WO2023052530A1 - Avion a trainée réduite par interaction entre tourbillons marginaux - Google Patents

Avion a trainée réduite par interaction entre tourbillons marginaux Download PDF

Info

Publication number
WO2023052530A1
WO2023052530A1 PCT/EP2022/077160 EP2022077160W WO2023052530A1 WO 2023052530 A1 WO2023052530 A1 WO 2023052530A1 EP 2022077160 W EP2022077160 W EP 2022077160W WO 2023052530 A1 WO2023052530 A1 WO 2023052530A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
auxiliary
nacelles
vortices
aircraft
Prior art date
Application number
PCT/EP2022/077160
Other languages
English (en)
Inventor
Miguel Angel AGUIRRE
Andrew Turnbull
Sébastien DUPLAA
Xavier Carbonneau
Original Assignee
Safran
Institut Supérieur De L'aéronautique Et De L'espace
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran, Institut Supérieur De L'aéronautique Et De L'espace filed Critical Safran
Publication of WO2023052530A1 publication Critical patent/WO2023052530A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/06Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices
    • B64C23/065Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices at the wing tips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/16Aircraft characterised by the type or position of power plants of jet type
    • B64D27/20Aircraft characterised by the type or position of power plants of jet type within, or attached to, fuselages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D29/00Power-plant nacelles, fairings, or cowlings
    • B64D29/04Power-plant nacelles, fairings, or cowlings associated with fuselages

Definitions

  • the invention relates to the field of airplanes, more particularly airplanes comprising a generally elongated fuselage and an airfoil consisting of two wings arranged on either side of the fuselage.
  • the lift of an aircraft wing induces aerodynamic drag through the formation of vortices.
  • the lift results from a difference in speed between the upper surface and the lower surface of the airfoil, causing, in addition to a pressure difference, a rotational circulation around the airfoil forming vortices in the wake of the airfoil.
  • the pressure difference between the upper surface and the lower surface of the airfoil causes marginal vortices at each of the two ends of the airfoil.
  • These vortices form an induced drag in that it consumes energy from the aerodynamic phenomena linked to the lift of the wing.
  • a wing like any other element in contact with the airflow, also causes a frictional drag linked to the viscosity of the air in the boundary layer.
  • the published patent document WO 2021/074516 A1 proposes an aircraft architecture with a generally elongated fuselage, a lifting wing consisting of two wings arranged on either side of the fuselage, and two lifting nacelles arranged directly at the rear of the two wings, so as to be directly in the wake of the two wings.
  • Each of the nacelles forms an air intake fairing, with a top wall, a bottom wall and two side walls, and houses several propulsion motors in the fairing.
  • the upper and lower walls form an auxiliary airfoil.
  • the air inlet edge of the lower wall is arranged directly downstream of the trailing edge of the corresponding wing, so as to take advantage of the wake of the wing.
  • the nacelles are positioned in relation to the wings so that the boundary layer of the upper surface of the wings passes under the lower wall, the lower wall in question then being swept by the wake of the wing.
  • the wake of the nacelles is thus reduced.
  • the wake of the stabilizers remains unchanged.
  • the aim of the invention is to overcome at least one drawback of the aforementioned state of the art. More specifically, the aim of the invention is to reduce the induced drag of an aircraft, in particular the drag of the stabilizers.
  • the subject of the invention is an airplane comprising an elongated fuselage along a longitudinal axis; two nacelles arranged on either side of the fuselage and forming an auxiliary wing with positive lift, comprising two ends determining a span of said auxiliary wing; a secondary wing extending on either side of the fuselage, aft of the auxiliary wing, being at negative lift and comprising two ends determining a span of said secondary wing; remarkable in that the wingspans of the auxiliary and secondary wings are dimensioned so that in flight conditions, the marginal vortices produced at the two ends of the auxiliary wings interact with the opposite marginal vortices produced at the two ends of the secondary wings so as to decrease the net intensity of said marginal vortices after interaction.
  • negative lift of an airfoil we mean that the airfoil is capable of generating, in flight conditions, a force perpendicular to the mean plane of the airfoil, directed downwards.
  • positive lift of an airfoil we mean that the airfoil is capable of generating, in flight conditions, a force perpendicular to the mean plane of the airfoil, directed upwards.
  • the reduction in the net intensity of the marginal vortices after interaction is at least 10%, preferably at least 30%, more preferably at least 50%.
  • the span of the auxiliary wing and the span of the secondary wing are identical or different from each other by less than 15%.
  • the aircraft further comprises a main wing extending on either side of the fuselage, at the front of the two nacelles, said main wing being with positive lift.
  • each of the two nacelles comprises an upper wall and a lower wall, the said upper and lower walls forming the auxiliary wing, the said lower walls each comprising an air inlet edge aligned longitudinally with the corresponding trailing edge of the main wing.
  • the air inlet edge of the lower wall of each of the two nacelles is located at a distance from the corresponding trailing edge of the main wing which is between 0.02 and 0, 2 times an average aerodynamic chord length of the main canopy over the span of the auxiliary canopy.
  • each of the two nacelles comprises at least one propulsion motor arranged between the upper wall and the lower wall of said nacelle.
  • the main wing and the at least one propulsion engine are dimensioned so that, under flight conditions and at nominal speed of said at least one propulsion engine, additional marginal vortices, adjacent to the vortices marginal vortices at both ends of the auxiliary airfoil, are produced and interact with the opposing marginal vortices produced at both ends of the secondary airfoil so as to reduce the net intensity of said marginal vortices after interaction.
  • the additional marginal vortices are produced at the trailing edge of the main wing, between each of the ends of the auxiliary wing and the corresponding end of the main wing.
  • the span of the auxiliary wing is less than the span of the secondary wing.
  • the measures of the invention are advantageous in that they reduce the induced drag of the aircraft. They essentially consist in sizing the airfoils, in this case the auxiliary airfoil and the secondary airfoil, so that their respective marginal vortices interact in a destructive way, that is to say in such a way as to reduce their net intensity after interaction. This makes it possible to reduce the drag induced by the positive and negative lift of the auxiliary and secondary wings, respectively, and also to reduce the turbulence caused by the flight of the aircraft, potentially annoying for aircraft using the same air corridors.
  • FIG. 1 is a top view of an airplane according to the invention.
  • FIG. 1 is a perspective view of the aircraft from the ;
  • FIG. 1 is a top view of an airplane variant according to the invention.
  • FIG. 1 is a top view of an aircraft according to the state of the art, illustrating the vortex system associated with the lift of the wing, of an aircraft according to the invention, further illustrating the vortex system associated with the lift nacelles, and of the same airplane illustrating, moreover, the vortex system associated with the lift of the main wing due to the coupling with the propulsion engines of the nacelles.
  • the airplane 2 essentially comprises a fuselage 4 extending in a longitudinal direction, a main wing 6 formed by two wings extending on either side of the fuselage 4, two nacelles 8 arranged on either side of the fuselage 4, behind the main wing 6, and a secondary wing 10 formed by two stabilizers extending on either side of the fuselage 4, behind the main wing 6 and the two nacelles 8.
  • the secondary wing 10 has negative lift, meaning that it is able to generate, in flight conditions, a force perpendicular to the mean plane of the secondary wing, directed downwards.
  • the two nacelles 8 each form a generally elongated fairing in a transverse direction and housing one or more propulsion motors.
  • This fairing has the particularity of forming an auxiliary wing with positive lift.
  • This auxiliary wing is essentially formed by upper and lower walls forming a wing profile capable of generating positive lift.
  • Each of the nacelles is advantageously arranged close to the trailing edge 6.2 of the main wing 6, so as to take advantage of the wake of the main wing 6 in question.
  • the two nacelles 8 have a span which is identical or at least close to the span of the secondary wing 10, so that the marginal vortices formed by the positive lift of the auxiliary wing of the nacelles oppose the marginal vortices formed by the negative lift of the secondary wing 10.
  • the airflow along the nacelles 8 causes an air circulation around each nacelle.
  • This air circulation is, along the upper wall of the nacelle, namely the upper surface, from the leading edge 8.1 towards the trailing edge 8.2 of the nacelle, and along the lower face of the nacelle , namely intrados, from the trailing edge 8.2 to the leading edge 8.1.
  • the profile of the nacelle is such that the flow along the extrados is accelerated compared to the flow along the intrados.
  • This difference in speed causes a difference in pressure, namely a depression on the upper surface and an overpressure on the lower surface, causing the lift of the auxiliary wing.
  • the marginal vortex ⁇ produced at the left end 8.3 of the nacelles 8 rotates, seen from the rear of the airplane, clockwise while the marginal vortex ⁇ produced at the right end 8.4 of the nacelles 8 rotates, seen from the rear of the aircraft, anti-clockwise.
  • These directions of rotation are the result of the lift of the auxiliary wing of the nacelles 8. Indeed, the difference in positive pressure between the intrados (lower wall) and the extrados (upper wall) dictates these two opposite directions of rotation. This phenomenon is in itself well known to those skilled in the art.
  • the secondary wing 10 formed by the stabilizers causes, when the airplane is in flight, a circulation of air around each stabilizer.
  • This airflow is however in an opposite direction to that around the nacelles 8 due to the "offset" or negative lift nature of the secondary airfoil 10.
  • the upper surface i.e. the side along which the airflow is accelerated
  • the lower surface i.e. the side along which the airflow is is decelerated
  • the cancellation or significant reduction of the marginal vortices ⁇ ' of the secondary wing 10 by the marginal vortices ⁇ of the auxiliary wing of the nacelles 8 is advantageous in that it reduces the induced drag of the airplane 2.
  • These marginal vortices involve in effect of the speeds of movement of the air and thus of the quantities of movement whose power is drawn from the lift of the corresponding wings. It is therefore particularly advantageous, from an energy point of view, to reduce these marginal vortices as much as possible.
  • each nacelle fairing 8 houses four propulsion motors, it being understood that this number may be different, namely larger or smaller.
  • each of the lower walls 8.6 is aligned with the main wing 6. More precisely, the nacelles are positioned so that the boundary layer of the upper surface of the main wing 6 passes under the lower walls 8.6, the lower walls then being swept by the wake of the main wing 6. This means that the propulsion motors housed in the nacelles 8 are located above the wake of the main wing 6, thus making it possible to ensure maximum thrust.
  • the axes of rotation of the marginal vortices ⁇ and ⁇ ', on each side of the fuselage 4, are not perfectly aligned. Perfect alignment can be difficult to achieve and furthermore may depend on flight conditions, primarily aircraft speed and attitude. Also, the marginal vortices ⁇ and ⁇ ' have a certain diameter, so that a certain shift between their axes of rotation allows an at least partial destructive interaction of said marginal vortices.
  • FIG. 1 There is a top view of an aircraft variant of the , according to the invention, illustrating a partial cancellation of the marginal vortices ⁇ and ⁇ '.
  • the tip vortex ⁇ ' generated by the secondary wing 10 is essentially canceled by the tip vortex ⁇ generated by the auxiliary wing of the nacelles 8, the latter then being reduced. Partial cancellation can therefore be due to a difference in intensity, a shift in the axes of rotation, or even a combination of the two.
  • FIG. 1 There is a top view of an aircraft according to the state of the art, illustrating the vortex system associated with the lift of the wing, of an aircraft according to the invention, further illustrating the vortex system associated with the lift nacelles, and of the same airplane illustrating, moreover, the vortex system associated with the lift of the main wing due to the coupling with the propulsion engines of the nacelles.
  • the vortex system of the main wing 106 of an airplane 102 is illustrated. It can be observed that it extends transversely along the wings on either side of the fuselage 104 to end at the ends of the wings and form two marginal vortices.
  • the vortex system of the auxiliary wing of the nacelles 8 is similar to that of the main wing, with however the difference that it terminates at the ends of the nacelles having a span substantially less than that of the main wing 6.
  • the marginal vortices of the vortex system of the auxiliary wing of the nacelles 8 pass through the ends of the secondary wing 10.
  • This configuration of the vortex systems corresponds to the absence of influence from the propulsion motors housed in the nacelles 8, for example when the power of these motors is reduced or zero (i.e. coasting).
  • an additional vortex system can be observed on the main wing 6, generated by the propulsion of the propulsion motors, that is to say when these are under load.
  • the propulsion motors by the displacement of air that they generate, form above the upper surface of the main wing 6 an air flow with speeds greater than those of the flow linked at the speed of the aircraft.
  • This air flow creates this additional vortex system increasing the lift of the main wing 6, at least limited to an extent of said wing corresponding essentially to the span of the nacelles 8.
  • This additional vortex system produces additional marginal vortices separating from the main wing 6 close to the ends of the nacelles 8, however at a distance towards the outside of these ends.
  • the directions of rotation of these marginal vortices are those of a lifting wing, that is to say identical to those of the vortex systems of the main wing 6 and of the auxiliary wing of the nacelles 8, and therefore opposite to those of the system secondary wing vortex 10.
  • these marginal vortices will be less likely to cancel or reduce the marginal vortices of the vortex system of the secondary wing 10.
  • the span of the auxiliary and secondary wings can be less than that of the secondary wing, while being close to the latter, so as to reduce the drag of the secondary wing when the propulsion engines are in load low or zero and to further reduce, or even cancel, the drag of the secondary wing when the propulsion engines are at nominal load, by the effect of the marginal vortices of the additional vortex system resulting from the aero-propulsive coupling between the propulsion engines and the main wing.
  • the airflow generated by the propulsion engines must be active along the upper surface of the main wing.
  • the distance between the nacelles 8 and the main wing 6 must then be reduced.
  • the air inlet edge of the lower wall of each of the two nacelles is located at a distance from the corresponding trailing edge of the main wing which is between 0.02 and 0.2 times an average chord length aerodynamics of the main wing over the span of the auxiliary wing.
  • the decrease in the total intensity of the marginal vortices can present different levels. It may be at least 10%, preferably at least 20%, more preferably at least 30%, even more preferably at least 50%, even more preferably at least 70%, even more preferably at least 80%.
  • the span of the auxiliary wing and the span of the secondary wing are identical to or different from each other by less than 15%, preferably by less than 10%, more preferably still by less than 5 %.
  • the wingspan of the auxiliary wing may be less than the wingspan of the secondary wing.
  • the span of the auxiliary wing can be greater than the span of the secondary wing.
  • wingtip can have complex shapes that can have several possible points for measuring the span.
  • the spans of the auxiliary and secondary wings can be defined by reference to the destructive interactions between the marginal vortices, which are themselves well detectable. and measurable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention a trait à un avion (2) comprenant un fuselage (4); deux nacelles (8) disposées de part et d'autre du fuselage (4) et formant une voilure auxiliaire à portance positive, comprenant deux extrémités (8.3, 8.4) déterminant une envergure de ladite voilure auxiliaire; une voilure secondaire (10) s'étendant de part et d'autre du fuselage (4), à l'arrière de la voilure auxiliaire, à portance négative et comprenant deux extrémités (10.3, 10.4) déterminant une envergure de ladite voilure secondaire; dans lequel les envergures des voilures auxiliaire et secondaire sont dimensionnées pour qu'en conditions de vol, des tourbillons marginaux (F) produits aux deux extrémités (8.3, 8.4) de la voilure auxiliaire interagissent avec des tourbillons marginaux opposés (F') produits aux deux extrémités (10.3, 10.4) de la voilure secondaire (10) de sorte à diminuer l'intensité nette desdits tourbillons marginaux après interaction.

Description

AVION A TRAINÉE RÉDUITE PAR INTERACTION ENTRE TOURBILLONS MARGINAUX
L’invention a trait au domaine des avions, plus particulièrement des avions comprenant un fuselage généralement allongé et une voilure constituée de deux ailes disposées de part et d’autre du fuselage.
La portance d’une voilure d’avion induit une trainée aérodynamique par la formation de tourbillons. En effet, la portance résulte d’une différence de vitesse entre l’extrados et l’intrados de la voilure, provoquant, outre une différence de pression, une circulation rotationnelle autour de la voilure formant des tourbillons dans le sillage de la voilure. Aussi, la différence de pression entre l’extrados et l’intrados de la voilure provoque à chacune des deux extrémités de la voilure des tourbillons marginaux. Ces tourbillons forment une trainée induite en ce qu’elle est consommatrice d’énergie des phénomènes aérodynamiques liés à la portance de la voilure. Il est à noter qu’une voilure, comme tout autre élément en contact avec l’écoulement d’air, provoque également une trainée de frottement liée à la viscosité de l’air dans la couche limite.
Il est généralement recherché de diminuer la trainée d’une voilure, en particulier la trainée induite, c’est-à-dire celle liée à la portance de la voilure.
Le document de brevet publié WO 2021/074516 A1 propose une architecture d’avion avec un fuselage généralement allongé, une voilure portante constituée de deux ailes disposées de part et d’autre du fuselage, et deux nacelles portantes disposées directement à l’arrière des deux ailes, de manière à être directement dans le sillage des deux ailes. Chacune des nacelles forme un carénage d’entrée d’air, avec une paroi supérieure, une paroi inférieure et deux paroi latérales, et loge plusieurs moteurs de propulsion dans le carénage. Les parois supérieure et inférieure forment une voilure portante auxiliaire. Le bord d’entrée d’air de la paroi inférieure est disposé directement en aval du bord de fuite de l’aile correspondante, de manière à tirer parti du sillage de l’aile. Plus particulièrement, les nacelles sont positionnées par rapport aux ailes de manière à ce que la couche limite de l’extrados des ailes passe sous la paroi inférieure, la paroi inférieure en question étant alors balayée par le sillage de l’aile. Le sillage des nacelles est ainsi réduit. Le sillage des stabilisateurs reste quant à lui inchangé.
L’invention a pour objectif de pallier au moins un inconvénient de l’état de la technique susmentionné. Plus spécifiquement, l’invention a pour objectif de réduire la trainée induite d’un avion, en particulier la trainée des stabilisateurs.
L’invention a pour objet un avion comprenant un fuselage allongé suivant un axe longitudinal ; deux nacelles disposées de part et d’autre du fuselage et formant une voilure auxiliaire à portance positive, comprenant deux extrémités déterminant une envergure de ladite voilure auxiliaire ; une voilure secondaire s’étendant de part et d’autre du fuselage, à l’arrière de la voilure auxiliaire, étant à portance négative et comprenant deux extrémités déterminant une envergure de ladite voilure secondaire ; remarquable en ce que les envergures des voilures auxiliaire et secondaire sont dimensionnées pour qu’en conditions de vol, des tourbillons marginaux produits aux deux extrémités de la voilure auxiliaire interagissent avec des tourbillons marginaux opposés produits aux deux extrémités de la voilure secondaire de sorte à diminuer l’intensité nette desdits tourbillons marginaux après interaction.
Par portance négative d’une voilure, on entend que la voilure est apte à générer, en conditions de vol, une force perpendiculaire au plan moyen de la voilure, dirigée vers le bas. Similairement, par portance positive d’une voilure, on entend que la voilure est apte à générer, en conditions de vol, une force perpendiculaire au plan moyen de la voilure, dirigée vers le haut.
Selon un mode avantageux de l’invention, la diminution de l’intensité nette des tourbillons marginaux après interaction est d’au moins 10%, préférentiellement au moins 30%, plus préférentiellement au moins 50%.
Selon un mode avantageux de l’invention, l’envergure de la voilure auxiliaire et l’envergure de la voilure secondaire sont identiques ou différent l’une de l’autre de moins de 15%.
Selon un mode avantageux de l’invention, l’avion comprend, en outre, une voilure principale s’étendant de part et d’autre du fuselage, à l’avant de des deux nacelles, ladite voilure principale étant à portance positive.
Selon un mode avantageux de l’invention, chacune des deux nacelles comprend une paroi supérieure et une paroi inférieure, lesdits parois supérieures et inférieures formant la voilure auxiliaire, lesdites parois inférieures comprenant, chacune, un bord d’entrée d’air aligné longitudinalement avec le bord de fuite correspondant de la voilure principale.
Selon un mode avantageux de l’invention, le bord d’entrée d’air de la paroi inférieure de chacune des deux nacelles est situé à une distance du bord de fuite correspondant de la voilure principale qui est comprise entre 0,02 et 0,2 fois une longueur moyenne de corde aérodynamique de la voilure principale sur l’envergure de la voilure auxiliaire.
Selon un mode avantageux de l’invention, chacune des deux nacelles comprend au moins un moteur de propulsion disposé entre la paroi supérieure et la paroi inférieure de ladite nacelle.
Selon un mode avantageux de l’invention, la voilure principale et l’au moins un moteur de propulsion sont dimensionnés pour qu’en conditions de vol et en régime nominal dudit au moins un moteur de propulsion, des tourbillons marginaux additionnels, adjacents aux tourbillons marginaux aux deux extrémités de la voilure auxiliaire, sont produits et interagissent avec les tourbillons marginaux opposés produits aux deux extrémités de la voilure secondaire de sorte à diminuer l’intensité nette desdits tourbillons marginaux après interaction.
Selon un mode avantageux de l’invention, les tourbillons marginaux additionnels sont produits au bord de fuite de la voilure principale, entre chacune des extrémités de la voilure auxiliaire et l’extrémité correspondante de la voilure principale.
Selon un mode avantageux de l’invention, l’envergure de la voilure auxiliaire est inférieure à l’envergure de la voilure secondaire.
Les mesures de l’invention sont avantageuses en ce qu’elles réduisent la trainée induite de l’avion. Elles consistent essentiellement à dimensionner les voilures, en l’occurrence la voilure auxiliaire et la voilure secondaire, pour que leurs tourbillons marginaux respectifs interagissent de manière destructive, c’est-à-dire de manière à réduire leur intensité nette après interaction. Cela permet de réduire la trainée induite par les portances positive et négative des voilures auxiliaire et secondaire, respectivement, et aussi à réduire les turbulences provoquées par le vol de l’avion, potentiellement gênantes pour les avions empruntant les mêmes couloirs aériens.
est une vue de haut d’un avion selon l’invention ;
est une vue en perspective de l’avion de la  ;
est une vue de haut d’une variante d’avion selon l’invention ;
est une vue de haut d’un avion selon l’état de la technique, illustrant le système tourbillonnaire associé à la portance de la voilure, d’un avion selon l’invention, illustrant, en outre, le système tourbillonnaire associé à la portance des nacelles, et du même avion illustrant, en outre, le système tourbillonnaire associé à la portance de la voilure principale due au couplage avec les moteurs de propulsion des nacelles.
Description détaillée
Dans la description qui va suivre, les notions de positionnement relatif exprimées notamment par les termes « arrière » et « avant » sont à comprendre suivant la direction longitudinale et dans le sens normal d’avancement de l’avion. Aussi, les notions d’orientation exprimées notamment par les termes « vertical », « horizontal » sont à comprendre lorsque l’avion est en position normale de vol, c’est-à-dire avec son axe longitudinal et ses voilures généralement horizontales.
La est une vue de haut d’un avion selon l’invention.
L’avion 2 comprend, essentiellement, un fuselage 4 s’étendant suivant une direction longitudinale, une voilure principale 6 formée par deux ailes s’étendant de part et d’autre du fuselage 4, deux nacelles 8 disposées de part et d’autre du fuselage 4, en arrière de la voilure principale 6, et une voilure secondaire 10 formée par deux stabilisateurs s’étendant de part et d’autre du fuselage 4, en arrière de la voilure principale 6 et des deux nacelles 8. La voilure secondaire 10 est à portance négative, signifiant qu’elle est apte à générer, en conditions de vol, une force perpendiculaire au plan moyen de la voilure secondaire, dirigée vers le bas.
Les deux nacelles 8 forment, chacune, un carénage généralement allongé dans une direction transversale et logeant un ou plusieurs moteurs de propulsion. Ce carénage présente la particularité de former une voilure auxiliaire à portance positive. Cette voilure auxiliaire est formée essentiellement par des parois supérieure et inférieure formant un profil d’aile apte à générer une portance positive. Chacune des nacelles est avantageusement disposée à proximité du bord de fuite 6.2 de la voilure principale 6, de manière à profiter du sillage de la voilure principale 6 en question.
Les deux nacelles 8 présentent une envergure qui est identique ou du moins proche de l’envergure de la voilure secondaire 10, de manière à ce que les tourbillons marginaux formés par la portance positive de la voilure auxiliaire des nacelles s’opposent aux tourbillons marginaux formés par la portance négative de la voilure secondaire 10.
Lorsque l’avion est en vol, l’écoulement d’air le long des nacelles 8 provoque une circulation d’air autour de chaque nacelle. Cette circulation d’air est, le long de la paroi supérieure de la nacelle, à savoir l’extrados, depuis le bord d’attaque 8.1 vers le bord de fuite 8.2 de la nacelle, et le long de la face inférieure de la nacelle, à savoir intrados, depuis le bord de fuite 8.2 vers le bord d’attaque 8.1. En effet, le profil de la nacelle est tel que l’écoulement le long de l’extrados est accéléré par rapport à l’écoulement le long de l’intrados. Cette différence de vitesse provoque une différence de pression, à savoir une dépression sur l’extrados et une surpression sur l’intrados, provoquant la portance de la voilure auxiliaire. Cette différence de vitesse d’écoulement entre l’extrados et l’intrados provoque un système tourbillonnaire qui se manifeste à chacune des deux extrémités 8.3 et 8.4 des nacelles par un tourbillon marginal Γ (lettre grecque gamma majuscule). Chacun de ces deux tourbillons marginaux présente un axe de rotation généralement parallèle à l’axe longitudinal de l’avion, passant par l’extrémité correspondante 8.3 ou 8.4 de la nacelle 8. Ces deux tourbillons marginaux sont contrarotatifs en ce qu’ils présentent des sens de rotation opposés. Le tourbillon marginal Γ produit à l’extrémité gauche 8.3 des nacelles 8 tourne, vu depuis l’arrière de l’avion, dans le sens horloger alors que le tourbillon marginal Γ produit à l’extrémité droite 8.4 des nacelles 8 tourne, vu depuis l’arrière de l’avion, dans le sens anti-horloger. Ces sens de rotation sont le résultat de la portance de la voilure auxiliaire des nacelles 8. En effet, la différence de pression positive ente l’intrados (paroi inférieure) et l’extrados (paroi supérieure) dicte ces deux sens de rotation opposés. Ce phénomène est en soi bien connu de l’homme de métier.
Similairement à ce qui est décrit ci-avant, la voilure secondaire 10 formée par les stabilisateurs provoque, lorsque l’avion est en vol, une circulation d’air autour de chaque stabilisateur. Cette circulation d’air est toutefois dans un sens opposé à celle autour des nacelles 8 en raison de la nature « déportante » ou à portance négative de la voilure secondaire 10. Cela signifie que l’extrados, c’est-à-dire la face de long de laquelle l’écoulement d’air est accéléré, est sur la face inférieure de la voilure secondaire et, similairement, l’intrados, c’est-à-dire la face le long de laquelle l’écoulement d’air est décéléré, est sur la face supérieure de la voilure secondaire. L’écoulement d’air le long de la face inférieure est donc plus rapide que l’écoulement le long de la face supérieure, conduisant à une circulation, le long de la face supérieure, depuis le bord de fuite 10.2 vers le bord d’attaque 10.1, et le long de la face inférieure, depuis le bord d’attaque 10.1 vers le bord de fuite 10.2. Similairement à la voilure auxiliaire des nacelles 8, cette différence de vitesse d’écoulement entre l’extrados et l’intrados provoque un système tourbillonnaire qui se manifeste à chacune des deux extrémités 10.3 et 10.4 des nacelles par un tourbillon marginal Γ’ (lettre grecque gamma majuscule prime). Ces deux tourbillons marginaux sont contrarotatifs pour les mêmes raisons que pour la voilure auxiliaire des nacelles 8. Les sens de rotation de ces tourbillons marginaux Γ’ sont toutefois opposés à ceux des tourbillons marginaux Γ correspondant, de sorte que l’interaction de ces tourbillons marginaux Γ et Γ’ provoque leur annulation, ou du moins une diminution importante de leur intensité. Cette interaction a lieu grâce à la correspondance entre les envergures des voilures auxiliaire et secondaire. Pour que cette interaction ait lieu, il est en effet nécessaire que les tourbillons marginaux Γ et Γ’ de chaque côté du fuselage 4, tournant dans des sens opposés, se rencontrent.
L’annulation ou diminution importante des tourbillons marginaux Γ’ de la voilure secondaire 10 par les tourbillons marginaux Γ de la voilure auxiliaire des nacelles 8 est avantageuse en ce qu’elle réduit la trainée induite de l’avion 2. Ces tourbillons marginaux impliquent en effet des vitesses de déplacement de l’air et ainsi des quantités de mouvement dont la puissance est tirée de la portance des voilures correspondantes. Il est donc particulièrement avantageux, d’un point de vue énergétique, de réduire au maximum ces tourbillons marginaux.
La est une vue en perspective, depuis un point de vue situé à l’avant et au-dessus de l’avion 2, de la voilure principale 6, des nacelles 8 et de la voilure secondaire 10, illustrant les tourbillons marginaux Γ et Γ’ décrits ci-avant.
On peut observer à la la construction des nacelles 8, à savoir leurs carénages avec les parois d’extrémité 8.3 et 8.4, et les parois supérieure 8.5 et inférieure 8.6. En l’occurrence, chaque carénage de nacelle 8 loge quatre moteurs à propulsion, étant entendu que ce nombre peut être différent, à savoir plus grand ou plus petit. On peut aussi observer que chacune des parois inférieures 8.6 est alignée avec la voilure principale 6. Plus précisément, les nacelles sont positionnées de manière à ce que la couche limite de l’extrados de la voilure principale 6 passe sous les parois inférieures 8.6, les parois inférieures étant alors balayées par le sillage de la voilure principale 6. Cela signifie que les moteurs propulsifs logés dans les nacelles 8 sont situés au-dessus du sillage de la voilure principale 6, permettant ainsi d’assurer une poussée maximale.
Toujours à la , on peut observer que les axes de rotation des tourbillons marginaux Γ et Γ’, de chaque côté du fuselage 4, ne sont pas parfaitement alignés. Un alignement parfait peut être difficile à atteindre et par ailleurs peut dépendre des conditions de vol, essentiellement de la vitesse de l’avion et de son attitude. Aussi, les tourbillons marginaux Γ et Γ’ présentent un certain diamètre, de sorte qu’un certain décalage entre leurs axes de rotation, permet une interaction destructive au moins partielle desdits tourbillons marginaux.
La est une vue de haut d’une variante d’avion de la , selon l’invention, illustrant une annulation partielle des tourbillons marginaux Γ et Γ’.
On peut en effet observer un décalage, en l’occurrence horizontal, entre les axes de rotation des tourbillons marginaux Γ et Γ’. Il est entendu que ce décalage peut être vertical, ou une combination de décalage horizontal et de décalage vertical. On observe que, de chaque côté du fuselage 4, le tourbillon marginal après interaction γ, en aval de la voilure secondaire 10 et de l’interaction entre les tourbillons marginaux Γ et Γ’, présente une intensité qui est inférieure à celle de chacun des tourbillons marginaux Γ et Γ’. En l’occurrence le tourbillon marginal après interaction γ est du même sens de rotation que le tourbillon marginal Γ correspondant, car ce dernier est de plus grande intensité que le tourbillon marginal Γ’. En d’autres termes, le tourbillon marginal Γ’ généré par la voilure secondaire 10 est essentiellement annulé par le tourbillon marginal Γ généré par la voilure auxiliaire des nacelles 8, ce dernier étant alors diminué. L’annulation partielle peut dont être le fait d’une différence d’intensité, d’un décalage des axes de rotation, ou encore d’une combinaison des deux.
La est une vue de haut d’un avion selon l’état de la technique, illustrant le système tourbillonnaire associé à la portance de la voilure, d’un avion selon l’invention, illustrant, en outre, le système tourbillonnaire associé à la portance des nacelles, et du même avion illustrant, en outre, le système tourbillonnaire associé à la portance de la voilure principale due au couplage avec les moteurs de propulsion des nacelles.
A gauche de la , le système tourbillonnaire de la voilure principale 106 d’un avion 102 selon l’état de la technique est illustré. On peut observer qu’il s’étend transversalement le long de ailes de part et d’autre du fuselage 104 pour aboutir aux extrémités des ailes et former deux tourbillons marginaux.
A centre de la , illustrant un avion selon l’invention, on peut observer, outre le système tourbillonnaire de la voilure principale 6, le système tourbillonnaire de la voilure auxiliaire des nacelles 8. Ce système tourbillonnaire est similaire à celui de la voilure principale, avec toutefois pour différence qu’il aboutit aux extrémités des nacelles présentant une envergue sensiblement inférieure à celle de la voilure principale 6. Comme illustré à la , les tourbillons marginaux du système tourbillonnaire de la voilure auxiliaire des nacelles 8 passent par les extrémités de la voilure secondaire 10. Cette configuration des systèmes tourbillonnaires correspond à l’absence d’influence des moteurs de propulsion logés dans les nacelles 8, par exemple lorsque la puissance de ces moteurs est réduite ou nulle (c’est-à-dire en roue libre).
A droite de la , on peut observer un système tourbillonnaire additionnel sur la voilure principale 6, généré par la propulsion des moteurs de propulsion, c’est-à-dire lorsque ceux-ci sont en charge. Dans cette situation, les moteurs de propulsion, de par le déplacement d’air qu’ils génèrent, forment au-dessus de l’extrados de la voilure principale 6 un flux d’air avec des vitesses supérieures à celles de l’écoulement lié à la vitesse de déplacement de l’avion. Ce flux d’air crée ce système tourbillonnaire additionnel augmentant la portance de la voilure principale 6, du moins limitée à une étendue de ladite voilure correspondant essentiellement à l’envergure des nacelles 8. Ce système tourbillonnaire additionnel produit des tourbillons marginaux additionnels se séparant de la voilure principale 6 à proximité des extrémités des nacelles 8, toutefois à distance vers l’extérieur de ces extrémités. Les sens de rotation de ces tourbillons marginaux sont ceux d’une voilure portante, c’est-à-dire identiques à ceux des systèmes tourbillonnaires de la voilure principale 6 et de la voilure auxiliaire des nacelles 8, et donc opposés à ceux du système tourbillonnaire de la voilure secondaire 10. Cela signifie que lorsque les moteurs de propulsion sont en charge, par opposition à des conditions de vol où l’avion plane, il y a une génération de tourbillons marginaux additionnels susceptibles d’être décalés vers l’extérieur par rapport aux tourbillons marginaux du système tourbillonnaire de la voilure auxiliaire des nacelles 8. En fonction de ce décalage, ces tourbillons marginaux seront moins susceptibles d’annuler ou réduire les tourbillons marginaux du système tourbillonnaire de la voilure secondaire 10.
Il est ainsi possible de prévoir un dimensionnement des envergures des voilures auxiliaires et secondaire, en tenant compte du système tourbillonnaire additionnel dû au couplage entre la voilure principale et les moteurs de propulsion, de manière à obtenir une réduction optimale des tourbillons marginaux du système tourbillonnaire de la voilure secondaire pour les différentes conditions de vol. A titre d’exemple, l’envergure de la voilure auxiliaire peut être inférieure à celle de la voilure secondaire, tout en étant proche de celle-ci, de manière à réduire la trainée de la voilure secondaire lorsque le moteurs de propulsion sont en charge faible ou nulle et à réduire davantage, voire annuler, la trainée de la voilure secondaire lorsque le moteurs de propulsion sont en charge nominale, par l’effet des tourbillons marginaux du système tourbillonnaire additionnel résultant du couplage aéro-propulsif entre les moteurs de propulsion et la voilure principale.
Il est à noter que pour que la génération du système tourbillonnaire additionnel ait lieu, il est nécessaire d’avoir un couplage aérodynamique entre les moteurs de propulsion et la voilure principale. En d’autres termes, le flux d’air généré par les moteurs de propulsion doit être actif le long de l’extrados de la voilure principale. La distance entre les nacelles 8 et la voilure principale 6 doit alors être réduite. Avantageusement, le bord d’entrée d’air de la paroi inférieure de chacune des deux nacelles est situé à une distance du bord de fuite correspondant de la voilure principale qui est comprise entre 0,02 et 0,2 fois une longueur moyenne de corde aérodynamique de la voilure principale sur l’envergure de la voilure auxiliaire.
Les phénomènes aérodynamiques décrits ci-avant sont présentés de manière schématique et simplifiée, à des fins de clarté d’exposé de l’invention. Il est entendu que dans la réalité ces phénomènes sont plus complexes et sont notamment sujets à des perturbations par d’autres phénomènes non mentionnés et de moindre importance. Ils sont également sujets à des variations en fonction des conditions de vol, à savoir en fonction de la vitesse de déplacement de l’avion par rapport à l’air ambiant et de la puissance fournie par les moteurs de propulsion. En l’absence de mention spécifique, les conditions de vol sont des conditions de vol en régime nominal.
De manière générale, la diminution de l’intensité totale des tourbillons marginaux peut présenter différents niveaux. Elle peut être d’au moins 10%, préférentiellement d’au moins 20%, plus préférentiellement d’au moins 30%, plus préférentiellement encore d’au moins 50%, plus préférentiellement encore d’au moins 70%, plus préférentiellement encore d’au moins 80%.
A cet effet, l’envergure de la voilure auxiliaire et l’envergure de la voilure secondaire sont identiques ou différent l’une de l’autre de moins de 15%, préférentiellement de moins de 10%, plus préférentiellement encore de moins de 5%. L’envergure de la voilure auxiliaire peut être inférieure à l’envergure de la voilure secondaire. Alternativement, l’envergure de la voilure auxiliaire peut être supérieure à l’envergure de la voilure secondaire.
Il est à noter que les extrémités des voilures, couramment désignés par le terme saumon d’aile, peuvent présenter des formes complexes pouvant présenter plusieurs points possibles de mesure de l’envergure. A cet effet, et en référence à la complexité des phénomènes aérodynamiques telle qu’évoquée ci-avant, il est opportun de définir les envergures des voilures auxiliaire et secondaire par référence aux interactions destructrices entre les tourbillons marginaux, qui sont, elles, bien détectables et mesurables.

Claims (10)

  1. Avion (2) comprenant :
    - un fuselage (4) allongé suivant un axe longitudinal ;
    - deux nacelles (8) disposées de part et d’autre du fuselage (4) et formant une voilure auxiliaire à portance positive, comprenant deux extrémités (8.3, 8.4) déterminant une envergure de ladite voilure auxiliaire ;
    - une voilure secondaire (10) s’étendant de part et d’autre du fuselage (4), à l’arrière de la voilure auxiliaire, étant à portance négative et comprenant deux extrémités (10.3, 10.4) déterminant une envergure de ladite voilure secondaire ;
    caractérisé en ce que
    les envergures des voilures auxiliaire et secondaire sont dimensionnées pour qu’en conditions de vol, des tourbillons marginaux (Γ) produits aux deux extrémités (8.3, 8.4) de la voilure auxiliaire interagissent avec des tourbillons marginaux opposés (Γ’) produits aux deux extrémités (10.3, 10.4) de la voilure secondaire (10) de sorte à diminuer l’intensité nette desdits tourbillons marginaux après interaction (γ).
  2. Avion (2) selon la revendication 1, dans lequel la diminution de l’intensité totale des tourbillons marginaux (Γ, Γ’) est d’au moins 10%, préférentiellement au moins 30%, plus préférentiellement au moins 50%.
  3. Avion (2) selon l’une des revendications 1 et 2, dans lequel l’envergure de la voilure auxiliaire et l’envergure de la voilure secondaire (10) sont identiques ou différentes l’une de l’autre de moins de 15%.
  4. Avion (2) selon l’une des revendications 1 à 3, comprenant, en outre :
    - une voilure principale (6) s’étendant de part et d’autre du fuselage (4), à l’avant des deux nacelles (8), ladite voilure principale étant à portance positive.
  5. Avion (2) selon la revendication 4, dans lequel chacune des deux nacelles (8) comprend une paroi supérieure (8.5) et une paroi inférieure (8.6), lesdits parois supérieures (8.5) et inférieures (8.6) formant la voilure auxiliaire, lesdites parois inférieures (8.6) comprenant, chacune, un bord d’entrée d’air (8.1) aligné longitudinalement avec le bord de fuite correspondant (6.2) de la voilure principale (6).
  6. Avion (2) selon la revendication 5, dans lequel le bord d’entrée d’air (8.1) de la paroi inférieure (8.6) de chacune des deux nacelles (8) est située à une distance du bord de fuite correspondant (6.2) de la voilure principale (6) qui est comprise entre 0,02 et 0,2 fois une longueur moyenne de corde aérodynamique de la voilure principale (6) sur l’envergure de la voilure auxiliaire.
  7. Avion (2) selon l’une des revendications 5 et 6, dans lequel chacune des deux nacelles (8) comprend au moins un moteur de propulsion disposé entre la paroi supérieure (8.5) et la paroi inférieure (8.6) de ladite nacelle.
  8. Avion (2) selon la revendication 7, dans lequel la voilure principale (6) et l’au moins un moteur de propulsion sont dimensionnés pour qu’en conditions de vol et en régime nominal dudit au moins un moteur de propulsion, des tourbillons marginaux additionnels, adjacents aux tourbillons marginaux (Γ) aux deux extrémités (8.3, 8.4) de la voilure auxiliaire, sont produits et interagissent avec les tourbillons marginaux opposés (Γ’) produits aux deux extrémités (10.3, 10.4) de la voilure secondaire (10) de sorte à diminuer l’intensité nette desdits tourbillons marginaux après interaction (γ).
  9. Avion (2) selon la revendication 8, dans lequel les tourbillons marginaux additionnels sont produits au bord de fuite (6.2) de la voilure principale (6), entre chacune des extrémités (8.3, 8.4) de la voilure auxiliaire et l’extrémité correspondante de la voilure principale (6).
  10. Avion (2) selon l’une des revendications 5 à 9, dans lequel l’envergure de la voilure auxiliaire est inférieure à l’envergure de la voilure secondaire (10).
PCT/EP2022/077160 2021-09-30 2022-09-29 Avion a trainée réduite par interaction entre tourbillons marginaux WO2023052530A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2110304 2021-09-30
FR2110304A FR3127476A1 (fr) 2021-09-30 2021-09-30 Avion a trainée réduite par interaction entre tourbillons marginaux

Publications (1)

Publication Number Publication Date
WO2023052530A1 true WO2023052530A1 (fr) 2023-04-06

Family

ID=78828137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/077160 WO2023052530A1 (fr) 2021-09-30 2022-09-29 Avion a trainée réduite par interaction entre tourbillons marginaux

Country Status (2)

Country Link
FR (1) FR3127476A1 (fr)
WO (1) WO2023052530A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709880A (en) * 1978-12-29 1987-12-01 General Dynamics Corporation Method and system for improved V/STOL aircraft performance
WO2021074516A1 (fr) 2019-10-15 2021-04-22 Safran Nacelles Avion à nacelle déportée affleurant le sillage de l'aile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709880A (en) * 1978-12-29 1987-12-01 General Dynamics Corporation Method and system for improved V/STOL aircraft performance
WO2021074516A1 (fr) 2019-10-15 2021-04-22 Safran Nacelles Avion à nacelle déportée affleurant le sillage de l'aile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAM DAVIS: "Boeing to Acquire Aurora Flight Sciences, an Autonomous Flight Technology Pioneer | Power Electronics", 26 October 2017 (2017-10-26), XP055709027, Retrieved from the Internet <URL:https://www.powerelectronics.com/news/article/21864044/boeing-to-acquire-aurora-flight-sciences-an-autonomous-flight-technology-pioneer> [retrieved on 20200626] *

Also Published As

Publication number Publication date
FR3127476A1 (fr) 2023-03-31

Similar Documents

Publication Publication Date Title
EP0254605B1 (fr) Dispositif directionnel et stabilisateur à rotor anti-couple caréné et incliné et à empennage en &#34;V&#34; dissymétrique, et hélicoptère équipé d&#39;un tel dispositif
FR2948628A1 (fr) Avion a controle en lacet par trainee differentielle
EP1212238B1 (fr) Perfectionnements aux aeronefs convertibles a rotors basculants
FR2993859A1 (fr) Avion multiplans a propulsion pousse et tire
EP2668098B1 (fr) Avion motorisé à structure mixte hydrodynamique et aérodynamique pour le décollage et l&#39;atterrissage sur l&#39;eau, le sol ou la neige
FR3101853A1 (fr) Avion à nacelle déportée affleurant le sillage de l’aile
FR2841532A1 (fr) Avion a controle actif du vrillage de ses ailes
FR2946013A1 (fr) Avion comportant une aile mobile suivant l&#39;axe longitudinal du fuselage
FR2958624A1 (fr) Mat d&#39;accrochage pour turbomoteur d&#39;aeronef, comprenant un volet arriere mobile en incidence
FR2941915A1 (fr) Aeronef presentant deux paires d&#39;ailes
FR2527164A1 (fr) Agencement a bord d&#39;avions d&#39;equipements de propulsion a helices
EP3527491B1 (fr) Methode d&#39;amelioration d&#39;une pale afin d&#39;augmenter son incidence negative de decrochage
FR2802173A1 (fr) Aeronef a moyens de desagregation precoce de la paire de turbulences principales de sillage generees par les ailes
WO2010018323A1 (fr) Mât de moteur pour aéronef
FR3037560A1 (fr) Aile d&#39;aeronef comprenant un embout d&#39;aile pilotable en incidence
EP2460720B1 (fr) Elément de structure d&#39;un giravion pour diminuer la traînée aérodynamique
FR2894558A1 (fr) Aile a ailette d&#39;extremite de voilure et aeronef comportant une telle aile
FR2937302A1 (fr) Avion a empennage queue-de-morue.
CA2148393C (fr) Avion de transport a empennage avant
WO2023052530A1 (fr) Avion a trainée réduite par interaction entre tourbillons marginaux
EP2432684B1 (fr) Procédé pour l&#39;amélioration de l&#39;efficacité aérodynamique de l&#39;empennage vertical d&#39;un aéronef
EP3581484B1 (fr) Profils aerodynamiques a efficacite stabilisatrice amelioree pour empennages et derives
FR2922520A1 (fr) Procede de reduction de la trainee de compressibilite d&#39;une voilure et conteneur mettant en oeuvre ce procede
FR3135708A1 (fr) Aeronef a trainee reduite par la reduction d’intensite des tourbillons marginaux
FR3113399A1 (fr) Dispositif aérodynamique pour aéronef et aéronef muni d’un tel dispositif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22793562

Country of ref document: EP

Kind code of ref document: A1