WO2023053436A1 - Workpiece seating detection device - Google Patents

Workpiece seating detection device Download PDF

Info

Publication number
WO2023053436A1
WO2023053436A1 PCT/JP2021/036374 JP2021036374W WO2023053436A1 WO 2023053436 A1 WO2023053436 A1 WO 2023053436A1 JP 2021036374 W JP2021036374 W JP 2021036374W WO 2023053436 A1 WO2023053436 A1 WO 2023053436A1
Authority
WO
WIPO (PCT)
Prior art keywords
seating
workpiece
detection device
sensor
flow rate
Prior art date
Application number
PCT/JP2021/036374
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤昌治
野々口哲輝
山口徹
福岡大祐
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2021/036374 priority Critical patent/WO2023053436A1/en
Priority to JP2023550992A priority patent/JPWO2023053436A1/ja
Publication of WO2023053436A1 publication Critical patent/WO2023053436A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means

Definitions

  • the present invention relates to a workpiece seating detection device for determining seating of a workpiece gripped by a spindle chuck.
  • a machine tool In machine tools such as lathes, the workpiece is gripped by the spindle chuck, and cutting is performed by applying the cutting tool to the workpiece as the spindle rotates. At that time, if the work is not accurately in contact with the seating surface of the spindle chuck, the work will be cut off excessively, resulting in a reduction in finishing quality. Therefore, a machine tool is provided with a workpiece seating detection device so that it can be determined whether or not the workpiece is properly in contact with the seating surface of the spindle chuck. Specifically, an open detection hole is formed in the seating surface of the spindle chuck, and air is sent into the hole from an air supply source. The workpiece gripped by the spindle chuck is brought into contact with the seating surface and closes the detection hole, but a slight gap is generated and a certain amount of air leaks, so seating determination is made according to the amount of leakage.
  • the seating surface of the workpiece seating detection device becomes dirty with chips and coolant that scatters. put away. It is indispensable for the workpiece seating detection device to periodically adjust the threshold value for seating determination so as to correspond to the change. Threshold adjustment is performed while the master work is in close contact with the metal of the spindle chuck. To make the work easier for the operator, the seating sensor is attached to a position away from the spindle chuck, such as on the front of the fuselage. Therefore, in the conventional workpiece seating detection device, the piping for flowing air through the seating sensor to the spindle chuck is long, and it takes time to pressurize, resulting in a long work time required for threshold adjustment.
  • an object of the present invention is to provide a workpiece seating detection device with a short pipe length.
  • a workpiece seating detection device includes a detection hole for discharging air from a seating surface of a chuck that grips a workpiece, and an air supply flow for sending air from an air supply source to the detection hole.
  • a pressure control valve provided in the air supply channel; a seating sensor provided in the air supply channel on the secondary side of the pressure control valve; and measurement data measured by the seating sensor.
  • a control device displays the measurement data acquired via the relay device on an operation display device and calculates a threshold value for seat determination based on the operation of the operation display device.
  • the air from the air supply source flows through the air supply channel, is sent to the detection hole formed in the seating surface of the chuck that grips the workpiece, and is provided on the secondary side of the pressure control valve.
  • Measurement data measured by the seat sensor is transmitted to the control device via the relay device.
  • the measurement data is displayed on the operation display device, and based on the display, it becomes possible to calculate a threshold value for seating determination by operating the operation display device. Therefore, it is not necessary to place the seating sensor at a position far from the seating surface, and the air supply passage of the workpiece seating detection device can be shortened. can shorten the time required to reach a state where
  • FIG. 1 is a side view showing an internal structure of a machine tool equipped with a workpiece seating detection device;
  • FIG. 1 is a simplified diagram showing an embodiment of a workpiece seating detection device;
  • FIG. It is the figure which showed the seating surface of the spindle chuck.
  • It is a block diagram showing the control system of a machine tool.
  • It is the figure which showed the operation screen of the operation display device which makes a flow volume change into a graph and displays it.
  • FIG. 7 is a diagram showing changes in flow rate due to seating failure that can occur during workpiece machining. It is a diagram showing the state of the air pipe in the conventional workpiece seating detection device.
  • FIG. 1 is a side view showing the internal structure of a machine tool equipped with a workpiece seating detection device according to this embodiment.
  • a machine tool 1 is mounted on a movable bed 2 equipped with wheels, and is movable in the front-rear direction (Z-axis direction) along rails laid on a base 3 .
  • the machine tool 1 has a tool rest 11 having rotary tools such as end mills and drills, or cutting tools such as cutting tools.
  • a machine tool 1 has a spindle device 5 mounted on a movable bed 2, and has a structure in which a spindle chuck 12 that grips a workpiece can rotate.
  • the machine tool 1 is a two-axis lathe in which a turret device 4 is moved by a Z-axis drive device 6 that moves in the Z-axis direction parallel to the main shaft and an X-axis drive device 7 that moves in the X-axis direction, which is the vertical direction of the machine body.
  • the Z-axis driving device 6 and the X-axis driving device 7 have a slidable Z-axis slide 13 or X-axis slide 14, and are configured to convert the rotation output of the servomotor into linear motion by a ball screw mechanism.
  • the machine tool 1 is provided with an openable and closable front cover 16 on the front face of the machine body.
  • the machine tool 1 is modularized in the same manner as other work machines that constitute a processing machine line, and a plurality of front covers 16 are arranged in the width direction of the machine body to form a work transfer space 20 .
  • a work transfer space 20 In the work transfer space 20, an automatic work transfer machine for transferring the work W to each working machine is incorporated.
  • FIG. 2 is a diagram showing a simplified configuration of the workpiece seating detection device 17 provided in the machine tool 1.
  • the workpiece seating detection device 17 has three detection holes 22 formed in a seating surface 21 of the spindle chuck 12 (see FIG. 3).
  • An air supply source 24 such as a compressor is connected to the detection hole 22 via an air pipe 23, and an electromagnetic on-off valve 25, a pressure control valve 26 and a seating sensor 27 are connected to the air pipe 23 in order toward the downstream side. It is
  • the workpiece seating detection device 17 is configured such that air sent from an air supply source 24 to an air pipe 23 flows into the spindle chuck 12 at a predetermined pressure, and the air is discharged from the detection hole 22 in the unclamped state. Become. On the other hand, when the workpiece W is transferred to the spindle chuck 12 by the workpiece transfer robot, the detection hole 22 is blocked and the air flow is interrupted. However, the workpiece W does not come into close contact with the seating surface 21 and the detection hole 22 is not completely blocked, and a small amount of air leaks through a slight gap.
  • the seating sensor 27 of the present embodiment is a flow rate sensor that measures the flow rate of air flowing out from the detection hole 22, and is referred to as a flow rate sensor 27 in the following description.
  • the workpiece seating detection device 17 is configured such that the measured value by the flow sensor 27 is transmitted to the control device 9 and the seating determination is performed by comparing it with a preset threshold value.
  • a master work MW that creates a predetermined gap in the seating surface 21 of the spindle chuck 12 is used to set such a threshold.
  • FIG. 3 is a view showing the seating surface of the spindle chuck 12. As shown in FIG. The master work MW is gripped by the chuck claws while being centered on the seating surface 21 as indicated by the dashed line.
  • the master work MW has a disc-shaped center with a hole 31, and a first adjustment groove 33 extending radially from the center hole 31 to the outer diameter end at a position separated by 180 degrees on one end face in the axial direction.
  • a second adjustment groove 34 is formed.
  • the first adjustment groove 33 is a shallow OK groove that creates an allowable clearance when the work is seated
  • the second adjustment groove 34 is a deep NG groove that creates a clearance that is determined to be a seating error.
  • a seating surface 21 of the spindle chuck 12 has three detection holes 22 on the same circumference at intervals of 120 degrees. In the threshold value setting operation, the phase of the master work MW is determined so that the first adjusting groove 33 and the second adjusting groove 34 overlap each detection hole 22 in order.
  • the threshold which is the basis for seating determination, is set not only at the initial stage but also periodically. This is because when the machining of the workpiece is repeated in the machine tool 1, chips and coolant that scatter in the machining chamber also adhere to the detection hole 22 of the spindle chuck 12 and interfere with the air flow, resulting in a change in the amount of air leakage. be. Even in such a situation, it is necessary to stably and accurately determine seating, and it is necessary to periodically reset the threshold according to changes in the amount of leakage.
  • the machine tool 1 has a short dimension in the width direction of the machine body, but the distance in the same direction is long due to the arrangement of the turret device 4 and the spindle device 5 in the longitudinal direction of the machine body.
  • the workpiece seating detection device 17 is provided on the rear side of the spindle device 5 . On the other hand, it is necessary to set the threshold value in the workpiece seating detection device 17 while checking the measurement value of the flow sensor 27, which is extremely difficult if the flow sensor 27 is arranged at the back of the fuselage.
  • the flow rate sensor 105 is installed on the front upper part of the machine tool 1 as shown in FIG. This arrangement allows the operator to easily see the measured value of the flow rate sensor 105 .
  • the air pipe 110 had to pass through the ceiling of the cover from the rear part of the machine body to the front part, and the pipe length exceeded 6 m. Therefore, it takes time for the inside of the air pipe 110 to pressurize and the state to stabilize, and it takes a long time to obtain an appropriate measurement value of the flow sensor 105 and set the threshold value.
  • FIG. 4 is a block diagram showing the control system of the machine tool 1.
  • the control device 9 is mainly composed of a computer having storage devices such as a ROM 52, a RAM 53, and a non-volatile memory 54 in addition to the CPU 51. It is connected to each drive unit such as the device 6 , the X-axis drive device 7 and the workpiece seating detection device 17 .
  • the machine tool 1 has a touch panel type operation display device 18 attached to the front of the machine body, which displays work information, an operation screen, etc., and allows the operator to input setting values.
  • the measurement data of the flow rate sensor 27 is displayed on the operation display device 18 via the control device 9, and in addition, the threshold value can be set from the operation display device 18.
  • the flow sensor 27 is, for example, a Karman vortex flow meter, outputs an analog signal in response to vibration transmitted from the pressure receiving portion acting on the Karman vortex to the piezoelectric element, and the sensor substrate converts the analog signal into a digital signal. It is configured to detect the frequency of the digital signal and digitize the flow rate.
  • IO-Link registered trademark
  • the relay device 28 is an IO-Link master that performs point-to-point communication with the IO-Link device.
  • Threshold setting for seating determination is performed by causing the spindle chuck 12 to grip the master work MW.
  • the setting input of the threshold is possible from the display device 18 .
  • threshold setting first, the master work MW is gripped by the spindle chuck 12 while changing the phase so that the first adjusting groove 33 and the second adjusting groove 34 are overlapped with the three detection holes 22 in order. Of the detection holes 22 into which air is constantly fed, air leaks from one of the detection holes 22 due to the first adjustment groove 33 or the second adjustment groove 34, and the openings of the remaining two detection holes 22 are blocked. In this state, the flow rate sensor 27 measures the amount of air leaking out from one detection hole 22 , and the measurement data is sent to the control device 9 via the relay device 28 .
  • the measured value of the flow rate sensor 27 taken into the control device 9 is stored in the storage unit of the control device 9 as measured flow rate data at the time of measurement, and is also displayed on the operation display device 18 installed on the front of the aircraft.
  • the change in flow rate is represented as a graph on the operation screen 37 of the operation display device 18 .
  • This graph shows flow values measured by the flow sensor 27 and moves to the right as the measurement time elapses.
  • the flow rate is displayed on the vertical axis, and the horizontal axis indicating the measurement time switches between hours and minutes from T1 to T6 as the graph moves along with the passage of time.
  • the measured value at the current time of T6 is displayed in a flow rate display box 42.
  • the first adjusting groove 33 and the second adjusting groove 34 are sequentially overlapped with the three detection holes 22, and the respective leakage amounts are measured by the first adjusting groove 33, OK1, OK2, and OK3, and the second adjusting groove
  • the measured values NG1, NG2, and NG3 by 34 are stored in the storage unit. Specifically, the operator confirms the flow rate while looking at the graph shown in FIG.
  • Measured value capture buttons include an OK measurement button 43 and an NG measurement button 44, and the averaged flow rate measurement values for several seconds before or at the time each button is pressed are stored as the measurement value OK1, for example, measured by the first adjusting groove 33. It is designed to be
  • the measured values obtained by the operator are displayed in the measured value box 46 provided on the operation screen 37 in order according to the operation of the OK measurement button 43 and the NG measurement button 44. After each measured value is obtained, the operator presses the threshold setting button 45 to automatically calculate the threshold based on the following equation.
  • the flow rate value measured by the flow rate sensor 27 is sent to the control device 9 via the relay device 28 and displayed on the operation display device 18 attached to the front surface of the machine body. Therefore, the workpiece seating detection device 17 does not need to attach the flow rate sensor 27 to the front surface of the machine tool 1, and can be arranged behind the spindle device 5 so that the operator can easily check it. Therefore, the air pipe 23 of the workpiece seating detection device 17 can be shortened, and the time from when the master work MW is seated to when the pressure in the air pipe 23 rises and seating can be determined can be shortened. can.
  • the workpiece seating detection device 17 displays the current value measured by the flow rate sensor 27 on the operation display device 18 in the flow rate display box 42, and in particular, the change in the flow rate over time is shown graphically as shown in FIG. Therefore, the operator can grasp the seating state of the workpiece during machining in the machine tool 1 from such information. Therefore, in the workpiece seating detection device 17 of the present embodiment, as shown in FIG. It is configured to determine the situation in which the workpiece W is gripped.
  • the first threshold value S1 is for detecting an increase in air leakage flow rate when the workpiece W slightly moves in the spindle chuck 12 .
  • the second threshold value S2 is for detecting an increase in the air leakage flow rate when the workpiece W is detached from the spindle chuck 12 . Therefore, during the machining of the workpiece W starting at T7, the measured value of the flow rate sensor 27 would normally be a value near the flow rate R1. However, when the workpiece W is displaced or dropped, the measured values increase to the flow rates R2 and R3. Therefore, if the measured value of the flow rate sensor 27 exceeds the first or second threshold values S1, S2 during work clamping during work machining, the controller 9 stops driving the machine tool 1. Then, a warning display or alarm is issued on the operation display device 18 .
  • the work seating detection device 17 can store the flow rate value for each time measured by the flow rate sensor 27 in the storage section of the control device 9 as work chuck information. Therefore, a graph such as that shown in FIG. 5 can be reproduced retroactively, and can be used as one piece of information for investigating the cause when a problem occurs in the machining of a workpiece.
  • a flow rate sensor is used as the seating sensor
  • IO-Link registered trademark
  • the workpiece seating detection device of the present invention is not limited thereto.
  • the measured value of the flow rate over time is graphed and displayed on the operation screen of the operation display device 18.
  • the flow rate may be displayed as a numerical value together with the measurement time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Gripping On Spindles (AREA)

Abstract

Provided is a workpiece seating detection device in which piping length is reduced, the workpiece seating detection device having: a detection orifice through which air is discharged from a seating surface of a chuck for grasping a workpiece; an air supply flow path for sending air from an air supply source to the detection orifice; a pressure control valve provided to the air supply flow path; a seating sensor provided to the air supply flow path at a location on the secondary side of the pressure control valve; a relay device for transmitting measurement data measured by the seating sensor; and a control device for calculating a threshold value for assessing seating on the basis of display, on an operation display device, of the measurement data acquired via the relay device, and the operation of the operation display device.

Description

ワーク着座検出装置Workpiece seating detection device
 本発明は、主軸チャックが把持するワークの着座判定を行うためのワーク着座検出装置に関する。 The present invention relates to a workpiece seating detection device for determining seating of a workpiece gripped by a spindle chuck.
 旋盤などの工作機械には主軸チャックにワークが把持され、主軸の回転によってワークに切削工具を当てた切削加工が行われる。その際、ワークが主軸チャックの着座面に対して正確に接していなければワークが余分に削られてしまうなど、仕上がり品質を低下させてしまうことになる。そこで、主軸チャックの着座面にワークが適正に当てられているか否かを判定できるように、工作機械にはワーク着座検出装置が設けられている。具体的には、主軸チャックの着座面に開口した検出孔が形成され、そこへエア供給源からエアが送り込まれている。主軸チャックに把持されたワークは着座面に当てられて検出孔を塞ぐが、僅かに隙間が生じて一定量のエアが漏れるため、その漏れ量に応じて着座判定が行なわれる。 In machine tools such as lathes, the workpiece is gripped by the spindle chuck, and cutting is performed by applying the cutting tool to the workpiece as the spindle rotates. At that time, if the work is not accurately in contact with the seating surface of the spindle chuck, the work will be cut off excessively, resulting in a reduction in finishing quality. Therefore, a machine tool is provided with a workpiece seating detection device so that it can be determined whether or not the workpiece is properly in contact with the seating surface of the spindle chuck. Specifically, an open detection hole is formed in the seating surface of the spindle chuck, and air is sent into the hole from an air supply source. The workpiece gripped by the spindle chuck is brought into contact with the seating surface and closes the detection hole, but a slight gap is generated and a certain amount of air leaks, so seating determination is made according to the amount of leakage.
 下記特許文献1に記載のワーク着座検出装置は、アンクランプのチャックに対してワークが着座面に押し当てられた場合、正しい着座状態では着座センサがオンし、制御装置によってクランプ不許可が解除される。この解除に応答してクランプ指令が出力されてチャックがクランプ作動する。一旦正しく着座してクランプ動作が開始されても、その後に着座不良が発生すると、着座センサがオフとなってクランプ指令が停止し、チャックのクランプ作動が中断する。 In the workpiece seating detection device described in Patent Document 1 below, when the workpiece is pressed against the seating surface of the unclamped chuck, the seating sensor is turned on in the correct seating state, and the control device cancels the clamping disapproval. be. In response to this release, a clamp command is output and the chuck is clamped. Once the chuck is properly seated and the clamping operation is started, if the seating failure occurs after that, the seating sensor is turned off, the clamping command is stopped, and the clamping operation of the chuck is interrupted.
特開2004-142077号公報JP 2004-142077 A
 ワーク着座検出装置は、工作機械によって繰り返しワーク加工が行われると、発生する切粉や飛び散るクーラントによって着座面が汚れて検出孔の状態が悪くなり、検出孔から噴き出すエアの漏れ量が変化してしまう。ワーク着座検出装置は、その変化に対応するように着座判定のための閾値調整を定期的に行うことが不可欠である。閾値調節は、主軸チャックの当金にマスタワークを密着させた状態で行われるが、作業者にとって作業がしやすいように、着座センサは機体前面など主軸チャックから離れた位置に取り付けられている。従って、従来のワーク着座検出装置は、着座センサを通って主軸チャックへとエアを流す配管が長くなって昇圧に時間がかかるため、閾値調整に要する作業時間が長くなってしまっていた。 When workpieces are machined repeatedly by a machine tool, the seating surface of the workpiece seating detection device becomes dirty with chips and coolant that scatters. put away. It is indispensable for the workpiece seating detection device to periodically adjust the threshold value for seating determination so as to correspond to the change. Threshold adjustment is performed while the master work is in close contact with the metal of the spindle chuck. To make the work easier for the operator, the seating sensor is attached to a position away from the spindle chuck, such as on the front of the fuselage. Therefore, in the conventional workpiece seating detection device, the piping for flowing air through the seating sensor to the spindle chuck is long, and it takes time to pressurize, resulting in a long work time required for threshold adjustment.
 そこで、本発明は、かかる課題を解決すべく、配管長を短くしたワーク着座検出装置を提供することを目的とする。 Therefore, in order to solve this problem, an object of the present invention is to provide a workpiece seating detection device with a short pipe length.
 本発明の一態様におけるワーク着座検出装置は、ワークを把持するチャックの着座面からエアを放出するための検出孔と、エア供給源からのエアを前記検出孔へと送るためのエア供給用流路と、前記エア供給用流路に設けられた圧力制御弁と、前記圧力制御弁の二次側において前記エア供給用流路に設けられた着座センサと、前記着座センサによって測定された測定データを送信する中継装置と、前記中継装置を介して取得した前記測定データの操作表示装置に対する表示および、前記操作表示装置の操作に基づいて着座判定のための閾値を算出する制御装置と、を有する。 A workpiece seating detection device according to one aspect of the present invention includes a detection hole for discharging air from a seating surface of a chuck that grips a workpiece, and an air supply flow for sending air from an air supply source to the detection hole. a pressure control valve provided in the air supply channel; a seating sensor provided in the air supply channel on the secondary side of the pressure control valve; and measurement data measured by the seating sensor. and a control device that displays the measurement data acquired via the relay device on an operation display device and calculates a threshold value for seat determination based on the operation of the operation display device. .
 前記構成によれば、エア供給源からのエアがエア供給用流路を流れてワークを把持するチャックの着座面に形成された検出孔へと送られ、圧力制御弁の二次側に設けられた着座センサによって測定された測定データが中継装置を介して制御装置へと送信される。その測定データは、操作表示装置に表示されるとともに、その表示に基づき操作表示装置の操作によって着座判定のための閾値の算出が可能になる。よって、着座センサを着座面から遠い位置に配置する必要がなくなり、ワーク着座検出装置のエア供給流路を短くすることができ、ワークを着座させてからエア供給流路内が昇圧して着座判定が可能な状態に至るまでの時間を短縮することができる。 According to the above configuration, the air from the air supply source flows through the air supply channel, is sent to the detection hole formed in the seating surface of the chuck that grips the workpiece, and is provided on the secondary side of the pressure control valve. Measurement data measured by the seat sensor is transmitted to the control device via the relay device. The measurement data is displayed on the operation display device, and based on the display, it becomes possible to calculate a threshold value for seating determination by operating the operation display device. Therefore, it is not necessary to place the seating sensor at a position far from the seating surface, and the air supply passage of the workpiece seating detection device can be shortened. can shorten the time required to reach a state where
ワーク着座検出装置を備えた工作機械の内部構造を示した側面図である。1 is a side view showing an internal structure of a machine tool equipped with a workpiece seating detection device; FIG. ワーク着座検出装置の一実施形態を簡略化して示した図である。1 is a simplified diagram showing an embodiment of a workpiece seating detection device; FIG. 主軸チャックの着座面を示した図である。It is the figure which showed the seating surface of the spindle chuck. 工作機械の制御システムを表すブロック図である。It is a block diagram showing the control system of a machine tool. 流量変化をグラフにして表示する操作表示装置の操作画面を示した図である。It is the figure which showed the operation screen of the operation display device which makes a flow volume change into a graph and displays it. ワーク加工時に生じ得る着座不良の流量変化を示した図である。FIG. 7 is a diagram showing changes in flow rate due to seating failure that can occur during workpiece machining. 従来のワーク着座検出装置におけるエア配管の状態を示した図である。It is a diagram showing the state of the air pipe in the conventional workpiece seating detection device.
 本発明に係るワーク着座検出装置の一実施形態について、図面を参照しながら以下に説明する。図1は、本実施形態のワーク着座検出装置を備えた工作機械の内部構造を示した側面図である。工作機械1は、車輪を備えた可動ベッド2の上に組み付けられ、ベース3の上に敷設されたレールに沿って前後方向(Z軸方向)への移動が可能になっている。工作機械1は、エンドミルやドリルなどの回転工具、或いはバイトなどの切削工具を備える工具台11を有し、その工具台11の旋回割出しが可能なタレット装置4が設けられている。 An embodiment of a workpiece seating detection device according to the present invention will be described below with reference to the drawings. FIG. 1 is a side view showing the internal structure of a machine tool equipped with a workpiece seating detection device according to this embodiment. A machine tool 1 is mounted on a movable bed 2 equipped with wheels, and is movable in the front-rear direction (Z-axis direction) along rails laid on a base 3 . The machine tool 1 has a tool rest 11 having rotary tools such as end mills and drills, or cutting tools such as cutting tools.
 工作機械1は、可動ベッド2の上に主軸装置5が搭載され、ワークを把持する主軸チャック12が回転可能な構成を有している。工作機械1は、主軸と平行なZ軸方向に移動させるZ軸駆動装置6と、機体上下方向であるX軸方向に移動させるX軸駆動装置7とによってタレット装置4が移動する2軸旋盤である。Z軸駆動装置6およびX軸駆動装置7は、摺動可能なZ軸スライド13又はX軸スライド14を有し、サーボモータの回転出力をボールネジ機構によって直進運動に変換させるよう構成されている。 A machine tool 1 has a spindle device 5 mounted on a movable bed 2, and has a structure in which a spindle chuck 12 that grips a workpiece can rotate. The machine tool 1 is a two-axis lathe in which a turret device 4 is moved by a Z-axis drive device 6 that moves in the Z-axis direction parallel to the main shaft and an X-axis drive device 7 that moves in the X-axis direction, which is the vertical direction of the machine body. be. The Z-axis driving device 6 and the X-axis driving device 7 have a slidable Z-axis slide 13 or X-axis slide 14, and are configured to convert the rotation output of the servomotor into linear motion by a ball screw mechanism.
 工作機械1は、加工室10を構成する機体カバー15に加え、機体前面部には開閉可能な前カバー16が設けられている。工作機械1は、加工機械ラインを構成する他の作業機と同様にモジュール化されたものであり、複数の前カバー16が機体幅方向に並べられてワーク搬送空間20が構成される。そして、ワーク搬送空間20内には各作業機に対してワークWの受け渡しを行うワーク自動搬送機が組み込まれている。 In addition to the body cover 15 that constitutes the machining chamber 10, the machine tool 1 is provided with an openable and closable front cover 16 on the front face of the machine body. The machine tool 1 is modularized in the same manner as other work machines that constitute a processing machine line, and a plurality of front covers 16 are arranged in the width direction of the machine body to form a work transfer space 20 . In the work transfer space 20, an automatic work transfer machine for transferring the work W to each working machine is incorporated.
 工作機械1は、主軸チャック12がワークWを受け取った場合、そのワークWが適切に把持されているか否かを判定するワーク着座検出装置が設けられている。図2は、工作機械1に設けられたワーク着座検出装置17の構成を簡略化して示した図である。ワーク着座検出装置17は、主軸チャック12の着座面21に3つの検出孔22が形成されている(図3参照)。その検出孔22にはエア配管23を介してコンプレッサなどのエア供給源24が接続され、そのエア配管23には電磁開閉弁25、圧力制御弁26および着座センサ27が下流側に向けて順に接続されている。 The machine tool 1 is provided with a workpiece seating detection device that determines whether or not the workpiece W is properly gripped when the spindle chuck 12 receives the workpiece W. FIG. 2 is a diagram showing a simplified configuration of the workpiece seating detection device 17 provided in the machine tool 1. As shown in FIG. The workpiece seating detection device 17 has three detection holes 22 formed in a seating surface 21 of the spindle chuck 12 (see FIG. 3). An air supply source 24 such as a compressor is connected to the detection hole 22 via an air pipe 23, and an electromagnetic on-off valve 25, a pressure control valve 26 and a seating sensor 27 are connected to the air pipe 23 in order toward the downstream side. It is
 ワーク着座検出装置17は、エア供給源24からエア配管23へ送り込まれたエアが所定の圧力で主軸チャック12へと流れ、アンクランプ状態の場合には検出孔22からエアが放出されることとなる。一方、ワーク搬送ロボットによって主軸チャック12にワークWが受け渡しされると、検出孔22が塞がれてエアの流れが遮断される。ただし、ワークWが着座面21に密着して検出孔22が完全に遮断されるようなことはなく、僅かに生じる隙間から微量のエアが漏れている。本実施形態の着座センサ27は、こうした検出孔22から流出するエアの流量を測定する流量センサであり、以下の説明では流量センサ27と記載する。 The workpiece seating detection device 17 is configured such that air sent from an air supply source 24 to an air pipe 23 flows into the spindle chuck 12 at a predetermined pressure, and the air is discharged from the detection hole 22 in the unclamped state. Become. On the other hand, when the workpiece W is transferred to the spindle chuck 12 by the workpiece transfer robot, the detection hole 22 is blocked and the air flow is interrupted. However, the workpiece W does not come into close contact with the seating surface 21 and the detection hole 22 is not completely blocked, and a small amount of air leaks through a slight gap. The seating sensor 27 of the present embodiment is a flow rate sensor that measures the flow rate of air flowing out from the detection hole 22, and is referred to as a flow rate sensor 27 in the following description.
 ワーク着座検出装置17は、流量センサ27による測定値が制御装置9へと送信され、予め設定されている閾値との比較によって着座判定が行われるよう構成されている。そうした閾値の設定は、主軸チャック12の着座面21に所定の隙間を生じさせるマスタワークMWが使用される。図3は、主軸チャック12の着座面を示した図である。着座面21には一点鎖線で示すように、中心を合わせた状態でマスタワークMWがチャック爪によって把持される。マスタワークMWは、円盤形状の中心部に孔31が形成され、軸方向の一端面には180度離れた位置に中心の孔31から径方向に外径端まで延びた第1調整溝33と第2調整溝34とが形成されている。 The workpiece seating detection device 17 is configured such that the measured value by the flow sensor 27 is transmitted to the control device 9 and the seating determination is performed by comparing it with a preset threshold value. A master work MW that creates a predetermined gap in the seating surface 21 of the spindle chuck 12 is used to set such a threshold. FIG. 3 is a view showing the seating surface of the spindle chuck 12. As shown in FIG. The master work MW is gripped by the chuck claws while being centered on the seating surface 21 as indicated by the dashed line. The master work MW has a disc-shaped center with a hole 31, and a first adjustment groove 33 extending radially from the center hole 31 to the outer diameter end at a position separated by 180 degrees on one end face in the axial direction. A second adjustment groove 34 is formed.
 第1調整溝33は、ワークが着座した場合に許容できる隙間を生じさせる浅いOK溝であり、第2調整溝34は、着座エラーと判断される隙間を生じさせる深いNG溝である。主軸チャック12の着座面21には検出孔22が120度の間隔で同一円周上に3つある。閾値の設定作業では、第1調整溝33および第2調整溝34が各々の検出孔22に対して順番に重ねられるようにマスタワークMWの位相決めが行われる。 The first adjustment groove 33 is a shallow OK groove that creates an allowable clearance when the work is seated, and the second adjustment groove 34 is a deep NG groove that creates a clearance that is determined to be a seating error. A seating surface 21 of the spindle chuck 12 has three detection holes 22 on the same circumference at intervals of 120 degrees. In the threshold value setting operation, the phase of the master work MW is determined so that the first adjusting groove 33 and the second adjusting groove 34 overlap each detection hole 22 in order.
 着座判定の基準となる閾値は、初期の設定だけではなく定期的にも行われる。工作機械1においてワークの加工が繰り返されると、加工室内で飛び散る切粉やクーラントが主軸チャック12の検出孔22にも付着し、エアの流れを妨げることによってエアの漏れ量に変化が生じるからである。そのような状況でも安定して正確な着座判定が行われることが必要であり、定期的に漏れ量の変化に応じた閾値の再設定が必要になる。  The threshold, which is the basis for seating determination, is set not only at the initial stage but also periodically. This is because when the machining of the workpiece is repeated in the machine tool 1, chips and coolant that scatter in the machining chamber also adhere to the detection hole 22 of the spindle chuck 12 and interfere with the air flow, resulting in a change in the amount of air leakage. be. Even in such a situation, it is necessary to stably and accurately determine seating, and it is necessary to periodically reset the threshold according to changes in the amount of leakage.
 工作機械1は、機体幅方向の寸法は短いが、機体前後方向にタレット装置4と主軸装置5が配置されるなど、同方向の距離が長くなってしまっている。ワーク着座検出装置17は、そうした主軸装置5の後方側に設けられている。一方、ワーク着座検出装置17における閾値の設定は、流量センサ27の測定値を確認しながら行う必要があるが、機体奥に流量センサ27が配置されていたのでは作業が極めて困難である。 The machine tool 1 has a short dimension in the width direction of the machine body, but the distance in the same direction is long due to the arrangement of the turret device 4 and the spindle device 5 in the longitudinal direction of the machine body. The workpiece seating detection device 17 is provided on the rear side of the spindle device 5 . On the other hand, it is necessary to set the threshold value in the workpiece seating detection device 17 while checking the measurement value of the flow sensor 27, which is extremely difficult if the flow sensor 27 is arranged at the back of the fuselage.
 そこで、従来のワーク着座検出装置100は、図7に示すように流量センサ105が工作機械1の機体前面上部に設置されていた。これは作業者が流量センサ105の測定値を見やすいようにした配置である。しかし、従来のワーク着座検出装置100は、エア配管110を機体後部から前部へとカバーの天井部などを通さなければならず、配管長が6mを超えてしまっていた。従って、エア配管110内が昇圧して状態が安定するまでに時間がかかり、流量センサ105の適切な測定値を得て閾値を設定するまでの時間が長くなってしまっていた。 Therefore, in the conventional workpiece seating detection device 100, the flow rate sensor 105 is installed on the front upper part of the machine tool 1 as shown in FIG. This arrangement allows the operator to easily see the measured value of the flow rate sensor 105 . However, in the conventional workpiece seating detection device 100, the air pipe 110 had to pass through the ceiling of the cover from the rear part of the machine body to the front part, and the pipe length exceeded 6 m. Therefore, it takes time for the inside of the air pipe 110 to pressurize and the state to stabilize, and it takes a long time to obtain an appropriate measurement value of the flow sensor 105 and set the threshold value.
 そこで、本実施形態のワーク着座検出装置17は、流量センサ27を直接確認することなく、その測定データが制御装置9によって取得できるよう構成されている。ここで、図4は、工作機械1の制御システムを表すブロック図である。制御装置9は、CPU51のほかにROM52やRAM53、不揮発性メモリ54といった記憶装置などを備えたコンピュータを主体とするものであり、I/055を介してタレット装置4、主軸装置5、Z軸駆動装置6、X軸駆動装置7およびワーク着座検出装置17などの各駆動部に接続されている。 Therefore, the work seating detection device 17 of this embodiment is configured so that the measurement data can be obtained by the control device 9 without directly checking the flow rate sensor 27 . Here, FIG. 4 is a block diagram showing the control system of the machine tool 1. As shown in FIG. The control device 9 is mainly composed of a computer having storage devices such as a ROM 52, a RAM 53, and a non-volatile memory 54 in addition to the CPU 51. It is connected to each drive unit such as the device 6 , the X-axis drive device 7 and the workpiece seating detection device 17 .
 工作機械1は、作業情報や操作画面などの表示のほか、作業者による設定値の入力などが可能なタッチパネル式の操作表示装置18が機体前面に取り付けられ、それが制御装置9に接続されている。本実施形態では、流量センサ27の測定データが制御装置9を介して操作表示装置18に表示され、加えてその操作表示装置18から閾値の設定が行えるよう構成されている。すなわち、ワーク着座検出装置17の流量センサ27が中継装置28を介して制御装置9に接続されている。 The machine tool 1 has a touch panel type operation display device 18 attached to the front of the machine body, which displays work information, an operation screen, etc., and allows the operator to input setting values. there is In this embodiment, the measurement data of the flow rate sensor 27 is displayed on the operation display device 18 via the control device 9, and in addition, the threshold value can be set from the operation display device 18. FIG. That is, the flow rate sensor 27 of the workpiece seating detection device 17 is connected to the control device 9 via the relay device 28 .
 流量センサ27は、例えばカルマン渦式流量計であり、カルマン渦に作用する受圧部から圧電素子に伝達される振動に応じてアナログ信号を出力し、それをセンサ基板がデジタル信号に変換し、当該デジタル信号の周波数を検出して流量を数値化するように構成されたものである。そうした流量センサ27の測定データを取り込む通信手段としては、例えばIO-Link(登録商標)が利用され、中継装置28がIO-Linkデバイスとポイントツーポイント通信を行うIO-Linkマスタである。 The flow sensor 27 is, for example, a Karman vortex flow meter, outputs an analog signal in response to vibration transmitted from the pressure receiving portion acting on the Karman vortex to the piezoelectric element, and the sensor substrate converts the analog signal into a digital signal. It is configured to detect the frequency of the digital signal and digitize the flow rate. For example, IO-Link (registered trademark) is used as communication means for capturing the measurement data of the flow rate sensor 27, and the relay device 28 is an IO-Link master that performs point-to-point communication with the IO-Link device.
 着座判定のための閾値設定は、主軸チャック12にマスタワークMWを把持させることによって行われ、制御装置9に格納された閾値設定プログラムは、操作表示装置18に表示する流量データに基づき、その操作表示装置18から閾値の設定入力が可能になっている。閾値設定では先ず、マスタワークMWが、第1調整溝33および第2調整溝34の各々を3つの検出孔22に対して順番に重ねるように、位相を変えながら主軸チャック12に把持される。常時エアが送り込まれている検出孔22は、第1調整溝33または第2調整溝34によって1つの検出孔22からエアが漏れ、残る2つの検出孔22は開口部が塞がれる。このような状態で1つの検出孔22から流れ出るエアの漏れ量が流量センサ27によって測定され、その測定データが中継装置28を介して制御装置9へと送られる。 Threshold setting for seating determination is performed by causing the spindle chuck 12 to grip the master work MW. The setting input of the threshold is possible from the display device 18 . In threshold setting, first, the master work MW is gripped by the spindle chuck 12 while changing the phase so that the first adjusting groove 33 and the second adjusting groove 34 are overlapped with the three detection holes 22 in order. Of the detection holes 22 into which air is constantly fed, air leaks from one of the detection holes 22 due to the first adjustment groove 33 or the second adjustment groove 34, and the openings of the remaining two detection holes 22 are blocked. In this state, the flow rate sensor 27 measures the amount of air leaking out from one detection hole 22 , and the measurement data is sent to the control device 9 via the relay device 28 .
 制御装置9に取り込まれた流量センサ27の測定値は、測定時の測定流量データとして制御装置9の記憶部に保存され、また機体前面に設置された操作表示装置18に表示される。例えば、図5に示すように、操作表示装置18の操作画面37に流量変化がグラフにして表される。このグラフは、流量センサ27が測定する流量値であって測定時間の経過に従って右へと移動する。縦軸に流量が表示され、測定時間を示す横軸は時間経過によってグラフの移動とともにT1-T6の時分が切り換え表示される。そして、グラフ表示領域41の上部には、T6時である現時点での測定値が流量表示ボックス42に表示される。 The measured value of the flow rate sensor 27 taken into the control device 9 is stored in the storage unit of the control device 9 as measured flow rate data at the time of measurement, and is also displayed on the operation display device 18 installed on the front of the aircraft. For example, as shown in FIG. 5, the change in flow rate is represented as a graph on the operation screen 37 of the operation display device 18 . This graph shows flow values measured by the flow sensor 27 and moves to the right as the measurement time elapses. The flow rate is displayed on the vertical axis, and the horizontal axis indicating the measurement time switches between hours and minutes from T1 to T6 as the graph moves along with the passage of time. At the top of the graph display area 41, the measured value at the current time of T6 is displayed in a flow rate display box 42. FIG.
 第1調整溝33および第2調整溝34が3つの検出孔22に対して順番に重ねられ、それぞれの漏れ量が第1調整溝33による測定値OK1,OK2,OK3として、また第2調整溝34による測定値NG1,NG2,NG3として記憶部に取り込まれる。具体的には、作業者が図5に示すグラフを見ながら流量を確認し、その値が安定した段階で作業者が操作画面37に表示された測定値取り込みボタンを押して測定値を取得する。測定値取り込みボタンは、OK測定ボタン43とNG測定ボタン44があり、各ボタンを押した時点或はその直前数秒間の平均した流量測定値が、例えば第1調整溝33による測定値OK1として記憶されるようになっている。 The first adjusting groove 33 and the second adjusting groove 34 are sequentially overlapped with the three detection holes 22, and the respective leakage amounts are measured by the first adjusting groove 33, OK1, OK2, and OK3, and the second adjusting groove The measured values NG1, NG2, and NG3 by 34 are stored in the storage unit. Specifically, the operator confirms the flow rate while looking at the graph shown in FIG. Measured value capture buttons include an OK measurement button 43 and an NG measurement button 44, and the averaged flow rate measurement values for several seconds before or at the time each button is pressed are stored as the measurement value OK1, for example, measured by the first adjusting groove 33. It is designed to be
 作業者によって取得された測定値は、操作画面37に設けられた測定値ボックス46内に、OK測定ボタン43とNG測定ボタン44の操作に従って順に表示される。そして、各測定値が得られた後は、作業者が閾値設定ボタン45を押すことにより次の式に基づいて閾値の自動計算が行われる。閾値THは、3つの検出孔22のOK溝とNG溝における漏れ量の平均値を、OKa=(OK1+OK2+OK3)/3、NGa=(NG1+NG2+NG3)/3とした場合に、閾値はTH=OKa+(NGa+OKa)/2によって求められる。すなわちNG溝とOK溝における漏れ量の中間の値が閾値THとして設定される。 The measured values obtained by the operator are displayed in the measured value box 46 provided on the operation screen 37 in order according to the operation of the OK measurement button 43 and the NG measurement button 44. After each measured value is obtained, the operator presses the threshold setting button 45 to automatically calculate the threshold based on the following equation. The threshold value TH is the average value of the leakage amount in the OK groove and the NG groove of the three detection holes 22, OKa = (OK1 + OK2 + OK3) / 3, NGa = (NG1 + NG2 + NG3) / 3, the threshold is TH = OKa + (NGa + OKa )/2. That is, the threshold value TH is set to an intermediate value between the leak amounts in the NG groove and the OK groove.
 本実施形態のワーク着座検出装置17は、流量センサ27で測定された流量値が中継装置28を介して制御装置9へと送られ、機体前面に取り付けられた操作表示装置18に表示される。そのため、ワーク着座検出装置17は、作業者が確認し易いように流量センサ27を工作機械1の前面に取り付ける必要はなく、主軸装置5の後方に配置させておくことができる。よって、ワーク着座検出装置17のエア配管23を短くすることができ、マスタワークMWを着座させてからエア配管23内が昇圧して着座判定が可能な状態に至るまでの時間を短くすることができる。 In the workpiece seating detection device 17 of this embodiment, the flow rate value measured by the flow rate sensor 27 is sent to the control device 9 via the relay device 28 and displayed on the operation display device 18 attached to the front surface of the machine body. Therefore, the workpiece seating detection device 17 does not need to attach the flow rate sensor 27 to the front surface of the machine tool 1, and can be arranged behind the spindle device 5 so that the operator can easily check it. Therefore, the air pipe 23 of the workpiece seating detection device 17 can be shortened, and the time from when the master work MW is seated to when the pressure in the air pipe 23 rises and seating can be determined can be shortened. can.
 ワーク着座検出装置17は、操作表示装置18に流量センサ27が測定している現時点の値が流量表示ボックス42に表示され、特に図5に示すように流量の時間変化がグラフで示される。そのため作業者は、このような情報から工作機械1におけるワーク加工時のワーク着座状態を把握することもできる。そこで、本実施形態のワーク着座検出装置17は、例えば図6に示すように、加工時に発生し得る着座状態を検出するための第1閾値S1と第2閾値S2が設定され、主軸チャック12によってワークWが把持されている状況判断が行われるよう構成されている。 The workpiece seating detection device 17 displays the current value measured by the flow rate sensor 27 on the operation display device 18 in the flow rate display box 42, and in particular, the change in the flow rate over time is shown graphically as shown in FIG. Therefore, the operator can grasp the seating state of the workpiece during machining in the machine tool 1 from such information. Therefore, in the workpiece seating detection device 17 of the present embodiment, as shown in FIG. It is configured to determine the situation in which the workpiece W is gripped.
 第1閾値S1は、主軸チャック12においてワークWが僅かに動いてしまったような場合に、エアの漏れ流量が増加したことを検出するものである。第2閾値S2は、主軸チャック12からワークWが外れてしまった時の場合に、エアの漏れ流量が増加したことを検出するものである。従って、T7時から開始されたワークWの加工中は、本来であれば流量センサ27の測定値は流量R1付近の値となる。しかし、ワークWのズレや落下が生じた場合には、測定値が流量R2,R3にまで値が上昇してしまう。そのため、ワーク加工を実行しているワーククランプ中に、流量センサ27の測定値が第1または第2閾値S1,S2を超えてしまった場合には、制御装置9により工作機械1の駆動を停止し、操作表示装置18に警告表示や警報発信が行われる。 The first threshold value S1 is for detecting an increase in air leakage flow rate when the workpiece W slightly moves in the spindle chuck 12 . The second threshold value S2 is for detecting an increase in the air leakage flow rate when the workpiece W is detached from the spindle chuck 12 . Therefore, during the machining of the workpiece W starting at T7, the measured value of the flow rate sensor 27 would normally be a value near the flow rate R1. However, when the workpiece W is displaced or dropped, the measured values increase to the flow rates R2 and R3. Therefore, if the measured value of the flow rate sensor 27 exceeds the first or second threshold values S1, S2 during work clamping during work machining, the controller 9 stops driving the machine tool 1. Then, a warning display or alarm is issued on the operation display device 18 .
 よって、本実施形態によれば、任意に閾値を設定し、その値を基に工作機械1に対する所定の駆動制御を行うことができる。そして、前述したように加工時のクランプ状態を第1及び第2閾値S1,S2によって判別することができる。また、ワーク着座検出装置17は、流量センサ27により測定された時間ごとの流量値をワークチャック情報として制御装置9の記憶部に保存することができる。従って、図5に示すようなグラフを過去に遡って再現することができ、ワークの加工に不具合が生じた場合には、その原因を追究するための一つの情報として利用できる。 Therefore, according to the present embodiment, it is possible to arbitrarily set a threshold value and perform predetermined drive control for the machine tool 1 based on the value. Then, as described above, the clamping state during machining can be determined by the first and second threshold values S1 and S2. In addition, the work seating detection device 17 can store the flow rate value for each time measured by the flow rate sensor 27 in the storage section of the control device 9 as work chuck information. Therefore, a graph such as that shown in FIG. 5 can be reproduced retroactively, and can be used as one piece of information for investigating the cause when a problem occurs in the machining of a workpiece.
 本発明の一実施形態について説明したが、本発明はこれらに限定されるものではなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
 例えば、着座センサには流量センサを、そして着座センサの測定データを取り込む通信手段としてIO-Link(登録商標)を例に挙げたが、本発明のワーク着座検出装置はこうしたのに限定されない。
 また、前記実施形態では、時間経過に従った流量の測定値がグラフにして操作表示装置18の操作画面に表示されているが、流量を単に数値として測定時間と並記した表示にするようにしてもよい。
Although one embodiment of the present invention has been described, the present invention is not limited to this, and various modifications can be made without departing from the scope of the invention.
For example, a flow rate sensor is used as the seating sensor, and IO-Link (registered trademark) is used as a communication means for capturing the measurement data of the seating sensor, but the workpiece seating detection device of the present invention is not limited thereto.
In the above-described embodiment, the measured value of the flow rate over time is graphed and displayed on the operation screen of the operation display device 18. However, the flow rate may be displayed as a numerical value together with the measurement time. may
1…工作機械 5…主軸装置 9…制御装置 12…主軸チャック 17…ワーク着座検出装置 18…操作表示装置 21…着座面 22…検出孔 23…エア配管 24…エア供給源 25…電磁開閉弁 26…圧力制御弁 27…着座センサ(流量センサ) 28…中継装置
 
 
DESCRIPTION OF SYMBOLS 1... Machine tool 5... Spindle device 9... Control device 12... Spindle chuck 17... Work seating detection device 18... Operation display device 21... Seating surface 22... Detection hole 23... Air pipe 24... Air supply source 25... Electromagnetic on-off valve 26 ... Pressure control valve 27 ... Seating sensor (flow rate sensor) 28 ... Relay device

Claims (5)

  1.  ワークを把持するチャックの着座面からエアを放出するための検出孔と、
     エア供給源からのエアを前記検出孔へと送るためのエア供給用流路と、
     前記エア供給用流路に設けられた圧力制御弁と、
     前記圧力制御弁の二次側において前記エア供給用流路に設けられた着座センサと、
     前記着座センサによって測定された測定データを送信する中継装置と、
     前記中継装置を介して取得した前記測定データの操作表示装置に対する表示および、前記操作表示装置の操作に基づいて着座判定のための閾値を算出する制御装置と、
     を有するワーク着座検出装置。
    a detection hole for releasing air from the seating surface of the chuck that grips the work;
    an air supply channel for sending air from an air supply source to the detection hole;
    a pressure control valve provided in the air supply channel;
    a seating sensor provided in the air supply passage on the secondary side of the pressure control valve;
    a relay device that transmits measurement data measured by the seating sensor;
    a control device that calculates a threshold for seating determination based on the display of the measurement data acquired via the relay device on an operation display device and the operation of the operation display device;
    Work seating detection device.
  2.  前記着座センサは、前記検出孔から流出するエアの流量を測定する流量センサであり、前記制御装置が、前記着座センサによって測定された測定値から前記操作表示装置の画面に流量値とその測定時間との関係を示すグラフを表示する請求項1に記載のワーク着座検出装置。 The seating sensor is a flow rate sensor that measures the flow rate of air flowing out of the detection hole, and the control device displays the flow rate value and its measurement time on the screen of the operation display device from the measured value measured by the seating sensor. 2. The workpiece seating detection device according to claim 1, wherein a graph showing the relationship between is displayed.
  3.  前記操作表示装置は、前記着座センサによる測定値が表示され、測定値取り込みボタンの操作によって任意に前記測定値が前記制御装置に取り込まれ、前記制御装置は、その取り込まれた測定値によって前記閾値を算出する請求項1または請求項2に記載のワーク着座検出装置。 The operation display device displays the measured value by the seating sensor, and the measured value is arbitrarily imported into the control device by operating a measured value import button, and the control device uses the imported measured value to display the threshold value. 3. The workpiece seating detection device according to claim 1 or 2, wherein .
  4.  前記制御装置は、前記着座センサによって測定された測定値が測定時間とともにワークチャック情報として記憶部に保存される請求項1乃至請求項3のいずれかに記載のワーク着座検出装置。 4. The workpiece seating detection device according to any one of claims 1 to 3, wherein the controller stores the measured value measured by the seating sensor together with the measurement time as workpiece chuck information in a storage unit.
  5.  前記制御装置は、ワーク加工時の着座状態を検出するための加工閾値が設定され、前記着座センサの測定値が前記加工閾値を超えた場合に所定の制御を実行する請求項1乃至請求項4のいずれかに記載のワーク着座検出装置。
     
     
    A processing threshold value for detecting a seating state during workpiece processing is set in the control device, and the control device executes predetermined control when a measured value of the seating sensor exceeds the processing threshold value. Work seating detection device according to any one of.

PCT/JP2021/036374 2021-10-01 2021-10-01 Workpiece seating detection device WO2023053436A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/036374 WO2023053436A1 (en) 2021-10-01 2021-10-01 Workpiece seating detection device
JP2023550992A JPWO2023053436A1 (en) 2021-10-01 2021-10-01

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/036374 WO2023053436A1 (en) 2021-10-01 2021-10-01 Workpiece seating detection device

Publications (1)

Publication Number Publication Date
WO2023053436A1 true WO2023053436A1 (en) 2023-04-06

Family

ID=85782082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036374 WO2023053436A1 (en) 2021-10-01 2021-10-01 Workpiece seating detection device

Country Status (2)

Country Link
JP (1) JPWO2023053436A1 (en)
WO (1) WO2023053436A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251506A (en) * 2002-02-28 2003-09-09 Nsk Ltd Workpiece holding device
JP2006305666A (en) * 2005-04-27 2006-11-09 Myotoku Ltd Detection system for workpiece holding position
JP2007090514A (en) * 2005-08-31 2007-04-12 Nippei Toyama Corp Abnormality determination method and abnormality determination device in mounting tool holder to spindle device in machine tool
JP2007098525A (en) * 2005-10-05 2007-04-19 Nippei Toyama Corp Workpiece adhesion state confirming device of machine tool
JP2017007027A (en) * 2015-06-22 2017-01-12 アズビルTaco株式会社 Seating determination method when processing work
JP2017087376A (en) * 2015-11-16 2017-05-25 富士機械製造株式会社 Work-piece conveying system
JP3214465U (en) * 2017-10-31 2018-01-18 株式会社スギノマシン Machine Tools
DE102018219449A1 (en) * 2018-11-14 2020-05-14 Mag Ias Gmbh Test facility for system testing of an object on a clamping device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251506A (en) * 2002-02-28 2003-09-09 Nsk Ltd Workpiece holding device
JP2006305666A (en) * 2005-04-27 2006-11-09 Myotoku Ltd Detection system for workpiece holding position
JP2007090514A (en) * 2005-08-31 2007-04-12 Nippei Toyama Corp Abnormality determination method and abnormality determination device in mounting tool holder to spindle device in machine tool
JP2007098525A (en) * 2005-10-05 2007-04-19 Nippei Toyama Corp Workpiece adhesion state confirming device of machine tool
JP2017007027A (en) * 2015-06-22 2017-01-12 アズビルTaco株式会社 Seating determination method when processing work
JP2017087376A (en) * 2015-11-16 2017-05-25 富士機械製造株式会社 Work-piece conveying system
JP3214465U (en) * 2017-10-31 2018-01-18 株式会社スギノマシン Machine Tools
DE102018219449A1 (en) * 2018-11-14 2020-05-14 Mag Ias Gmbh Test facility for system testing of an object on a clamping device

Also Published As

Publication number Publication date
JPWO2023053436A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
JP6240208B2 (en) Work seat detection device and adjustment method thereof
EP2258503B1 (en) Tight contact state detector of tool in machine tool
US7238082B2 (en) Workpiece headstock
JP6599598B2 (en) Machining unit for program-controlled machine tools
US10369673B2 (en) Spindle device for a program-controlled machine tool
JP4638464B2 (en) Machine tool spindle equipment
US4611814A (en) Method and apparatus for monitoring the operating readiness of power chuck
US20220314336A1 (en) Tool cutting edge adjusting head, method of operating same and correcting tool cutting edge wear
JP2009208160A (en) Diameter variable tool serving both for boring and horning
JP2011189459A (en) Method for detecting installation abnormality of tool holder and machine tool
WO2016031488A1 (en) Main shaft device and machine tool provided with same
WO2023053436A1 (en) Workpiece seating detection device
JP7344658B2 (en) Work support device
JP2005103735A (en) Tool attachment confirmation device
JP2007276031A (en) Method and apparatus for monitoring processing target gripping device
JP2006326804A (en) Air micrometer apparatus capable of automatic tool changing
JP6600194B2 (en) Chuck device
US20220009048A1 (en) Detection device for the seating detection of an object on a clamping device
EP2342046A2 (en) Method for monitoring the contact of a tool holder
JP2021041509A (en) Position measurement device and position measurement method
KR200219154Y1 (en) Work clamp sensing apparatus vertical lathe
KR102274240B1 (en) Assembly for sensing position of the hand tool with respect to the workpiece
KR101235486B1 (en) Apparatus for CNC Automatic Pressure Control of Spendle Clamp and Method Thereof
JP2783072B2 (en) Polishing equipment
KR20150121507A (en) Pallet clamping/unclamping checking device of auto pallet changer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959470

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550992

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE