WO2023053648A1 - Ophthalmic device, method for controlling ophthalmic device, and program - Google Patents

Ophthalmic device, method for controlling ophthalmic device, and program Download PDF

Info

Publication number
WO2023053648A1
WO2023053648A1 PCT/JP2022/026271 JP2022026271W WO2023053648A1 WO 2023053648 A1 WO2023053648 A1 WO 2023053648A1 JP 2022026271 W JP2022026271 W JP 2022026271W WO 2023053648 A1 WO2023053648 A1 WO 2023053648A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixation
eye
image
oct
subject
Prior art date
Application number
PCT/JP2022/026271
Other languages
French (fr)
Japanese (ja)
Inventor
祥聖 森口
朗子 石川
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2023053648A1 publication Critical patent/WO2023053648A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography

Definitions

  • the present invention relates to an ophthalmologic apparatus, an ophthalmologic apparatus control method, and a program.
  • Ophthalmic equipment for screening and treatment of eye diseases is required to be able to easily observe and photograph the fundus of the eye to be examined in a wide field of view.
  • Optical coherence tomography and scanning laser ophthalmoscopes (hereinafter referred to as SLOs) are known as such ophthalmologic apparatuses.
  • the SLO is a device that scans the fundus with light and forms an image of the fundus by detecting the returned light with a light receiving device.
  • Patent Document 1 in an ophthalmologic apparatus in which a fixation target is provided around an objective lens, a fixation target movement method is disclosed in which the fixation target is moved to the outer peripheral surface of the objective lens so as to change the distance from the objective lens.
  • a fundus camera with mechanism is disclosed.
  • the area of interest in the fundus also extends to the peripheral area outside the central area of the fundus, including the optic disc and macula. Therefore, there is a demand for a method of capturing or measuring the peripheral region of the fundus more simply.
  • a more convenient wide-angle imaging or measurement method for the subject's eye is desired not only for the fundus but also for the anterior segment of the eye.
  • the present invention has been made in view of such circumstances, and one of its purposes is to provide a new technique for taking or measuring an eye to be examined more simply and at a wide angle.
  • a first aspect includes an objective lens, an imaging optical system that receives light from an eye to be inspected via the objective lens, and an optical path coupled to the imaging optical system to transmit measurement light that has passed through the optical path.
  • an OCT optical system for projecting onto the eye to be inspected via the objective lens and detecting interference light between the return light of the measurement light and the reference light; and the optical system by tilting the optical system.
  • a fixation system for projecting a fixation light flux toward the eye to be examined from an emission position of the fixation light flux whose position relative to the optical axis is changeable; and the eye to be examined changing the angle formed by the visual axis of the eye to be examined and the optical axis based on the OCT measurement position in the image, and projecting the fixation light beam from the emission position corresponding to the OCT measurement position;
  • a control unit that performs OCT measurement for the eye to be inspected by controlling the OCT optical system in a state where is projected, and an image forming unit that forms an OCT image of the eye to be inspected based on the detection result of the interference light.
  • an analysis unit that identifies the position of the OCT image in the image of the subject's eye based on the emission position.
  • control unit causes the fixation system to project the fixation light flux on each of the two or more OCT measurement positions
  • analysis unit causes the two or more OCT measurement positions to be projected.
  • the position of the OCT image in the image of the subject's eye is specified based on the exit position in the fixation system.
  • the fixation system is configured to extend from the outside of the objective lens to the eye to be examined from the emission position having a known positional relationship with respect to the optical axis. an external fixation system for projecting said fixation beam towards.
  • the fixation system includes an internal fixation light source capable of changing a relative position with respect to the optical axis, and directs the fixation to the subject's eye via the objective lens.
  • an external fixation system that projects the fixation light beam from the position of the light source toward the eye to be examined.
  • the control unit when the OCT measurement position is within a predetermined range including the position corresponding to the optical axis in the image of the subject's eye, the control unit causes the internal fixation system to project the fixation light beam onto the eye to be examined, and the analysis unit identifies the position of the OCT image in the image of the eye to be examined based on the fixation position where the fixation light beam is projected, and
  • the control unit causes the external fixation system to project the fixation light flux onto the eye to be examined,
  • the analysis unit specifies the position of the OCT image in the image of the subject's eye based on the fixation position onto which the fixation light flux is projected.
  • control unit projects the fixation light flux using the internal fixation system or the external fixation system for each of two or more OCT measurement positions.
  • the analyzing unit identifies the position of the OCT image in the image of the subject's eye based on the fixation position onto which the fixation light flux is projected, for each of the two or more OCT measurement positions.
  • the external fixation system is fixed with respect to the optical system.
  • the angle changing mechanism is a first angle changing mechanism that vertically changes the angle formed by the orientation of the optical axis with respect to the horizontal direction. and a second angle changing mechanism for changing the angle formed by the orientation of the optical axis with respect to the vertical direction in the horizontal direction.
  • a ninth aspect according to the embodiment is any one of the first to eighth aspects, including an operation unit, and the OCT measurement position is set based on the operation content of the image of the subject's eye using the operation unit. be done.
  • a tenth aspect according to the embodiment is an objective lens, an imaging optical system for receiving light from an eye to be inspected via the objective lens, and an optical path coupled to the imaging optical system for receiving measurement light passing through the optical path.
  • an OCT optical system for projecting onto the eye to be inspected via the objective lens and detecting interference light between the return light of the measurement light and the reference light; and the optical system by tilting the optical system.
  • a fixation system for projecting a fixation light flux toward the subject's eye from a fixation light flux emission position whose position relative to the optical axis can be changed.
  • a method for controlling an apparatus wherein the angle formed by the visual axis of the eye to be inspected and the optical axis is changed based on the OCT measurement position in the image of the eye to be inspected, and the a control step of projecting a fixation light beam and controlling the OCT optical system while the fixation light beam is being projected to perform OCT measurement on the eye to be examined;
  • a control method for an ophthalmologic apparatus comprising: an image forming step of forming an OCT image of an eye to be inspected; and an analysis step of specifying a position of the OCT image in the image of the eye to be inspected based on the emission position.
  • the controlling step causes the fixation system to project the fixation light flux on each of the two or more OCT measurement positions
  • the analyzing step includes: For each OCT measurement position, the position of the OCT image in the image of the subject's eye is specified based on the exit position in the fixation system.
  • the fixation system extends from the outside of the objective lens to the eye to be examined from the emission position having a known positional relationship with respect to the optical axis. an external fixation system for projecting said fixation beam towards.
  • the fixation system includes an internal fixation light source whose position relative to the optical axis can be changed, and directs the fixation to the eye to be inspected via the objective lens.
  • the control step when the OCT measurement position is within a predetermined range including the position corresponding to the optical axis in the image of the subject's eye, the control step includes: to project the fixation light beam onto the eye to be examined, and the analyzing step identifies the position of the OCT image in the image of the eye to be examined based on the fixation position to which the fixation light beam is projected, and
  • the control step causes the external fixation system to project the fixation light beam onto the eye to be examined,
  • the analyzing step identifies the position of the OCT image in the image of the subject's eye based on the fixation position onto which the fixation light flux is projected.
  • control step includes projecting the fixation light beam from the internal fixation system or the external fixation system on each of two or more OCT measurement positions. and the analyzing step identifies the position of the OCT image in the image of the subject's eye based on the fixation position onto which the fixation light beam is projected, for each of the two or more OCT measurement positions.
  • the external fixation system is fixed with respect to the optical system.
  • the angle changing mechanism includes a first angle changing mechanism that vertically changes the angle formed by the orientation of the optical axis with respect to the horizontal direction. and a second angle changing mechanism for changing the angle formed by the orientation of the optical axis with respect to the vertical direction in the horizontal direction.
  • the OCT measurement position is set based on the operation content for the image of the subject's eye using the operation unit.
  • a nineteenth aspect according to the embodiment is a program that causes a computer to execute each step of the ophthalmologic apparatus control method according to any one of the tenth to eighteenth aspects.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an external fixation unit according to an embodiment
  • FIG. FIG. 4 is a schematic diagram for explaining a fixation light flux according to the embodiment
  • FIG. 4 is a schematic diagram for explaining a fixation light flux according to the embodiment
  • It is a schematic diagram showing an example of the configuration of the optical system of the ophthalmologic apparatus according to the embodiment.
  • 1 is a schematic diagram showing an example of the configuration of a control system of an ophthalmologic apparatus according to an embodiment
  • FIG. FIG. 4 is a schematic diagram for explaining swing motion and tilt motion of the ophthalmologic apparatus according to the embodiment
  • FIG. 4 is a schematic diagram for explaining fixation control according to the embodiment; 4 is a schematic diagram for explaining control of the ophthalmologic apparatus according to the embodiment; FIG. 4 is a schematic diagram for explaining control of the ophthalmologic apparatus according to the embodiment; FIG. It is a schematic diagram for explaining the operation of the ophthalmologic apparatus according to the embodiment.
  • 1 is a schematic diagram showing an example of the configuration of a data processing unit of an ophthalmologic apparatus according to an embodiment;
  • FIG. 1 is a schematic diagram showing an example of the configuration of a data processing unit of an ophthalmologic apparatus according to an embodiment;
  • FIG. 1 is a schematic diagram showing an example of the configuration of a data processing unit of an ophthalmologic apparatus according to an embodiment; FIG.
  • 4 is a flow chart showing an example of the operation of the ophthalmologic apparatus according to the embodiment; 4 is a flow chart showing an example of the operation of the ophthalmologic apparatus according to the embodiment; 4 is a flow chart showing an example of the operation of the ophthalmologic apparatus according to the embodiment; 4 is a flow chart showing an example of the operation of the ophthalmologic apparatus according to the embodiment;
  • An ophthalmologic apparatus includes an optical system capable of imaging an eye to be inspected and OCT measurement, an angle changing mechanism for changing the direction of the optical axis of the optical system by tilting the optical system, and an optical system with respect to the optical axis.
  • a fixation system for projecting a fixation light beam toward the subject's eye from a fixation light beam emission position (projection position, position of the fixation light source) whose relative position is changeable.
  • the angle changing mechanism includes at least one of a swing mechanism and a tilt mechanism.
  • the swing mechanism is, for example, a movement mechanism that swings the optical system in an arc shape in the horizontal direction around the pupil of the eye to be examined.
  • the tilt mechanism is, for example, a movement mechanism that turns the optical system in an arc shape in the vertical direction around the pupil of the subject's eye. Thereby, the angle formed by the direction of the optical axis of the optical system with respect to the horizontal direction (horizontal plane) can be changed in the vertical direction.
  • the optical system includes a fixation system.
  • the fixation system includes at least one of an internal fixation system and an external fixation system.
  • the internal fixation system presents a fixation target by projecting a fixation light beam onto the subject's eye via an objective lens.
  • the external fixation system presents a fixation target by projecting a fixation light beam onto the subject's eye without passing through an objective lens.
  • the ophthalmologic apparatus controls at least one of the angle changing mechanism and the fixation system based on the OCT measurement position set in the captured image (or observed image) of the subject's eye, and determines the emission position of the fixation light flux corresponding to the OCT measurement position.
  • a fixation light beam is projected from the eye, and OCT measurement is performed on the subject's eye while the fixation light beam is being projected.
  • the ophthalmologic apparatus identifies the position of the OCT image in the captured image based on the emission position of the fixation light flux.
  • the ophthalmologic apparatus performs registration processing between the captured image and the OCT image, and causes the display means to display the captured image and the OCT image after the registration processing.
  • an ophthalmologic apparatus causes a fixation system to project a fixation light flux on each of two or more OCT measurement positions, and identifies the position of the OCT image in the captured image based on the emission position of the fixation light flux.
  • the ophthalmologic apparatus determines two or more OCT measurement positions based on the montage imaging range set in the captured image (or observation image) of the subject's eye, and determines the determined two or more OCT measurement positions.
  • the fixation system sequentially projects the fixation light beams for each of the above, and sequentially specifies the positions of the OCT images in the captured image based on the emission positions of the fixation light beams.
  • the ophthalmologic apparatus performs overlap determination processing between an OCT image whose position is specified and an adjacent OCT image, and obtains the next OCT image based on the determination result. Get a montage image.
  • the ophthalmologic apparatus performs registration processing between the captured image and the OCT montage image, and causes the display means to display the captured image and the OCT montage image after the registration processing.
  • a control method for an ophthalmic device includes one or more steps for controlling the above-described ophthalmic device.
  • a program according to an embodiment causes a computer (processor) to execute each step of a method for controlling an ophthalmologic apparatus according to an embodiment.
  • a recording medium according to the embodiment is a non-temporary recording medium (storage medium) in which the program according to the embodiment is recorded.
  • a processor is, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), a programmable logic device (for example, a SPLD (Simple Programmable Logic Device CPLD Logic Device), FPGA (Field Programmable Gate Array)), etc.
  • the processor implements the functions according to the embodiment by, for example, reading and executing a program stored in a memory circuit or memory device.
  • a memory circuit or device may be included in the processor. Also, a memory circuit or memory device may be provided external to the processor.
  • the ophthalmologic apparatus according to the embodiment has a swing mechanism and a tilt mechanism will be described below, but the configuration according to the embodiment is not limited to this.
  • the ophthalmic device may have only one of the swing mechanism and the tilt mechanism.
  • the ophthalmic device includes an optical coherence tomography and a fundus camera.
  • swept source OCT is applied to this optical coherence tomography
  • the type of OCT is not limited to this, and other types of OCT (spectral domain OCT, time domain OCT, Amphas OCT, etc.) may be applied. good.
  • the ophthalmologic apparatus may include any one of a scanning laser ophthalmoscope, a slit lamp ophthalmoscope, a surgical microscope, and the like.
  • the ophthalmic device according to the embodiment may include any one or more of an eye refraction tester, a tonometer, a specular microscope, a wavefront analyzer, a perimeter, a microperimeter, and the like.
  • the x direction is the direction perpendicular to the optical axis direction of the objective lens (horizontal direction, horizontal direction)
  • the y direction is the direction perpendicular to the optical axis direction of the objective lens (vertical direction, vertical direction).
  • the z-direction is assumed to be the optical axis direction of the objective lens.
  • the ophthalmologic apparatus 1 includes a fundus camera unit 2, an OCT unit 100, and an arithmetic control unit (not shown).
  • the retinal camera unit 2 is provided with an optical system and a mechanism for acquiring a front image of the eye E to be examined.
  • the OCT unit 100 is provided with a part of an optical system and a mechanism for performing OCT. Another part of the optical system and mechanism for performing OCT is provided in the fundus camera unit 2 .
  • the calculation control unit includes one or more processors that perform various calculations and controls.
  • the ophthalmologic apparatus 1 includes a pair of anterior eye cameras 5A and 5B.
  • the fundus camera unit 2 is provided with an optical system for photographing the fundus Ef of the eye E to be examined.
  • the acquired image of the fundus oculi Ef (referred to as a fundus image, fundus photograph, etc.) is a front image such as an observed image or a photographed image. Observation images are obtained by moving image shooting using near-infrared light. A photographed image is a still image using flash light.
  • the fundus camera unit 2 can photograph the anterior segment Ea of the subject's eye E to acquire a front image (anterior segment image).
  • the retinal camera unit 2 includes an illumination optical system 10 and an imaging optical system 30.
  • the illumination optical system 10 irradiates the eye E to be inspected with illumination light.
  • the imaging optical system 30 detects return light of the illumination light from the eye E to be examined.
  • the measurement light from the OCT unit 100 is guided to the subject's eye E through the optical path in the retinal camera unit 2, and its return light is guided to the OCT unit 100 through the same optical path.
  • observation illumination light output from an observation light source 11 of an illumination optical system 10 is reflected by a reflecting mirror 12 having a curved reflecting surface, passes through a condenser lens 13, and passes through a visible light cut filter 14. It becomes near-infrared light. Furthermore, the observation illumination light is once converged near the photographing light source 15 , reflected by the mirror 16 , and passed through the relay lenses 17 and 18 , the diaphragm 19 and the relay lens 20 . Then, the observation illumination light is reflected by the periphery of the perforated mirror 21 (area around the perforation), passes through the dichroic mirror 46, is refracted by the objective lens 22, Illuminate part Ea).
  • the return light of the observation illumination light from the subject's eye E is refracted by the objective lens 22, passes through the dichroic mirror 46, passes through the hole formed in the central region of the aperture mirror 21, and passes through the photographing focusing lens 31. through and reflected by mirror 32 . Further, this return light passes through the half mirror 33A, is reflected by the dichroic mirror 33, and is imaged on the light receiving surface of the image sensor 35 by the condenser lens . The image sensor 35 detects returned light at a predetermined frame rate. The focus of the imaging optical system 30 is adjusted so as to match the fundus oculi Ef or the anterior segment Ea.
  • the light (imaging illumination light) output from the imaging light source 15 irradiates the fundus oculi Ef through the same path as the observation illumination light.
  • the return light of the imaging illumination light from the subject's eye E is guided to the dichroic mirror 33 through the same path as the return light of the observation illumination light, passes through the dichroic mirror 33 , is reflected by the mirror 36 , is reflected by the condenser lens 37 .
  • An image is formed on the light receiving surface of the image sensor 38 .
  • the display unit provided in the ophthalmologic apparatus 1 displays an image (observation image) based on the fundus reflected light detected by the image sensor 35 .
  • an observation image of the anterior segment of the subject's eye E is displayed.
  • an image (captured image) based on the fundus reflected light detected by the image sensor 38 is displayed on the display unit.
  • the display unit that displays the observed image and the display unit that displays the captured image may be the same or different.
  • the ophthalmic device 1 includes a fixation system.
  • the fixation system includes an internal fixation system and an external fixation system.
  • the function of the internal fixation system is realized by an LCD (Liquid Crystal Display) 39 .
  • the function of the external fixation system is realized by the external fixation unit 23 .
  • An LCD (Liquid Crystal Display) 39 displays a fixation target and a visual acuity measurement target.
  • a part of the light flux output from the LCD 39 is reflected by the half mirror 33 A, reflected by the mirror 32 , passes through the photographing focusing lens 31 , and passes through the aperture of the apertured mirror 21 .
  • the luminous flux that has passed through the aperture of the perforated mirror 21 is transmitted through the dichroic mirror 46, refracted by the objective lens 22, and projected onto the fundus oculi Ef.
  • the display pixels on the screen of the LCD 39 function as an internal fixation light source.
  • fixation positions include the fixation position for acquiring an image centered on the macula, the fixation position for acquiring an image centered on the optic disc, and the center of the fundus between the macula and the optic disc. and a fixation position for acquiring an image of a site far away from the macula (eye fundus periphery).
  • the ophthalmologic apparatus 1 includes a GUI (Graphical User Interface) or the like for designating at least one of such fixation positions.
  • the ophthalmologic apparatus 1 includes a GUI or the like for manually moving the fixation position (the display position of the fixation target).
  • a movable fixation target can be generated by selectively lighting multiple light sources in a light source array (such as a light emitting diode (LED) array). Also, one or more movable light sources can generate a movable fixation target.
  • a light source array such as a light emitting diode (LED) array.
  • LED light emitting diode
  • one or more movable light sources can generate a movable fixation target.
  • the external fixation unit 23 projects a fixation light flux onto the subject's eye E without passing through the objective lens 22 from an emission position whose position relative to the optical axis of the objective lens 22 (objective optical axis) can be changed.
  • the external fixation unit 23, which can change the emission position of the fixation light flux with respect to the optical axis of the objective lens 22, is configured to be movable integrally with the fundus camera unit 2 (optical system including the LCD 39).
  • the external fixation unit 23 is fixed to a housing that houses the optical system that constitutes the retinal camera unit 2 .
  • FIG. 2 A configuration example of the external fixation unit 23 is schematically shown in FIG. In FIG. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the external fixation unit 23 includes an annular member 23A that can be installed on or near the outer circumference of the objective lens 22, and one end connected to the outer circumference of the annular member 23A and the other end connected to the optical axis O (optical axis of the objective lens 22, and a fixation light source holding member 23B extending substantially radially from the objective optical axis.
  • the fixation light source holding member 23B includes a plurality of fixation light sources (external fixation light sources) arranged in the radial direction.
  • the plurality of fixation light sources are controlled by a control unit, which will be described later, so that one of them is turned on or all of them are turned off. In this embodiment, the plurality of fixation light sources are assumed to be fixation light sources 23-1 to 23-4.
  • the fixation light source holding member 23B is configured to be rotatable around the optical axis O. In some embodiments, the fixation light source holding member 23B is configured to rotate relative to the annular member 23A. In some embodiments, the annular member 23A and the fixation light source holding member 23B are configured to rotate integrally.
  • the fixation light source holding member 23B automatically rotates around the optical axis O under the control of a control unit, which will be described later.
  • the control section can drive the rotation mechanism included in the external fixation unit 23 by controlling the fixation light source holding member 23B.
  • the fixation light source holding member 23B is configured to be manually rotated around the optical axis O.
  • the external fixation unit 23 includes a sensor and is configured to be able to detect the angle in the radial direction of the manually rotated fixation light source holding member 23B.
  • the external fixation unit 23 projects the fixation light flux onto the subject's eye E from a desired emission position while referring to the detection result obtained by the sensor. can be configured to allow
  • fixation light source holding member 23B By rotating the fixation light source holding member 23B around the optical axis O and lighting any one of the fixation light sources 23-1 to 23-4, a variety of images with a wider range than the LCD 39, which is internal fixation, can be displayed. It becomes possible to project a fixation light beam onto the subject's eye E from any direction.
  • the fixation light source holding member 23B includes two or more arm members coupled together. Each of the fixation light sources 23-1 to 23-4 is provided on one of two or more arm members. The arm members are rotatable at the coupling point. With such a folding mechanism, the fixation light source holding member 23B is configured to be storable.
  • the fixation light source holding member 23B includes two or more arm members that are mutually slidable in the radial direction. Each of the fixation light sources 23-1 to 23-4 is provided on one of two or more arm members. With such a slide mechanism, the fixation light source holding member 23B is configured to be retractable.
  • the external fixation unit 23 is configured to be detachable from the retinal camera unit 2.
  • FIG. 3 schematically shows an example of the arrangement of the fixation light sources 23-1 to 23-4 of the external fixation unit 23.
  • FIG. 3 the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • a fixation light flux from an arbitrary display pixel of the LCD 39 is projected onto the subject's eye E via the objective lens 22 as a fixation target IFp.
  • a fixation light beam from any one of the fixation light sources 23-1 to 23-4 is projected onto the subject's eye E without passing through the objective lens 22.
  • the fixation light sources 23-1 to 23-4 are arranged at a distance R0 centering on the subject's eye E (for example, the pupil).
  • the fixation light source (the fixation light source 23-4 in FIG. 3) having the shortest distance in the z direction from the eye E to be examined has a distance of Dw arranged to be larger.
  • the distance Dw may be the working distance between the subject's eye E and the lens surface of the objective lens 22 .
  • FIG. 4 schematically shows another example of the arrangement of the fixation light sources 23-1 to 23-4 of the external fixation unit 23.
  • FIG. 4 the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • a fixation luminous flux from an arbitrary display pixel on the screen of the LCD 39 is projected as a fixation target IFp onto the subject's eye E via the objective lens 22, as in FIG.
  • a fixation light beam from any one of the fixation light sources 23-1 to 23-4 is projected onto the subject's eye E without passing through the objective lens 22.
  • the fixation light sources 23 - 1 to 23 - 4 are provided in a direction perpendicular to the optical axis of the objective lens 22 .
  • the fixation light sources 23-1 to 23-4 are arranged so that the distance from the subject's eye E is greater than Dw.
  • the distance Dw may be the working distance between the subject's eye E and the lens surface of the objective lens 22 .
  • the fixation target can be presented to the eye E to be examined easily.
  • each of the fixation light sources 23-1 to 23-4 has a known positional relationship with respect to the optical axis of the objective lens 22 from outside the objective lens 22 (not via the objective lens 22).
  • a fixation luminous flux can be projected toward the subject's eye E from the emission position.
  • the focus optical system 60 generates a split index used for focus adjustment of the eye E to be examined.
  • the focus optical system 60 is moved along the optical path (illumination optical path) of the illumination optical system 10 in conjunction with the movement of the imaging focusing lens 31 along the optical path (illumination optical path) of the imaging optical system 30 .
  • the reflecting bar 67 can be inserted into and removed from the illumination optical path. When performing focus adjustment, the reflecting surface of the reflecting bar 67 is arranged at an angle in the illumination optical path.
  • Focus light output from the LED 61 passes through a relay lens 62, is split into two light beams by a split index plate 63, passes through a two-hole diaphragm 64, is reflected by a mirror 65, and is reflected by a condenser lens 66 onto a reflecting rod 67. is once imaged on the reflective surface of , and then reflected. Further, the focused light passes through the relay lens 20, is reflected by the perforated mirror 21, passes through the dichroic mirror 46, is refracted by the objective lens 22, and is projected onto the fundus oculi Ef. The fundus reflected light of the focus light is guided to the image sensor 35 through the same path as the return light of the observation illumination light. Manual focus and autofocus can be performed based on the received light image (split index image).
  • the dichroic mirror 46 synthesizes the fundus imaging optical path and the OCT optical path.
  • the dichroic mirror 46 reflects light in the wavelength band used for OCT and transmits light for fundus imaging.
  • the optical path for OCT (the optical path of the measurement light) includes, in order from the OCT unit 100 side toward the dichroic mirror 46 side, a collimator lens unit 40, an optical path length changing section 41, an optical scanner 42, an OCT focusing lens 43, a mirror 44, and a relay lens 45 are provided.
  • the optical path length changing unit 41 is movable in the direction of the arrow shown in FIG. 1, and changes the length of the OCT optical path. This change in optical path length is used for optical path length correction according to the axial length of the eye, adjustment of the state of interference, and the like.
  • the optical path length changing section 41 includes a corner cube and a mechanism for moving it.
  • the optical scanner 42 is arranged at a position optically conjugate with the pupil of the eye E to be examined.
  • the optical scanner 42 deflects the measurement light LS passing through the OCT optical path.
  • the optical scanner 42 is, for example, a galvanometer scanner capable of two-dimensional scanning.
  • the OCT focusing lens 43 is moved along the optical path of the measurement light LS in order to adjust the focus of the OCT optical system. Movement of the imaging focusing lens 31, movement of the focusing optical system 60, and movement of the OCT focusing lens 43 can be controlled in a coordinated manner.
  • anterior segment cameras 5A and 5B are used to determine the relative position between the optical system of the ophthalmologic apparatus 1 and the subject's eye E, similar to the invention disclosed in Japanese Patent Laid-Open No. 2013-248376.
  • the anterior eye cameras 5A and 5B are provided on the face of the subject's eye E side of a housing (fundus camera unit 2, etc.) housing an optical system.
  • the ophthalmologic apparatus 1 analyzes two anterior segment images obtained substantially simultaneously from different directions by the anterior segment cameras 5A and 5B, thereby determining the three-dimensional relative relationship between the optical system and the subject's eye E. find the position.
  • the analysis of the two anterior segment images may be similar to the analysis disclosed in Japanese Patent Application Laid-Open No. 2013-248376.
  • the number of anterior segment cameras may be any number of two or more.
  • the position of the eye to be examined E (that is, the relative position between the eye to be examined E and the optical system) is obtained using two or more anterior eye cameras. It is not limited to this.
  • the position of the eye E to be examined can be obtained by analyzing a front image of the eye E to be examined (for example, an observed image of the anterior segment Ea).
  • means for projecting an index onto the cornea of the subject's eye E can be provided, and the position of the subject's eye E can be obtained based on the projection position of this index (that is, the detection state of the corneal reflected light flux of this index).
  • the OCT unit 100 is provided with an optical system for performing swept-source OCT.
  • This optical system includes an interference optical system.
  • This interference optical system has a function of dividing light from a wavelength tunable light source (wavelength swept light source) into measurement light and reference light, return light of the measurement light from the subject's eye E, and reference light passing through the reference light path. and a function of generating interference light and a function of detecting this interference light.
  • a detection result (detection signal) of the interference light obtained by the interference optical system is a signal indicating the spectrum of the interference light, and is sent to the arithmetic control unit (control section 210, image forming section 220, data processing section 230).
  • the light source unit 101 includes, for example, a near-infrared tunable laser that changes the wavelength of emitted light at high speed.
  • the light L0 output from the light source unit 101 is guided to the polarization controller 103 by the optical fiber 102, and the polarization state is adjusted.
  • the light L0 whose polarization state has been adjusted is guided by the optical fiber 104 to the fiber coupler 105 and split into the measurement light LS and the reference light LR.
  • the reference light LR is guided to the collimator 111 by the optical fiber 110, converted into a parallel beam, passed through the optical path length correction member 112 and the dispersion compensation member 113, and guided to the corner cube 114.
  • the optical path length correction member 112 acts to match the optical path length of the reference light LR and the optical path length of the measurement light LS.
  • the dispersion compensation member 113 acts to match the dispersion characteristics between the reference light LR and the measurement light LS.
  • the corner cube 114 is movable in the incident direction of the reference light LR, thereby changing the optical path length of the reference light LR.
  • the reference light LR that has passed through the corner cube 114 passes through the dispersion compensating member 113 and the optical path length correcting member 112 , is converted by the collimator 116 from a parallel beam into a converged beam, and enters the optical fiber 117 .
  • the reference light LR incident on the optical fiber 117 is guided to the polarization controller 118 to have its polarization state adjusted, guided to the attenuator 120 via the optical fiber 119 to have its light amount adjusted, and guided to the fiber coupler 122 via the optical fiber 121 . be killed.
  • the measurement light LS generated by the fiber coupler 105 is guided by the optical fiber 127 and converted into a parallel light beam by the collimator lens unit 40, and the optical path length changing unit 41, the optical scanner 42, the OCT focusing lens 43, and the mirror 44. and relay lens 45 .
  • the measurement light LS that has passed through the relay lens 45 is reflected by the dichroic mirror 46, refracted by the objective lens 22, and enters the eye E to be examined.
  • the measurement light LS is scattered and reflected at various depth positions of the eye E to be examined.
  • the return light of the measurement light LS from the subject's eye E travels in the opposite direction along the same path as the forward path, is guided to the fiber coupler 105 , and reaches the fiber coupler 122 via the optical fiber 128 .
  • the incident length of the optical fiber 127 into which the measurement light LS is incident is arranged at a position substantially conjugate with the fundus oculi Ef of the eye E to be examined.
  • the fiber coupler 122 combines (interferences) the measurement light LS that has entered via the optical fiber 128 and the reference light LR that has entered via the optical fiber 121 to generate interference light.
  • the fiber coupler 122 generates a pair of interference lights LC by splitting the interference lights at a predetermined splitting ratio (for example, 1:1).
  • a pair of interference lights LC are guided to detector 125 through optical fibers 123 and 124, respectively.
  • the detector 125 is, for example, a balanced photodiode.
  • a balanced photodiode includes a pair of photodetectors that respectively detect a pair of interference lights LC, and outputs a difference between a pair of detection results obtained by these photodetectors.
  • the detector 125 sends this output (detection signal) to a DAQ (Data Acquisition System) 130 .
  • a clock KC is supplied from the light source unit 101 to the DAQ 130 .
  • the clock KC is generated in the light source unit 101 in synchronization with the output timing of each wavelength swept within a predetermined wavelength range by the wavelength tunable light source.
  • the light source unit 101 for example, optically delays one of the two branched lights obtained by branching the light L0 of each output wavelength, and then outputs the clock KC based on the result of detecting these combined lights. Generate.
  • the DAQ 130 samples the detection signal input from the detector 125 based on the clock KC.
  • the DAQ 130 sends the sampling result of the detection signal from the detector 125 to the arithmetic control unit (control section 210, etc.).
  • an optical path length changing unit 41 for changing the length of the optical path (measurement optical path, measurement arm) of the measurement light LS and an optical path length changing unit 41 for changing the length of the optical path (reference optical path, reference arm) of the reference light LR corner cubes 114 are provided.
  • only one of the optical path length changing portion 41 and the corner cube 114 may be provided. It is also possible to change the difference between the measurement optical path length and the reference optical path length by using optical members other than these.
  • FIG. 6 shows a configuration example of the control system of the ophthalmologic apparatus 1. As shown in FIG. In FIG. 6, some of the components included in the ophthalmologic apparatus 1 are omitted. In FIG. 6, the same parts as in FIGS. 1 to 5 are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
  • control unit 210 the image forming unit 220, and the data processing unit 230 are provided, for example, in the arithmetic control unit described above.
  • Control unit 210 executes various controls.
  • Control unit 210 includes main control unit 211 and storage unit 212 .
  • the main controller 211 includes a processor (eg, control processor) and controls each part of the ophthalmologic apparatus 1 (including each element shown in FIGS. 1 to 5).
  • the main control unit 211 controls each part of the optical system of the retinal camera unit 2 shown in FIGS. , tilt mechanism 152 , image forming unit 220 , data processing unit 230 , and user interface (UI) 240 .
  • a processor eg, control processor
  • UI user interface
  • the control of the retinal camera unit 2 includes control of the focus driving units 31A and 43A, control of the image sensors 35 and 38, control of the optical path length changing unit 41, control of the optical scanner 42, and control of the external fixation unit 23. included.
  • the control for the focus drive unit 31A includes control for moving the photographing focus lens 31 in the optical axis direction.
  • the control for the focus drive unit 43A includes control for moving the OCT focus lens 43 in the optical axis direction.
  • the control of the image sensors 35 and 38 includes control of the light receiving sensitivity of the imaging element, control of the frame rate (light receiving timing, exposure time), control of the light receiving area (position, size, size), and readout of the light receiving result of the imaging element. control, etc.
  • Control over the LCD 39 includes control of the fixation position by internal fixation (the exit position of the fixation light beam, the projection position of the fixation light beam on the fundus).
  • the main control unit 211 displays the fixation target at a position on the screen of the LCD 39 corresponding to the fixation position set manually or automatically.
  • the main control unit 211 can change (continuously or stepwise) the display position of the fixation target displayed on the LCD 39 . Thereby, the fixation target can be moved (that is, the fixation position can be changed).
  • the display position and movement mode of the fixation target are set manually or automatically.
  • Manual setting is performed using, for example, a GUI.
  • Automatic setting is performed by the data processing unit 230, for example.
  • the control over the optical path length changing unit 41 includes control for changing the optical path length of the measurement light LS.
  • the main control unit 211 moves the optical path length changing unit 41 along the optical path of the measuring light LS by controlling the driving unit that drives the corner cubes of the optical path length changing unit 41 to change the optical path length of the measuring light LS. .
  • Control of the optical scanner 42 includes control of scan mode, scan range (scan start position, scan end position), scan speed, and the like.
  • the main control unit 211 can perform an OCT scan with the measurement light LS on a desired region of the measurement site (imaging site).
  • Control over the external fixation unit 23 includes control of the fixation position by external fixation.
  • the main control unit 211 controls the external fixation unit 23 according to the fixation position set manually or automatically, rotates the fixation light source holding member 23B around the optical axis O, Any one of the light sources 23-1 to 23-4 is turned on.
  • the fixation light flux can be projected onto the subject's eye E from the emission position corresponding to the set fixation position without passing through the objective lens 22 .
  • the main controller 211 can change (continuously or stepwise) the emission position of the fixation light flux by controlling the external fixation unit 23 .
  • the fixation target for external fixation can be moved (that is, the fixation position can be changed).
  • the position and movement mode of the fixation target for external fixation are set manually or automatically.
  • Manual setting is performed using, for example, a GUI.
  • Automatic setting is performed by the main control unit 211 or the data processing unit 230, for example.
  • the main control unit 211 also controls the observation light source 11, the photographing light source 15, the focus optical system 60, and the like.
  • Control over the OCT unit 100 includes control over the light source unit 101, control over the reference driver 114A, control over the detector 125, and control over the DAQ 130.
  • the control of the light source unit 101 includes control of turning on and off of the light source, control of the amount of light emitted from the light source, control of the wavelength sweep range, wavelength sweep speed, control of emission timing of light of each wavelength component, and the like. .
  • the control over the reference driver 114A includes control to change the optical path length of the reference light LR.
  • the main control unit 211 moves the corner cube 114 along the optical path of the reference light LR by controlling the reference driving unit 114A to change the optical path length of the reference light LR.
  • the control of the detector 125 includes control of the light receiving sensitivity of the detecting element, control of the frame rate (light receiving timing), control of the light receiving area (position, size, size), control of reading the light receiving result of the detecting element, and the like.
  • Control over the DAQ 130 includes fetch control (fetch timing, sampling timing) of the detection result of interference light obtained by the detector 125, readout control of the interference signal corresponding to the detection result of the fetched interference light, and the like.
  • the control for the anterior eye cameras 5A and 5B includes control of the light receiving sensitivity of each camera, frame rate (light receiving timing) control, synchronization control of the anterior eye cameras 5A and 5B, and the like.
  • the xyz movement mechanism 150 moves the fundus camera unit 2 (optical system) in the x, y, and z directions.
  • the xyz movement mechanism 150 includes at least a mechanism for moving the retinal camera unit 2 in the x direction (horizontal direction), a mechanism for moving it in the y direction (vertical direction), and a mechanism for moving the fundus camera unit 2 in the z direction (vertical direction). direction, back and forth).
  • the mechanism for moving in the x-direction includes, for example, an x-stage movable in the x-direction and an x-moving mechanism for moving the x-stage.
  • the mechanism for moving in the y-direction includes, for example, a y-stage movable in the y-direction and a y-moving mechanism for moving the y-stage.
  • the mechanism for moving in the z-direction includes, for example, a z-stage movable in the z-direction and a z-moving mechanism for moving the z-stage.
  • Each movement mechanism includes a pulse motor as an actuator and operates under control from the main control unit 211 .
  • Control over the xyz movement mechanism 150 is used in alignment and tracking. Tracking is to move the apparatus optical system according to the eye movement of the eye E to be examined. Alignment and focus adjustment are performed in advance when tracking is performed. Tracking is a function of maintaining a suitable positional relationship in which alignment and focus are achieved by causing the position of the apparatus optical system to follow the movement of the eyeball. Some embodiments are configured to control the xyz movement mechanism 150 to change the optical path length of the reference beam (and thus the optical path length difference between the optical path of the measurement beam and the optical path of the reference beam). .
  • the user relatively moves the optical system and the subject's eye E by operating the user interface 240 so that the displacement of the subject's eye E with respect to the optical system is cancelled.
  • the main control unit 211 controls the xyz moving mechanism 150 to move the optical system relative to the eye E by outputting a control signal corresponding to the operation content of the user interface 240 to the xyz moving mechanism 150 .
  • the main control unit 211 controls the xyz movement mechanism 150 so that the optical system is relatively moved with respect to the eye E to be examined so that the displacement of the eye E to be examined with respect to the optical system is cancelled.
  • arithmetic processing using trigonometry based on the positional relationship between the pair of anterior eye cameras 5A and 5B and the subject's eye E is performed, and the main control unit 211 controls the xyz moving mechanism 150 so that the eye to be examined E has a predetermined positional relationship with respect to the optical system.
  • the main controller 211 outputs a control signal such that the optical axis of the optical system substantially coincides with the axis of the eye E to be examined and the distance of the optical system from the eye E to be examined is a predetermined working distance.
  • the working distance is a default value also called a working distance of the objective lens 22, and corresponds to the distance between the subject's eye E and the optical system at the time of measurement (at the time of photographing) using the optical system.
  • the swing mechanism 151 swings the retinal camera unit 2 in the horizontal direction around the pupil of the eye E to be examined. Thereby, the horizontal component (horizontal angle) of the angle between the visual axis of the subject's eye E and the optical axis of the optical system can be changed.
  • the swing mechanism 151 is provided on a stage on which at least the retinal camera unit 2 is mounted and which is moved by the xyz movement mechanism 150 .
  • the swing mechanism 151 includes a pulse motor as an actuator and operates under the control of the main controller 211 .
  • the tilt mechanism 152 pivots the retinal camera unit 2 vertically around the pupil of the eye E to be examined. This makes it possible to change the vertical component (elevation/depression angle) of the angle between the visual axis of the subject's eye E and the optical axis of the optical system.
  • the tilt mechanism 152 is provided on a stage on which at least the fundus camera unit 2 is mounted and which is moved by the xyz movement mechanism 150 .
  • the tilt mechanism 152 includes a pulse motor as an actuator and operates under the control of the main controller 211 .
  • FIG. 7 shows an explanatory diagram of the angle changing operation by the swing mechanism 151 and the tilt mechanism 152 according to the embodiment.
  • FIG. 7 represents a schematic diagram of the appearance of the ophthalmic apparatus 1 when viewed from the side.
  • the ophthalmologic apparatus 1 includes a base 1A and a pedestal 1B mounted on the base 1A so as to be movable in the front, rear, left, and right directions (horizontal direction) and in the vertical direction.
  • a joystick 1C as an operation unit 240B is installed on the base 1B.
  • the gantry 1B is moved forward, backward, left, right, up and down on the base 1A by operating the joystick 1C.
  • an operation button as an operation unit 240B is arranged at the tip of the joystick 1C, and by pressing the operation button, it is possible to instruct the start of shooting.
  • the base 1A is provided with a chin rest and a forehead (not shown).
  • the chin rest and forehead support fix the subject's (patient's) face to a head section 1D (housing) described later during measurement.
  • a head part 1D is provided on the base 1B.
  • the head unit 1D accommodates the optical system of the retinal camera unit 2, the optical system of the OCT unit 100, and the arithmetic control unit (control unit 210), and is attached to the pedestal 1B via a swing mechanism 151 and a tilt mechanism 152 as an angle changing mechanism. Supported.
  • the head part 1D is configured to be able to turn vertically and horizontally on the base 1B by means of a swing mechanism 151 and a tilt mechanism 152 .
  • the swing mechanism 151 includes a base portion 1E, a support arm 1F, a rotation shaft portion 1G, and a horizontal rotation portion 1H.
  • the base 1E is fixed on the base 1B.
  • the support arm 1F is a rod-shaped member extending in the front-rear direction.
  • One end of the support arm 1F is fixed on the base 1E, and the other end is arranged on a vertical line passing through the pupil Ep of the eye E to be examined.
  • the rotating shaft portion 1G is a cylindrical member provided on the other end of the support arm 1F and extending in the vertical direction.
  • a bearing hole is formed in the horizontal rotation portion 1H.
  • the swing mechanism 151 aligns the horizontal position of the rotation shaft of the rotation shaft portion 1G with the pupil (for example, the center of the pupil) Ep of the eye E to be examined, so that the support arm 1F and the support arm 1F and the support arm 1F move around the pupil Ep.
  • the tilt mechanism 152 can be rotated in the horizontal direction.
  • the tilt mechanism 152 includes a curved arm 1J.
  • the curved arm 1J guides the tilting motion of the head section 1D.
  • the curved arm 1J includes, for example, a pair of curved arms that hold the head section 1D from both sides, and guides the movement of the head section 1D along the curved arms.
  • Each curved arm is formed in an arc shape having a central axis line extending in the left-right direction set on an extension line of the rotation shaft portion 1G as a center of curvature.
  • One end (lower end) of each curved arm is fixed to the horizontal rotating portion 1H.
  • the tilt mechanism 152 can vertically rotate the head part 1D around the pupil Ep by aligning the position of the center of curvature of the curved arm 1J with the pupil Ep of the eye E to be examined.
  • a sensor that detects the horizontal angle of the head section 1D by the swing mechanism 151 is provided, and the main control section 211 can acquire the horizontal angle of the head section 1D.
  • a sensor that detects the elevation/depression angle of the head unit 1D by the tilt mechanism 152 is provided, and the main control unit 211 can acquire the elevation/depression angle of the head unit 1D.
  • the main control unit 211 can display various information on the display unit 240A as a display control unit.
  • the main control unit 211 causes the display unit 240A to display an OCT image formed by the image forming unit 220, which will be described later, and a data processing result obtained by the data processing unit 230, which will be described later.
  • the storage unit 212 stores various data.
  • the function of the storage unit 212 is implemented by a storage device such as a memory or a storage device.
  • the data stored in the storage unit 212 includes, for example, control information, image data of a fundus image, image data of an anterior segment image, OCT data (including an OCT image), eye information to be examined, and the like. Examples of control information include shooting position table information and fixation control information. The imaging position table information and the fixation control information will be described later.
  • the eye information to be examined includes information about the subject such as patient ID and name, information about the eye to be examined such as left/right eye identification information, and electronic medical record information.
  • the storage unit 212 stores programs for executing various processors (control processor, image forming processor, data processing processor).
  • the main control unit 211 executes fixation control according to the distance from the optical axis O of the optical system to the OCT measurement position in the fundus oculi Ef.
  • FIG. 8 shows an explanatory diagram of fixation control according to the embodiment.
  • FIG. 8 schematically shows an imaging range (a fundus imaging range using the imaging optical system 30, an OCT imaging range) from a position corresponding to the optical axis O in the fundus oculi Ef.
  • the central range including the position O1 corresponding to the optical axis O is the central fixation range Fc.
  • the main control unit 211 controls, for example, the LCD 39 to present internal fixation to the subject's eye E so as to fixate the center of the optical axis.
  • the peripheral range outside the central fixation range Fc is the inner fixation range Fi.
  • the main control unit 211 controls, for example, the LCD 39 to present an internal fixation to the subject's eye E so as to fixate the fixation position in the internal fixation range Fi.
  • the peripheral range outside the inner fixation range Fi is the first outer fixation range Fo1.
  • the main controller 211 controls, for example, the external fixation unit 23 to fixate the fixation position in the first external fixation range Fo1. is turned on to present external fixation to the eye E to be examined.
  • the peripheral range outside the first external fixation range Fo1 is the second external fixation range Fo2.
  • the main control unit 211 controls, for example, the external fixation unit 23 to cause the external fixation light source 23-2 to fixate the fixation position in the second external fixation range Fo2. is turned on to present external fixation to the eye E to be examined.
  • the peripheral range outside the second outer fixation range Fo2 is the third outer fixation range Fo3.
  • the main control unit 211 controls, for example, the external fixation unit 23 to cause the external fixation light source 23-3 to fixate the fixation position in the third external fixation range Fo3. is turned on to present external fixation to the eye E to be examined.
  • the peripheral range outside the third outer fixation range Fo3 is the fourth outer fixation range Fo4.
  • the main control unit 211 controls, for example, the external fixation unit 23 to fixate the fixation position in the fourth external fixation range Fo4. is turned on to present external fixation to the eye E to be examined.
  • the main controller 211 controls the eye E control the fixation system to present an internal fixation at
  • the analysis unit 231 calculates the fundus image based on the fixation position where the fixation light flux is projected. can identify the location of the OCT image (eg, OCT scan area) in .
  • the main control unit 211 controls the fixation system to present the eye E to be examined with an external fixation.
  • the analysis unit 231 performs OCT on the fundus image based on the fixation position where the fixation light flux is projected. The location of the image (eg, OCT scan area) can be identified.
  • the main control unit 211 refers to photographing position table information in which fixation positions corresponding to photographing positions are associated in advance, thereby photographing a wide range of the fundus oculi Ef.
  • a wide range of the fundus oculi Ef can be observed in detail without changing the direction of the subject's eye E (the direction of the line of sight).
  • FIG. 9 shows an overview of the shooting position table information according to the embodiment.
  • the shooting position table information includes multiple pieces of fixation position information and multiple pieces of shooting position information. Each piece of fixation position information is pre-associated with corresponding imaging position information.
  • the fixation position information is, for example, information representing the projection position of the fixation target on the fundus.
  • the imaging position information is information representing the imaging position on the fundus, which is the imaging target using the imaging optical system 30 .
  • photographing position information SP-1 is associated with fixation position information FP-1
  • photographing position information SP-2 is associated with fixation position information FP-2. . .
  • the photographing position information SP-n is associated with the fixation position information FP-n (n is an integer equal to or greater than 2).
  • the optical axis of the imaging optical system 30 is coupled to the optical axis of the OCT unit 100 substantially coaxially.
  • the OCT imaging position on the fundus measured using the OCT unit 100 can be uniquely specified from the imaging position on the fundus imaged using the imaging optical system 30 .
  • the imaging position on the fundus imaged using the imaging optical system 30 can be uniquely specified.
  • the information representing the shooting position is information representing the shooting position itself. In some embodiments, the information representing the shooting position is information representing the shooting area including the shooting position. In this embodiment, the imaging position information is information representing any of the superior area, inferior area, temporal area, and nasal area with respect to the fovea. and Such imaging position table information is determined in advance in consideration of the configuration of the optical system.
  • the main control unit 211 or the data processing unit 230 refers to the photographing position table information stored in the storage unit 212 to identify photographing position information from the fixation position information, or extract fixation position information from the photographing position information. can be specified.
  • the storage unit 212 stores a plurality of photographing position table information corresponding to optical information (for example, pupil size or axial length) of the subject's eye.
  • the main control unit 211 or the data processing unit 230 can select the imaging position table information corresponding to the optical information of the subject's eye from among the plurality of imaging position table information, and refer to the selected imaging position table information.
  • the main control unit 211 can change the content of the shooting position table information based on an operation signal corresponding to the user's operation on the operation unit 240B.
  • the main control unit 211 refers to fixation control information in which information for controlling internal fixation and information for controlling external fixation corresponding to the fixation position are associated in advance. Thereby, internal fixation or external fixation can be presented to the subject's eye E according to the fixation position.
  • FIG. 10 shows an overview of fixation control information according to the embodiment.
  • the fixation control information includes multiple pieces of fixation position information, multiple pieces of internal fixation control information, and multiple pieces of external fixation control information.
  • Each fixation position information is pre-associated with internal fixation control information and external fixation control information.
  • Internal fixation control information is information for controlling internal fixation. Examples of information for controlling internal fixation include lighting/non-lighting of the LCD 39, display pixel positions on the screen of the LCD 39, light intensity of the fixation luminous flux, switching timing of lighting and non-lighting for blink control, and the like.
  • External fixation control information is information for controlling external fixation.
  • Examples of information for controlling external fixation include lighting/non-lighting of each of the external light sources 23-1 to 23-4, the rotation angle of the fixation light source holding member 23B, and the external light sources 23-1 to 23-4. There is information for controlling the amount of light of each, switching timing between lighting and non-lighting for blinking control of each of the external light sources 23-1 to 23-4, and the like.
  • the fixation position information FP-1 is associated with the internal fixation control information ifc-1 and the external fixation control information ofc-1
  • the fixation position information FP-2 is associated with the internal fixation control information ifc-1 and external fixation control information ofc-1.
  • internal fixation control information ifc-n and external fixation control information ofc-n are associated.
  • the main control unit 211 can control either the LCD 39 or the external fixation unit 23 according to the fixation position information. .
  • the storage unit 212 stores a plurality of pieces of fixation control information corresponding to optical information (for example, pupil size or axial length) of the subject's eye.
  • the main control unit 211 can select the optical information of the subject's eye or the fixation control information corresponding to the imaging position from among a plurality of pieces of fixation control information, and refer to the selected fixation control information.
  • the main control unit 211 can change the content of the fixation control information based on the operation signal corresponding to the user's operation content on the operation unit 240B.
  • the main control unit 211 controls two or more OCT measurement positions (imaging range) set so as to cover the montage imaging range. to sequentially perform OCT imaging, and form an OCT montage image from the acquired OCT images. Each time the imaging position is moved, the main control unit 211 presents the fixation target at the fixation position corresponding to the OCT measurement position after the movement.
  • an OCT montage image is obtained by setting a montage imaging range for a photographic image or observation image of the fundus.
  • the montage imaging acquires color or near-infrared montage images by setting a montage imaging range for OCT images of the fundus.
  • FIG. 11 shows an operation explanatory diagram of montage shooting according to the embodiment.
  • FIG. 11 is a schematic diagram for explaining the montage photographing operation when the montage photographing range PR is set for the fundus image IMG acquired using the photographing optical system 30 .
  • the montage shooting range PR is set automatically or manually.
  • the data processing unit 230 analyzes the fundus image IMG to specify a characteristic region, and specifies the montage shooting range PR so as to include the specified characteristic region.
  • the montage shooting range PR is specified based on an operation signal corresponding to the details of the user's operation on the operation unit 240B.
  • the main control unit 211 controls the data processing unit 230 to identify two or more OCT imaging positions (OCT measurement positions).
  • OCT imaging positions OCT measurement positions.
  • An OCT imaging range is determined corresponding to each OCT imaging position.
  • nine OCT imaging ranges PA1 to PA9 are specified based on nine OCT imaging positions.
  • the main control unit 211 or the data processing unit 230 determines the order of imaging based on the specified two or more OCT imaging positions. For example, the main control unit 211 can determine the order of photographing such that, after photographing a plurality of photographing positions in the horizontal direction, photographing positions adjacent in the vertical direction are photographed.
  • the main control unit 211 controls the OCT unit 100 and the like to sequentially perform OCT imaging for two or more OCT imaging positions in the determined imaging order. At this time, every time the OCT imaging position is moved, the main control unit 211 presents the fixation target at the fixation position corresponding to the OCT imaging position after movement. By moving the OCT imaging position, internal fixation is switched to external fixation, and external fixation is switched to internal fixation.
  • the main control unit 211 forms an OCT montage image from the OCT images acquired by multiple times of imaging. At this time, the main control unit 211 can perform registration processing between the OCT image and the fundus image IMG to form an OCT montage image.
  • the image forming unit 220 includes a processor (for example, an image forming processor), and generates an OCT image (image data) of the subject's eye E based on the output (detection signal sampling result) from the DAQ 130.
  • a processor for example, an image forming processor
  • the image forming unit 220 performs signal processing on the spectral distribution based on the sampling result for each A line, forms a reflection intensity profile for each A line, and images these A line profiles as in the conventional swept source OCT. and arrange them along the scan lines.
  • the signal processing includes noise removal (noise reduction), filtering, FFT (Fast Fourier Transform), and the like.
  • the image forming section 220 performs known processing according to that type.
  • the data processing unit 230 includes a processor (for example, a data processing processor) and performs image processing and analysis processing on the image formed by the image forming unit 220 . At least two of the processor included in the main control unit 211, the processor included in the data processing unit 230, and the processor included in the image forming unit 220 may be configured by a single processor.
  • a processor for example, a data processing processor
  • the data processing unit 230 executes known image processing such as interpolation processing for interpolating pixels between tomographic images to form image data of a three-dimensional image of the fundus oculi Ef or the anterior segment Ea.
  • image data of a three-dimensional image means image data in which pixel positions are defined by a three-dimensional coordinate system.
  • Image data of a three-dimensional image includes image data composed of voxels arranged three-dimensionally. This image data is called volume data or voxel data.
  • rendering processing volume rendering, MIP (Maximum Intensity Projection: maximum intensity projection), etc.
  • Image data of a pseudo three-dimensional image is formed. This pseudo three-dimensional image is displayed on a display device such as the display unit 240A.
  • stack data of a plurality of tomographic images is image data of a three-dimensional image.
  • Stacked data is image data obtained by three-dimensionally arranging a plurality of tomographic images obtained along a plurality of scan lines based on the positional relationship of the scan lines. That is, stack data is image data obtained by expressing a plurality of tomographic images, which were originally defined by individual two-dimensional coordinate systems, by one three-dimensional coordinate system (that is, embedding them in one three-dimensional space).
  • the data processing unit 230 generates a B-scan image by arranging the A-scan images in the B-scan direction. In some embodiments, the data processing unit 230 performs various renderings on the acquired three-dimensional data set (volume data, stack data, etc.) to obtain a B-mode image (B-scan image) (longitudinal section) in an arbitrary cross section. plane image, axial cross-sectional image), C-mode image (C-scan image) at an arbitrary cross-section (cross-sectional image, horizontal cross-sectional image), projection image, shadowgram, and the like.
  • B-mode image B-scan image
  • C-mode image C-mode image
  • An arbitrary cross-sectional image such as a B-scan image or a C-scan image, is formed by selecting pixels (pixels, voxels) on a specified cross-section from a three-dimensional data set.
  • a projection image is formed by projecting a three-dimensional data set in a predetermined direction (z direction, depth direction, axial direction).
  • a shadowgram is formed by projecting a portion of the three-dimensional data set (for example, partial data corresponding to a specific layer) in a predetermined direction. By changing the depth range in the layer direction to be integrated, it is possible to form two or more different shadowgrams.
  • An image such as a C-scan image, a projection image, or a shadowgram whose viewpoint is the front side of the subject's eye is called an en-face image.
  • the data processing unit 230 generates B-scan images and front images (blood vessel-enhanced images, angiograms) in which retinal vessels and choroidal vessels are emphasized based on data (for example, B-scan image data) collected in time series by OCT. can be constructed.
  • data for example, B-scan image data
  • time-series OCT data can be collected by repeatedly scanning substantially the same portion of the eye E to be examined.
  • the data processing unit 230 compares time-series B-scan images obtained by B-scans of substantially the same site, and converts the pixel values of the portions where the signal intensity changes to the pixel values corresponding to the changes.
  • An enhanced image in which the changed portion is emphasized is constructed by the conversion.
  • the data processing unit 230 extracts information for a predetermined thickness at a desired site from the constructed multiple enhanced images and constructs an en-face image to form an OCT angiogram.
  • the data processing unit 230 includes an analysis unit 231, a montage shooting processing unit 231C, and a registration processing unit 231D.
  • the analysis unit 231 includes a characteristic part identification unit 231A, a three-dimensional position calculation unit 231B, a montage imaging processing unit 231C, and a registration processing unit 231D.
  • the analysis unit 231 can analyze the image of the subject's eye E and identify the characteristic regions depicted in the image. For example, the analysis unit 231 obtains the three-dimensional position of the subject's eye E based on the positions of the anterior eye cameras 5A and 5B and the positions of the specified characteristic regions.
  • the main control unit 211 aligns the optical system with respect to the eye to be examined E by relatively moving the optical system with respect to the eye to be examined E based on the determined three-dimensional position.
  • the characteristic site identification unit 231A analyzes each of the captured images obtained by the anterior segment cameras 5A and 5B to identify positions (referred to as characteristic positions) in the captured images corresponding to the characteristic sites of the anterior segment Ea. Identify. For example, the pupil region of the subject eye E, the pupil center position of the subject eye E, the pupil center position, the corneal center position, the corneal vertex position, the subject eye center position, or the iris are used as the characteristic site. A specific example of processing for specifying the pupil center position of the eye E to be examined will be described below.
  • the characteristic part specifying unit 231A specifies an image region (pupil region) corresponding to the pupil of the subject's eye E based on the distribution of pixel values (such as luminance values) of the captured image. Since the pupil is generally drawn with lower luminance than other parts, the pupil region can be identified by searching for the low-luminance image region. At this time, the pupil region may be specified in consideration of the shape of the pupil. In other words, the pupil region can be identified by searching for a substantially circular low-brightness image region.
  • the characteristic part identifying section 231A identifies the central position of the identified pupil region. Since the pupil is substantially circular as described above, it is possible to specify the outline of the pupil region, specify the center position of this outline (the approximate circle or approximate ellipse), and set this as the pupil center position. Alternatively, the center of gravity of the pupil region may be obtained and the position of the center of gravity may be specified as the position of the center of gravity of the pupil.
  • the characteristic part identifying unit 231A can sequentially identify characteristic positions corresponding to characteristic parts in the captured images sequentially obtained by the anterior eye cameras 5A and 5B. In addition, the characteristic part identification unit 231A may identify the characteristic position every one or more frames of the captured images sequentially obtained by the anterior eye cameras 5A and 5B.
  • the characteristic part identifying unit 231A can identify the characteristic part identified like steam as a characteristic region for identifying the montage shooting range.
  • the three-dimensional position calculation unit 231B calculates the three-dimensional positions of the characteristic regions of the subject's eye E based on the positions of the anterior eye cameras 5A and 5B and the characteristic positions corresponding to the characteristic regions identified by the characteristic region identification unit 231A. Identify as a three-dimensional position.
  • the three-dimensional position calculation unit 231B calculates the positions (known) of the two anterior eye cameras 5A and 5B and corresponding to characteristic regions in the two captured images.
  • the three-dimensional position of the subject's eye E is calculated by applying a known trigonometric method to the position where the eye E is to be examined.
  • the three-dimensional position calculated by the three-dimensional position calculator 231B is sent to the main controller 211.
  • the main control unit 211 determines that the x- and y-direction positions of the optical axis of the optical system match the x- and y-direction positions of the three-dimensional position, and that the z-direction distance is
  • the xyz moving mechanism 150 is controlled so as to achieve a predetermined working distance.
  • the montage imaging processing unit 231C selects two or more OCT imaging positions based on the size of the montage imaging range set automatically or manually and the size of the OCT imaging region (or fundus imaging region using the imaging optical system 30). Identify.
  • the montage imaging processing unit 231C identifies two or more OCT imaging positions such that the peripheral region of each OCT image overlaps the peripheral region of the adjacent OCT image.
  • the size of the OCT imaging field is a predetermined size. In some embodiments, the size is determined based on the size of the feature region identified when setting the montage capture area.
  • the functions of the montage shooting processing unit 231C may be configured to be realized by the control unit 210 (main control unit 211).
  • the registration processing unit 231D performs registration processing on the two images.
  • the registration processing unit 231D extracts two or more feature points from each of the two images, and aligns the two images so that the positions of the extracted feature points match.
  • feature points are blood vessels, blood vessel bifurcations, and lesions.
  • registration processor 231D performs an affine transform, a Helmert transform, or a free transform.
  • the registration processing unit 231D extracts one or more characteristic regions from each of the two images, and performs least squares matching (LSM) on the extracted one or more characteristic regions from both images.
  • LSM least squares matching
  • the two images are aligned so that the sum of the squares of the grayscale differences between the two images is minimized.
  • registration processor 231D performs an affine transform, a Helmert transform, or a free transform.
  • the registration processing unit 231D divides each of the two images into two or more partial images, and aligns the partial images based on the characteristic points or characteristic parts.
  • the registration processor 231D performs affine transformation, Helmert transformation, or free transformation for each partial image.
  • the registration processing unit 231D obtains the degree of correlation between the two images, and aligns the two images so that the degree of correlation is greater than or equal to the threshold.
  • registration processor 231D performs an affine transform, a Helmert transform, or a free transform.
  • the registration processing unit 231D divides each of the two images into two or more partial images, obtains the degree of correlation between the two images for each partial image, and maximizes the partial image whose degree of correlation is greater than or equal to the threshold.
  • the two images are aligned as follows.
  • registration processor 231D performs an affine transform, a Helmert transform, or a free transform.
  • the registration processing unit 231D performs the above registration processing on the two OCT images.
  • OCT images include projection images (live projection images), shadowgrams, C-scan images, en-face images, and OCT angiograms.
  • the registration processing unit 231D performs the above registration processing on the fundus image and the OCT image.
  • the fundus image include an observation image of the fundus obtained by the image sensor 35, a captured image of the fundus obtained by the image sensor 38, and a previously obtained fundus image.
  • the observed image or captured image may be a near-infrared image or a color image.
  • Such a registration processing section 231D includes a scan area specifying section 2311D and an overlap determining section 2312D.
  • the scan area specifying unit 2311D specifies an OCT scan area (OCT image position) on the fundus image from the fixation position of the eye E to be examined.
  • the scan area specifying unit 2311D refers to the imaging position table information shown in FIG. 9 to specify the imaging position information from the fixation position of the internal fixation or the external fixation, and the fundus oculi Ef from the imaging position information. Identify the shooting area in For example, the imaging area is an upper area, a lower area, an ear area, or a nasal area in the fundus oculi Ef.
  • the scan area specifying unit 2311D extracts feature points in the specified imaging area.
  • the feature points are blood vessels, blood vessel bifurcations, or lesions. In some embodiments, extraction of feature points in the imaging area is performed by the feature site identification unit 231A.
  • the scan area specifying unit 2311D extracts feature points from the projection image created from the OCT data (for example, live OCT image) of the eye E to be examined.
  • the scan area specifying unit 2311D specifies an OCT scan area corresponding to the imaging area in the fundus image so that the feature points extracted in the imaging area match the feature points extracted in the projection image.
  • the overlap determination unit 2312D determines whether or not the peripheral regions of the two images obtained by montage photography overlap.
  • the overlap determination unit 2312D can determine not only whether or not the peripheral regions of the two images overlap, but also whether or not the two images have appropriate (good) image quality. can. For example, the overlap determination unit 2312D determines whether or not there is an overlap region between the two images, and when it is determined that there is an overlap region, further calculates the degree of correlation in the overlap region between the two images. When it is determined that the degree of correlation in the overlap region is equal to or greater than the threshold, the overlap determination unit 2312D determines that the two images acquired by montage photography overlap and that the two images have appropriate image quality. do.
  • the size of the peripheral area of the image for which the overlap determination unit 2312D performs determination processing may be a predetermined size, or the area where the two images overlap is specified, and the size of the specified area is adopted. You may
  • User interface 240 includes a display section 240A and an operation section 240B.
  • Display unit 240A includes display device 3 .
  • the operation unit 240B includes various operation devices and input devices.
  • the user interface 240 may include a device such as a touch panel that combines a display function and an operation function. In other embodiments, at least a portion of the user interface may not be included on the ophthalmic device.
  • the display device may be an external device connected to the ophthalmic equipment.
  • the communication unit 250 has a function for communicating with an external device (not shown).
  • the communication unit 250 has a communication interface according to a connection form with an external device.
  • external devices include server devices, OCT devices, scanning laser ophthalmoscopes, slit lamp ophthalmoscopes, ophthalmic measurement devices, and ophthalmic treatment devices.
  • ophthalmic measurement devices include eye refractometers, tonometers, specular microscopes, wavefront analyzers, perimeters, microperimeters, and the like.
  • Examples of ophthalmic treatment devices include laser treatment devices, surgical devices, surgical microscopes, and the like.
  • the external device may be a device (reader) that reads information from a recording medium, or a device (writer) that writes information to a recording medium.
  • the external device may be a hospital information system (HIS) server, a DICOM (Digital Imaging and Communication in Medicine) server, a doctor terminal, a mobile terminal, a personal terminal, a cloud server, or the like.
  • HIS hospital information system
  • DICOM Digital Imaging and Communication in Medicine
  • the optical system from the OCT unit 100 to the objective lens 22 is an example of the "OCT optical system” according to the embodiment.
  • the swing mechanism 151 or the tilt mechanism 152 is an example of the "angle changing mechanism” according to the embodiment.
  • the optical system from the LCD 39 to the objective lens 22 or the external fixation unit 23 is an example of the "fixation system” according to the embodiment.
  • the optical system from the LCD 39 to the objective lens 22 is an example of the "internal fixation system” according to the embodiment.
  • the external fixation unit 23 is an example of the "external fixation system” according to the embodiment.
  • a tilt mechanism is an example of a "first angle changing mechanism” according to the embodiment.
  • the swing mechanism is an example of the "second angle changing mechanism” according to the embodiment.
  • FIG. 14 shows a flowchart of a first operation example of the ophthalmologic apparatus 1 .
  • FIG. 15 represents a flow diagram of an operation example of step S9 in FIG. 16 and 17 represent a flow chart of a second operation example of the ophthalmologic apparatus 1.
  • FIG. 14 shows a flowchart of a first operation example of the ophthalmologic apparatus 1 .
  • FIG. 15 represents a flow diagram of an operation example of step S9 in FIG. 16 and 17 represent a flow chart of a second operation example of the ophthalmologic apparatus 1.
  • the storage unit 212 stores computer programs for realizing the processes shown in FIGS.
  • the main control unit 211 executes the processes shown in FIGS. 14 to 17 by operating according to this computer program.
  • a fixation position is determined from an OCT imaging position specified in a fundus image (for example, a wide-angle fundus image), and internal fixation or external fixation is presented to the determined fixation position.
  • OCT measurement is performed with (FIGS. 14 and 15).
  • the main control unit 211 controls the anterior segment cameras 5A and 5B to photograph the anterior segment Ea of the subject's eye E substantially simultaneously.
  • the characteristic site identification unit 231A receives control from the main control unit 211, analyzes a pair of anterior segment images obtained substantially simultaneously by the anterior segment cameras 5A and 5B, and identifies the pupil of the subject's eye E as a characteristic site. Identify the center position.
  • the three-dimensional position calculator 231B obtains the three-dimensional position of the eye E to be examined. This processing includes arithmetic processing using trigonometry based on the positional relationship between the pair of anterior eye cameras 5A and 5B and the subject's eye E, as described in Japanese Patent Application Laid-Open No. 2013-248376, for example.
  • the main control unit 211 Based on the three-dimensional position of the eye to be examined E calculated by the three-dimensional position calculator 231B, the main control unit 211 performs xyz calculation so that the optical system (for example, the fundus camera unit 2) and the eye to be examined E have a predetermined positional relationship. It controls the moving mechanism 150 .
  • the predetermined positional relationship is a positional relationship that enables imaging and examination of the subject's eye E using an optical system.
  • the x-coordinate and y-coordinate of the optical axis of the objective lens 22 are the eye E and the difference between the z-coordinate of the objective lens 22 (front lens surface) and the z-coordinate of the eye to be examined E (corneal surface) is equal to a predetermined distance (working distance) , is set as the destination of the optical system.
  • the main control unit 211 controls the focus optical system 60 to project the split index on the eye E to be examined.
  • the analysis unit 231 extracts a pair of split index images by analyzing the observed image of the fundus oculi Ef on which the split indices are projected, and calculates the relative relationship between the pair of split indices. Calculate the deviation.
  • the main control unit 211 controls the focus driving unit 31A and the focus driving unit 43A based on the calculated deviation (direction of deviation, amount of deviation).
  • the main control unit 211 sets the OCT imaging position for a fundus image such as an infrared image (or moving image) of the fundus oculi Ef or a color fundus image of the fundus oculi Ef acquired in advance.
  • a fundus image such as an infrared image (or moving image) of the fundus oculi Ef or a color fundus image of the fundus oculi Ef acquired in advance.
  • the main control unit 211 sets the imaging position designated by the user operating the operation unit 240B while viewing the fundus image as the OCT imaging position.
  • the main control unit 211 causes the analysis unit 231 to analyze the fundus image to specify a characteristic region or a region of interest, and sets the position in the fundus image corresponding to the identified characteristic region or region of interest as the OCT imaging position.
  • the main control unit 211 performs fixation control so that the fixation light flux is projected to the fixation position on the fundus oculi Ef corresponding to the OCT imaging position set in step S3.
  • the main control unit 211 controls the external fixation unit 23, the swing mechanism 151, and the tilt mechanism 152 to change the direction of the visual axis of the eye E to be examined without changing the orientation of the eye E to be examined. and the direction of the optical axis of the optical system (measurement optical axis, objective optical axis).
  • the main control unit 211 refers to the imaging position table information in FIG. 9 and specifies the fixation position information from the imaging position information corresponding to the OCT imaging position set in step S3.
  • the main control unit 211 refers to the internal fixation control information and the external fixation control information by referring to the fixation control information in FIG.
  • the main control unit 211 controls at least one of the external fixation unit 23, the swing mechanism 151, and the tilt mechanism 152 based on the external fixation control information. to control the emission position of the fixation light flux.
  • the main control unit 211 causes the display unit 240A to display predetermined guidance information, and instructs the user to manually move at least one of the external fixation unit 23, the swing mechanism 151, and the tilt mechanism 152. encourage For example, the main control unit 211 acquires detection results from sensors provided in each of the external fixation unit 23 , the swing mechanism 151 and the tilt mechanism 152 . The main control unit 211 checks whether or not the external fixation unit 23, the swing mechanism 151, and the tilt mechanism 152 are set to desired states based on the acquired detection results. It is desirable to continue prompting the user for guidance until the predetermined state is set.
  • the main control unit 211 causes the subject's eye E to present internal fixation or external fixation.
  • the main control unit 211 presents internal fixation or external fixation to the subject's eye E as described above, based on internal fixation control information or external fixation control information.
  • the main control unit 211 controls the LCD 39 based on the internal fixation control information, and the fixation light beam is displayed from the display position of the LCD 39 designated based on the internal fixation control information. is emitted.
  • the main control unit 211 controls the external fixation unit 23 based on the external fixation control information, and the fixation light source specified based on the external fixation control information Emits a fixation beam.
  • the main control unit 211 adjusts the shooting position based on the user's operation on the operation unit 240B. For example, while referring to a live OCT image (projection image or en-face image), the user operates the operation unit 240B to instruct to change the imaging position. Examples of adjustment of the imaging position include movement of the optical system with respect to the subject's eye E by the xyz movement mechanism 150, change of the emission position of the fixation light flux (including switching between internal fixation and external fixation), and offset with respect to the optical scanner 42. There are the application of a voltage, the change of the optical path length difference between the measurement light LS and the reference light LR, and the like.
  • step S6 is skipped.
  • the main control unit 211 controls the OCT unit 100 and the like to perform OCT imaging at the OCT imaging position determined up to step S5 or the OCT imaging position adjusted at step S6.
  • the main control unit 211 controls the image forming unit 220 to form an OCT image based on OCT data obtained by OCT imaging, and controls the data processing unit 230 to form a projection image or an en-face image.
  • the main controller 211 controls the fundus camera unit 2 to photograph the fundus Ef. Thereby, a fundus image (for example, a color fundus image) of the fundus oculi Ef is obtained.
  • a fundus image for example, a color fundus image
  • the main control unit 211 controls the registration processing unit 231D to perform registration processing between the projection image or the en-face image acquired in step S7 and the fundus image acquired in step S8. .
  • step S9 The details of step S9 will be described later.
  • the main control unit 211 causes the display unit 240A to display a synthesized image after aligning the projection image or the en-face image acquired in step S7 with the fundus image acquired in step S8.
  • step S9 in FIG. 14 is executed according to the flow shown in FIG.
  • the scan area specifying unit 2311D refers to the shooting position table information shown in FIG. 9 as described above, and specifies shooting position information from the fixation position determined by the processing up to step S4.
  • the scan area specifying unit 2311D specifies the imaging area in the fundus image acquired in step S8 from the specified imaging position information.
  • the scan area identification unit 2311D extracts feature points in the imaging area identified in step S21 as described above.
  • the scan area specifying unit 2311D (or the analysis unit 231) extracts feature points from the projection image created from the OCT data of the subject's eye E acquired in step S7 as described above.
  • the scan area specifying unit 2311D determines the photographing area in the fundus image so that the feature points of the fundus image extracted in step S22 and the feature points of the projection image extracted in step S23 match each other. Identify the OCT scan area corresponding to .
  • the registration processing unit 231D aligns the projection image based on the OCT data acquired in step S7 and the fundus image acquired in step S8 based on the OCT scan area specified in step S24. Execute the process.
  • the registration processing unit 231D registers the projection image based on the OCT data acquired in step S7 and the previously acquired fundus image based on the OCT scan area specified in step S24. to perform alignment processing.
  • the fundus image acquired in advance is the fundus image acquired by the ophthalmologic apparatus 1 before executing the flow shown in FIG. It can be an image.
  • the alignment (registration) of the projection image and the fundus image is performed within the OCT scan area specified in step S24, so the image search range is narrowed, and the processing load can be greatly reduced. can.
  • a second operation example of the ophthalmologic apparatus 1 will be described.
  • a plurality of OCT imaging positions are identified from a montage imaging range specified in a fundus image (for example, a wide-angle fundus image), and OCT imaging is sequentially performed on the identified plurality of imaging positions to perform OCT imaging.
  • a montage image is acquired (FIGS. 16-17).
  • step S31 Alignment
  • step S32 Autofocus
  • the main control unit 211 sets a montage photographing range for a fundus image such as an infrared image (or moving image) of the fundus oculi Ef or a color fundus image of the fundus oculi Ef acquired in advance.
  • a fundus image such as an infrared image (or moving image) of the fundus oculi Ef or a color fundus image of the fundus oculi Ef acquired in advance.
  • the main control unit 211 sets the imaging range designated by the user operating the operation unit 240B while viewing the fundus image as the montage imaging range.
  • the main control unit 211 causes the analysis unit 231 to analyze the fundus image to specify a characteristic region or a region of interest, and sets an imaging range of a predetermined size including the identified characteristic region or region of interest as the montage imaging range.
  • the main control unit 211 specifies two or more OCT imaging positions from the montage imaging range set in step S33 by controlling the montage imaging processing unit 231C. As described above, the montage imaging processing unit 231C is set so that the OCT imaging ranges corresponding to the respective OCT imaging positions overlap each other. Also, the main control unit 211 or the data processing unit 230 determines the imaging order based on the specified two or more OCT imaging positions.
  • step S34 Move optical system
  • the main control unit 211 projects the fixation light flux onto the fixation position on the fundus oculi Ef corresponding to one of the two or more OCT imaging positions, as in step S4, according to the imaging order determined in step S33. Perform fixation control so that
  • step S35 Presentation of fixation target
  • the main controller 211 controls the OCT unit 100 and the like to perform OCT imaging at the OCT imaging positions determined up to step S34, as in step S7.
  • the main control unit 211 controls the image forming unit 220 to form an OCT image based on OCT data obtained by OCT imaging, and controls the data processing unit 230 to form a projection image or an en-face image.
  • the shooting position is adjusted between steps S35 and S36, as in step S5.
  • step S37 Overlap
  • the main control unit 211 controls the overlap determination unit 2312D to determine whether or not two or more adjacent projection images (OCT images) acquired by repeatedly executing step S36 overlap each other. determine whether If only one projection image is acquired, the process of step S37 is skipped, and the operation of the ophthalmologic apparatus 1 proceeds to step S39.
  • the overlap determination unit 2312D determines not only whether or not the peripheral regions overlap each other for each of two or more adjacent projection images, but also whether or not the two adjacent projection images have appropriate image quality. It is determined whether or not.
  • step S37 When it is determined that the two or more projection images adjacent to each other have an overlapping peripheral area and the image quality of the two adjacent projection images is appropriate for each other (step S37: Y), the ophthalmologic apparatus 1 operates. goes to step S39.
  • step S37: N the ophthalmologic apparatus 1 operation proceeds to step S38.
  • the main control unit 211 determines whether or not to end the process. For example, the main control unit 211 determines to end the process when the number of repetitions of step S35 is equal to or greater than a predetermined number. For example, the main control unit 211 determines to end the process when the evaluation value representing the image quality of the projection image determined in step S37 is equal to or less than a predetermined threshold.
  • step S38: Y When it is determined to end the process (step S38: Y), the operation of the ophthalmologic apparatus 1 ends (END). When it is determined not to end the processing (step S38: N), the operation of the ophthalmologic apparatus 1 proceeds to step S36, and OCT imaging is performed again.
  • step S37 for each of the two or more projection images adjacent to each other, when it is determined that the peripheral regions overlap and the two projection images adjacent to each other have appropriate image quality (step S37: Y), the main As in step S9, the control unit 211 controls the registration processing unit 231D to perform registration processing on each of two or more projection images adjacent to each other.
  • the main control unit 211 determines whether or not to execute OCT imaging for the next imaging position. For example, the main control unit 211 determines whether or not to perform OCT imaging for the next imaging position according to the imaging order determined in step S34.
  • step S40 When it is determined in step S40 that OCT imaging is to be performed for the next imaging position (step S40: Y), the operation of the ophthalmologic apparatus 1 proceeds to step S34. As a result, OCT imaging is performed for the next imaging position.
  • step S40 When it is determined in step S40 that OCT imaging is not to be performed for the next imaging position (step S40: N), the operation of the ophthalmologic apparatus 1 proceeds to step S41.
  • step S40 when it is determined not to perform OCT imaging for the next imaging position (step S40: N), the main control section 211 controls the retinal camera unit 2 in the same manner as in step S8 to Execute shooting for Ef. Thereby, a fundus image (for example, a color fundus image) of the fundus oculi Ef is acquired.
  • a fundus image for example, a color fundus image
  • the main control unit 211 causes the display unit 240A to display the OCT montage image obtained by repeating steps S36 to S39.
  • the OCT montage image formed by repeating steps S36 to S39 is superimposed on the fundus image acquired in step S41 and displayed on the display unit 240A.
  • An ophthalmologic apparatus (1) includes an optical system (optical systems shown in FIGS. 1, 2, and 5), an angle changing mechanism (swing mechanism 151, tilt mechanism 152), and a fixation system ( LCD 39, external fixation unit 23), control section (210, main control section 211), image forming section (220), and analysis section (231).
  • the optical system includes an objective lens (22), an imaging optical system (30), and an OCT optical system (an optical system from the OCT unit 100 to the objective lens 22).
  • the imaging optical system receives light from the subject's eye (E) via the objective lens.
  • the OCT optical system is coupled to the optical path of the imaging optical system, projects the measurement light (LS) that has passed through the optical path onto the subject's eye via the objective lens, and produces interference light between the return light of the measurement light and the reference light (LR). (LC) is detected.
  • the angle changing mechanism changes the direction of the optical axis of the optical system by tilting the optical system.
  • the fixation system projects a fixation light flux toward the subject's eye from a fixation light flux emission position whose relative position to the optical axis can be changed.
  • the control unit changes the angle formed by the visual axis of the subject's eye and the optical axis based on the OCT measurement position in the image of the subject's eye, and projects the fixation light beam from the emission position corresponding to the OCT measurement position. is projected, the OCT optical system is controlled to perform OCT measurement for the subject's eye.
  • the image forming unit forms an OCT image of the subject's eye based on the detection result of the interference light.
  • the analysis unit identifies the position of the OCT image in the image of the subject's eye based on the emission position.
  • the orientation of the optical axis of the optical system is changed by the angle changing mechanism, thereby widening the angle to the eye to be inspected. of OCT measurements can be performed. As a result, the subject's eye can be more easily photographed or measured at a wide angle without changing the orientation of the subject's face.
  • control unit causes the fixation system to project a fixation light flux on each of two or more OCT measurement positions.
  • the analysis unit identifies the position of the OCT image in the image of the subject's eye based on the emission position in the fixation system.
  • the fixation system is an external fixation system (external fixation system) that projects a fixation light flux toward the subject's eye from an exit position having a known positional relationship with respect to the optical axis from outside the objective lens. including a viewing unit 23).
  • the orientation of the optical axis of the optical system is changed by the angle changing mechanism while controlling the fixation system based on the OCT measurement position in the image of the subject's eye using the external fixation system. , it is possible to perform wide-angle OCT measurement on the subject's eye.
  • the fixation system includes an internal fixation system (LCD 39) and an external fixation system (external fixation unit 23).
  • the internal fixation system includes an internal fixation light source (display pixels on the screen of the LCD 39) whose position relative to the optical axis can be changed, and projects a fixation light beam onto the subject's eye via the objective lens.
  • the external fixation system includes an external fixation light source (fixation light sources 23-1 to 23-4) whose relative position to the optical axis can be changed, and a known positional relationship to the optical axis is established from the outside of the objective lens. A fixation light beam is projected from the position of the external fixation light source provided toward the eye to be examined.
  • the internal fixation system and the external fixation system are used to control the fixation system based on the OCT measurement position in the image of the subject's eye, and the angle changing mechanism adjusts the optical axis of the optical system. By changing the orientation, it becomes possible to perform wide-angle OCT measurements on the subject's eye.
  • the control unit when the OCT measurement position is within a predetermined range (central fixation range Fc or internal fixation range Fi) including a position corresponding to the optical axis in the image of the subject's eye, the control unit performs internal fixation.
  • the system projects a fixation light beam onto the subject's eye, and the analysis unit identifies the position of the OCT image in the image of the subject's eye based on the fixation position where the fixation light beam is projected.
  • the control unit controls the external fixation system. to project the fixation light flux onto the subject's eye, and the analysis unit specifies the position of the OCT image in the image of the subject's eye based on the fixation position where the fixation light flux is projected.
  • the controller causes the internal fixation system or the external fixation system to project a fixation light beam on each of two or more OCT measurement positions.
  • the analysis unit identifies the position of the OCT image in the image of the subject's eye based on the fixation position onto which the fixation light flux is projected.
  • the position of the OCT image in the image of the subject's eye can be specified for each of two or more OCT measurement positions while switching between the internal fixation system and the external fixation system according to the OCT measurement position. can be done. Thereby, it becomes possible to acquire a composite image of multiple OCT images, such as a montage image.
  • the external fixation system is fixed relative to the optical system.
  • the angle changing mechanism includes a first angle changing mechanism (tilt mechanism 152) that vertically changes the angle formed by the orientation of the optical axis with respect to the horizontal direction, and a tilt mechanism 152 that changes the angle formed by the orientation of the optical axis with respect to the vertical direction. and a second angle changing mechanism (swing mechanism 151) that changes the angle in the horizontal direction.
  • the orientation of the optical axis of the optical system is changed by the tilting motion and the swinging motion. , making it possible to perform wide-angle OCT measurements.
  • Some embodiments include an operation unit (240B), and the OCT measurement position is set based on the operation content for the image of the subject's eye using the operation unit.
  • a control method for an ophthalmologic apparatus (1) includes a control step, an image forming step, and an analysis step.
  • the ophthalmologic apparatus (1) includes an optical system (the optical system shown in FIGS. 1, 2, and 5), an angle changing mechanism (swing mechanism 151, tilt mechanism 152), and a fixation system (LCD 39, external fixation unit 23 ) and including.
  • the optical system includes an objective lens (22), an imaging optical system (30), and an OCT optical system (an optical system from the OCT unit 100 to the objective lens 22).
  • the imaging optical system receives light from the subject's eye (E) via the objective lens.
  • the OCT optical system is coupled to the optical path of the imaging optical system, projects the measurement light (LS) that has passed through the optical path onto the subject's eye via the objective lens, and produces interference light between the return light of the measurement light and the reference light (LR). (LC) is detected.
  • the angle changing mechanism changes the direction of the optical axis of the optical system by tilting the optical system.
  • the fixation system projects a fixation light flux toward the subject's eye from a fixation light flux emission position whose relative position to the optical axis can be changed.
  • the control step changes the angle formed by the visual axis of the subject's eye and the optical axis based on the OCT measurement position in the image of the subject's eye, projects the fixation light flux from the emission position corresponding to the OCT measurement position, and is projected, the OCT optical system is controlled to perform OCT measurement for the subject's eye.
  • the image forming step forms an OCT image of the subject's eye based on the detection result of the interference light.
  • the analyzing step identifies the position of the OCT image in the image of the eye to be examined based on the emission position.
  • the orientation of the optical axis of the optical system is changed by the angle changing mechanism, thereby widening the angle of view of the eye to be inspected. of OCT measurements can be performed. As a result, the subject's eye can be more easily photographed or measured at a wide angle without changing the orientation of the subject's face.
  • control step causes the fixation system to project a fixation light flux on each of the two or more OCT measurement positions.
  • the analysis step identifies the position of the OCT image in the image of the subject's eye based on the emission position in the fixation system for each of the two or more OCT measurement positions.
  • the fixation system is an external fixation system (external fixation system) that projects a fixation light flux toward the subject's eye from an exit position having a known positional relationship with respect to the optical axis from outside the objective lens. visual unit).
  • external fixation system external fixation system
  • the direction of the optical axis of the optical system is changed by the angle changing mechanism while controlling the fixation system based on the OCT measurement position in the image of the subject's eye using the external fixation system. , it is possible to perform wide-angle OCT measurement on the subject's eye.
  • the fixation system includes an internal fixation system (LCD 39) and an external fixation system (external fixation unit 23).
  • the internal fixation system includes an internal fixation light source (display pixels on the screen of the LCD 39) whose position relative to the optical axis can be changed, and projects a fixation light beam onto the subject's eye via the objective lens.
  • the external fixation system includes an external fixation light source (fixation light sources 23-1 to 23-4) whose relative position to the optical axis can be changed, and a known positional relationship to the optical axis is established from the outside of the objective lens. A fixation light beam is projected from the position of the external fixation light source provided toward the eye to be examined.
  • the internal fixation system and the external fixation system are used to control the fixation system based on the OCT measurement position in the image of the subject's eye, and the angle changing mechanism adjusts the optical axis of the optical system.
  • the angle changing mechanism adjusts the optical axis of the optical system.
  • the control step when the OCT measurement position is within a predetermined range (central fixation range Fc or internal fixation range Fi) including a position corresponding to the optical axis in the image of the subject's eye, the control step The system projects a fixation light beam onto the subject's eye, and the analysis unit identifies the position of the OCT image in the image of the subject's eye based on the fixation position where the fixation light beam is projected.
  • a predetermined range central fixation range Fc or internal fixation range Fi
  • the control step includes: to project the fixation light flux onto the subject's eye, and the analysis unit specifies the position of the OCT image in the image of the subject's eye based on the fixation position where the fixation light flux is projected.
  • the angle change mechanism changes the direction of the optical axis of the optical system, so that It becomes possible to perform wide-angle OCT measurements.
  • control step causes the internal fixation system or the external fixation system to project a fixation light beam on each of the two or more OCT measurement positions.
  • the analyzing step identifies the position of the OCT image in the image of the subject's eye based on the fixation position onto which the fixation light flux is projected, for each of the two or more OCT measurement positions.
  • the position of the OCT image in the image of the subject's eye is specified for each of two or more OCT measurement positions while switching between the internal fixation system and the external fixation system according to the OCT measurement position. can be done. Thereby, it becomes possible to acquire a composite image of multiple OCT images, such as a montage image.
  • the external fixation system is fixed relative to the optical system.
  • the position of the OCT image in the image of the subject's eye can be simply processed based on the fixation position of the external fixation system.
  • the angle changing mechanism includes a first angle changing mechanism (tilt mechanism 152) that vertically changes the angle formed by the orientation of the optical axis with respect to the horizontal direction, and a tilt mechanism 152 that changes the angle formed by the orientation of the optical axis with respect to the vertical direction. and a second angle changing mechanism (swing mechanism 151) that changes the angle in the horizontal direction.
  • the orientation of the optical axis of the optical system is changed by tilting and swinging motions, thereby achieving a simple configuration. , making it possible to perform wide-angle OCT measurements.
  • the OCT measurement position is set based on the operation content for the image of the subject's eye using the operation unit.
  • a program causes a computer to execute each step of the ophthalmologic apparatus control method described above.
  • the orientation of the optical axis of the optical system is changed by the angle changing mechanism, thereby widening the angle of view of the eye to be inspected. of OCT measurements can be performed. As a result, the subject's eye can be more easily photographed or measured at a wide angle without changing the orientation of the subject's face.
  • the storage unit 212 stores a program that causes a computer to execute the control method of the ophthalmologic apparatus.
  • a program may be stored in any computer-readable recording medium.
  • the recording medium may be electronic media using magnetism, light, magneto-optics, semiconductors, and the like.
  • recording media are magnetic tapes, magnetic disks, optical disks, magneto-optical disks, flash memories, solid state drives, and the like.
  • Ophthalmic Device 2 Fundus Camera Unit 10 Illumination Optical System 22 Objective Lens 23 External Fixation Unit 30 Photographing Optical System 39 LCD 100 OCT unit 151 swing mechanism 152 tilt mechanism 210 control unit 211 main control unit 220 image forming unit 230 data processing unit 231 analysis unit 231C montage imaging processing unit 231D registration processing unit E eye to be examined Ef fundus

Abstract

This ophthalmic device comprises an optical system, an angle change mechanism, a visual fixation system, a control unit, and an analysis unit. The optical system comprises: an objective lens; an imaging optical system that receives light from a subject's eye via the objective lens; and an OCT optical system that is coupled to a light path of the imaging optical system. The angle change mechanism changes the orientation of the optical axis of the optical system by tilting the optical system. The visual fixation system projects a visual fixation light flux toward the subject's eye from an emission position of the visual fixation light flux, the relative position of which can be changed with respect to the optical axis. The control unit changes the angle formed between the visual axis of the subject's eye and the optical axis on the basis of an OCT measurement position in an image of the subject's eye so as to cause the visual fixation light flux to be projected from an emission position corresponding to the OCT measurement position, and causes OCT measurement to be executed on the subject's eye while the visual fixation light flux is kept projected onto said eye. An image formation unit forms an OCT image of the subject's eye. The analysis unit identifies the position of the OCT image in the image of the subject's eye on the basis of the emission position.

Description

眼科装置、眼科装置の制御方法、及びプログラムOPHTHALMOLOGICAL APPARATUS, OPHTHALMOLOGICAL APPARATUS CONTROL METHOD, AND PROGRAM
 この発明は、眼科装置、眼科装置の制御方法、及びプログラムに関する。 The present invention relates to an ophthalmologic apparatus, an ophthalmologic apparatus control method, and a program.
 眼疾患のスクリーニングや治療等を行うための眼科装置には、簡便に広い視野で被検眼の眼底等の観察や撮影が可能なものが求められている。このような眼科装置として、光干渉断層計や走査型レーザー検眼鏡(Scanning Laser Ophthalmoscope:以下、SLO)が知られている。SLOは、光で眼底をスキャンし、その戻り光を受光デバイスで検出することにより眼底の画像を形成する装置である。 Ophthalmic equipment for screening and treatment of eye diseases is required to be able to easily observe and photograph the fundus of the eye to be examined in a wide field of view. Optical coherence tomography and scanning laser ophthalmoscopes (hereinafter referred to as SLOs) are known as such ophthalmologic apparatuses. The SLO is a device that scans the fundus with light and forms an image of the fundus by detecting the returned light with a light receiving device.
 このような広い視野で眼底の観察等を行うための眼科装置が種々提案されている。 Various ophthalmologic devices have been proposed for observing the fundus in such a wide field of view.
 例えば、特許文献1には、対物レンズの周りに固視標を設けた眼科装置において、対物レンズの外周面に、対物レンズからの距離を変化させるように固視標を移動する固視標移動機構を設けた眼底カメラが開示されている。 For example, in Patent Document 1, in an ophthalmologic apparatus in which a fixation target is provided around an objective lens, a fixation target movement method is disclosed in which the fixation target is moved to the outer peripheral surface of the objective lens so as to change the distance from the objective lens. A fundus camera with mechanism is disclosed.
特開2003-079579号公報JP-A-2003-079579
 近年、眼底における注目領域は、視神経乳頭や黄斑を含む眼底中心領域より外側の周辺領域にも及ぶ。従って、眼底の周辺領域をより簡便に撮影又は計測する手法が望まれている。 In recent years, the area of interest in the fundus also extends to the peripheral area outside the central area of the fundus, including the optic disc and macula. Therefore, there is a demand for a method of capturing or measuring the peripheral region of the fundus more simply.
 被検眼をより簡便に広角で撮影又は計測する手法は、眼底だけではなく前眼部についても望まれている。 A more convenient wide-angle imaging or measurement method for the subject's eye is desired not only for the fundus but also for the anterior segment of the eye.
 本発明は、このような事情に鑑みてなされたものであり、その目的の1つは、被検眼をより簡便に広角で撮影又は計測するための新たな技術を提供することにある。 The present invention has been made in view of such circumstances, and one of its purposes is to provide a new technique for taking or measuring an eye to be examined more simply and at a wide angle.
 実施形態に係る第1態様は、対物レンズと、前記対物レンズを介して被検眼からの光を受光する撮影光学系と、前記撮影光学系の光路に結合され、前記光路を経由した測定光を前記対物レンズを介して前記被検眼に投射して前記測定光の戻り光と参照光との干渉光を検出するOCT光学系と、を含む光学系と、前記光学系を傾けることにより前記光学系の光軸の向きを変更する角度変更機構と、前記光軸に対する相対位置を変更可能な固視光束の出射位置から前記被検眼に向けて固視光束を投射する固視系と、前記被検眼の画像におけるOCT計測位置に基づいて前記被検眼の視軸と前記光軸とのなす角を変更して前記OCT計測位置に対応した前記出射位置から前記固視光束を投射させ、前記固視光束が投射されている状態で前記OCT光学系を制御することにより前記被検眼に対するOCT計測を実行させる制御部と、前記干渉光の検出結果に基づいて前記被検眼のOCT画像を形成する画像形成部と、前記出射位置に基づいて、前記被検眼の画像における前記OCT画像の位置を特定する解析部と、を含む、眼科装置である。 A first aspect according to an embodiment includes an objective lens, an imaging optical system that receives light from an eye to be inspected via the objective lens, and an optical path coupled to the imaging optical system to transmit measurement light that has passed through the optical path. an OCT optical system for projecting onto the eye to be inspected via the objective lens and detecting interference light between the return light of the measurement light and the reference light; and the optical system by tilting the optical system. a fixation system for projecting a fixation light flux toward the eye to be examined from an emission position of the fixation light flux whose position relative to the optical axis is changeable; and the eye to be examined changing the angle formed by the visual axis of the eye to be examined and the optical axis based on the OCT measurement position in the image, and projecting the fixation light beam from the emission position corresponding to the OCT measurement position; A control unit that performs OCT measurement for the eye to be inspected by controlling the OCT optical system in a state where is projected, and an image forming unit that forms an OCT image of the eye to be inspected based on the detection result of the interference light. and an analysis unit that identifies the position of the OCT image in the image of the subject's eye based on the emission position.
 実施形態に係る第2態様では、第1態様において、前記制御部は、2以上のOCT計測位置のそれぞれについて前記固視系により前記固視光束を投射させ、前記解析部は、前記2以上のOCT計測位置のそれぞれについて、前記固視系における前記出射位置に基づいて前記被検眼の画像における前記OCT画像の位置を特定する。 In a second aspect according to the embodiment, in the first aspect, the control unit causes the fixation system to project the fixation light flux on each of the two or more OCT measurement positions, and the analysis unit causes the two or more OCT measurement positions to be projected. For each OCT measurement position, the position of the OCT image in the image of the subject's eye is specified based on the exit position in the fixation system.
 実施形態に係る第3態様では、第1態様又は第2態様において、前記固視系は、前記対物レンズの外側から、前記光軸に対して既知の位置関係を有する前記出射位置から前記被検眼に向けて前記固視光束を投射する外部固視系を含む。 In a third aspect according to the embodiment, in the first aspect or the second aspect, the fixation system is configured to extend from the outside of the objective lens to the eye to be examined from the emission position having a known positional relationship with respect to the optical axis. an external fixation system for projecting said fixation beam towards.
 実施形態に係る第4態様では、第1態様において、前記固視系は、前記光軸に対する相対位置を変更可能な内部固視光源を含み、前記対物レンズを介して前記被検眼に前記固視光束を投射する内部固視系と、前記光軸に対する相対位置を変更可能な外部固視光源を含み、前記対物レンズの外側から、前記光軸に対して既知の位置関係を有する前記外部固視光源の位置から前記被検眼に向けて前記固視光束を投射する外部固視系と、を含む。 In a fourth aspect according to the embodiment, in the first aspect, the fixation system includes an internal fixation light source capable of changing a relative position with respect to the optical axis, and directs the fixation to the subject's eye via the objective lens. An internal fixation system for projecting a light beam, and an external fixation light source capable of changing a relative position with respect to the optical axis, wherein the external fixation has a known positional relationship with the optical axis from outside the objective lens. an external fixation system that projects the fixation light beam from the position of the light source toward the eye to be examined.
 実施形態に係る第5態様では、第4態様において、前記被検眼の画像における前記光軸に相当する位置を含む所定範囲に前記OCT計測位置があるとき、前記制御部は、前記内部固視系により前記被検眼に前記固視光束を投射させ、前記解析部は、前記固視光束が投影される固視位置に基づいて、前記被検眼の画像における前記OCT画像の位置を特定し、前記被検眼の画像における前記光軸に相当する位置を含む所定範囲の外側に前記OCT計測位置があるとき、前記制御部は、前記外部固視系により前記被検眼に前記固視光束を投射させ、前記解析部は、前記固視光束が投影される固視位置に基づいて、前記被検眼の画像における前記OCT画像の位置を特定する。 In a fifth aspect according to the embodiment, in the fourth aspect, when the OCT measurement position is within a predetermined range including the position corresponding to the optical axis in the image of the subject's eye, the control unit causes the internal fixation system to project the fixation light beam onto the eye to be examined, and the analysis unit identifies the position of the OCT image in the image of the eye to be examined based on the fixation position where the fixation light beam is projected, and When the OCT measurement position is outside the predetermined range including the position corresponding to the optical axis in the image of the eye to be examined, the control unit causes the external fixation system to project the fixation light flux onto the eye to be examined, The analysis unit specifies the position of the OCT image in the image of the subject's eye based on the fixation position onto which the fixation light flux is projected.
 実施形態に係る第6態様では、第4態様又は第5態様において、前記制御部は、2以上のOCT計測位置のそれぞれについて前記内部固視系又は前記外部固視系により前記固視光束を投射させ、前記解析部は、前記2以上のOCT計測位置のそれぞれについて、前記固視光束が投影される固視位置に基づいて前記被検眼の画像における前記OCT画像の位置を特定する。 In a sixth aspect according to the embodiment, in the fourth aspect or the fifth aspect, the control unit projects the fixation light flux using the internal fixation system or the external fixation system for each of two or more OCT measurement positions. and the analyzing unit identifies the position of the OCT image in the image of the subject's eye based on the fixation position onto which the fixation light flux is projected, for each of the two or more OCT measurement positions.
 実施形態に係る第7態様では、第3態様~第6態様のいずれかにおいて、前記外部固視系は、前記光学系に対して固定されている。 In a seventh aspect according to the embodiment, in any one of the third to sixth aspects, the external fixation system is fixed with respect to the optical system.
 実施形態に係る第8態様では、第1態様~第7態様のいずれかにおいて、前記角度変更機構は、水平方向に対する前記光軸の向きのなす角を上下方向に変更する第1角度変更機構と、垂直方向に対する前記光軸の向きのなす角を左右方向に変更する第2角度変更機構と、を含む。 In an eighth aspect according to the embodiment, in any one of the first aspect to the seventh aspect, the angle changing mechanism is a first angle changing mechanism that vertically changes the angle formed by the orientation of the optical axis with respect to the horizontal direction. and a second angle changing mechanism for changing the angle formed by the orientation of the optical axis with respect to the vertical direction in the horizontal direction.
 実施形態に係る第9態様は、第1態様~第8態様のいずれかにおいて、操作部を含み、前記OCT計測位置は、前記操作部を用いた前記被検眼の画像に対する操作内容に基づいて設定される。 A ninth aspect according to the embodiment is any one of the first to eighth aspects, including an operation unit, and the OCT measurement position is set based on the operation content of the image of the subject's eye using the operation unit. be done.
 実施形態に係る第10態様は、対物レンズと、前記対物レンズを介して被検眼からの光を受光する撮影光学系と、前記撮影光学系の光路に結合され、前記光路を経由した測定光を前記対物レンズを介して前記被検眼に投射して前記測定光の戻り光と参照光との干渉光を検出するOCT光学系と、を含む光学系と、前記光学系を傾けることにより前記光学系の光軸の向きを変更する角度変更機構と、前記光軸に対する相対位置を変更可能な固視光束の出射位置から前記被検眼に向けて固視光束を投射する固視系と、を含む眼科装置の制御方法であって、前記被検眼の画像におけるOCT計測位置に基づいて前記被検眼の視軸と前記光軸とのなす角を変更して前記OCT計測位置に対応した前記出射位置から前記固視光束を投射させ、前記固視光束が投射されている状態で前記OCT光学系を制御することにより前記被検眼に対するOCT計測を実行させる制御ステップと、前記干渉光の検出結果に基づいて前記被検眼のOCT画像を形成する画像形成ステップと、前記出射位置に基づいて、前記被検眼の画像における前記OCT画像の位置を特定する解析ステップと、を含む、眼科装置の制御方法である。 A tenth aspect according to the embodiment is an objective lens, an imaging optical system for receiving light from an eye to be inspected via the objective lens, and an optical path coupled to the imaging optical system for receiving measurement light passing through the optical path. an OCT optical system for projecting onto the eye to be inspected via the objective lens and detecting interference light between the return light of the measurement light and the reference light; and the optical system by tilting the optical system. and a fixation system for projecting a fixation light flux toward the subject's eye from a fixation light flux emission position whose position relative to the optical axis can be changed. A method for controlling an apparatus, wherein the angle formed by the visual axis of the eye to be inspected and the optical axis is changed based on the OCT measurement position in the image of the eye to be inspected, and the a control step of projecting a fixation light beam and controlling the OCT optical system while the fixation light beam is being projected to perform OCT measurement on the eye to be examined; A control method for an ophthalmologic apparatus, comprising: an image forming step of forming an OCT image of an eye to be inspected; and an analysis step of specifying a position of the OCT image in the image of the eye to be inspected based on the emission position.
 実施形態に係る第11態様では、第10態様において、前記制御ステップは、2以上のOCT計測位置のそれぞれについて前記固視系により前記固視光束を投射させ、前記解析ステップは、前記2以上のOCT計測位置のそれぞれについて、前記固視系における前記出射位置に基づいて前記被検眼の画像における前記OCT画像の位置を特定する。 In an eleventh aspect according to the embodiment, in the tenth aspect, the controlling step causes the fixation system to project the fixation light flux on each of the two or more OCT measurement positions, and the analyzing step includes: For each OCT measurement position, the position of the OCT image in the image of the subject's eye is specified based on the exit position in the fixation system.
 実施形態に係る第12態様では、第10態様又は第11態様において、前記固視系は、前記対物レンズの外側から、前記光軸に対して既知の位置関係を有する前記出射位置から前記被検眼に向けて前記固視光束を投射する外部固視系を含む。 In a twelfth aspect according to the embodiment, in the tenth aspect or the eleventh aspect, the fixation system extends from the outside of the objective lens to the eye to be examined from the emission position having a known positional relationship with respect to the optical axis. an external fixation system for projecting said fixation beam towards.
 実施形態に係る第13態様では、第10態様において、前記固視系は、前記光軸に対する相対位置を変更可能な内部固視光源を含み、前記対物レンズを介して前記被検眼に前記固視光束を投射する内部固視系と、前記光軸に対する相対位置を変更可能な外部固視光源を含み、前記対物レンズの外側から、前記光軸に対して既知の位置関係を有する前記外部固視光源の位置から前記被検眼に向けて前記固視光束を投射する外部固視系と、を含む。 In a thirteenth aspect according to the embodiment, in the tenth aspect, the fixation system includes an internal fixation light source whose position relative to the optical axis can be changed, and directs the fixation to the eye to be inspected via the objective lens. An internal fixation system for projecting a light beam, and an external fixation light source capable of changing a relative position with respect to the optical axis, wherein the external fixation has a known positional relationship with the optical axis from outside the objective lens. an external fixation system that projects the fixation light beam from the position of the light source toward the eye to be examined.
 実施形態に係る第14態様では、第13態様において、前記被検眼の画像における前記光軸に相当する位置を含む所定範囲に前記OCT計測位置があるとき、前記制御ステップは、前記内部固視系により前記被検眼に前記固視光束を投射させ、前記解析ステップは、前記固視光束が投影される固視位置に基づいて、前記被検眼の画像における前記OCT画像の位置を特定し、前記被検眼の画像における前記光軸に相当する位置を含む所定範囲の外側に前記OCT計測位置があるとき、前記制御ステップは、前記外部固視系により前記被検眼に前記固視光束を投射させ、前記解析ステップは、前記固視光束が投影される固視位置に基づいて、前記被検眼の画像における前記OCT画像の位置を特定する。 In a fourteenth aspect according to the embodiment, in the thirteenth aspect, when the OCT measurement position is within a predetermined range including the position corresponding to the optical axis in the image of the subject's eye, the control step includes: to project the fixation light beam onto the eye to be examined, and the analyzing step identifies the position of the OCT image in the image of the eye to be examined based on the fixation position to which the fixation light beam is projected, and When the OCT measurement position is outside a predetermined range including the position corresponding to the optical axis in the image of the eye to be examined, the control step causes the external fixation system to project the fixation light beam onto the eye to be examined, The analyzing step identifies the position of the OCT image in the image of the subject's eye based on the fixation position onto which the fixation light flux is projected.
 実施形態に係る第15態様では、第13態様又は第14態様において、前記制御ステップは、2以上のOCT計測位置のそれぞれについて前記内部固視系又は前記外部固視系により前記固視光束を投射させ、前記解析ステップは、前記2以上のOCT計測位置のそれぞれについて、前記固視光束が投影される固視位置に基づいて前記被検眼の画像における前記OCT画像の位置を特定する。 In a fifteenth aspect according to the embodiment, in the thirteenth aspect or the fourteenth aspect, the control step includes projecting the fixation light beam from the internal fixation system or the external fixation system on each of two or more OCT measurement positions. and the analyzing step identifies the position of the OCT image in the image of the subject's eye based on the fixation position onto which the fixation light beam is projected, for each of the two or more OCT measurement positions.
 実施形態に係る第16態様では、第12態様~第15態様のいずれかにおいて、前記外部固視系は、前記光学系に対して固定されている。 In a sixteenth aspect according to the embodiment, in any one of the twelfth to fifteenth aspects, the external fixation system is fixed with respect to the optical system.
 実施形態に係る第17態様では、第10態様~第16態様のいずれかにおいて、前記角度変更機構は、水平方向に対する前記光軸の向きのなす角を上下方向に変更する第1角度変更機構と、垂直方向に対する前記光軸の向きのなす角を左右方向に変更する第2角度変更機構と、を含む。 In a seventeenth aspect according to the embodiment, in any one of the tenth to sixteenth aspects, the angle changing mechanism includes a first angle changing mechanism that vertically changes the angle formed by the orientation of the optical axis with respect to the horizontal direction. and a second angle changing mechanism for changing the angle formed by the orientation of the optical axis with respect to the vertical direction in the horizontal direction.
 実施形態に係る第18態様では、第10態様~第17態様のいずれかにおいて、前記OCT計測位置は、操作部を用いた前記被検眼の画像に対する操作内容に基づいて設定される。 In the 18th aspect according to the embodiment, in any one of the 10th to 17th aspects, the OCT measurement position is set based on the operation content for the image of the subject's eye using the operation unit.
 実施形態に係る第19態様は、コンピュータに、第10態様~第18態様のいずれかの眼科装置の制御方法の各ステップを実行させるプログラムである。 A nineteenth aspect according to the embodiment is a program that causes a computer to execute each step of the ophthalmologic apparatus control method according to any one of the tenth to eighteenth aspects.
 なお、上記した複数の態様に係る構成を任意に組み合わせることが可能である。 It should be noted that it is possible to arbitrarily combine the configurations according to the plurality of aspects described above.
 本発明によれば、被検眼をより簡便に広角で撮影又は計測するための新たな技術を提供することができる。 According to the present invention, it is possible to provide a new technique for more simply taking a wide-angle image or measuring the subject's eye.
実施形態に係る眼科装置の光学系の構成の一例を示す概略図である。It is a schematic diagram showing an example of the configuration of the optical system of the ophthalmologic apparatus according to the embodiment. 実施形態に係る外部固視ユニットの構成の一例を示す概略図である。1 is a schematic diagram showing an example of the configuration of an external fixation unit according to an embodiment; FIG. 実施形態に係る固視光束を説明するための概略図である。FIG. 4 is a schematic diagram for explaining a fixation light flux according to the embodiment; 実施形態に係る固視光束を説明するための概略図である。FIG. 4 is a schematic diagram for explaining a fixation light flux according to the embodiment; 実施形態に係る眼科装置の光学系の構成の一例を示す概略図である。It is a schematic diagram showing an example of the configuration of the optical system of the ophthalmologic apparatus according to the embodiment. 実施形態に係る眼科装置の制御系の構成の一例を示す概略図である。1 is a schematic diagram showing an example of the configuration of a control system of an ophthalmologic apparatus according to an embodiment; FIG. 実施形態に係る眼科装置のスイング動作及びチルト動作を説明するための概略図である。FIG. 4 is a schematic diagram for explaining swing motion and tilt motion of the ophthalmologic apparatus according to the embodiment; 実施形態に係る固視制御を説明するための概略図である。FIG. 4 is a schematic diagram for explaining fixation control according to the embodiment; 実施形態に係る眼科装置の制御を説明するための概略図である。4 is a schematic diagram for explaining control of the ophthalmologic apparatus according to the embodiment; FIG. 実施形態に係る眼科装置の制御を説明するための概略図である。4 is a schematic diagram for explaining control of the ophthalmologic apparatus according to the embodiment; FIG. 実施形態に係る眼科装置の動作を説明するための概略図である。It is a schematic diagram for explaining the operation of the ophthalmologic apparatus according to the embodiment. 実施形態に係る眼科装置のデータ処理部の構成の一例を示す概略図である。1 is a schematic diagram showing an example of the configuration of a data processing unit of an ophthalmologic apparatus according to an embodiment; FIG. 実施形態に係る眼科装置のデータ処理部の構成の一例を示す概略図である。1 is a schematic diagram showing an example of the configuration of a data processing unit of an ophthalmologic apparatus according to an embodiment; FIG. 実施形態に係る眼科装置の動作の一例を表すフローチャートである。4 is a flow chart showing an example of the operation of the ophthalmologic apparatus according to the embodiment; 実施形態に係る眼科装置の動作の一例を表すフローチャートである。4 is a flow chart showing an example of the operation of the ophthalmologic apparatus according to the embodiment; 実施形態に係る眼科装置の動作の一例を表すフローチャートである。4 is a flow chart showing an example of the operation of the ophthalmologic apparatus according to the embodiment; 実施形態に係る眼科装置の動作の一例を表すフローチャートである。4 is a flow chart showing an example of the operation of the ophthalmologic apparatus according to the embodiment;
 この発明に係る眼科装置、眼科装置の制御方法、及びプログラムの実施形態の一例について、図面を参照しながら詳細に説明する。なお、実施形態において、この明細書において引用されている文献に記載された技術を任意に援用することが可能である。 An example of an embodiment of an ophthalmologic apparatus, a control method of the ophthalmologic apparatus, and a program according to the present invention will be described in detail with reference to the drawings. In addition, in the embodiments, it is possible to arbitrarily incorporate the techniques described in the documents cited in this specification.
 実施形態に係る眼科装置は、被検眼の撮影とOCT計測とが可能な光学系と、光学系を傾けることにより光学系の光軸の向きを変更する角度変更機構と、光学系の光軸に対する相対位置を変更可能な固視光束の出射位置(投射位置、固視光源の位置)から被検眼に向けて固視光束を投射する固視系と、を含む。 An ophthalmologic apparatus according to an embodiment includes an optical system capable of imaging an eye to be inspected and OCT measurement, an angle changing mechanism for changing the direction of the optical axis of the optical system by tilting the optical system, and an optical system with respect to the optical axis. a fixation system for projecting a fixation light beam toward the subject's eye from a fixation light beam emission position (projection position, position of the fixation light source) whose relative position is changeable.
 いくつかの実施形態では、角度変更機構は、スイング機構、及びチルト機構の少なくとも1つを含む。スイング機構は、例えば、被検眼の瞳孔を中心に左右方向に円弧状に光学系を旋回する移動機構である。これにより、垂直方向(垂直面)に対する光学系の光軸の向きのなす角を左右方向に変更することができる。チルト機構は、例えば、被検眼の瞳孔を中心に上下方向に円弧状に光学系を旋回する移動機構である。これにより、水平方向(水平面)に対する光学系の光軸の向きのなす角を上下方向に変更することができる。 In some embodiments, the angle changing mechanism includes at least one of a swing mechanism and a tilt mechanism. The swing mechanism is, for example, a movement mechanism that swings the optical system in an arc shape in the horizontal direction around the pupil of the eye to be examined. As a result, the angle formed by the direction of the optical axis of the optical system with respect to the vertical direction (vertical plane) can be changed in the horizontal direction. The tilt mechanism is, for example, a movement mechanism that turns the optical system in an arc shape in the vertical direction around the pupil of the subject's eye. Thereby, the angle formed by the direction of the optical axis of the optical system with respect to the horizontal direction (horizontal plane) can be changed in the vertical direction.
 いくつかの実施形態では、光学系は、固視系を含む。固視系は、内部固視系、及び外部固視系の少なくとも1つを含む。内部固視系は、対物レンズを介して被検眼に固視光束を投射して固視標を提示する。外部固視系は、対物レンズを介さずに被検眼に固視光束を投射して固視標を提示する。 In some embodiments, the optical system includes a fixation system. The fixation system includes at least one of an internal fixation system and an external fixation system. The internal fixation system presents a fixation target by projecting a fixation light beam onto the subject's eye via an objective lens. The external fixation system presents a fixation target by projecting a fixation light beam onto the subject's eye without passing through an objective lens.
 眼科装置は、被検眼の撮影画像(又は観察画像)において設定されたOCT計測位置に基づいて角度変更機構及び固視系の少なくとも一方を制御し、OCT計測位置に対応した固視光束の出射位置から固視光束を投射させ、固視光束が投射されている状態で被検眼に対するOCT計測を実行する。眼科装置は、固視光束の出射位置に基づいて、撮影画像におけるOCT画像の位置を特定する。いくつかの実施形態では、眼科装置は、撮影画像とOCT画像とのレジストレーション処理を行い、レジストレーション処理後の撮影画像及びOCT画像を表示手段に表示させる。 The ophthalmologic apparatus controls at least one of the angle changing mechanism and the fixation system based on the OCT measurement position set in the captured image (or observed image) of the subject's eye, and determines the emission position of the fixation light flux corresponding to the OCT measurement position. A fixation light beam is projected from the eye, and OCT measurement is performed on the subject's eye while the fixation light beam is being projected. The ophthalmologic apparatus identifies the position of the OCT image in the captured image based on the emission position of the fixation light flux. In some embodiments, the ophthalmologic apparatus performs registration processing between the captured image and the OCT image, and causes the display means to display the captured image and the OCT image after the registration processing.
 これにより、簡便に被検眼の広角のOCT画像を取得することが可能になる。特に、固視光束の出射位置からレジストレーション処理の探索範囲を決定するようにしたので、処理負荷を大幅に軽減することができる。 This makes it possible to easily acquire a wide-angle OCT image of the subject's eye. In particular, since the search range for registration processing is determined from the emission position of the fixation light flux, the processing load can be significantly reduced.
 いくつかの実施形態では、眼科装置は、2以上のOCT計測位置のそれぞれについて固視系により固視光束を投射させ、固視光束の出射位置に基づいて撮影画像におけるOCT画像の位置を特定する。 In some embodiments, an ophthalmologic apparatus causes a fixation system to project a fixation light flux on each of two or more OCT measurement positions, and identifies the position of the OCT image in the captured image based on the emission position of the fixation light flux. .
 いくつかの実施形態では、眼科装置は、被検眼の撮影画像(又は観察画像)において設定されたモンタージュ撮影範囲に基づいて2以上のOCT計測位置を決定し、決定された2以上のOCT計測位置のそれぞれについて固視系により固視光束を順次に投射させ、固視光束の出射位置に基づいて撮影画像におけるOCT画像の位置を順次に特定する。いくつかの実施形態では、眼科装置は、位置が特定されたOCT画像と隣接するOCT画像とのオーバーラップ判定処理を行い、その判定結果に基づいて、次のOCT画像を取得させることで、OCTモンタージュ画像を取得する。いくつかの実施形態では、眼科装置は、撮影画像とOCTモンタージュ画像とのレジストレーション処理を行い、レジストレーション処理後の撮影画像及びOCTモンタージュ画像を表示手段に表示させる。 In some embodiments, the ophthalmologic apparatus determines two or more OCT measurement positions based on the montage imaging range set in the captured image (or observation image) of the subject's eye, and determines the determined two or more OCT measurement positions. The fixation system sequentially projects the fixation light beams for each of the above, and sequentially specifies the positions of the OCT images in the captured image based on the emission positions of the fixation light beams. In some embodiments, the ophthalmologic apparatus performs overlap determination processing between an OCT image whose position is specified and an adjacent OCT image, and obtains the next OCT image based on the determination result. Get a montage image. In some embodiments, the ophthalmologic apparatus performs registration processing between the captured image and the OCT montage image, and causes the display means to display the captured image and the OCT montage image after the registration processing.
 実施形態に係る眼科装置の制御方法は、上記の眼装置を制御するための1以上のステップを含む。実施形態に係るプログラムは、実施形態に係る眼科装置の制御方法の各ステップをコンピュータ(プロセッサ)に実行させる。実施形態に係る記録媒体は、実施形態に係るプログラムが記録された非一時的な記録媒体(記憶媒体)である。 A control method for an ophthalmic device according to an embodiment includes one or more steps for controlling the above-described ophthalmic device. A program according to an embodiment causes a computer (processor) to execute each step of a method for controlling an ophthalmologic apparatus according to an embodiment. A recording medium according to the embodiment is a non-temporary recording medium (storage medium) in which the program according to the embodiment is recorded.
 本明細書において、プロセッサは、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路を含む。プロセッサは、例えば、記憶回路又は記憶装置に格納されているプログラムを読み出し実行することで、実施形態に係る機能を実現する。記憶回路又は記憶装置がプロセッサに含まれていてよい。また、記憶回路又は記憶装置がプロセッサの外部に設けられていてよい。 In this specification, a processor is, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), a programmable logic device (for example, a SPLD (Simple Programmable Logic Device CPLD Logic Device), FPGA (Field Programmable Gate Array)), etc. The processor implements the functions according to the embodiment by, for example, reading and executing a program stored in a memory circuit or memory device. A memory circuit or device may be included in the processor. Also, a memory circuit or memory device may be provided external to the processor.
 以下、実施形態に係る眼科装置が、スイング機構及びチルト機構を有する場合について説明するが、実施形態に係る構成はこれに限定されるものではない。例えば、眼科装置は、スイング機構及びチルト機構の一方だけを有していてもよい。 A case where the ophthalmologic apparatus according to the embodiment has a swing mechanism and a tilt mechanism will be described below, but the configuration according to the embodiment is not limited to this. For example, the ophthalmic device may have only one of the swing mechanism and the tilt mechanism.
 以下の実施形態では、眼科装置は、光干渉断層計と眼底カメラとを含む。この光干渉断層計にはスウェプトソースOCTが適用されているが、OCTのタイプはこれに限定されず、他のタイプのOCT(スペクトラルドメインOCT、タイムドメインOCT、アンファスOCT等)が適用されてもよい。 In the following embodiments, the ophthalmic device includes an optical coherence tomography and a fundus camera. Although swept source OCT is applied to this optical coherence tomography, the type of OCT is not limited to this, and other types of OCT (spectral domain OCT, time domain OCT, Amphas OCT, etc.) may be applied. good.
 また、実施形態に係る眼科装置は、走査型レーザー検眼鏡、スリットランプ検眼鏡、手術用顕微鏡等のうちのいずれか1つを含んでもよい。また、実施形態に係る眼科装置は、眼屈折検査装置、眼圧計、スペキュラーマイクロスコープ、ウェーブフロントアナライザ、視野計、マイクロペリメータ等のうちのいずれか1つ以上を含んでもよい。 Also, the ophthalmologic apparatus according to the embodiment may include any one of a scanning laser ophthalmoscope, a slit lamp ophthalmoscope, a surgical microscope, and the like. Also, the ophthalmic device according to the embodiment may include any one or more of an eye refraction tester, a tonometer, a specular microscope, a wavefront analyzer, a perimeter, a microperimeter, and the like.
 以下、x方向は、対物レンズの光軸方向に直交する方向(左右方向、水平方向)であり、y方向は、対物レンズの光軸方向に直交する方向(上下方向、垂直方向)であるものとする。z方向は、対物レンズの光軸方向であるものとする。 Hereinafter, the x direction is the direction perpendicular to the optical axis direction of the objective lens (horizontal direction, horizontal direction), and the y direction is the direction perpendicular to the optical axis direction of the objective lens (vertical direction, vertical direction). and The z-direction is assumed to be the optical axis direction of the objective lens.
<構成>
〔光学系〕
 図1に示すように、眼科装置1は、眼底カメラユニット2、OCTユニット100、演算制御ユニット(図示せず)を含む。眼底カメラユニット2には、被検眼Eの正面画像を取得するための光学系や機構が設けられている。OCTユニット100には、OCTを実行するための光学系や機構の一部が設けられている。OCTを実行するための光学系や機構の他の一部は、眼底カメラユニット2に設けられている。演算制御ユニットは、各種の演算や制御を実行する1以上のプロセッサを含む。これらに加え、被検者の顔を支持するための部材(顎受け、額当て等)や、OCTの対象部位を切り替えるためのレンズユニット(例えば、前眼部OCT用アタッチメント)等の任意の要素やユニットが眼科装置1に設けられてもよい。更に、眼科装置1は、一対の前眼部カメラ5A及び5Bを備える。
<Configuration>
〔Optical system〕
As shown in FIG. 1, the ophthalmologic apparatus 1 includes a fundus camera unit 2, an OCT unit 100, and an arithmetic control unit (not shown). The retinal camera unit 2 is provided with an optical system and a mechanism for acquiring a front image of the eye E to be examined. The OCT unit 100 is provided with a part of an optical system and a mechanism for performing OCT. Another part of the optical system and mechanism for performing OCT is provided in the fundus camera unit 2 . The calculation control unit includes one or more processors that perform various calculations and controls. In addition to these, arbitrary elements such as a member for supporting the subject's face (chin rest, forehead rest, etc.) and a lens unit for switching the target part of OCT (for example, attachment for anterior segment OCT) or unit may be provided in the ophthalmologic apparatus 1 . Furthermore, the ophthalmologic apparatus 1 includes a pair of anterior eye cameras 5A and 5B.
[眼底カメラユニット2]
 眼底カメラユニット2には、被検眼Eの眼底Efを撮影するための光学系が設けられている。取得される眼底Efの画像(眼底画像、眼底写真等と呼ばれる)は、観察画像、撮影画像等の正面画像である。観察画像は、近赤外光を用いた動画撮影により得られる。撮影画像は、フラッシュ光を用いた静止画像である。更に、眼底カメラユニット2は、被検眼Eの前眼部Eaを撮影して正面画像(前眼部画像)を取得することができる。
[Fundus camera unit 2]
The fundus camera unit 2 is provided with an optical system for photographing the fundus Ef of the eye E to be examined. The acquired image of the fundus oculi Ef (referred to as a fundus image, fundus photograph, etc.) is a front image such as an observed image or a photographed image. Observation images are obtained by moving image shooting using near-infrared light. A photographed image is a still image using flash light. Furthermore, the fundus camera unit 2 can photograph the anterior segment Ea of the subject's eye E to acquire a front image (anterior segment image).
 眼底カメラユニット2は、照明光学系10と撮影光学系30とを含む。照明光学系10は被検眼Eに照明光を照射する。撮影光学系30は、被検眼Eからの照明光の戻り光を検出する。OCTユニット100からの測定光は、眼底カメラユニット2内の光路を通じて被検眼Eに導かれ、その戻り光は、同じ光路を通じてOCTユニット100に導かれる。 The retinal camera unit 2 includes an illumination optical system 10 and an imaging optical system 30. The illumination optical system 10 irradiates the eye E to be inspected with illumination light. The imaging optical system 30 detects return light of the illumination light from the eye E to be examined. The measurement light from the OCT unit 100 is guided to the subject's eye E through the optical path in the retinal camera unit 2, and its return light is guided to the OCT unit 100 through the same optical path.
 照明光学系10の観察光源11から出力された光(観察照明光)は、曲面状の反射面を有する反射ミラー12により反射され、集光レンズ13を経由し、可視カットフィルタ14を透過して近赤外光となる。更に、観察照明光は、撮影光源15の近傍にて一旦集束し、ミラー16により反射され、リレーレンズ17、18、絞り19及びリレーレンズ20を経由する。そして、観察照明光は、孔開きミラー21の周辺部(孔部の周囲の領域)にて反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて被検眼E(眼底Ef又は前眼部Ea)を照明する。被検眼Eからの観察照明光の戻り光は、対物レンズ22により屈折され、ダイクロイックミラー46を透過し、孔開きミラー21の中心領域に形成された孔部を通過し、撮影合焦レンズ31を経由し、ミラー32により反射される。更に、この戻り光は、ハーフミラー33Aを透過し、ダイクロイックミラー33により反射され、集光レンズ34によりイメージセンサ35の受光面に結像される。イメージセンサ35は、所定のフレームレートで戻り光を検出する。なお、撮影光学系30のフォーカスは、眼底Ef又は前眼部Eaに合致するように調整される。 Light (observation illumination light) output from an observation light source 11 of an illumination optical system 10 is reflected by a reflecting mirror 12 having a curved reflecting surface, passes through a condenser lens 13, and passes through a visible light cut filter 14. It becomes near-infrared light. Furthermore, the observation illumination light is once converged near the photographing light source 15 , reflected by the mirror 16 , and passed through the relay lenses 17 and 18 , the diaphragm 19 and the relay lens 20 . Then, the observation illumination light is reflected by the periphery of the perforated mirror 21 (area around the perforation), passes through the dichroic mirror 46, is refracted by the objective lens 22, Illuminate part Ea). The return light of the observation illumination light from the subject's eye E is refracted by the objective lens 22, passes through the dichroic mirror 46, passes through the hole formed in the central region of the aperture mirror 21, and passes through the photographing focusing lens 31. through and reflected by mirror 32 . Further, this return light passes through the half mirror 33A, is reflected by the dichroic mirror 33, and is imaged on the light receiving surface of the image sensor 35 by the condenser lens . The image sensor 35 detects returned light at a predetermined frame rate. The focus of the imaging optical system 30 is adjusted so as to match the fundus oculi Ef or the anterior segment Ea.
 撮影光源15から出力された光(撮影照明光)は、観察照明光と同様の経路を通って眼底Efに照射される。被検眼Eからの撮影照明光の戻り光は、観察照明光の戻り光と同じ経路を通ってダイクロイックミラー33まで導かれ、ダイクロイックミラー33を透過し、ミラー36により反射され、集光レンズ37によりイメージセンサ38の受光面に結像される。 The light (imaging illumination light) output from the imaging light source 15 irradiates the fundus oculi Ef through the same path as the observation illumination light. The return light of the imaging illumination light from the subject's eye E is guided to the dichroic mirror 33 through the same path as the return light of the observation illumination light, passes through the dichroic mirror 33 , is reflected by the mirror 36 , is reflected by the condenser lens 37 . An image is formed on the light receiving surface of the image sensor 38 .
 例えば、眼科装置1に設けられる表示部には、イメージセンサ35により検出された眼底反射光に基づく画像(観察画像)が表示される。なお、撮影光学系30のピントが前眼部に合わせられている場合、被検眼Eの前眼部の観察画像が表示される。また、表示部には、イメージセンサ38により検出された眼底反射光に基づく画像(撮影画像)が表示される。なお、観察画像を表示する表示部と撮影画像を表示する表示部は、同一のものであってもよいし、異なるものであってもよい。被検眼Eを赤外光で照明して同様の撮影を行う場合には、赤外の撮影画像が表示される。 For example, the display unit provided in the ophthalmologic apparatus 1 displays an image (observation image) based on the fundus reflected light detected by the image sensor 35 . Note that when the imaging optical system 30 is focused on the anterior segment, an observation image of the anterior segment of the subject's eye E is displayed. Also, an image (captured image) based on the fundus reflected light detected by the image sensor 38 is displayed on the display unit. Note that the display unit that displays the observed image and the display unit that displays the captured image may be the same or different. When the subject's eye E is illuminated with infrared light and photographed in the same manner, an infrared photographed image is displayed.
 眼科装置1は、固視系を含む。固視系は、内部固視系と、外部固視系とを含む。内部固視系の機能は、LCD(Liquid Crystal Display)39により実現される。外部固視系の機能は、外部固視ユニット23により実現される。 The ophthalmic device 1 includes a fixation system. The fixation system includes an internal fixation system and an external fixation system. The function of the internal fixation system is realized by an LCD (Liquid Crystal Display) 39 . The function of the external fixation system is realized by the external fixation unit 23 .
 LCD(Liquid Crystal Display)39は固視標や視力測定用視標を表示する。LCD39から出力された光束は、その一部がハーフミラー33Aにて反射され、ミラー32に反射され、撮影合焦レンズ31を経由し、孔開きミラー21の孔部を通過する。孔開きミラー21の孔部を通過した光束は、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投射される。 An LCD (Liquid Crystal Display) 39 displays a fixation target and a visual acuity measurement target. A part of the light flux output from the LCD 39 is reflected by the half mirror 33 A, reflected by the mirror 32 , passes through the photographing focusing lens 31 , and passes through the aperture of the apertured mirror 21 . The luminous flux that has passed through the aperture of the perforated mirror 21 is transmitted through the dichroic mirror 46, refracted by the objective lens 22, and projected onto the fundus oculi Ef.
 LCD39の画面上の表示画素は、内部固視光源として機能する。LCD39の画面上における固視標の表示位置を変更することにより、被検眼Eの固視位置を変更できる。固視位置の例として、黄斑を中心とする画像を取得するための固視位置や、視神経乳頭を中心とする画像を取得するための固視位置や、黄斑と視神経乳頭との間の眼底中心を中心とする画像を取得するための固視位置や、黄斑から大きく離れた部位(眼底周辺部)の画像を取得するための固視位置などがある。いくつかの実施形態に係る眼科装置1は、このような固視位置の少なくとも1つを指定するためのGUI(Graphical User Interface)等を含む。いくつかの実施形態に係る眼科装置1は、固視位置(固視標の表示位置)をマニュアルで移動するためのGUI等を含む。 The display pixels on the screen of the LCD 39 function as an internal fixation light source. By changing the display position of the fixation target on the screen of the LCD 39, the fixation position of the subject's eye E can be changed. Examples of fixation positions include the fixation position for acquiring an image centered on the macula, the fixation position for acquiring an image centered on the optic disc, and the center of the fundus between the macula and the optic disc. and a fixation position for acquiring an image of a site far away from the macula (eye fundus periphery). The ophthalmologic apparatus 1 according to some embodiments includes a GUI (Graphical User Interface) or the like for designating at least one of such fixation positions. The ophthalmologic apparatus 1 according to some embodiments includes a GUI or the like for manually moving the fixation position (the display position of the fixation target).
 移動可能な固視標を被検眼Eに提示するための構成はLCD等の表示装置には限定されない。例えば、光源アレイ(発光ダイオード(LED)アレイ等)における複数の光源を選択的に点灯させることにより、移動可能な固視標を生成することができる。また、移動可能な1以上の光源により、移動可能な固視標を生成することができる。 The configuration for presenting a movable fixation target to the eye to be examined E is not limited to a display device such as an LCD. For example, a movable fixation target can be generated by selectively lighting multiple light sources in a light source array (such as a light emitting diode (LED) array). Also, one or more movable light sources can generate a movable fixation target.
 外部固視ユニット23は、対物レンズ22の光軸(対物光軸)に対する相対位置が変更可能な出射位置から固視光束を対物レンズ22を介さずに被検眼Eに投射する。対物レンズ22の光軸に対して固視光束の出射位置が変更可能な外部固視ユニット23は、眼底カメラユニット2(LCD39を含む光学系)と一体的に移動可能に構成される。例えば、外部固視ユニット23は、眼底カメラユニット2を構成する光学系を格納する筐体に固設される。 The external fixation unit 23 projects a fixation light flux onto the subject's eye E without passing through the objective lens 22 from an emission position whose position relative to the optical axis of the objective lens 22 (objective optical axis) can be changed. The external fixation unit 23, which can change the emission position of the fixation light flux with respect to the optical axis of the objective lens 22, is configured to be movable integrally with the fundus camera unit 2 (optical system including the LCD 39). For example, the external fixation unit 23 is fixed to a housing that houses the optical system that constitutes the retinal camera unit 2 .
 図2に、外部固視ユニット23の構成例を模式的に示す。図2において、図1と同様の部分には同一符号を付し、適宜説明を省略する。 A configuration example of the external fixation unit 23 is schematically shown in FIG. In FIG. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 外部固視ユニット23は、対物レンズ22の外周部又はその近傍に設置可能な環状部材23Aと、一端が環状部材23Aの外周部に接続され他端が光軸O(対物レンズ22の光軸、対物光軸)から略動径方向に伸びる固視光源保持部材23Bとを含む。固視光源保持部材23Bは、動径方向に配列された複数の固視光源(外部固視光源)を含む。複数の固視光源は、後述の制御部から制御を受け、いずれか1つが点灯、又はすべて非点灯になるように制御される。この実施形態では、複数の固視光源は、固視光源23-1~23-4であるものとする。 The external fixation unit 23 includes an annular member 23A that can be installed on or near the outer circumference of the objective lens 22, and one end connected to the outer circumference of the annular member 23A and the other end connected to the optical axis O (optical axis of the objective lens 22, and a fixation light source holding member 23B extending substantially radially from the objective optical axis. The fixation light source holding member 23B includes a plurality of fixation light sources (external fixation light sources) arranged in the radial direction. The plurality of fixation light sources are controlled by a control unit, which will be described later, so that one of them is turned on or all of them are turned off. In this embodiment, the plurality of fixation light sources are assumed to be fixation light sources 23-1 to 23-4.
 固視光源保持部材23Bは、光軸Oを中心に回動可能に構成される。いくつかの実施形態では、固視光源保持部材23Bが環状部材23Aに対して相対的に回動するように構成される。いくつかの実施形態では、環状部材23Aと固視光源保持部材23Bとが一体的に回動するように構成される。 The fixation light source holding member 23B is configured to be rotatable around the optical axis O. In some embodiments, the fixation light source holding member 23B is configured to rotate relative to the annular member 23A. In some embodiments, the annular member 23A and the fixation light source holding member 23B are configured to rotate integrally.
 いくつかの実施形態では、後述の制御部からの制御を受け、固視光源保持部材23Bが光軸Oを中心に自動で回動する。例えば、制御部は、固視光源保持部材23Bを制御することで、外部固視ユニット23に含まれる回動機構を駆動することができる。 In some embodiments, the fixation light source holding member 23B automatically rotates around the optical axis O under the control of a control unit, which will be described later. For example, the control section can drive the rotation mechanism included in the external fixation unit 23 by controlling the fixation light source holding member 23B.
 いくつかの実施形態では、固視光源保持部材23Bは、手動で光軸Oを中心に回動するように構成される。例えば、外部固視ユニット23は、センサーを含み、手動で回動された固視光源保持部材23Bの動径方向の角度を検出可能に構成される。自動で固視光源保持部材23Bを回動する場合と同様に、外部固視ユニット23は、センサーにより得られた検出結果を参照しつつ、所望の出射位置から固視光束を被検眼Eに投射させるように構成することができる。 In some embodiments, the fixation light source holding member 23B is configured to be manually rotated around the optical axis O. For example, the external fixation unit 23 includes a sensor and is configured to be able to detect the angle in the radial direction of the manually rotated fixation light source holding member 23B. As in the case of automatically rotating the fixation light source holding member 23B, the external fixation unit 23 projects the fixation light flux onto the subject's eye E from a desired emission position while referring to the detection result obtained by the sensor. can be configured to allow
 光軸Oを中心に固視光源保持部材23Bを回動し、固視光源23-1~23-4のいずれかを点灯することで、内部固視であるLCD39よりも広範な範囲の様々な方向から被検眼Eに固視光束を投射することが可能になる。 By rotating the fixation light source holding member 23B around the optical axis O and lighting any one of the fixation light sources 23-1 to 23-4, a variety of images with a wider range than the LCD 39, which is internal fixation, can be displayed. It becomes possible to project a fixation light beam onto the subject's eye E from any direction.
 いくつかの実施形態では、固視光源保持部材23Bは、互いに結合された2以上のアーム部材を含む。固視光源23-1~23-4のそれぞれは、2以上のアーム部材のいずれかに設けられる。アーム部材同士は、結合点において回動可能である。このような折り畳み機構により、固視光源保持部材23Bは収納可能に構成される。 In some embodiments, the fixation light source holding member 23B includes two or more arm members coupled together. Each of the fixation light sources 23-1 to 23-4 is provided on one of two or more arm members. The arm members are rotatable at the coupling point. With such a folding mechanism, the fixation light source holding member 23B is configured to be storable.
 いくつかの実施形態では、固視光源保持部材23Bは、互いに動径方向に摺動可能な2以上のアーム部材を含む。固視光源23-1~23-4のそれぞれは、2以上のアーム部材のいずれかに設けられる。このようなスライド機構により、固視光源保持部材23Bは収納可能に構成される。 In some embodiments, the fixation light source holding member 23B includes two or more arm members that are mutually slidable in the radial direction. Each of the fixation light sources 23-1 to 23-4 is provided on one of two or more arm members. With such a slide mechanism, the fixation light source holding member 23B is configured to be retractable.
 いくつかの実施形態では、外部固視ユニット23は、眼底カメラユニット2から着脱可能に構成される。 In some embodiments, the external fixation unit 23 is configured to be detachable from the retinal camera unit 2.
 図3に、外部固視ユニット23の固視光源23-1~23-4の配置の一例を模式的に示す。図3において、図1及び図2と同様の部分には同一符号を付し、適宜説明を省略する。 3 schematically shows an example of the arrangement of the fixation light sources 23-1 to 23-4 of the external fixation unit 23. FIG. In FIG. 3, the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 LCD39の任意の表示画素からの固視光束は、固視標IFpとして、対物レンズ22を介して被検眼Eに投射される。これに対して、固視光源23-1~23-4のいずれかからの固視光束は、対物レンズ22を介さずに被検眼Eに投射される。このとき、被検眼E(例えば瞳孔)を中心に距離R0になるように固視光源23-1~23-4が配置される。固視光源23-1~23-4のうち被検眼Eに対してz方向の距離が最も短い固視光源(図3では、固視光源23-4)は、被検眼Eからの距離がDwより大きくなるように配置される。距離Dwは、被検眼Eと対物レンズ22のレンズ面との間の作動距離であってよい。 A fixation light flux from an arbitrary display pixel of the LCD 39 is projected onto the subject's eye E via the objective lens 22 as a fixation target IFp. On the other hand, a fixation light beam from any one of the fixation light sources 23-1 to 23-4 is projected onto the subject's eye E without passing through the objective lens 22. FIG. At this time, the fixation light sources 23-1 to 23-4 are arranged at a distance R0 centering on the subject's eye E (for example, the pupil). Among the fixation light sources 23-1 to 23-4, the fixation light source (the fixation light source 23-4 in FIG. 3) having the shortest distance in the z direction from the eye E to be examined has a distance of Dw arranged to be larger. The distance Dw may be the working distance between the subject's eye E and the lens surface of the objective lens 22 .
 これにより、固視光源23-1~23-4のそれぞれに対する被検眼Eの調節状態を揃えることができる。それにより、外部固視による固視位置によって被検眼Eの調節状態の違いにに起因した影響を低減することができる。 Thereby, the adjustment states of the subject's eye E with respect to each of the fixation light sources 23-1 to 23-4 can be made uniform. As a result, it is possible to reduce the influence caused by the difference in the accommodation state of the subject's eye E depending on the fixation position of the external fixation.
 図4に、外部固視ユニット23の固視光源23-1~23-4の配置の他の例を模式的に示す。図4において、図1及び図2と同様の部分には同一符号を付し、適宜説明を省略する。 4 schematically shows another example of the arrangement of the fixation light sources 23-1 to 23-4 of the external fixation unit 23. FIG. In FIG. 4, the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 LCD39の画面上の任意の表示画素からの固視光束は、固視標IFpとして、図3と同様に、対物レンズ22を介して被検眼Eに投射される。これに対して、固視光源23-1~23-4のいずれかからの固視光束は、対物レンズ22を介さずに被検眼Eに投射される。このとき、固視光源23-1~23-4は、対物レンズ22の光軸に垂直な方向に設けられる。固視光源23-1~23-4は、被検眼Eからの距離がDwより大きくなるように配置される。距離Dwは、被検眼Eと対物レンズ22のレンズ面との間の作動距離であってよい。 A fixation luminous flux from an arbitrary display pixel on the screen of the LCD 39 is projected as a fixation target IFp onto the subject's eye E via the objective lens 22, as in FIG. On the other hand, a fixation light beam from any one of the fixation light sources 23-1 to 23-4 is projected onto the subject's eye E without passing through the objective lens 22. FIG. At this time, the fixation light sources 23 - 1 to 23 - 4 are provided in a direction perpendicular to the optical axis of the objective lens 22 . The fixation light sources 23-1 to 23-4 are arranged so that the distance from the subject's eye E is greater than Dw. The distance Dw may be the working distance between the subject's eye E and the lens surface of the objective lens 22 .
 これにより、被検眼Eに対する固視光源23-1~23-4の距離は互いに異なるが、簡便に固視標を被検眼Eに提示することができる。 Thereby, although the distances of the fixation light sources 23-1 to 23-4 with respect to the eye E to be examined are different, the fixation target can be presented to the eye E to be examined easily.
 以上のように、固視光源23-1~23-4のそれぞれは、対物レンズ22の外側から(対物レンズ22を介さずに)、対物レンズ22の光軸に対して既知の位置関係を有する出射位置から被検眼Eに向けて固視光束を投射することができる。 As described above, each of the fixation light sources 23-1 to 23-4 has a known positional relationship with respect to the optical axis of the objective lens 22 from outside the objective lens 22 (not via the objective lens 22). A fixation luminous flux can be projected toward the subject's eye E from the emission position.
 図1に示すように、フォーカス光学系60は、被検眼Eに対するフォーカス調整に用いられるスプリット指標を生成する。フォーカス光学系60は、撮影光学系30の光路(撮影光路)に沿った撮影合焦レンズ31の移動に連動して、照明光学系10の光路(照明光路)に沿って移動される。反射棒67は、照明光路に対して挿脱可能である。フォーカス調整を行う際には、反射棒67の反射面が照明光路に傾斜配置される。LED61から出力されたフォーカス光は、リレーレンズ62を通過し、スプリット指標板63により2つの光束に分離され、二孔絞り64を通過し、ミラー65により反射され、集光レンズ66により反射棒67の反射面に一旦結像されて反射される。更に、フォーカス光は、リレーレンズ20を経由し、孔開きミラー21に反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投射される。フォーカス光の眼底反射光は、観察照明光の戻り光と同じ経路を通ってイメージセンサ35に導かれる。その受光像(スプリット指標像)に基づいてマニュアルフォーカスやオートフォーカスを実行できる。 As shown in FIG. 1, the focus optical system 60 generates a split index used for focus adjustment of the eye E to be examined. The focus optical system 60 is moved along the optical path (illumination optical path) of the illumination optical system 10 in conjunction with the movement of the imaging focusing lens 31 along the optical path (illumination optical path) of the imaging optical system 30 . The reflecting bar 67 can be inserted into and removed from the illumination optical path. When performing focus adjustment, the reflecting surface of the reflecting bar 67 is arranged at an angle in the illumination optical path. Focus light output from the LED 61 passes through a relay lens 62, is split into two light beams by a split index plate 63, passes through a two-hole diaphragm 64, is reflected by a mirror 65, and is reflected by a condenser lens 66 onto a reflecting rod 67. is once imaged on the reflective surface of , and then reflected. Further, the focused light passes through the relay lens 20, is reflected by the perforated mirror 21, passes through the dichroic mirror 46, is refracted by the objective lens 22, and is projected onto the fundus oculi Ef. The fundus reflected light of the focus light is guided to the image sensor 35 through the same path as the return light of the observation illumination light. Manual focus and autofocus can be performed based on the received light image (split index image).
 ダイクロイックミラー46は、眼底撮影用光路とOCT用光路とを合成する。ダイクロイックミラー46は、OCTに用いられる波長帯の光を反射し、眼底撮影用の光を透過させる。OCT用光路(測定光の光路)には、OCTユニット100側からダイクロイックミラー46側に向かって順に、コリメータレンズユニット40、光路長変更部41、光スキャナ42、OCT合焦レンズ43、ミラー44、及びリレーレンズ45が設けられている。 The dichroic mirror 46 synthesizes the fundus imaging optical path and the OCT optical path. The dichroic mirror 46 reflects light in the wavelength band used for OCT and transmits light for fundus imaging. The optical path for OCT (the optical path of the measurement light) includes, in order from the OCT unit 100 side toward the dichroic mirror 46 side, a collimator lens unit 40, an optical path length changing section 41, an optical scanner 42, an OCT focusing lens 43, a mirror 44, and a relay lens 45 are provided.
 光路長変更部41は、図1に示す矢印の方向に移動可能とされ、OCT用光路の長さを変更する。この光路長の変更は、眼軸長に応じた光路長補正や、干渉状態の調整などに利用される。光路長変更部41は、コーナーキューブと、これを移動する機構とを含む。 The optical path length changing unit 41 is movable in the direction of the arrow shown in FIG. 1, and changes the length of the OCT optical path. This change in optical path length is used for optical path length correction according to the axial length of the eye, adjustment of the state of interference, and the like. The optical path length changing section 41 includes a corner cube and a mechanism for moving it.
 光スキャナ42は、被検眼Eの瞳孔と光学的に共役な位置に配置される。光スキャナ42は、OCT用光路を通過する測定光LSを偏向する。光スキャナ42は、例えば、2次元走査が可能なガルバノスキャナである。 The optical scanner 42 is arranged at a position optically conjugate with the pupil of the eye E to be examined. The optical scanner 42 deflects the measurement light LS passing through the OCT optical path. The optical scanner 42 is, for example, a galvanometer scanner capable of two-dimensional scanning.
 OCT合焦レンズ43は、OCT用の光学系のフォーカス調整を行うために、測定光LSの光路に沿って移動される。撮影合焦レンズ31の移動、フォーカス光学系60の移動、及びOCT合焦レンズ43の移動を連係的に制御することができる。 The OCT focusing lens 43 is moved along the optical path of the measurement light LS in order to adjust the focus of the OCT optical system. Movement of the imaging focusing lens 31, movement of the focusing optical system 60, and movement of the OCT focusing lens 43 can be controlled in a coordinated manner.
[前眼部カメラ5A及び5B]
 前眼部カメラ5A及び5Bは、特開2013-248376号公報に開示された発明と同様に、眼科装置1の光学系と被検眼Eとの間の相対位置を求めるために用いられる。前眼部カメラ5A及び5Bは、光学系が格納された筐体(眼底カメラユニット2等)の被検眼E側の面に設けられている。眼科装置1は、前眼部カメラ5A及び5Bにより異なる方向から実質的に同時に取得された2つの前眼部画像を解析することにより、光学系と被検眼Eとの間の3次元的な相対位置を求める。2つの前眼部画像の解析は、特開2013-248376号公報に開示された解析と同様であってよい。また、前眼部カメラの個数は2以上の任意の個数であってよい。
[ Anterior segment cameras 5A and 5B]
The anterior eye cameras 5A and 5B are used to determine the relative position between the optical system of the ophthalmologic apparatus 1 and the subject's eye E, similar to the invention disclosed in Japanese Patent Laid-Open No. 2013-248376. The anterior eye cameras 5A and 5B are provided on the face of the subject's eye E side of a housing (fundus camera unit 2, etc.) housing an optical system. The ophthalmologic apparatus 1 analyzes two anterior segment images obtained substantially simultaneously from different directions by the anterior segment cameras 5A and 5B, thereby determining the three-dimensional relative relationship between the optical system and the subject's eye E. find the position. The analysis of the two anterior segment images may be similar to the analysis disclosed in Japanese Patent Application Laid-Open No. 2013-248376. Also, the number of anterior segment cameras may be any number of two or more.
 本例では、2以上の前眼部カメラを利用して被検眼Eの位置(つまり被検眼Eと光学系との相対位置)を求めているが、被検眼Eの位置を求めるための手法はこれに限定されない。例えば、被検眼Eの正面画像(例えば前眼部Eaの観察画像)を解析することにより、被検眼Eの位置を求めることができる。或いは、被検眼Eの角膜に指標を投影する手段を設け、この指標の投影位置(つまり、この指標の角膜反射光束の検出状態)に基づいて被検眼Eの位置を求めることができる。 In this example, the position of the eye to be examined E (that is, the relative position between the eye to be examined E and the optical system) is obtained using two or more anterior eye cameras. It is not limited to this. For example, the position of the eye E to be examined can be obtained by analyzing a front image of the eye E to be examined (for example, an observed image of the anterior segment Ea). Alternatively, means for projecting an index onto the cornea of the subject's eye E can be provided, and the position of the subject's eye E can be obtained based on the projection position of this index (that is, the detection state of the corneal reflected light flux of this index).
[OCTユニット100]
 図5に例示するように、OCTユニット100には、スウェプトソースOCTを実行するための光学系が設けられている。この光学系は、干渉光学系を含む。この干渉光学系は、波長可変光源(波長掃引型光源)からの光を測定光と参照光とに分割する機能と、被検眼Eからの測定光の戻り光と参照光路を経由した参照光とを重ね合わせて干渉光を生成する機能と、この干渉光を検出する機能とを備える。干渉光学系により得られた干渉光の検出結果(検出信号)は、干渉光のスペクトルを示す信号であり、演算制御ユニット(制御部210、画像形成部220、データ処理部230)に送られる。
[OCT unit 100]
As illustrated in FIG. 5, the OCT unit 100 is provided with an optical system for performing swept-source OCT. This optical system includes an interference optical system. This interference optical system has a function of dividing light from a wavelength tunable light source (wavelength swept light source) into measurement light and reference light, return light of the measurement light from the subject's eye E, and reference light passing through the reference light path. and a function of generating interference light and a function of detecting this interference light. A detection result (detection signal) of the interference light obtained by the interference optical system is a signal indicating the spectrum of the interference light, and is sent to the arithmetic control unit (control section 210, image forming section 220, data processing section 230).
 光源ユニット101は、例えば、出射光の波長を高速で変化させる近赤外波長可変レーザーを含む。光源ユニット101から出力された光L0は、光ファイバ102により偏波コントローラ103に導かれてその偏光状態が調整される。偏光状態が調整された光L0は、光ファイバ104によりファイバカプラ105に導かれて測定光LSと参照光LRとに分割される。 The light source unit 101 includes, for example, a near-infrared tunable laser that changes the wavelength of emitted light at high speed. The light L0 output from the light source unit 101 is guided to the polarization controller 103 by the optical fiber 102, and the polarization state is adjusted. The light L0 whose polarization state has been adjusted is guided by the optical fiber 104 to the fiber coupler 105 and split into the measurement light LS and the reference light LR.
 参照光LRは、光ファイバ110によりコリメータ111に導かれて平行光束に変換され、光路長補正部材112及び分散補償部材113を経由し、コーナーキューブ114に導かれる。光路長補正部材112は、参照光LRの光路長と測定光LSの光路長とを合わせるよう作用する。分散補償部材113は、参照光LRと測定光LSとの間の分散特性を合わせるよう作用する。コーナーキューブ114は、参照光LRの入射方向に移動可能であり、それにより参照光LRの光路長が変更される。 The reference light LR is guided to the collimator 111 by the optical fiber 110, converted into a parallel beam, passed through the optical path length correction member 112 and the dispersion compensation member 113, and guided to the corner cube 114. The optical path length correction member 112 acts to match the optical path length of the reference light LR and the optical path length of the measurement light LS. The dispersion compensation member 113 acts to match the dispersion characteristics between the reference light LR and the measurement light LS. The corner cube 114 is movable in the incident direction of the reference light LR, thereby changing the optical path length of the reference light LR.
 コーナーキューブ114を経由した参照光LRは、分散補償部材113及び光路長補正部材112を経由し、コリメータ116によって平行光束から集束光束に変換され、光ファイバ117に入射する。光ファイバ117に入射した参照光LRは、偏波コントローラ118に導かれてその偏光状態が調整され、光ファイバ119によりアッテネータ120に導かれて光量が調整され、光ファイバ121によりファイバカプラ122に導かれる。 The reference light LR that has passed through the corner cube 114 passes through the dispersion compensating member 113 and the optical path length correcting member 112 , is converted by the collimator 116 from a parallel beam into a converged beam, and enters the optical fiber 117 . The reference light LR incident on the optical fiber 117 is guided to the polarization controller 118 to have its polarization state adjusted, guided to the attenuator 120 via the optical fiber 119 to have its light amount adjusted, and guided to the fiber coupler 122 via the optical fiber 121 . be killed.
 一方、ファイバカプラ105により生成された測定光LSは、光ファイバ127により導かれてコリメータレンズユニット40により平行光束に変換され、光路長変更部41、光スキャナ42、OCT合焦レンズ43、ミラー44及びリレーレンズ45を経由する。リレーレンズ45を経由した測定光LSは、ダイクロイックミラー46により反射され、対物レンズ22により屈折されて被検眼Eに入射する。測定光LSは、被検眼Eの様々な深さ位置において散乱・反射される。被検眼Eからの測定光LSの戻り光は、往路と同じ経路を逆向きに進行してファイバカプラ105に導かれ、光ファイバ128を経由してファイバカプラ122に到達する。なお、測定光LSが入射する光ファイバ127の入射短は、被検眼Eの眼底Efと略共役な位置に配置される。 On the other hand, the measurement light LS generated by the fiber coupler 105 is guided by the optical fiber 127 and converted into a parallel light beam by the collimator lens unit 40, and the optical path length changing unit 41, the optical scanner 42, the OCT focusing lens 43, and the mirror 44. and relay lens 45 . The measurement light LS that has passed through the relay lens 45 is reflected by the dichroic mirror 46, refracted by the objective lens 22, and enters the eye E to be examined. The measurement light LS is scattered and reflected at various depth positions of the eye E to be examined. The return light of the measurement light LS from the subject's eye E travels in the opposite direction along the same path as the forward path, is guided to the fiber coupler 105 , and reaches the fiber coupler 122 via the optical fiber 128 . It should be noted that the incident length of the optical fiber 127 into which the measurement light LS is incident is arranged at a position substantially conjugate with the fundus oculi Ef of the eye E to be examined.
 ファイバカプラ122は、光ファイバ128を介して入射された測定光LSと、光ファイバ121を介して入射された参照光LRとを合成して(干渉させて)干渉光を生成する。ファイバカプラ122は、所定の分岐比(例えば1:1)で干渉光を分岐することにより、一対の干渉光LCを生成する。一対の干渉光LCは、それぞれ光ファイバ123及び124を通じて検出器125に導かれる。 The fiber coupler 122 combines (interferences) the measurement light LS that has entered via the optical fiber 128 and the reference light LR that has entered via the optical fiber 121 to generate interference light. The fiber coupler 122 generates a pair of interference lights LC by splitting the interference lights at a predetermined splitting ratio (for example, 1:1). A pair of interference lights LC are guided to detector 125 through optical fibers 123 and 124, respectively.
 検出器125は、例えばバランスドフォトダイオードである。バランスドフォトダイオードは、一対の干渉光LCをそれぞれ検出する一対のフォトディテクタを含み、これらフォトディテクタにより得られた一対の検出結果の差分を出力する。検出器125は、この出力(検出信号)をDAQ(Data Acquisition System)130に送る。 The detector 125 is, for example, a balanced photodiode. A balanced photodiode includes a pair of photodetectors that respectively detect a pair of interference lights LC, and outputs a difference between a pair of detection results obtained by these photodetectors. The detector 125 sends this output (detection signal) to a DAQ (Data Acquisition System) 130 .
 DAQ130には、光源ユニット101からクロックKCが供給される。クロックKCは、光源ユニット101において、波長可変光源により所定の波長範囲内で掃引される各波長の出力タイミングに同期して生成される。光源ユニット101は、例えば、各出力波長の光L0を分岐することにより得られた2つの分岐光の一方を光学的に遅延させた後、これらの合成光を検出した結果に基づいてクロックKCを生成する。DAQ130は、検出器125から入力される検出信号をクロックKCに基づきサンプリングする。DAQ130は、検出器125からの検出信号のサンプリング結果を演算制御ユニット(制御部210など)に送る。 A clock KC is supplied from the light source unit 101 to the DAQ 130 . The clock KC is generated in the light source unit 101 in synchronization with the output timing of each wavelength swept within a predetermined wavelength range by the wavelength tunable light source. The light source unit 101, for example, optically delays one of the two branched lights obtained by branching the light L0 of each output wavelength, and then outputs the clock KC based on the result of detecting these combined lights. Generate. The DAQ 130 samples the detection signal input from the detector 125 based on the clock KC. The DAQ 130 sends the sampling result of the detection signal from the detector 125 to the arithmetic control unit (control section 210, etc.).
 本例では、測定光LSの光路(測定光路、測定アーム)の長さを変更するための光路長変更部41と、参照光LRの光路(参照光路、参照アーム)の長さを変更するためのコーナーキューブ114の双方が設けられている。しかしながら、光路長変更部41とコーナーキューブ114のいずれか一方のみが設けられもよい。また、これら以外の光学部材を用いて、測定光路長と参照光路長との差を変更することも可能である。 In this example, an optical path length changing unit 41 for changing the length of the optical path (measurement optical path, measurement arm) of the measurement light LS and an optical path length changing unit 41 for changing the length of the optical path (reference optical path, reference arm) of the reference light LR corner cubes 114 are provided. However, only one of the optical path length changing portion 41 and the corner cube 114 may be provided. It is also possible to change the difference between the measurement optical path length and the reference optical path length by using optical members other than these.
〔制御系〕
 図6に、眼科装置1の制御系の構成例を示す。図6において、眼科装置1に含まれる構成要素の一部が省略されている。図6において、図1~図5と同様の部分には同一符号を付し、適宜説明を省略する。
[Control system]
FIG. 6 shows a configuration example of the control system of the ophthalmologic apparatus 1. As shown in FIG. In FIG. 6, some of the components included in the ophthalmologic apparatus 1 are omitted. In FIG. 6, the same parts as in FIGS. 1 to 5 are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
 制御部210、画像形成部220及びデータ処理部230は、例えば、前述の演算制御ユニットに設けられる。 The control unit 210, the image forming unit 220, and the data processing unit 230 are provided, for example, in the arithmetic control unit described above.
〈制御部210〉
 制御部210は、各種の制御を実行する。制御部210は、主制御部211と記憶部212とを含む。
<Control unit 210>
The control unit 210 executes various controls. Control unit 210 includes main control unit 211 and storage unit 212 .
〈主制御部211〉
 主制御部211は、プロセッサ(例えば、制御プロセッサ)を含み、眼科装置1の各部(図1~図5に示された各要素を含む)を制御する。例えば、主制御部211は、図1~図5に示す眼底カメラユニット2の光学系の各部、OCTユニット100の光学系の各部、前眼部カメラ5A、5B、xyz移動機構150、スイング機構151、チルト機構152、画像形成部220、データ処理部230、及びユーザーインターフェイス(User Interface:UI)240を制御する。
<Main control unit 211>
The main controller 211 includes a processor (eg, control processor) and controls each part of the ophthalmologic apparatus 1 (including each element shown in FIGS. 1 to 5). For example, the main control unit 211 controls each part of the optical system of the retinal camera unit 2 shown in FIGS. , tilt mechanism 152 , image forming unit 220 , data processing unit 230 , and user interface (UI) 240 .
 眼底カメラユニット2に対する制御には、合焦駆動部31A、43Aに対する制御、イメージセンサ35、38に対する制御、光路長変更部41に対する制御、光スキャナ42に対する制御、及び外部固視ユニット23に対する制御が含まれる。 The control of the retinal camera unit 2 includes control of the focus driving units 31A and 43A, control of the image sensors 35 and 38, control of the optical path length changing unit 41, control of the optical scanner 42, and control of the external fixation unit 23. included.
 合焦駆動部31Aに対する制御には、撮影合焦レンズ31を光軸方向に移動する制御が含まれる。合焦駆動部43Aに対する制御には、OCT合焦レンズ43を光軸方向に移動する制御が含まれる。 The control for the focus drive unit 31A includes control for moving the photographing focus lens 31 in the optical axis direction. The control for the focus drive unit 43A includes control for moving the OCT focus lens 43 in the optical axis direction.
 イメージセンサ35、38に対する制御には、撮像素子に対する受光感度の制御、フレームレート(受光タイミング、露光時間)の制御、受光領域(位置、大きさ、サイズ)の制御、撮像素子に対する受光結果の読み出し制御などがある。 The control of the image sensors 35 and 38 includes control of the light receiving sensitivity of the imaging element, control of the frame rate (light receiving timing, exposure time), control of the light receiving area (position, size, size), and readout of the light receiving result of the imaging element. control, etc.
 LCD39に対する制御には、内部固視による固視位置(固視光束の出射位置、眼底における固視光束の投射位置)の制御が含まれる。例えば、主制御部211は、手動又は自動で設定された固視位置に対応するLCD39の画面上の位置に固視標を表示する。また、主制御部211は、LCD39に表示されている固視標の表示位置を(連続的に又は段階的に)変更することができる。それにより、固視標を移動することができる(つまり、固視位置を変更することができる)。固視標の表示位置や移動態様は、マニュアルで又は自動的に設定される。マニュアルでの設定は、例えばGUIを用いて行われる。自動的な設定は、例えば、データ処理部230により行われる。 Control over the LCD 39 includes control of the fixation position by internal fixation (the exit position of the fixation light beam, the projection position of the fixation light beam on the fundus). For example, the main control unit 211 displays the fixation target at a position on the screen of the LCD 39 corresponding to the fixation position set manually or automatically. Further, the main control unit 211 can change (continuously or stepwise) the display position of the fixation target displayed on the LCD 39 . Thereby, the fixation target can be moved (that is, the fixation position can be changed). The display position and movement mode of the fixation target are set manually or automatically. Manual setting is performed using, for example, a GUI. Automatic setting is performed by the data processing unit 230, for example.
 光路長変更部41に対する制御には、測定光LSの光路長を変更する制御が含まれる。主制御部211は、光路長変更部41のコーナーキューブを駆動する駆動部を制御することで測定光LSの光路に沿って光路長変更部41を移動し、測定光LSの光路長を変更する。 The control over the optical path length changing unit 41 includes control for changing the optical path length of the measurement light LS. The main control unit 211 moves the optical path length changing unit 41 along the optical path of the measuring light LS by controlling the driving unit that drives the corner cubes of the optical path length changing unit 41 to change the optical path length of the measuring light LS. .
 光スキャナ42に対する制御には、スキャンモード、スキャン範囲(スキャン開始位置、スキャン終了位置)、スキャン速度などの制御がある。主制御部211は、光スキャナ42に対する制御を行うことで、計測部位(撮影部位)における所望の領域に対して測定光LSでOCTスキャンを実行することができる。 Control of the optical scanner 42 includes control of scan mode, scan range (scan start position, scan end position), scan speed, and the like. By controlling the optical scanner 42, the main control unit 211 can perform an OCT scan with the measurement light LS on a desired region of the measurement site (imaging site).
 外部固視ユニット23に対する制御には、外部固視による固視位置の制御が含まれる。例えば、主制御部211は、手動又は自動で設定された固視位置に応じて外部固視ユニット23を制御し、光軸Oを中心に固視光源保持部材23Bを回動すると共に、固視光源23-1~23-4のいずれかを点灯させる。それにより、設定された固視位置に応じた出射位置から対物レンズ22を介さずに固視光束を被検眼Eに投射することができる。また、主制御部211は、外部固視ユニット23を制御することで、固視光束の出射位置を(連続的に又は段階的に)変更することができる。それにより、外部固視による固視標を移動することができる(つまり、固視位置を変更することができる)。外部固視による固視標の位置や移動態様は、マニュアルで又は自動的に設定される。マニュアルでの設定は、例えばGUIを用いて行われる。自動的な設定は、例えば、主制御部211又はデータ処理部230により行われる。 Control over the external fixation unit 23 includes control of the fixation position by external fixation. For example, the main control unit 211 controls the external fixation unit 23 according to the fixation position set manually or automatically, rotates the fixation light source holding member 23B around the optical axis O, Any one of the light sources 23-1 to 23-4 is turned on. As a result, the fixation light flux can be projected onto the subject's eye E from the emission position corresponding to the set fixation position without passing through the objective lens 22 . In addition, the main controller 211 can change (continuously or stepwise) the emission position of the fixation light flux by controlling the external fixation unit 23 . As a result, the fixation target for external fixation can be moved (that is, the fixation position can be changed). The position and movement mode of the fixation target for external fixation are set manually or automatically. Manual setting is performed using, for example, a GUI. Automatic setting is performed by the main control unit 211 or the data processing unit 230, for example.
 また、主制御部211は、観察光源11、撮影光源15、フォーカス光学系60などを制御する。 The main control unit 211 also controls the observation light source 11, the photographing light source 15, the focus optical system 60, and the like.
 OCTユニット100に対する制御には、光源ユニット101に対する制御、参照駆動部114Aに対する制御、検出器125に対する制御、DAQ130に対する制御が含まれる。 Control over the OCT unit 100 includes control over the light source unit 101, control over the reference driver 114A, control over the detector 125, and control over the DAQ 130.
 光源ユニット101に対する制御には、光源のオン及びオフの制御、光源から出射される光の光量の制御、波長掃引範囲の制御、波長掃引速度、各波長成分の光の出射タイミングの制御などがある。 The control of the light source unit 101 includes control of turning on and off of the light source, control of the amount of light emitted from the light source, control of the wavelength sweep range, wavelength sweep speed, control of emission timing of light of each wavelength component, and the like. .
 参照駆動部114Aに対する制御には、参照光LRの光路長を変更する制御が含まれる。主制御部211は、参照駆動部114Aを制御することで参照光LRの光路に沿ってコーナーキューブ114を移動し、参照光LRの光路長を変更する。 The control over the reference driver 114A includes control to change the optical path length of the reference light LR. The main control unit 211 moves the corner cube 114 along the optical path of the reference light LR by controlling the reference driving unit 114A to change the optical path length of the reference light LR.
 検出器125に対する制御には、検出素子に対する受光感度の制御、フレームレート(受光タイミング)の制御、受光領域(位置、大きさ、サイズ)の制御、検出素子に対する受光結果の読み出し制御などがある。 The control of the detector 125 includes control of the light receiving sensitivity of the detecting element, control of the frame rate (light receiving timing), control of the light receiving area (position, size, size), control of reading the light receiving result of the detecting element, and the like.
 DAQ130に対する制御には、検出器125により得られた干渉光の検出結果の取り込み制御(取り込みタイミング、サンプリングタイミング)、取り込まれた干渉光の検出結果に対応した干渉信号の読み出し制御などがある。 Control over the DAQ 130 includes fetch control (fetch timing, sampling timing) of the detection result of interference light obtained by the detector 125, readout control of the interference signal corresponding to the detection result of the fetched interference light, and the like.
 前眼部カメラ5A、5Bに対する制御には、各カメラの受光感度の制御、フレームレート(受光タイミング)の制御、前眼部カメラ5A、5Bの同期制御などがある。 The control for the anterior eye cameras 5A and 5B includes control of the light receiving sensitivity of each camera, frame rate (light receiving timing) control, synchronization control of the anterior eye cameras 5A and 5B, and the like.
 xyz移動機構150は、x方向、y方向、及びz方向に眼底カメラユニット2(光学系)をに移動する。典型的な例において、xyz移動機構150は、少なくとも眼底カメラユニット2をx方向(左右方向)に移動するための機構と、y方向(上下方向)に移動するための機構と、z方向(奥行き方向、前後方向)に移動するための機構とを含む。x方向に移動するための機構は、例えば、x方向に移動可能なxステージと、xステージを移動するx移動機構とを含む。y方向に移動するための機構は、例えば、例えば、y方向に移動可能なyステージと、yステージを移動するy移動機構とを含む。z方向に移動するための機構は、例えば、z方向に移動可能なzステージと、zステージを移動するz移動機構とを含む。各移動機構は、アクチュエータとしてのパルスモータを含み、主制御部211からの制御を受けて動作する。 The xyz movement mechanism 150 moves the fundus camera unit 2 (optical system) in the x, y, and z directions. In a typical example, the xyz movement mechanism 150 includes at least a mechanism for moving the retinal camera unit 2 in the x direction (horizontal direction), a mechanism for moving it in the y direction (vertical direction), and a mechanism for moving the fundus camera unit 2 in the z direction (vertical direction). direction, back and forth). The mechanism for moving in the x-direction includes, for example, an x-stage movable in the x-direction and an x-moving mechanism for moving the x-stage. The mechanism for moving in the y-direction includes, for example, a y-stage movable in the y-direction and a y-moving mechanism for moving the y-stage. The mechanism for moving in the z-direction includes, for example, a z-stage movable in the z-direction and a z-moving mechanism for moving the z-stage. Each movement mechanism includes a pulse motor as an actuator and operates under control from the main control unit 211 .
 xyz移動機構150に対する制御は、アライメントやトラッキングにおいて用いられる。トラッキングとは、被検眼Eの眼球運動に合わせて装置光学系を移動させるものである。トラッキングを行う場合には、事前にアライメントとフォーカス調整が実行される。トラッキングは、装置光学系の位置を眼球運動に追従させることにより、アライメントとピントが合った好適な位置関係を維持する機能である。いくつかの実施形態では、参照光の光路長(よって、測定光の光路と参照光の光路との間の光路長差)を変更するためにxyz移動機構150の制御を行うように構成される。 Control over the xyz movement mechanism 150 is used in alignment and tracking. Tracking is to move the apparatus optical system according to the eye movement of the eye E to be examined. Alignment and focus adjustment are performed in advance when tracking is performed. Tracking is a function of maintaining a suitable positional relationship in which alignment and focus are achieved by causing the position of the apparatus optical system to follow the movement of the eyeball. Some embodiments are configured to control the xyz movement mechanism 150 to change the optical path length of the reference beam (and thus the optical path length difference between the optical path of the measurement beam and the optical path of the reference beam). .
 マニュアルアライメントの場合、光学系に対する被検眼Eの変位がキャンセルされるようにユーザーがユーザーインターフェイス240に対して操作することにより光学系と被検眼Eとを相対移動させる。例えば、主制御部211は、ユーザーインターフェイス240に対する操作内容に対応した制御信号をxyz移動機構150に出力することによりxyz移動機構150を制御して被検眼Eに対して光学系を相対移動させる。 In the case of manual alignment, the user relatively moves the optical system and the subject's eye E by operating the user interface 240 so that the displacement of the subject's eye E with respect to the optical system is cancelled. For example, the main control unit 211 controls the xyz moving mechanism 150 to move the optical system relative to the eye E by outputting a control signal corresponding to the operation content of the user interface 240 to the xyz moving mechanism 150 .
 オートアライメントの場合、光学系に対する被検眼Eの変位がキャンセルされるように主制御部211がxyz移動機構150を制御することにより被検眼Eに対して光学系を相対移動させる。具体的には、特開2013-248376号公報に記載のように、一対の前眼部カメラ5A及び5Bと被検眼Eとの位置関係に基づく三角法を利用した演算処理を行い、主制御部211は、光学系に対する被検眼Eの位置関係が所定の位置関係になるようにxyz移動機構150を制御する。いくつかの実施形態では、主制御部211は、光学系の光軸が被検眼Eの軸に略一致し、かつ、被検眼Eに対する光学系の距離が所定の作動距離になるように制御信号をxyz移動機構150に出力することによりxyz移動機構150を制御して被検眼Eに対して光学系を相対移動させる。ここで、作動距離とは、対物レンズ22のワーキングディスタンスとも呼ばれる既定値であり、光学系を用いた測定時(撮影時)における被検眼Eと光学系との間の距離に相当する。 In the case of auto-alignment, the main control unit 211 controls the xyz movement mechanism 150 so that the optical system is relatively moved with respect to the eye E to be examined so that the displacement of the eye E to be examined with respect to the optical system is cancelled. Specifically, as described in JP-A-2013-248376, arithmetic processing using trigonometry based on the positional relationship between the pair of anterior eye cameras 5A and 5B and the subject's eye E is performed, and the main control unit 211 controls the xyz moving mechanism 150 so that the eye to be examined E has a predetermined positional relationship with respect to the optical system. In some embodiments, the main controller 211 outputs a control signal such that the optical axis of the optical system substantially coincides with the axis of the eye E to be examined and the distance of the optical system from the eye E to be examined is a predetermined working distance. to the xyz moving mechanism 150 to control the xyz moving mechanism 150 to move the optical system relative to the eye E to be examined. Here, the working distance is a default value also called a working distance of the objective lens 22, and corresponds to the distance between the subject's eye E and the optical system at the time of measurement (at the time of photographing) using the optical system.
 スイング機構151は、被検眼Eの瞳孔を中心に左右方向に眼底カメラユニット2を旋回する。これにより、被検眼Eの視軸と光学系の光軸とのなす角の水平方向の成分(水平角)を変更することができる。例えば、スイング機構151は、少なくとも眼底カメラユニット2が搭載されxyz移動機構150により移動するステージ上に設けられる。スイング機構151は、アクチュエータとしてのパルスモータを含み、主制御部211からの制御を受けて動作する。 The swing mechanism 151 swings the retinal camera unit 2 in the horizontal direction around the pupil of the eye E to be examined. Thereby, the horizontal component (horizontal angle) of the angle between the visual axis of the subject's eye E and the optical axis of the optical system can be changed. For example, the swing mechanism 151 is provided on a stage on which at least the retinal camera unit 2 is mounted and which is moved by the xyz movement mechanism 150 . The swing mechanism 151 includes a pulse motor as an actuator and operates under the control of the main controller 211 .
 チルト機構152は、被検眼Eの瞳孔を中心に上下方向に眼底カメラユニット2を旋回する。これにより、被検眼Eの視軸と光学系の光軸とのなす角の上下方向の成分(仰俯角)を変更することができる。例えば、チルト機構152は、少なくとも眼底カメラユニット2が搭載されxyz移動機構150により移動するステージ上に設けられる。チルト機構152は、アクチュエータとしてのパルスモータを含み、主制御部211からの制御を受けて動作する。 The tilt mechanism 152 pivots the retinal camera unit 2 vertically around the pupil of the eye E to be examined. This makes it possible to change the vertical component (elevation/depression angle) of the angle between the visual axis of the subject's eye E and the optical axis of the optical system. For example, the tilt mechanism 152 is provided on a stage on which at least the fundus camera unit 2 is mounted and which is moved by the xyz movement mechanism 150 . The tilt mechanism 152 includes a pulse motor as an actuator and operates under the control of the main controller 211 .
 図7に、実施形態に係るスイング機構151、及びチルト機構152による角度変更動作の説明図を示す。図7は、側面から見たときの眼科装置1の外観の概略図を表す。 FIG. 7 shows an explanatory diagram of the angle changing operation by the swing mechanism 151 and the tilt mechanism 152 according to the embodiment. FIG. 7 represents a schematic diagram of the appearance of the ophthalmic apparatus 1 when viewed from the side.
 眼科装置1は、ベース1Aと、ベース1A上で前後左右方向(水平方向)と上下方向とに移動可能に搭載された架台1Bとを含む。架台1Bには、操作部240Bとしてのジョイスティック1Cが設置されている。例えば、架台1Bは、ジョイスティック1Cに対する操作により、ベース1A上において前後左右上下に移動される。なお、ジョイスティック1Cの先端部には、操作部240Bとしての操作ボタンが配置されており、操作ボタンを押下することにより撮影開始を指示することができる。 The ophthalmologic apparatus 1 includes a base 1A and a pedestal 1B mounted on the base 1A so as to be movable in the front, rear, left, and right directions (horizontal direction) and in the vertical direction. A joystick 1C as an operation unit 240B is installed on the base 1B. For example, the gantry 1B is moved forward, backward, left, right, up and down on the base 1A by operating the joystick 1C. Note that an operation button as an operation unit 240B is arranged at the tip of the joystick 1C, and by pressing the operation button, it is possible to instruct the start of shooting.
 ベース1Aには、図示しない顎受部と額当部とが設けられている。顎受部と額当部とは、計測時に後述のヘッド部1D(筐体)に対する被検者(患者)の顔を固定する。 The base 1A is provided with a chin rest and a forehead (not shown). The chin rest and forehead support fix the subject's (patient's) face to a head section 1D (housing) described later during measurement.
 架台1B上には、ヘッド部1Dが設けられている。ヘッド部1Dは、眼底カメラユニット2の光学系、OCTユニット100の光学系、演算制御ユニット(制御部210)を収容し、角度変更機構としてのスイング機構151及びチルト機構152を介して架台1Bに支持されている。ヘッド部1Dは、スイング機構151及びチルト機構152により、架台1B上において上下方向及び左右方向に旋回可能に構成される。 A head part 1D is provided on the base 1B. The head unit 1D accommodates the optical system of the retinal camera unit 2, the optical system of the OCT unit 100, and the arithmetic control unit (control unit 210), and is attached to the pedestal 1B via a swing mechanism 151 and a tilt mechanism 152 as an angle changing mechanism. Supported. The head part 1D is configured to be able to turn vertically and horizontally on the base 1B by means of a swing mechanism 151 and a tilt mechanism 152 .
 例えば、スイング機構151は、基部1Eと、支持アーム1Fと、回動軸部1Gと、水平回動部1Hとを含む。基部1Eは、架台1B上に固定されている。支持アーム1Fは、前後方向にのびる棒状部材である。支持アーム1Fの一端が基部1E上に固定され、他端が被検眼Eの瞳孔Epを通過する鉛直線上に配置される。回動軸部1Gは、支持アーム1Fの他端上に設けられ、上下方向にのびる円柱状部材である。 For example, the swing mechanism 151 includes a base portion 1E, a support arm 1F, a rotation shaft portion 1G, and a horizontal rotation portion 1H. The base 1E is fixed on the base 1B. The support arm 1F is a rod-shaped member extending in the front-rear direction. One end of the support arm 1F is fixed on the base 1E, and the other end is arranged on a vertical line passing through the pupil Ep of the eye E to be examined. The rotating shaft portion 1G is a cylindrical member provided on the other end of the support arm 1F and extending in the vertical direction.
 水平回動部1Hには、軸受穴が形成されている。水平回動部1Hは、軸受穴に回動軸部1Gが挿入されることで、回動軸部1Gの上下方向にのびる回動軸を回動中心として支持アーム1Fに対して回動可能とされる。 A bearing hole is formed in the horizontal rotation portion 1H. By inserting the rotating shaft portion 1G into the bearing hole, the horizontal rotating portion 1H can rotate about the rotating shaft extending in the vertical direction of the rotating shaft portion 1G with respect to the support arm 1F. be done.
 これにより、スイング機構151は、回動軸部1Gの回動軸の水平方向での位置を被検眼Eの瞳孔(例えば、瞳孔中心)Epに合わせることで、瞳孔Epを中心として支持アーム1F及びチルト機構152を左右方向に回動させることができる。 As a result, the swing mechanism 151 aligns the horizontal position of the rotation shaft of the rotation shaft portion 1G with the pupil (for example, the center of the pupil) Ep of the eye E to be examined, so that the support arm 1F and the support arm 1F and the support arm 1F move around the pupil Ep. The tilt mechanism 152 can be rotated in the horizontal direction.
 チルト機構152は、湾曲アーム1Jを含む。 The tilt mechanism 152 includes a curved arm 1J.
 湾曲アーム1Jは、ヘッド部1Dのチルト動作を案内する。湾曲アーム1Jは、例えば、両方の側面からヘッド部1Dを保持する一対の湾曲アームを含み、湾曲に形成されたアームに沿ってヘッド部1Dの移動を案内する。各湾曲アームは、回動軸部1Gの延長線上に設定された左右方向にのびる中心軸線を曲率中心とする円弧状に形成される。各湾曲アームの一端(下端)は水平回動部1Hに固定される。 The curved arm 1J guides the tilting motion of the head section 1D. The curved arm 1J includes, for example, a pair of curved arms that hold the head section 1D from both sides, and guides the movement of the head section 1D along the curved arms. Each curved arm is formed in an arc shape having a central axis line extending in the left-right direction set on an extension line of the rotation shaft portion 1G as a center of curvature. One end (lower end) of each curved arm is fixed to the horizontal rotating portion 1H.
 これにより、チルト機構152は、湾曲アーム1Jの曲率中心の位置を被検眼Eの瞳孔Epに合わせることで、瞳孔Epを中心としてヘッド部1Dを上下方向に回動させることができる。 Thereby, the tilt mechanism 152 can vertically rotate the head part 1D around the pupil Ep by aligning the position of the center of curvature of the curved arm 1J with the pupil Ep of the eye E to be examined.
 いくつかの実施形態では、スイング機構151によるヘッド部1Dの水平角を検出するセンサーが設けられ、主制御部211は、ヘッド部1Dの水平角を取得することができる。いくつかの実施形態では、チルト機構152によるヘッド部1Dの仰俯角を検出するセセンサー設けられ、主制御部211は、ヘッド部1Dの仰俯角を取得することができる。 In some embodiments, a sensor that detects the horizontal angle of the head section 1D by the swing mechanism 151 is provided, and the main control section 211 can acquire the horizontal angle of the head section 1D. In some embodiments, a sensor that detects the elevation/depression angle of the head unit 1D by the tilt mechanism 152 is provided, and the main control unit 211 can acquire the elevation/depression angle of the head unit 1D.
 図6において、主制御部211は、表示制御部として、各種情報を表示部240Aに表示させることが可能である。例えば、主制御部211は、後述の画像形成部220により形成されたOCT画像、後述のデータ処理部230により得られたデータ処理結果を表示部240Aに表示させる。 In FIG. 6, the main control unit 211 can display various information on the display unit 240A as a display control unit. For example, the main control unit 211 causes the display unit 240A to display an OCT image formed by the image forming unit 220, which will be described later, and a data processing result obtained by the data processing unit 230, which will be described later.
〈記憶部212〉
 記憶部212は各種のデータを記憶する。記憶部212の機能は、メモリ又は記憶装置等の記憶デバイスにより実現される。記憶部212に記憶されるデータとしては、例えば、制御情報、眼底画像の画像データ、前眼部画像の画像データ、OCTデータ(OCT画像を含む)、被検眼情報などがある。制御情報の例として、撮影位置テーブル情報、固視制御情報などがある。撮影位置テーブル情報、及び固視制御情報については後述する。被検眼情報は、患者IDや氏名などの被検者に関する情報や、左眼/右眼の識別情報、電子カルテ情報などの被検眼に関する情報を含む。記憶部212には、各種のプロセッサ(制御プロセッサ、画像形成プロセッサ、データ処理プロセッサ)を実行させるためのプログラムが記憶される。
<Storage unit 212>
The storage unit 212 stores various data. The function of the storage unit 212 is implemented by a storage device such as a memory or a storage device. The data stored in the storage unit 212 includes, for example, control information, image data of a fundus image, image data of an anterior segment image, OCT data (including an OCT image), eye information to be examined, and the like. Examples of control information include shooting position table information and fixation control information. The imaging position table information and the fixation control information will be described later. The eye information to be examined includes information about the subject such as patient ID and name, information about the eye to be examined such as left/right eye identification information, and electronic medical record information. The storage unit 212 stores programs for executing various processors (control processor, image forming processor, data processing processor).
 眼底撮影又はOCT計測を行う場合、実施形態に係る主制御部211は、眼底Efにおける光学系の光軸OからのOCT計測位置までの距離に応じて固視制御を実行する。 When fundus photography or OCT measurement is performed, the main control unit 211 according to the embodiment executes fixation control according to the distance from the optical axis O of the optical system to the OCT measurement position in the fundus oculi Ef.
 図8に、実施形態に係る固視制御の説明図を示す。図8は、眼底Efにおける光軸Oに相当する位置からの撮影範囲(撮影光学系30を用いた眼底撮影範囲、OCT撮影範囲)を模式的に表したものである。 FIG. 8 shows an explanatory diagram of fixation control according to the embodiment. FIG. 8 schematically shows an imaging range (a fundus imaging range using the imaging optical system 30, an OCT imaging range) from a position corresponding to the optical axis O in the fundus oculi Ef.
 光軸Oに相当する位置O1を含む中心範囲は、中心固視範囲Fcである。中心固視範囲Fcでは、主制御部211は、例えばLCD39を制御して、光軸中心を固視させるように被検眼Eに内部固視を提示させる。 The central range including the position O1 corresponding to the optical axis O is the central fixation range Fc. In the central fixation range Fc, the main control unit 211 controls, for example, the LCD 39 to present internal fixation to the subject's eye E so as to fixate the center of the optical axis.
 中心固視範囲Fcの外側の周辺範囲は、内部固視範囲Fiである。内部固視範囲Fiでは、主制御部211は、例えばLCD39を制御して、内部固視範囲Fiにおける固視位置を固視させるように被検眼Eに内部固視を提示させる。 The peripheral range outside the central fixation range Fc is the inner fixation range Fi. In the internal fixation range Fi, the main control unit 211 controls, for example, the LCD 39 to present an internal fixation to the subject's eye E so as to fixate the fixation position in the internal fixation range Fi.
 内部固視範囲Fiの外側の周辺範囲は、第1外部固視範囲Fo1である。第1外部固視範囲Fo1では、主制御部211は、例えば外部固視ユニット23を制御して、第1外部固視範囲Fo1における固視位置を固視させるように外部固視光源23-1を点灯して被検眼Eに外部固視を提示させる。 The peripheral range outside the inner fixation range Fi is the first outer fixation range Fo1. In the first external fixation range Fo1, the main controller 211 controls, for example, the external fixation unit 23 to fixate the fixation position in the first external fixation range Fo1. is turned on to present external fixation to the eye E to be examined.
 第1外部固視範囲Fo1の外側の周辺範囲は、第2外部固視範囲Fo2である。第2外部固視範囲Fo2では、主制御部211は、例えば外部固視ユニット23を制御して、第2外部固視範囲Fo2における固視位置を固視させるように外部固視光源23-2を点灯して被検眼Eに外部固視を提示させる。 The peripheral range outside the first external fixation range Fo1 is the second external fixation range Fo2. In the second external fixation range Fo2, the main control unit 211 controls, for example, the external fixation unit 23 to cause the external fixation light source 23-2 to fixate the fixation position in the second external fixation range Fo2. is turned on to present external fixation to the eye E to be examined.
 第2外部固視範囲Fo2の外側の周辺範囲は、第3外部固視範囲Fo3である。第3外部固視範囲Fo3では、主制御部211は、例えば外部固視ユニット23を制御して、第3外部固視範囲Fo3における固視位置を固視させるように外部固視光源23-3を点灯して被検眼Eに外部固視を提示させる。 The peripheral range outside the second outer fixation range Fo2 is the third outer fixation range Fo3. In the third external fixation range Fo3, the main control unit 211 controls, for example, the external fixation unit 23 to cause the external fixation light source 23-3 to fixate the fixation position in the third external fixation range Fo3. is turned on to present external fixation to the eye E to be examined.
 第3外部固視範囲Fo3の外側の周辺範囲は、第4外部固視範囲Fo4である。第4外部固視範囲Fo4では、主制御部211は、例えば外部固視ユニット23を制御して、第4外部固視範囲Fo4における固視位置を固視させるように外部固視光源23-4を点灯して被検眼Eに外部固視を提示させる。 The peripheral range outside the third outer fixation range Fo3 is the fourth outer fixation range Fo4. In the fourth external fixation range Fo4, the main control unit 211 controls, for example, the external fixation unit 23 to fixate the fixation position in the fourth external fixation range Fo4. is turned on to present external fixation to the eye E to be examined.
 例えば、眼底画像に対してOCT計測を設定してOCT画像を取得する場合、眼底画像におけるOCT画像の位置を特定することが望ましい。眼底画像における測定光軸(例えば、対物レンズ22の光軸)に相当する位置を含む中心固視範囲Fc又は内部固視範囲FiにOCT計測位置があるとき、主制御部211は、被検眼Eに内部固視を提示するように固視系を制御する。内部固視が提示された状態で実行されたOCT計測により取得されたOCT画像を眼底画像に対応付ける場合、後述の解析部231は、固視光束が投影される固視位置に基づいて、眼底画像におけるOCT画像の位置(例えば、OCTスキャンエリア)を特定することができる。 For example, when obtaining an OCT image by setting OCT measurement for a fundus image, it is desirable to specify the position of the OCT image in the fundus image. When the OCT measurement position is in the central fixation range Fc or the internal fixation range Fi including the position corresponding to the measurement optical axis (for example, the optical axis of the objective lens 22) in the fundus image, the main controller 211 controls the eye E control the fixation system to present an internal fixation at When the OCT image acquired by the OCT measurement performed in a state in which internal fixation is presented is associated with the fundus image, the analysis unit 231, which will be described later, calculates the fundus image based on the fixation position where the fixation light flux is projected. can identify the location of the OCT image (eg, OCT scan area) in .
 眼底画像における測定光軸に相当する位置を含む所定範囲の外側(例えば、第1外部固視範囲Fo1~第4外部固視範囲Fo4のいずれか)にOCT計測位置があるとき、主制御部211は、被検眼Eに外部固視を提示するように固視系を制御する。外部固視が提示された状態で実行されたOCT計測により取得されたOCT画像を眼底画像に対応付ける場合、解析部231は、固視光束が投影される固視位置に基づいて、眼底画像におけるOCT画像の位置(例えば、OCTスキャンエリア)を特定することができる。 When the OCT measurement position is outside the predetermined range including the position corresponding to the measurement optical axis in the fundus image (for example, any one of the first external fixation range Fo1 to the fourth external fixation range Fo4), the main control unit 211 controls the fixation system to present the eye E to be examined with an external fixation. When the OCT image acquired by the OCT measurement performed in the state where the external fixation is presented is associated with the fundus image, the analysis unit 231 performs OCT on the fundus image based on the fixation position where the fixation light flux is projected. The location of the image (eg, OCT scan area) can be identified.
 実施形態に係る主制御部211は、撮影位置に対応した固視位置があらかじめ関連付けられた撮影位置テーブル情報を参照することにより、眼底Efの広範な範囲を撮影させる。これにより、被検眼Eの向き(視線の向き)を変更することなく、眼底Efの広範な範囲を詳細に観察することが可能になる。 The main control unit 211 according to the embodiment refers to photographing position table information in which fixation positions corresponding to photographing positions are associated in advance, thereby photographing a wide range of the fundus oculi Ef. As a result, a wide range of the fundus oculi Ef can be observed in detail without changing the direction of the subject's eye E (the direction of the line of sight).
 図9に、実施形態に係る撮影位置テーブル情報の概要を示す。 FIG. 9 shows an overview of the shooting position table information according to the embodiment.
 撮影位置テーブル情報は、複数の固視位置情報と、複数の撮影位置情報とを含む。各固視位置情報は、対応する撮影位置情報にあらかじめ関連付けられている。固視位置情報は、例えば、眼底における固視標の投影位置を表す情報である。撮影位置情報は、撮影光学系30を用いた撮影対象である眼底における撮影位置を表す情報である。例えば、撮影位置テーブル情報には、固視位置情報FP-1に対応して撮影位置情報SP-1が関連付けられており、固視位置情報FP-2に対応して撮影位置情報SP-2が関連付けられており、・・・、固視位置情報FP-n(nは2以上の整数)に対応して撮影位置情報SP-nが関連付けられている。 The shooting position table information includes multiple pieces of fixation position information and multiple pieces of shooting position information. Each piece of fixation position information is pre-associated with corresponding imaging position information. The fixation position information is, for example, information representing the projection position of the fixation target on the fundus. The imaging position information is information representing the imaging position on the fundus, which is the imaging target using the imaging optical system 30 . For example, in the photographing position table information, photographing position information SP-1 is associated with fixation position information FP-1, and photographing position information SP-2 is associated with fixation position information FP-2. . . , the photographing position information SP-n is associated with the fixation position information FP-n (n is an integer equal to or greater than 2).
 なお、この実施形態では、撮影光学系30の光軸はOCTユニット100の光軸と略同軸に結合される。それにより、撮影光学系30を用いて撮影される眼底上の撮影位置から、OCTユニット100を用いて計測される眼底上のOCT撮影位置を一意に特定することができる。同様に、OCTユニット100を用いて計測される眼底上のOCT撮影位置から、撮影光学系30を用いて撮影される眼底上の撮影位置を一意に特定することができる。 Note that in this embodiment, the optical axis of the imaging optical system 30 is coupled to the optical axis of the OCT unit 100 substantially coaxially. Thereby, the OCT imaging position on the fundus measured using the OCT unit 100 can be uniquely specified from the imaging position on the fundus imaged using the imaging optical system 30 . Similarly, from the OCT imaging position on the fundus measured using the OCT unit 100, the imaging position on the fundus imaged using the imaging optical system 30 can be uniquely specified.
 いくつかの実施形態では、撮影位置を表す情報は、撮影位置そのものを表す情報である。いくつかの実施形態では、撮影位置を表す情報は、撮影位置を含む撮影エリアを表す情報である。この実施形態では、撮影位置情報は、中心窩を基準として上側(superior)エリア、下側(inferior)エリア、耳側(temporal)エリア、鼻側(nasal)エリアのいずれかを表す情報であるものとする。このような撮影位置テーブル情報は、光学系の構成を考慮してあらかじめ決定されている。 In some embodiments, the information representing the shooting position is information representing the shooting position itself. In some embodiments, the information representing the shooting position is information representing the shooting area including the shooting position. In this embodiment, the imaging position information is information representing any of the superior area, inferior area, temporal area, and nasal area with respect to the fovea. and Such imaging position table information is determined in advance in consideration of the configuration of the optical system.
 主制御部211又はデータ処理部230は、記憶部212に記憶されている撮影位置テーブル情報を参照することにより、固視位置情報から撮影位置情報を特定したり、撮影位置情報から固視位置情報を特定したりすることが可能である。 The main control unit 211 or the data processing unit 230 refers to the photographing position table information stored in the storage unit 212 to identify photographing position information from the fixation position information, or extract fixation position information from the photographing position information. can be specified.
 いくつかの実施形態では、記憶部212には、被検眼の光学情報(例えば、瞳孔サイズ又は眼軸長)に対応した複数の撮影位置テーブル情報が記憶されている。主制御部211又はデータ処理部230は、複数の撮影位置テーブル情報の中から被検眼の光学情報に対応した撮影位置テーブル情報を選択し、選択された撮影位置テーブル情報を参照することができる。 In some embodiments, the storage unit 212 stores a plurality of photographing position table information corresponding to optical information (for example, pupil size or axial length) of the subject's eye. The main control unit 211 or the data processing unit 230 can select the imaging position table information corresponding to the optical information of the subject's eye from among the plurality of imaging position table information, and refer to the selected imaging position table information.
 いくつかの実施形態では、主制御部211は、操作部240Bに対するユーザーの操作内容に対応した操作信号に基づいて、撮影位置テーブル情報の内容を変更することができる。 In some embodiments, the main control unit 211 can change the content of the shooting position table information based on an operation signal corresponding to the user's operation on the operation unit 240B.
 また、実施形態に係る主制御部211は、固視位置に対応した内部固視を制御するための情報及び外部固視を制御するための情報があらかじめ関連付けられた固視制御情報を参照する。それにより、固視位置に応じて、内部固視又は外部固視を被検眼Eに提示させることができる。 Further, the main control unit 211 according to the embodiment refers to fixation control information in which information for controlling internal fixation and information for controlling external fixation corresponding to the fixation position are associated in advance. Thereby, internal fixation or external fixation can be presented to the subject's eye E according to the fixation position.
 図10に、実施形態に係る固視制御情報の概要を示す。 FIG. 10 shows an overview of fixation control information according to the embodiment.
 固視制御情報は、複数の固視位置情報と、複数の内部固視制御情報と、複数の外部固視制御情報とを含む。各固視位置情報は、内部固視制御情報及び外部固視制御情報にあらかじめ関連付けられている。内部固視制御情報は、内部固視を制御するための情報である。内部固視を制御するための情報の例として、LCD39の点灯/非点灯、LCD39の画面の表示画素位置、固視光束の光量、点滅制御のための点灯及び非点灯の切り替えタイミングなどを制御するための情報がある。外部固視制御情報は、外部固視を制御するための情報である。外部固視を制御するための情報の例として、外部光源23-1~23-4のそれぞれの点灯/非点灯、固視光源保持部材23Bの回転角度、外部光源23-1~23-4のそれぞれの光量、外部光源23-1~23-4のそれぞれの点滅制御のための点灯及び非点灯の切り替えタイミングなどを制御するための情報がある。 The fixation control information includes multiple pieces of fixation position information, multiple pieces of internal fixation control information, and multiple pieces of external fixation control information. Each fixation position information is pre-associated with internal fixation control information and external fixation control information. Internal fixation control information is information for controlling internal fixation. Examples of information for controlling internal fixation include lighting/non-lighting of the LCD 39, display pixel positions on the screen of the LCD 39, light intensity of the fixation luminous flux, switching timing of lighting and non-lighting for blink control, and the like. There is information for External fixation control information is information for controlling external fixation. Examples of information for controlling external fixation include lighting/non-lighting of each of the external light sources 23-1 to 23-4, the rotation angle of the fixation light source holding member 23B, and the external light sources 23-1 to 23-4. There is information for controlling the amount of light of each, switching timing between lighting and non-lighting for blinking control of each of the external light sources 23-1 to 23-4, and the like.
 例えば、固視制御情報には、固視位置情報FP-1に対応して内部固視制御情報ifc-1及び外部固視制御情報ofc-1が関連付けられており、固視位置情報FP-2に対応して内部固視制御情報ifc-2及び外部固視制御情報ofc-2が関連付けられており、・・・、固視位置情報FP-nに対応して固視位置情報FP-1に対応して内部固視制御情報ifc-n及び外部固視制御情報ofc-nが関連付けられている。 For example, in the fixation control information, the fixation position information FP-1 is associated with the internal fixation control information ifc-1 and the external fixation control information ofc-1, and the fixation position information FP-2 is associated with the internal fixation control information ifc-1 and external fixation control information ofc-1. are associated with internal fixation control information ifc-2 and external fixation control information ofc-2 corresponding to . . . Correspondingly, internal fixation control information ifc-n and external fixation control information ofc-n are associated.
 主制御部211は、記憶部212に記憶されている固視制御情報を参照することにより、固視位置情報に応じて、LCD39及び外部固視ユニット23のいずれかを制御することが可能である。 By referring to the fixation control information stored in the storage unit 212, the main control unit 211 can control either the LCD 39 or the external fixation unit 23 according to the fixation position information. .
 いくつかの実施形態では、記憶部212には、被検眼の光学情報(例えば、瞳孔サイズ又は眼軸長)に対応した複数の固視制御情報が記憶されている。主制御部211は、複数の固視制御情報の中から被検眼の光学情報又は撮影位置に対応した固視制御情報を選択し、選択された固視制御情報を参照することができる。 In some embodiments, the storage unit 212 stores a plurality of pieces of fixation control information corresponding to optical information (for example, pupil size or axial length) of the subject's eye. The main control unit 211 can select the optical information of the subject's eye or the fixation control information corresponding to the imaging position from among a plurality of pieces of fixation control information, and refer to the selected fixation control information.
 いくつかの実施形態では、主制御部211は、操作部240Bに対するユーザーの操作内容に対応した操作信号に基づいて、固視制御情報の内容を変更することができる。 In some embodiments, the main control unit 211 can change the content of the fixation control information based on the operation signal corresponding to the user's operation content on the operation unit 240B.
 更に、撮影対象である眼底に対してモンタージュ撮影範囲を設定すると、実施形態に係る主制御部211は、モンタージュ撮影範囲を網羅するように設定された2以上のOCT計測位置(撮影範囲)に対して順次にOCT撮影を実行させ、取得されたOCT画像からOCTモンタージュ撮影画像を形成させる。主制御部211は、撮影位置を移動する度に、移動後のOCT計測位置に対応した固視位置に固視標を提示させる。 Furthermore, when the montage imaging range is set for the fundus that is the imaging target, the main control unit 211 according to the embodiment controls two or more OCT measurement positions (imaging range) set so as to cover the montage imaging range. to sequentially perform OCT imaging, and form an OCT montage image from the acquired OCT images. Each time the imaging position is moved, the main control unit 211 presents the fixation target at the fixation position corresponding to the OCT measurement position after the movement.
 いくつかの実施形態では、モンタージュ撮影は、眼底の撮影画像又は観察画像に対してモンタージュ撮影範囲を設定することによりOCTモンタージュ画像が取得される。いくつかの実施形態では、モンタージュ撮影は、眼底のOCT画像に対してモンタージュ撮影範囲を設定することによりカラー又は近赤外のモンタージュ画像が取得される。 In some embodiments, in the montage imaging, an OCT montage image is obtained by setting a montage imaging range for a photographic image or observation image of the fundus. In some embodiments, the montage imaging acquires color or near-infrared montage images by setting a montage imaging range for OCT images of the fundus.
 図11に、実施形態に係るモンタージュ撮影の動作説明図を示す。図11は、撮影光学系30を用いて取得された眼底画像IMGに対してモンタージュ撮影範囲PRを設定した場合のモンタージュ撮影の動作を説明するための概略図を表す。 FIG. 11 shows an operation explanatory diagram of montage shooting according to the embodiment. FIG. 11 is a schematic diagram for explaining the montage photographing operation when the montage photographing range PR is set for the fundus image IMG acquired using the photographing optical system 30 .
 モンタージュ撮影範囲PRは、自動又は手動で設定される。自動でモンタージュ撮影範囲PRを設定する場合、例えば、データ処理部230は、眼底画像IMGを解析して、特徴領域を特定し、特定された特徴領域を含むようにモンタージュ撮影範囲PRを特定する。手動でモンタージュ撮影範囲PRを設定する場合、例えば、操作部240Bに対するユーザーの操作内容に対応した操作信号に基づいてモンタージュ撮影範囲PRが特定される。 The montage shooting range PR is set automatically or manually. When automatically setting the montage shooting range PR, for example, the data processing unit 230 analyzes the fundus image IMG to specify a characteristic region, and specifies the montage shooting range PR so as to include the specified characteristic region. When manually setting the montage shooting range PR, for example, the montage shooting range PR is specified based on an operation signal corresponding to the details of the user's operation on the operation unit 240B.
 モンタージュ撮影範囲PRが設定されると、主制御部211は、データ処理部230を制御し、2以上のOCT撮影位置(OCT計測位置)を特定させる。各OCT撮影位置に対応して、OCT撮影範囲が決まる。図11では、9個のOCT撮影位置に基づいて、9個のOCT撮影範囲PA1~PA9が特定される。 When the montage imaging range PR is set, the main control unit 211 controls the data processing unit 230 to identify two or more OCT imaging positions (OCT measurement positions). An OCT imaging range is determined corresponding to each OCT imaging position. In FIG. 11, nine OCT imaging ranges PA1 to PA9 are specified based on nine OCT imaging positions.
 主制御部211又はデータ処理部230は、特定された2以上のOCT撮影位置に基づいて、撮影順序を決定する。例えば、主制御部211は、水平方向に複数個の撮影位置に対する撮影を行った後に、垂直方向に隣接する撮影位置に対する撮影を行うように撮影順序を決定することができる。 The main control unit 211 or the data processing unit 230 determines the order of imaging based on the specified two or more OCT imaging positions. For example, the main control unit 211 can determine the order of photographing such that, after photographing a plurality of photographing positions in the horizontal direction, photographing positions adjacent in the vertical direction are photographed.
 主制御部211は、OCTユニット100などを制御して、決定された撮影順序で2以上のOCT撮影位置に対して順次にOCT撮影を実行させる。このとき、主制御部211は、OCT撮影位置を移動する度に、移動後のOCT撮影位置に対応した固視位置に固視標を提示させる。OCT撮影位置の移動によって、内部固視から外部固視に切り換えたり、外部固視から内部固視に切り換えたりする。 The main control unit 211 controls the OCT unit 100 and the like to sequentially perform OCT imaging for two or more OCT imaging positions in the determined imaging order. At this time, every time the OCT imaging position is moved, the main control unit 211 presents the fixation target at the fixation position corresponding to the OCT imaging position after movement. By moving the OCT imaging position, internal fixation is switched to external fixation, and external fixation is switched to internal fixation.
 主制御部211は、複数回の撮影により取得されたOCT画像からOCTモンタージュ画像を形成させる。このとき、主制御部211は、OCT画像と眼底画像IMGとのレジストレーション処理を行って、OCTモンタージュ画像を形成させることができる。 The main control unit 211 forms an OCT montage image from the OCT images acquired by multiple times of imaging. At this time, the main control unit 211 can perform registration processing between the OCT image and the fundus image IMG to form an OCT montage image.
〈画像形成部220〉
 図6に示すように、画像形成部220は、プロセッサ(例えば、画像形成プロセッサ)を含み、DAQ130からの出力(検出信号のサンプリング結果)に基づいて、被検眼EのOCT画像(画像データ)を形成する。例えば、画像形成部220は、従来のスウェプトソースOCTと同様に、Aライン毎のサンプリング結果に基づくスペクトル分布に信号処理を施してAライン毎の反射強度プロファイルを形成し、これらAラインプロファイルを画像化してスキャンラインに沿って配列する。上記信号処理には、ノイズ除去(ノイズ低減)、フィルタ処理、FFT(Fast Fourier Transform)などが含まれる。他のタイプのOCTを実行する場合、画像形成部220は、そのタイプに応じた公知の処理を実行する。
<Image forming unit 220>
As shown in FIG. 6, the image forming unit 220 includes a processor (for example, an image forming processor), and generates an OCT image (image data) of the subject's eye E based on the output (detection signal sampling result) from the DAQ 130. Form. For example, the image forming unit 220 performs signal processing on the spectral distribution based on the sampling result for each A line, forms a reflection intensity profile for each A line, and images these A line profiles as in the conventional swept source OCT. and arrange them along the scan lines. The signal processing includes noise removal (noise reduction), filtering, FFT (Fast Fourier Transform), and the like. When performing another type of OCT, the image forming section 220 performs known processing according to that type.
〈データ処理部230〉
 データ処理部230は、プロセッサ(例えば、データ処理プロセッサ)を含み、画像形成部220により形成された画像に対して画像処理や解析処理を施す。主制御部211に含まれるプロセッサ、データ処理部230に含まれるプロセッサ、及び画像形成部220に含まれるプロセッサの少なくとも2つは、単一のプロセッサにより構成されていてもよい。
<Data processing unit 230>
The data processing unit 230 includes a processor (for example, a data processing processor) and performs image processing and analysis processing on the image formed by the image forming unit 220 . At least two of the processor included in the main control unit 211, the processor included in the data processing unit 230, and the processor included in the image forming unit 220 may be configured by a single processor.
 データ処理部230は、断層像の間の画素を補間する補間処理などの公知の画像処理を実行して、眼底Ef又は前眼部Eaの3次元画像の画像データを形成する。なお、3次元画像の画像データとは、3次元座標系により画素の位置が定義された画像データを意味する。3次元画像の画像データとしては、3次元的に配列されたボクセルからなる画像データがある。この画像データは、ボリュームデータ或いはボクセルデータなどと呼ばれる。ボリュームデータに基づく画像を表示させる場合、データ処理部230は、このボリュームデータに対してレンダリング処理(ボリュームレンダリングやMIP(Maximum Intensity Projection:最大値投影)など)を施して、特定の視線方向から見たときの擬似的な3次元画像の画像データを形成する。表示部240A等の表示デバイスには、この擬似的な3次元画像が表示される。 The data processing unit 230 executes known image processing such as interpolation processing for interpolating pixels between tomographic images to form image data of a three-dimensional image of the fundus oculi Ef or the anterior segment Ea. Note that image data of a three-dimensional image means image data in which pixel positions are defined by a three-dimensional coordinate system. Image data of a three-dimensional image includes image data composed of voxels arranged three-dimensionally. This image data is called volume data or voxel data. When displaying an image based on volume data, the data processing unit 230 performs rendering processing (volume rendering, MIP (Maximum Intensity Projection: maximum intensity projection), etc.) on this volume data so that it can be viewed from a specific viewing direction. Image data of a pseudo three-dimensional image is formed. This pseudo three-dimensional image is displayed on a display device such as the display unit 240A.
 また、3次元画像の画像データとして、複数の断層像のスタックデータを形成することも可能である。スタックデータは、複数のスキャンラインに沿って得られた複数の断層像を、スキャンラインの位置関係に基づいて3次元的に配列させることで得られる画像データである。すなわち、スタックデータは、元々個別の2次元座標系により定義されていた複数の断層像を、1つの3次元座標系により表現する(つまり1つの3次元空間に埋め込む)ことにより得られる画像データである。 It is also possible to form stack data of a plurality of tomographic images as image data of a three-dimensional image. Stacked data is image data obtained by three-dimensionally arranging a plurality of tomographic images obtained along a plurality of scan lines based on the positional relationship of the scan lines. That is, stack data is image data obtained by expressing a plurality of tomographic images, which were originally defined by individual two-dimensional coordinate systems, by one three-dimensional coordinate system (that is, embedding them in one three-dimensional space). be.
 いくつかの実施形態では、データ処理部230は、Aスキャン画像をBスキャン方向に配列することによりBスキャン画像を生成する。いくつかの実施形態では、データ処理部230は、取得された3次元データセット(ボリュームデータ、スタックデータ等)に各種のレンダリングを施すことで、任意断面におけるBモード画像(Bスキャン画像)(縦断面像、軸方向断面像)、任意断面におけるCモード画像(Cスキャン画像)(横断面像、水平断面像)、プロジェクション画像、シャドウグラムなどを形成することができる。Bスキャン画像やCスキャン画像のような任意断面の画像は、指定された断面上の画素(ピクセル、ボクセル)を3次元データセットから選択することにより形成される。プロジェクション画像は、3次元データセットを所定方向(z方向、深さ方向、軸方向)に投影することによって形成される。シャドウグラムは、3次元データセットの一部(たとえば特定層に相当する部分データ)を所定方向に投影することによって形成される。積分する層方向の深さ範囲を変更することで、互いに異なる2以上のシャドウグラムを形成することが可能である。Cスキャン画像、プロジェクション画像、シャドウグラムのような、被検眼の正面側を視点とする画像を正面画像(en-face画像)と呼ぶ。 In some embodiments, the data processing unit 230 generates a B-scan image by arranging the A-scan images in the B-scan direction. In some embodiments, the data processing unit 230 performs various renderings on the acquired three-dimensional data set (volume data, stack data, etc.) to obtain a B-mode image (B-scan image) (longitudinal section) in an arbitrary cross section. plane image, axial cross-sectional image), C-mode image (C-scan image) at an arbitrary cross-section (cross-sectional image, horizontal cross-sectional image), projection image, shadowgram, and the like. An arbitrary cross-sectional image, such as a B-scan image or a C-scan image, is formed by selecting pixels (pixels, voxels) on a specified cross-section from a three-dimensional data set. A projection image is formed by projecting a three-dimensional data set in a predetermined direction (z direction, depth direction, axial direction). A shadowgram is formed by projecting a portion of the three-dimensional data set (for example, partial data corresponding to a specific layer) in a predetermined direction. By changing the depth range in the layer direction to be integrated, it is possible to form two or more different shadowgrams. An image such as a C-scan image, a projection image, or a shadowgram whose viewpoint is the front side of the subject's eye is called an en-face image.
 データ処理部230は、OCTにより時系列に収集されたデータ(例えば、Bスキャン画像データ)に基づいて、網膜血管や脈絡膜血管が強調されたBスキャン画像や正面画像(血管強調画像、アンギオグラム)を構築することができる。例えば、被検眼Eの略同一部位を反復的にスキャンすることにより、時系列のOCTデータを収集することができる。 The data processing unit 230 generates B-scan images and front images (blood vessel-enhanced images, angiograms) in which retinal vessels and choroidal vessels are emphasized based on data (for example, B-scan image data) collected in time series by OCT. can be constructed. For example, time-series OCT data can be collected by repeatedly scanning substantially the same portion of the eye E to be examined.
 いくつかの実施形態では、データ処理部230は、略同一部位に対するBスキャンにより得られた時系列のBスキャン画像を比較し、信号強度の変化部分の画素値を変化分に対応した画素値に変換することにより当該変化部分が強調された強調画像を構築する。更に、データ処理部230は、構築された複数の強調画像から所望の部位における所定の厚さ分の情報を抽出してen-face画像として構築することでOCTアンギオグラムを形成する。 In some embodiments, the data processing unit 230 compares time-series B-scan images obtained by B-scans of substantially the same site, and converts the pixel values of the portions where the signal intensity changes to the pixel values corresponding to the changes. An enhanced image in which the changed portion is emphasized is constructed by the conversion. Furthermore, the data processing unit 230 extracts information for a predetermined thickness at a desired site from the constructed multiple enhanced images and constructs an en-face image to form an OCT angiogram.
 データ処理部230は、解析部231と、モンタージュ撮影処理部231Cと、レジストレーション処理部231Dとを含む。 The data processing unit 230 includes an analysis unit 231, a montage shooting processing unit 231C, and a registration processing unit 231D.
〈解析部231〉
 解析部231は、特徴部位特定部231Aと、3次元位置算出部231Bと、モンタージュ撮影処理部231Cと、レジストレーション処理部231Dとを含む。
<analysis unit 231>
The analysis unit 231 includes a characteristic part identification unit 231A, a three-dimensional position calculation unit 231B, a montage imaging processing unit 231C, and a registration processing unit 231D.
 解析部231は、被検眼Eの画像を解析して当該画像に描出された特徴部位を特定することが可能である。例えば、解析部231は、前眼部カメラ5A、5Bの位置と特定された特徴部位の位置とに基づいて被検眼Eの3次元位置を求める。主制御部211は、求められた3次元位置に基づいて被検眼Eに対して光学系を相対移動させることにより、被検眼Eに対する光学系の位置合わせを行う。 The analysis unit 231 can analyze the image of the subject's eye E and identify the characteristic regions depicted in the image. For example, the analysis unit 231 obtains the three-dimensional position of the subject's eye E based on the positions of the anterior eye cameras 5A and 5B and the positions of the specified characteristic regions. The main control unit 211 aligns the optical system with respect to the eye to be examined E by relatively moving the optical system with respect to the eye to be examined E based on the determined three-dimensional position.
〈特徴部位特定部231A〉
 特徴部位特定部231Aは、前眼部カメラ5A及び5Bにより得られた各撮影画像を解析することで、前眼部Eaの特徴部位に相当する当該撮影画像中の位置(特徴位置と呼ぶ)を特定する。特徴部位としては、例えば被検眼Eの瞳孔領域、被検眼Eの瞳孔中心位置、瞳孔重心位置、角膜中心位置、角膜頂点位置、被検眼中心位置、又は虹彩が用いられる。以下、被検眼Eの瞳孔中心位置を特定する処理の具体例を説明する。
<Characteristic part specifying unit 231A>
The characteristic site identification unit 231A analyzes each of the captured images obtained by the anterior segment cameras 5A and 5B to identify positions (referred to as characteristic positions) in the captured images corresponding to the characteristic sites of the anterior segment Ea. Identify. For example, the pupil region of the subject eye E, the pupil center position of the subject eye E, the pupil center position, the corneal center position, the corneal vertex position, the subject eye center position, or the iris are used as the characteristic site. A specific example of processing for specifying the pupil center position of the eye E to be examined will be described below.
 まず、特徴部位特定部231Aは、撮影画像の画素値(輝度値など)の分布に基づいて、被検眼Eの瞳孔に相当する画像領域(瞳孔領域)を特定する。一般に瞳孔は他の部位よりも低い輝度で描画されるので、低輝度の画像領域を探索することによって瞳孔領域を特定することができる。このとき、瞳孔の形状を考慮して瞳孔領域を特定するようにしてもよい。つまり、略円形かつ低輝度の画像領域を探索することによって瞳孔領域を特定するように構成することができる。 First, the characteristic part specifying unit 231A specifies an image region (pupil region) corresponding to the pupil of the subject's eye E based on the distribution of pixel values (such as luminance values) of the captured image. Since the pupil is generally drawn with lower luminance than other parts, the pupil region can be identified by searching for the low-luminance image region. At this time, the pupil region may be specified in consideration of the shape of the pupil. In other words, the pupil region can be identified by searching for a substantially circular low-brightness image region.
 次に、特徴部位特定部231Aは、特定された瞳孔領域の中心位置を特定する。上記のように瞳孔は略円形であるので、瞳孔領域の輪郭を特定し、この輪郭(の近似円または近似楕円)の中心位置を特定し、これを瞳孔中心位置とすることができる。また、瞳孔領域の重心を求め、この重心位置を瞳孔重心位置として特定してもよい。 Next, the characteristic part identifying section 231A identifies the central position of the identified pupil region. Since the pupil is substantially circular as described above, it is possible to specify the outline of the pupil region, specify the center position of this outline (the approximate circle or approximate ellipse), and set this as the pupil center position. Alternatively, the center of gravity of the pupil region may be obtained and the position of the center of gravity may be specified as the position of the center of gravity of the pupil.
 なお、他の特徴部位に対応する特徴位置を特定する場合であっても、上記と同様に撮影画像の画素値の分布に基づいて当該特徴位置を特定することが可能である。 Even when identifying characteristic positions corresponding to other characteristic regions, it is possible to identify the characteristic positions based on the distribution of pixel values of the captured image in the same manner as described above.
 特徴部位特定部231Aは、前眼部カメラ5A及び5Bにより逐次に得られた撮影画像に対し特徴部位に相当する特徴位置を逐次に特定することが可能である。また、特徴部位特定部231Aは、前眼部カメラ5A及び5Bにより逐次に得られた撮影画像に対し1以上の任意の数のフレームおきに特徴位置を特定してもよい。 The characteristic part identifying unit 231A can sequentially identify characteristic positions corresponding to characteristic parts in the captured images sequentially obtained by the anterior eye cameras 5A and 5B. In addition, the characteristic part identification unit 231A may identify the characteristic position every one or more frames of the captured images sequentially obtained by the anterior eye cameras 5A and 5B.
 特徴部位特定部231Aは、蒸気のように特定された特徴部位を、モンタージュ撮影範囲を特定するための特徴領域として特定することが可能である。 The characteristic part identifying unit 231A can identify the characteristic part identified like steam as a characteristic region for identifying the montage shooting range.
〈3次元位置算出部231B〉
 3次元位置算出部231Bは、前眼部カメラ5A及び5Bの位置と、特徴部位特定部231Aにより特定された特徴部位に相当する特徴位置とに基づいて特徴部位の3次元位置を被検眼Eの3次元位置として特定する。3次元位置算出部231Bは、特開2013-248376号公報に開示されているように、2つの前眼部カメラ5A及び5Bの位置(既知である)と、2つの撮影画像において特徴部位に相当する位置とに対して、公知の三角法を適用することにより被検眼Eの3次元位置を算出する。3次元位置算出部231Bにより求められた3次元位置は、主制御部211に送られる。主制御部211は、当該3次元位置に基づいて、光学系の光軸のx方向及びy方向の位置が3次元位置のx方向及びy方向の位置と一致し、かつ、z方向の距離が所定の作動距離になるようにxyz移動機構150を制御する。
<Three-dimensional position calculator 231B>
The three-dimensional position calculation unit 231B calculates the three-dimensional positions of the characteristic regions of the subject's eye E based on the positions of the anterior eye cameras 5A and 5B and the characteristic positions corresponding to the characteristic regions identified by the characteristic region identification unit 231A. Identify as a three-dimensional position. The three-dimensional position calculation unit 231B, as disclosed in JP-A-2013-248376, calculates the positions (known) of the two anterior eye cameras 5A and 5B and corresponding to characteristic regions in the two captured images. The three-dimensional position of the subject's eye E is calculated by applying a known trigonometric method to the position where the eye E is to be examined. The three-dimensional position calculated by the three-dimensional position calculator 231B is sent to the main controller 211. FIG. Based on the three-dimensional position, the main control unit 211 determines that the x- and y-direction positions of the optical axis of the optical system match the x- and y-direction positions of the three-dimensional position, and that the z-direction distance is The xyz moving mechanism 150 is controlled so as to achieve a predetermined working distance.
〈モンタージュ撮影処理部231C〉
 モンタージュ撮影処理部231Cは、自動又は手動で設定されたモンタージュ撮影範囲のサイズとOCT撮影領域(又は撮影光学系30を用いた眼底撮影領域)のサイズとに基づいて、2以上のOCT撮影位置を特定する。モンタージュ撮影処理部231Cは、各OCT画像の周辺領域が、隣接するOCT画像の周辺領域とオーバーラップするように、2以上のOCT撮影位置を特定する。いくつかの実施形態では、OCT撮影領域のサイズは、あらかじめ決められたサイズである。いくつかの実施形態では、モンタージュ撮影範囲を設定するときに特定された特徴領域のサイズに基づいて決められたサイズである。
<Montage shooting processing unit 231C>
The montage imaging processing unit 231C selects two or more OCT imaging positions based on the size of the montage imaging range set automatically or manually and the size of the OCT imaging region (or fundus imaging region using the imaging optical system 30). Identify. The montage imaging processing unit 231C identifies two or more OCT imaging positions such that the peripheral region of each OCT image overlaps the peripheral region of the adjacent OCT image. In some embodiments, the size of the OCT imaging field is a predetermined size. In some embodiments, the size is determined based on the size of the feature region identified when setting the montage capture area.
 モンタージュ撮影処理部231Cの機能は、制御部210(主制御部211)により実現するように構成されてもよい。 The functions of the montage shooting processing unit 231C may be configured to be realized by the control unit 210 (main control unit 211).
〈レジストレーション処理部231D〉
 レジストレーション処理部231Dは、2つの画像に対してレジストレーション処理を実行する。
<Registration processing unit 231D>
The registration processing unit 231D performs registration processing on the two images.
 例えば、レジストレーション処理部231Dは、2つの画像のそれぞれに対して2以上の特徴点を抽出し、抽出された特徴点の位置が一致するように2つの画像の位置合わせを行う。例えば、特徴点は、血管、血管の分岐、病変部である。いくつかの実施形態では、レジストレーション処理部231Dは、アフィン変換、ヘルマート変換、又は自由変形を行う。 For example, the registration processing unit 231D extracts two or more feature points from each of the two images, and aligns the two images so that the positions of the extracted feature points match. For example, feature points are blood vessels, blood vessel bifurcations, and lesions. In some embodiments, registration processor 231D performs an affine transform, a Helmert transform, or a free transform.
 例えば、レジストレーション処理部231Dは、2つの画像のそれぞれに対して1以上の特徴部位を抽出し、抽出された1以上の特徴部位に対し、最小二乗法(Least Squares Matching:LSM)により両画像の濃淡の差の二乗和が最小になるように2つの画像の位置合わせを行う。いくつかの実施形態では、レジストレーション処理部231Dは、アフィン変換、ヘルマート変換、又は自由変形を行う。 For example, the registration processing unit 231D extracts one or more characteristic regions from each of the two images, and performs least squares matching (LSM) on the extracted one or more characteristic regions from both images. The two images are aligned so that the sum of the squares of the grayscale differences between the two images is minimized. In some embodiments, registration processor 231D performs an affine transform, a Helmert transform, or a free transform.
 例えば、レジストレーション処理部231Dは、2つの画像のそれぞれを2以上の部分画像に分割し、部分画像単位で上記の特徴点又は特徴部位に基づく位置合わせを行う。いくつかの実施形態では、レジストレーション処理部231Dは、部分画像ごとにアフィン変換、ヘルマート変換、又は自由変形を行う。 For example, the registration processing unit 231D divides each of the two images into two or more partial images, and aligns the partial images based on the characteristic points or characteristic parts. In some embodiments, the registration processor 231D performs affine transformation, Helmert transformation, or free transformation for each partial image.
 例えば、レジストレーション処理部231Dは、2つの画像の相関度を求め、相関度が閾値以上になるように2つの画像の位置合わせを行う。いくつかの実施形態では、レジストレーション処理部231Dは、アフィン変換、ヘルマート変換、又は自由変形を行う。 For example, the registration processing unit 231D obtains the degree of correlation between the two images, and aligns the two images so that the degree of correlation is greater than or equal to the threshold. In some embodiments, registration processor 231D performs an affine transform, a Helmert transform, or a free transform.
 例えば、レジストレーション処理部231Dは、2つの画像のそれぞれを2以上の部分画像に分割し、2つの画像の相関度を部分画像毎に求め、相関度が閾値以上になる部分画像が最大になるように2つの画像の位置合わせを行う。いくつかの実施形態では、レジストレーション処理部231Dは、アフィン変換、ヘルマート変換、又は自由変形を行う。 For example, the registration processing unit 231D divides each of the two images into two or more partial images, obtains the degree of correlation between the two images for each partial image, and maximizes the partial image whose degree of correlation is greater than or equal to the threshold. The two images are aligned as follows. In some embodiments, registration processor 231D performs an affine transform, a Helmert transform, or a free transform.
 レジストレーション処理部231Dは、2つのOCT画像に対して上記のレジストレーション処理を行う。OCT画像の例として、プロジェクション画像(ライブプロジェクション画像)、シャドウグラム、Cスキャン画像、en-face画像、OCTアンギオグラムなどがある。 The registration processing unit 231D performs the above registration processing on the two OCT images. Examples of OCT images include projection images (live projection images), shadowgrams, C-scan images, en-face images, and OCT angiograms.
 いくつかの実施形態では、レジストレーション処理部231Dは、眼底画像とOCT画像とに対して上記のレジストレーション処理を実行する。眼底画像の例として、イメージセンサ35により得られた眼底の観察画像、イメージセンサ38により得られた眼底の撮影画像、事前に取得された眼底画像がある。観察画像又は撮影画像は、近赤外画像、カラー画像であってよい。 In some embodiments, the registration processing unit 231D performs the above registration processing on the fundus image and the OCT image. Examples of the fundus image include an observation image of the fundus obtained by the image sensor 35, a captured image of the fundus obtained by the image sensor 38, and a previously obtained fundus image. The observed image or captured image may be a near-infrared image or a color image.
 このようなレジストレーション処理部231Dは、スキャンエリア特定部2311Dと、オーバーラップ判定部2312Dとを含む。 Such a registration processing section 231D includes a scan area specifying section 2311D and an overlap determining section 2312D.
〈スキャンエリア特定部2311D〉
 スキャンエリア特定部2311Dは、被検眼Eにおける固視位置から眼底画像上でのOCTスキャンエリア(OCT画像の位置)を特定する。
<Scan area specifying unit 2311D>
The scan area specifying unit 2311D specifies an OCT scan area (OCT image position) on the fundus image from the fixation position of the eye E to be examined.
 具体的には、スキャンエリア特定部2311Dは、図9に示す撮影位置テーブル情報を参照して、内部固視又は外部固視の固視位置から撮影位置情報を特定し、撮影位置情報から眼底Efにおける撮影エリアを特定する。例えば、撮影エリアは、眼底Efにおける上側エリア、下側エリア、耳側エリア、又は鼻側エリアである。スキャンエリア特定部2311Dは、特定された撮影エリアにおける特徴点を抽出する。例えば、特徴点は、血管、血管の分岐、又は病変部である。いくつかの実施形態では、撮影エリアにおける特徴点の抽出は、特徴部位特定部231Aにより行われる。 Specifically, the scan area specifying unit 2311D refers to the imaging position table information shown in FIG. 9 to specify the imaging position information from the fixation position of the internal fixation or the external fixation, and the fundus oculi Ef from the imaging position information. Identify the shooting area in For example, the imaging area is an upper area, a lower area, an ear area, or a nasal area in the fundus oculi Ef. The scan area specifying unit 2311D extracts feature points in the specified imaging area. For example, the feature points are blood vessels, blood vessel bifurcations, or lesions. In some embodiments, extraction of feature points in the imaging area is performed by the feature site identification unit 231A.
 次に、スキャンエリア特定部2311D(又は解析部231)は、被検眼EのOCTデータ(例えば、ライブOCT画像)から作成されたプロジェクション画像から特徴点を抽出する。スキャンエリア特定部2311Dは、撮影エリアにおいて抽出された特徴点とプロジェクション画像において抽出された特徴点とが一致するように、眼底画像において撮影エリアに対応するOCTスキャンエリアを特定する。 Next, the scan area specifying unit 2311D (or the analysis unit 231) extracts feature points from the projection image created from the OCT data (for example, live OCT image) of the eye E to be examined. The scan area specifying unit 2311D specifies an OCT scan area corresponding to the imaging area in the fundus image so that the feature points extracted in the imaging area match the feature points extracted in the projection image.
〈オーバーラップ判定部2312D〉
 オーバーラップ判定部2312Dは、モンタージュ撮影により取得された2つの画像の周辺領域がオーバーラップしているか否かを判定する。
<Overlap determination unit 2312D>
The overlap determination unit 2312D determines whether or not the peripheral regions of the two images obtained by montage photography overlap.
 判定対象の2つの画像は時間を空けて取得されるため、その間に眼球運動による位置ずれが生ずる可能性がある。そこで、実施形態に係るオーバーラップ判定部2312Dは、2つの画像の周辺領域が重なっているか否かだけではなく、2つの画像が互いに適正(良好)な画質であるか否かを判定することができる。例えば、オーバーラップ判定部2312Dは、2つの画像におけるオーバーラップ領域の有無を判定し、オーバーラップ領域があると判定されたとき、更に、2つの画像のオーバーラップ領域における相関度を算出する。オーバーラップ領域における相関度が閾値以上であると判定されたとき、オーバーラップ判定部2312Dは、モンタージュ撮影により取得された2つの画像が重なり、且つ、2つの画像が互いに適正な画質であると判定する。 Since the two images to be determined are acquired with a gap of time between them, there is a possibility that there will be a positional deviation due to eyeball movement during that time. Therefore, the overlap determination unit 2312D according to the embodiment can determine not only whether or not the peripheral regions of the two images overlap, but also whether or not the two images have appropriate (good) image quality. can. For example, the overlap determination unit 2312D determines whether or not there is an overlap region between the two images, and when it is determined that there is an overlap region, further calculates the degree of correlation in the overlap region between the two images. When it is determined that the degree of correlation in the overlap region is equal to or greater than the threshold, the overlap determination unit 2312D determines that the two images acquired by montage photography overlap and that the two images have appropriate image quality. do.
 オーバーラップ判定部2312Dが判定処理を行う画像の周辺領域のサイズは、あらかじめ決められたサイズであってもよいし、2つの画像がオーバーラップする領域を特定し、特定された領域のサイズを採用してもよい。 The size of the peripheral area of the image for which the overlap determination unit 2312D performs determination processing may be a predetermined size, or the area where the two images overlap is specified, and the size of the specified area is adopted. You may
〈ユーザーインターフェイス240〉
 ユーザーインターフェイス240は表示部240Aと操作部240Bとを含む。表示部240Aは表示装置3を含む。操作部240Bは各種の操作デバイスや入力デバイスを含む。
<User Interface 240>
User interface 240 includes a display section 240A and an operation section 240B. Display unit 240A includes display device 3 . The operation unit 240B includes various operation devices and input devices.
 ユーザーインターフェイス240は、例えばタッチパネルのような表示機能と操作機能とが一体となったデバイスを含んでいてもよい。他の実施形態において、ユーザーインターフェイスの少なくとも一部が眼科装置に含まれていなくてよい。例えば、表示デバイスは、眼科装置に接続された外部装置であってよい。 The user interface 240 may include a device such as a touch panel that combines a display function and an operation function. In other embodiments, at least a portion of the user interface may not be included on the ophthalmic device. For example, the display device may be an external device connected to the ophthalmic equipment.
〈通信部250〉
 通信部250は、図示しない外部装置と通信するための機能を有する。通信部250は、外部装置との接続形態に応じた通信インターフェイスを備える。外部装置の例として、サーバ装置、OCT装置、走査型レーザー検眼鏡、スリットランプ検眼鏡、眼科測定装置、眼科治療装置などがある。眼科測定装置の例として、眼屈折検査装置、眼圧計、スペキュラーマイクロスコープ、ウェーブフロントアナライザ、視野計、マイクロペリメータなどがある。眼科治療装置の例として、レーザー治療装置、手術装置、手術用顕微鏡などがある。また、外部装置は、記録媒体から情報を読み取る装置(リーダ)や、記録媒体に情報を書き込む装置(ライタ)などでもよい。更に、外部装置は、病院情報システム(HIS)サーバ、DICOM(Digital Imaging and COmmunication in Medicine)サーバ、医師端末、モバイル端末、個人端末、クラウドサーバなどでもよい。
<Communication unit 250>
The communication unit 250 has a function for communicating with an external device (not shown). The communication unit 250 has a communication interface according to a connection form with an external device. Examples of external devices include server devices, OCT devices, scanning laser ophthalmoscopes, slit lamp ophthalmoscopes, ophthalmic measurement devices, and ophthalmic treatment devices. Examples of ophthalmic measurement devices include eye refractometers, tonometers, specular microscopes, wavefront analyzers, perimeters, microperimeters, and the like. Examples of ophthalmic treatment devices include laser treatment devices, surgical devices, surgical microscopes, and the like. The external device may be a device (reader) that reads information from a recording medium, or a device (writer) that writes information to a recording medium. Furthermore, the external device may be a hospital information system (HIS) server, a DICOM (Digital Imaging and Communication in Medicine) server, a doctor terminal, a mobile terminal, a personal terminal, a cloud server, or the like.
 OCTユニット100から対物レンズ22までの光学系は、実施形態に係る「OCT光学系」の一例である。スイング機構151又はチルト機構152は、実施形態に係る「角度変更機構」の一例である。LCD39から対物レンズ22までの光学系、又は外部固視ユニット23は、実施形態に係る「固視系」の一例である。LCD39から対物レンズ22までの光学系は、実施形態に係る「内部固視系」の一例である。外部固視ユニット23は、実施形態に係る「外部固視系」の一例である。チルト機構は、実施形態に係る「第1角度変更機構」の一例である。スイング機構は、実施形態に係る「第2角度変更機構」の一例である。 The optical system from the OCT unit 100 to the objective lens 22 is an example of the "OCT optical system" according to the embodiment. The swing mechanism 151 or the tilt mechanism 152 is an example of the "angle changing mechanism" according to the embodiment. The optical system from the LCD 39 to the objective lens 22 or the external fixation unit 23 is an example of the "fixation system" according to the embodiment. The optical system from the LCD 39 to the objective lens 22 is an example of the "internal fixation system" according to the embodiment. The external fixation unit 23 is an example of the "external fixation system" according to the embodiment. A tilt mechanism is an example of a "first angle changing mechanism" according to the embodiment. The swing mechanism is an example of the "second angle changing mechanism" according to the embodiment.
〈動作〉
 眼科装置1の動作例について説明する。
<motion>
An operation example of the ophthalmologic apparatus 1 will be described.
 図14~図17に、実施形態に係る眼科装置1の動作例を示す。図14は、眼科装置1の第1動作例のフロー図を表す。図15は、図14のステップS9の動作例のフロー図を表す。図16及び図17は、眼科装置1の第2動作例のフロー図を表す。 14 to 17 show operation examples of the ophthalmologic apparatus 1 according to the embodiment. FIG. 14 shows a flowchart of a first operation example of the ophthalmologic apparatus 1 . FIG. 15 represents a flow diagram of an operation example of step S9 in FIG. 16 and 17 represent a flow chart of a second operation example of the ophthalmologic apparatus 1. FIG.
 記憶部212には、図14~図17に示す処理を実現するためのコンピュータプログラムが記憶されている。主制御部211は、このコンピュータプログラムに従って動作することにより、図14~図17に示す処理を実行する。 The storage unit 212 stores computer programs for realizing the processes shown in FIGS. The main control unit 211 executes the processes shown in FIGS. 14 to 17 by operating according to this computer program.
 まず、眼科装置1の第1動作例について説明する。第1動作例では、眼底画像(例えば、広角眼底画像)において指定されたOCT撮影位置から固視位置を決定し、決定された固視位置に対して内部固視又は外部固視を提示した状態でOCT計測を行う(図14~図15)。 First, a first operation example of the ophthalmologic apparatus 1 will be described. In the first operation example, a fixation position is determined from an OCT imaging position specified in a fundus image (for example, a wide-angle fundus image), and internal fixation or external fixation is presented to the determined fixation position. OCT measurement is performed with (FIGS. 14 and 15).
(S1:アライメント)
 まず、主制御部211は、アライメントを実行する。
(S1: Alignment)
First, the main controller 211 executes alignment.
 例えば、主制御部211は、前眼部カメラ5A及び5Bを制御して、実質的に同時に被検眼Eの前眼部Eaを撮影する。特徴部位特定部231Aは、主制御部211からの制御を受け、前眼部カメラ5A及び5Bにより実質的に同時に取得された一対の前眼部画像を解析して特徴部位として被検眼Eの瞳孔中心位置を特定する。3次元位置算出部231Bは、被検眼Eの3次元位置を求める。この処理は、例えば、特開2013-248376号公報に記載のように、一対の前眼部カメラ5A及び5Bと被検眼Eとの位置関係に基づく三角法を利用した演算処理を含む。 For example, the main control unit 211 controls the anterior segment cameras 5A and 5B to photograph the anterior segment Ea of the subject's eye E substantially simultaneously. The characteristic site identification unit 231A receives control from the main control unit 211, analyzes a pair of anterior segment images obtained substantially simultaneously by the anterior segment cameras 5A and 5B, and identifies the pupil of the subject's eye E as a characteristic site. Identify the center position. The three-dimensional position calculator 231B obtains the three-dimensional position of the eye E to be examined. This processing includes arithmetic processing using trigonometry based on the positional relationship between the pair of anterior eye cameras 5A and 5B and the subject's eye E, as described in Japanese Patent Application Laid-Open No. 2013-248376, for example.
 主制御部211は、光学系(例えば眼底カメラユニット2)と被検眼Eとが所定の位置関係となるように、3次元位置算出部231Bにより求められた被検眼Eの3次元位置に基づきxyz移動機構150を制御する。ここで、所定の位置関係は、光学系を用いて被検眼Eの撮影や検査を実行可能な位置関係である。典型例として、3次元位置算出部231Bにより被検眼Eの3次元位置(x座標、y座標、z座標)が得られた場合、対物レンズ22の光軸のx座標及びy座標が被検眼Eのx座標及びy座標にそれぞれ一致し、且つ、対物レンズ22(前側レンズ面)のz座標と被検眼E(角膜表面)のz座標との差が所定距離(ワーキングディスタンス)に等しくなる位置が、光学系の移動先として設定される。 Based on the three-dimensional position of the eye to be examined E calculated by the three-dimensional position calculator 231B, the main control unit 211 performs xyz calculation so that the optical system (for example, the fundus camera unit 2) and the eye to be examined E have a predetermined positional relationship. It controls the moving mechanism 150 . Here, the predetermined positional relationship is a positional relationship that enables imaging and examination of the subject's eye E using an optical system. As a typical example, when the three-dimensional position (x-coordinate, y-coordinate, z-coordinate) of the eye E to be examined is obtained by the three-dimensional position calculator 231B, the x-coordinate and y-coordinate of the optical axis of the objective lens 22 are the eye E and the difference between the z-coordinate of the objective lens 22 (front lens surface) and the z-coordinate of the eye to be examined E (corneal surface) is equal to a predetermined distance (working distance) , is set as the destination of the optical system.
(S2:オートフォーカス)
 続いて、主制御部211は、オートフォーカスを開始する。
(S2: Autofocus)
Subsequently, the main controller 211 starts autofocus.
 例えば、主制御部211は、フォーカス光学系60を制御して被検眼Eにスプリット指標を投影させる。解析部231は、主制御部211からの制御を受け、スプリット指標が投影されている眼底Efの観察画像を解析することにより、一対のスプリット指標像を抽出し、一対のスプリット指標の相対的なずれを算出する。主制御部211は、算出されたずれ(ずれ方向、ずれ量)に基づいて合焦駆動部31Aや合焦駆動部43Aを制御する。 For example, the main control unit 211 controls the focus optical system 60 to project the split index on the eye E to be examined. Under the control of the main control unit 211, the analysis unit 231 extracts a pair of split index images by analyzing the observed image of the fundus oculi Ef on which the split indices are projected, and calculates the relative relationship between the pair of split indices. Calculate the deviation. The main control unit 211 controls the focus driving unit 31A and the focus driving unit 43A based on the calculated deviation (direction of deviation, amount of deviation).
(S3:OCT撮影位置を設定)
 次に、主制御部211は、眼底Efの赤外画像(又は動画像)、又は事前に取得された眼底Efのカラーの眼底画像などの眼底画像に対してOCT撮影位置を設定する。
(S3: Set OCT imaging position)
Next, the main control unit 211 sets the OCT imaging position for a fundus image such as an infrared image (or moving image) of the fundus oculi Ef or a color fundus image of the fundus oculi Ef acquired in advance.
 例えば、主制御部211は、眼底画像を見ながらユーザーが操作部240Bを操作することにより指定された撮影位置をOCT撮影位置として設定する。例えば、主制御部211は、解析部231に眼底画像を解析させて特徴部位又は注目部位を特定させ、特定された特徴部位又は注目部位に相当する眼底画像における位置をOCT撮影位置として設定する。 For example, the main control unit 211 sets the imaging position designated by the user operating the operation unit 240B while viewing the fundus image as the OCT imaging position. For example, the main control unit 211 causes the analysis unit 231 to analyze the fundus image to specify a characteristic region or a region of interest, and sets the position in the fundus image corresponding to the identified characteristic region or region of interest as the OCT imaging position.
(S4:光学系を移動)
 次に、主制御部211は、ステップS3において設定されたOCT撮影位置に対応した眼底Ef上の固視位置に固視光束が投射されるように固視制御を行う。外部固視を用いる場合、主制御部211は、外部固視ユニット23、スイング機構151及びチルト機構152を制御して、被検眼Eの向きを変更することなく、被検眼Eの視軸の向きと光学系の光軸(測定光軸、対物光軸)の向きとのなす角を変更する。
(S4: Move optical system)
Next, the main control unit 211 performs fixation control so that the fixation light flux is projected to the fixation position on the fundus oculi Ef corresponding to the OCT imaging position set in step S3. When using external fixation, the main control unit 211 controls the external fixation unit 23, the swing mechanism 151, and the tilt mechanism 152 to change the direction of the visual axis of the eye E to be examined without changing the orientation of the eye E to be examined. and the direction of the optical axis of the optical system (measurement optical axis, objective optical axis).
 例えば、主制御部211は、図9の撮影位置テーブル情報を参照して、ステップS3において設定されたOCT撮影位置に対応する撮影位置情報から固視位置情報を特定する。次に、主制御部211は、図10の固視制御情報を参照して、内部固視制御情報及び外部固視制御情報を参照する。外部固視制御情報から被検眼Eに外部固視を提示する場合、主制御部211は、外部固視制御情報に基づいて外部固視ユニット23、スイング機構151及びチルト機構152の少なくとも一方を制御して固視光束の出射位置を制御する。 For example, the main control unit 211 refers to the imaging position table information in FIG. 9 and specifies the fixation position information from the imaging position information corresponding to the OCT imaging position set in step S3. Next, the main control unit 211 refers to the internal fixation control information and the external fixation control information by referring to the fixation control information in FIG. When presenting the external fixation to the subject's eye E based on the external fixation control information, the main control unit 211 controls at least one of the external fixation unit 23, the swing mechanism 151, and the tilt mechanism 152 based on the external fixation control information. to control the emission position of the fixation light flux.
 いくつかの実施形態では、主制御部211は、表示部240Aに所定の案内情報を表示させて、外部固視ユニット23、スイング機構151及びチルト機構152の少なくとも一方を手動で移動するようにユーザーを促す。例えば、主制御部211は、外部固視ユニット23、スイング機構151及びチルト機構152のそれぞれに設けられたセンサーからの検出結果を取得する。主制御部211は、取得された検出結果から外部固視ユニット23、スイング機構151及びチルト機構152のそれぞれが所望の状態にセットされたか否かを確認しつつ。所定の状態にセットされるまでユーザーに案内を促すことを継続することが望ましい。 In some embodiments, the main control unit 211 causes the display unit 240A to display predetermined guidance information, and instructs the user to manually move at least one of the external fixation unit 23, the swing mechanism 151, and the tilt mechanism 152. encourage For example, the main control unit 211 acquires detection results from sensors provided in each of the external fixation unit 23 , the swing mechanism 151 and the tilt mechanism 152 . The main control unit 211 checks whether or not the external fixation unit 23, the swing mechanism 151, and the tilt mechanism 152 are set to desired states based on the acquired detection results. It is desirable to continue prompting the user for guidance until the predetermined state is set.
(S5:固視標を提示)
 続いて、主制御部211は、被検眼Eに内部固視又は外部固視を提示させる。
(S5: Presentation of fixation target)
Subsequently, the main control unit 211 causes the subject's eye E to present internal fixation or external fixation.
 具体的には、主制御部211は、内部固視制御情報又は外部固視制御情報に基づいて、上記のように被検眼Eに対して内部固視又は外部固視を提示させる。内部固視を被検眼Eに提示する場合、主制御部211は、内部固視制御情報に基づいてLCD39を制御し、内部固視制御情報に基づいて指定されたLCD39の表示位置から固視光束を出射させる。外部固視を被検眼Eに提示する場合、主制御部211は、外部固視制御情報に基づいて外部固視ユニット23を制御し、外部固視制御情報に基づいて指定された固視光源から固視光束を出射させる。 Specifically, the main control unit 211 presents internal fixation or external fixation to the subject's eye E as described above, based on internal fixation control information or external fixation control information. When presenting the internal fixation to the subject's eye E, the main control unit 211 controls the LCD 39 based on the internal fixation control information, and the fixation light beam is displayed from the display position of the LCD 39 designated based on the internal fixation control information. is emitted. When presenting an external fixation to the subject's eye E, the main control unit 211 controls the external fixation unit 23 based on the external fixation control information, and the fixation light source specified based on the external fixation control information Emits a fixation beam.
(S6:撮影位置を調整)
 続いて、主制御部211は、撮影位置の調整を行う。
(S6: Adjust shooting position)
Subsequently, the main control unit 211 adjusts the shooting position.
 眼球運動や被検眼Eの固視が困難な場合に起因して、所望の撮影位置がずれてしまう場合がある。そこで、主制御部211は、操作部240Bに対するユーザーの操作内容に基づいて撮影位置を調整する。例えば、ユーザーは、ライブOCT画像(プロジェクション画像、又はen-face画像)を参照しつつ、操作部240Bに対して操作を行って撮影位置の変更を指示する。撮影位置の調整の例として、xyz移動機構150による被検眼Eに対する光学系の移動、固視光束の出射位置の変更(内部固視と外部固視との切り換えを含む)、光スキャナ42に対するオフセット電圧の印加、測定光LSと参照光LRとの光路長差の変更などがある。 Due to difficulty in eye movement and fixation of the subject's eye E, the desired imaging position may shift. Therefore, the main control unit 211 adjusts the shooting position based on the user's operation on the operation unit 240B. For example, while referring to a live OCT image (projection image or en-face image), the user operates the operation unit 240B to instruct to change the imaging position. Examples of adjustment of the imaging position include movement of the optical system with respect to the subject's eye E by the xyz movement mechanism 150, change of the emission position of the fixation light flux (including switching between internal fixation and external fixation), and offset with respect to the optical scanner 42. There are the application of a voltage, the change of the optical path length difference between the measurement light LS and the reference light LR, and the like.
 いくつかの実施形態では、ステップS6の処理はスキップされる。 In some embodiments, the process of step S6 is skipped.
(S7:OCT撮影)
 次に、主制御部211は、OCTユニット100などを制御して、ステップS5までに決定されたOCT撮影位置又はステップS6において調整されたOCT撮影位置に対してOCT撮影を実行させる。主制御部211は、画像形成部220を制御してOCT撮影により得られたOCTデータに基づいてOCT画像を形成させ、データ処理部230を制御してプロジェクション画像又はen-face画像を形成させる。
(S7: OCT imaging)
Next, the main control unit 211 controls the OCT unit 100 and the like to perform OCT imaging at the OCT imaging position determined up to step S5 or the OCT imaging position adjusted at step S6. The main control unit 211 controls the image forming unit 220 to form an OCT image based on OCT data obtained by OCT imaging, and controls the data processing unit 230 to form a projection image or an en-face image.
(S8:眼底撮影)
 続いて、主制御部211は、眼底カメラユニット2を制御して、眼底Efに対する撮影を実行させる。これにより、眼底Efの眼底画像(例えば、カラー眼底画像)が取得される。
(S8: fundus photography)
Subsequently, the main controller 211 controls the fundus camera unit 2 to photograph the fundus Ef. Thereby, a fundus image (for example, a color fundus image) of the fundus oculi Ef is obtained.
(S9:レジストレーション処理)
 次に、主制御部211は、レジストレーション処理部231Dを制御することにより、ステップS7において取得されたプロジェクション画像又はen-face画像とステップS8において取得された眼底画像とのレジストレーション処理を実行させる。
(S9: registration processing)
Next, the main control unit 211 controls the registration processing unit 231D to perform registration processing between the projection image or the en-face image acquired in step S7 and the fundus image acquired in step S8. .
 ステップS9の詳細は、後述する。 The details of step S9 will be described later.
(S10:表示)
 続いて、主制御部211は、ステップS7において取得されたプロジェクション画像又はen-face画像とステップS8において取得された眼底画像との位置合わせ後の合成画像を表示部240Aに表示させる。
(S10: display)
Subsequently, the main control unit 211 causes the display unit 240A to display a synthesized image after aligning the projection image or the en-face image acquired in step S7 with the fundus image acquired in step S8.
 以上で、眼科装置1の第1動作例は終了である(エンド)。 This completes the first operation example of the ophthalmologic apparatus 1 (end).
 図14のステップS9の処理は、図15に示すフローに従って実行される。 The process of step S9 in FIG. 14 is executed according to the flow shown in FIG.
(S21:固視位置から眼底上の撮影エリアを特定)
 まず、スキャンエリア特定部2311Dは、上記のように、図9に示す撮影位置テーブル情報を参照して、ステップS4までの処理で決定された固視位置から撮影位置情報を特定する。スキャンエリア特定部2311Dは、特定された撮影位置情報からステップS8において取得された眼底画像における撮影エリアを特定する。
(S21: Specify the imaging area on the fundus from the fixation position)
First, the scan area specifying unit 2311D refers to the shooting position table information shown in FIG. 9 as described above, and specifies shooting position information from the fixation position determined by the processing up to step S4. The scan area specifying unit 2311D specifies the imaging area in the fundus image acquired in step S8 from the specified imaging position information.
(S22:撮影エリアの特徴点を抽出)
 次に、スキャンエリア特定部2311Dは、上記のように、ステップS21において特定された撮影エリアにおける特徴点を抽出する。
(S22: Extract feature points of shooting area)
Next, the scan area identification unit 2311D extracts feature points in the imaging area identified in step S21 as described above.
(S23:OCT画像から特徴点を抽出)
 続いて、スキャンエリア特定部2311D(又は解析部231)は、上記のように、ステップS7において取得された被検眼EのOCTデータから作成されたプロジェクション画像から特徴点を抽出する。
(S23: Extract feature points from OCT image)
Subsequently, the scan area specifying unit 2311D (or the analysis unit 231) extracts feature points from the projection image created from the OCT data of the subject's eye E acquired in step S7 as described above.
(S24:OCTスキャンエリアを特定)
 次に、スキャンエリア特定部2311Dは、上記のように、ステップS22において抽出された眼底画像の特徴点とステップS23において抽出されたプロジェクション画像の特徴点とが一致するように、眼底画像において撮影エリアに対応するOCTスキャンエリアを特定する。
(S24: Identify OCT scan area)
Next, as described above, the scan area specifying unit 2311D determines the photographing area in the fundus image so that the feature points of the fundus image extracted in step S22 and the feature points of the projection image extracted in step S23 match each other. Identify the OCT scan area corresponding to .
(S25:マッチング処理)
 続いて、レジストレーション処理部231Dは、ステップS24において特定されたOCTスキャンエリアに基づいて、ステップS7において取得されたOCTデータに基づくプロジェクション画像とステップS8において取得された眼底画像とに対して位置合わせ処理を実行する。いくつかの実施形態では、レジストレーション処理部231Dは、ステップS24において特定されたOCTスキャンエリアに基づいて、ステップS7において取得されたOCTデータに基づくプロジェクション画像と事前に取得された眼底画像とに対して位置合わせ処理を実行する。この場合、事前に取得された眼底画像は、図14に示すフローを実行する前に眼科装置1により取得された眼底画像、又は、眼科装置1とは別の眼科装置により事前に取得された眼底画像であってよい。
(S25: Matching process)
Subsequently, the registration processing unit 231D aligns the projection image based on the OCT data acquired in step S7 and the fundus image acquired in step S8 based on the OCT scan area specified in step S24. Execute the process. In some embodiments, the registration processing unit 231D registers the projection image based on the OCT data acquired in step S7 and the previously acquired fundus image based on the OCT scan area specified in step S24. to perform alignment processing. In this case, the fundus image acquired in advance is the fundus image acquired by the ophthalmologic apparatus 1 before executing the flow shown in FIG. It can be an image.
 この実施形態では、ステップS24で特定されたOCTスキャンエリア内でプロジェクション画像と眼底画像との位置合わせ(レジストレーション)を行うため、画像の探索範囲が狭くなり、処理負荷を大幅に軽減することができる。 In this embodiment, the alignment (registration) of the projection image and the fundus image is performed within the OCT scan area specified in step S24, so the image search range is narrowed, and the processing load can be greatly reduced. can.
 以上で、図14のステップS9の処理は終了である(エンド)。 This completes the processing of step S9 in FIG. 14 (end).
 次に、眼科装置1の第2動作例について説明する。第2動作例では、眼底画像(例えば、広角眼底画像)において指定されたモンタージュ撮影範囲から複数のOCT撮影位置を特定し、特定された複数の撮影位置に対して順次にOCT撮影を行ってOCTモンタージュ画像を取得する(図16~図17)。 Next, a second operation example of the ophthalmologic apparatus 1 will be described. In the second operation example, a plurality of OCT imaging positions are identified from a montage imaging range specified in a fundus image (for example, a wide-angle fundus image), and OCT imaging is sequentially performed on the identified plurality of imaging positions to perform OCT imaging. A montage image is acquired (FIGS. 16-17).
(S31:アライメント)
 まず、主制御部211は、ステップS1と同様に、アライメントを実行する。
(S31: Alignment)
First, the main controller 211 performs alignment, as in step S1.
(S32:オートフォーカス)
 続いて、主制御部211は、ステップS2と同様に、オートフォーカスを開始する。
(S32: Autofocus)
Subsequently, the main control section 211 starts autofocus as in step S2.
(S33:モンタージュ撮影範囲を設定)
 次に、主制御部211は、眼底Efの赤外画像(又は動画像)、又は事前に取得された眼底Efのカラーの眼底画像などの眼底画像に対してモンタージュ撮影範囲を設定する。
(S33: Set montage shooting range)
Next, the main control unit 211 sets a montage photographing range for a fundus image such as an infrared image (or moving image) of the fundus oculi Ef or a color fundus image of the fundus oculi Ef acquired in advance.
 例えば、主制御部211は、眼底画像を見ながらユーザーが操作部240Bを操作することにより指定された撮影範囲をモンタージュ撮影範囲として設定する。例えば、主制御部211は、解析部231に眼底画像を解析させて特徴部位又は注目部位を特定させ、特定された特徴部位又は注目部位を含む所定サイズの撮影範囲をモンタージュ撮影範囲として設定する。 For example, the main control unit 211 sets the imaging range designated by the user operating the operation unit 240B while viewing the fundus image as the montage imaging range. For example, the main control unit 211 causes the analysis unit 231 to analyze the fundus image to specify a characteristic region or a region of interest, and sets an imaging range of a predetermined size including the identified characteristic region or region of interest as the montage imaging range.
 主制御部211は、モンタージュ撮影処理部231Cを制御することにより、ステップS33において設定されたモンタージュ撮影範囲から2以上のOCT撮影位置を特定させる。モンタージュ撮影処理部231Cは、上記のように、各OCT撮影位置に対応するOCT撮影範囲が互いに重複するように設定される。また、主制御部211又はデータ処理部230は、特定された2以上のOCT撮影位置に基づいて、撮影順序を決定する。 The main control unit 211 specifies two or more OCT imaging positions from the montage imaging range set in step S33 by controlling the montage imaging processing unit 231C. As described above, the montage imaging processing unit 231C is set so that the OCT imaging ranges corresponding to the respective OCT imaging positions overlap each other. Also, the main control unit 211 or the data processing unit 230 determines the imaging order based on the specified two or more OCT imaging positions.
(S34:光学系を移動)
 次に、主制御部211は、ステップS33において決定された撮影順序に従って、ステップS4と同様に、2以上のOCT撮影位置の1つに対応した眼底Ef上の固視位置に固視光束が投射されるように固視制御を行う。
(S34: Move optical system)
Next, the main control unit 211 projects the fixation light flux onto the fixation position on the fundus oculi Ef corresponding to one of the two or more OCT imaging positions, as in step S4, according to the imaging order determined in step S33. Perform fixation control so that
(S35:固視標を提示)
 続いて、主制御部211は、ステップS5と同様に、被検眼Eに内部固視又は外部固視を提示させる。
(S35: Presentation of fixation target)
Subsequently, the main control unit 211 causes the subject's eye E to present internal fixation or external fixation, as in step S5.
(S36:OCT撮影)
 次に、主制御部211は、ステップS7と同様に、OCTユニット100などを制御して、ステップS34までに決定されたOCT撮影位置に対してOCT撮影を実行させる。主制御部211は、画像形成部220を制御してOCT撮影により得られたOCTデータに基づいてOCT画像を形成させ、データ処理部230を制御してプロジェクション画像又はen-face画像を形成させる。
(S36: OCT imaging)
Next, the main controller 211 controls the OCT unit 100 and the like to perform OCT imaging at the OCT imaging positions determined up to step S34, as in step S7. The main control unit 211 controls the image forming unit 220 to form an OCT image based on OCT data obtained by OCT imaging, and controls the data processing unit 230 to form a projection image or an en-face image.
 いくつかの実施形態では、ステップS35とステップS36との間に、ステップS5と同様に、撮影位置の調整を行う。 In some embodiments, the shooting position is adjusted between steps S35 and S36, as in step S5.
(S37:オーバーラップ?)
 次に、主制御部211は、オーバーラップ判定部2312Dを制御して、ステップS36を繰り返し実行することで取得され、互いに隣接する2以上のプロジェクション画像(OCT画像)に対してオーバーラップするか否かを判定させる。なお、取得されたプロジェクション画像が1つである場合、ステップS37の処理はスキップされ、眼科装置1の動作はステップS39に移行する。
(S37: Overlap?)
Next, the main control unit 211 controls the overlap determination unit 2312D to determine whether or not two or more adjacent projection images (OCT images) acquired by repeatedly executing step S36 overlap each other. determine whether If only one projection image is acquired, the process of step S37 is skipped, and the operation of the ophthalmologic apparatus 1 proceeds to step S39.
 例えば、オーバーラップ判定部2312Dは、上記のように、互いに隣接する2以上のプロジェクション画像のそれぞれについて、周辺領域が重なっているか否かだけではなく、互いに隣接する2つのプロジェクション画像が互いに適正な画質であるか否かを判定する。 For example, as described above, the overlap determination unit 2312D determines not only whether or not the peripheral regions overlap each other for each of two or more adjacent projection images, but also whether or not the two adjacent projection images have appropriate image quality. It is determined whether or not.
 互いに隣接する2以上のプロジェクション画像のそれぞれについて、周辺領域が重なり、且つ、互いに隣接する2つのプロジェクション画像が互いに適正な画質であると判定されたとき(ステップS37:Y)、眼科装置1の動作はステップS39に移行する。 When it is determined that the two or more projection images adjacent to each other have an overlapping peripheral area and the image quality of the two adjacent projection images is appropriate for each other (step S37: Y), the ophthalmologic apparatus 1 operates. goes to step S39.
 互いに隣接する2以上のプロジェクション画像のそれぞれについて、周辺領域が重なっていない、又は、互いに隣接する2つのプロジェクション画像が互いに適正な画質ではないと判定されたとき(ステップS37:N)、眼科装置1の動作はステップS38に移行する。 When it is determined that the peripheral regions of each of the two or more adjacent projection images do not overlap each other, or the two adjacent projection images do not have proper image quality (step S37: N), the ophthalmologic apparatus 1 operation proceeds to step S38.
(S38:終了?)
 次に、主制御部211は、処理を終了するか否かを判定する。例えば、主制御部211は、ステップS35の繰返し回数が所定回数以上であるとき、処理を終了すると判定する。例えば、主制御部211は、ステップS37において判定されたプロジェクション画像の画質を表す評価値が所定の閾値以下であるとき、処理を終了すると判定する。
(S38: End?)
Next, the main control unit 211 determines whether or not to end the process. For example, the main control unit 211 determines to end the process when the number of repetitions of step S35 is equal to or greater than a predetermined number. For example, the main control unit 211 determines to end the process when the evaluation value representing the image quality of the projection image determined in step S37 is equal to or less than a predetermined threshold.
 処理を終了すると判定されたとき(ステップS38:Y)、眼科装置1の動作は終了である(エンド)。処理を終了しないと判定されたとき(ステップS38:N)、眼科装置1の動作はステップS36に移行し、OCT撮影が再実行される。 When it is determined to end the process (step S38: Y), the operation of the ophthalmologic apparatus 1 ends (END). When it is determined not to end the processing (step S38: N), the operation of the ophthalmologic apparatus 1 proceeds to step S36, and OCT imaging is performed again.
(S39:レジストレーション処理)
 ステップS37において、互いに隣接する2以上のプロジェクション画像のそれぞれについて、周辺領域が重なり、且つ、互いに隣接する2つのプロジェクション画像が互いに適正な画質であると判定されたとき(ステップS37:Y)、主制御部211は、ステップS9と同様に、レジストレーション処理部231Dを制御して、互いに隣接する2以上のプロジェクション画像のそれぞれについてレジストレーション処理を実行させる。
(S39: Registration processing)
In step S37, for each of the two or more projection images adjacent to each other, when it is determined that the peripheral regions overlap and the two projection images adjacent to each other have appropriate image quality (step S37: Y), the main As in step S9, the control unit 211 controls the registration processing unit 231D to perform registration processing on each of two or more projection images adjacent to each other.
 これにより、互いに隣接する2以上のプロジェクション画像の位置合わせが行われたOCTモンタージュ画像の一部が形成される。 This forms part of an OCT montage image in which two or more projection images adjacent to each other are aligned.
(S40:次?)
 続いて、主制御部211は、次の撮影位置に対してOCT撮影を実行するか否かを判定する。例えば、主制御部211は、ステップS34において決定された撮影順序に従って、次の撮影位置に対してOCT撮影を実行するか否かを判定する。
(S40: next?)
Subsequently, the main control unit 211 determines whether or not to execute OCT imaging for the next imaging position. For example, the main control unit 211 determines whether or not to perform OCT imaging for the next imaging position according to the imaging order determined in step S34.
 ステップS40において、次の撮影位置に対してOCT撮影を実行すると判定されたとき(ステップS40:Y)、眼科装置1の動作はステップS34に移行する。これにより、次の撮影位置に対するOCT撮影が実行される。ステップS40において、次の撮影位置に対してOCT撮影を実行しないと判定されたとき(ステップS40:N)、眼科装置1の動作はステップS41に移行する。 When it is determined in step S40 that OCT imaging is to be performed for the next imaging position (step S40: Y), the operation of the ophthalmologic apparatus 1 proceeds to step S34. As a result, OCT imaging is performed for the next imaging position. When it is determined in step S40 that OCT imaging is not to be performed for the next imaging position (step S40: N), the operation of the ophthalmologic apparatus 1 proceeds to step S41.
(S41:眼底撮影)
 ステップS40において、次の撮影位置に対してOCT撮影を実行しないと判定されたとき(ステップS40:N)、主制御部211は、ステップS8と同様に、眼底カメラユニット2を制御して、眼底Efに対する撮影を実行させる。これにより、眼底Efの眼底画像(例えば、カラー眼底画像)が取得される。
(S41: fundus photographing)
In step S40, when it is determined not to perform OCT imaging for the next imaging position (step S40: N), the main control section 211 controls the retinal camera unit 2 in the same manner as in step S8 to Execute shooting for Ef. Thereby, a fundus image (for example, a color fundus image) of the fundus oculi Ef is acquired.
(S42:表示)
 続いて、主制御部211は、ステップS36~ステップS39を繰り返すことにより取得されたOCTモンタージュ画像を表示部240Aに表示させる。いくつかの実施形態では、ステップS41において取得された眼底画像に、ステップS36~ステップS39を繰り返すことにより形成されたOCTモンタージュ画像を重畳させて表示部240Aに表示させる。
(S42: display)
Subsequently, the main control unit 211 causes the display unit 240A to display the OCT montage image obtained by repeating steps S36 to S39. In some embodiments, the OCT montage image formed by repeating steps S36 to S39 is superimposed on the fundus image acquired in step S41 and displayed on the display unit 240A.
 以上で、眼科装置1の第2動作例は終了である(エンド)。 This completes the second operation example of the ophthalmologic apparatus 1 (end).
〈作用〉
 実施形態に係る眼科装置、眼科装置の制御方法、及びプログラムについて説明する。
<Action>
An ophthalmologic apparatus, an ophthalmologic apparatus control method, and a program according to an embodiment will be described.
 いくつかの実施形態に係る眼科装置(1)は、光学系(図1、図2、図5に示す光学系)と、角度変更機構(スイング機構151、チルト機構152)と、固視系(LCD39、外部固視ユニット23)と、制御部(210、主制御部211)と、画像形成部(220)と、解析部(231)とを含む。光学系は、対物レンズ(22)と、撮影光学系(30)と、OCT光学系(OCTユニット100から対物レンズ22までの光学系)とを含む。撮影光学系は、対物レンズを介して被検眼(E)からの光を受光する。OCT光学系は、撮影光学系の光路に結合され、光路を経由した測定光(LS)を対物レンズを介して被検眼に投射して測定光の戻り光と参照光(LR)との干渉光(LC)を検出する。角度変更機構は、光学系を傾けることにより光学系の光軸の向きを変更する。固視系は、光軸に対する相対位置を変更可能な固視光束の出射位置から被検眼に向けて固視光束を投射する。制御部は、被検眼の画像におけるOCT計測位置に基づいて被検眼の視軸と光軸とのなす角を変更してOCT計測位置に対応した出射位置から固視光束を投射させ、固視光束が投射されている状態でOCT光学系を制御することにより被検眼に対するOCT計測を実行させる。画像形成部は、干渉光の検出結果に基づいて被検眼のOCT画像を形成する。解析部は、出射位置に基づいて、被検眼の画像におけるOCT画像の位置を特定する。 An ophthalmologic apparatus (1) according to some embodiments includes an optical system (optical systems shown in FIGS. 1, 2, and 5), an angle changing mechanism (swing mechanism 151, tilt mechanism 152), and a fixation system ( LCD 39, external fixation unit 23), control section (210, main control section 211), image forming section (220), and analysis section (231). The optical system includes an objective lens (22), an imaging optical system (30), and an OCT optical system (an optical system from the OCT unit 100 to the objective lens 22). The imaging optical system receives light from the subject's eye (E) via the objective lens. The OCT optical system is coupled to the optical path of the imaging optical system, projects the measurement light (LS) that has passed through the optical path onto the subject's eye via the objective lens, and produces interference light between the return light of the measurement light and the reference light (LR). (LC) is detected. The angle changing mechanism changes the direction of the optical axis of the optical system by tilting the optical system. The fixation system projects a fixation light flux toward the subject's eye from a fixation light flux emission position whose relative position to the optical axis can be changed. The control unit changes the angle formed by the visual axis of the subject's eye and the optical axis based on the OCT measurement position in the image of the subject's eye, and projects the fixation light beam from the emission position corresponding to the OCT measurement position. is projected, the OCT optical system is controlled to perform OCT measurement for the subject's eye. The image forming unit forms an OCT image of the subject's eye based on the detection result of the interference light. The analysis unit identifies the position of the OCT image in the image of the subject's eye based on the emission position.
 このような構成によれば、被検眼の画像におけるOCT計測位置に基づいて固視系を制御しつつ、角度変更機構により光学系の光軸の向きを変更することで、被検眼に対して広角のOCT計測を実行することが可能になる。それにより、被検者が顔の向きを変えることなく、被検眼をより簡便に広角で撮影又は計測することが可能になる。 According to such a configuration, while controlling the fixation system based on the OCT measurement position in the image of the eye to be inspected, the orientation of the optical axis of the optical system is changed by the angle changing mechanism, thereby widening the angle to the eye to be inspected. of OCT measurements can be performed. As a result, the subject's eye can be more easily photographed or measured at a wide angle without changing the orientation of the subject's face.
 いくつかの実施形態では、制御部は、2以上のOCT計測位置のそれぞれについて固視系により固視光束を投射させる。解析部は、2以上のOCT計測位置のそれぞれについて、固視系における出射位置に基づいて被検眼の画像におけるOCT画像の位置を特定する。 In some embodiments, the control unit causes the fixation system to project a fixation light flux on each of two or more OCT measurement positions. For each of the two or more OCT measurement positions, the analysis unit identifies the position of the OCT image in the image of the subject's eye based on the emission position in the fixation system.
 このような構成によれば、2以上のOCT計測位置のそれぞれについて少なくとも固視系を制御しつつ、被検眼の画像におけるOCT画像の位置を特定することができる。それにより、モンタージュ画像のような複数のOCT画像の合成画像を取得することが可能になる。 According to such a configuration, it is possible to specify the position of the OCT image in the image of the subject's eye while controlling at least the fixation system for each of the two or more OCT measurement positions. Thereby, it becomes possible to acquire a composite image of multiple OCT images, such as a montage image.
 いくつかの実施形態では、固視系は、対物レンズの外側から、光軸に対して既知の位置関係を有する出射位置から被検眼に向けて固視光束を投射する外部固視系(外部固視ユニット23)を含む。 In some embodiments, the fixation system is an external fixation system (external fixation system) that projects a fixation light flux toward the subject's eye from an exit position having a known positional relationship with respect to the optical axis from outside the objective lens. including a viewing unit 23).
 このような構成によれば、外部固視系を用いて、被検眼の画像におけるOCT計測位置に基づいて固視系を制御しつつ、角度変更機構により光学系の光軸の向きを変更することで、被検眼に対して広角のOCT計測を実行することが可能になる。 According to such a configuration, the orientation of the optical axis of the optical system is changed by the angle changing mechanism while controlling the fixation system based on the OCT measurement position in the image of the subject's eye using the external fixation system. , it is possible to perform wide-angle OCT measurement on the subject's eye.
 いくつかの実施形態では、固視系は、内部固視系(LCD39)と、外部固視系(外部固視ユニット23)とを含む。内部固視系は、光軸に対する相対位置を変更可能な内部固視光源(LCD39の画面上の表示画素)を含み、対物レンズを介して被検眼に固視光束を投射する。外部固視系は、光軸に対する相対位置を変更可能な外部固視光源(固視光源23-1~23-4)を含み、対物レンズの外側から、光軸に対して既知の位置関係を有する外部固視光源の位置から被検眼に向けて固視光束を投射する。 In some embodiments, the fixation system includes an internal fixation system (LCD 39) and an external fixation system (external fixation unit 23). The internal fixation system includes an internal fixation light source (display pixels on the screen of the LCD 39) whose position relative to the optical axis can be changed, and projects a fixation light beam onto the subject's eye via the objective lens. The external fixation system includes an external fixation light source (fixation light sources 23-1 to 23-4) whose relative position to the optical axis can be changed, and a known positional relationship to the optical axis is established from the outside of the objective lens. A fixation light beam is projected from the position of the external fixation light source provided toward the eye to be examined.
 このような構成によれば、内部固視系及び外部固視系を用いて、被検眼の画像におけるOCT計測位置に基づいて固視系を制御しつつ、角度変更機構により光学系の光軸の向きを変更することで、被検眼に対して広角のOCT計測を実行することが可能になる。 According to such a configuration, the internal fixation system and the external fixation system are used to control the fixation system based on the OCT measurement position in the image of the subject's eye, and the angle changing mechanism adjusts the optical axis of the optical system. By changing the orientation, it becomes possible to perform wide-angle OCT measurements on the subject's eye.
 いくつかの実施形態では、被検眼の画像における光軸に相当する位置を含む所定範囲(中心固視範囲Fc又は内部固視範囲Fi)にOCT計測位置があるとき、制御部は、内部固視系により被検眼に固視光束を投射させ、解析部は、固視光束が投影される固視位置に基づいて、被検眼の画像におけるOCT画像の位置を特定する。被検眼の画像における光軸に相当する位置を含む所定範囲の外側(第1外部固視範囲Fo1~第4外部固視範囲Fo4)にOCT計測位置があるとき、制御部は、外部固視系により被検眼に固視光束を投射させ、解析部は、固視光束が投影される固視位置に基づいて、被検眼の画像におけるOCT画像の位置を特定する。 In some embodiments, when the OCT measurement position is within a predetermined range (central fixation range Fc or internal fixation range Fi) including a position corresponding to the optical axis in the image of the subject's eye, the control unit performs internal fixation. The system projects a fixation light beam onto the subject's eye, and the analysis unit identifies the position of the OCT image in the image of the subject's eye based on the fixation position where the fixation light beam is projected. When the OCT measurement position is outside the predetermined range (first external fixation range Fo1 to fourth external fixation range Fo4) including the position corresponding to the optical axis in the image of the subject's eye, the control unit controls the external fixation system. to project the fixation light flux onto the subject's eye, and the analysis unit specifies the position of the OCT image in the image of the subject's eye based on the fixation position where the fixation light flux is projected.
 このような構成によれば、OCT計測位置に応じて内部固視系と外部固視系とを切り換えつつ、角度変更機構により光学系の光軸の向きを変更することで、被検眼に対して広角のOCT計測を実行することが可能になる。 According to such a configuration, while switching between the internal fixation system and the external fixation system according to the OCT measurement position, the orientation of the optical axis of the optical system is changed by the angle changing mechanism. It becomes possible to perform wide-angle OCT measurements.
 いくつかの実施形態では、制御部は、2以上のOCT計測位置のそれぞれについて内部固視系又は外部固視系により固視光束を投射させる。解析部は、2以上のOCT計測位置のそれぞれについて、固視光束が投影される固視位置に基づいて被検眼の画像におけるOCT画像の位置を特定する。 In some embodiments, the controller causes the internal fixation system or the external fixation system to project a fixation light beam on each of two or more OCT measurement positions. For each of the two or more OCT measurement positions, the analysis unit identifies the position of the OCT image in the image of the subject's eye based on the fixation position onto which the fixation light flux is projected.
 このような構成によれば、OCT計測位置に応じて内部固視系と外部固視系とを切り換えつつ、2以上のOCT計測位置のそれぞれについて被検眼の画像におけるOCT画像の位置を特定することができる。それにより、モンタージュ画像のような複数のOCT画像の合成画像を取得することが可能になる。 According to such a configuration, the position of the OCT image in the image of the subject's eye can be specified for each of two or more OCT measurement positions while switching between the internal fixation system and the external fixation system according to the OCT measurement position. can be done. Thereby, it becomes possible to acquire a composite image of multiple OCT images, such as a montage image.
 いくつかの実施形態では、外部固視系は、光学系に対して固定されている。 In some embodiments, the external fixation system is fixed relative to the optical system.
 このような構成によれば、外部固視系と光軸との位置関係が一定になるため、外部固視系による固視位置に基づいて、被検眼の画像におけるOCT画像の位置を簡素な処理で特定することができるようになる。 With such a configuration, since the positional relationship between the external fixation system and the optical axis is constant, the position of the OCT image in the image of the subject's eye can be easily processed based on the fixation position of the external fixation system. can be identified by
 いくつかの実施形態では、角度変更機構は、水平方向に対する光軸の向きのなす角を上下方向に変更する第1角度変更機構(チルト機構152)と、垂直方向に対する光軸の向きのなす角を左右方向に変更する第2角度変更機構(スイング機構151)と、を含む。 In some embodiments, the angle changing mechanism includes a first angle changing mechanism (tilt mechanism 152) that vertically changes the angle formed by the orientation of the optical axis with respect to the horizontal direction, and a tilt mechanism 152 that changes the angle formed by the orientation of the optical axis with respect to the vertical direction. and a second angle changing mechanism (swing mechanism 151) that changes the angle in the horizontal direction.
 このような構成によれば、被検眼の画像におけるOCT計測位置に基づいて固視系を制御しつつ、チルト動作及びスイング動作により光学系の光軸の向きを変更することで、簡素な構成で、広角のOCT計測を実行することが可能になる。 According to such a configuration, while controlling the fixation system based on the OCT measurement position in the image of the subject's eye, the orientation of the optical axis of the optical system is changed by the tilting motion and the swinging motion. , making it possible to perform wide-angle OCT measurements.
 いくつかの実施形態は、操作部(240B)を含み、OCT計測位置は、操作部を用いた被検眼の画像に対する操作内容に基づいて設定される。 Some embodiments include an operation unit (240B), and the OCT measurement position is set based on the operation content for the image of the subject's eye using the operation unit.
 このような構成によれば、被検眼の画像における所望のOCT計測位置に対してOCT計測を実行して、被検眼の画像におけるOCT画像の位置を特定することが可能になる。 According to such a configuration, it is possible to specify the position of the OCT image in the image of the subject's eye by performing OCT measurement on a desired OCT measurement position in the image of the subject's eye.
 いくつかの実施形態に係る眼科装置(1)の制御方法は、制御ステップと、画像形成ステップと、解析ステップとを含む。眼科装置(1)は、光学系(図1、図2、図5に示す光学系)と、角度変更機構(スイング機構151、チルト機構152)と、固視系(LCD39、外部固視ユニット23)と、を含む。光学系は、対物レンズ(22)と、撮影光学系(30)と、OCT光学系(OCTユニット100から対物レンズ22までの光学系)とを含む。撮影光学系は、対物レンズを介して被検眼(E)からの光を受光する。OCT光学系は、撮影光学系の光路に結合され、光路を経由した測定光(LS)を対物レンズを介して被検眼に投射して測定光の戻り光と参照光(LR)との干渉光(LC)を検出する。角度変更機構は、光学系を傾けることにより光学系の光軸の向きを変更する。固視系は、光軸に対する相対位置を変更可能な固視光束の出射位置から被検眼に向けて固視光束を投射する。制御ステップは、被検眼の画像におけるOCT計測位置に基づいて被検眼の視軸と光軸とのなす角を変更してOCT計測位置に対応した出射位置から固視光束を投射させ、固視光束が投射されている状態でOCT光学系を制御することにより被検眼に対するOCT計測を実行させる。画像形成ステップは、干渉光の検出結果に基づいて被検眼のOCT画像を形成する。解析ステップは、出射位置に基づいて、被検眼の画像におけるOCT画像の位置を特定する。 A control method for an ophthalmologic apparatus (1) according to some embodiments includes a control step, an image forming step, and an analysis step. The ophthalmologic apparatus (1) includes an optical system (the optical system shown in FIGS. 1, 2, and 5), an angle changing mechanism (swing mechanism 151, tilt mechanism 152), and a fixation system (LCD 39, external fixation unit 23 ) and including. The optical system includes an objective lens (22), an imaging optical system (30), and an OCT optical system (an optical system from the OCT unit 100 to the objective lens 22). The imaging optical system receives light from the subject's eye (E) via the objective lens. The OCT optical system is coupled to the optical path of the imaging optical system, projects the measurement light (LS) that has passed through the optical path onto the subject's eye via the objective lens, and produces interference light between the return light of the measurement light and the reference light (LR). (LC) is detected. The angle changing mechanism changes the direction of the optical axis of the optical system by tilting the optical system. The fixation system projects a fixation light flux toward the subject's eye from a fixation light flux emission position whose relative position to the optical axis can be changed. The control step changes the angle formed by the visual axis of the subject's eye and the optical axis based on the OCT measurement position in the image of the subject's eye, projects the fixation light flux from the emission position corresponding to the OCT measurement position, and is projected, the OCT optical system is controlled to perform OCT measurement for the subject's eye. The image forming step forms an OCT image of the subject's eye based on the detection result of the interference light. The analyzing step identifies the position of the OCT image in the image of the eye to be examined based on the emission position.
 このような方法によれば、被検眼の画像におけるOCT計測位置に基づいて固視系を制御しつつ、角度変更機構により光学系の光軸の向きを変更することで、被検眼に対して広角のOCT計測を実行することが可能になる。それにより、被検者が顔の向きを変えることなく、被検眼をより簡便に広角で撮影又は計測することが可能になる。 According to such a method, while controlling the fixation system based on the OCT measurement position in the image of the eye to be inspected, the orientation of the optical axis of the optical system is changed by the angle changing mechanism, thereby widening the angle of view of the eye to be inspected. of OCT measurements can be performed. As a result, the subject's eye can be more easily photographed or measured at a wide angle without changing the orientation of the subject's face.
 いくつかの実施形態では、制御ステップは、2以上のOCT計測位置のそれぞれについて固視系により固視光束を投射させる。解析ステップは、2以上のOCT計測位置のそれぞれについて、固視系における出射位置に基づいて被検眼の画像におけるOCT画像の位置を特定する。 In some embodiments, the control step causes the fixation system to project a fixation light flux on each of the two or more OCT measurement positions. The analysis step identifies the position of the OCT image in the image of the subject's eye based on the emission position in the fixation system for each of the two or more OCT measurement positions.
 このような方法によれば、2以上のOCT計測位置のそれぞれについて少なくとも固視系を制御しつつ、被検眼の画像におけるOCT画像の位置を特定することができる。それにより、モンタージュ画像のような複数のOCT画像の合成画像を取得することが可能になる。 According to such a method, it is possible to specify the position of the OCT image in the image of the subject's eye while controlling at least the fixation system for each of the two or more OCT measurement positions. Thereby, it becomes possible to acquire a composite image of multiple OCT images, such as a montage image.
 いくつかの実施形態では、固視系は、対物レンズの外側から、光軸に対して既知の位置関係を有する出射位置から被検眼に向けて固視光束を投射する外部固視系(外部固視ユニット)を含む。 In some embodiments, the fixation system is an external fixation system (external fixation system) that projects a fixation light flux toward the subject's eye from an exit position having a known positional relationship with respect to the optical axis from outside the objective lens. visual unit).
 このような方法によれば、外部固視系を用いて、被検眼の画像におけるOCT計測位置に基づいて固視系を制御しつつ、角度変更機構により光学系の光軸の向きを変更することで、被検眼に対して広角のOCT計測を実行することが可能になる。 According to such a method, the direction of the optical axis of the optical system is changed by the angle changing mechanism while controlling the fixation system based on the OCT measurement position in the image of the subject's eye using the external fixation system. , it is possible to perform wide-angle OCT measurement on the subject's eye.
 いくつかの実施形態では、固視系は、内部固視系(LCD39)と、外部固視系(外部固視ユニット23)とを含む。内部固視系は、光軸に対する相対位置を変更可能な内部固視光源(LCD39の画面上の表示画素)を含み、対物レンズを介して被検眼に固視光束を投射する。外部固視系は、光軸に対する相対位置を変更可能な外部固視光源(固視光源23-1~23-4)を含み、対物レンズの外側から、光軸に対して既知の位置関係を有する外部固視光源の位置から被検眼に向けて固視光束を投射する。 In some embodiments, the fixation system includes an internal fixation system (LCD 39) and an external fixation system (external fixation unit 23). The internal fixation system includes an internal fixation light source (display pixels on the screen of the LCD 39) whose position relative to the optical axis can be changed, and projects a fixation light beam onto the subject's eye via the objective lens. The external fixation system includes an external fixation light source (fixation light sources 23-1 to 23-4) whose relative position to the optical axis can be changed, and a known positional relationship to the optical axis is established from the outside of the objective lens. A fixation light beam is projected from the position of the external fixation light source provided toward the eye to be examined.
 このような方法によれば、内部固視系及び外部固視系を用いて、被検眼の画像におけるOCT計測位置に基づいて固視系を制御しつつ、角度変更機構により光学系の光軸の向きを変更することで、被検眼に対して広角のOCT計測を実行することが可能になる。 According to this method, the internal fixation system and the external fixation system are used to control the fixation system based on the OCT measurement position in the image of the subject's eye, and the angle changing mechanism adjusts the optical axis of the optical system. By changing the orientation, it becomes possible to perform wide-angle OCT measurements on the subject's eye.
 いくつかの実施形態では、被検眼の画像における光軸に相当する位置を含む所定範囲(中心固視範囲Fc又は内部固視範囲Fi)にOCT計測位置があるとき、制御ステップは、内部固視系により被検眼に固視光束を投射させ、解析部は、固視光束が投影される固視位置に基づいて、被検眼の画像におけるOCT画像の位置を特定する。被検眼の画像における光軸に相当する位置を含む所定範囲の外側(第1外部固視範囲Fo1~第4外部固視範囲Fo4)にOCT計測位置があるとき、制御ステップは、外部固視系により被検眼に固視光束を投射させ、解析部は、固視光束が投影される固視位置に基づいて、被検眼の画像におけるOCT画像の位置を特定する。 In some embodiments, when the OCT measurement position is within a predetermined range (central fixation range Fc or internal fixation range Fi) including a position corresponding to the optical axis in the image of the subject's eye, the control step The system projects a fixation light beam onto the subject's eye, and the analysis unit identifies the position of the OCT image in the image of the subject's eye based on the fixation position where the fixation light beam is projected. When the OCT measurement position is outside the predetermined range (first external fixation range Fo1 to fourth external fixation range Fo4) including the position corresponding to the optical axis in the image of the subject's eye, the control step includes: to project the fixation light flux onto the subject's eye, and the analysis unit specifies the position of the OCT image in the image of the subject's eye based on the fixation position where the fixation light flux is projected.
 このような方法によれば、OCT計測位置に応じて内部固視系と外部固視系とを切り換えつつ、角度変更機構により光学系の光軸の向きを変更することで、被検眼に対して広角のOCT計測を実行することが可能になる。 According to such a method, while switching between the internal fixation system and the external fixation system according to the OCT measurement position, the angle change mechanism changes the direction of the optical axis of the optical system, so that It becomes possible to perform wide-angle OCT measurements.
 いくつかの実施形態では、制御ステップは、2以上のOCT計測位置のそれぞれについて内部固視系又は外部固視系により固視光束を投射させる。解析ステップは、2以上のOCT計測位置のそれぞれについて、固視光束が投影される固視位置に基づいて被検眼の画像におけるOCT画像の位置を特定する。 In some embodiments, the control step causes the internal fixation system or the external fixation system to project a fixation light beam on each of the two or more OCT measurement positions. The analyzing step identifies the position of the OCT image in the image of the subject's eye based on the fixation position onto which the fixation light flux is projected, for each of the two or more OCT measurement positions.
 このような方法によれば、OCT計測位置に応じて内部固視系と外部固視系とを切り換えつつ、2以上のOCT計測位置のそれぞれについて被検眼の画像におけるOCT画像の位置を特定することができる。それにより、モンタージュ画像のような複数のOCT画像の合成画像を取得することが可能になる。 According to this method, the position of the OCT image in the image of the subject's eye is specified for each of two or more OCT measurement positions while switching between the internal fixation system and the external fixation system according to the OCT measurement position. can be done. Thereby, it becomes possible to acquire a composite image of multiple OCT images, such as a montage image.
 いくつかの実施形態では、外部固視系は、光学系に対して固定されている。 In some embodiments, the external fixation system is fixed relative to the optical system.
 このような方法によれば、外部固視系と光軸との位置関係が一定になるため、外部固視系による固視位置に基づいて、被検眼の画像におけるOCT画像の位置を簡素な処理で特定することができるようになる。 According to such a method, since the positional relationship between the external fixation system and the optical axis is constant, the position of the OCT image in the image of the subject's eye can be simply processed based on the fixation position of the external fixation system. can be identified by
 いくつかの実施形態では、角度変更機構は、水平方向に対する光軸の向きのなす角を上下方向に変更する第1角度変更機構(チルト機構152)と、垂直方向に対する光軸の向きのなす角を左右方向に変更する第2角度変更機構(スイング機構151)と、を含む。 In some embodiments, the angle changing mechanism includes a first angle changing mechanism (tilt mechanism 152) that vertically changes the angle formed by the orientation of the optical axis with respect to the horizontal direction, and a tilt mechanism 152 that changes the angle formed by the orientation of the optical axis with respect to the vertical direction. and a second angle changing mechanism (swing mechanism 151) that changes the angle in the horizontal direction.
 このような方法によれば、被検眼の画像におけるOCT計測位置に基づいて固視系を制御しつつ、チルト動作及びスイング動作により光学系の光軸の向きを変更することで、簡素な構成で、広角のOCT計測を実行することが可能になる。 According to such a method, while controlling the fixation system based on the OCT measurement position in the image of the subject's eye, the orientation of the optical axis of the optical system is changed by tilting and swinging motions, thereby achieving a simple configuration. , making it possible to perform wide-angle OCT measurements.
 いくつかの実施形態では、OCT計測位置は、操作部を用いた被検眼の画像に対する操作内容に基づいて設定される。 In some embodiments, the OCT measurement position is set based on the operation content for the image of the subject's eye using the operation unit.
 このような方法によれば、被検眼の画像における所望のOCT計測位置に対してOCT計測を実行して、被検眼の画像におけるOCT画像の位置を特定することが可能になる。 According to such a method, it is possible to specify the position of the OCT image in the image of the eye to be inspected by performing OCT measurement on the desired OCT measurement position in the image of the eye to be inspected.
 いくつかの実施形態に係るプログラムは、コンピュータに、上記のいずれかに記載の眼科装置の制御方法の各ステップを実行させる。 A program according to some embodiments causes a computer to execute each step of the ophthalmologic apparatus control method described above.
 このようなプログラムによれば、被検眼の画像におけるOCT計測位置に基づいて固視系を制御しつつ、角度変更機構により光学系の光軸の向きを変更することで、被検眼に対して広角のOCT計測を実行することが可能になる。それにより、被検者が顔の向きを変えることなく、被検眼をより簡便に広角で撮影又は計測することが可能になる。 According to such a program, while controlling the fixation system based on the OCT measurement position in the image of the eye to be inspected, the orientation of the optical axis of the optical system is changed by the angle changing mechanism, thereby widening the angle of view of the eye to be inspected. of OCT measurements can be performed. As a result, the subject's eye can be more easily photographed or measured at a wide angle without changing the orientation of the subject's face.
 以上に説明した実施形態はこの発明の一例に過ぎない。この発明を実施しようとする者は、この発明の要旨の範囲内における変形(省略、置換、付加等)を任意に施すことが可能である。 The embodiment described above is merely an example of the present invention. A person who intends to implement this invention can arbitrarily make modifications (omissions, substitutions, additions, etc.) within the scope of the gist of this invention.
 いくつかの実施形態では、眼科装置の制御方法をコンピュータに実行させるプログラムが記憶部212に保存される。このようなプログラムを、コンピュータによって読み取り可能な任意の記録媒体に記憶させてもよい。記録媒体は、磁気、光、光磁気、半導体などを利用した電子媒体であってよい。典型的には、記録媒体は、磁気テープ、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ、ソリッドステートドライブなどである。 In some embodiments, the storage unit 212 stores a program that causes a computer to execute the control method of the ophthalmologic apparatus. Such a program may be stored in any computer-readable recording medium. The recording medium may be electronic media using magnetism, light, magneto-optics, semiconductors, and the like. Typically, recording media are magnetic tapes, magnetic disks, optical disks, magneto-optical disks, flash memories, solid state drives, and the like.
1 眼科装置
2 眼底カメラユニット
10 照明光学系
22 対物レンズ
23 外部固視ユニット
30 撮影光学系
39 LCD
100 OCTユニット
151 スイング機構
152 チルト機構
210 制御部
211 主制御部
220 画像形成部
230 データ処理部
231 解析部
231C モンタージュ撮影処理部
231D レジストレーション処理部
E 被検眼
Ef 眼底
1 Ophthalmic Device 2 Fundus Camera Unit 10 Illumination Optical System 22 Objective Lens 23 External Fixation Unit 30 Photographing Optical System 39 LCD
100 OCT unit 151 swing mechanism 152 tilt mechanism 210 control unit 211 main control unit 220 image forming unit 230 data processing unit 231 analysis unit 231C montage imaging processing unit 231D registration processing unit E eye to be examined Ef fundus

Claims (19)

  1.  対物レンズと、前記対物レンズを介して被検眼からの光を受光する撮影光学系と、前記撮影光学系の光路に結合され、前記光路を経由した測定光を前記対物レンズを介して前記被検眼に投射して前記測定光の戻り光と参照光との干渉光を検出するOCT光学系と、を含む光学系と、
     前記光学系を傾けることにより前記光学系の光軸の向きを変更する角度変更機構と、
     前記光軸に対する相対位置を変更可能な固視光束の出射位置から前記被検眼に向けて固視光束を投射する固視系と、
     前記被検眼の画像におけるOCT計測位置に基づいて前記被検眼の視軸と前記光軸とのなす角を変更して前記OCT計測位置に対応した前記出射位置から前記固視光束を投射させ、前記固視光束が投射されている状態で前記OCT光学系を制御することにより前記被検眼に対するOCT計測を実行させる制御部と、
     前記干渉光の検出結果に基づいて前記被検眼のOCT画像を形成する画像形成部と、
     前記出射位置に基づいて、前記被検眼の画像における前記OCT画像の位置を特定する解析部と、
     を含む、眼科装置。
    an objective lens, an imaging optical system for receiving light from an eye to be inspected via the objective lens, and an optical path of the imaging optical system for receiving measurement light that has passed through the optical path and is coupled to the eye to be inspected via the objective lens. an OCT optical system that detects interference light between the return light of the measurement light and the reference light by projecting the measurement light onto the
    an angle changing mechanism that changes the direction of the optical axis of the optical system by tilting the optical system;
    a fixation system that projects a fixation light flux toward the subject's eye from an emission position of the fixation light flux whose position relative to the optical axis is changeable;
    changing the angle formed by the visual axis of the eye to be examined and the optical axis based on the OCT measurement position in the image of the eye to be examined, and projecting the fixation light flux from the emission position corresponding to the OCT measurement position; a control unit that controls the OCT optical system in a state in which a fixation light beam is projected to execute OCT measurement for the eye to be examined;
    an image forming unit that forms an OCT image of the subject's eye based on the detection result of the interference light;
    an analysis unit that specifies the position of the OCT image in the image of the eye to be inspected based on the emission position;
    An ophthalmic device, comprising:
  2.  前記制御部は、2以上のOCT計測位置のそれぞれについて前記固視系により前記固視光束を投射させ、
     前記解析部は、前記2以上のOCT計測位置のそれぞれについて、前記固視系における前記出射位置に基づいて前記被検眼の画像における前記OCT画像の位置を特定する
     ことを特徴とする請求項1に記載の眼科装置。
    The control unit causes the fixation system to project the fixation light flux on each of two or more OCT measurement positions,
    2. The analysis unit, for each of the two or more OCT measurement positions, specifies the position of the OCT image in the image of the subject's eye based on the emission position in the fixation system. An ophthalmic device as described.
  3.  前記固視系は、前記対物レンズの外側から、前記光軸に対して既知の位置関係を有する前記出射位置から前記被検眼に向けて前記固視光束を投射する外部固視系を含む
     ことを特徴とする請求項1又は請求項2に記載の眼科装置。
    The fixation system includes an external fixation system that projects the fixation light beam from the outside of the objective lens toward the subject's eye from the emission position having a known positional relationship with respect to the optical axis. 3. An ophthalmic device according to claim 1 or claim 2.
  4.  前記固視系は、
     前記光軸に対する相対位置を変更可能な内部固視光源を含み、前記対物レンズを介して前記被検眼に前記固視光束を投射する内部固視系と、
     前記光軸に対する相対位置を変更可能な外部固視光源を含み、前記対物レンズの外側から、前記光軸に対して既知の位置関係を有する前記外部固視光源の位置から前記被検眼に向けて前記固視光束を投射する外部固視系と、
     を含む
     ことを特徴とする請求項1に記載の眼科装置。
    The fixation system includes:
    an internal fixation system including an internal fixation light source whose position relative to the optical axis can be changed, and projecting the fixation light flux onto the eye to be inspected via the objective lens;
    including an external fixation light source whose position relative to the optical axis can be changed, from the outside of the objective lens toward the eye to be examined from a position of the external fixation light source having a known positional relationship with the optical axis an external fixation system that projects the fixation light flux;
    The ophthalmic device of claim 1, comprising:
  5.  前記被検眼の画像における前記光軸に相当する位置を含む所定範囲に前記OCT計測位置があるとき、前記制御部は、前記内部固視系により前記被検眼に前記固視光束を投射させ、前記解析部は、前記固視光束が投影される固視位置に基づいて、前記被検眼の画像における前記OCT画像の位置を特定し、
     前記被検眼の画像における前記光軸に相当する位置を含む所定範囲の外側に前記OCT計測位置があるとき、前記制御部は、前記外部固視系により前記被検眼に前記固視光束を投射させ、前記解析部は、前記固視光束が投影される固視位置に基づいて、前記被検眼の画像における前記OCT画像の位置を特定する
     ことを特徴とする請求項4に記載の眼科装置。
    When the OCT measurement position is within a predetermined range including the position corresponding to the optical axis in the image of the subject's eye, the control unit causes the internal fixation system to project the fixation light flux onto the subject's eye, and The analysis unit identifies the position of the OCT image in the image of the subject's eye based on the fixation position to which the fixation light beam is projected,
    When the OCT measurement position is outside a predetermined range including the position corresponding to the optical axis in the image of the subject's eye, the control unit causes the external fixation system to project the fixation light beam onto the subject's eye. 5. The ophthalmologic apparatus according to claim 4, wherein the analysis unit identifies the position of the OCT image in the image of the subject's eye based on the fixation position onto which the fixation light flux is projected.
  6.  前記制御部は、2以上のOCT計測位置のそれぞれについて前記内部固視系又は前記外部固視系により前記固視光束を投射させ、
     前記解析部は、前記2以上のOCT計測位置のそれぞれについて、前記固視光束が投影される固視位置に基づいて前記被検眼の画像における前記OCT画像の位置を特定する
     ことを特徴とする請求項4又は請求項5に記載の眼科装置。
    The control unit causes the internal fixation system or the external fixation system to project the fixation light flux on each of two or more OCT measurement positions,
    The analysis unit identifies, for each of the two or more OCT measurement positions, the position of the OCT image in the image of the subject's eye based on the fixation position onto which the fixation light flux is projected. 6. The ophthalmic device according to claim 4 or 5.
  7.  前記外部固視系は、前記光学系に対して固定されている
     ことを特徴とする請求項3~請求項6のいずれか一項に記載の眼科装置。
    The ophthalmologic apparatus according to any one of claims 3 to 6, wherein the external fixation system is fixed with respect to the optical system.
  8.  前記角度変更機構は、
     水平方向に対する前記光軸の向きのなす角を上下方向に変更する第1角度変更機構と、
     垂直方向に対する前記光軸の向きのなす角を左右方向に変更する第2角度変更機構と、
     を含む
     ことを特徴とする請求項1~請求項7のいずれか一項に記載の眼科装置。
    The angle changing mechanism is
    a first angle changing mechanism that vertically changes the angle formed by the orientation of the optical axis with respect to the horizontal direction;
    a second angle changing mechanism that changes the angle formed by the orientation of the optical axis with respect to the vertical direction in the horizontal direction;
    The ophthalmic apparatus according to any one of claims 1 to 7, comprising:
  9.  操作部を含み、
     前記OCT計測位置は、前記操作部を用いた前記被検眼の画像に対する操作内容に基づいて設定される
     ことを特徴とする請求項1~請求項8のいずれか一項に記載の眼科装置。
    including an operation part,
    The ophthalmologic apparatus according to any one of claims 1 to 8, wherein the OCT measurement position is set based on the content of operation performed on the image of the eye to be inspected using the operation unit.
  10.  対物レンズと、前記対物レンズを介して被検眼からの光を受光する撮影光学系と、前記撮影光学系の光路に結合され、前記光路を経由した測定光を前記対物レンズを介して前記被検眼に投射して前記測定光の戻り光と参照光との干渉光を検出するOCT光学系と、を含む光学系と、
     前記光学系を傾けることにより前記光学系の光軸の向きを変更する角度変更機構と、
     前記光軸に対する相対位置を変更可能な固視光束の出射位置から前記被検眼に向けて固視光束を投射する固視系と、を含む眼科装置の制御方法であって、
     前記被検眼の画像におけるOCT計測位置に基づいて前記被検眼の視軸と前記光軸とのなす角を変更して前記OCT計測位置に対応した前記出射位置から前記固視光束を投射させ、前記固視光束が投射されている状態で前記OCT光学系を制御することにより前記被検眼に対するOCT計測を実行させる制御ステップと、
     前記干渉光の検出結果に基づいて前記被検眼のOCT画像を形成する画像形成ステップと、
     前記出射位置に基づいて、前記被検眼の画像における前記OCT画像の位置を特定する解析ステップと、
     を含む、眼科装置の制御方法。
    an objective lens, an imaging optical system for receiving light from an eye to be inspected via the objective lens, and an optical path of the imaging optical system for receiving measurement light that has passed through the optical path and is coupled to the eye to be inspected via the objective lens. an OCT optical system that detects interference light between the return light of the measurement light and the reference light by projecting the measurement light onto the
    an angle changing mechanism that changes the direction of the optical axis of the optical system by tilting the optical system;
    A control method for an ophthalmologic apparatus including a fixation system for projecting a fixation light flux toward the subject's eye from a fixation light flux emission position whose position relative to the optical axis can be changed,
    changing the angle formed by the visual axis of the eye to be examined and the optical axis based on the OCT measurement position in the image of the eye to be examined, and projecting the fixation light flux from the emission position corresponding to the OCT measurement position; a control step of performing OCT measurement on the subject's eye by controlling the OCT optical system in a state in which a fixation light beam is projected;
    an image forming step of forming an OCT image of the subject's eye based on the detection result of the interference light;
    an analysis step of identifying the position of the OCT image in the image of the eye to be inspected based on the emission position;
    A method of controlling an ophthalmic device, comprising:
  11.  前記制御ステップは、2以上のOCT計測位置のそれぞれについて前記固視系により前記固視光束を投射させ、
     前記解析ステップは、前記2以上のOCT計測位置のそれぞれについて、前記固視系における前記出射位置に基づいて前記被検眼の画像における前記OCT画像の位置を特定する
     ことを特徴とする請求項10に記載の眼科装置の制御方法。
    The control step causes the fixation system to project the fixation light flux on each of two or more OCT measurement positions;
    11. The method according to claim 10, wherein the analysis step identifies the position of the OCT image in the image of the subject's eye based on the exit position in the fixation system for each of the two or more OCT measurement positions. A method of controlling the described ophthalmic device.
  12.  前記固視系は、前記対物レンズの外側から、前記光軸に対して既知の位置関係を有する前記出射位置から前記被検眼に向けて前記固視光束を投射する外部固視系を含む
     ことを特徴とする請求項10又は請求項11に記載の眼科装置の制御方法。
    The fixation system includes an external fixation system that projects the fixation light beam from the outside of the objective lens toward the subject's eye from the emission position having a known positional relationship with respect to the optical axis. 12. The method for controlling an ophthalmologic apparatus according to claim 10 or 11.
  13.  前記固視系は、
     前記光軸に対する相対位置を変更可能な内部固視光源を含み、前記対物レンズを介して前記被検眼に前記固視光束を投射する内部固視系と、
     前記光軸に対する相対位置を変更可能な外部固視光源を含み、前記対物レンズの外側から、前記光軸に対して既知の位置関係を有する前記外部固視光源の位置から前記被検眼に向けて前記固視光束を投射する外部固視系と、
     を含む
     ことを特徴とする請求項10に記載の眼科装置の制御方法。
    The fixation system includes:
    an internal fixation system including an internal fixation light source whose position relative to the optical axis can be changed, and projecting the fixation light flux onto the eye to be inspected via the objective lens;
    including an external fixation light source whose position relative to the optical axis can be changed, from the outside of the objective lens toward the eye to be examined from a position of the external fixation light source having a known positional relationship with the optical axis an external fixation system that projects the fixation light flux;
    The method of controlling an ophthalmologic apparatus according to claim 10, comprising:
  14.  前記被検眼の画像における前記光軸に相当する位置を含む所定範囲に前記OCT計測位置があるとき、前記制御ステップは、前記内部固視系により前記被検眼に前記固視光束を投射させ、前記解析ステップは、前記固視光束が投影される固視位置に基づいて、前記被検眼の画像における前記OCT画像の位置を特定し、
     前記被検眼の画像における前記光軸に相当する位置を含む所定範囲の外側に前記OCT計測位置があるとき、前記制御ステップは、前記外部固視系により前記被検眼に前記固視光束を投射させ、前記解析ステップは、前記固視光束が投影される固視位置に基づいて、前記被検眼の画像における前記OCT画像の位置を特定する
     ことを特徴とする請求項13に記載の眼科装置の制御方法。
    When the OCT measurement position is within a predetermined range including the position corresponding to the optical axis in the image of the subject's eye, the control step causes the internal fixation system to project the fixation light beam onto the subject's eye, and The analysis step identifies the position of the OCT image in the image of the subject's eye based on the fixation position to which the fixation light flux is projected,
    When the OCT measurement position is outside a predetermined range including the position corresponding to the optical axis in the image of the subject's eye, the control step causes the external fixation system to project the fixation light beam onto the subject's eye. 14. The control of the ophthalmologic apparatus according to claim 13, wherein the analyzing step identifies the position of the OCT image in the image of the subject's eye based on the fixation position onto which the fixation light flux is projected. Method.
  15.  前記制御ステップは、2以上のOCT計測位置のそれぞれについて前記内部固視系又は前記外部固視系により前記固視光束を投射させ、
     前記解析ステップは、前記2以上のOCT計測位置のそれぞれについて、前記固視光束が投影される固視位置に基づいて前記被検眼の画像における前記OCT画像の位置を特定する
     ことを特徴とする請求項13又は請求項14に記載の眼科装置の制御方法。
    the control step causes the internal fixation system or the external fixation system to project the fixation light flux on each of two or more OCT measurement positions;
    The analysis step identifies the position of the OCT image in the image of the subject's eye based on the fixation position onto which the fixation light flux is projected, for each of the two or more OCT measurement positions. 15. The method for controlling an ophthalmologic apparatus according to claim 13 or 14.
  16.  前記外部固視系は、前記光学系に対して固定されている
     ことを特徴とする請求項12~請求項15のいずれか一項に記載の眼科装置の制御方法。
    The method of controlling an ophthalmologic apparatus according to any one of claims 12 to 15, wherein the external fixation system is fixed with respect to the optical system.
  17.  前記角度変更機構は、
     水平方向に対する前記光軸の向きのなす角を上下方向に変更する第1角度変更機構と、
     垂直方向に対する前記光軸の向きのなす角を左右方向に変更する第2角度変更機構と、
     を含む
     ことを特徴とする請求項10~請求項16のいずれか一項に記載の眼科装置の制御方法。
    The angle changing mechanism is
    a first angle changing mechanism that vertically changes the angle formed by the orientation of the optical axis with respect to the horizontal direction;
    a second angle changing mechanism that changes the angle formed by the orientation of the optical axis with respect to the vertical direction in the horizontal direction;
    The method for controlling an ophthalmologic apparatus according to any one of claims 10 to 16, comprising:
  18.  前記OCT計測位置は、操作部を用いた前記被検眼の画像に対する操作内容に基づいて設定される
     ことを特徴とする請求項10~請求項17のいずれか一項に記載の眼科装置の制御方法。
    The method for controlling an ophthalmologic apparatus according to any one of claims 10 to 17, wherein the OCT measurement position is set based on an operation content for the image of the eye to be examined using an operation unit. .
  19.  コンピュータに、請求項10~請求項18のいずれか一項に記載の眼科装置の制御方法の各ステップを実行させることを特徴とするプログラム。 A program characterized by causing a computer to execute each step of the method for controlling an ophthalmologic apparatus according to any one of claims 10 to 18.
PCT/JP2022/026271 2021-09-28 2022-06-30 Ophthalmic device, method for controlling ophthalmic device, and program WO2023053648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021158233A JP2023048746A (en) 2021-09-28 2021-09-28 Ophthalmologic device. control method of ophthalmologic device, and program
JP2021-158233 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023053648A1 true WO2023053648A1 (en) 2023-04-06

Family

ID=85780129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026271 WO2023053648A1 (en) 2021-09-28 2022-06-30 Ophthalmic device, method for controlling ophthalmic device, and program

Country Status (2)

Country Link
JP (1) JP2023048746A (en)
WO (1) WO2023053648A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113146A (en) * 2015-12-22 2017-06-29 株式会社トプコン Ophthalmologic imaging device
JP2021019976A (en) * 2019-07-30 2021-02-18 株式会社トプコン Ophthalmologic apparatus and ophthalmologic system
WO2021149430A1 (en) * 2020-01-22 2021-07-29 株式会社トプコン Ophthalmic information processing device, ophthalmic device, ophthalmic information processing method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113146A (en) * 2015-12-22 2017-06-29 株式会社トプコン Ophthalmologic imaging device
JP2021019976A (en) * 2019-07-30 2021-02-18 株式会社トプコン Ophthalmologic apparatus and ophthalmologic system
WO2021149430A1 (en) * 2020-01-22 2021-07-29 株式会社トプコン Ophthalmic information processing device, ophthalmic device, ophthalmic information processing method, and program

Also Published As

Publication number Publication date
JP2023048746A (en) 2023-04-07

Similar Documents

Publication Publication Date Title
JP6045895B2 (en) Ophthalmic observation device
JP6685144B2 (en) Ophthalmic equipment and ophthalmic examination system
JP7304780B2 (en) ophthalmic equipment
JP2022027879A (en) Ophthalmologic imaging device, control method thereof, program, and recording medium
JPWO2013085042A1 (en) Fundus observation device
JP6159454B2 (en) Ophthalmic observation device
JP7215862B2 (en) OPHTHALMIC PHOTOGRAPHIC APPARATUS, CONTROL METHOD, PROGRAM, AND RECORDING MEDIUM THEREOF
JP7141279B2 (en) Ophthalmic information processing device, ophthalmic device, and ophthalmic information processing method
JP7394897B2 (en) Ophthalmological device and method for controlling the ophthalmological device
JP2019170710A (en) Ophthalmologic apparatus
JP6833081B2 (en) Ophthalmic equipment and ophthalmic examination system
WO2023053648A1 (en) Ophthalmic device, method for controlling ophthalmic device, and program
JP7164328B2 (en) Ophthalmic device and control method for ophthalmic device
JP7043302B2 (en) Ophthalmic devices, their control methods, programs, and recording media
JP7050488B2 (en) Ophthalmologic imaging equipment, its control method, programs, and recording media
JP7325169B2 (en) Ophthalmic device and its control method
JP6959158B2 (en) Ophthalmic equipment
JP7030577B2 (en) Ophthalmic equipment
JP7244211B2 (en) Ophthalmic device and control method for ophthalmic device
JP7288110B2 (en) ophthalmic equipment
JP7133995B2 (en) Ophthalmic device and its control method
JP7281877B2 (en) ophthalmic equipment
JP7103814B2 (en) Ophthalmic equipment
JP6954831B2 (en) Ophthalmologic imaging equipment, its control method, programs, and recording media
JP2023040529A (en) Ophthalmologic information processing apparatus, ophthalmologic apparatus, ophthalmologic information processing method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875527

Country of ref document: EP

Kind code of ref document: A1