WO2023051834A1 - 一种可自动化折叠的孔压探杆装置及其工作方法 - Google Patents

一种可自动化折叠的孔压探杆装置及其工作方法 Download PDF

Info

Publication number
WO2023051834A1
WO2023051834A1 PCT/CN2022/127714 CN2022127714W WO2023051834A1 WO 2023051834 A1 WO2023051834 A1 WO 2023051834A1 CN 2022127714 W CN2022127714 W CN 2022127714W WO 2023051834 A1 WO2023051834 A1 WO 2023051834A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
pressure probe
pore pressure
penetration
probe rod
Prior art date
Application number
PCT/CN2022/127714
Other languages
English (en)
French (fr)
Inventor
单治钢
孙淼军
王威
余和雨
刘晓磊
Original Assignee
中国电建集团华东勘测设计研究院有限公司
中国海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电建集团华东勘测设计研究院有限公司, 中国海洋大学 filed Critical 中国电建集团华东勘测设计研究院有限公司
Priority to US18/180,233 priority Critical patent/US11788409B2/en
Publication of WO2023051834A1 publication Critical patent/WO2023051834A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/002Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/006Measuring wall stresses in the borehole
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/001Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells specially adapted for underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/003Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by analysing drilling variables or conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/12Underwater drilling
    • E21B7/124Underwater drilling with underwater tool drive prime mover, e.g. portable drilling rigs for use on underwater floors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of seabed detection, in particular to an automatically foldable pore pressure probe device and a working method thereof.
  • Soil liquefaction under extreme storm conditions refers to the accumulation of pore water pressure inside the soil, the total stress of the soil remains unchanged, and the effective stress decreases, resulting in the loss of strength of the soil and making the soil fluid. Therefore, monitoring the pore water pressure response inside the soil layer under extreme storm conditions has become one of the important means to judge soil liquefaction and reveal the liquefaction mechanism.
  • pore water stress monitoring devices inside the seabed most of which use the rod body penetration method. The penetration depth of this type of rod penetration device is often limited by the size of the equipment, and the device is complicated and expensive.
  • the present invention designs a set of automatically foldable pore pressure probe devices.
  • the device has the characteristics of simple structure, large penetration depth, and small size. Long-term on-site stable monitoring of the pore water pressure inside the seabed soil layer within the range of 0-5 meters.
  • an automatically foldable pore pressure probe device including a support system, a penetration system and a measurement system, wherein the support system includes a hexagonal support frame, a penetration support frame, Separation mechanism, support leg ring buckle, support leg fixing nut, support leg fixing bolt, upper support leg, lower support leg, upper card slot, lower card slot, support base, storage rod wheel support frame, hexagonal support frame as an optional
  • the support mechanism of the automatic folding pore pressure probe device is welded into the bottom frame of the hexagonal support frame for the penetration support frame, which is used to support some parts in the penetration system except the rod storage wheel and the rod storage wheel motor.
  • the separation mechanism is located around the bottom of the hexagonal support frame.
  • the separation mechanism is provided with four groups, including the support leg buckle, the upper support leg and the lower support leg.
  • the support leg buckle is located between the upper support leg and the lower support leg.
  • the upper support leg Welded in the middle of the hexagonal support frame, the lower support leg is welded to the upper surface of the support base, the upper support leg and the lower support leg are detachably connected by a separation mechanism, the support base is located at the bottom of the hexagonal support frame, storage
  • the rod wheel support frame is welded to the upper end of the penetration support frame;
  • the penetration system includes rod storage wheel, rod storage wheel motor, tightening mechanism, penetration drive motor, primary transmission gear, fixing bracket, fixing bolt, friction wheel; , Rotary drive hydraulic press, hydraulic transmission rod, connector, rotatable fixed frame, fixed frame, support column and rotary frame, one end of the rotary drive hydraulic machine is welded to the penetration support frame, the other end is connected to the hydraulic transmission rod, and the upper end of the rotary shaft is connected to The hydraulic transmission rod of the rotary drive hydraulic machine is welded with a rotary frame at the lower end of the rotary shaft.
  • the rotary drive hydraulic machine can drive the horizontal movement of the hydraulic transmission rod and drive the rotation of the rotary frame.
  • the upper surface of the rotary frame is fixed with a hydraulic machine, and one end is connected with a hydraulic transmission rod It is connected with the rotatable fixed frame through the connecting head, and the hydraulic transmission rod can be driven to move horizontally through the hydraulic press, so that the rotatable fixed frame can rotate.
  • the modular hole pressure probe rod at the lower end is tightened by the friction wheel, and the limit barrel of the probe rod passes through 4
  • a support column is connected to the upper surface of the rotating frame;
  • the rod storage wheel is composed of a regular pentagonal steel frame, including a fixed chain and a limit plate.
  • the rod storage wheel is welded with a fixed chain, one end is fixed on the rod storage wheel, the other end is fixed on the end of the hole pressure probe rod, and the limit plate Set at the corner of the pentagonal steel frame, the center of the rod storage wheel is connected to the rod storage wheel support frame through its axle, the rod storage wheel motor is welded to one side of the rod storage wheel support frame, and connected through the shaft of the rod storage wheel motor Rod storage wheel, the rod storage wheel motor drives the rotation of the rod storage wheel, the penetration drive motor includes two electric drive motors, which are respectively welded to the two sides of the penetration support frame, and the two penetration drive motors pass through the shaft of the motor and the first stage
  • the transmission gear is connected to provide power for the rotation of the two friction wheels.
  • Two fixed brackets of the same size are fixed at both ends of the penetrating support frame by fixing bolts. There are several transmission gears connected to the fixed brackets
  • the measurement system includes the pore pressure probe rod, the pore pressure probe rod control cabin, the CPTU probe, the pore pressure sensor, the probe rod connector, the external thread of the connector, the internal thread of the connector, the clip, the connecting bolt, the watertight plug-in male head, the watertight Plug-in female head, data transmission and power supply cable, displacement sensor, and deck unit;
  • the hole pressure probe rod is divided into five sections with a distance of 1 meter, each section is equipped with a hole pressure sensor (304), and the watertight plug-in male head is located in the hole pressure probe
  • the watertight plug-in female head is located at the bottom of the pore pressure probe rod.
  • the control cabin of the pore pressure probe rod is welded to the side of the rod storage wheel support frame.
  • the displacement sensor is located in the middle of the pore pressure probe rod.
  • the hexagonal support frame is welded by hollow cylindrical tubes made of 316L stainless steel.
  • the supporting base is four discs of equal size.
  • the separation mechanism also includes a support leg fixing nut, a support leg fixing bolt, an upper card slot and a lower card slot, and an upper card slot and a lower card slot are opened inside the support leg ring buckle for fixing the upper support leg and the lower support
  • the second-stage transmission gear, the third-stage transmission gear and the friction transmission gear are fixed on the fixed bracket at the left end of the penetration support frame.
  • the gear engagement between the gear, the third-stage transmission gear and the friction transmission gear can make the transmission rod and the friction wheel connected to the transmission rod rotate;
  • the fixed bracket at the right end is provided with a fourth-stage transmission gear with the same size as the three-stage transmission gear.
  • the transmission gear, the four-stage transmission gear can change the rotation direction of the friction transmission gear on the right side, thereby realizing the reverse rotation of the two friction wheels, and penetrating the pore pressure probe rod to a predetermined depth through friction.
  • the pore pressure probe control cabin is loaded with batteries, data acquisition instruments, and penetrating control panel components.
  • the connecting piece of the probe rod includes an external thread of the connecting piece, a clip and a connecting bolt.
  • the connecting piece of the probe rod is fixed on the bottom end of each section of the pore pressure probe rod through the connecting bolt, and the bottom of the connecting piece of the probe rod is provided with an external thread of the connecting piece.
  • the clip, the external thread of the connector is nested with the internal thread of the connector on the upper part of each modular pore pressure probe rod through the tightening mechanism, and the clip is used as the limit device for rotation.
  • a working method of an automatically foldable pore pressure probe device specifically comprising the following steps:
  • connection device and the ship’s deck unit and power supply ensure that the pore pressure probe rod is stored on the rod storage wheel, and then the automatically foldable pore pressure probe device is placed on a stable platform through the ship’s winch seabed surface;
  • the rod storage wheel motor drives the rod storage wheel to rotate and continuously sends the pore pressure probe rod into the tightening mechanism at a speed of 20 ⁇ 2mm/s, and the tightening mechanism will not work at this time.
  • the two penetration drive motors rotate together, and drive the friction wheel to continuously penetrate the pore pressure probe into the soil at a speed of 20 ⁇ 2mm/s;
  • the present invention has the following beneficial effects due to the adoption of the above technical scheme:
  • This device modularizes the pore pressure probe rod and performs automatic folding, which not only reduces the overall height of the monitoring device, but also improves the stability of the overall device, providing safety guarantee for long-term on-site monitoring of seabed pore water pressure.
  • the support base of the long-term on-line in-situ monitoring device is prone to sand and soil burial events, which greatly increases the resistance of the overall recovery of the device.
  • the support base and the device main body are designed as separate modules. When the support base is buried, the diver opens the separation mechanism to realize the separation of the support base and the device main body.
  • Figure 1 Stereoscopic view of the automatically foldable pore pressure probe device
  • Figure 2 Front view of the automatically foldable pore pressure probe device
  • Figure 3 Side view of the automatically foldable pore pressure probe device
  • Figure 4 Top view of the automatically foldable pore pressure probe device
  • Figure 5 Three-dimensional schematic diagram of the friction wheel
  • Figure 6 Stereoscopic schematic diagram of the penetration system
  • Figure 7 Stereoscopic schematic diagram of penetration system and support frame
  • Figure 8 Main schematic diagram of the penetration system
  • FIG. 9 Schematic diagram of the probe rod connector
  • Figure 10 is a schematic cross-sectional view of 1-1 in Figure 9;
  • Fig. 11 schematic diagram of probe rod connection mode
  • Figure 12 is a schematic cross-sectional view of 2-2 in Figure 11;
  • FIG. 13 Schematic diagram of the separation mechanism
  • Figure 14 is a schematic cross-sectional view of 3-3 in Figure 13;
  • Figure 15 Three-dimensional schematic diagram of the tightening mechanism
  • Figure 16 Schematic diagram of the pore pressure probe
  • Figure 17 Schematic diagram of the rod storage wheel.
  • the present invention proposes an automatically foldable pore pressure probe device, including a support system, a penetration system and a measurement system, wherein the support system includes a hexagonal support frame 101, a penetration Insert support frame 102, separation mechanism 103, support leg ring buckle 1030, support leg fixing nut 1031, support leg fixing bolt 1032, upper support leg 1033, lower support leg 1034, upper card slot 1035, lower card slot 1036, support base 104 1.
  • the rod storage wheel support frame 105 and the hexagonal support frame 101 are formed by welding a hollow cylindrical tube made of 316L stainless steel.
  • the hexagonal support frame 101 is used as the support mechanism of the automatically foldable pore pressure detection rod device, and the penetration support frame 102 is welded in the bottom frame of the hexagonal support frame 101 to support the removal rod storage wheel in the penetration system 201, some parts other than the rod storage wheel motor 202.
  • the separation mechanism 103 is located around the bottom of the hexagonal support frame 101.
  • the separation mechanism 103 is provided with four groups, including the support leg buckle 1030, the upper support leg 1033 and the lower support leg 1034.
  • the support leg buckle 1030 is located at the upper support leg 1033 and the lower support leg 1034.
  • the upper support leg 1033 is welded to the middle of the hexagonal support frame 101
  • the lower support leg 1034 is welded to the upper surface of the support base 104
  • the upper support leg 1033 and the lower support leg 1034 can be separated by the separation mechanism 103 It is connection, and the hexagonal support frame 101 can be separated from the support base 104 .
  • Separation mechanism 103 also includes support leg fixing nut 1031, support leg fixing bolt 1032, upper clamping groove 1035 and lower clamping groove 1036, and supporting leg ring buckle 1030 has upper clamping groove 1035 and lower clamping groove 1036 inside, for fixing the upper support
  • the support base 104 is located at the bottom of the hexagonal support frame 101, and the support base 104 is four equal-sized discs, which can reduce the rate of device sinking due to its own weight.
  • the rod storage wheel support frame 105 is welded to the upper end of the penetration support frame 102 , which can support rod storage wheel 201, rod storage wheel motor 202 and pore pressure probe rod control cabin 302;
  • the penetration system includes a rod storage wheel 201, a rod storage wheel motor 202, a tightening mechanism 203, a penetration drive motor 204, a primary transmission gear 205, a fixing bracket 208, a fixing bolt 209, and a friction wheel 212;
  • the tightening mechanism 203 includes a probe Rod limit barrel 2030, rotating shaft 2031, hydraulic press 2032, rotary drive hydraulic press 2033, hydraulic transmission rod 2034, connector 2035, rotatable fixed frame 2036, fixed frame 2037, support column 2038 and rotary frame 2039, one end of rotary drive hydraulic press 2033 Welded on the penetration support frame 102, the other end is connected with a hydraulic transmission rod 2034, the upper end of the rotary shaft 2031 is connected with the hydraulic transmission rod 2034 of the rotary driving hydraulic machine 2033, the lower end of the rotary shaft 2031 is welded with a rotary frame 2039, and the rotary driving hydraulic machine 2033 can drive the hydraulic pressure
  • the horizontal movement of the transmission rod 2034 drives the rotation
  • the upper surface of the swivel frame 2039 is fixed with a hydraulic press 2032, one end of which is connected with a hydraulic transmission rod 2034, and is connected with the rotatable fixed frame 2036 through the connector 2035.
  • the hydraulic press 2032 can Drive the horizontal movement of the hydraulic transmission rod 2034, so that the rotatable fixed frame 2036 rotates, reducing the distance between the rotatable fixed frame 2036 and the fixed frame 2037, so as to achieve the fixing of the upper modular hole pressure probe rod 301 and the lower modular hole
  • the pressure probe rod 301 is tightened by the friction wheel 212 to prevent the relative rotation of the two probe rods when the probe rods are assembled;
  • the probe rod limit barrel 2030 is connected to the upper surface of the rotating frame 2039 through four support columns 2038;
  • the rod storage wheel 201 is composed of a regular pentagonal steel frame, including a fixed chain 2010 and a limit plate 2011.
  • the rod storage wheel 201 is welded with a fixed chain, one end is fixed on the rod storage wheel, and the other end is fixed on the end of the hole pressure probe 301.
  • the limit plate 2011 is set at the corner of the pentagonal steel frame to prevent the probe rod from detaching from the rod storage wheel, and the rod storage wheel will exert a pulling force in the opposite direction to the penetration of the probe rod to firmly fix the pore pressure probe rod
  • the center of the rod storage wheel 201 is connected to the rod storage wheel support frame 105 through its axle at the same time, for storing the pore pressure probe rod 301 .
  • the rod storage wheel motor 202 is welded on one side of the rod storage wheel support frame 105, and is connected to the rod storage wheel 201 through the rotating shaft of the rod storage wheel motor 202.
  • the rod storage wheel motor 202 drives the rotation of the rod storage wheel 201, and the storage rod storage wheel
  • the pore pressure probe rod 301 in 201 is constantly sent in the tightening mechanism 203 .
  • the penetration drive motor 204 includes two electrically driven motors, which are welded to both sides of the penetration support frame 102 respectively. Rotate to provide power, two fixed brackets 208 of the same size are fixed on the two ends penetrating into the support frame 102 by fixing bolts 209, and some transmission gears are connected to the fixed brackets 208 at the left and right ends to realize two friction wheels 212.
  • the fixed bracket 208 at the left end of the penetration support frame 102 is fixed with a secondary transmission gear 206, a tertiary transmission gear 207 and a friction transmission gear 211.
  • the penetration drive motor 204 drives the primary transmission gear 205 rotates, and simultaneously by the gear engagement between the secondary transmission gear 206, the tertiary transmission gear 207 and the friction transmission gear 211, the transmission rod 213 and the friction wheel 212 connected to the transmission rod 213 can be rotated; the fixed bracket 208 at the right end
  • a four-stage transmission gear 210 with the same size as the three-stage transmission gear 207 is provided on the top, the four-stage transmission gear 210 can change the rotation direction of the friction transmission gear 211 on the right side, thereby realizing the reverse rotation of the two friction wheels 212, and
  • the pore pressure probe rod 301 is penetrated to a predetermined depth through friction.
  • the measurement system includes a pore pressure probe rod 301, a pore pressure probe rod control cabin 302, a CPTU probe 303, a pore pressure sensor 304, a probe rod connector 305, a connector external thread 306, a connector internal thread 307, a clip 308, a connection Bolt 309, watertight plug-in male head 310, watertight plug-in female head 311, data transmission and power supply cable 312, displacement sensor 313, deck unit 314, the deck unit is used to control the penetration process of the pore pressure probe rod, and the pore pressure probe rod can be adjusted Penetration speed, at the same time, you can view the data collected by the CPTU probe during the penetration process; the pore pressure probe rod 301 adopts a modular design, and the pore pressure probe rod 301 is divided into five sections at an equidistant distance of 1 meter, and each section is equipped with a pore pressure probe.
  • the sensor 304 is stored in the rod storage wheel 201 when it is not working.
  • the hole pressure probe rod 301 is mainly used to load the hole pressure sensor 304 and the CPTU probe 303.
  • the watertight plug-in male head 310 is located on the top of the hole pressure probe rod 301.
  • the head 310 is located at the bottom of the pore pressure probe 301 , and the modular pore pressure probe 301 performs data exchange and power transmission through the watertight plug-in male head 310 and the watertight plug-in female head 311 .
  • the pore pressure probe rod control cabin 302 is welded on one side of the rod storage wheel support frame 105, and the pore pressure probe rods 301 of each section are connected by the probe rod connector 305, and the CPTU probe 303 is located at the bottom of the pore pressure probe rod 301 for Measure the cone tip resistance, side friction resistance and pore water pressure inside the soil layer.
  • the displacement sensor 313 is located in the middle of the hole pressure probe rod 301. The displacement sensor 313 is mainly used to record the penetration depth of the hole pressure probe rod 301. When the penetration depth reaches 1m each time, the rod storage wheel motor 202 and the two penetration drive motors 204 suspends the work, and the two modular pore pressure probe rods 301 are connected by the screwing mechanism 203 .
  • the storage wheel motor 202 and the two penetrating drive motors 204 introduce the on-board power supply through the data transmission and power supply cable 312 to provide driving force.
  • the deck unit 314 communicates with the rod storage wheel motor 202 and the two penetration drive motors 204 through data transmission and power supply cable 312.
  • the data transmission and power supply cable 312 transmits the command of the deck unit 314 to each motor or drive motor; the modular pore pressure probe rod 301 passes through the probe rod limit barrel 2030 to limit the horizontal displacement of the modular pore pressure probe rod 301 .
  • the pore pressure probe rod control cabin 302 is loaded with battery, data acquisition instrument, and penetration control panel components, which are used to collect measurement data and control the assembly, penetration, disassembly and recovery of the probe rod.
  • the probe rod connector 305 includes connector external thread 306, clamping strip 308 and connecting bolt 309. The probe rod connector 305 is fixed on the bottom end of each pore pressure probe rod 301 through the connecting bolt 309. The bottom of the probe rod connector 305 is provided with The external thread 306 of the connector and the clip 308, the external thread 306 of the connector is nested with the internal thread 307 of the connector on the upper part of each modular pore pressure probe 301 through the tightening mechanism 203, and the clip 308 is used as the limit of rotation. The position device is rotated 30°, and the modular pore pressure probe rods are assembled into a probe rod.
  • a working method of an automatically foldable pore pressure probe device characterized in that it specifically includes the following steps:
  • the rod storage wheel motor 202 drives the rod storage wheel 201 to rotate and sends the pore pressure probe 301 into the tightening mechanism 203 at a speed of 20 ⁇ 2mm/s.
  • the tightening mechanism 203 will won't work.
  • the two penetration drive motors 204 rotate together, and drive the friction wheel 212 to continuously penetrate the pore pressure probe rod 301 into the soil at a speed of 20 ⁇ 2mm/s;
  • the displacement sensor 313 feeds back the moving distance of the probe rod to the hole pressure probe control cabin 302, and the hole pressure probe control cabin 302 controls the rod storage wheel motor 202 and the penetration drive motor 204 to stop rotating
  • the tightening mechanism 203 is controlled to start working, wherein the lower end modular hole pressure probe rod 301 is fixed by two friction wheels 212 to prevent rotation, and the hydraulic machine 2032 on the tightening mechanism 203 first drives the horizontal movement of the hydraulic transmission rod 2034 , so that the rotatable fixing frame 2036 is rotated, and the distance between the rotatable fixing frame 2036 and the fixing frame 2037 is reduced, so as to fix the upper end modular hole pressure probe rod 301, and then the rotary drive hydraulic press 2033 on the tightening mechanism 203 drives the hydraulic transmission rod 2034 Horizontal movement, thereby driving the rotation of the rotating frame 2039, thereby driving the rotation of the upper modular pore pressure probe rod, and the rotation angle is 30°;
  • connection refers to two or more than two.
  • connection can be fixed connection, detachable connection, or integral connection; it can be directly connected or through an intermediate The medium is indirectly connected.

Abstract

本发明提供了一种可自动化折叠的孔压探杆装置,包括支撑系统、贯入系统及量测系统。针对目前极端风暴条件下海床孔隙水压力监测装置研发存在部分弊端,设计了一套可自动化折叠的孔压探杆装置,该装置具有结构简单、贯入深度大、尺寸小等特征,可对0-5米范围的海床土层内部孔隙水压力进行长期在位稳定监测。通过本发明的技术方案,解决了海底垂直剖面孔隙水压力监测的难点。解决了由于孔隙水压力探杆过长而导致整体设备庞大、稳定性降低的难题。解决了观测装置因掩埋而难以回收的难点。

Description

一种可自动化折叠的孔压探杆装置及其工作方法 技术领域
本发明涉及海底探测技术领域,具体而言,特别涉及一种可自动化折叠的孔压探杆装置及其工作方法。
背景技术
我国是全世界受海洋灾害影响最严重的国家之一,海洋灾害具有灾种多、分布广、频率高和防范难度大等特点。近年来,受全球气候变化的影响,阵发性强、持续时间长和波及范围广的极端风暴海况发生频率显著增加、强度屡破历史记录。极端风暴条件下的波浪和海流等环境荷载作用于海底表层土体,所造成的海底局部冲刷、土层液化和变形滑动易导致平台失稳倾覆。其中土层液化在我国黄河水下三角洲地区频发,可造成海洋构构筑物桩基础承载力下降、海床失稳滑坡,由此判断土层液化及揭示特征成为黄河水下三角洲防灾减灾的重点工作之一。
极端风暴条件下土层液化是指土层内部孔隙水压力累积,土体总应力不变,有效应力降低,导致土层丧失强度,使土体呈流体态。因此监测极端风暴条件下土层内部孔隙水压力响应成为判断土体液化、揭示液化机制的重要手段之一。目前关于海床内部孔隙水应力监测装置的研发较多,多采用杆体贯入方式。这种杆体贯入方式的装置,其贯入深度往往受限于设备尺寸,同时装置复杂且昂贵。
发明内容
本发明针对目前极端风暴条件下海床孔隙水压力监测装置研发存在部分弊端,设计了一套可自动化折叠的孔压探杆装置,该装置具有结构简单、贯入深度大、尺寸小等特征,可对0-5米范围的海床土层内部孔隙水压力进行长期在位稳定监测。
本发明是通过如下技术方案实现的:一种可自动化折叠的孔压探杆装置,包括支撑系统、贯入系统及量测系统,其中,支撑系统包括六边形支撑框架、贯入支撑架、分离机构、支撑腿环扣、支撑腿固定螺母,支撑腿固定螺栓、上支撑腿、下支撑腿、上卡槽、下卡槽、支撑底座、储杆轮支撑架,六边形支撑框架作为可自动化折叠的孔压探杆装置的支撑机构,贯入支撑架焊接于六边形支撑框架的底部框架内中,用于支撑贯入系统中除储杆轮、储杆轮电机以外的部分零件。分离机构位于六边形支撑框架的底部四周,分离机构设置有四组,包括支撑腿环扣、上支撑腿和下支撑腿,支撑腿环扣位于上支撑腿及下支撑腿间,上支撑腿焊接于六边形支撑框架 中部,下支撑腿焊接于支撑底座的上表面,上支撑腿和下支撑腿之间通过分离机构可分离是连接,支撑底座位于六边形支撑框架的最底部,储杆轮支撑架焊接于贯入支撑架上端;
贯入系统包括储杆轮、储杆轮电机、旋紧机构、贯入驱动马达、一级传动齿轮、固定支架、固定螺栓、摩擦轮;旋紧机构包括探杆限位桶、旋转轴、液压机、旋转驱动液压机、液压传动杆、连接头、可旋转固定架、固定架、支撑柱和旋转架,旋转驱动液压机一端焊接于贯入支撑架上,另一端连接有液压传动杆,旋转轴上端连接旋转驱动液压机的液压传动杆,旋转轴下端焊接有旋转架,旋转驱动液压机可驱动液压传动杆的水平移动,带动旋转架的旋转,旋转架上表面固定有液压机,其一端连接有液压传动杆,并通过连接头与可旋转固定架连接,通过液压机可带动液压传动杆的水平移动,使得可旋转固定架旋转,下端的模块化的孔压探杆由摩擦轮加紧,探杆限位桶通过4个支撑柱连接于旋转架上表面;
储杆轮由正五边形钢架构成,包括固定链和限位板,储杆轮上焊接有固定链,一端固定于储杆轮上,一端固定于孔压探杆末段,限位板设置于五边形钢架转角处,储杆轮的中心通过其轮轴连接于储杆轮支撑架上,储杆轮电机焊接于储杆轮支撑架一侧,并通过储杆轮电机的转轴连接储杆轮,储杆轮电机带动储杆轮的转动,贯入驱动马达包括两个电力驱动的电机,分别焊接于贯入支撑架两侧,两个贯入驱动马达通过电机的转轴与一级传动齿轮连接,为两个摩擦轮的转动提供动力,两个相同大小的固定支架通过固定螺栓固定于贯入支撑架内的两端,左、右两端的固定支架上连接有若干的传动齿轮,实现两个摩擦轮的反向旋转;
量测系统包括孔压探杆、孔压探杆控制舱、CPTU探头、孔压传感器、探杆连接件、连接件外螺纹、连接件内螺纹、卡条、连接螺栓、水密插件公头、水密插件母头及数据传输与供电缆绳、位移传感器、甲板单元;孔压探杆分为1米等距的五段,每段内部设置有孔压传感器(304),水密插件公头位于孔压探杆顶部,水密插件母头位于孔压探杆底部,孔压探杆控制舱焊接于储杆轮支撑架一侧,每段孔压探杆之间通过探杆连接件连接,CPTU探头位于孔压探杆的最底部,位移传感器位于孔压探杆中部。
作为优选方案,六边形支撑框架通过316L不锈钢材质的空心圆柱管焊接而成。
作为优选方案,支撑底座为四个等大的圆盘。
作为优选方案,分离机构还包括支撑腿固定螺母,支撑腿固定螺栓、上卡槽和下卡槽,支撑腿环扣内部开有上卡槽和下卡槽,用于固定上支撑腿和下支撑腿的顶端凸起,支撑腿固定螺母及支撑腿固定螺栓位于支撑腿环扣之上,用于箍紧支撑腿环扣。
作为优选方案,位于贯入支撑架左端的固定支架上固定有二级传动齿轮、三级传动齿轮及摩擦传动齿轮,贯入时,贯入驱动马达带动一级传动齿轮转动,同时通过二级传动齿轮、三级 传动齿轮及摩擦传动齿轮之间的齿轮咬合,可使传动杆及连接于传动杆上的摩擦轮转动;右端的固定支架上多设有一个尺寸与三级传动齿轮相同的四级传动齿轮,四级传动齿轮可改变右侧摩擦传动齿轮转动方向,由此实现两个摩擦轮的反向旋转,并通过摩擦作用将孔压探杆贯入至预定深度。
作为优选方案,孔压探杆控制舱装载包括电池、数据采集仪、贯入控制面板部件。
作为优选方案,探杆连接件包括连接件外螺纹、卡条及连接螺栓,探杆连接件通过连接螺栓固定于每段孔压探杆的底端,探杆连接件底部设置有连接件外螺纹和卡条,连接件外螺纹通过旋紧机构与每一段模块化的孔压探杆上部的连接件内螺纹嵌套,并以卡条为旋转的限位装置。
一种可自动化折叠的孔压探杆装置其工作方法,具体包括以下步骤:
S1:连接装置的数据传输与供电缆绳与船载的甲板单元及电源,确保孔压探杆存储在储杆轮,然后通过船载绞车将可自动化折叠的孔压探杆装置布放于平稳的海床表面;
S2:设备布放平稳后,打开甲板单元,向装置的贯入系统提供电力及贯入指令,贯入过程需要储杆轮电机、位移传感器、旋紧机构及贯入驱动马达的协同作用;
S3:贯入指令下达后,储杆轮电机带动储杆轮旋转并以20±2mm/s的速度将孔压探杆不停送入旋紧机构,此时旋紧机构将不会工作。同时两个贯入驱动马达共同转动,并带动摩擦轮将孔压探杆以20±2mm/s的速度连续贯入土体;
S4:当贯入深度达1米后,位移传感器将探杆运动距离反馈至孔压探杆控制舱,孔压探杆控制舱控制储杆轮电机及贯入驱动马达停止转动的同时,并控制旋紧机构开始工作,其中下端模块化孔压探杆由两个摩擦轮固定,防止转动,而旋紧机构上的液压机首先带动液压传动杆的水平移动,使可旋转固定架旋转,减少可旋转固定架与固定架间的间距,以固定上端模块化孔压探杆,然后旋紧机构上的旋转驱动液压机驱动液压传动杆的水平移动,从而带动旋转架的旋转,以此带动上端模块化孔压探杆旋转,旋转角度为30°;
S5:探杆连接后,旋紧机构会将指令反馈至孔压探杆控制舱,由此孔压探杆控制舱继续操控储杆轮电机及贯入驱动马达工作,将探杆贯入土体中,以此重复不断接杆,完成贯入过程。
S6:贯入完成后即可开始进行原位观测工作,数据储存于孔压探杆控制舱。
本发明由于采用了以上技术方案,与现有技术相比使其具有以下有益效果:
(1)解决了海底垂直剖面孔隙水压力监测的难点。本装置采用摩擦贯入方式,通过装置的贯入系统,将孔压探杆贯入至预定深度,可探测海床内部0-5米范围内的孔隙水压力,可判断极端风暴条件下海床液化的发生。同时孔压探杆头部设有CPTU探头,可实现海床0-5米范围内的土体力学性质探测;
(2)解决了由于孔隙水压力探杆过长而导致整体设备庞大、稳定性降低的难题。本装置将孔压探杆进行模块化,进行自动化折叠,不仅降低监测装置的整体高度,还提高了整体装置的稳定性,为海床孔隙水压力长期在位监测提供安全保障。
(3)解决了观测装置因掩埋而难以回收的难点。极端风暴事件频发时,长期在线原位监测装置的支撑底座极易发生沙土掩埋事件,从而大幅增加装置整体回收时的阻力。本装置将支撑底座与装置主体设计为分离模块,支撑底座掩埋时,通过潜水员打开分离机构,即可实现支撑底座与装置主体分离。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1:可自动化折叠的孔压探杆装置立体图;
图2:可自动化折叠的孔压探杆装置主视图;
图3:可自动化折叠的孔压探杆装置侧视图;
图4:可自动化折叠的孔压探杆装置俯视图;
图5:摩擦轮立体示意图;
图6:贯入系统立体示意图;
图7:贯入系统及支撑架立体示意图;
图8:贯入系统主示意图;
图9:探杆连接件示意图;
图10:为图9中1-1横截面剖面示意图;
图11:探杆连接方式示意图;
图12:为图11中2-2横截面剖面示意图;
图13:分离机构示意图;
图14:为图13中3-3横截面剖面示意图;
图15:旋紧机构立体示意图;
图16:孔压探杆示意图;
图17:储杆轮示意图。
其中,图1至图17中附图标记与部件之间的对应关系为:
101:支撑框架,102:贯入支撑架,103:分离机构,1030:支撑腿环扣,1031:支撑腿固定螺母,1032:支撑腿固定螺栓,1033:上支撑腿,1034:下支撑腿,1035:上卡槽,1036:下卡槽,104:支撑底座,105:储杆轮支撑架,201:储杆轮,2010:固定链,2011:限位板,202:储杆轮电机,203:旋紧机构,2030:探杆限位桶,2031:旋转轴,2032:固定液压机,2033:旋转驱动液压机,2034:液压传动杆,2035:连接头,2036:可旋转固定架,2037:固定架,2038:支撑柱,2039:旋转架,204:贯入驱动马达,205:一级传动齿轮,206:二级传动齿轮,207:三级传动齿轮,208:三级传动齿轮,209:固定螺栓,210:四级传动齿轮,211:摩擦传动齿轮,212:摩擦轮,213:传动杆,301:孔压探杆,302:孔压探杆控制舱,303:CPTU探头,304:孔压传感器,305:探杆连接件,306:连接件外螺纹,307:连接件内螺纹,308:卡条,309:连接螺栓,310:水密插件公头,311:水密插件母头,312:数据传输与供电缆绳,313:位移传感器,314:甲板单元。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
下面结合图1至图10对本发明的实施例的可自动化折叠的孔压探杆装置及其工作方法进行具体说明。
如图1至图10所示,本发明提出了一种可自动化折叠的孔压探杆装置,包括支撑系统、贯入系统及量测系统,其中,支撑系统包括六边形支撑框架101、贯入支撑架102、分离机构103、支撑腿环扣1030、支撑腿固定螺母1031,支撑腿固定螺栓1032、上支撑腿1033、下支撑腿1034、上卡槽1035、下卡槽1036、支撑底座104、储杆轮支撑架105,六边形支撑框架101通过316L不锈钢材质的空心圆柱管焊接而成。六边形支撑框架101作为可自动化折叠的孔压探杆装置的支撑机构,贯入支撑架102焊接于六边形支撑框架101的底部框架内中,用于支撑贯入系统中除储杆轮201、储杆轮电机202以外的部分零件。分离机构103位于六边形支撑框架101的底部四周,分离机构103设置有四组,包括支撑腿环扣1030、上支撑腿1033和下支撑腿1034,支撑腿环扣1030位于上支撑腿1033及下支撑腿1034间,上支撑腿1033焊接于六边形支撑框架101中部,下支撑腿1034焊接于支撑底座104的上表面,上支撑腿1033和下 支撑腿1034之间通过分离机构103可分离是连接,可将连接六边形支撑框架101与支撑底座104进行分离。分离机构103还包括支撑腿固定螺母1031,支撑腿固定螺栓1032、上卡槽1035和下卡槽1036,支撑腿环扣1030内部开有上卡槽1035和下卡槽1036,用于固定上支撑腿1033和下支撑腿1034的顶端凸起,支撑腿固定螺母1031及支撑腿固定螺栓1032位于支撑腿环扣1030之上,用于箍紧支撑腿环扣1030。支撑底座104位于六边形支撑框架101的最底部,支撑底座104为四个等大的圆盘,可降低装置由于自身重量沉降的速率,储杆轮支撑架105焊接于贯入支撑架102上端,可支撑储杆轮201、储杆轮电机202及孔压探杆控制舱302;
贯入系统包括储杆轮201、储杆轮电机202、旋紧机构203、贯入驱动马达204、一级传动齿轮205、固定支架208、固定螺栓209、摩擦轮212;旋紧机构203包括探杆限位桶2030、旋转轴2031、液压机2032、旋转驱动液压机2033、液压传动杆2034、连接头2035、可旋转固定架2036、固定架2037、支撑柱2038和旋转架2039,旋转驱动液压机2033一端焊接于贯入支撑架102上,另一端连接有液压传动杆2034,旋转轴2031上端连接旋转驱动液压机2033的液压传动杆2034,旋转轴2031下端焊接有旋转架2039,旋转驱动液压机2033可驱动液压传动杆2034的水平移动,带动旋转架2039的旋转,旋转架2039上表面固定有液压机2032,其一端连接有液压传动杆2034,并通过连接头2035与可旋转固定架2036连接,通过液压机2032可带动液压传动杆2034的水平移动,使得可旋转固定架2036旋转,减少可旋转固定架2036与固定架2037间的间距,以达到固定上端模块化的孔压探杆301,下端的模块化的孔压探杆301由摩擦轮212加紧,防止探杆组装时两探杆的相对转动;探杆限位桶2030通过4个支撑柱2038连接于旋转架2039上表面;
储杆轮201由正五边形钢架构成,包括固定链2010和限位板2011,储杆轮201上焊接有固定链,一端固定于储杆轮上,一端固定于孔压探杆301末段,限位板2011设置于五边形钢架转角处,用于防止探杆脱离储杆轮,储杆轮会施加一个与探杆贯入相反方向的拉力,将孔压探杆牢牢固定于储杆轮上,同时由储杆轮201的中心通过其轮轴连接于储杆轮支撑架105上,用于储存孔压探杆301。储杆轮电机202焊接于储杆轮支撑架105一侧,并通过储杆轮电机202的转轴连接储杆轮201,储杆轮电机202带动储杆轮201的转动,将储存在储杆轮201中的孔压探杆301不断送入旋紧机构203中。贯入驱动马达204包括两个电力驱动的电机,分别焊接于贯入支撑架102两侧,两个贯入驱动马达204通过电机的转轴与一级传动齿轮205连接,为两个摩擦轮212的转动提供动力,两个相同大小的固定支架208通过固定螺栓209固定于贯入支撑架102内的两端,左、右两端的固定支架208上连接有若干的传动齿轮,实现两个摩擦轮212的反向旋转;位于贯入支撑架102左端的固定支架208上固定有二级传动齿轮206、三 级传动齿轮207及摩擦传动齿轮211,贯入时,贯入驱动马达204带动一级传动齿轮205转动,同时通过二级传动齿轮206、三级传动齿轮207及摩擦传动齿轮211之间的齿轮咬合,可使传动杆213及连接于传动杆213上的摩擦轮212转动;右端的固定支架208上多设有一个尺寸与三级传动齿轮207相同的四级传动齿轮210,四级传动齿轮210可改变右侧摩擦传动齿轮211转动方向,由此实现两个摩擦轮212的反向旋转,并通过摩擦作用将孔压探杆301贯入至预定深度。
量测系统包括孔压探杆301、孔压探杆控制舱302、CPTU探头303、孔压传感器304、探杆连接件305、连接件外螺纹306、连接件内螺纹307、卡条308、连接螺栓309、水密插件公头310、水密插件母头311及数据传输与供电缆绳312、位移传感器313、甲板单元314,甲板单元用于控制孔压探杆的贯入过程,可调节孔压探杆贯入速度,同时可查看CPTU探头在贯入过程中采集的数据;孔压探杆301采用模块化设计,孔压探杆301分为1米等距的五段,每段内部设置有孔压传感器304;在未工作时,储存在储杆轮201中,孔压探杆301主要用于装载孔压传感器304及CPTU探头303,水密插件公头310位于孔压探杆301顶部,水密插件母头310位于孔压探杆301底部,模块化的孔压探杆301通过水密插件公头310及水密插件母头311进行数据交汇及电力传输。孔压探杆控制舱302焊接于储杆轮支撑架105一侧,每段孔压探杆301之间通过探杆连接件305连接,CPTU探头303位于孔压探杆301的最底部,用于测定土层内部的锥尖阻力、侧摩阻力及孔隙水压力。位移传感器313位于孔压探杆301中部,位移传感器313主要用于记录孔压探杆301贯入的深度,当每次贯入深度达1m后,储杆轮电机202及两个贯入驱动马达204暂停工作,由旋紧机构203将模块化的两段孔压探杆301进行衔接。储杆轮电机202及两个贯入驱动马达204通过数据传输与供电缆绳312将船载电源引入,以提供驱动力。甲板单元314通过数据传输与供电缆绳312通讯连接储杆轮电机202及两个贯入驱动马达204,布放与回收过程中,孔压探杆的自动组装、贯入、回收及自动拆卸皆通过数据传输与供电缆绳312将甲板单元314指令传输至各电机或驱动马达;模块化的孔压探杆301穿过探杆限位桶2030,从而限制模块化孔压探杆301的水平位移。孔压探杆控制舱302装载包括电池、数据采集仪、贯入控制面板部件,用于采集测量数据及控制探杆组装、贯入、拆卸和回收。探杆连接件305包括连接件外螺纹306、卡条308及连接螺栓309,探杆连接件305通过连接螺栓309固定于每段孔压探杆301的底端,探杆连接件305底部设置有连接件外螺纹306和卡条308,连接件外螺纹306通过旋紧机构203与每一段模块化的孔压探杆301上部的连接件内螺纹307嵌套,并以卡条308为旋转的限位装置,旋转30°,将模块化的孔压探杆组装成一根探杆。
一种可自动化折叠的孔压探杆装置其工作方法,其特征在于,具体包括以下步骤:
S1:连接装置的数据传输与供电缆绳312与船载的甲板单元314及电源,确保孔压探杆301存储在储杆轮201,然后通过船载绞车将可自动化折叠的孔压探杆装置布放于平稳的海床表面;
S2:设备布放平稳后,打开甲板单元313,向装置的贯入系统提供电力及贯入指令,贯入过程需要储杆轮电机202、位移传感器313、旋紧机构203及贯入驱动马达204的协同作用;
S3:贯入指令下达后,储杆轮电机202带动储杆轮201旋转并以20±2mm/s的速度将孔压探杆301不停送入旋紧机构203,此时旋紧机构203将不会工作。同时两个贯入驱动马达204共同转动,并带动摩擦轮212将孔压探杆301以20±2mm/s的速度连续贯入土体;
S4:当贯入深度达1米后,位移传感器313将探杆运动距离反馈至孔压探杆控制舱302,孔压探杆控制舱302控制储杆轮电机202及贯入驱动马达204停止转动的同时,并控制旋紧机构203开始工作,其中下端模块化孔压探杆301由两个摩擦轮212固定,防止转动,而旋紧机构203上的液压机2032首先带动液压传动杆2034的水平移动,使可旋转固定架2036旋转,减少可旋转固定架2036与固定架2037间的间距,以固定上端模块化孔压探杆301,然后旋紧机构203上的旋转驱动液压机2033驱动液压传动杆2034的水平移动,从而带动旋转架2039的旋转,以此带动上端模块化孔压探杆旋转,旋转角度为30°;
S5:探杆连接后,旋紧机构会将指令反馈至孔压探杆控制舱,由此孔压探杆控制舱继续操控储杆轮电机202及贯入驱动马达204工作,将探杆贯入土体中,以此重复不断接杆,完成贯入过程。
S6:贯入完成后即可开始进行原位观测工作,数据储存于孔压探杆控制舱302。
在本发明的描述中,术语“多个”则指两个或两个以上,除非另有明确的限定,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且, 描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种可自动化折叠的孔压探杆装置,包括支撑系统、贯入系统及量测系统,其特征在于,所述支撑系统包括六边形支撑框架(101)、贯入支撑架(102)、分离机构(103)、支撑腿环扣(1030)、支撑腿固定螺母(1031),支撑腿固定螺栓(1032)、上支撑腿(1033)、下支撑腿(1034)、上卡槽(1035)、下卡槽(1036)、支撑底座(104)、储杆轮支撑架(105),六边形支撑框架(101)作为可自动化折叠的孔压探杆装置的支撑机构,贯入支撑架(102)焊接于六边形支撑框架(101)的底部框架内中,用于支撑贯入系统中除储杆轮(201)、储杆轮电机(202)以外的部分零件;
    分离机构(103)位于六边形支撑框架(101)的底部四周,分离机构(103)设置有四组,包括支撑腿环扣(1030)、上支撑腿(1033)和下支撑腿(1034),支撑腿环扣(1030)位于上支撑腿(1033)及下支撑腿(1034)间,上支撑腿(1033)焊接于六边形支撑框架(101)中部,下支撑腿(1034)焊接于支撑底座(104)的上表面,上支撑腿(1033)和下支撑腿(1034)之间通过分离机构(103)可分离式连接,支撑底座(104)位于六边形支撑框架(101)的最底部,储杆轮支撑架(105)焊接于贯入支撑架(102)上端;
    所述贯入系统包括储杆轮(201)、储杆轮电机(202)、旋紧机构(203)、贯入驱动马达(204)、一级传动齿轮(205)、固定支架(208)、固定螺栓(209)、摩擦轮(212);旋紧机构(203)包括探杆限位桶(2030)、旋转轴(2031)、液压机(2032)、旋转驱动液压机(2033)、液压传动杆(2034)、连接头(2035)、可旋转固定架(2036)、固定架(2037)、支撑柱(2038)和旋转架(2039),旋转驱动液压机(2033)一端焊接于贯入支撑架(102)上,另一端连接有液压传动杆(2034),旋转轴(2031)上端连接旋转驱动液压机(2033)的液压传动杆(2034),旋转轴(2031)下端焊接有旋转架(2039),旋转驱动液压机(2033)可驱动液压传动杆(2034)的水平移动,带动旋转架(2039)的旋转,旋转架(2039)上表面固定有液压机(2032),其一端连接有液压传动杆(2034),并通过连接头(2035)与可旋转固定架(2036)连接,通过液压机(2032)可带动液压传动杆(2034)的水平移动,使得可旋转固定架(2036)旋转,下端的模块化的孔压探杆(301)由摩擦轮(212)加紧,探杆限位桶(2030)通过4个支撑柱(2038)连接于旋转架(2039)上表面;
    所述储杆轮(201)由正五边形钢架构成,包括固定链(2010)和限位板(2011),储杆轮(201)上焊接有固定链,一端固定于储杆轮上,一端固定于孔压探杆(301)末段,限位板 (2011)设置于五边形钢架转角处,储杆轮(201)的中心通过其轮轴连接于储杆轮支撑架(105)上,用于储存孔压探杆(301);
    储杆轮电机(202)焊接于储杆轮支撑架(105)一侧,并通过储杆轮电机(202)的转轴连接储杆轮(201),储杆轮电机(202)带动储杆轮(201)的转动;贯入驱动马达(204)包括两个电力驱动的电机,分别焊接于贯入支撑架(102)两侧,两个贯入驱动马达(204)通过电机的转轴与一级传动齿轮(205)连接,为两个摩擦轮(212)的转动提供动力,两个相同大小的固定支架(208)通过固定螺栓(209)固定于贯入支撑架(102)内的两端,左、右两端的固定支架(208)上连接有若干的传动齿轮,实现两个摩擦轮(212)的反向旋转;
    所述量测系统包括孔压探杆(301)、孔压探杆控制舱(302)、CPTU探头(303)、孔压传感器(304)、探杆连接件(305)、连接件外螺纹(306)、连接件内螺纹(307)、卡条(308)、连接螺栓(309)、水密插件公头(310)、水密插件母头(311)及数据传输与供电缆绳(312)、位移传感器(313)、甲板单元(314);所述孔压探杆(301)采用模块化设计,孔压探杆(301)分为1米等距的五段,每段内部设置有孔压传感器(304),在未工作时,储存在储杆轮(201)中,水密插件公头(310)位于孔压探杆(301)顶部,水密插件母头(311)位于孔压探杆(301)底部,模块化的孔压探杆(301)通过水密插件公头(310)及水密插件母头(311)进行数据交汇及电力传输;
    孔压探杆控制舱(302)焊接于储杆轮支撑架(105)一侧,每段孔压探杆(301)之间通过探杆连接件(305)连接,CPTU探头(303)位于孔压探杆(301)的最底部,位移传感器(313)位于孔压探杆(301)中部,储杆轮电机(202)及两个贯入驱动马达(204)通过数据传输与供电缆绳(312)将船载电源引入,甲板单元(314)通过数据传输与供电缆绳(312)通讯连接,储杆轮电机(202)及两个贯入驱动马达(204);模块化的孔压探杆(301)穿过探杆限位桶(2030),从而限制模块化孔压探杆(301)的水平位移;
    位于贯入支撑架(102)左端的固定支架(208)上固定有二级传动齿轮(206)、三级传动齿轮(207)及摩擦传动齿轮(211),贯入时,贯入驱动马达(204)带动一级传动齿轮(205)转动,同时通过二级传动齿轮(206)、三级传动齿轮(207)及摩擦传动齿轮(211)之间的齿轮咬合,可使传动杆(213)及连接于传动杆(213)上的摩擦轮(212)转动;右端的固定支架(208)上多设有一个尺寸与三级传动齿轮(207)相同的四级传动齿轮(210),四级传动齿轮(210)可改变右侧摩擦传动齿轮(211)转动方向,由此实现两个摩擦轮(212)的反向旋转,并通过摩擦作用将孔压探杆(301)贯入至预定深度。
  2. 根据权利要求1所述的一种可自动化折叠的孔压探杆装置,其特征在于,所述六边形支撑框架(101)通过316L不锈钢材质的空心圆柱管焊接而成。
  3. 根据权利要求1所述的一种可自动化折叠的孔压探杆装置,其特征在于,所述支撑底座(104)为四个等大的圆盘。
  4. 根据权利要求1所述的一种可自动化折叠的孔压探杆装置,其特征在于,所述分离机构(103)还包括支撑腿固定螺母(1031),支撑腿固定螺栓(1032)、上卡槽(1035)和下卡槽(1036),支撑腿环扣(1030)内部开有上卡槽(1035)和下卡槽(1036),用于固定上支撑腿(1033)和下支撑腿(1034)的顶端凸起,支撑腿固定螺母(1031)及支撑腿固定螺栓(1032)位于支撑腿环扣(1030)之上,用于箍紧支撑腿环扣(1030)。
  5. 根据权利要求1所述的一种可自动化折叠的孔压探杆装置,其特征在于,所述孔压探杆控制舱(302)装载包括电池、数据采集仪、贯入控制面板部件。
  6. 根据权利要求1所述的一种可自动化折叠的孔压探杆装置,其特征在于,所述探杆连接件(305)包括连接件外螺纹(306)、卡条(308)及连接螺栓(309),探杆连接件(305)通过连接螺栓(309)固定于每段孔压探杆(301)的底端,探杆连接件(305)底部设置有连接件外螺纹(306)和卡条(308),连接件外螺纹(306)通过旋紧机构(203)与每一段模块化的孔压探杆(301)上部的连接件内螺纹(307)嵌套,并以卡条(308)为旋转的限位装置。
  7. 如权利要求1-6之一所述的一种可自动化折叠的孔压探杆装置的工作方法,其特征在于,具体包括以下步骤:
    S1:连接装置的数据传输与供电缆绳(312)与船载的甲板单元(314)及电源,确保孔压探杆(301)存储在储杆轮(201),然后通过船载绞车将可自动化折叠的孔压探杆装置布放于平稳的海床表面;
    S2:设备布放平稳后,打开甲板单元(314),向装置的贯入系统提供电力及贯入指令,贯入过程需要储杆轮电机(202)、位移传感器(313)、旋紧机构(203)及贯入驱动马达(204)的协同作用;
    S3:贯入指令下达后,储杆轮电机(202)带动储杆轮(201)旋转并以20±2mm/s的速度将孔压探杆(301)不停送入旋紧机构(203),此时旋紧机构(203)将不会工作;同时两个贯入驱动马达(204)共同转动,并带动摩擦轮(212)将孔压探杆(301)以20±2mm/s的速度连续贯入土体;
    S4:当贯入深度达1米后,位移传感器(313)将探杆运动距离反馈至孔压探杆控制舱(302),孔压探杆控制舱(302)控制储杆轮电机(202)及贯入驱动马达(204)停止转动的 同时,并控制旋紧机构(203)开始工作,其中下端模块化孔压探杆(301)由两个摩擦轮(212)固定,防止转动,而旋紧机构(203)上的液压机(2032)首先带动液压传动杆(2034)的水平移动,使可旋转固定架(2036)旋转,减少可旋转固定架(2036)与固定架(2037)间的间距,以固定上端模块化孔压探杆(301),然后旋紧机构(203)上的旋转驱动液压机(2033)驱动液压传动杆(2034)的水平移动,从而带动旋转架(2039)的旋转,以此带动上端模块化孔压探杆旋转,旋转角度为30°;
    S5:探杆连接后,旋紧机构会将指令反馈至孔压探杆控制舱,由此孔压探杆控制舱继续操控储杆轮电机(202)及贯入驱动马达(204)工作,将探杆贯入土体中,以此重复不断接杆,完成贯入过程;
    S6:贯入完成后即可开始进行原位观测工作,数据储存于孔压探杆控制舱(302)。
PCT/CN2022/127714 2021-09-30 2022-10-26 一种可自动化折叠的孔压探杆装置及其工作方法 WO2023051834A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/180,233 US11788409B2 (en) 2021-09-30 2023-03-08 Auto-collapsible pore pressure probe device and operating method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111158026.5A CN113865777B (zh) 2021-09-30 2021-09-30 一种可自动化折叠的孔压探杆装置及其工作方法
CN202111158026.5 2021-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/180,233 Continuation US11788409B2 (en) 2021-09-30 2023-03-08 Auto-collapsible pore pressure probe device and operating method thereof

Publications (1)

Publication Number Publication Date
WO2023051834A1 true WO2023051834A1 (zh) 2023-04-06

Family

ID=79000852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127714 WO2023051834A1 (zh) 2021-09-30 2022-10-26 一种可自动化折叠的孔压探杆装置及其工作方法

Country Status (3)

Country Link
US (1) US11788409B2 (zh)
CN (1) CN113865777B (zh)
WO (1) WO2023051834A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113865777B (zh) 2021-09-30 2022-08-12 中国海洋大学 一种可自动化折叠的孔压探杆装置及其工作方法
CN115586586B (zh) * 2022-09-08 2023-05-12 中国人民解放军91053部队 一种海洋沉积物原位观测探杆的静力贯入装置及方法
CN116577015B (zh) * 2023-07-07 2023-09-22 尚禹科技有限公司 一种大坝安全监测渗压计

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790017A (zh) * 2005-12-12 2006-06-21 国家海洋局第一海洋研究所 海底土多功能多道孔隙水压力监测探杆
JP2017090344A (ja) * 2015-11-13 2017-05-25 トヨタ自動車株式会社 圧力センサ
CN111947826A (zh) * 2020-08-24 2020-11-17 中国海洋大学 基于内孤立波的海床孔隙水压力观测装置及其工作方法
CN112630859A (zh) * 2020-11-30 2021-04-09 浙江大学 一种海底土工原位多参数探测系统
CN113865777A (zh) * 2021-09-30 2021-12-31 中国海洋大学 一种可自动化折叠的孔压探杆装置及其工作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100516872C (zh) * 2005-12-12 2009-07-22 中国石化集团胜利石油管理局钻井工艺研究院 海床土体液化现场监测设备
CN104164860B (zh) * 2014-08-12 2015-12-02 东南大学 用于海底浅层土体的自落式孔压动力触探装置
CN106802132B (zh) * 2017-01-18 2018-01-12 青岛海洋地质研究所 一种贯入式多功能海底沉积物原位观测探杆
CN112729667A (zh) * 2019-03-08 2021-04-30 漳州龙文区恩杰信息科技有限公司 一种佩戴式智能系统及方法
CN110117951B (zh) * 2019-05-15 2020-03-31 中国海洋大学 一种基于海洋观测探杆的海底静力贯入装置及贯入方法
CN111351700A (zh) * 2020-05-14 2020-06-30 江西农业大学 一种水田壤力学参数测量设备
CN112254864A (zh) * 2020-10-16 2021-01-22 中国海洋大学 原位实时监测沉积物孔压及海床变形的装置及布放方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790017A (zh) * 2005-12-12 2006-06-21 国家海洋局第一海洋研究所 海底土多功能多道孔隙水压力监测探杆
JP2017090344A (ja) * 2015-11-13 2017-05-25 トヨタ自動車株式会社 圧力センサ
CN111947826A (zh) * 2020-08-24 2020-11-17 中国海洋大学 基于内孤立波的海床孔隙水压力观测装置及其工作方法
CN112630859A (zh) * 2020-11-30 2021-04-09 浙江大学 一种海底土工原位多参数探测系统
CN113865777A (zh) * 2021-09-30 2021-12-31 中国海洋大学 一种可自动化折叠的孔压探杆装置及其工作方法

Also Published As

Publication number Publication date
CN113865777B (zh) 2022-08-12
US20230203944A1 (en) 2023-06-29
CN113865777A (zh) 2021-12-31
US11788409B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
WO2023051834A1 (zh) 一种可自动化折叠的孔压探杆装置及其工作方法
JP6987152B2 (ja) 海洋船上で利用するための動き補償クレーン
ES2688074T3 (es) Sistema de trabajo para estructura flotante, estructura flotante, barco de trabajo y método de trabajo para la estructura flotante
CN110371257B (zh) 一种海上风机水平拖运一体化安装船
US20200284709A1 (en) Second-generation in-situ test device for strength of shallow water sediment
CN102712350A (zh) 海上风轮机安装
BRPI0808590A2 (pt) Embarcação de apoio elevatória e seu uso"
US8814470B2 (en) Oil containment assembly and method of using same
CN103600814A (zh) 一种框架式全自主海洋环境监测浮标
CN104943828A (zh) 超大型海洋浮式结构物模块间的卡槽式连接器及连接方法
CN109537555A (zh) 一种自升式海洋平台
WO2018000535A1 (zh) 无人船载管线维修用管道支撑结构
EP2623674A1 (de) Unterkonstruktion für eine Offshore-Plattform und Verfahren zum Installieren einer derartigen Unterkonstruktion
CN211996069U (zh) 一种桥梁水下检测船
KR101850334B1 (ko) 승강식 부선의 잭업 엘리베이팅 시스템 홀딩용 볼타입 클램프
CN111425721A (zh) 球罐罐内用悬臂支撑两轴转动机构
CN219221752U (zh) 一种施工辅助装置
CN111537671A (zh) 球罐检测机器人的罐内壁支撑定位装置
CN203950043U (zh) 海洋单道地震调查的可调收放装置及系统
CN2581511Y (zh) 浅海打桩桩管扶正架
GB2501459A (en) Platform removal and transportation system comprising flotation and stabilization units
CN102288541B (zh) 缆索水阻尼测试系统夹持装置
CN115092330B (zh) 海上风电筒型基础全自由度限位的浮运固定装置
JPS5828013Y2 (ja) トラス支柱の継手装置
CN219312974U (zh) 一种观测用浮标

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875214

Country of ref document: EP

Kind code of ref document: A1