WO2023053707A1 - Electrically conductive particles, method for producing electrically conductive particles, and electrically conductive composition - Google Patents
Electrically conductive particles, method for producing electrically conductive particles, and electrically conductive composition Download PDFInfo
- Publication number
- WO2023053707A1 WO2023053707A1 PCT/JP2022/029435 JP2022029435W WO2023053707A1 WO 2023053707 A1 WO2023053707 A1 WO 2023053707A1 JP 2022029435 W JP2022029435 W JP 2022029435W WO 2023053707 A1 WO2023053707 A1 WO 2023053707A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- conductive
- conductive particles
- conductive material
- matrix
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 369
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 239000000203 mixture Substances 0.000 title claims description 23
- 239000011159 matrix material Substances 0.000 claims abstract description 95
- 239000004020 conductor Substances 0.000 claims abstract description 84
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 238000002844 melting Methods 0.000 claims description 24
- 230000008018 melting Effects 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 19
- 229920005989 resin Polymers 0.000 claims description 18
- 239000011347 resin Substances 0.000 claims description 18
- 238000002156 mixing Methods 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 65
- 229910000679 solder Inorganic materials 0.000 description 31
- 238000002360 preparation method Methods 0.000 description 27
- 239000010949 copper Substances 0.000 description 21
- 238000011156 evaluation Methods 0.000 description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 239000000178 monomer Substances 0.000 description 11
- 239000004925 Acrylic resin Substances 0.000 description 10
- 229920000178 Acrylic resin Polymers 0.000 description 10
- 238000009826 distribution Methods 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- 238000009413 insulation Methods 0.000 description 9
- 239000010931 gold Substances 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 239000011135 tin Substances 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000006087 Silane Coupling Agent Substances 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 239000013034 phenoxy resin Substances 0.000 description 4
- 229920006287 phenoxy resin Polymers 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 150000001451 organic peroxides Chemical class 0.000 description 3
- PAOHAQSLJSMLAT-UHFFFAOYSA-N 1-butylperoxybutane Chemical compound CCCCOOCCCC PAOHAQSLJSMLAT-UHFFFAOYSA-N 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910020935 Sn-Sb Inorganic materials 0.000 description 2
- 229910008757 Sn—Sb Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- KQNZLOUWXSAZGD-UHFFFAOYSA-N benzylperoxymethylbenzene Chemical compound C=1C=CC=CC=1COOCC1=CC=CC=C1 KQNZLOUWXSAZGD-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000009775 high-speed stirring Methods 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- BEQKKZICTDFVMG-UHFFFAOYSA-N 1,2,3,4,6-pentaoxepane-5,7-dione Chemical compound O=C1OOOOC(=O)O1 BEQKKZICTDFVMG-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- SJIXRGNQPBQWMK-UHFFFAOYSA-N 2-(diethylamino)ethyl 2-methylprop-2-enoate Chemical compound CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- WHBAYNMEIXUTJV-UHFFFAOYSA-N 2-chloroethyl prop-2-enoate Chemical compound ClCCOC(=O)C=C WHBAYNMEIXUTJV-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 229910016331 Bi—Ag Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229910020816 Sn Pb Inorganic materials 0.000 description 1
- 229910020836 Sn-Ag Inorganic materials 0.000 description 1
- 229910020830 Sn-Bi Inorganic materials 0.000 description 1
- 229910020922 Sn-Pb Inorganic materials 0.000 description 1
- 229910020988 Sn—Ag Inorganic materials 0.000 description 1
- 229910018728 Sn—Bi Inorganic materials 0.000 description 1
- 229910008783 Sn—Pb Inorganic materials 0.000 description 1
- 150000001253 acrylic acids Chemical class 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 125000005370 alkoxysilyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 125000005395 methacrylic acid group Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 1
- NZIDBRBFGPQCRY-UHFFFAOYSA-N octyl 2-methylprop-2-enoate Chemical compound CCCCCCCCOC(=O)C(C)=C NZIDBRBFGPQCRY-UHFFFAOYSA-N 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- QIWKUEJZZCOPFV-UHFFFAOYSA-N phenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1=CC=CC=C1 QIWKUEJZZCOPFV-UHFFFAOYSA-N 0.000 description 1
- WRAQQYDMVSCOTE-UHFFFAOYSA-N phenyl prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1 WRAQQYDMVSCOTE-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R11/00—Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
- H01R11/01—Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
Definitions
- the present invention relates to conductive particles, a method for producing conductive particles, and a conductive composition.
- connection structure is produced using a conductive composition containing conductive particles 100, and when the connection structure is thermocompression-bonded, the molten solder layer 103a is pressed and flows out, resulting in conduction. Reliability is reduced (see FIG. 1D).
- FIG. 1E there is a problem that adjacent conductive particles 100 coalesce during thermocompression bonding, resulting in deterioration of insulation.
- a conductive particle has been proposed that includes a substrate particle and a solder layer disposed on the surface of the substrate particle, and the solder layer contains a reinforcing material that suppresses solder cracking (see, for example, Patent Document 2).
- Patent Document 2 carbon black or carbon nanotubes are used as the reinforcing material.
- the conductive particles described in Patent Document 2 do not have the matrix conductive material and the domain conductive material on the surface of the base particles, and when used for electrical connection of the connection structure, after melting,
- An object of the present invention is to provide conductive particles that do not easily cause cracks in solidified solder portions, and to prevent the outflow of a matrix layer made of a matrix conductive material during thermocompression bonding, thereby improving conduction reliability and insulation. is not an issue.
- the present invention provides a conductive particle, a method for producing the conductive particle, and a conductive composition that can prevent the outflow of a matrix layer made of a matrix conductive material during thermocompression bonding and improve conduction reliability and insulation. intended to provide
- Means for solving the above problems are as follows. Namely ⁇ 1> A conductive particle characterized by having a base particle, and a matrix conductive material and a domain conductive material on the surface of the base particle. ⁇ 2> The conductive particles according to ⁇ 1>, wherein the domain conductive material has a higher melting point than the matrix conductive material. ⁇ 3> The conductive particles according to any one of ⁇ 1> and ⁇ 2>, wherein the matrix layer made of the matrix conductive material on the surface of the base particle has an average thickness of 1 nm or more. ⁇ 4> The conductive particles according to any one of ⁇ 1> to ⁇ 3>, wherein the matrix conductive material contains Sn and at least one selected from Bi, Ag, Cu, and In.
- ⁇ 5> The conductive particles according to any one of ⁇ 1> to ⁇ 4>, wherein the domain conductive material contains at least one selected from Au, Ag, Cu, Ni, Sn, and Zn.
- ⁇ 6> The conductive particles according to any one of ⁇ 1> to ⁇ 5>, wherein the base particles are at least one of resin particles and metal-coated resin particles.
- ⁇ 7> The conductive particles according to any one of ⁇ 1> to ⁇ 6>, which are produced by a mechanochemical method.
- ⁇ 9> The method for producing conductive particles according to ⁇ 8>, wherein the base particles have an average particle size of 3 ⁇ m or more and 300 ⁇ m or less.
- ⁇ 10> The above-described ⁇ 9>, wherein the ratio (D/C) of the average particle size D of the domain conductive material to the average particle size C of the base particles is 1/10,000 or more and 1/10 or less.
- ⁇ 12> A conductive composition comprising the conductive particles according to any one of ⁇ 1> to ⁇ 7>.
- FIG. 1A is a diagram showing how solder particles and base particles are mixed by a mechanochemical method.
- FIG. 1B is a schematic diagram showing an example of conventional conductive particles.
- FIG. 1C is a schematic diagram schematically showing a connection portion of the connection structure using the conductive particles of FIG. 1B.
- FIG. 1D is a schematic diagram showing the appearance of conductive particles during thermocompression bonding.
- FIG. 1E is a diagram showing a state in which adjacent conductive particles are united during thermocompression bonding.
- FIG. 2A is a diagram showing how a matrix conductive material, a domain conductive material, and base particles are mixed by a mechanochemical method.
- FIG. 2B is a schematic diagram showing an example of the conductive particles of the present invention.
- FIG. 2C is a schematic diagram schematically showing a connection portion of the connection structure using the conductive particles of FIG. 2B.
- FIG. 2D is a schematic diagram showing the appearance of conductive particles during thermocompression bonding.
- FIG. 2E is a diagram showing a state in which adjacent conductive particles are not coalesced during thermocompression bonding.
- a conductive particle of the present invention has a base particle, a matrix conductive material on the surface of the base particle, and a domain conductive material.
- the conductive particles have a matrix layer made of a matrix conductive material on the surface of the base particles, and the domain particles made of the domain conductive material are present in the matrix layer in a dispersed state.
- the domain particles present in the matrix layer suppress the flow of the matrix layer and prevent the matrix layer from flowing out during thermocompression bonding, thereby improving conduction reliability. do.
- the adjacent conductive particles do not coalesce, the insulating property is improved.
- the mother particles are not particularly limited and can be appropriately selected depending on the intended purpose. Examples thereof include resin particles, metal-coated resin particles, organic-inorganic hybrid particles, and metal particles. Among these, resin particles or metal-coated resin particles are preferable from the viewpoint of excellent stress relaxation properties.
- the resin in the resin particles examples include styrene-divinylbenzene copolymer, benzoguanamine resin, crosslinked polystyrene resin, acrylic resin, and styrene-silica composite resin.
- the metal-coated resin particles are particles in which a metal layer is provided on the surface of the resin particles.
- a method for coating the resin particles with the metal layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include electroplating and sputtering.
- the metal layer is preferably made of at least one of nickel, silver, copper, gold, and palladium, or an alloy thereof.
- the average thickness of the metal layer is preferably 50 nm or more and 300 nm or less, more preferably 80 nm or more and 250 nm or less.
- the total average thickness of the plurality of metal layers preferably satisfies the above average thickness range.
- the organic-inorganic hybrid particles include particles formed from a crosslinked alkoxysilyl polymer and an acrylic resin.
- the metal particles include nickel particles, cobalt particles, silver particles, copper particles, gold particles, palladium particles, and solder particles.
- the average particle diameter of the base particles is preferably 3 ⁇ m or more and 300 ⁇ m or less, more preferably 10 ⁇ m or more and 50 ⁇ m or less.
- the conductive particles can be efficiently produced using a mechanochemical method.
- the average particle size is obtained by measuring about 10,000 particles using a dry imaging particle size distribution meter (Morphologi G3, manufactured by Malvern), and the particle size distribution can be represented by number frequency.
- the matrix conductive material is present in layers on the surface of the base particles to form a matrix layer.
- the matrix conductive material include Sn—Pb solder particles, Pb—Sn—Sb solder particles, Sn—Sb solder particles, Sn—Pb—Bi solder particles, Sn -Bi-based solder particles, Sn--Bi--Ag-based solder particles, Sn--Bi--Cu-based solder particles, Sn--Cu-based solder particles, Sn--Pb--Cu-based solder particles, Sn--In-based solder particles, Sn--Ag system solder particles, Sn--Pb--Ag-based solder particles, Pb--Ag-based solder particles, Sn--Ag--Cu-based solder particles, and the like.
- solder particles containing Sn and at least one selected from Bi, Ag, Cu, and In are preferable, Sn—Bi solder particles, Sn—Bi—Ag solder particles, Sn—Ag -Cu-based solder particles and Sn--In-based solder particles are more preferred.
- the average thickness of the matrix layer made of the matrix conductive material on the surface of the base particles is preferably 1 nm or more, more preferably 100 nm or more and 1,000 nm or less.
- the average thickness of the matrix layer was obtained by measuring approximately 10,000 particles before and after the mechanochemical treatment using, for example, a dry imaging particle size distribution meter (Morphologi G3, manufactured by Malvern), and comparing the particle size distribution in terms of number frequency. It can be obtained by calculating the increased thickness from the obtained particle diameters before and after the mechanochemical process.
- the average thickness of the matrix layer made of the matrix conductive material on the surface of the base particle is preferably larger than the average particle size of the domain particles made of the domain conductive material present in the matrix layer.
- the melting point of the matrix conductive material is preferably 110° C. or higher and 240° C. or lower, more preferably 120° C. or higher and 200° C. or lower. It is preferable that the melting point of the matrix conductive material is lower than the melting point of the domain conductive material so that the domain conductive material can exist in the form of particles in the matrix layer made of the matrix conductive material.
- the domain conductive material exists as domain particles in a matrix layer made of the matrix conductive material on the surface of the base particles.
- the domain conductive material preferably contains at least one selected from Au, Ag, Cu, Ni, Sn, and Zn.
- the mass ratio (A:B) between the matrix conductive material A and the domain conductive material B on the surface of the base particles is preferably 9:1 to 5:5.
- the conductive particles of the present invention are preferably produced by a mechanochemical method of mixing base particles, a matrix conductive material, and a domain conductive material.
- the method for producing conductive particles of the present invention includes a mixing step of mixing base particles, a matrix conductive material, and a domain conductive material by a mechanochemical method, and further includes other steps as necessary. According to the method for producing conductive particles of the present invention, even if the layer of the matrix conductive material formed in layers on the surface of the base particle melts, the domain particles of the conductive domain material are present in the matrix layer of the matrix conductive material. It is possible to obtain conductive particles that suppress the flow of the matrix layer and prevent the matrix layer from flowing out during thermocompression bonding.
- the mechanochemical method utilizes chemical reactions caused by mechanical energy applied to substances in mechanical operations such as impact, compression, pulverization, mixing, and kneading.
- a mixing method using a dehydrator, a hybridizer, or the like can be mentioned.
- Examples of the high-speed stirring type powder spheronizing device include model NSM-200 and model NSM-350 (both manufactured by Seishin Enterprise Co., Ltd.).
- Examples of the hybridizer include Hybridization System NHS (manufactured by Nara Machinery Co., Ltd.).
- Both the matrix conductive material and the domain conductive material are in the form of particles before the mixing step.
- the ratio (D1/C or D2/C) of the average particle diameter D2 of the particles is preferably 1/100,000 or more and 1/10 or less, more preferably 1/10,000 or more and 1/10 or less, and 1/1, 000 or more and 1/10 or less is more preferable.
- the ratio (D1/C or D2/C) is 1/100,000 or more and 1/10 or less, the matrix particles and the domain particles are used to efficiently form a matrix layer in which the domain particles are dispersed on the surface of the mother particles. can be formed.
- the average particle size of the matrix particles made of the matrix conductive material and the average particle size of the domain particles made of the domain conductive material are measured by using, for example, a dry imaging type particle size distribution analyzer (Morphologi G3, manufactured by Malvern) to about 10,000 particles.
- the particles can be measured and the particle size distribution can be compared by number frequency.
- the mixing mass ratio (A:B) of the matrix conductive material A and the domain conductive material B is preferably 95:5 to 5:95, more preferably 9:1 to 5:5.
- FIG. 2A is a schematic diagram for explaining the mixing step in the method for producing conductive particles of the present invention.
- base particles 11 having a metal layer 12 on their surfaces, a matrix conductive material 13, and a domain conductive material 14 are mixed by a mechanochemical method. Collide material 13 and domain conductive material 14 .
- the conductive particles 10 are manufactured in which the domain particles 13 made of the domain conductive material are dispersed in the matrix layer 12a made of the matrix conductive material 12.
- FIG. 2C a connection structure is produced using a conductive composition containing conductive particles 10, and the connection structure is thermocompression bonded, as shown in FIG.
- the conductive composition of the present invention contains the conductive particles of the present invention, preferably contains a binder, a monofunctional polymerizable monomer, an elastomer, a curing agent, and a silane coupling agent, and if necessary It contains other ingredients.
- the conductive composition may be either a film-like conductive film or a paste-like conductive paste.
- a conductive film is preferable from the viewpoint of ease of handling, and a conductive paste is preferable from the viewpoint of cost.
- the conductive composition is a conductive film, a film containing no conductive particles may be laminated on the conductive film containing the conductive particles.
- the conductive particles of the present invention are used.
- the content of the conductive particles in the conductive composition is not particularly limited, and can be appropriately adjusted depending on the wiring pitch of the connection structure, the connection area, and the like.
- the binder is not particularly limited and can be appropriately selected depending on the purpose. Examples include phenoxy resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, A polyolefin resin etc. are mentioned. These may be used individually by 1 type, and may use 2 or more types together. Among these, phenoxy resins are particularly preferable from the viewpoint of film formability, workability, and connection reliability.
- the phenoxy resin is a resin synthesized from bisphenol A and epichlorohydrin. Appropriately synthesized resins may be used, or commercially available products may be used.
- Examples of commercially available products include trade names: YP-50 (manufactured by Tohto Kasei Co., Ltd.), YP-70 (manufactured by Tohto Kasei Co., Ltd.), and EP1256 (manufactured by Japan Epoxy Resin Co., Ltd.).
- the content of the binder in the conductive composition is not particularly limited and can be appropriately selected according to the purpose. more preferred.
- the monofunctional polymerizable monomer is not particularly limited as long as it has one polymerizable group in the molecule, and can be appropriately selected depending on the purpose.
- a monofunctional (meth)acrylic monomer styrene monomers, butadiene monomers, and other olefinic monomers having double bonds. These may be used individually by 1 type, and may use 2 or more types together.
- monofunctional (meth)acrylic monomers are particularly preferred from the viewpoint of adhesive strength and connection reliability.
- the monofunctional (meth)acrylic monomer is not particularly limited and can be appropriately selected depending on the purpose.
- Examples include acrylic acid, methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, Acrylic acids such as isobutyl acrylate, n-octyl acrylate, n-dodecyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, 2-chloroethyl acrylate, and phenyl acrylate, or esters thereof; methacrylic acid, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-octyl methacrylate, n-dodecyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate, phenyl methacrylate, Methacrylic acids such as dimethylaminoethyl methacrylate and
- the content of the monofunctional polymerizable monomer in the conductive composition is not particularly limited and can be appropriately selected depending on the purpose. More preferably, it is up to 20% by mass.
- the curing agent is not particularly limited as long as it can cure the binder, and can be appropriately selected depending on the purpose.
- organic peroxides are suitable.
- the organic peroxide include lauroyl peroxide, butyl peroxide, benzyl peroxide, dilauroyl peroxide, dibutyl peroxide, benzyl peroxide, peroxydicarbonate and benzoyl peroxide. These may be used individually by 1 type, and may use 2 or more types together.
- the content of the curing agent in the conductive composition is not particularly limited and can be appropriately selected depending on the purpose, but it is preferably 1% by mass to 15% by mass, and 3% by mass to 10% by mass. is more preferable.
- the elastomer is not particularly limited and can be appropriately selected depending on the intended purpose. Examples thereof include polyurethane elastomer, acrylic rubber, silicone rubber and butadiene rubber. These may be used individually by 1 type, and may use 2 or more types together.
- silane coupling agent is not particularly limited and can be appropriately selected depending on the intended purpose. ring agents and the like.
- the content of the silane coupling agent in the conductive composition is not particularly limited, and can be appropriately selected depending on the purpose. It is more preferably ⁇ 5% by mass.
- the other components are not particularly limited and can be appropriately selected depending on the intended purpose. Catcher agent etc. are mentioned.
- the amount of the other components to be added is not particularly limited, and can be appropriately selected according to the purpose.
- the conductive particles and conductive composition of the present invention are used, for example, for connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)). , connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), etc. can be used to connect
- acrylic resin core Ni-plated particles and acrylic resin particles were used as base particles, Cu particles, Ni particles and Au particles were used as matrix conductive materials, and SnBi particles and SnAgCu particles were used as domain conductive materials. Using.
- the average particle diameters of the base particles, the matrix conductive material and the domain conductive material were measured as follows.
- Example 1 ⁇ Production of conductive particles> Cu particles (manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point 1,083 ° C.) 1 part by mass SnBi particles (manufactured by a Chinese venture company, average particle size: 100 nm, melting point 139 ° C.) 9 parts by mass , and 30 parts by mass of acrylic resin core Ni-plated particles (manufactured by Sekisui Chemical Co., Ltd., average particle size: 20 ⁇ m) were weighed, placed in a cup, and mixed with a wood bar for 1 minute.
- This mixture was put into a high-speed stirring powder spheroidizer (NSM-200, manufactured by Seishin Enterprise Co., Ltd.) and granulated at 3,000 rpm for 1 minute in a nitrogen atmosphere to produce conductive particles of Example 1. bottom.
- NSM-200 high-speed stirring powder spheroidizer
- ⁇ Preparation of conductive film 5 parts by mass of the produced conductive particles of Example 1 and 95 parts by mass of the insulating binder described below were placed in a planetary stirrer and stirred for 1 minute to prepare a conductive composition. Next, the conductive composition is applied on a 50 ⁇ m thick PET film and dried in an oven at 80° C. for 5 minutes to form a 25 ⁇ m thick adhesive layer made of the conductive composition on the PET film. A 2.0 mm conductive film was produced.
- the insulating binder is 47 parts by mass of phenoxy resin (trade name: YP-50, manufactured by Shinnikka Epoxy Manufacturing Co., Ltd.), 3 parts by mass of monofunctional monomer (trade name: M-5300, manufactured by Toagosei Co., Ltd.), urethane Resin (trade name: UR-1400, manufactured by Toyobo Co., Ltd.) 25 parts by mass, rubber component (trade name: SG80H, manufactured by Nagase ChemteX Corporation) 15 parts by mass, silane coupling agent (trade name: A-187, 2 parts by mass of Momentive Performance Materials Japan Co., Ltd.) and 3 parts by mass of organic peroxide (trade name: Nyper BW, manufactured by NOF Corporation) so that the solid content is 50% by mass. , and a mixed solution of ethyl acetate and toluene.
- the thermocompression bonding was performed by pressing down a tool through a silicon rubber having a thickness of 200 ⁇ m on the FPC under conditions of temperature: 150° C., pressure: 2 MPa, and time: 20 sec.
- the initial conductivity resistance of the connection structure was measured with a four-terminal method using a digital multimeter (manufactured by Yokogawa Electric Corporation) when a current of 1 mA was applied, and evaluated according to the following criteria.
- the conduction reliability the conduction resistance of the connection structure was measured after the environmental test under the conditions of temperature 85° C., humidity 85%, and 500 hours in the same manner as the initial conduction, and evaluated according to the following criteria. [Evaluation criteria] ⁇ : When the conduction resistance is less than 100m ⁇ ⁇ : When the conduction resistance is between 100m ⁇ and 1,000m ⁇ ⁇ : When the conduction resistance exceeds 1,000m ⁇ ⁇ : The conduction resistance is open
- the initial conduction resistance was 40 m ⁇ , which was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 m ⁇ , indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
- Example 2 ⁇ Production of conductive particles>
- Cu particles manufactured by Taiyo Nippon Sanso Co., Ltd., average particle size: 100 nm, melting point 1,083 ° C.
- Ni particles manufactured by Taiyo Nippon Sanso Co., Ltd., average particle size: 100 nm, melting point 1455 ° C.
- Conductive particles of Example 2 were produced in the same manner as in Example 1, except that
- Example 2 ⁇ Preparation of conductive film, preparation of connection structure, and evaluation> Using the produced conductive particles of Example 2, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 m ⁇ . was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 m ⁇ , indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
- Example 3 ⁇ Production of conductive particles>
- Cu particles manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point 1,083 ° C.
- Au particles manufactured by a Chinese venture company, average particle size: 100 nm, melting point 1,064 ° C.
- Conductive particles of Example 3 were produced in the same manner as in Example 1, except that the particles were changed.
- Example 3 ⁇ Preparation of conductive film, preparation of connection structure, and evaluation> Using the produced conductive particles of Example 3, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 m ⁇ . was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 m ⁇ , indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
- Example 4 ⁇ Production of conductive particles>
- SnBi particles manufactured by a Chinese venture company, average particle size: 100 nm, melting point 139 ° C.
- SnAgCu particles manufactured by a Chinese venture company, average particle size: 100 nm, melting point 220 ° C.
- Conductive particles of Example 4 were produced in the same manner as in Example 1.
- Example 4 ⁇ Preparation of conductive film, preparation of connection structure, and evaluation> Using the produced conductive particles of Example 4, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 m ⁇ . was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 m ⁇ , indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
- Example 5 ⁇ Production of conductive particles>
- Cu particles manufactured by Taiyo Nippon Sanso Co., Ltd., average particle size: 100 nm, melting point 1,083 ° C.
- Ni particles manufactured by Taiyo Nippon Sanso Co., Ltd., average particle size: 100 nm, melting point 1,455 ° C.). ° C.
- conductive particles of Example 5 were produced.
- Example 5 ⁇ Preparation of conductive film, preparation of connection structure, and evaluation> Using the produced conductive particles of Example 5, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 m ⁇ . was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 m ⁇ , indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
- Example 6 ⁇ Production of conductive particles>
- Cu particles manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point 1,083°C
- Ni particles manufactured by a Chinese venture company, average particle size: 1000 nm, melting point 1455°C.
- Conductive particles of Example 6 were produced in the same manner as in Example 1 except for the above.
- Example 6 ⁇ Preparation of conductive film, preparation of connection structure, and evaluation> Using the produced conductive particles of Example 6, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 m ⁇ . was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 m ⁇ , indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
- Example 7 ⁇ Production of conductive particles>
- Cu particles manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point: 1,083 ° C.
- Ni particles manufactured by a Chinese venture company, average particle size: 30 nm, melting point: 1,455 ° C.
- Conductive particles of Example 7 were produced in the same manner as in Example 1, except that the particles were changed.
- Example 7 ⁇ Preparation of conductive film, preparation of connection structure, and evaluation> Using the produced conductive particles of Example 7, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 100 m ⁇ . Indicated. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 160 m ⁇ . Further, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer was slightly outflowing. Adjacent conductive particles were slightly self-fused.
- Example 8 ⁇ Production of conductive particles>
- Ni particles manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point 1,455 ° C.
- SnBi particles manufactured by a Chinese venture company, average particle size: 100 nm, melting point 139 ° C.
- Conductive particles of Example 8 were produced in the same manner as in Example 2 except that 5 parts by mass and 30 parts by mass of acrylic resin core Ni-plated particles (manufactured by Sekisui Chemical Co., Ltd., average particle size: 20 ⁇ m) were used. bottom.
- Example 8 ⁇ Preparation of conductive film, preparation of connection structure, and evaluation> Using the produced conductive particles of Example 8, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 m ⁇ . was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 m ⁇ , indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
- Example 9 ⁇ Production of conductive particles>
- Ni particles manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point 1,455 ° C.
- SnBi particles manufactured by a Chinese venture company, average particle size: 100 nm, melting point 139 ° C.
- Conductive particles of Example 9 were prepared in the same manner as in Example 2 except that 9 parts by mass and 30 parts by mass of acrylic resin core Ni-plated particles (manufactured by Sekisui Chemical Co., Ltd., average particle size: 20 ⁇ m) were used. bottom.
- Example 9 ⁇ Preparation of conductive film, preparation of connection structure, and evaluation> Using the produced conductive particles of Example 9, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 150 m ⁇ . Indicated. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 180 m ⁇ . In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
- Example 10 ⁇ Production of conductive particles>
- the acrylic resin core Ni-plated particles manufactured by Sekisui Chemical Co., Ltd., average particle size: 20 ⁇ m
- acrylic resin particles manufactured by Sekisui Chemical Co., Ltd., average particle size: 20 ⁇ m
- Conductive particles of Example 10 were produced in the same manner as in Example 1.
- Example 10 ⁇ Preparation of conductive film, preparation of connection structure, and evaluation> Using the produced conductive particles of Example 10, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 m ⁇ . was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 m ⁇ , indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
- Comparative example 2 ⁇ Production of conductive particles> Conductive particles of Comparative Example 2 were produced in the same manner as in Example 1, except that Cu particles were not used in Example 1 and only SnBi particles were used.
- Comparative Example 3 (Comparative Example 3) ⁇ Production of conductive particles> Conductive particles of Comparative Example 3 were produced in the same manner as in Example 1, except that in Example 1, SnBi particles were not used and only Cu particles were used.
- Comparative Example 4 ⁇ Production of conductive particles> Conductive particles of Comparative Example 4 were produced in the same manner as in Example 1, except that in Example 1, SnBi particles were not used and only Ni particles were used.
- the conductive particles and the conductive composition of the present invention have excellent conduction reliability and insulation, for example, they are formed on flexible printed circuit boards (FPC), terminals of IC chips, and glass substrates of LCD panels. Connection with ITO (Indium Tin Oxide) electrodes, connection between COF and PWB, connection between TCP and PWB, connection between COF and glass substrate, connection between COF and COF, connection between IC substrate and glass substrate, connection between IC substrate and PWB It is suitably used for connection of
- REFERENCE SIGNS LIST 100 conductive particles 101 resin particles 102 metal layer 103 solder particles 103a solder layer 104 metal particles 10 conductive particles 11 resin particles 12 metal layer 13 matrix conductive material 13a matrix layer made of matrix conductive material 14 domain conductive material (domain particles)
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
The present invention provides electrically conductive particles comprising a base particle, a matrix conductive material on the surface of the base particle, and a domain conductive material.
Description
本発明は、導電性粒子、導電性粒子の製造方法、及び導電性組成物に関する。
The present invention relates to conductive particles, a method for producing conductive particles, and a conductive composition.
従来より、メカノケミカル法(ハイブリタイゼーション処理)により母粒子の表面に小粒子を物理的に衝突させ、母粒子の表面に小粒子により膜を形成する技術が提案されている(例えば、特許文献1参照)。
例えば、図1Aに示すように、表面に金属層102を有する母粒子101と、SnBi等のはんだ粒子103とをメカノケミカル法により混合すると、母粒子101の表面に、はんだ層103aを有する導電性粒子100が製造される(図1B参照)。次に、図1Cに示すように、導電性粒子100を含む導電性組成物を用いて接続構造体を作製し、接続構造体を加熱圧着すると、溶融したはんだ層103aが押されて流出し導通信頼性が低下してしまう(図1D参照)。また、図1Eに示すように、加熱圧着時に隣接する導電性粒子100同士が合一化し、絶縁性が低下してしまうという問題がある。 Conventionally, a technique has been proposed in which small particles physically collide with the surface of mother particles by a mechanochemical method (hybridization treatment) to form a film on the surface of the mother particles with the small particles (see, for example, Patent Documents 1).
For example, as shown in FIG. 1A, whenmother particles 101 having a metal layer 102 on their surfaces and solder particles 103 such as SnBi are mixed by a mechanochemical method, the surfaces of the mother particles 101 have a conductive layer 103a. A particle 100 is produced (see FIG. 1B). Next, as shown in FIG. 1C, a connection structure is produced using a conductive composition containing conductive particles 100, and when the connection structure is thermocompression-bonded, the molten solder layer 103a is pressed and flows out, resulting in conduction. Reliability is reduced (see FIG. 1D). In addition, as shown in FIG. 1E, there is a problem that adjacent conductive particles 100 coalesce during thermocompression bonding, resulting in deterioration of insulation.
例えば、図1Aに示すように、表面に金属層102を有する母粒子101と、SnBi等のはんだ粒子103とをメカノケミカル法により混合すると、母粒子101の表面に、はんだ層103aを有する導電性粒子100が製造される(図1B参照)。次に、図1Cに示すように、導電性粒子100を含む導電性組成物を用いて接続構造体を作製し、接続構造体を加熱圧着すると、溶融したはんだ層103aが押されて流出し導通信頼性が低下してしまう(図1D参照)。また、図1Eに示すように、加熱圧着時に隣接する導電性粒子100同士が合一化し、絶縁性が低下してしまうという問題がある。 Conventionally, a technique has been proposed in which small particles physically collide with the surface of mother particles by a mechanochemical method (hybridization treatment) to form a film on the surface of the mother particles with the small particles (see, for example, Patent Documents 1).
For example, as shown in FIG. 1A, when
また、基材粒子と、前記基材粒子の表面上に配置されたはんだ層とを備え、前記はんだ層がはんだ割れを抑制する補強材料を含む導電性粒子が提案されている(例えば、特許文献2参照)。この特許文献2では、補強材料としてカーボンブラック又はカーボンナノチューブが用いられている。
Further, a conductive particle has been proposed that includes a substrate particle and a solder layer disposed on the surface of the substrate particle, and the solder layer contains a reinforcing material that suppresses solder cracking (see, for example, Patent Document 2). In Patent Document 2, carbon black or carbon nanotubes are used as the reinforcing material.
しかしながら、上記特許文献2に記載の導電性粒子は、母粒子の表面にマトリックス導電材料とドメイン導電材料を有するものではなく、接続構造体の電気的な接続に用いた場合に、溶融した後、固化したはんだ部分に割れが生じ難い導電性粒子を提供することを課題としており、加熱圧着時におけるマトリックス導電材料からなるマトリックス層の流出を防止して、導通信頼性及び絶縁性の向上を図ることを課題としていない。
However, the conductive particles described in Patent Document 2 do not have the matrix conductive material and the domain conductive material on the surface of the base particles, and when used for electrical connection of the connection structure, after melting, An object of the present invention is to provide conductive particles that do not easily cause cracks in solidified solder portions, and to prevent the outflow of a matrix layer made of a matrix conductive material during thermocompression bonding, thereby improving conduction reliability and insulation. is not an issue.
本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、加熱圧着時におけるマトリックス導電材料からなるマトリックス層の流出を防止でき、導通信頼性及び絶縁性の向上を図れる導電性粒子、導電性粒子の製造方法、及び導電性組成物を提供することを目的とする。
The object of the present invention is to solve the above-mentioned problems in the past and to achieve the following objects. That is, the present invention provides a conductive particle, a method for producing the conductive particle, and a conductive composition that can prevent the outflow of a matrix layer made of a matrix conductive material during thermocompression bonding and improve conduction reliability and insulation. intended to provide
前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 母粒子と、該母粒子の表面にマトリックス導電材料と、ドメイン導電材料と、を有することを特徴とする導電性粒子である。
<2> 前記ドメイン導電材料の融点が前記マトリックス導電材料の融点よりも高い、前記<1>に記載の導電性粒子である。
<3> 前記母粒子の表面における前記マトリックス導電材料からなるマトリックス層の平均厚みが1nm以上である、前記<1>から<2>のいずれかに記載の導電性粒子である。
<4> 前記マトリックス導電材料がSnと、Bi、Ag、Cu、及びInから選択される少なくとも1種とを含む、前記<1>から<3>のいずれかに記載の導電性粒子である。
<5> 前記ドメイン導電材料がAu、Ag、Cu、Ni、Sn、及びZnから選択される少なくとも1種を含む、前記<1>から<4>のいずれかに記載の導電性粒子である。
<6> 前記母粒子が、樹脂粒子及び金属被覆樹脂粒子の少なくともいずれかである、前記<1>から<5>のいずれかに記載の導電性粒子である。
<7> メカノケミカル法により製造される、前記<1>から<6>のいずれかに記載の導電性粒子である。
<8> 母粒子と、マトリックス導電材料と、ドメイン導電材料とをメカノケミカル法により混合する混合工程を含むことを特徴とする導電性粒子の製造方法である。
<9> 前記母粒子の平均粒径が3μm以上300μm以下である、前記<8>に記載の導電性粒子の製造方法である。
<10> 前記母粒子の平均粒径Cに対する前記ドメイン導電材料の平均粒径Dの比率(D/C)が、1/10,000以上1/10以下である、前記<9>に記載の導電性粒子の製造方法である。
<11> 前記マトリックス導電材料Aと前記ドメイン導電材料Bとの混合質量比率(A:B)が、9:1~5:5である、前記<8>から<10>のいずれかに記載の導電性粒子の製造方法である。
<12> 前記<1>から<7>のいずれかに記載の導電性粒子を含有することを特徴とする導電性組成物である。 Means for solving the above problems are as follows. Namely
<1> A conductive particle characterized by having a base particle, and a matrix conductive material and a domain conductive material on the surface of the base particle.
<2> The conductive particles according to <1>, wherein the domain conductive material has a higher melting point than the matrix conductive material.
<3> The conductive particles according to any one of <1> and <2>, wherein the matrix layer made of the matrix conductive material on the surface of the base particle has an average thickness of 1 nm or more.
<4> The conductive particles according to any one of <1> to <3>, wherein the matrix conductive material contains Sn and at least one selected from Bi, Ag, Cu, and In.
<5> The conductive particles according to any one of <1> to <4>, wherein the domain conductive material contains at least one selected from Au, Ag, Cu, Ni, Sn, and Zn.
<6> The conductive particles according to any one of <1> to <5>, wherein the base particles are at least one of resin particles and metal-coated resin particles.
<7> The conductive particles according to any one of <1> to <6>, which are produced by a mechanochemical method.
<8> A method for producing conductive particles, comprising a mixing step of mixing base particles, a matrix conductive material, and a domain conductive material by a mechanochemical method.
<9> The method for producing conductive particles according to <8>, wherein the base particles have an average particle size of 3 μm or more and 300 μm or less.
<10> The above-described <9>, wherein the ratio (D/C) of the average particle size D of the domain conductive material to the average particle size C of the base particles is 1/10,000 or more and 1/10 or less. A method for producing conductive particles.
<11> The mixing mass ratio (A:B) of the matrix conductive material A and the domain conductive material B is 9:1 to 5:5, according to any one of <8> to <10>. A method for producing conductive particles.
<12> A conductive composition comprising the conductive particles according to any one of <1> to <7>.
<1> 母粒子と、該母粒子の表面にマトリックス導電材料と、ドメイン導電材料と、を有することを特徴とする導電性粒子である。
<2> 前記ドメイン導電材料の融点が前記マトリックス導電材料の融点よりも高い、前記<1>に記載の導電性粒子である。
<3> 前記母粒子の表面における前記マトリックス導電材料からなるマトリックス層の平均厚みが1nm以上である、前記<1>から<2>のいずれかに記載の導電性粒子である。
<4> 前記マトリックス導電材料がSnと、Bi、Ag、Cu、及びInから選択される少なくとも1種とを含む、前記<1>から<3>のいずれかに記載の導電性粒子である。
<5> 前記ドメイン導電材料がAu、Ag、Cu、Ni、Sn、及びZnから選択される少なくとも1種を含む、前記<1>から<4>のいずれかに記載の導電性粒子である。
<6> 前記母粒子が、樹脂粒子及び金属被覆樹脂粒子の少なくともいずれかである、前記<1>から<5>のいずれかに記載の導電性粒子である。
<7> メカノケミカル法により製造される、前記<1>から<6>のいずれかに記載の導電性粒子である。
<8> 母粒子と、マトリックス導電材料と、ドメイン導電材料とをメカノケミカル法により混合する混合工程を含むことを特徴とする導電性粒子の製造方法である。
<9> 前記母粒子の平均粒径が3μm以上300μm以下である、前記<8>に記載の導電性粒子の製造方法である。
<10> 前記母粒子の平均粒径Cに対する前記ドメイン導電材料の平均粒径Dの比率(D/C)が、1/10,000以上1/10以下である、前記<9>に記載の導電性粒子の製造方法である。
<11> 前記マトリックス導電材料Aと前記ドメイン導電材料Bとの混合質量比率(A:B)が、9:1~5:5である、前記<8>から<10>のいずれかに記載の導電性粒子の製造方法である。
<12> 前記<1>から<7>のいずれかに記載の導電性粒子を含有することを特徴とする導電性組成物である。 Means for solving the above problems are as follows. Namely
<1> A conductive particle characterized by having a base particle, and a matrix conductive material and a domain conductive material on the surface of the base particle.
<2> The conductive particles according to <1>, wherein the domain conductive material has a higher melting point than the matrix conductive material.
<3> The conductive particles according to any one of <1> and <2>, wherein the matrix layer made of the matrix conductive material on the surface of the base particle has an average thickness of 1 nm or more.
<4> The conductive particles according to any one of <1> to <3>, wherein the matrix conductive material contains Sn and at least one selected from Bi, Ag, Cu, and In.
<5> The conductive particles according to any one of <1> to <4>, wherein the domain conductive material contains at least one selected from Au, Ag, Cu, Ni, Sn, and Zn.
<6> The conductive particles according to any one of <1> to <5>, wherein the base particles are at least one of resin particles and metal-coated resin particles.
<7> The conductive particles according to any one of <1> to <6>, which are produced by a mechanochemical method.
<8> A method for producing conductive particles, comprising a mixing step of mixing base particles, a matrix conductive material, and a domain conductive material by a mechanochemical method.
<9> The method for producing conductive particles according to <8>, wherein the base particles have an average particle size of 3 μm or more and 300 μm or less.
<10> The above-described <9>, wherein the ratio (D/C) of the average particle size D of the domain conductive material to the average particle size C of the base particles is 1/10,000 or more and 1/10 or less. A method for producing conductive particles.
<11> The mixing mass ratio (A:B) of the matrix conductive material A and the domain conductive material B is 9:1 to 5:5, according to any one of <8> to <10>. A method for producing conductive particles.
<12> A conductive composition comprising the conductive particles according to any one of <1> to <7>.
本発明によると、従来における前記諸問題を解決し、前記目的を達成することができ、加熱圧着時におけるマトリックス導電材料からなるマトリックス層の流出を防止でき、導通信頼性及び絶縁性の向上を図れる導電性粒子、導電性粒子の製造方法、及び導電性組成物を提供することができる。
According to the present invention, it is possible to solve the above-mentioned problems in the conventional art, achieve the above-mentioned objects, prevent the matrix layer made of the matrix conductive material from flowing out during thermocompression bonding, and improve the reliability of conduction and insulation. Conductive particles, methods of making conductive particles, and conductive compositions can be provided.
(導電性粒子)
本発明の導電性粒子は、母粒子と、該母粒子の表面にマトリックス導電材料と、ドメイン導電材料と、を有する。
前記導電性粒子は、母粒子の表面にマトリックス導電材料からなるマトリックス層を有し、前記マトリックス層中にドメイン導電材料からなるドメイン粒子が分散した状態で存在している。これにより、加熱圧着時にマトリックス層が溶融しても前記マトリックス層中に存在するドメイン粒子がマトリックス層の流動を抑制し、加熱圧着時にマトリックス層が流出することを防止できるので、導通信頼性が向上する。また、隣接する導電性粒子同士が合一化することがないので、絶縁性が向上する。 (Conductive particles)
A conductive particle of the present invention has a base particle, a matrix conductive material on the surface of the base particle, and a domain conductive material.
The conductive particles have a matrix layer made of a matrix conductive material on the surface of the base particles, and the domain particles made of the domain conductive material are present in the matrix layer in a dispersed state. As a result, even if the matrix layer melts during thermocompression bonding, the domain particles present in the matrix layer suppress the flow of the matrix layer and prevent the matrix layer from flowing out during thermocompression bonding, thereby improving conduction reliability. do. In addition, since the adjacent conductive particles do not coalesce, the insulating property is improved.
本発明の導電性粒子は、母粒子と、該母粒子の表面にマトリックス導電材料と、ドメイン導電材料と、を有する。
前記導電性粒子は、母粒子の表面にマトリックス導電材料からなるマトリックス層を有し、前記マトリックス層中にドメイン導電材料からなるドメイン粒子が分散した状態で存在している。これにより、加熱圧着時にマトリックス層が溶融しても前記マトリックス層中に存在するドメイン粒子がマトリックス層の流動を抑制し、加熱圧着時にマトリックス層が流出することを防止できるので、導通信頼性が向上する。また、隣接する導電性粒子同士が合一化することがないので、絶縁性が向上する。 (Conductive particles)
A conductive particle of the present invention has a base particle, a matrix conductive material on the surface of the base particle, and a domain conductive material.
The conductive particles have a matrix layer made of a matrix conductive material on the surface of the base particles, and the domain particles made of the domain conductive material are present in the matrix layer in a dispersed state. As a result, even if the matrix layer melts during thermocompression bonding, the domain particles present in the matrix layer suppress the flow of the matrix layer and prevent the matrix layer from flowing out during thermocompression bonding, thereby improving conduction reliability. do. In addition, since the adjacent conductive particles do not coalesce, the insulating property is improved.
<母粒子>
母粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、樹脂粒子、金属被覆樹脂粒子、有機無機ハイブリッド粒子、金属粒子などが挙げられる。これらの中でも、応力緩和性に優れる点から、樹脂粒子又は金属被覆樹脂粒子が好ましい。 <Mother particle>
The mother particles are not particularly limited and can be appropriately selected depending on the intended purpose. Examples thereof include resin particles, metal-coated resin particles, organic-inorganic hybrid particles, and metal particles. Among these, resin particles or metal-coated resin particles are preferable from the viewpoint of excellent stress relaxation properties.
母粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、樹脂粒子、金属被覆樹脂粒子、有機無機ハイブリッド粒子、金属粒子などが挙げられる。これらの中でも、応力緩和性に優れる点から、樹脂粒子又は金属被覆樹脂粒子が好ましい。 <Mother particle>
The mother particles are not particularly limited and can be appropriately selected depending on the intended purpose. Examples thereof include resin particles, metal-coated resin particles, organic-inorganic hybrid particles, and metal particles. Among these, resin particles or metal-coated resin particles are preferable from the viewpoint of excellent stress relaxation properties.
前記樹脂粒子における樹脂としては、例えば、スチレン-ジビニルベンゼン共重合体、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂、アクリル樹脂、スチレン-シリカ複合樹脂などが挙げられる。
前記金属被覆樹脂粒子は、樹脂粒子の表面に金属層が設けられた粒子である。前記樹脂粒子への金属層の被覆方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電解めっき法、スパッタリング法、などが挙げられる。
前記金属層としては、ニッケル、銀、銅、金、及びパラジウムの少なくともいずれかの単体金属又はこれらの合金であることが好ましい。
前記金属層の平均厚みは、50nm以上300nm以下が好ましく、80nm以上250nm以下がより好ましい。なお、前記金属層が複数の金属層から構成される場合は、複数の金属層の合計平均厚みが上記平均厚みの範囲を満たすことが好ましい。
前記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された粒子などが挙げられる。
前記金属粒子としては、例えば、ニッケル粒子、コバルト粒子、銀粒子、銅粒子、金粒子、パラジウム粒子、はんだ粒子などが挙げられる。 Examples of the resin in the resin particles include styrene-divinylbenzene copolymer, benzoguanamine resin, crosslinked polystyrene resin, acrylic resin, and styrene-silica composite resin.
The metal-coated resin particles are particles in which a metal layer is provided on the surface of the resin particles. A method for coating the resin particles with the metal layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include electroplating and sputtering.
The metal layer is preferably made of at least one of nickel, silver, copper, gold, and palladium, or an alloy thereof.
The average thickness of the metal layer is preferably 50 nm or more and 300 nm or less, more preferably 80 nm or more and 250 nm or less. In addition, when the metal layer is composed of a plurality of metal layers, the total average thickness of the plurality of metal layers preferably satisfies the above average thickness range.
Examples of the organic-inorganic hybrid particles include particles formed from a crosslinked alkoxysilyl polymer and an acrylic resin.
Examples of the metal particles include nickel particles, cobalt particles, silver particles, copper particles, gold particles, palladium particles, and solder particles.
前記金属被覆樹脂粒子は、樹脂粒子の表面に金属層が設けられた粒子である。前記樹脂粒子への金属層の被覆方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電解めっき法、スパッタリング法、などが挙げられる。
前記金属層としては、ニッケル、銀、銅、金、及びパラジウムの少なくともいずれかの単体金属又はこれらの合金であることが好ましい。
前記金属層の平均厚みは、50nm以上300nm以下が好ましく、80nm以上250nm以下がより好ましい。なお、前記金属層が複数の金属層から構成される場合は、複数の金属層の合計平均厚みが上記平均厚みの範囲を満たすことが好ましい。
前記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された粒子などが挙げられる。
前記金属粒子としては、例えば、ニッケル粒子、コバルト粒子、銀粒子、銅粒子、金粒子、パラジウム粒子、はんだ粒子などが挙げられる。 Examples of the resin in the resin particles include styrene-divinylbenzene copolymer, benzoguanamine resin, crosslinked polystyrene resin, acrylic resin, and styrene-silica composite resin.
The metal-coated resin particles are particles in which a metal layer is provided on the surface of the resin particles. A method for coating the resin particles with the metal layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include electroplating and sputtering.
The metal layer is preferably made of at least one of nickel, silver, copper, gold, and palladium, or an alloy thereof.
The average thickness of the metal layer is preferably 50 nm or more and 300 nm or less, more preferably 80 nm or more and 250 nm or less. In addition, when the metal layer is composed of a plurality of metal layers, the total average thickness of the plurality of metal layers preferably satisfies the above average thickness range.
Examples of the organic-inorganic hybrid particles include particles formed from a crosslinked alkoxysilyl polymer and an acrylic resin.
Examples of the metal particles include nickel particles, cobalt particles, silver particles, copper particles, gold particles, palladium particles, and solder particles.
前記母粒子の平均粒径は、3μm以上300μm以下が好ましく、10μm以上50μm以下がより好ましい。前記母粒子の平均粒径が3μm以上300μm以下であると、メカノケミカル法を用いて導電性粒子を効率よく作製することができる。
前記平均粒径は、乾式撮像型粒度分布計(Morphologi G3、Malvern社製)を用い、約1万個の粒子を測定し、粒度分布は個数頻度で表すことができる。 The average particle diameter of the base particles is preferably 3 μm or more and 300 μm or less, more preferably 10 μm or more and 50 μm or less. When the average particle size of the base particles is 3 μm or more and 300 μm or less, the conductive particles can be efficiently produced using a mechanochemical method.
The average particle size is obtained by measuring about 10,000 particles using a dry imaging particle size distribution meter (Morphologi G3, manufactured by Malvern), and the particle size distribution can be represented by number frequency.
前記平均粒径は、乾式撮像型粒度分布計(Morphologi G3、Malvern社製)を用い、約1万個の粒子を測定し、粒度分布は個数頻度で表すことができる。 The average particle diameter of the base particles is preferably 3 μm or more and 300 μm or less, more preferably 10 μm or more and 50 μm or less. When the average particle size of the base particles is 3 μm or more and 300 μm or less, the conductive particles can be efficiently produced using a mechanochemical method.
The average particle size is obtained by measuring about 10,000 particles using a dry imaging particle size distribution meter (Morphologi G3, manufactured by Malvern), and the particle size distribution can be represented by number frequency.
<マトリックス導電材料>
マトリックス導電材料は、前記母粒子の表面に層状に存在し、マトリックス層を形成する。
前記マトリックス導電材料としては、JIS Z3282-1999に規定されている、Sn-Pb系はんだ粒子、Pb-Sn-Sb系はんだ粒子、Sn-Sb系はんだ粒子、Sn-Pb-Bi系はんだ粒子、Sn-Bi系はんだ粒子、Sn-Bi-Ag系はんだ粒子、Sn-Bi-Cu系はんだ粒子、Sn-Cu系はんだ粒子、Sn-Pb-Cu系はんだ粒子、Sn-In系はんだ粒子、Sn-Ag系はんだ粒子、Sn-Pb-Ag系はんだ粒子、Pb-Ag系はんだ粒子、Sn-Ag-Cu系はんだ粒子などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、Snと、Bi、Ag、Cu、及びInから選択される少なくとも1種と、を含むはんだ粒子が好ましく、Sn-Bi系はんだ粒子、Sn-Bi-Ag系はんだ粒子、Sn-Ag-Cu系はんだ粒子、Sn-In系はんだ粒子がより好ましい。 <Matrix conductive material>
The matrix conductive material is present in layers on the surface of the base particles to form a matrix layer.
Examples of the matrix conductive material include Sn—Pb solder particles, Pb—Sn—Sb solder particles, Sn—Sb solder particles, Sn—Pb—Bi solder particles, Sn -Bi-based solder particles, Sn--Bi--Ag-based solder particles, Sn--Bi--Cu-based solder particles, Sn--Cu-based solder particles, Sn--Pb--Cu-based solder particles, Sn--In-based solder particles, Sn--Ag system solder particles, Sn--Pb--Ag-based solder particles, Pb--Ag-based solder particles, Sn--Ag--Cu-based solder particles, and the like. These may be used individually by 1 type, and may use 2 or more types together.
Among these, solder particles containing Sn and at least one selected from Bi, Ag, Cu, and In are preferable, Sn—Bi solder particles, Sn—Bi—Ag solder particles, Sn—Ag -Cu-based solder particles and Sn--In-based solder particles are more preferred.
マトリックス導電材料は、前記母粒子の表面に層状に存在し、マトリックス層を形成する。
前記マトリックス導電材料としては、JIS Z3282-1999に規定されている、Sn-Pb系はんだ粒子、Pb-Sn-Sb系はんだ粒子、Sn-Sb系はんだ粒子、Sn-Pb-Bi系はんだ粒子、Sn-Bi系はんだ粒子、Sn-Bi-Ag系はんだ粒子、Sn-Bi-Cu系はんだ粒子、Sn-Cu系はんだ粒子、Sn-Pb-Cu系はんだ粒子、Sn-In系はんだ粒子、Sn-Ag系はんだ粒子、Sn-Pb-Ag系はんだ粒子、Pb-Ag系はんだ粒子、Sn-Ag-Cu系はんだ粒子などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、Snと、Bi、Ag、Cu、及びInから選択される少なくとも1種と、を含むはんだ粒子が好ましく、Sn-Bi系はんだ粒子、Sn-Bi-Ag系はんだ粒子、Sn-Ag-Cu系はんだ粒子、Sn-In系はんだ粒子がより好ましい。 <Matrix conductive material>
The matrix conductive material is present in layers on the surface of the base particles to form a matrix layer.
Examples of the matrix conductive material include Sn—Pb solder particles, Pb—Sn—Sb solder particles, Sn—Sb solder particles, Sn—Pb—Bi solder particles, Sn -Bi-based solder particles, Sn--Bi--Ag-based solder particles, Sn--Bi--Cu-based solder particles, Sn--Cu-based solder particles, Sn--Pb--Cu-based solder particles, Sn--In-based solder particles, Sn--Ag system solder particles, Sn--Pb--Ag-based solder particles, Pb--Ag-based solder particles, Sn--Ag--Cu-based solder particles, and the like. These may be used individually by 1 type, and may use 2 or more types together.
Among these, solder particles containing Sn and at least one selected from Bi, Ag, Cu, and In are preferable, Sn—Bi solder particles, Sn—Bi—Ag solder particles, Sn—Ag -Cu-based solder particles and Sn--In-based solder particles are more preferred.
前記母粒子の表面におけるマトリックス導電材料からなるマトリックス層の平均厚みは1nm以上が好ましく、100nm以上1,000nm以下がより好ましい。
前記マトリックス層の平均厚みは、例えば、乾式撮像型粒度分布計(Morphologi G3、Malvern社製)を用い、メカノケミカル前後で約1万個の粒子を測定し、粒度分布は個数頻度で比較した。得られたメカノケミカル前後での粒子径から増加した厚みを算出することにより求めることができる。
前記母粒子の表面における前記マトリックス導電材料からなるマトリックス層の平均厚みは、前記マトリックス層中に存在するドメイン導電材料からなるドメイン粒子の平均粒径よりも大きいことが好ましい。これにより、マトリックス層中にドメイン粒子を確実に保持することができる。
前記マトリックス導電材料の融点は、110℃以上240℃以下が好ましく、120℃以上200℃以下がより好ましい。
前記マトリックス導電材料の融点は、前記ドメイン導電材料の融点よりも低いことが、マトリックス導電材料からなるマトリックス層中にドメイン導電材料が粒子状態で存在できる点から好ましい。 The average thickness of the matrix layer made of the matrix conductive material on the surface of the base particles is preferably 1 nm or more, more preferably 100 nm or more and 1,000 nm or less.
The average thickness of the matrix layer was obtained by measuring approximately 10,000 particles before and after the mechanochemical treatment using, for example, a dry imaging particle size distribution meter (Morphologi G3, manufactured by Malvern), and comparing the particle size distribution in terms of number frequency. It can be obtained by calculating the increased thickness from the obtained particle diameters before and after the mechanochemical process.
The average thickness of the matrix layer made of the matrix conductive material on the surface of the base particle is preferably larger than the average particle size of the domain particles made of the domain conductive material present in the matrix layer. This ensures that the domain particles are retained in the matrix layer.
The melting point of the matrix conductive material is preferably 110° C. or higher and 240° C. or lower, more preferably 120° C. or higher and 200° C. or lower.
It is preferable that the melting point of the matrix conductive material is lower than the melting point of the domain conductive material so that the domain conductive material can exist in the form of particles in the matrix layer made of the matrix conductive material.
前記マトリックス層の平均厚みは、例えば、乾式撮像型粒度分布計(Morphologi G3、Malvern社製)を用い、メカノケミカル前後で約1万個の粒子を測定し、粒度分布は個数頻度で比較した。得られたメカノケミカル前後での粒子径から増加した厚みを算出することにより求めることができる。
前記母粒子の表面における前記マトリックス導電材料からなるマトリックス層の平均厚みは、前記マトリックス層中に存在するドメイン導電材料からなるドメイン粒子の平均粒径よりも大きいことが好ましい。これにより、マトリックス層中にドメイン粒子を確実に保持することができる。
前記マトリックス導電材料の融点は、110℃以上240℃以下が好ましく、120℃以上200℃以下がより好ましい。
前記マトリックス導電材料の融点は、前記ドメイン導電材料の融点よりも低いことが、マトリックス導電材料からなるマトリックス層中にドメイン導電材料が粒子状態で存在できる点から好ましい。 The average thickness of the matrix layer made of the matrix conductive material on the surface of the base particles is preferably 1 nm or more, more preferably 100 nm or more and 1,000 nm or less.
The average thickness of the matrix layer was obtained by measuring approximately 10,000 particles before and after the mechanochemical treatment using, for example, a dry imaging particle size distribution meter (Morphologi G3, manufactured by Malvern), and comparing the particle size distribution in terms of number frequency. It can be obtained by calculating the increased thickness from the obtained particle diameters before and after the mechanochemical process.
The average thickness of the matrix layer made of the matrix conductive material on the surface of the base particle is preferably larger than the average particle size of the domain particles made of the domain conductive material present in the matrix layer. This ensures that the domain particles are retained in the matrix layer.
The melting point of the matrix conductive material is preferably 110° C. or higher and 240° C. or lower, more preferably 120° C. or higher and 200° C. or lower.
It is preferable that the melting point of the matrix conductive material is lower than the melting point of the domain conductive material so that the domain conductive material can exist in the form of particles in the matrix layer made of the matrix conductive material.
<ドメイン導電材料>
ドメイン導電材料は、前記母粒子の表面のマトリックス導電材料からなるマトリックス層中にドメイン粒子として存在する。
前記ドメイン導電材料としては、Au、Ag、Cu、Ni、Sn、及びZnから選択される少なくとも1種を含むことが好ましい。
前記母粒子表面におけるマトリックス導電材料Aとドメイン導電材料Bとの質量比(A:B)は、9:1~5:5であることが好ましい。 <Domain conductive material>
The domain conductive material exists as domain particles in a matrix layer made of the matrix conductive material on the surface of the base particles.
The domain conductive material preferably contains at least one selected from Au, Ag, Cu, Ni, Sn, and Zn.
The mass ratio (A:B) between the matrix conductive material A and the domain conductive material B on the surface of the base particles is preferably 9:1 to 5:5.
ドメイン導電材料は、前記母粒子の表面のマトリックス導電材料からなるマトリックス層中にドメイン粒子として存在する。
前記ドメイン導電材料としては、Au、Ag、Cu、Ni、Sn、及びZnから選択される少なくとも1種を含むことが好ましい。
前記母粒子表面におけるマトリックス導電材料Aとドメイン導電材料Bとの質量比(A:B)は、9:1~5:5であることが好ましい。 <Domain conductive material>
The domain conductive material exists as domain particles in a matrix layer made of the matrix conductive material on the surface of the base particles.
The domain conductive material preferably contains at least one selected from Au, Ag, Cu, Ni, Sn, and Zn.
The mass ratio (A:B) between the matrix conductive material A and the domain conductive material B on the surface of the base particles is preferably 9:1 to 5:5.
本発明の導電性粒子によると、加熱圧着した導電性粒子のマトリックス層の流出が抑制され、導通信頼性が向上する。また、隣接する導電性粒子同士が合一化することがなくなるので、絶縁性が向上する。
本発明の導電性粒子は、母粒子と、マトリックス導電材料と、ドメイン導電材料とを混合するメカノケミカル法により製造されることが好ましい。 According to the conductive particles of the present invention, the outflow of the matrix layer of the conductive particles bonded by thermocompression is suppressed, and the conduction reliability is improved. Also, since the adjacent conductive particles do not coalesce, the insulating property is improved.
The conductive particles of the present invention are preferably produced by a mechanochemical method of mixing base particles, a matrix conductive material, and a domain conductive material.
本発明の導電性粒子は、母粒子と、マトリックス導電材料と、ドメイン導電材料とを混合するメカノケミカル法により製造されることが好ましい。 According to the conductive particles of the present invention, the outflow of the matrix layer of the conductive particles bonded by thermocompression is suppressed, and the conduction reliability is improved. Also, since the adjacent conductive particles do not coalesce, the insulating property is improved.
The conductive particles of the present invention are preferably produced by a mechanochemical method of mixing base particles, a matrix conductive material, and a domain conductive material.
(導電性粒子の製造方法)
本発明の導電性粒子の製造方法は、母粒子と、マトリックス導電材料と、ドメイン導電材料とをメカノケミカル法により混合する混合工程を含み、更に必要に応じてその他の工程を含む。
本発明の導電性粒子の製造方法によると、母粒子の表面に層状に形成されたマトリックス導電材料からなる層が溶融してもマトリックス導電材料からなるマトリックス層中にドメイン導電材料からなるドメイン粒子がマトリックス層の流動を抑制し、加熱圧着時にマトリックス層が流出しない導電性粒子が得られる。 (Method for producing conductive particles)
The method for producing conductive particles of the present invention includes a mixing step of mixing base particles, a matrix conductive material, and a domain conductive material by a mechanochemical method, and further includes other steps as necessary.
According to the method for producing conductive particles of the present invention, even if the layer of the matrix conductive material formed in layers on the surface of the base particle melts, the domain particles of the conductive domain material are present in the matrix layer of the matrix conductive material. It is possible to obtain conductive particles that suppress the flow of the matrix layer and prevent the matrix layer from flowing out during thermocompression bonding.
本発明の導電性粒子の製造方法は、母粒子と、マトリックス導電材料と、ドメイン導電材料とをメカノケミカル法により混合する混合工程を含み、更に必要に応じてその他の工程を含む。
本発明の導電性粒子の製造方法によると、母粒子の表面に層状に形成されたマトリックス導電材料からなる層が溶融してもマトリックス導電材料からなるマトリックス層中にドメイン導電材料からなるドメイン粒子がマトリックス層の流動を抑制し、加熱圧着時にマトリックス層が流出しない導電性粒子が得られる。 (Method for producing conductive particles)
The method for producing conductive particles of the present invention includes a mixing step of mixing base particles, a matrix conductive material, and a domain conductive material by a mechanochemical method, and further includes other steps as necessary.
According to the method for producing conductive particles of the present invention, even if the layer of the matrix conductive material formed in layers on the surface of the base particle melts, the domain particles of the conductive domain material are present in the matrix layer of the matrix conductive material. It is possible to obtain conductive particles that suppress the flow of the matrix layer and prevent the matrix layer from flowing out during thermocompression bonding.
前記メカノケミカル法は、例えば、衝撃、圧縮、粉砕、混合、混練などの機械的操作において、物質に加えられる機械的エネルギーにより生じる化学反応を利用するものであり、例えば、高速撹拌型粉体球状化装置、ハイブリダイザー等を用いた混合法などが挙げられる。
前記高速撹拌型粉体球状化装置としては、例えば、型式NSM-200、型式NSM-350(いずれも株式会社セイシン企業製)などが挙げられる。
前記ハイブリダイザーとしては、例えば、ハイブリダイゼーションシステムNHS(株式会社奈良機械製作所製)などが挙げられる。 The mechanochemical method utilizes chemical reactions caused by mechanical energy applied to substances in mechanical operations such as impact, compression, pulverization, mixing, and kneading. A mixing method using a dehydrator, a hybridizer, or the like can be mentioned.
Examples of the high-speed stirring type powder spheronizing device include model NSM-200 and model NSM-350 (both manufactured by Seishin Enterprise Co., Ltd.).
Examples of the hybridizer include Hybridization System NHS (manufactured by Nara Machinery Co., Ltd.).
前記高速撹拌型粉体球状化装置としては、例えば、型式NSM-200、型式NSM-350(いずれも株式会社セイシン企業製)などが挙げられる。
前記ハイブリダイザーとしては、例えば、ハイブリダイゼーションシステムNHS(株式会社奈良機械製作所製)などが挙げられる。 The mechanochemical method utilizes chemical reactions caused by mechanical energy applied to substances in mechanical operations such as impact, compression, pulverization, mixing, and kneading. A mixing method using a dehydrator, a hybridizer, or the like can be mentioned.
Examples of the high-speed stirring type powder spheronizing device include model NSM-200 and model NSM-350 (both manufactured by Seishin Enterprise Co., Ltd.).
Examples of the hybridizer include Hybridization System NHS (manufactured by Nara Machinery Co., Ltd.).
前記マトリックス導電材料及び前記ドメイン導電材料は、混合工程前においていずれも粒子状であり、母粒子の平均粒径Cに対する、マトリックス導電材料からなるマトリックス粒子の平均粒径D1及びドメイン導電材料からなるドメイン粒子の平均粒径D2の比率(D1/C又はD2/C)は、1/100,000以上1/10以下が好ましく、1/10,000以上1/10以下がより好ましく、1/1,000以上1/10以下が更に好ましい。前記比率(D1/C又はD2/C)が1/100,000以上1/10以下であると、前記マトリックス粒子及び前記ドメイン粒子を用いて母粒子表面にドメイン粒子が分散したマトリックス層を効率よく形成することができる。
前記マトリックス導電材料からなるマトリックス粒子の平均粒径及びドメイン導電材料からなるドメイン粒子の平均粒径は、例えば、乾式撮像型粒度分布計(Morphologi G3、Malvern社製)を用い、約1万個の粒子を測定し、粒度分布は個数頻度で比較することができる。 Both the matrix conductive material and the domain conductive material are in the form of particles before the mixing step. The ratio (D1/C or D2/C) of the average particle diameter D2 of the particles is preferably 1/100,000 or more and 1/10 or less, more preferably 1/10,000 or more and 1/10 or less, and 1/1, 000 or more and 1/10 or less is more preferable. When the ratio (D1/C or D2/C) is 1/100,000 or more and 1/10 or less, the matrix particles and the domain particles are used to efficiently form a matrix layer in which the domain particles are dispersed on the surface of the mother particles. can be formed.
The average particle size of the matrix particles made of the matrix conductive material and the average particle size of the domain particles made of the domain conductive material are measured by using, for example, a dry imaging type particle size distribution analyzer (Morphologi G3, manufactured by Malvern) to about 10,000 particles. The particles can be measured and the particle size distribution can be compared by number frequency.
前記マトリックス導電材料からなるマトリックス粒子の平均粒径及びドメイン導電材料からなるドメイン粒子の平均粒径は、例えば、乾式撮像型粒度分布計(Morphologi G3、Malvern社製)を用い、約1万個の粒子を測定し、粒度分布は個数頻度で比較することができる。 Both the matrix conductive material and the domain conductive material are in the form of particles before the mixing step. The ratio (D1/C or D2/C) of the average particle diameter D2 of the particles is preferably 1/100,000 or more and 1/10 or less, more preferably 1/10,000 or more and 1/10 or less, and 1/1, 000 or more and 1/10 or less is more preferable. When the ratio (D1/C or D2/C) is 1/100,000 or more and 1/10 or less, the matrix particles and the domain particles are used to efficiently form a matrix layer in which the domain particles are dispersed on the surface of the mother particles. can be formed.
The average particle size of the matrix particles made of the matrix conductive material and the average particle size of the domain particles made of the domain conductive material are measured by using, for example, a dry imaging type particle size distribution analyzer (Morphologi G3, manufactured by Malvern) to about 10,000 particles. The particles can be measured and the particle size distribution can be compared by number frequency.
前記マトリックス導電材料Aと前記ドメイン導電材料Bとの混合質量比率(A:B)は、95:5~5:95が好ましく、9:1~5:5がより好ましい。これにより、前記マトリックス導電材料及びドメイン導電材料を用いて母粒子表面にドメイン粒子が分散したマトリックス層を効率よく形成することができる。
The mixing mass ratio (A:B) of the matrix conductive material A and the domain conductive material B is preferably 95:5 to 5:95, more preferably 9:1 to 5:5. As a result, a matrix layer in which domain particles are dispersed on the surface of mother particles can be efficiently formed using the matrix conductive material and the domain conductive material.
図2Aは、本発明の導電性粒子の製造方法における混合工程を説明するための概略図である。
図2Aに示すように、混合工程においては、表面に金属層12を有する母粒子11と、マトリックス導電材料13と、ドメイン導電材料14とを、メカノケミカル法により混合し、母粒子11にマトリックス導電材料13及びドメイン導電材料14を衝突させる。すると、図2Bに示すように、マトリックス導電材料12からなるマトリックス層12a中にドメイン導電材料からなるドメイン粒子13が分散している導電性粒子10が製造される。
次に、図2Cに示すように、導電性粒子10を含む導電性組成物を用いて接続構造体を作製し、前記接続構造体を加熱圧着すると、図2Dに示すように、マトリックス層13aが溶融してもマトリックス層13a中に存在するドメイン粒子14がマトリックス層13aの流動を抑制し、マトリックス層13aの流出を防止できるので、導通信頼性が向上する。また、図2Eに示すように、接続構造体の加熱圧着時にマトリックス層13aの流出が抑制されるので、隣接する導電性粒子10同士が合一化することがなくなり、絶縁性が向上する。 FIG. 2A is a schematic diagram for explaining the mixing step in the method for producing conductive particles of the present invention.
As shown in FIG. 2A, in the mixing step,base particles 11 having a metal layer 12 on their surfaces, a matrix conductive material 13, and a domain conductive material 14 are mixed by a mechanochemical method. Collide material 13 and domain conductive material 14 . As a result, as shown in FIG. 2B, the conductive particles 10 are manufactured in which the domain particles 13 made of the domain conductive material are dispersed in the matrix layer 12a made of the matrix conductive material 12. As shown in FIG.
Next, as shown in FIG. 2C, a connection structure is produced using a conductive composition containingconductive particles 10, and the connection structure is thermocompression bonded, as shown in FIG. 2D, matrix layer 13a Even if the domain particles 14 are melted, the domain particles 14 existing in the matrix layer 13a can suppress the flow of the matrix layer 13a and prevent the matrix layer 13a from flowing out, thereby improving the conduction reliability. In addition, as shown in FIG. 2E, since the outflow of the matrix layer 13a is suppressed during the thermocompression bonding of the connection structure, the adjacent conductive particles 10 do not coalesce, and the insulation improves.
図2Aに示すように、混合工程においては、表面に金属層12を有する母粒子11と、マトリックス導電材料13と、ドメイン導電材料14とを、メカノケミカル法により混合し、母粒子11にマトリックス導電材料13及びドメイン導電材料14を衝突させる。すると、図2Bに示すように、マトリックス導電材料12からなるマトリックス層12a中にドメイン導電材料からなるドメイン粒子13が分散している導電性粒子10が製造される。
次に、図2Cに示すように、導電性粒子10を含む導電性組成物を用いて接続構造体を作製し、前記接続構造体を加熱圧着すると、図2Dに示すように、マトリックス層13aが溶融してもマトリックス層13a中に存在するドメイン粒子14がマトリックス層13aの流動を抑制し、マトリックス層13aの流出を防止できるので、導通信頼性が向上する。また、図2Eに示すように、接続構造体の加熱圧着時にマトリックス層13aの流出が抑制されるので、隣接する導電性粒子10同士が合一化することがなくなり、絶縁性が向上する。 FIG. 2A is a schematic diagram for explaining the mixing step in the method for producing conductive particles of the present invention.
As shown in FIG. 2A, in the mixing step,
Next, as shown in FIG. 2C, a connection structure is produced using a conductive composition containing
(導電性組成物)
本発明の導電性組成物は、本発明の導電性粒子を含有し、バインダー、単官能の重合性モノマー、エラストマー、硬化剤、及びシランカップリング剤を含有することが好ましく、更に必要に応じてその他の成分を含有してなる。 (Conductive composition)
The conductive composition of the present invention contains the conductive particles of the present invention, preferably contains a binder, a monofunctional polymerizable monomer, an elastomer, a curing agent, and a silane coupling agent, and if necessary It contains other ingredients.
本発明の導電性組成物は、本発明の導電性粒子を含有し、バインダー、単官能の重合性モノマー、エラストマー、硬化剤、及びシランカップリング剤を含有することが好ましく、更に必要に応じてその他の成分を含有してなる。 (Conductive composition)
The conductive composition of the present invention contains the conductive particles of the present invention, preferably contains a binder, a monofunctional polymerizable monomer, an elastomer, a curing agent, and a silane coupling agent, and if necessary It contains other ingredients.
前記導電性組成物は、フィルム状の導電性フィルム、又はペースト状の導電性ペーストのいずれであってもよい。取り扱いのし易さの点から導電性フィルムが好ましく、コストの点から導電性ペーストが好ましい。なお、導電性組成物が導電性フィルムである場合、該導電性粒子を含む導電性フィルムに、導電性粒子を含まないフィルムが積層されてもよい。
The conductive composition may be either a film-like conductive film or a paste-like conductive paste. A conductive film is preferable from the viewpoint of ease of handling, and a conductive paste is preferable from the viewpoint of cost. When the conductive composition is a conductive film, a film containing no conductive particles may be laminated on the conductive film containing the conductive particles.
-導電性粒子-
導電性粒子としては、上述した本発明の導電性粒子が用いられる。
前記導電性粒子の前記導電性組成物における含有量としては、特に制限はなく、接続構造体の配線ピッチや、接続面積などによって適宜調整することができる。 -Conductive particles-
As the conductive particles, the conductive particles of the present invention described above are used.
The content of the conductive particles in the conductive composition is not particularly limited, and can be appropriately adjusted depending on the wiring pitch of the connection structure, the connection area, and the like.
導電性粒子としては、上述した本発明の導電性粒子が用いられる。
前記導電性粒子の前記導電性組成物における含有量としては、特に制限はなく、接続構造体の配線ピッチや、接続面積などによって適宜調整することができる。 -Conductive particles-
As the conductive particles, the conductive particles of the present invention described above are used.
The content of the conductive particles in the conductive composition is not particularly limited, and can be appropriately adjusted depending on the wiring pitch of the connection structure, the connection area, and the like.
-バインダー-
前記バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、製膜性、加工性、及び接続信頼性の点から、フェノキシ樹脂が特に好ましい。
前記フェノキシ樹脂とは、ビスフェノールAとエピクロルヒドリンより合成される樹脂であって、適宜合成したものを使用してもよいし、市販品を使用してもよい。該市販品としては、例えば商品名:YP-50(東都化成株式会社製)、YP-70(東都化成株式会社製)、EP1256(ジャパンエポキシレジン株式会社製)などが挙げられる。
前記バインダーの導電性組成物における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、20質量%~70質量%が好ましく、35質量%~55質量%がより好ましい。 -binder-
The binder is not particularly limited and can be appropriately selected depending on the purpose. Examples include phenoxy resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, A polyolefin resin etc. are mentioned. These may be used individually by 1 type, and may use 2 or more types together. Among these, phenoxy resins are particularly preferable from the viewpoint of film formability, workability, and connection reliability.
The phenoxy resin is a resin synthesized from bisphenol A and epichlorohydrin. Appropriately synthesized resins may be used, or commercially available products may be used. Examples of commercially available products include trade names: YP-50 (manufactured by Tohto Kasei Co., Ltd.), YP-70 (manufactured by Tohto Kasei Co., Ltd.), and EP1256 (manufactured by Japan Epoxy Resin Co., Ltd.).
The content of the binder in the conductive composition is not particularly limited and can be appropriately selected according to the purpose. more preferred.
前記バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、製膜性、加工性、及び接続信頼性の点から、フェノキシ樹脂が特に好ましい。
前記フェノキシ樹脂とは、ビスフェノールAとエピクロルヒドリンより合成される樹脂であって、適宜合成したものを使用してもよいし、市販品を使用してもよい。該市販品としては、例えば商品名:YP-50(東都化成株式会社製)、YP-70(東都化成株式会社製)、EP1256(ジャパンエポキシレジン株式会社製)などが挙げられる。
前記バインダーの導電性組成物における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、20質量%~70質量%が好ましく、35質量%~55質量%がより好ましい。 -binder-
The binder is not particularly limited and can be appropriately selected depending on the purpose. Examples include phenoxy resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, A polyolefin resin etc. are mentioned. These may be used individually by 1 type, and may use 2 or more types together. Among these, phenoxy resins are particularly preferable from the viewpoint of film formability, workability, and connection reliability.
The phenoxy resin is a resin synthesized from bisphenol A and epichlorohydrin. Appropriately synthesized resins may be used, or commercially available products may be used. Examples of commercially available products include trade names: YP-50 (manufactured by Tohto Kasei Co., Ltd.), YP-70 (manufactured by Tohto Kasei Co., Ltd.), and EP1256 (manufactured by Japan Epoxy Resin Co., Ltd.).
The content of the binder in the conductive composition is not particularly limited and can be appropriately selected according to the purpose. more preferred.
-単官能の重合性モノマー-
前記単官能の重合性モノマーとしては、分子内に重合性基を1つ有するものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、単官能の(メタ)アクリルモノマー、スチレンモノマー、ブタジエンモノマー、その他2重結合を有するオレフィン系モノマーなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、接着強度及び接続信頼性の点から、単官能(メタ)アクリルモノマーが特に好ましい。
前記単官能(メタ)アクリルモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸n-オクチル、アクリル酸n-ドデシル、アクリル酸2-エチルへキシル、アクリル酸ステアリル、アクリル酸2-クロルエチル、アクリル酸フェニル等のアクリル酸、又はそのエステル類;メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸n-オクチル、メタクリル酸n-ドデシル、メタクリル酸2-エチルへキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル等のメタクリル酸又はそのエステル類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 - Monofunctional Polymerizable Monomer -
The monofunctional polymerizable monomer is not particularly limited as long as it has one polymerizable group in the molecule, and can be appropriately selected depending on the purpose. For example, a monofunctional (meth)acrylic monomer , styrene monomers, butadiene monomers, and other olefinic monomers having double bonds. These may be used individually by 1 type, and may use 2 or more types together. Among these, monofunctional (meth)acrylic monomers are particularly preferred from the viewpoint of adhesive strength and connection reliability.
The monofunctional (meth)acrylic monomer is not particularly limited and can be appropriately selected depending on the purpose. Examples include acrylic acid, methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, Acrylic acids such as isobutyl acrylate, n-octyl acrylate, n-dodecyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, 2-chloroethyl acrylate, and phenyl acrylate, or esters thereof; methacrylic acid, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-octyl methacrylate, n-dodecyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate, phenyl methacrylate, Methacrylic acids such as dimethylaminoethyl methacrylate and diethylaminoethyl methacrylate, and esters thereof may be mentioned. These may be used individually by 1 type, and may use 2 or more types together.
前記単官能の重合性モノマーとしては、分子内に重合性基を1つ有するものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、単官能の(メタ)アクリルモノマー、スチレンモノマー、ブタジエンモノマー、その他2重結合を有するオレフィン系モノマーなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、接着強度及び接続信頼性の点から、単官能(メタ)アクリルモノマーが特に好ましい。
前記単官能(メタ)アクリルモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸n-オクチル、アクリル酸n-ドデシル、アクリル酸2-エチルへキシル、アクリル酸ステアリル、アクリル酸2-クロルエチル、アクリル酸フェニル等のアクリル酸、又はそのエステル類;メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸n-オクチル、メタクリル酸n-ドデシル、メタクリル酸2-エチルへキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル等のメタクリル酸又はそのエステル類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 - Monofunctional Polymerizable Monomer -
The monofunctional polymerizable monomer is not particularly limited as long as it has one polymerizable group in the molecule, and can be appropriately selected depending on the purpose. For example, a monofunctional (meth)acrylic monomer , styrene monomers, butadiene monomers, and other olefinic monomers having double bonds. These may be used individually by 1 type, and may use 2 or more types together. Among these, monofunctional (meth)acrylic monomers are particularly preferred from the viewpoint of adhesive strength and connection reliability.
The monofunctional (meth)acrylic monomer is not particularly limited and can be appropriately selected depending on the purpose. Examples include acrylic acid, methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, Acrylic acids such as isobutyl acrylate, n-octyl acrylate, n-dodecyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, 2-chloroethyl acrylate, and phenyl acrylate, or esters thereof; methacrylic acid, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-octyl methacrylate, n-dodecyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate, phenyl methacrylate, Methacrylic acids such as dimethylaminoethyl methacrylate and diethylaminoethyl methacrylate, and esters thereof may be mentioned. These may be used individually by 1 type, and may use 2 or more types together.
前記単官能の重合性モノマーの導電性組成物における含有量は、特に制限はなく、目的に応じて適宜選択することができるが、2質量%~30質量%であることが好ましく、5質量%~20質量%であることがより好ましい。
The content of the monofunctional polymerizable monomer in the conductive composition is not particularly limited and can be appropriately selected depending on the purpose. More preferably, it is up to 20% by mass.
-硬化剤-
前記硬化剤としては、バインダーを硬化できるものであれば特に制限はなく、目的に応じて適宜選択することができるが、例えば、有機過酸化物などが好適である。
前記有機過酸化物としては、例えば、ラウロイルパーオキサイド、ブチルパーオキサイド、ベンジルパーオキサイド、ジラウロイルパーオキサイド、ジブチルパーオキサイド、ベンジルパーオキサイド、パーオキシジカーボネート、ベンゾイルパーオキサイドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記硬化剤の導電性組成物における含有量は、特に制限はなく、目的に応じて適宜選択することができるが、1質量%~15質量%であることが好ましく、3質量%~10質量%であることがより好ましい。 -Curing agent-
The curing agent is not particularly limited as long as it can cure the binder, and can be appropriately selected depending on the purpose. For example, organic peroxides are suitable.
Examples of the organic peroxide include lauroyl peroxide, butyl peroxide, benzyl peroxide, dilauroyl peroxide, dibutyl peroxide, benzyl peroxide, peroxydicarbonate and benzoyl peroxide. These may be used individually by 1 type, and may use 2 or more types together.
The content of the curing agent in the conductive composition is not particularly limited and can be appropriately selected depending on the purpose, but it is preferably 1% by mass to 15% by mass, and 3% by mass to 10% by mass. is more preferable.
前記硬化剤としては、バインダーを硬化できるものであれば特に制限はなく、目的に応じて適宜選択することができるが、例えば、有機過酸化物などが好適である。
前記有機過酸化物としては、例えば、ラウロイルパーオキサイド、ブチルパーオキサイド、ベンジルパーオキサイド、ジラウロイルパーオキサイド、ジブチルパーオキサイド、ベンジルパーオキサイド、パーオキシジカーボネート、ベンゾイルパーオキサイドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記硬化剤の導電性組成物における含有量は、特に制限はなく、目的に応じて適宜選択することができるが、1質量%~15質量%であることが好ましく、3質量%~10質量%であることがより好ましい。 -Curing agent-
The curing agent is not particularly limited as long as it can cure the binder, and can be appropriately selected depending on the purpose. For example, organic peroxides are suitable.
Examples of the organic peroxide include lauroyl peroxide, butyl peroxide, benzyl peroxide, dilauroyl peroxide, dibutyl peroxide, benzyl peroxide, peroxydicarbonate and benzoyl peroxide. These may be used individually by 1 type, and may use 2 or more types together.
The content of the curing agent in the conductive composition is not particularly limited and can be appropriately selected depending on the purpose, but it is preferably 1% by mass to 15% by mass, and 3% by mass to 10% by mass. is more preferable.
-エラストマー-
エラストマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリウレタン系エラストマー、アクリルゴム、シリコーンゴム、ブタジエンゴムなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 -Elastomer-
The elastomer is not particularly limited and can be appropriately selected depending on the intended purpose. Examples thereof include polyurethane elastomer, acrylic rubber, silicone rubber and butadiene rubber. These may be used individually by 1 type, and may use 2 or more types together.
エラストマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリウレタン系エラストマー、アクリルゴム、シリコーンゴム、ブタジエンゴムなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 -Elastomer-
The elastomer is not particularly limited and can be appropriately selected depending on the intended purpose. Examples thereof include polyurethane elastomer, acrylic rubber, silicone rubber and butadiene rubber. These may be used individually by 1 type, and may use 2 or more types together.
-シランカップリング剤-
前記シランカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばエポキシ系シランカップリング剤、アクリル系シランカップリング剤、チオール系シランカップリング剤、アミン系シランカップリング剤などが挙げられる。
前記シランカップリング剤の導電性組成物における含有量は、特に制限はなく、目的に応じて適宜選択することができるが、0.5質量%~10質量%であることが好ましく、1質量%~5質量%であることがより好ましい。 -Silane coupling agent-
The silane coupling agent is not particularly limited and can be appropriately selected depending on the intended purpose. ring agents and the like.
The content of the silane coupling agent in the conductive composition is not particularly limited, and can be appropriately selected depending on the purpose. It is more preferably ~5% by mass.
前記シランカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばエポキシ系シランカップリング剤、アクリル系シランカップリング剤、チオール系シランカップリング剤、アミン系シランカップリング剤などが挙げられる。
前記シランカップリング剤の導電性組成物における含有量は、特に制限はなく、目的に応じて適宜選択することができるが、0.5質量%~10質量%であることが好ましく、1質量%~5質量%であることがより好ましい。 -Silane coupling agent-
The silane coupling agent is not particularly limited and can be appropriately selected depending on the intended purpose. ring agents and the like.
The content of the silane coupling agent in the conductive composition is not particularly limited, and can be appropriately selected depending on the purpose. It is more preferably ~5% by mass.
-その他の成分-
前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機溶剤、充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、イオンキャッチャー剤などが挙げられる。前記その他の成分の添加量は、特に制限はなく、目的に応じて適宜選択することができる。 -Other ingredients-
The other components are not particularly limited and can be appropriately selected depending on the intended purpose. Catcher agent etc. are mentioned. The amount of the other components to be added is not particularly limited, and can be appropriately selected according to the purpose.
前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機溶剤、充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、イオンキャッチャー剤などが挙げられる。前記その他の成分の添加量は、特に制限はなく、目的に応じて適宜選択することができる。 -Other ingredients-
The other components are not particularly limited and can be appropriately selected depending on the intended purpose. Catcher agent etc. are mentioned. The amount of the other components to be added is not particularly limited, and can be appropriately selected according to the purpose.
<用途>
本発明の導電性粒子及び導電性組成物は、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、フレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))などの様々な接続対象部材の電極間を電気的に接続するために用いることができる。 <Application>
The conductive particles and conductive composition of the present invention are used, for example, for connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)). , connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), etc. can be used to connect
本発明の導電性粒子及び導電性組成物は、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、フレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))などの様々な接続対象部材の電極間を電気的に接続するために用いることができる。 <Application>
The conductive particles and conductive composition of the present invention are used, for example, for connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)). , connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), etc. can be used to connect
以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
以下の実施例及び比較例では、母粒子としてアクリル樹脂コアNiメッキ粒子、アクリル樹脂粒子を用い、マトリックス導電材料としてCu粒子、Ni粒子、Au粒子を用い、ドメイン導電材料としてSnBi粒子、SnAgCu粒子を用いた。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
In the following examples and comparative examples, acrylic resin core Ni-plated particles and acrylic resin particles were used as base particles, Cu particles, Ni particles and Au particles were used as matrix conductive materials, and SnBi particles and SnAgCu particles were used as domain conductive materials. Using.
以下の実施例及び比較例では、母粒子としてアクリル樹脂コアNiメッキ粒子、アクリル樹脂粒子を用い、マトリックス導電材料としてCu粒子、Ni粒子、Au粒子を用い、ドメイン導電材料としてSnBi粒子、SnAgCu粒子を用いた。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
In the following examples and comparative examples, acrylic resin core Ni-plated particles and acrylic resin particles were used as base particles, Cu particles, Ni particles and Au particles were used as matrix conductive materials, and SnBi particles and SnAgCu particles were used as domain conductive materials. Using.
以下の実施例において、母粒子、マトリックス導電材料及びドメイン導電材料の平均粒径は、以下のようにして測定した。
In the examples below, the average particle diameters of the base particles, the matrix conductive material and the domain conductive material were measured as follows.
<母粒子、マトリックス導電材料、及びドメイン導電材料の平均粒径の測定>
母粒子、マトリックス導電材料、及びドメイン導電材料の平均粒径は、乾式撮像型粒度分布計(Morphologi G3、Malvern社製)を用い、約1万個の粒子を測定し、粒度分布は個数頻度で表した。 <Measurement of average particle size of base particles, matrix conductive material, and domain conductive material>
The average particle size of the base particles, the matrix conductive material, and the domain conductive material was measured using a dry imaging particle size distribution meter (Morphologi G3, manufactured by Malvern) for approximately 10,000 particles. expressed.
母粒子、マトリックス導電材料、及びドメイン導電材料の平均粒径は、乾式撮像型粒度分布計(Morphologi G3、Malvern社製)を用い、約1万個の粒子を測定し、粒度分布は個数頻度で表した。 <Measurement of average particle size of base particles, matrix conductive material, and domain conductive material>
The average particle size of the base particles, the matrix conductive material, and the domain conductive material was measured using a dry imaging particle size distribution meter (Morphologi G3, manufactured by Malvern) for approximately 10,000 particles. expressed.
<マトリックス層の平均厚みの測定>
乾式撮像型粒度分布計(Morphologi G3、Malvern社製)を用い、メカノケミカル前後で約1万個の粒子を測定し、粒度分布は個数頻度で比較した。得られたメカノケミカル前後での粒子径から増加した厚みを算出し、平均厚みを求めた。 <Measurement of average thickness of matrix layer>
About 10,000 particles were measured before and after the mechanochemical treatment using a dry imaging particle size distribution meter (Morphologi G3, manufactured by Malvern), and the particle size distribution was compared by number frequency. The increased thickness was calculated from the obtained particle diameters before and after the mechanochemical treatment, and the average thickness was obtained.
乾式撮像型粒度分布計(Morphologi G3、Malvern社製)を用い、メカノケミカル前後で約1万個の粒子を測定し、粒度分布は個数頻度で比較した。得られたメカノケミカル前後での粒子径から増加した厚みを算出し、平均厚みを求めた。 <Measurement of average thickness of matrix layer>
About 10,000 particles were measured before and after the mechanochemical treatment using a dry imaging particle size distribution meter (Morphologi G3, manufactured by Malvern), and the particle size distribution was compared by number frequency. The increased thickness was calculated from the obtained particle diameters before and after the mechanochemical treatment, and the average thickness was obtained.
(実施例1)
<導電性粒子の作製>
Cu粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,083℃)1質量部に対してSnBi粒子(中国ベンチャー企業製、平均粒径:100nm、融点139℃)9質量部、及びアクリル樹脂コアNiメッキ粒子(積水化学工業株式会社製、平均粒径:20μm)30質量部を測量し、カップに入れ、1分間ウッドバーで混ぜ合わせた。この混合物を高速撹拌型粉体球状化装置(NSM-200、株式会社セイシン企業製)へ投入し、窒素雰囲気下、3,000rpmで1分間造粒を行い、実施例1の導電性粒子を作製した。 (Example 1)
<Production of conductive particles>
Cu particles (manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point 1,083 ° C.) 1 part by mass SnBi particles (manufactured by a Chinese venture company, average particle size: 100 nm, melting point 139 ° C.) 9 parts by mass , and 30 parts by mass of acrylic resin core Ni-plated particles (manufactured by Sekisui Chemical Co., Ltd., average particle size: 20 μm) were weighed, placed in a cup, and mixed with a wood bar for 1 minute. This mixture was put into a high-speed stirring powder spheroidizer (NSM-200, manufactured by Seishin Enterprise Co., Ltd.) and granulated at 3,000 rpm for 1 minute in a nitrogen atmosphere to produce conductive particles of Example 1. bottom.
<導電性粒子の作製>
Cu粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,083℃)1質量部に対してSnBi粒子(中国ベンチャー企業製、平均粒径:100nm、融点139℃)9質量部、及びアクリル樹脂コアNiメッキ粒子(積水化学工業株式会社製、平均粒径:20μm)30質量部を測量し、カップに入れ、1分間ウッドバーで混ぜ合わせた。この混合物を高速撹拌型粉体球状化装置(NSM-200、株式会社セイシン企業製)へ投入し、窒素雰囲気下、3,000rpmで1分間造粒を行い、実施例1の導電性粒子を作製した。 (Example 1)
<Production of conductive particles>
Cu particles (manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point 1,083 ° C.) 1 part by mass SnBi particles (manufactured by a Chinese venture company, average particle size: 100 nm, melting point 139 ° C.) 9 parts by mass , and 30 parts by mass of acrylic resin core Ni-plated particles (manufactured by Sekisui Chemical Co., Ltd., average particle size: 20 μm) were weighed, placed in a cup, and mixed with a wood bar for 1 minute. This mixture was put into a high-speed stirring powder spheroidizer (NSM-200, manufactured by Seishin Enterprise Co., Ltd.) and granulated at 3,000 rpm for 1 minute in a nitrogen atmosphere to produce conductive particles of Example 1. bottom.
<導電性フィルムの作製>
作製した実施例1の導電性粒子5質量部と、下記の絶縁性バインダー95質量部とを遊星式撹拌装置に投入し、1分間撹拌して導電性組成物を作製した。
次に、導電性組成物を厚さ50μmのPETフィルム上に塗布し、80℃のオーブンで5分間乾燥させ、導電性組成物からなる厚さ25μmの粘着層をPETフィルム上に形成し、幅2.0mmの導電性フィルムを作製した。 <Preparation of conductive film>
5 parts by mass of the produced conductive particles of Example 1 and 95 parts by mass of the insulating binder described below were placed in a planetary stirrer and stirred for 1 minute to prepare a conductive composition.
Next, the conductive composition is applied on a 50 μm thick PET film and dried in an oven at 80° C. for 5 minutes to form a 25 μm thick adhesive layer made of the conductive composition on the PET film. A 2.0 mm conductive film was produced.
作製した実施例1の導電性粒子5質量部と、下記の絶縁性バインダー95質量部とを遊星式撹拌装置に投入し、1分間撹拌して導電性組成物を作製した。
次に、導電性組成物を厚さ50μmのPETフィルム上に塗布し、80℃のオーブンで5分間乾燥させ、導電性組成物からなる厚さ25μmの粘着層をPETフィルム上に形成し、幅2.0mmの導電性フィルムを作製した。 <Preparation of conductive film>
5 parts by mass of the produced conductive particles of Example 1 and 95 parts by mass of the insulating binder described below were placed in a planetary stirrer and stirred for 1 minute to prepare a conductive composition.
Next, the conductive composition is applied on a 50 μm thick PET film and dried in an oven at 80° C. for 5 minutes to form a 25 μm thick adhesive layer made of the conductive composition on the PET film. A 2.0 mm conductive film was produced.
-絶縁性バインダー-
絶縁性バインダーは、フェノキシ樹脂(商品名:YP-50、新日化エポキシ製造株式会社製)47質量部、単官能モノマー(商品名:M-5300、東亞合成株式会社製)3質量部、ウレタン樹脂(商品名:UR-1400、東洋紡績株式会社製)25質量部、ゴム成分(商品名:SG80H、ナガセケムテックス株式会社製)15質量部、シランカップリング剤(商品名:A-187、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)2質量部、及び有機過酸化物(商品名:ナイパーBW、日油株式会社製)3質量部を、固形分が50質量%となるように含有する、酢酸エチルとトルエンとの混合溶液とした。 -Insulating Binder-
The insulating binder is 47 parts by mass of phenoxy resin (trade name: YP-50, manufactured by Shinnikka Epoxy Manufacturing Co., Ltd.), 3 parts by mass of monofunctional monomer (trade name: M-5300, manufactured by Toagosei Co., Ltd.), urethane Resin (trade name: UR-1400, manufactured by Toyobo Co., Ltd.) 25 parts by mass, rubber component (trade name: SG80H, manufactured by Nagase ChemteX Corporation) 15 parts by mass, silane coupling agent (trade name: A-187, 2 parts by mass of Momentive Performance Materials Japan Co., Ltd.) and 3 parts by mass of organic peroxide (trade name: Nyper BW, manufactured by NOF Corporation) so that the solid content is 50% by mass. , and a mixed solution of ethyl acetate and toluene.
絶縁性バインダーは、フェノキシ樹脂(商品名:YP-50、新日化エポキシ製造株式会社製)47質量部、単官能モノマー(商品名:M-5300、東亞合成株式会社製)3質量部、ウレタン樹脂(商品名:UR-1400、東洋紡績株式会社製)25質量部、ゴム成分(商品名:SG80H、ナガセケムテックス株式会社製)15質量部、シランカップリング剤(商品名:A-187、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)2質量部、及び有機過酸化物(商品名:ナイパーBW、日油株式会社製)3質量部を、固形分が50質量%となるように含有する、酢酸エチルとトルエンとの混合溶液とした。 -Insulating Binder-
The insulating binder is 47 parts by mass of phenoxy resin (trade name: YP-50, manufactured by Shinnikka Epoxy Manufacturing Co., Ltd.), 3 parts by mass of monofunctional monomer (trade name: M-5300, manufactured by Toagosei Co., Ltd.), urethane Resin (trade name: UR-1400, manufactured by Toyobo Co., Ltd.) 25 parts by mass, rubber component (trade name: SG80H, manufactured by Nagase ChemteX Corporation) 15 parts by mass, silane coupling agent (trade name: A-187, 2 parts by mass of Momentive Performance Materials Japan Co., Ltd.) and 3 parts by mass of organic peroxide (trade name: Nyper BW, manufactured by NOF Corporation) so that the solid content is 50% by mass. , and a mixed solution of ethyl acetate and toluene.
<接続構造体の作製>
上記導電性フィルムを介して、評価用基板(ガラスエポキシ基板(FR4)、200μmピッチ、ライン:スペース=1:1、端子厚み10μm、Cu(下地)/Ni/Auメッキ)と、FPC(ポリイミドフィルム、200μmピッチ、ライン:スペース=1:1、端子厚み12μm、Cu(下地)/Ni/Auメッキ)とを加熱圧着し、接続構造体を作製した。
加熱圧着は、FPC上の厚み200μmのシリコンラバーを介してツールを押し下げ、温度:150℃、圧力:2MPa、時間:20secの条件で行った。 <Production of connection structure>
Through the conductive film, an evaluation substrate (glass epoxy substrate (FR4), 200 μm pitch, line: space = 1:1,terminal thickness 10 μm, Cu (base) / Ni / Au plating) and FPC (polyimide film) .
The thermocompression bonding was performed by pressing down a tool through a silicon rubber having a thickness of 200 μm on the FPC under conditions of temperature: 150° C., pressure: 2 MPa, and time: 20 sec.
上記導電性フィルムを介して、評価用基板(ガラスエポキシ基板(FR4)、200μmピッチ、ライン:スペース=1:1、端子厚み10μm、Cu(下地)/Ni/Auメッキ)と、FPC(ポリイミドフィルム、200μmピッチ、ライン:スペース=1:1、端子厚み12μm、Cu(下地)/Ni/Auメッキ)とを加熱圧着し、接続構造体を作製した。
加熱圧着は、FPC上の厚み200μmのシリコンラバーを介してツールを押し下げ、温度:150℃、圧力:2MPa、時間:20secの条件で行った。 <Production of connection structure>
Through the conductive film, an evaluation substrate (glass epoxy substrate (FR4), 200 μm pitch, line: space = 1:1,
The thermocompression bonding was performed by pressing down a tool through a silicon rubber having a thickness of 200 μm on the FPC under conditions of temperature: 150° C., pressure: 2 MPa, and time: 20 sec.
<導通特性の評価>
初期導通性として、デジタルマルチメータ(横河電機株式会社製)を用い、4端子法にて電流1mAを流したときの接続構造体の初期導通抵抗を測定し、下記の基準で評価した。
導通信頼性として、上記初期導通性と同様に、温度85℃、湿度85%、500時間の条件の環境試験後の接続構造体の導通抵抗を測定し、下記の基準で評価した。
[評価基準]
◎:導通抵抗が100mΩ未満の場合
〇:導通抵抗が100mΩ以上1,000mΩ以下の場合
△:導通抵抗が1,000mΩを超えた場合
×:導通抵抗がOPEN <Evaluation of conduction characteristics>
As the initial conductivity, the initial conductivity resistance of the connection structure was measured with a four-terminal method using a digital multimeter (manufactured by Yokogawa Electric Corporation) when a current of 1 mA was applied, and evaluated according to the following criteria.
As the conduction reliability, the conduction resistance of the connection structure was measured after the environmental test under the conditions of temperature 85° C., humidity 85%, and 500 hours in the same manner as the initial conduction, and evaluated according to the following criteria.
[Evaluation criteria]
◎: When the conduction resistance is less than 100mΩ ○: When the conduction resistance is between 100mΩ and 1,000mΩ △: When the conduction resistance exceeds 1,000mΩ ×: The conduction resistance is open
初期導通性として、デジタルマルチメータ(横河電機株式会社製)を用い、4端子法にて電流1mAを流したときの接続構造体の初期導通抵抗を測定し、下記の基準で評価した。
導通信頼性として、上記初期導通性と同様に、温度85℃、湿度85%、500時間の条件の環境試験後の接続構造体の導通抵抗を測定し、下記の基準で評価した。
[評価基準]
◎:導通抵抗が100mΩ未満の場合
〇:導通抵抗が100mΩ以上1,000mΩ以下の場合
△:導通抵抗が1,000mΩを超えた場合
×:導通抵抗がOPEN <Evaluation of conduction characteristics>
As the initial conductivity, the initial conductivity resistance of the connection structure was measured with a four-terminal method using a digital multimeter (manufactured by Yokogawa Electric Corporation) when a current of 1 mA was applied, and evaluated according to the following criteria.
As the conduction reliability, the conduction resistance of the connection structure was measured after the environmental test under the conditions of temperature 85° C., humidity 85%, and 500 hours in the same manner as the initial conduction, and evaluated according to the following criteria.
[Evaluation criteria]
◎: When the conduction resistance is less than 100mΩ ○: When the conduction resistance is between 100mΩ and 1,000mΩ △: When the conduction resistance exceeds 1,000mΩ ×: The conduction resistance is open
<マトリックス層の流出、隣接する導電性粒子同士の自己融着性の評価>
接続構造体の端子部分の導電性粒子の断面観察を圧着サンプルの裁断を行い、走査型電子顕微鏡を用いて断面観察することにより行い、マトリックス層の流出、及び隣接する導電性粒子同士の自己融着性について評価した。接続構造体の端子部分の導電性粒子のマトリックス層の流出、及び隣接する導電性粒子同士の自己融着が無かった場合の評価を「無し」とし、接続構造体の端子部分の導電性粒子のマトリックス層の流出、及び隣接する導電性粒子同士の自己融着が有った場合の評価を「有り」とした。 <Evaluation of Outflow of Matrix Layer and Self-bonding between Adjacent Conductive Particles>
Cross-sectional observation of the conductive particles in the terminal portion of the connection structure was performed by cutting the compression-bonded sample and observing the cross-section using a scanning electron microscope. Adhesiveness was evaluated. When there was no outflow of the matrix layer of the conductive particles in the terminal portion of the connection structure and no self-fusion between the adjacent conductive particles, the evaluation was set to "None", and the conductive particles in the terminal portion of the connection structure were evaluated. When the matrix layer flowed out and the adjacent conductive particles were self-bonded, the evaluation was evaluated as "yes".
接続構造体の端子部分の導電性粒子の断面観察を圧着サンプルの裁断を行い、走査型電子顕微鏡を用いて断面観察することにより行い、マトリックス層の流出、及び隣接する導電性粒子同士の自己融着性について評価した。接続構造体の端子部分の導電性粒子のマトリックス層の流出、及び隣接する導電性粒子同士の自己融着が無かった場合の評価を「無し」とし、接続構造体の端子部分の導電性粒子のマトリックス層の流出、及び隣接する導電性粒子同士の自己融着が有った場合の評価を「有り」とした。 <Evaluation of Outflow of Matrix Layer and Self-bonding between Adjacent Conductive Particles>
Cross-sectional observation of the conductive particles in the terminal portion of the connection structure was performed by cutting the compression-bonded sample and observing the cross-section using a scanning electron microscope. Adhesiveness was evaluated. When there was no outflow of the matrix layer of the conductive particles in the terminal portion of the connection structure and no self-fusion between the adjacent conductive particles, the evaluation was set to "None", and the conductive particles in the terminal portion of the connection structure were evaluated. When the matrix layer flowed out and the adjacent conductive particles were self-bonded, the evaluation was evaluated as "yes".
<絶縁性>
温度85℃、湿度85%、500時間の条件の環境試験後の接続構造体について、2つのパターン間にプローブで電圧を印可し、その時の流れる電流から絶縁抵抗を測定し、下記の基準で評価した。
[評価基準]
◎:電気抵抗が105Ω以上の場合
△:電気抵抗が105Ω未満の場合
×:ショートが発生した場合 <Insulation>
For the connection structure after the environmental test under the conditions of temperature 85°C, humidity 85%, and 500 hours, a voltage is applied between the two patterns with a probe, and the insulation resistance is measured from the current flowing at that time, and evaluated according to the following criteria. bottom.
[Evaluation criteria]
◎: When electrical resistance is 10 5 Ω or more △: When electrical resistance is less than 10 5 Ω ×: When short circuit occurs
温度85℃、湿度85%、500時間の条件の環境試験後の接続構造体について、2つのパターン間にプローブで電圧を印可し、その時の流れる電流から絶縁抵抗を測定し、下記の基準で評価した。
[評価基準]
◎:電気抵抗が105Ω以上の場合
△:電気抵抗が105Ω未満の場合
×:ショートが発生した場合 <Insulation>
For the connection structure after the environmental test under the conditions of temperature 85°C, humidity 85%, and 500 hours, a voltage is applied between the two patterns with a probe, and the insulation resistance is measured from the current flowing at that time, and evaluated according to the following criteria. bottom.
[Evaluation criteria]
◎: When electrical resistance is 10 5 Ω or more △: When electrical resistance is less than 10 5 Ω ×: When short circuit occurs
実施例1において、導通抵抗を測定した結果、初期導通抵抗は40mΩを示し良好であった。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、50mΩを示し、良好な導通信頼性が得られた。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層は流出せずに金属結合をしていることを確認した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。
As a result of measuring the conduction resistance in Example 1, the initial conduction resistance was 40 mΩ, which was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 mΩ, indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
(実施例2)
<導電性粒子の作製>
実施例1において、Cu粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,083℃)をNi粒子(大陽日酸株式会社製、平均粒径:100nm、融点1455℃)に代えた以外は、実施例1と同様にして、実施例2の導電性粒子を作製した。 (Example 2)
<Production of conductive particles>
In Example 1, Cu particles (manufactured by Taiyo Nippon Sanso Co., Ltd., average particle size: 100 nm, melting point 1,083 ° C.) were replaced with Ni particles (manufactured by Taiyo Nippon Sanso Co., Ltd., average particle size: 100 nm, melting point 1455 ° C.). Conductive particles of Example 2 were produced in the same manner as in Example 1, except that
<導電性粒子の作製>
実施例1において、Cu粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,083℃)をNi粒子(大陽日酸株式会社製、平均粒径:100nm、融点1455℃)に代えた以外は、実施例1と同様にして、実施例2の導電性粒子を作製した。 (Example 2)
<Production of conductive particles>
In Example 1, Cu particles (manufactured by Taiyo Nippon Sanso Co., Ltd., average particle size: 100 nm, melting point 1,083 ° C.) were replaced with Ni particles (manufactured by Taiyo Nippon Sanso Co., Ltd., average particle size: 100 nm, melting point 1455 ° C.). Conductive particles of Example 2 were produced in the same manner as in Example 1, except that
<導電性フィルムの作製、接続構造体の作製、及び評価>
作製した実施例2の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は40mΩを示し良好であった。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、50mΩを示し、良好な導通信頼性が得られた。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層は流出せずに金属結合をしていることを確認した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 2, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 mΩ. was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 mΩ, indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
作製した実施例2の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は40mΩを示し良好であった。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、50mΩを示し、良好な導通信頼性が得られた。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層は流出せずに金属結合をしていることを確認した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 2, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 mΩ. was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 mΩ, indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
(実施例3)
<導電性粒子の作製>
実施例1において、Cu粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,083℃)をAu粒子(中国ベンチャー企業製、平均粒径:100nm、融点1,064℃)に代えた以外は、実施例1と同様にして、実施例3の導電性粒子を作製した。 (Example 3)
<Production of conductive particles>
In Example 1, Cu particles (manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point 1,083 ° C.) were converted to Au particles (manufactured by a Chinese venture company, average particle size: 100 nm, melting point 1,064 ° C.). Conductive particles of Example 3 were produced in the same manner as in Example 1, except that the particles were changed.
<導電性粒子の作製>
実施例1において、Cu粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,083℃)をAu粒子(中国ベンチャー企業製、平均粒径:100nm、融点1,064℃)に代えた以外は、実施例1と同様にして、実施例3の導電性粒子を作製した。 (Example 3)
<Production of conductive particles>
In Example 1, Cu particles (manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point 1,083 ° C.) were converted to Au particles (manufactured by a Chinese venture company, average particle size: 100 nm, melting point 1,064 ° C.). Conductive particles of Example 3 were produced in the same manner as in Example 1, except that the particles were changed.
<導電性フィルムの作製、接続構造体の作製、及び評価>
作製した実施例3の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は40mΩを示し良好であった。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、50mΩを示し、良好な導通信頼性が得られた。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層は流出せずに金属結合をしていることを確認した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 3, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 mΩ. was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 mΩ, indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
作製した実施例3の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は40mΩを示し良好であった。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、50mΩを示し、良好な導通信頼性が得られた。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層は流出せずに金属結合をしていることを確認した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 3, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 mΩ. was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 mΩ, indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
(実施例4)
<導電性粒子の作製>
実施例1において、SnBi粒子(中国ベンチャー企業製、平均粒径:100nm、融点139℃)をSnAgCu粒子(中国ベンチャー企業製、平均粒径:100nm、融点220℃)に代えた以外は、実施例1と同様にして、実施例4の導電性粒子を作製した。 (Example 4)
<Production of conductive particles>
In Example 1, SnBi particles (manufactured by a Chinese venture company, average particle size: 100 nm, melting point 139 ° C.) were replaced with SnAgCu particles (manufactured by a Chinese venture company, average particle size: 100 nm, melting point 220 ° C.). Conductive particles of Example 4 were produced in the same manner as in Example 1.
<導電性粒子の作製>
実施例1において、SnBi粒子(中国ベンチャー企業製、平均粒径:100nm、融点139℃)をSnAgCu粒子(中国ベンチャー企業製、平均粒径:100nm、融点220℃)に代えた以外は、実施例1と同様にして、実施例4の導電性粒子を作製した。 (Example 4)
<Production of conductive particles>
In Example 1, SnBi particles (manufactured by a Chinese venture company, average particle size: 100 nm, melting point 139 ° C.) were replaced with SnAgCu particles (manufactured by a Chinese venture company, average particle size: 100 nm, melting point 220 ° C.). Conductive particles of Example 4 were produced in the same manner as in Example 1.
<導電性フィルムの作製、接続構造体の作製、及び評価>
作製した実施例4の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は40mΩを示し良好であった。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、50mΩを示し、良好な導通信頼性が得られた。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層は流出せずに金属結合をしていることを確認した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 4, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 mΩ. was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 mΩ, indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
作製した実施例4の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は40mΩを示し良好であった。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、50mΩを示し、良好な導通信頼性が得られた。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層は流出せずに金属結合をしていることを確認した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 4, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 mΩ. was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 mΩ, indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
(実施例5)
<導電性粒子の作製>
実施例4において、Cu粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,083℃)をNi粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,455℃)に代えた以外は、実施例4と同様にして、実施例5の導電性粒子を作製した。 (Example 5)
<Production of conductive particles>
In Example 4, Cu particles (manufactured by Taiyo Nippon Sanso Co., Ltd., average particle size: 100 nm, melting point 1,083 ° C.) were replaced with Ni particles (manufactured by Taiyo Nippon Sanso Co., Ltd., average particle size: 100 nm, melting point 1,455 ° C.). ° C.), in the same manner as in Example 4, conductive particles of Example 5 were produced.
<導電性粒子の作製>
実施例4において、Cu粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,083℃)をNi粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,455℃)に代えた以外は、実施例4と同様にして、実施例5の導電性粒子を作製した。 (Example 5)
<Production of conductive particles>
In Example 4, Cu particles (manufactured by Taiyo Nippon Sanso Co., Ltd., average particle size: 100 nm, melting point 1,083 ° C.) were replaced with Ni particles (manufactured by Taiyo Nippon Sanso Co., Ltd., average particle size: 100 nm, melting point 1,455 ° C.). ° C.), in the same manner as in Example 4, conductive particles of Example 5 were produced.
<導電性フィルムの作製、接続構造体の作製、及び評価>
作製した実施例5の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は40mΩを示し良好であった。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、50mΩを示し、良好な導通信頼性が得られた。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層は流出せずに金属結合をしていることを確認した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 5, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 mΩ. was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 mΩ, indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
作製した実施例5の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は40mΩを示し良好であった。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、50mΩを示し、良好な導通信頼性が得られた。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層は流出せずに金属結合をしていることを確認した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 5, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 mΩ. was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 mΩ, indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
(実施例6)
<導電性粒子の作製>
実施例1において、Cu粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,083℃)をNi粒子(中国ベンチャー企業製、平均粒径:1000nm、融点1455℃)に代えた以外は、実施例1と同様にして、実施例6の導電性粒子を作製した。 (Example 6)
<Production of conductive particles>
In Example 1, Cu particles (manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point 1,083°C) were replaced with Ni particles (manufactured by a Chinese venture company, average particle size: 1000 nm, melting point 1455°C). Conductive particles of Example 6 were produced in the same manner as in Example 1 except for the above.
<導電性粒子の作製>
実施例1において、Cu粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,083℃)をNi粒子(中国ベンチャー企業製、平均粒径:1000nm、融点1455℃)に代えた以外は、実施例1と同様にして、実施例6の導電性粒子を作製した。 (Example 6)
<Production of conductive particles>
In Example 1, Cu particles (manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point 1,083°C) were replaced with Ni particles (manufactured by a Chinese venture company, average particle size: 1000 nm, melting point 1455°C). Conductive particles of Example 6 were produced in the same manner as in Example 1 except for the above.
<導電性フィルムの作製、接続構造体の作製、及び評価>
作製した実施例6の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は40mΩを示し良好であった。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、50mΩを示し、良好な導通信頼性が得られた。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層は流出せずに金属結合をしていることを確認した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 6, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 mΩ. was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 mΩ, indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
作製した実施例6の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は40mΩを示し良好であった。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、50mΩを示し、良好な導通信頼性が得られた。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層は流出せずに金属結合をしていることを確認した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 6, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 mΩ. was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 mΩ, indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
(実施例7)
<導電性粒子の作製>
実施例1において、Cu粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,083℃)をNi粒子(中国ベンチャー企業製、平均粒径:30nm、融点1,455℃)に代えた以外は、実施例1と同様にして、実施例7の導電性粒子を作製した。 (Example 7)
<Production of conductive particles>
In Example 1, Cu particles (manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point: 1,083 ° C.) were converted to Ni particles (manufactured by a Chinese venture company, average particle size: 30 nm, melting point: 1,455 ° C.). Conductive particles of Example 7 were produced in the same manner as in Example 1, except that the particles were changed.
<導電性粒子の作製>
実施例1において、Cu粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,083℃)をNi粒子(中国ベンチャー企業製、平均粒径:30nm、融点1,455℃)に代えた以外は、実施例1と同様にして、実施例7の導電性粒子を作製した。 (Example 7)
<Production of conductive particles>
In Example 1, Cu particles (manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point: 1,083 ° C.) were converted to Ni particles (manufactured by a Chinese venture company, average particle size: 30 nm, melting point: 1,455 ° C.). Conductive particles of Example 7 were produced in the same manner as in Example 1, except that the particles were changed.
<導電性フィルムの作製、接続構造体の作製、及び評価>
作製した実施例7の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は100mΩを示した。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、160mΩを示した。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層の流出がやや生じていることを確認した。また、隣接する導電性粒子同士はやや自己融着していた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 7, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 100 mΩ. Indicated. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 160 mΩ. Further, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer was slightly outflowing. Adjacent conductive particles were slightly self-fused.
作製した実施例7の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は100mΩを示した。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、160mΩを示した。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層の流出がやや生じていることを確認した。また、隣接する導電性粒子同士はやや自己融着していた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 7, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 100 mΩ. Indicated. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 160 mΩ. Further, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer was slightly outflowing. Adjacent conductive particles were slightly self-fused.
(実施例8)
<導電性粒子の作製>
実施例2において、Ni粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,455℃)5質量部、SnBi粒子(中国ベンチャー企業製、平均粒径:100nm、融点139℃)5質量部、及びアクリル樹脂コアNiメッキ粒子(積水化学工業株式会社製、平均粒径:20μm)30質量部とした以外は、実施例2と同様にして、実施例8の導電性粒子を作製した。 (Example 8)
<Production of conductive particles>
In Example 2, Ni particles (manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point 1,455 ° C.) 5 parts by mass, SnBi particles (manufactured by a Chinese venture company, average particle size: 100 nm, melting point 139 ° C.) Conductive particles of Example 8 were produced in the same manner as in Example 2 except that 5 parts by mass and 30 parts by mass of acrylic resin core Ni-plated particles (manufactured by Sekisui Chemical Co., Ltd., average particle size: 20 μm) were used. bottom.
<導電性粒子の作製>
実施例2において、Ni粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,455℃)5質量部、SnBi粒子(中国ベンチャー企業製、平均粒径:100nm、融点139℃)5質量部、及びアクリル樹脂コアNiメッキ粒子(積水化学工業株式会社製、平均粒径:20μm)30質量部とした以外は、実施例2と同様にして、実施例8の導電性粒子を作製した。 (Example 8)
<Production of conductive particles>
In Example 2, Ni particles (manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point 1,455 ° C.) 5 parts by mass, SnBi particles (manufactured by a Chinese venture company, average particle size: 100 nm, melting point 139 ° C.) Conductive particles of Example 8 were produced in the same manner as in Example 2 except that 5 parts by mass and 30 parts by mass of acrylic resin core Ni-plated particles (manufactured by Sekisui Chemical Co., Ltd., average particle size: 20 μm) were used. bottom.
<導電性フィルムの作製、接続構造体の作製、及び評価>
作製した実施例8の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は40mΩを示し良好であった。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、50mΩを示し、良好な導通信頼性が得られた。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層は流出せずに金属結合をしていることを確認した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 8, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 mΩ. was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 mΩ, indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
作製した実施例8の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は40mΩを示し良好であった。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、50mΩを示し、良好な導通信頼性が得られた。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層は流出せずに金属結合をしていることを確認した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 8, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 mΩ. was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 mΩ, indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
(実施例9)
<導電性粒子の作製>
実施例2において、Ni粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,455℃)1質量部、SnBi粒子(中国ベンチャー企業製、平均粒径:100nm、融点139℃)9質量部、及びアクリル樹脂コアNiメッキ粒子(積水化学工業株式会社製、平均粒径:20μm)30質量部とした以外は、実施例2と同様にして、実施例9の導電性粒子を作製した。 (Example 9)
<Production of conductive particles>
In Example 2, Ni particles (manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point 1,455 ° C.) 1 part by mass, SnBi particles (manufactured by a Chinese venture company, average particle size: 100 nm, melting point 139 ° C.) Conductive particles of Example 9 were prepared in the same manner as in Example 2 except that 9 parts by mass and 30 parts by mass of acrylic resin core Ni-plated particles (manufactured by Sekisui Chemical Co., Ltd., average particle size: 20 μm) were used. bottom.
<導電性粒子の作製>
実施例2において、Ni粒子(大陽日酸株式会社製、平均粒径:100nm、融点1,455℃)1質量部、SnBi粒子(中国ベンチャー企業製、平均粒径:100nm、融点139℃)9質量部、及びアクリル樹脂コアNiメッキ粒子(積水化学工業株式会社製、平均粒径:20μm)30質量部とした以外は、実施例2と同様にして、実施例9の導電性粒子を作製した。 (Example 9)
<Production of conductive particles>
In Example 2, Ni particles (manufactured by Taiyo Nippon Sanso Corporation, average particle size: 100 nm, melting point 1,455 ° C.) 1 part by mass, SnBi particles (manufactured by a Chinese venture company, average particle size: 100 nm, melting point 139 ° C.) Conductive particles of Example 9 were prepared in the same manner as in Example 2 except that 9 parts by mass and 30 parts by mass of acrylic resin core Ni-plated particles (manufactured by Sekisui Chemical Co., Ltd., average particle size: 20 μm) were used. bottom.
<導電性フィルムの作製、接続構造体の作製、及び評価>
作製した実施例9の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は150mΩを示した。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、180mΩを示した。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層は流出せずに金属結合をしていることを確認した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 9, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 150 mΩ. Indicated. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 180 mΩ. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
作製した実施例9の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は150mΩを示した。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、180mΩを示した。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層は流出せずに金属結合をしていることを確認した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 9, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 150 mΩ. Indicated. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 180 mΩ. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
(実施例10)
<導電性粒子の作製>
実施例1において、アクリル樹脂コアNiメッキ粒子(積水化学工業株式会社製、平均粒径:20μm)をアクリル樹脂粒子(積水化学工業株式会社製、平均粒径:20μm)に代えた以外は、実施例1と同様にして、実施例10の導電性粒子を作製した。 (Example 10)
<Production of conductive particles>
In Example 1, the acrylic resin core Ni-plated particles (manufactured by Sekisui Chemical Co., Ltd., average particle size: 20 μm) were replaced with acrylic resin particles (manufactured by Sekisui Chemical Co., Ltd., average particle size: 20 μm). Conductive particles of Example 10 were produced in the same manner as in Example 1.
<導電性粒子の作製>
実施例1において、アクリル樹脂コアNiメッキ粒子(積水化学工業株式会社製、平均粒径:20μm)をアクリル樹脂粒子(積水化学工業株式会社製、平均粒径:20μm)に代えた以外は、実施例1と同様にして、実施例10の導電性粒子を作製した。 (Example 10)
<Production of conductive particles>
In Example 1, the acrylic resin core Ni-plated particles (manufactured by Sekisui Chemical Co., Ltd., average particle size: 20 μm) were replaced with acrylic resin particles (manufactured by Sekisui Chemical Co., Ltd., average particle size: 20 μm). Conductive particles of Example 10 were produced in the same manner as in Example 1.
<導電性フィルムの作製、接続構造体の作製、及び評価>
作製した実施例10の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は40mΩを示し良好であった。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、50mΩを示し、良好な導通信頼性が得られた。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層は流出せずに金属結合をしていることを確認した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 10, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 mΩ. was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 mΩ, indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
作製した実施例10の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は40mΩを示し良好であった。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、50mΩを示し、良好な導通信頼性が得られた。また、接続構造体の導電性粒子部分の断面観察を行った結果、マトリックス層は流出せずに金属結合をしていることを確認した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Example 10, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 40 mΩ. was good. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 50 mΩ, indicating good conduction reliability. In addition, as a result of observing the cross section of the conductive particle portion of the connection structure, it was confirmed that the matrix layer did not flow out but had metal bonding. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
(比較例1)
<導電性粒子>
導電性粒子としてアクリル樹脂コアNiメッキ粒子(積水化学工業株式会社製、平均粒径:20μm)を用いた。 (Comparative example 1)
<Conductive particles>
Acrylic resin core Ni-plated particles (manufactured by Sekisui Chemical Co., Ltd., average particle size: 20 μm) were used as the conductive particles.
<導電性粒子>
導電性粒子としてアクリル樹脂コアNiメッキ粒子(積水化学工業株式会社製、平均粒径:20μm)を用いた。 (Comparative example 1)
<Conductive particles>
Acrylic resin core Ni-plated particles (manufactured by Sekisui Chemical Co., Ltd., average particle size: 20 μm) were used as the conductive particles.
<導電性フィルムの作製、接続構造体の作製、及び評価>
作製した比較例1の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は150mΩを示し。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、1,500mΩを示し、導通信頼性が低下した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Comparative Example 1, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 150 mΩ. show. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 1,500 mΩ, indicating a decrease in conduction reliability. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
作製した比較例1の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は150mΩを示し。更に、85℃で85%RHの環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、1,500mΩを示し、導通信頼性が低下した。また、隣接する導電性粒子同士は自己融着せず、隣接する導電性粒子間の良好な絶縁状態が確認できた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Comparative Example 1, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 150 mΩ. show. Furthermore, when the connection structure was stored in an oven for 500 hours in an environment of 85° C. and 85% RH, the conduction resistance was measured to be 1,500 mΩ, indicating a decrease in conduction reliability. Adjacent conductive particles did not self-fuse, and a good insulating state between adjacent conductive particles was confirmed.
(比較例2)
<導電性粒子の作製>
実施例1において、Cu粒子を用いず、SnBi粒子のみを用いた以外は、実施例1と同様にして、比較例2の導電性粒子を作製した。 (Comparative example 2)
<Production of conductive particles>
Conductive particles of Comparative Example 2 were produced in the same manner as in Example 1, except that Cu particles were not used in Example 1 and only SnBi particles were used.
<導電性粒子の作製>
実施例1において、Cu粒子を用いず、SnBi粒子のみを用いた以外は、実施例1と同様にして、比較例2の導電性粒子を作製した。 (Comparative example 2)
<Production of conductive particles>
Conductive particles of Comparative Example 2 were produced in the same manner as in Example 1, except that Cu particles were not used in Example 1 and only SnBi particles were used.
<導電性フィルムの作製、接続構造体の作製、及び評価>
作製した比較例2の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は180mΩを示した。更に、85℃で85%RH環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、1,500mΩを示し導通抵抗値の上昇を確認し、導通信頼性がNGであることを確認した。接続構造体の粒子部分の断面観察を行った結果、はんだはやや流出していたが、はんだと基板は金属結合をしていることを確認した。また、隣接する導電性粒子同士は一部自己融着していた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Comparative Example 2, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 180 mΩ. Indicated. Furthermore, when the conduction resistance of the connection structure stored in an oven for 500 hours at 85°C and 85% RH was measured, it was found to be 1,500 mΩ, confirming an increase in the conduction resistance value and confirming that the conduction reliability was NG. It was confirmed. As a result of cross-sectional observation of the particle portion of the connection structure, it was confirmed that the solder and the substrate were metallically bonded, although the solder flowed out to some extent. Adjacent conductive particles were partially self-bonded to each other.
作製した比較例2の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は180mΩを示した。更に、85℃で85%RH環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、1,500mΩを示し導通抵抗値の上昇を確認し、導通信頼性がNGであることを確認した。接続構造体の粒子部分の断面観察を行った結果、はんだはやや流出していたが、はんだと基板は金属結合をしていることを確認した。また、隣接する導電性粒子同士は一部自己融着していた。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Comparative Example 2, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 180 mΩ. Indicated. Furthermore, when the conduction resistance of the connection structure stored in an oven for 500 hours at 85°C and 85% RH was measured, it was found to be 1,500 mΩ, confirming an increase in the conduction resistance value and confirming that the conduction reliability was NG. It was confirmed. As a result of cross-sectional observation of the particle portion of the connection structure, it was confirmed that the solder and the substrate were metallically bonded, although the solder flowed out to some extent. Adjacent conductive particles were partially self-bonded to each other.
(比較例3)
<導電性粒子の作製>
実施例1において、SnBi粒子を用いず、Cu粒子のみを用いた以外は、実施例1と同様にして、比較例3の導電性粒子を作製した。 (Comparative Example 3)
<Production of conductive particles>
Conductive particles of Comparative Example 3 were produced in the same manner as in Example 1, except that in Example 1, SnBi particles were not used and only Cu particles were used.
<導電性粒子の作製>
実施例1において、SnBi粒子を用いず、Cu粒子のみを用いた以外は、実施例1と同様にして、比較例3の導電性粒子を作製した。 (Comparative Example 3)
<Production of conductive particles>
Conductive particles of Comparative Example 3 were produced in the same manner as in Example 1, except that in Example 1, SnBi particles were not used and only Cu particles were used.
<導電性フィルムの作製、接続構造体の作製、及び評価>
作製した比較例3の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は1000mΩを示した。更に、85℃で85%RH環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、2,000mΩを示し導通抵抗値の上昇を確認し、導通信頼性がNGであることを確認した。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Comparative Example 3, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 1000 mΩ. Indicated. Furthermore, when the conduction resistance of the connection structure stored in an oven for 500 hours at 85°C and 85% RH was measured, it showed 2,000 mΩ, confirming an increase in the conduction resistance value, and the conduction reliability was NG. It was confirmed.
作製した比較例3の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は1000mΩを示した。更に、85℃で85%RH環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、2,000mΩを示し導通抵抗値の上昇を確認し、導通信頼性がNGであることを確認した。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Comparative Example 3, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 1000 mΩ. Indicated. Furthermore, when the conduction resistance of the connection structure stored in an oven for 500 hours at 85°C and 85% RH was measured, it showed 2,000 mΩ, confirming an increase in the conduction resistance value, and the conduction reliability was NG. It was confirmed.
(比較例4)
<導電性粒子の作製>
実施例1において、SnBi粒子を用いず、Ni粒子のみを用いた以外は、実施例1と同様にして、比較例4の導電性粒子を作製した。 (Comparative Example 4)
<Production of conductive particles>
Conductive particles of Comparative Example 4 were produced in the same manner as in Example 1, except that in Example 1, SnBi particles were not used and only Ni particles were used.
<導電性粒子の作製>
実施例1において、SnBi粒子を用いず、Ni粒子のみを用いた以外は、実施例1と同様にして、比較例4の導電性粒子を作製した。 (Comparative Example 4)
<Production of conductive particles>
Conductive particles of Comparative Example 4 were produced in the same manner as in Example 1, except that in Example 1, SnBi particles were not used and only Ni particles were used.
<導電性フィルムの作製、接続構造体の作製、及び評価>
作製した比較例4の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は1000mΩを示した。更に、85℃で85%RH環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、2,000mΩを示し導通抵抗値の上昇を確認し、導通信頼性がNGであることを確認した。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Comparative Example 4, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 1000 mΩ. Indicated. Furthermore, when the conduction resistance of the connection structure stored in an oven for 500 hours at 85°C and 85% RH was measured, it showed 2,000 mΩ, confirming an increase in the conduction resistance value, and the conduction reliability was NG. It was confirmed.
作製した比較例4の導電性粒子を用い、実施例1と同様にして導電性フィルム及び接続構造体を作製し、実施例1と同様にして導通抵抗を測定した結果、初期導通抵抗は1000mΩを示した。更に、85℃で85%RH環境下、オーブンに500時間保管した接続構造体の導通抵抗を測定したところ、2,000mΩを示し導通抵抗値の上昇を確認し、導通信頼性がNGであることを確認した。 <Preparation of conductive film, preparation of connection structure, and evaluation>
Using the produced conductive particles of Comparative Example 4, a conductive film and a connection structure were produced in the same manner as in Example 1, and the conduction resistance was measured in the same manner as in Example 1. As a result, the initial conduction resistance was 1000 mΩ. Indicated. Furthermore, when the conduction resistance of the connection structure stored in an oven for 500 hours at 85°C and 85% RH was measured, it showed 2,000 mΩ, confirming an increase in the conduction resistance value, and the conduction reliability was NG. It was confirmed.
表1~表5の結果から、実施例1~10の導電性粒子は、比較例1~4の導電性粒子に比べて、マトリックス層の流出、及び隣接する導電性粒子同士の合一化が防止できるので、導通信頼性及び絶縁性が向上することがわかった。
From the results of Tables 1 to 5, the conductive particles of Examples 1 to 10 are more likely to flow out of the matrix layer and coalesce adjacent conductive particles than the conductive particles of Comparative Examples 1 to 4. It has been found that since it can be prevented, the conduction reliability and the insulation are improved.
本発明の導電性粒子及び導電性組成物は、優れた導通信頼性及び絶縁性を有しているので、例えば、フレキシブルプリント基板(FPC)やICチップの端子とLCDパネルのガラス基板上に形成されたITO(Indium Tin Oxide)電極との接続、COFとPWBの接続、TCPとPWBの接続、COFとガラス基板の接続、COFとCOFの接続、IC基板とガラス基板の接続、IC基板とPWBの接続などに好適に用いられる。
Since the conductive particles and the conductive composition of the present invention have excellent conduction reliability and insulation, for example, they are formed on flexible printed circuit boards (FPC), terminals of IC chips, and glass substrates of LCD panels. Connection with ITO (Indium Tin Oxide) electrodes, connection between COF and PWB, connection between TCP and PWB, connection between COF and glass substrate, connection between COF and COF, connection between IC substrate and glass substrate, connection between IC substrate and PWB It is suitably used for connection of
本国際出願は2021年9月29日に出願した日本国特許出願2021-158939号に基づく優先権を主張するものであり、日本国特許出願2021-158939号の全内容を本国際出願に援用する。
This international application claims priority based on Japanese Patent Application No. 2021-158939 filed on September 29, 2021, and the entire contents of Japanese Patent Application No. 2021-158939 are incorporated into this international application. .
100 導電性粒子
101 樹脂粒子
102 金属層
103 はんだ粒子
103a はんだ層
104 金属粒子
10 導電性粒子
11 樹脂粒子
12 金属層
13 マトリックス導電材料
13a マトリックス導電材料からなるマトリックス層
14 ドメイン導電材料(ドメイン粒子)
REFERENCE SIGNSLIST 100 conductive particles 101 resin particles 102 metal layer 103 solder particles 103a solder layer 104 metal particles 10 conductive particles 11 resin particles 12 metal layer 13 matrix conductive material 13a matrix layer made of matrix conductive material 14 domain conductive material (domain particles)
101 樹脂粒子
102 金属層
103 はんだ粒子
103a はんだ層
104 金属粒子
10 導電性粒子
11 樹脂粒子
12 金属層
13 マトリックス導電材料
13a マトリックス導電材料からなるマトリックス層
14 ドメイン導電材料(ドメイン粒子)
REFERENCE SIGNS
Claims (12)
- 母粒子と、該母粒子の表面にマトリックス導電材料と、ドメイン導電材料と、を有することを特徴とする導電性粒子。 A conductive particle characterized by having a base particle, and a matrix conductive material and a domain conductive material on the surface of the base particle.
- 前記ドメイン導電材料の融点が前記マトリックス導電材料の融点よりも高い、請求項1に記載の導電性粒子。 The conductive particles according to claim 1, wherein the domain conductive material has a higher melting point than the matrix conductive material.
- 前記母粒子の表面における前記マトリックス導電材料からなるマトリックス層の平均厚みが1nm以上である、請求項1から2のいずれかに記載の導電性粒子。 The conductive particle according to any one of claims 1 and 2, wherein the average thickness of the matrix layer made of the matrix conductive material on the surface of the base particle is 1 nm or more.
- 前記マトリックス導電材料がSnと、Bi、Ag、Cu、及びInから選択される少なくとも1種とを含む、請求項1から3のいずれかに記載の導電性粒子。 The conductive particles according to any one of claims 1 to 3, wherein the matrix conductive material contains Sn and at least one selected from Bi, Ag, Cu, and In.
- 前記ドメイン導電材料がAu、Ag、Cu、Ni、Sn、及びZnから選択される少なくとも1種を含む、請求項1から4のいずれかに記載の導電性粒子。 The conductive particles according to any one of claims 1 to 4, wherein the domain conductive material contains at least one selected from Au, Ag, Cu, Ni, Sn, and Zn.
- 前記母粒子が、樹脂粒子及び金属被覆樹脂粒子の少なくともいずれかである、請求項1から5のいずれかに記載の導電性粒子。 The conductive particles according to any one of claims 1 to 5, wherein the base particles are at least one of resin particles and metal-coated resin particles.
- メカノケミカル法により製造される、請求項1から6のいずれかに記載の導電性粒子。 The conductive particles according to any one of claims 1 to 6, which are produced by a mechanochemical method.
- 母粒子と、マトリックス導電材料と、ドメイン導電材料とをメカノケミカル法により混合する混合工程を含むことを特徴とする導電性粒子の製造方法。 A method for producing conductive particles, comprising a mixing step of mixing base particles, a matrix conductive material, and a domain conductive material by a mechanochemical method.
- 前記母粒子の平均粒径が3μm以上300μm以下である、請求項8に記載の導電性粒子の製造方法。 The method for producing conductive particles according to claim 8, wherein the average particle size of the base particles is 3 µm or more and 300 µm or less.
- 前記母粒子の平均粒径Cに対する前記ドメイン導電材料の平均粒径Dの比率(D/C)が、1/10,000以上1/10以下である、請求項9に記載の導電性粒子の製造方法。 10. The conductive particles according to claim 9, wherein the ratio (D/C) of the average particle size D of the domain conductive material to the average particle size C of the base particles is 1/10,000 or more and 1/10 or less. Production method.
- 前記マトリックス導電材料Aと前記ドメイン導電材料Bとの混合質量比率(A:B)が、9:1~5:5である、請求項8から10のいずれかに記載の導電性粒子の製造方法。 11. The method for producing conductive particles according to any one of claims 8 to 10, wherein the mixing mass ratio (A:B) of the matrix conductive material A and the domain conductive material B is 9:1 to 5:5. .
- 請求項1から7のいずれかに記載の導電性粒子を含有することを特徴とする導電性組成物。
A conductive composition comprising the conductive particles according to claim 1 .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021158939A JP2023049283A (en) | 2021-09-29 | 2021-09-29 | Conductive particle, method for producing conductive particle, and conductive composition |
JP2021-158939 | 2021-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023053707A1 true WO2023053707A1 (en) | 2023-04-06 |
Family
ID=85782281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/029435 WO2023053707A1 (en) | 2021-09-29 | 2022-08-01 | Electrically conductive particles, method for producing electrically conductive particles, and electrically conductive composition |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2023049283A (en) |
TW (1) | TW202319501A (en) |
WO (1) | WO2023053707A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005216753A (en) * | 2004-01-30 | 2005-08-11 | Sekisui Chem Co Ltd | Conductive particulate and anisotropic conductive material |
JP2015118927A (en) * | 2013-11-12 | 2015-06-25 | 積水化学工業株式会社 | Conductive particle, conductive material and connection structure |
JP2017045606A (en) * | 2015-08-26 | 2017-03-02 | 積水化学工業株式会社 | Conducive material, connection structure and manufacturing method of connection structure |
-
2021
- 2021-09-29 JP JP2021158939A patent/JP2023049283A/en active Pending
-
2022
- 2022-08-01 WO PCT/JP2022/029435 patent/WO2023053707A1/en active Application Filing
- 2022-08-22 TW TW111131463A patent/TW202319501A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005216753A (en) * | 2004-01-30 | 2005-08-11 | Sekisui Chem Co Ltd | Conductive particulate and anisotropic conductive material |
JP2015118927A (en) * | 2013-11-12 | 2015-06-25 | 積水化学工業株式会社 | Conductive particle, conductive material and connection structure |
JP2017045606A (en) * | 2015-08-26 | 2017-03-02 | 積水化学工業株式会社 | Conducive material, connection structure and manufacturing method of connection structure |
Also Published As
Publication number | Publication date |
---|---|
JP2023049283A (en) | 2023-04-10 |
TW202319501A (en) | 2023-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101183317B1 (en) | Adhesive composition, circuit connecting material using the adhesive composition, method for connecting circuit member, and circuit connecting body | |
KR101085722B1 (en) | Connecting film, bonded body and method for manufacturing the bonded body | |
KR101020469B1 (en) | Circuit connecting material and connection structure of circuit member | |
JP5146438B2 (en) | Adhesive film for circuit connection | |
US20130000964A1 (en) | Anisotropic conductive material and connection structure | |
TWI445800B (en) | Circuit connection with adhesive film and circuit connection structure | |
KR20110066235A (en) | Adhesive composition, circuit connecting material using the same, method for connecting circuit members, and circuit connection structure | |
KR20120124470A (en) | Anisotropic conductive film, bonded body and bonding method | |
US7727423B2 (en) | Anisotropic conductive film composition and film including the same | |
JP4605225B2 (en) | Circuit connection material, circuit member connection structure using the same, and manufacturing method thereof | |
KR101988903B1 (en) | self-assembled conductive bonding film and manufacturing method thereof | |
KR20200020578A (en) | manufacturing method of circuit member for self-assembled conductive bonding film | |
JP2011100605A (en) | Circuit connecting material and connection structure of circuit member using the same | |
JP5956362B2 (en) | Anisotropic conductive film, connection method, and joined body | |
WO2023053707A1 (en) | Electrically conductive particles, method for producing electrically conductive particles, and electrically conductive composition | |
JPH10279903A (en) | Electroconductive adhesive | |
KR20120022580A (en) | Manufacturing method of mounting device, connecting method and anisotropic conductive film | |
WO2022024737A1 (en) | Composite electroconductive particles, and method for producing composite electroconductive particles | |
WO2023085077A1 (en) | Solder particles, method for producing solder particles, and conductive composition | |
WO2023053722A1 (en) | Solder particle manufacturing method, solder particle, and conductive composition | |
WO2023026754A1 (en) | Solder particles, method for producing solder particles, and conductive composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22875584 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22875584 Country of ref document: EP Kind code of ref document: A1 |