重合又はソープフリー重合してシード粒子を作成し、第2工程でビニル系単量体と共重合可能な反応性基を有する加水分解性珪素化合物単位と、単官能(メタ)アクリル系単量体単位と、多官能(メタ)アクリル系単量体単位と、チオール系化合物単位を含む単量体混合物を前記シード粒子に吸収させて重合する方法を含むことが好ましい。
 本発明の樹脂微粒子の製造方法においては、第2工程の単量体混合物中に、分子構造内に芳香環を有する単官能ビニル系単量体単位をさらに含むことが好ましい。
<Preferred Method for Producing Resin Fine Particles>
In the method for producing the resin fine particles of the present invention, in particular, a monomer component containing a monofunctional (meth)acrylic monomer is subjected to emulsion polymerization or soap-free polymerization in the first step to prepare seed particles, and then the second step is carried out. A hydrolyzable silicon compound unit having a reactive group copolymerizable with a vinyl monomer in the process, a monofunctional (meth)acrylic monomer unit, and a polyfunctional (meth)acrylic monomer unit , a method of allowing the seed particles to absorb a monomer mixture containing thiol-based compound units for polymerization.
In the method for producing fine resin particles of the present invention, the monomer mixture in the second step preferably further contains a monofunctional vinyl-based monomer unit having an aromatic ring in its molecular structure.
 本発明の樹脂微粒子の製造方法においては、前記樹脂微粒子を所望の絶対濾過精度、例えば絶対濾過精度5μm以下のフィルターで分級することが好ましい。
 また、本発明の樹脂微粒子の製造方法においては、前記樹脂微粒子を造粒乾燥して樹脂微粒子造粒体としてもよい。
In the method for producing fine resin particles of the present invention, it is preferable to classify the fine resin particles with a filter having a desired absolute filtration accuracy, for example, an absolute filtration accuracy of 5 μm or less.
Further, in the method for producing resin fine particles of the present invention, the resin fine particles may be granulated and dried to obtain resin fine particle agglomerates.
 以下、製造例、実施例及び比較例により、本発明をさらに詳細に説明する。なお、本発明はこれらに限定されない。各例中の「部」は「質量部」、「%」は「質量%」を示す。 The present invention will be described in more detail below with production examples, examples, and comparative examples. In addition, this invention is not limited to these. "Part" in each example indicates "mass part" and "%" indicates "mass%".
[測定方法]
 「蛍光X線分析により測定される樹脂微粒子中の珪素元素の含有量」、「窒素雰囲気下、280℃で1時間加熱処理時の加熱減量割合」、「窒素雰囲気下での3%熱分解温度」、「体積平均粒子径」、「体積平均粒子径の変動係数」及び「樹脂微粒子30万個中の5μm以上の粒子個数」の測定は、以下のようにして行った。
[Measuring method]
"Content of silicon element in resin fine particles measured by fluorescent X-ray analysis", "heating weight loss rate after heat treatment at 280 ° C. for 1 hour under nitrogen atmosphere", "3% thermal decomposition temperature under nitrogen atmosphere , "volume average particle size,""variation coefficient of volume average particle size," and "number of particles of 5 µm or more in 300,000 fine resin particles" were measured as follows.
<蛍光X線により測定される樹脂微粒子中の珪素元素の含有量>
 樹脂微粒子中の珪素元素の含有量は、蛍光X線分光法により珪素元素のピーク高さを測定し、オーダー分析法(FPバルク法)により、珪素元素の含有元素量を求めた。具体的には、蛍光X線分析装置(リガク社製、ZSX Primus IV)を使って、以下の装置条件及び定性元素条件にて、Si-Kαの強度測定を行い、オーダー分析法により、樹脂微粒子中の珪素元素の含有量を測定した。まず、カーボン製試料台(日新EM社製)上に導電性カーボン両面テープ(日新EM社製)を貼りつけた。貼り付けた導電性カーボン両面テープ上に試料(各実施例及び比較例で製造した樹脂微粒子)20mgを量り取り、当該試料を10mmφ以上広がらないように調整した。その後、PPフィルム(ポリプロピレンフィルム)を被せて装置付属の10mmφ用試料ケースにセットし、測定試料とした。
 次いで、下記条件にて、珪素元素のピーク高さの測定を行い、オーダー分析法により、珪素元素の含有元素量を求めた。
<Content of Silicon Element in Resin Fine Particles Measured by Fluorescent X-rays>
The content of silicon element in the fine resin particles was obtained by measuring the peak height of silicon element by fluorescent X-ray spectroscopy, and determining the content of silicon element by the order analysis method (FP bulk method). Specifically, using a fluorescent X-ray analyzer (manufactured by Rigaku Corporation, ZSX Primus IV), the intensity of Si-Kα was measured under the following device conditions and qualitative element conditions, and the resin fine particles were determined by the order analysis method. The content of elemental silicon in the sample was measured. First, a conductive carbon double-sided tape (manufactured by Nissin EM) was pasted on a carbon sample stand (manufactured by Nissin EM). 20 mg of a sample (resin fine particles produced in each example and comparative example) was weighed out on the attached conductive carbon double-sided tape, and the sample was adjusted so as not to expand by 10 mmφ or more. After that, it was covered with a PP film (polypropylene film) and set in a 10 mm diameter sample case attached to the apparatus to obtain a measurement sample.
Next, the peak height of silicon element was measured under the following conditions, and the content of silicon element was determined by the order analysis method.
<装置条件>
・装置:ZSX Primus IV
・X線管球ターゲット:Rh
・分析法:オーダー分析法(FPバルク法)
・測定径:10mm
・スピン:有り
・雰囲気:真空
・試料形態:金属
・バランス成分:CHO
・試料保護膜補正:有り(PPフィルム)
・スムージング:11点
・フラックス成分、希釈率、不純物除去:なし 
<Equipment conditions>
・Apparatus: ZSX Primus IV
・X-ray tube target: Rh
・Analysis method: Order analysis method (FP bulk method)
・Measurement diameter: 10 mm
・Spin: Yes ・Atmosphere: Vacuum ・Sample form: Metal ・Balance component: CHO
・Sample protection film correction: Yes (PP film)
・Smoothing: 11 points ・Flux component, dilution rate, impurity removal: none
<定性元素条件>
・Si-Kα
・管球:Rh(30kV-100mA)
・1次フィルタ:OUT
・アッテネータ:1/1
・スリット:Std.
・分光結晶:Ge
・2θ:110.820deg(測定範囲:107~114deg)
・検出器:PC
・PHA L.L.:150 U.L.:300
・ステップ:0.05deg
・時間:0.4sec
<Qualitative element conditions>
・Si-Kα
・Tube: Rh (30kV-100mA)
・Primary filter: OUT
・Attenuator: 1/1
・Slit: Std.
・Analysis crystal: Ge
・2θ: 110.820 deg (measurement range: 107 to 114 deg)
・Detector: PC
・PHA L. L. : 150 U.S.A. L. : 300
・Step: 0.05deg
・Time: 0.4sec
<窒素雰囲気下、280℃で1時間加熱処理時の加熱減量割合>
 樹脂微粒子の「窒素雰囲気下、280℃で1時間加熱処理時の加熱減量割合」は、示差熱熱重量同時測定装置(エスアイアイナノテクノロジー社製、TG/DTA6200)を用いて測定した。サンプル作製方法及び測定条件は、以下のとおりである。
(サンプル作製方法)
 白金製測定容器の底に、約15mgの樹脂微粒子(測定試料)を隙間が生じないように充てんし、サンプルを作製した。
(測定条件)
 窒素ガス流量230mL/minとし、アルミナを基準物質とした。10℃/minで40℃から100℃まで昇温、100℃で10分間保持、10℃/minで100℃から280℃まで昇温、280℃で1時間保持し、TG/DTA曲線を得る。得られたTG/DTA曲線から、装置付属の解析ソフトを用いて、測定終了時の加熱減量割合を求め、これを「窒素雰囲気下、280℃で1時間加熱処理時の加熱減量割合」とした。
<Percentage of weight loss on heating after heat treatment at 280°C for 1 hour under nitrogen atmosphere>
The "heating weight loss ratio of the fine resin particles after heat treatment at 280°C for 1 hour in a nitrogen atmosphere" was measured using a simultaneous differential thermogravimetric analyzer (TG/DTA6200, manufactured by SII Nano Technology Co., Ltd.). The sample preparation method and measurement conditions are as follows.
(Sample preparation method)
About 15 mg of fine resin particles (measurement sample) were filled into the bottom of a platinum measurement container so as not to create a gap, thereby preparing a sample.
(Measurement condition)
A nitrogen gas flow rate of 230 mL/min was used, and alumina was used as a reference substance. The temperature was raised from 40° C. to 100° C. at 10° C./min and held at 100° C. for 10 minutes. From the obtained TG/DTA curve, the analysis software attached to the apparatus was used to determine the heating weight loss rate at the end of the measurement, and this was defined as the "heating weight loss rate after heat treatment at 280 ° C. for 1 hour in a nitrogen atmosphere." .
<窒素雰囲気下での3%熱分解温度>
 樹脂微粒子の「窒素雰囲気下での3%熱分解温度」は、示差熱熱重量同時測定装置(エスアイアイナノテクノロジー社製、TG/DTA6200)を用いて測定した。サンプル作製方法及び測定条件は、以下のとおりである。
(サンプル作製方法)
 白金製測定容器の底に、約15mgの樹脂微粒子(測定試料)を隙間が生じないように充てんし、サンプルを作製した。
(測定条件)
 窒素ガス流量230mL/minとし、アルミナを基準物質とした。10℃/minで300℃から500℃まで昇温し、TG/DTA曲線を得る。得られたTG/DTA曲線から、装置付属の解析ソフトを用いて、試料の質量が測定開始より3%減量した際の温度を求め、これを「窒素雰囲気下での3%熱分解温度」とした。
<3% thermal decomposition temperature in nitrogen atmosphere>
The "3% thermal decomposition temperature in a nitrogen atmosphere" of the fine resin particles was measured using a simultaneous differential thermogravimetric analyzer (TG/DTA6200, manufactured by SII Nano Technology Co., Ltd.). The sample preparation method and measurement conditions are as follows.
(Sample preparation method)
About 15 mg of fine resin particles (measurement sample) were filled into the bottom of a platinum measurement container so as not to create a gap, thereby preparing a sample.
(Measurement condition)
A nitrogen gas flow rate of 230 mL/min was used, and alumina was used as a reference material. The temperature is raised from 300°C to 500°C at 10°C/min to obtain a TG/DTA curve. From the obtained TG / DTA curve, using the analysis software attached to the apparatus, the temperature when the mass of the sample decreases by 3% from the start of measurement is obtained, and this is called the "3% thermal decomposition temperature in a nitrogen atmosphere". bottom.
<体積平均粒子径>
 樹脂微粒子水分散液(固形分20%)0.1gと2質量%アニオン系界面活性剤溶液20mlとを、試験管に投入した。その後、試験管ミキサー(アズワン社製、「試験管ミキサーTRIO HM-1N」)及び超音波洗浄器(アズワン社製、「ULTRASONIC CLEANER VS-150」)を用いて5分間かけて分散させ、分散液を得た。得られた分散液に対し、超音波を照射しながら、レーザー回折散乱方式粒度分布測定装置(ベックマンコールター社製、「LS230」)を用いて、樹脂微粒子の体積基準の粒度分布及びその標準偏差を得た。当該体積基準の粒度分布の算術平均を樹脂微粒子の体積平均粒子径とした。
<Volume average particle size>
0.1 g of resin fine particle aqueous dispersion (solid content: 20%) and 20 ml of 2 mass % anionic surfactant solution were put into a test tube. Then, using a test tube mixer ("Test Tube Mixer TRIO HM-1N" manufactured by AS ONE) and an ultrasonic cleaner ("ULTRASONIC CLEANER VS-150" manufactured by AS ONE) for 5 minutes, the dispersion liquid got While irradiating the obtained dispersion with ultrasonic waves, the volume-based particle size distribution of the fine resin particles and its standard deviation are measured using a laser diffraction/scattering particle size distribution analyzer (manufactured by Beckman Coulter, "LS230"). Obtained. The arithmetic mean of the volume-based particle size distribution was taken as the volume-average particle size of the fine resin particles.
 レーザー回折散乱方式粒度分布測定装置の測定条件は以下のとおりである。
 媒体=水
 媒体の屈折率=1.333
 固体の屈折率=樹脂微粒子の屈折率
 PIDS相対濃度:40~55%
 測定時の光学モデルは、製造した樹脂微粒子の屈折率に合わせた。樹脂微粒子の製造に1種類の単量体を用いた場合には、樹脂微粒子の屈折率としてその単量体の単独重合体の屈折率を用いた。樹脂微粒子の製造に複数種類の単量体を用いた場合には、樹脂微粒子の屈折率として、各単量体の単独重合体の屈折率を各単量体の使用量で加重平均した平均値を用いた。
The measurement conditions of the laser diffraction scattering type particle size distribution analyzer are as follows.
Medium = water Refractive index of medium = 1.333
Refractive index of solid = Refractive index of fine resin particles PIDS relative concentration: 40-55%
The optical model at the time of measurement was adapted to the refractive index of the manufactured resin fine particles. When one type of monomer was used to produce the resin fine particles, the refractive index of a homopolymer of that monomer was used as the refractive index of the resin fine particles. When a plurality of types of monomers are used for the production of the resin fine particles, the refractive index of the resin fine particles is the average value obtained by weighting and averaging the refractive indices of the homopolymers of each monomer by the amount of each monomer used. was used.
<体積平均粒子径の変動係数>
 樹脂微粒子の体積平均粒子径の変動係数(CV値)は、以下の式によって算出した。
 樹脂微粒子の体積平均粒子径の変動係数=[(樹脂微粒子の体積基準の粒度分布の標準偏差)/(樹脂微粒子の体積平均粒子径)]×100
<Variation coefficient of volume average particle size>
The coefficient of variation (CV value) of the volume average particle diameter of the resin fine particles was calculated by the following formula.
Variation coefficient of volume average particle diameter of resin fine particles=[(standard deviation of volume-based particle size distribution of resin fine particles)/(volume average particle diameter of resin fine particles)]×100
<樹脂微粒子30万個中の5μm以上の粒子個数>
 イオン交換水 4.94部に、界面活性剤(ドデシルベンゼンスルホン酸塩) 0.01部を加えて界面活性剤水溶液を作製した。界面活性剤水溶液に、樹脂微粒子 0.06部を加え、分散機(超音波洗浄器(ヴェルヴォクリーア社製、VS-150)を用い10分間かけて、樹脂微粒子を界面活性剤水溶液中に分散させて樹脂微粒子水分散液を得た。
 得られた樹脂微粒子水分散液を、フロー式粒子像分析装置(シスメックス社製、FPIA-3000S;標準対物レンズ(10倍)搭載、シース液として、パーティクルシース(シスメックス社製、PSE-900A)を使用。)に導入し、下記測定条件にて測定した。
  測定モード:HPF測定モード
  粒子径の測定範囲:0.5~200μm
  粒子の円形度の測定範囲:0.2~1.0
  粒子の測定個数:10万個
<Number of Particles of 5 μm or More in 300,000 Resin Fine Particles>
A surfactant aqueous solution was prepared by adding 0.01 part of a surfactant (dodecylbenzenesulfonate) to 4.94 parts of ion-exchanged water. 0.06 parts of resin fine particles are added to the surfactant aqueous solution, and the resin fine particles are dispersed in the surfactant aqueous solution over 10 minutes using a dispersing machine (ultrasonic cleaner (VS-150, manufactured by Vervoclea)). Then, an aqueous dispersion of resin fine particles was obtained.
The obtained resin fine particle aqueous dispersion was subjected to a flow type particle image analyzer (manufactured by Sysmex Corporation, FPIA-3000S; equipped with a standard objective lens (10x), and a particle sheath (manufactured by Sysmex Corporation, PSE-900A) as a sheath liquid. used.) and measured under the following measurement conditions.
Measurement mode: HPF measurement mode Particle size measurement range: 0.5 to 200 μm
Particle circularity measurement range: 0.2 to 1.0
Number of particles measured: 100,000
 測定に際しては、測定開始前に標準ポリマー粒子群の懸濁液(例えば、Thermo Fisher Scientific社製、5200A(標準ポリスチレン粒子群をイオン交換水で希釈したもの))を用いて上記フロー式粒子像分析装置の自動焦点調整を行った。
 円形度は、樹脂微粒子を撮像した画像と同じ投影面積を有する真円の直径から算出した周囲長を、樹脂微粒子を撮像した画像の周囲長で除した値である。
 測定により得られた樹脂微粒子の粒子径から、体積平均粒子径が5μm以上の粒子径を有する樹脂微粒子の個数をカウントした。
 これらの操作を3回実施し、体積平均粒子径が5μm以上の粒子径を有する樹脂微粒子の個数カウントの和をとった。この和を「樹脂微粒子30万個中の5μm以上の粒子個数」とした。
In the measurement, before the start of measurement, a suspension of standard polymer particles (for example, Thermo Fisher Scientific, 5200A (standard polystyrene particles diluted with ion-exchanged water)) is used to perform the above flow particle image analysis. Automatic focusing of the instrument was performed.
The degree of circularity is a value obtained by dividing the perimeter calculated from the diameter of a perfect circle having the same projected area as the image of the fine resin particles by the perimeter of the image of the fine resin particles.
From the particle diameter of the resin fine particles obtained by the measurement, the number of resin fine particles having a volume average particle diameter of 5 μm or more was counted.
These operations were performed three times, and the sum of the counts of the number of fine resin particles having a volume average particle size of 5 μm or more was obtained. The sum was defined as "the number of particles of 5 µm or more in 300,000 fine resin particles".
[製造例]
<製造例1>
 攪拌装置と温度計と冷却機構を兼ね備えた重合器内で、イオン交換水 270部、及びスチレンスルホン酸ナトリウム 0.84部、の割合となるように各成分を混合し、水相を作製した。
 別の容器内で、メタクリル酸メチル 114部、2-ヒドロキシエチルメタクリレート 6部、及び1-オクタンチオール 2.4部、の割合となるようにモノマー成分を混合し得られたモノマー混合物を、重合器内の水相に投入した。重合器の窒素パージを5分間実施した後、80℃まで昇温し、80℃に到達した時点で、イオン交換水 10部に過硫酸カリウム 0.6部を溶解した溶液を投入した。その後、再度重合器の窒素パージを5分間実施した後、80℃で5時間攪拌することにより、乳化重合反応させた。次いで、100℃まで昇温し3時間保持してから冷却することによって、シード粒子A含有スラリーを作製した。シード粒子Aの体積平均粒子径は、176nmであった。
[Manufacturing example]
<Production Example 1>
270 parts of ion-exchanged water and 0.84 parts of sodium styrenesulfonate were mixed in a polymerization vessel equipped with a stirrer, a thermometer and a cooling mechanism to prepare an aqueous phase.
In a separate container, the monomer components were mixed so that the ratio of 114 parts of methyl methacrylate, 6 parts of 2-hydroxyethyl methacrylate, and 2.4 parts of 1-octanethiol was adjusted. It was put into the aqueous phase inside. After purging the polymerization vessel with nitrogen for 5 minutes, the temperature was raised to 80° C. When the temperature reached 80° C., a solution of 0.6 parts of potassium persulfate dissolved in 10 parts of ion-exchanged water was added. Thereafter, the polymerization vessel was again purged with nitrogen for 5 minutes, and then stirred at 80° C. for 5 hours to effect an emulsion polymerization reaction. Then, the temperature was raised to 100° C., held for 3 hours, and then cooled to prepare a seed particle A-containing slurry. The volume average particle diameter of the seed particles A was 176 nm.
<製造例2>
 モノマー混合物として、メタクリル酸メチル 120部、3-メルカプトプロピルトリメトキシシラン 1.2部、及び1-オクタンチオール 2.4部、の割合となるようにモノマー成分を混合し得られたモノマー混合物を用いた以外は、製造例1と同様にして、シード粒子B含有スラリーを得た。シード粒子Bの体積平均粒子径は、177nmであった。
<Production Example 2>
As a monomer mixture, a monomer mixture obtained by mixing monomer components so that the ratio of 120 parts of methyl methacrylate, 1.2 parts of 3-mercaptopropyltrimethoxysilane, and 2.4 parts of 1-octanethiol is used. A seed particle B-containing slurry was obtained in the same manner as in Production Example 1, except that The volume average particle diameter of the seed particles B was 177 nm.
<製造例3>
 モノマー混合物として、メタクリル酸メチル 120部、及び1-オクタンチオール 2.4部の割合となるようにモノマー成分を混合し得られたモノマー混合物を用いた以外は、製造例1と同様にして、シード粒子C含有スラリーを得た。シード粒子Cの体積平均粒子径は175nmであった。
<Production Example 3>
Seed was prepared in the same manner as in Production Example 1, except that the monomer mixture was obtained by mixing the monomer components so that the ratio of 120 parts of methyl methacrylate and 2.4 parts of 1-octanethiol was used as the monomer mixture. A particle C-containing slurry was obtained. The volume average particle diameter of the seed particles C was 175 nm.
[実施例・比較例]
<実施例1>
 攪拌装置、温度計及び冷却機構を備えた重合器に、イオン交換水 280部、ドデシルベンゼンスルホン酸ナトリウム20%溶液(第一工業製薬社製、ネオゲンS-20D) 2.8部、ポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬社製、ノイゲンEA-167) 0.7部、及び亜硝酸ナトリウム 0.014部、の割合となるように各成分を混合し、水相を作製した。
 別の容器内で、アクリル酸ブチル 35.00部、スチレン 21.00部、エチレングリコールジメタクリレート 14.00部、ペンタエリスリトールテトラキスチオグリコレート 0.35部、3-メタクリロキシプロピルトリエトキシシラン 1.33部、2,2’-アゾビスイソブチロニトリル 0.35部、及びベンゾイルパーオキサイド(純分74.2%) 0.18部、の割合となるようにモノマー成分を配合しモノマー組成物を作製し、油相とした。
[Example/Comparative example]
<Example 1>
In a polymerization vessel equipped with a stirrer, a thermometer and a cooling mechanism, 280 parts of ion-exchanged water, 20% sodium dodecylbenzenesulfonate solution (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Neogen S-20D) 2.8 parts, polyoxyethylene 0.7 parts of styrenated phenyl ether (Daiichi Kogyo Seiyaku Co., Ltd., Noigen EA-167) and 0.014 parts of sodium nitrite were mixed to prepare an aqueous phase.
In a separate vessel, 35.00 parts butyl acrylate, 21.00 parts styrene, 14.00 parts ethylene glycol dimethacrylate, 0.35 parts pentaerythritol tetrakisthioglycolate, 3-methacryloxypropyltriethoxysilane1. 33 parts, 0.35 parts of 2,2'-azobisisobutyronitrile, and 0.18 parts of benzoyl peroxide (pure content: 74.2%) were blended to form a monomer composition. was prepared and used as an oil phase.
 油相を重合器内の水相に投入し、TKホモミキサー(プライミクス社製)を用い8000rpmで10分間攪拌して、単量体混合物を得た。この単量体混合物に、製造例1で作製したシード粒子A 33.3部を投入し、3時間攪拌することにより膨潤させた。その後、窒素パージを5分間実施した後65℃まで昇温し、65℃で6時間攪拌することにより重合した。スルファミン酸 0.021部を添加した後に、100℃まで昇温し3時間保持してから冷却することによって、樹脂微粒子含有スラリーを作製した。
 得られた樹脂微粒子含有スラリーは、500MeshのSUS網を通過させた後に、絶対濾過精度3μmのフィルター(旭化成社製、KDGF-030)を通過させることで、樹脂微粒子の湿式分級を行い、分級された樹脂微粒子スラリーを得た。
The oil phase was added to the water phase in the polymerization vessel and stirred at 8000 rpm for 10 minutes using TK Homomixer (manufactured by Primix) to obtain a monomer mixture. 33.3 parts of the seed particles A produced in Production Example 1 were added to this monomer mixture and stirred for 3 hours to swell the mixture. Then, after purging with nitrogen for 5 minutes, the temperature was raised to 65° C., and polymerization was carried out by stirring at 65° C. for 6 hours. After adding 0.021 part of sulfamic acid, the temperature was raised to 100° C., held for 3 hours, and then cooled to prepare a slurry containing fine resin particles.
The resulting resin fine particle-containing slurry is passed through a 500-mesh SUS mesh, and then through a filter (manufactured by Asahi Kasei Corporation, KDGF-030) with an absolute filtration accuracy of 3 μm, whereby the resin fine particles are wet-classified and classified. A fine resin particle slurry was obtained.
 分級された樹脂微粒子スラリーを、アトマイザーテイクアップ方式のスプレードライヤー(噴霧乾燥機)(坂本技研社製、TRS-3WK)を用いて、以下の噴霧乾燥条件で噴霧乾燥して、樹脂微粒子を得た。
(噴霧乾燥条件)
樹脂微粒子含有スラリー供給速度:25mL/min
アトマイザ回転数:12000rpm
風量:2m/min
入口温度(噴霧された樹脂微粒子含有スラリーが投入される投入口の温度):150℃
出口温度(樹脂微粒子が排出される粉体出口温度):70℃
The classified resin fine particle slurry was spray-dried using an atomizer take-up type spray dryer (manufactured by Sakamoto Giken, TRS-3WK) under the following spray drying conditions to obtain resin fine particles. .
(Spray drying conditions)
Slurry supply rate containing fine resin particles: 25 mL/min
Atomizer rotation speed: 12000rpm
Air volume: 2 m 3 /min
Inlet temperature (temperature of inlet into which sprayed slurry containing fine resin particles is introduced): 150°C
Outlet temperature (powder outlet temperature at which fine resin particles are discharged): 70°C
 得られた樹脂微粒子は、以下の特性を示した。
  蛍光X線分析により測定される樹脂微粒子中の珪素元素の含有量:0.17質量%
  窒素雰囲気下、280℃で1時間加熱処理時の加熱減量割合:1.8%
  窒素雰囲気下での3%熱分解温度:356℃
  体積平均粒子径:350nm
  体積平均粒子径の変動係数:14.5%
  樹脂微粒子30万個中の5μm以上の粒子個数:0個
The obtained resin fine particles exhibited the following characteristics.
Content of silicon element in resin fine particles measured by fluorescent X-ray analysis: 0.17% by mass
Heating weight loss ratio when heat treated for 1 hour at 280°C in a nitrogen atmosphere: 1.8%
3% pyrolysis temperature under nitrogen atmosphere: 356°C
Volume average particle size: 350 nm
Variation coefficient of volume average particle size: 14.5%
Number of particles of 5 µm or more in 300,000 resin fine particles: 0
<実施例2~5>
 モノマー組成物として、表1に記載の組成のモノマー組成物を用いた以外は、実施例1と同様にして、樹脂微粒子を得た。得られた樹脂微粒子の特性を、表1に併せて示す。
<Examples 2 to 5>
Resin fine particles were obtained in the same manner as in Example 1, except that the monomer composition having the composition shown in Table 1 was used as the monomer composition. Table 1 also shows the properties of the obtained resin fine particles.
<実施例6>
 界面活性剤成分として、「ドデシルベンゼンスルホン酸ナトリウム20%溶液(第一工業製薬社製、ネオゲンS-20D) 2.8部、ポリオキシエチレンスチレン化フェニルエーテル(第一工業製薬社製、ノイゲンEA-167) 0.7部」にかえて、「アクアロンKH-1025(第一工業製薬社製、主成分25%) 5部」を用いた以外は、実施例4と同様にして、樹脂微粒子を得た。得られた樹脂微粒子の特性を、表1に併せて示す。
<Example 6>
As a surfactant component, "20% solution of sodium dodecylbenzenesulfonate (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Neogen S-20D) 2.8 parts, polyoxyethylene styrenated phenyl ether (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Neugen EA -167) Resin fine particles were added in the same manner as in Example 4, except that "5 parts of Aqualon KH-1025 (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., 25% of the main component)" was used instead of "0.7 parts". Obtained. Table 1 also shows the properties of the obtained resin fine particles.
<比較例1>
 モノマー組成物として、表1に記載の組成のモノマー組成物を用いた以外は、実施例1と同様にして、樹脂微粒子含有スラリーを得た。得られた樹脂微粒子含有スラリーを、500MeshのSUS網を通過させた後に、実施例1と同様にして噴霧乾燥して、樹脂微粒子を得た。得られた樹脂微粒子の特性を、表1に併せて示す。
<Comparative Example 1>
A slurry containing fine resin particles was obtained in the same manner as in Example 1, except that the monomer composition having the composition shown in Table 1 was used as the monomer composition. The resulting slurry containing fine resin particles was passed through a 500-mesh SUS mesh and then spray-dried in the same manner as in Example 1 to obtain fine resin particles. Table 1 also shows the properties of the obtained resin fine particles.
<比較例2~3>
 モノマー組成物として、表1に記載の組成のモノマー組成物を用いた以外は、比較例1と同様にして、樹脂微粒子を得た。得られた樹脂微粒子の特性を、表1に併せて示す。
<Comparative Examples 2-3>
Fine resin particles were obtained in the same manner as in Comparative Example 1, except that the monomer composition shown in Table 1 was used as the monomer composition. Table 1 also shows the properties of the obtained resin fine particles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表中のモノマー組成の欄の記載は、以下を表す。
 BA:アクリル酸ブチル
 St:スチレン
 EGDMA:エチレングリコールジメタクリレート
 PETG:ペンタエリスリトールテトラキスチオグリコレート
 MPTESi:3-メタクリロキシプロピルトリエトキシシラン
 MPTMSi:3-メタクリロキシプロピルトリメトキシシラン
 KH1025:反応性界面活性剤(アクアロン KH-1025)
Descriptions in the column of monomer composition in the table represent the following.
BA: butyl acrylate St: styrene EGDMA: ethylene glycol dimethacrylate PETG: pentaerythritol tetrakisthioglycolate MPTESi: 3-methacryloxypropyltriethoxysilane MPTMSi: 3-methacryloxypropyltrimethoxysilane KH1025: reactive surfactant ( Aqualon KH-1025)
 本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 The present invention can be embodied in various other forms without departing from its spirit or main characteristics. Therefore, the above-described embodiments are merely illustrative in all respects and should not be construed in a restrictive manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Furthermore, all modifications and changes within the equivalent range of claims are within the scope of the present invention.

Claims (17)

  1.  (a)加水分解性シリル基及びラジカル重合性不飽和基と反応する基を有する加水分解性珪素化合物単位、(b)単官能(メタ)アクリル系単量体単位、(c)多官能(メタ)アクリル系単量体単位、及び(d)チオール系化合物単位、
    を含む樹脂微粒子。
    (a) a hydrolyzable silicon compound unit having a group that reacts with a hydrolyzable silyl group and a radically polymerizable unsaturated group, (b) a monofunctional (meth) acrylic monomer unit, (c) a polyfunctional (meth) ) an acrylic monomer unit, and (d) a thiol compound unit,
    Resin fine particles containing.
  2.  蛍光X線分析により測定される樹脂微粒子中の珪素元素の含有量が0.03質量%以上、1質量%以下である、請求項1に記載の樹脂微粒子。 The resin microparticles according to claim 1, wherein the content of silicon element in the resin microparticles measured by fluorescent X-ray analysis is 0.03% by mass or more and 1% by mass or less.
  3.  (e)分子構造内に芳香環を有する単官能ビニル系単量体単位をさらに含む、請求項1又は2に記載の樹脂微粒子。 (e) The fine resin particles according to claim 1 or 2, further comprising a monofunctional vinyl-based monomer unit having an aromatic ring in the molecular structure.
  4.  前記(b)単官能(メタ)アクリル系単量体単位が、アルキル基炭素数2以上の(メタ)アクリル酸アルキルエステル単位を含む、請求項1又は2に記載の樹脂微粒子。 The fine resin particles according to claim 1 or 2, wherein the (b) monofunctional (meth)acrylic monomer unit includes a (meth)acrylic acid alkyl ester unit having an alkyl group with 2 or more carbon atoms.
  5.  窒素雰囲気下、280℃で1時間加熱処理時の加熱減量割合が2.5%以下である、請求項1又は2に記載の樹脂微粒子。 3. The resin microparticles according to claim 1 or 2, wherein the weight loss on heating is 2.5% or less when heat-treated at 280°C for 1 hour in a nitrogen atmosphere.
  6.  窒素雰囲気下での3%熱分解温度が350℃以上である、請求項1又は2に記載の樹脂微粒子。 The resin fine particles according to claim 1 or 2, wherein the 3% thermal decomposition temperature in a nitrogen atmosphere is 350°C or higher.
  7.  体積平均粒子径が0.05μm以上3μm以下である、請求項1又は2に記載の樹脂微粒子。 The resin fine particles according to claim 1 or 2, having a volume average particle diameter of 0.05 µm or more and 3 µm or less.
  8.  体積平均粒子径の変動係数が25%以下である、請求項1又は2に記載の樹脂微粒子。 The resin fine particles according to claim 1 or 2, wherein the coefficient of variation of the volume average particle size is 25% or less.
  9.  下記測定範囲;
    (測定範囲)
     粒子径の測定範囲:0.5μm~200μm、
     粒子の円形度の測定範囲:0.97~1.00、
    における樹脂微粒子30万個中の5μm以上の粒子個数が1個以下である、請求項1又は2に記載の樹脂微粒子。
    The following measurement ranges;
    (Measurement range)
    Particle size measurement range: 0.5 μm to 200 μm,
    Particle circularity measurement range: 0.97 to 1.00,
    3. The fine resin particles according to claim 1, wherein the number of particles having a diameter of 5 μm or more out of 300,000 fine resin particles is 1 or less.
  10.  (f)反応性界面活性剤単位をさらに含む、請求項1又は2に記載の樹脂微粒子。 The resin fine particles according to claim 1 or 2, further comprising (f) a reactive surfactant unit.
  11.  請求項1又は2に記載の樹脂微粒子が複数個凝集して構成される樹脂微粒子造粒体。 A resin fine particle granule formed by aggregating a plurality of the resin fine particles according to claim 1 or 2.
  12.  樹脂フィルム用貼り付き防止剤として用いられる、請求項1又は2に記載の樹脂微粒子。 The resin fine particles according to claim 1 or 2, which are used as an anti-sticking agent for resin films.
  13.  樹脂フィルムが光学用途向け樹脂フィルムである、請求項12に記載の樹脂微粒子。 The resin fine particles according to claim 12, wherein the resin film is a resin film for optical applications.
  14.  単官能(メタ)アクリル系単量体を含む単量体成分を乳化重合又はソープフリー重合してシード粒子を作成する第1工程、及び、
     加水分解性シリル基及びラジカル重合性不飽和基と反応する基を有する加水分解性珪素化合物、単官能(メタ)アクリル系単量体、多官能(メタ)アクリル系単量体及びチオール系化合物を含む混合物を前記シード粒子に吸収させて重合する第2工程、
    を有する樹脂微粒子の製造方法。
    A first step of preparing seed particles by emulsion polymerization or soap-free polymerization of a monomer component containing a monofunctional (meth)acrylic monomer;
    A hydrolyzable silicon compound having a group that reacts with a hydrolyzable silyl group and a radically polymerizable unsaturated group, a monofunctional (meth)acrylic monomer, a polyfunctional (meth)acrylic monomer and a thiol compound a second step of polymerizing by absorbing the mixture containing the seed particles;
    A method for producing resin fine particles having
  15.  前記第2工程で用いる混合物が、分子構造内に芳香環を有する単官能ビニル系単量体をさらに含む、請求項14に記載の樹脂微粒子の製造方法。 The method for producing fine resin particles according to claim 14, wherein the mixture used in the second step further contains a monofunctional vinyl-based monomer having an aromatic ring in its molecular structure.
  16.  得られた樹脂微粒子を絶対濾過精度5μm以下のフィルターで分級する工程を有する、請求項14又は15に記載の樹脂微粒子の製造方法。 16. The method for producing resin fine particles according to claim 14 or 15, comprising a step of classifying the obtained resin fine particles with a filter having an absolute filtration accuracy of 5 μm or less.
  17.  請求項14又は15に記載の樹脂微粒子の製造方法で得られた樹脂微粒子を造粒乾燥する、樹脂微粒子造粒体の製造方法。
     
    16. A method for producing a resin fine particle granule, comprising granulating and drying the resin fine particles obtained by the resin fine particle producing method according to claim 14 or 15.
PCT/JP2022/032504 2021-09-30 2022-08-30 Resin microparticles and method for producing same WO2023053819A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247004076A KR20240028518A (en) 2021-09-30 2022-08-30 Resin fine particles and method for producing the same
CN202280055151.XA CN117940469A (en) 2021-09-30 2022-08-30 Resin fine particles and method for producing same
JP2023550476A JPWO2023053819A1 (en) 2021-09-30 2022-08-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021160923 2021-09-30
JP2021-160923 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023053819A1 true WO2023053819A1 (en) 2023-04-06

Family

ID=85780615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032504 WO2023053819A1 (en) 2021-09-30 2022-08-30 Resin microparticles and method for producing same

Country Status (4)

Country Link
JP (1) JPWO2023053819A1 (en)
KR (1) KR20240028518A (en)
CN (1) CN117940469A (en)
WO (1) WO2023053819A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048175A1 (en) * 2022-08-29 2024-03-07 積水化成品工業株式会社 Resin microparticles and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001002716A (en) * 1999-04-23 2001-01-09 Tosoh Corp Singly particle diameter-dispersed particle, method for producing the same and use by using the same
JP2004155866A (en) * 2002-11-05 2004-06-03 Asahi Kasei Chemicals Corp Method for producing polymer aqueous dispersion
JP2005290185A (en) * 2004-03-31 2005-10-20 Kaneka Corp Method for producing crosslinked polymer emulsion
JP2013231133A (en) * 2012-04-27 2013-11-14 Nippon Shokubai Co Ltd Polymer particle and polymer particle-containing composition
US20150129818A1 (en) * 2012-05-14 2015-05-14 Merck Patent Gmbh Particles for electrophoretic displays
US20160194426A1 (en) * 2013-08-02 2016-07-07 Lg Chem, Ltd. Resin
JP2020512425A (en) * 2017-03-03 2020-04-23 レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Curable (meth) acrylic resin composition having high viscosity
JP2020070307A (en) * 2018-10-29 2020-05-07 旭化成株式会社 Particulate copolymer, adhesive for lithium secondary battery, slurry for lithium secondary battery porous layer, method for producing porous layer for lithium secondary battery, and method for producing lithium secondary battery separator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035353Y2 (en) 1978-11-09 1985-10-21 パイオニア株式会社 2-language broadcast receiver
JPS5744855Y2 (en) 1978-12-30 1982-10-04
JP2009173694A (en) 2008-01-21 2009-08-06 Kaneka Corp Silicone-based polymer particle and curable resin composition containing the particle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001002716A (en) * 1999-04-23 2001-01-09 Tosoh Corp Singly particle diameter-dispersed particle, method for producing the same and use by using the same
JP2004155866A (en) * 2002-11-05 2004-06-03 Asahi Kasei Chemicals Corp Method for producing polymer aqueous dispersion
JP2005290185A (en) * 2004-03-31 2005-10-20 Kaneka Corp Method for producing crosslinked polymer emulsion
JP2013231133A (en) * 2012-04-27 2013-11-14 Nippon Shokubai Co Ltd Polymer particle and polymer particle-containing composition
US20150129818A1 (en) * 2012-05-14 2015-05-14 Merck Patent Gmbh Particles for electrophoretic displays
US20160194426A1 (en) * 2013-08-02 2016-07-07 Lg Chem, Ltd. Resin
JP2020512425A (en) * 2017-03-03 2020-04-23 レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Curable (meth) acrylic resin composition having high viscosity
JP2020070307A (en) * 2018-10-29 2020-05-07 旭化成株式会社 Particulate copolymer, adhesive for lithium secondary battery, slurry for lithium secondary battery porous layer, method for producing porous layer for lithium secondary battery, and method for producing lithium secondary battery separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048175A1 (en) * 2022-08-29 2024-03-07 積水化成品工業株式会社 Resin microparticles and method for producing same

Also Published As

Publication number Publication date
CN117940469A (en) 2024-04-26
KR20240028518A (en) 2024-03-05
JPWO2023053819A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
EP2492288B1 (en) Methacrylic resin, molded body thereof, and method for producing methacrylic resin
JP5365048B2 (en) Oval or acicular polymer particles and method for producing the same
JP5463432B2 (en) Methacrylic resin and molded body thereof
WO2023053819A1 (en) Resin microparticles and method for producing same
KR102530988B1 (en) Core-Shell fluorinated polymer particles having improved flowability and cohesion properties
US20240018286A1 (en) Fine resin particle and application thereof
JP5244343B2 (en) ORGANIC-INORGANIC COMPOSITE MATERIAL, OPTICAL COMPONENT AND METHOD FOR PRODUCING THEM
JP5703567B2 (en) Method for producing crosslinked polymer fine particles
WO2024048175A1 (en) Resin microparticles and method for producing same
JP5578080B2 (en) Method for producing polymer fine particles
EP4023681A1 (en) Fine resin particles and production method therefor
JP6542501B2 (en) Method for producing methacrylic resin, methacrylic resin, and molded body
JP6207230B2 (en) Method for producing methacrylic resin, methacrylic resin, and molded article
JP7241460B2 (en) Method for producing (meth)acrylic polymer particles and (meth)acrylic polymer particles
JP2023137308A (en) Heat crosslinkable particle and method for producing the same
JP2017057279A (en) Organic polymer particle
JP3101022B2 (en) Method for producing polymer fine particles
JP7354335B2 (en) polymer particles
EP3130617B1 (en) Polymer nanoparticle preparation by miniemulsion polymerization
WO2022210893A1 (en) Resin fine particles, coating softener, matting agent for paint, stress relaxation agent for curable resin, light diffusing agent, light diffusing resin composition, and resin composition
WO2021006259A1 (en) Wax dispersant and thermoplastic resin composition
WO2022181349A1 (en) Fine resin particles and composition containing fine resin particles
JPH0288606A (en) Production of electrostatic charge controlling resin
JP6118054B2 (en) Cover for injection-molded strobe light emitting device containing methacrylic resin
JP2022134730A (en) Hydroxy group-containing polymer and method for producing hydroxy group-containing polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247004076

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247004076

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023550476

Country of ref document: JP