WO2023051587A1 - 光伏电池组件及其制造方法 - Google Patents

光伏电池组件及其制造方法 Download PDF

Info

Publication number
WO2023051587A1
WO2023051587A1 PCT/CN2022/122050 CN2022122050W WO2023051587A1 WO 2023051587 A1 WO2023051587 A1 WO 2023051587A1 CN 2022122050 W CN2022122050 W CN 2022122050W WO 2023051587 A1 WO2023051587 A1 WO 2023051587A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
photovoltaic cell
conductive
conductive strip
cell string
Prior art date
Application number
PCT/CN2022/122050
Other languages
English (en)
French (fr)
Inventor
黄耀纶
Original Assignee
中能创光电科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中能创光电科技(常州)有限公司 filed Critical 中能创光电科技(常州)有限公司
Publication of WO2023051587A1 publication Critical patent/WO2023051587A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • H01L31/0443PV modules or arrays of single PV cells including bypass diodes comprising bypass diodes integrated or directly associated with the devices, e.g. bypass diodes integrated or formed in or on the same substrate as the photovoltaic cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the existing photovoltaic modules need to change the electrical performance parameters and series-parallel settings, and the production line switching time is generally more than 8 hours, which makes it impossible to realize customized flexible manufacturing.
  • Patent CN102945873B discloses that by adding wire slots and other methods, the wires have a certain degree of slack, thereby increasing the bending performance, and it is said that more than 4,000 times of folding times can be achieved. This way also increases the manufacturing cost, however, it is still difficult to guarantee the performance of each product. As disclosed by the same inventor in the patent CN110140448B main text, technical problems such as solar cell chip connection wire disconnection, swelling and difficult folding may still occur in the product after multiple foldings.
  • Patent CN110140448B discloses a military photovoltaic system, which uses flexible conductive sheets (such as Cu sheets) to strengthen the connection between battery components to improve reliability.
  • flexible conductive sheets such as Cu sheets
  • this method is too expensive to be used by civilians, let alone applied to the field of mobile photovoltaics such as building integrated photovoltaics or electric vehicles on a large scale.
  • a photovoltaic cell assembly including a panel, a back plate, and a photovoltaic cell layer encapsulated between the panel and the back plate.
  • the photovoltaic cell layer includes n1 photovoltaic power generation groups, each The photovoltaic power generation group includes n2 photovoltaic cell units arranged along the second direction. The current in the photovoltaic cell unit flows along the first direction perpendicular to the second direction after being collected.
  • Each photovoltaic power generation group is interconnected by two upper and lower photovoltaic conductive strips.
  • two photovoltaic conductive strips are arranged in parallel and extend along the second direction, the photovoltaic cell unit in each photovoltaic power generation group is located between the two photovoltaic conductive strips, and the two ends of the photovoltaic cell unit are respectively connected to the two photovoltaic conductive strips Connection, the photovoltaic power generation groups are interconnected through photovoltaic conductive strips and lead out current.
  • the photovoltaic cell unit is a photovoltaic cell string
  • the photovoltaic cell string is formed by string welding of photovoltaic cells through shingling or lap welding
  • the two photovoltaic conductive strips are respectively located on the light-receiving side and the backlight side of the photovoltaic cell string.
  • One end of the photovoltaic cell string is connected to the photovoltaic conductive strip on one side of the light-receiving surface through the electrode of the light-receiving surface of the end photovoltaic cell at the end
  • the other end of the photovoltaic cell string is connected to the backlight surface of the end photovoltaic cell through the electrode of the backlight surface.
  • the photovoltaic conductive strip on one side makes the connection.
  • the photovoltaic cells in the photovoltaic cell string are composed of small pieces of photovoltaic cells divided by the photovoltaic cells.
  • the photovoltaic power generation groups in the photovoltaic cell layer are arranged along the first direction, and each photovoltaic cell unit in the photovoltaic power generation group is aligned with the corresponding position of the photovoltaic cell units in other photovoltaic power generation groups along the first direction. Align one column.
  • it also includes a bypass diode, which is connected to the photovoltaic power generation group through the photovoltaic conductive strip.
  • the outside of the photovoltaic conductive strip on one side of the photovoltaic power generation group also has a third photovoltaic conductive strip extending along the second direction, and the third photovoltaic conductive strip is the same as the photovoltaic conductive strip on the same side.
  • the bypass diodes of the module and the vertical photovoltaic conductive strips extending along the first direction are connected between the strips, the bypass diodes and the vertical photovoltaic conductive strips are aligned with the adjacent photovoltaic cells in the first direction, and the third photovoltaic strips
  • the conductive strip connects the bypass diode to the photovoltaic power generation group through its own discontinuity point and the vertical photovoltaic conductive strip.
  • the photovoltaic cell layer is encapsulated between the panel and the back plate through the packaging adhesive layer, and the photovoltaic conductive tape is compounded on the same side of the packaging adhesive layer; or the photovoltaic conductive tape is compounded on the same side of the panel or back plate,
  • the encapsulation adhesive layer has a relief hollow, and the photovoltaic cell unit and the photovoltaic conductive belt are connected through the relief hollow.
  • a low-temperature soldering material or a low-temperature curing conductive paste is used to form a mechanical and electrical connection between the photovoltaic cell unit and the photovoltaic conductive tape, the welding temperature of the low-temperature soldering material matches the lamination temperature of the photovoltaic module, and the low-temperature curing conductive paste The curing temperature matches the lamination temperature of the PV module.
  • the minimum folding unit is formed by covering the hard protective plate on the light-receiving surface side of the photovoltaic cell unit, and the hard protective plate and the photovoltaic cell unit are bonded together through an encapsulating adhesive layer; or, the minimum folding unit It is formed by covering the light-receiving surface side of the photovoltaic cell unit with a protective layer of epoxy material.
  • the photovoltaic cell string is formed by serial welding of photovoltaic cells through interconnected busbars interconnected on the same plane, and the two photovoltaic conductive strips are located on the same side relative to the photovoltaic cell string, the photovoltaic cell string
  • the interconnected busbars on the side of the photovoltaic cells at the two ends facing away from the photovoltaic conductive strip extend out of the photovoltaic cell string, and the interconnected busbars on the other side facing the photovoltaic conductive strip are located inside the photovoltaic cell string, and the photovoltaic cell string
  • the connection between one end of the photovoltaic cell string and the photovoltaic conductive strip is located on the protruding interconnected main grid line of the end, and the connection position between the other end of the photovoltaic cell string and the photovoltaic conductive strip is located on the surface of the photovoltaic cell at the end of the end, by adjusting during
  • the beneficial effects of the present invention are: by adjusting the position of the discontinuity point and the orientation of both ends of the photovoltaic cell string, the upper and lower positions, and the orientation of the front and back sides during typesetting, the electrical performance parameters and series-parallel connection settings of the photovoltaic module can be adjusted conveniently, and flexible manufacturing can be realized .
  • the photovoltaic cell unit is designed to be interconnected by two upper and lower photovoltaic conductive strips, which can reduce the amount of photovoltaic conductive strips, and the industrial cost of photovoltaic conductive strips is low, which can reduce component costs.
  • the photovoltaic cells in the module can be connected in series or in the same plane through the interconnection busbar, and then cut into the required photovoltaic cell units, which greatly improves the production efficiency.
  • interconnection busbars from connecting the light-receiving surface and the backlight surface of adjacent photovoltaic cells at the same time can greatly reduce the probability of fragmentation, improve the yield rate of module manufacturing, and reduce costs. This is of great significance for thinning applications of high-efficiency batteries.
  • Fig. 1 is the schematic diagram of the front state structure of Embodiment 1 of the present invention.
  • Fig. 2 is a schematic diagram of a simplified drawing method of Embodiment 1 of the present invention.
  • Fig. 3 is a schematic diagram of the front state structure of Embodiment 2 of the present invention.
  • Fig. 4 is a schematic diagram of a simplified drawing method of Embodiment 2 of the present invention.
  • Fig. 5 is a schematic diagram of the side state structure of Embodiment 4 of the present invention.
  • Fig. 6 is a schematic drawing diagram of Embodiment 10 of the present invention.
  • Fig. 7 is a structural schematic diagram of interconnection of photovoltaic cell strings through photovoltaic conductive strips according to Embodiment 11 of the present invention.
  • a photovoltaic cell assembly includes a panel 1, a backplane 2, and a photovoltaic cell layer encapsulated between the panel 1 and the backplane 2, and the photovoltaic cell layer includes n1 photovoltaic power generation groups , each photovoltaic power generation group includes n2 photovoltaic cell units arranged along the second direction, the photovoltaic cell unit is a photovoltaic cell string 3, and the photovoltaic cells 3-1 in the photovoltaic cell string 3 are arranged along the first direction perpendicular to the second direction The current in the photovoltaic cell string 3 is collected and flows along the first direction.
  • Each photovoltaic power generation group is interconnected and draws current through two upper and lower photovoltaic conductive strips 5.
  • the two photovoltaic conductive strips 5 are arranged in parallel and extend along the second direction.
  • the photovoltaic cell string 3 is formed by serial welding of the photovoltaic cells 3-1 through interconnected busbars 4 interconnected on the same plane.
  • the interconnected busbars 4 on one side of the strip 5 protrude to the outside of the photovoltaic cell string 3, and the interconnected busbars on the other side of the photovoltaic cells 3-1 at the two ends of the photovoltaic cell string 3 face the corresponding photovoltaic conductive strip 5 4 is located inside the photovoltaic cell string 3, the connection between one end of the photovoltaic cell string 3 and the corresponding photovoltaic conductive strip 5 is located on the protruding interconnection busbar 4 of the end, and the other end of the photovoltaic cell string 3 is connected to the corresponding photovoltaic conductive strip 5
  • the connection site is located at the end of the surface of the photovoltaic cell 3-1.
  • the upper and lower photovoltaic conductive strips 5 of the interconnected photovoltaic power generation group are both located on the side of the backlight surface of the photovoltaic cell string 3 .
  • Both the light-receiving surface and the backlight surface of the photovoltaic cell string 3 are interconnected on the same surface through an interconnection busbar 4, and the interconnection busbars 4 on the light-receiving surface and the backlight surface are staggered from each other.
  • a bypass diode 7 is also included, and the bypass diode 7 is connected to the photovoltaic power generation group through the photovoltaic conductive belt 5 .
  • the photovoltaic cell assembly is a flexible assembly, the panel 1 and the back plate 2 are made of flexible materials, and the photovoltaic conductive strip 5 extending along the second direction is a metal foil conductive strip or a flexible cable.
  • the vertical photovoltaic conductive strip 5-2 is aligned with the adjacent photovoltaic cell unit in the first direction, because it will not be subjected to bending action, the vertical photovoltaic conductive strip 5-2 does not need to consider its bending resistance.
  • the photovoltaic conductive strip 5-2 can be a metal wire, a welding strip, etc., and is welded between the third photovoltaic conductive strip 5-1 and the photovoltaic conductive strip 5 on the same side.
  • the length direction of the flexible photovoltaic cell assembly is the second direction.
  • a method for manufacturing a photovoltaic cell assembly comprising the steps of:
  • the preparation of the photovoltaic cell string 3 specifically, after the photovoltaic cell 3-1 is welded into a string, it is divided into pieces along the first direction by means of mechanical splitting (specifically: the photovoltaic cell 3-1 is placed on silicon before texturing) A laser scratch of a certain depth is formed on the surface of the sheet, and when mechanical force is used to split the sheet, the cell sheet will be split along the mechanical weak point of the scratch), and the large photovoltaic cell string 3 is divided into independent small photovoltaic cell strings 3, the small photovoltaic cell string 3 The photovoltaic cell string 3 is used for subsequent steps;
  • Typesetting the photovoltaic cell string 3 and the photovoltaic conductive strip 5 first, and adjusting the upper and lower positions of the photovoltaic cell string 3 in the first direction and/or the position of the discontinuity point 6 during typesetting. Formed by punching and shearing, forming different circuit connection relationships between photovoltaic cell strings 3, and then performing pre-welding to weld together photovoltaic cell strings 3, bypass diodes 7 and photovoltaic conductive strips 5 to become semi-finished products;
  • the backplane 2 is PET or TPT
  • the packaging adhesive layer 9 is EVA or POE or PVB
  • panel 1 is FRP or ETFE
  • a photovoltaic cell module is prepared by lamination.
  • the discontinuity point may be provided by the flexible cable, which is formed during the manufacturing process of the flexible cable.
  • Embodiment 2 is basically the same as Embodiment 1, except that the photovoltaic cell string 3 is formed by string welding of photovoltaic cells 3-1 through shingling or lap welding, and the upper and lower parts of the interconnected photovoltaic power generation groups
  • the two photovoltaic conductive strips 5 are located on the light-receiving surface side and the backlight surface side of the photovoltaic cell string 3 respectively, and one end of the photovoltaic cell string 3 passes through the electrode of the light-receiving surface of the end photovoltaic cell 3-1 and the electrode on the light-receiving surface of the photovoltaic cell string 3.
  • the photovoltaic conductive strip 5 is connected, and the other end of the photovoltaic cell string 3 is connected to the photovoltaic conductive strip 5 located on the backlight surface through the electrode on the backlight surface of the photovoltaic cell 3 - 1 at the end of the end.
  • the photovoltaic cell 3-1 of the photovoltaic cell string 3 is specifically a heterojunction cell with 23.5% efficiency on both the front and back sides.
  • the discontinuity point 6 is formed by punching and shearing the photovoltaic conductive belt 5, forming different circuit connection relationships between the photovoltaic cell strings 3, and then performing pre-welding to connect the photovoltaic cell strings 3, bypass
  • the diode 7 is welded together with the photovoltaic conductive strip 5 to become a semi-finished product
  • the photovoltaic cell strings 3 are arranged along the second direction according to the rule that the front side of one photovoltaic cell string 3 faces upward and the reverse side of one photovoltaic cell string 3 faces upward;
  • the backplane 2 is PET or TPT
  • the packaging adhesive layer 9 is EVA or POE or PVB
  • panel 1 is FRP or ETFE
  • a photovoltaic cell module is prepared by lamination.
  • Embodiment 3 is basically the same as Embodiment 1, the difference is that: the metal foil conductive tape is a copper foil tape or aluminum foil tape with a thickness of 5-100 um with a low-temperature soldering material layer on the surface, and the flexible cable is a low-temperature soldering material layer on the surface.
  • FFC cable, FPC cable or PTF cable, the welding temperature of the low-temperature soldering material layer matches the lamination temperature of the photovoltaic module.
  • the manufacturing method of the photovoltaic cell module of this embodiment 3 has the following steps:
  • Embodiment 1 Compared with Embodiment 1 and Embodiment 3, the realization of Embodiment 1 can reduce the displacement of the photovoltaic conductive belt 5 pushed by the encapsulation adhesive layer 9 during lamination through pre-welding. Compared with Embodiment 1, the advantage of Embodiment 3 is that it is more convenient to manufacture , the cost is lower.
  • the photovoltaic cell string 3 and the photovoltaic conductive tape 5 can also form a mechanical and electrical connection relationship through low-temperature curing conductive paste. When placed on the connection part, the photovoltaic cell module is finally obtained.
  • the photovoltaic battery string 3 and the photovoltaic conductive strip 5 can also form a mechanical and electrical connection relationship through the low-temperature soldering material placed on the connection part during typesetting.
  • the smallest folding unit is formed by covering the hard protective plate 8 on the light-receiving surface side of the photovoltaic cell string 3 , and the hard protective plate 8 and the photovoltaic cell string 3 are bonded together through the encapsulation adhesive layer 9 between them.
  • the manufacturing method of the photovoltaic cell assembly of this embodiment 4 has the following steps:
  • Typesetting the photovoltaic cell string 3 and the photovoltaic conductive strip 5 first, and adjusting the upper and lower positions of the photovoltaic cell string 3 in the first direction and/or the position of the discontinuity point 6 during typesetting. Formed by punching and shearing, different circuit connections are formed between the photovoltaic cell strings 3, and then pre-welded to become a semi-finished product;
  • a photovoltaic cell module is prepared by lamination.
  • step s2 the prepared semi-finished product can also be covered with packaging adhesive layer 9 and hard protective plate 8, and after forming the minimum folding unit first, the semi-finished product of s2 is laid out on the panel 1 and the back. between plates 2.
  • the minimum folding unit is designed to protect the photovoltaic cell 3-1 in the module when it is flexibly bent and folded, and it can be omitted when the module is a rigid module or when the protection requirement is low.
  • Embodiment 5 is basically the same as Embodiment 4, with the difference that: the light-receiving surface side of the photovoltaic cell string 3 is covered with a protective layer of glue-dropping material by glue-drop curing, and the glue-drop material is transparent epoxy resin or the like. It can well replace the hard protective plate 8 and directly form a hard minimum folding unit.
  • the structure of the photovoltaic cell module is as follows from top to bottom: panel 1 , encapsulation adhesive layer 9 , photovoltaic cell string 3 , encapsulation adhesive layer 9 of composite photovoltaic conductive tape 5 and back sheet 2 .
  • Embodiment 7 is basically the same as Embodiment 6, except that the photovoltaic conductive tape 5 is a tape of conductive paste, and the conductive paste is printed by screen printing and compounded on the encapsulation adhesive layer 9 .
  • the conductive paste is a low-temperature curing conductive paste, and the curing temperature of the low-temperature curing conductive paste matches the lamination temperature of the photovoltaic module.
  • the manufacturing method of the photovoltaic cell assembly of this embodiment 7 has the following steps:
  • Embodiment 8 is basically the same as Embodiment 1, except that the photovoltaic conductive tape 5 is compounded on the same side of the back plate 2 .
  • the structure of the photovoltaic cell module is as follows from top to bottom: panel 1 , encapsulation adhesive layer 9 , photovoltaic cell string 3 , back sheet 2 with hollow encapsulation adhesive layer 9 and composite photovoltaic conductive tape 5 .
  • the electrical connection between the photovoltaic cell strings 3 and the photovoltaic conductive tape 5 is completed during lamination, as in Embodiment 3.
  • Embodiment 9 is basically the same as Embodiment 2, except that the photovoltaic conductive tape 5 on the light-receiving surface side is compounded on the upper packaging adhesive layer 9, and the photovoltaic conductive tape 5 on the backlight side is compounded on the lower packaging bonding layer. on layer 9.
  • the structure of the photovoltaic cell module is as follows from top to bottom: panel 1, the packaging adhesive layer 9 of the photovoltaic conductive tape 5 on the side of the composite light-receiving surface, the photovoltaic cell string 3, the photovoltaic conductive tape 5 on the side of the composite backlight surface and the third The encapsulation adhesive layer 9 and the back sheet 2 of the photovoltaic conductive tape 5-1.
  • Embodiment 10 is basically the same as Embodiment 1, except that there are n1 ⁇ 2 photovoltaic power generation groups in the photovoltaic cell layer, n1 ⁇ 2 photovoltaic power generation groups are arranged along the first direction, and each photovoltaic cell unit in the photovoltaic power generation group It is aligned in a column along the first direction with the corresponding photovoltaic cell units in other photovoltaic power generation groups.
  • the photovoltaic cell assembly is divided into a plurality of rigid minimum folding units arranged along the second direction, and the photovoltaic cell strings 3 in the same row along the first direction are all located in one minimum folding unit, and gaps are left between the minimum folding units.
  • Embodiment 10 Embodiment 10, Embodiment 4, and 5, it is not excluded to form the minimum folding unit by other means, such as attaching a hard protective plate 8 or glue on the outside of the panel 1 to form a hard minimum folding unit.
  • the two photovoltaic power generation groups are arranged symmetrically in the first direction.
  • the photovoltaic cell assembly is divided into 16 rigid minimum folding units arranged along the second direction.
  • the photovoltaic cell strings 3 can be connected to the photovoltaic conductive strip 5 through the protruding interconnection main grid line 4 at one end.
  • both ends of the photovoltaic cell string 3 are connected to the photovoltaic conductive strip 5 through the electrode on the surface of the photovoltaic cell 3-1 Connection, as in embodiment 2, both ends of the photovoltaic cell string 3 can also be connected to the photovoltaic conductive belt 5 by extending the interconnection busbar 4, when both ends of the photovoltaic cell string 3 are connected by extending the interconnection busbar 4 and When the photovoltaic conductive strip 5 is connected, no matter which side the photovoltaic conductive strip 5 is located on, the extended interconnection busbar 4 can be connected to the photovoltaic conductive strip 5, so it is not necessary to consider whether the two photovoltaic conductive strips 5 are relative to the photovoltaic cell string 3.
  • the interconnection busbar 4 on the light-receiving surface of the photovoltaic cell 3-1 at the upper end of the photovoltaic cell string 3 extends to the outside of the photovoltaic cell string 3, and the interconnection on the backlight surface of the photovoltaic cell 3-1 at the lower end of the photovoltaic cell string 3
  • the busbar 4 extends out of the photovoltaic cell string 3 , and both ends of the photovoltaic cell string 3 are welded to the corresponding photovoltaic conductive strip 5 through the extended interconnecting busbar 4 .
  • Embodiment 12 is basically the same as Embodiment 1.
  • the photovoltaic cell string 3 is also formed by serially welding the photovoltaic cells 3-1 through the interconnected main grid lines 4 interconnected on the same plane. The difference is that, as shown in FIG.
  • the busbar 4 protrudes from the upper end of the photovoltaic cell string 3, the interconnected busbar 4 on the backlight surface protrudes from the lower end of the photovoltaic cell string 3, and both ends of the photovoltaic cell string 3 pass through the extended interconnected busbar 4 and Corresponding to the photovoltaic conductive strip 5 welding connection.

Abstract

本发明涉及一种光伏电池组件及其制造方法,该光伏电池组件包括n1个光伏发电组,每个光伏发电组包括n2个沿第二方向排列的光伏电池单元,每个光伏发电组内的光伏电池单元位于2条光伏导电带之间,2条光伏导电带上具有间断点,用于改变光伏发电组内的光伏电池单元之间的串、并联连接关系,该组件的制造方法,首先进行光伏电池串的制备;然后进行光伏电池单元、光伏导电带、面板和背板的排版;再然后进行层压,最后制得光伏电池组件。有益效果是:通过在排版时调整间断点的位置、光伏电池串的上下位置和正反面朝向,可以方便地调整光伏组件的电性能参数和串并联设置,实现柔性化制造。通过金属箔导电带特别是柔性排线进行光伏电池串之间的互联,使得低成本的柔性可折叠成为现实。

Description

光伏电池组件及其制造方法 技术领域
本发明涉及光伏技术领域,特别是一种光伏电池组件及其制造方法。
背景技术
随着国际国内普遍对气候危机的重视,光伏产品从大型电站应用为主,迅速转向分布式应用,并加速和建筑、电动汽车等民用生活场景结合。
新的光伏应用场景迫切要求光伏产品可柔性制造,并且光伏产品柔性和轻量化,同时,对产品的可靠性、易用性和性价比提出了更高要求。
现有光伏组件的制造过程为:两个光伏电池采用异面互联方式通过金属导线连接。使用Z形金属导线连接第一片电池的受光面(正极)和第二片电池的背光面(负极),第二片电池的受光面(正极)和第三片电池的背光面(负极)。不断重复这个过程,将光伏电池成串连成串。然后,对电池串排版和串并联,添加封装材料封装层压,最终实现组件制造。
现有的该光伏组件要改变电性能参数和串并联设置,产线切换时间一般在8小时以上,无法实现定制化的柔性制造。
另外,现有的光伏电池串一次只能实现2~3个电池的串焊连接,生产效率低下。
当前光伏电池串模式中,100~160um厚度的薄片焊接破片严重。这种焊接破片主要来源于焊接过程中的碰撞或应力。由于同一根焊带要出现在光伏组件的受光面和背光面,并且在串焊过程中焊带的物理放置的动作需要不断和光伏电池的放置动作交错,在焊接过程中,在光伏电池冷热膨胀和收缩过程中,都容易出线焊带破坏光伏电池的问题。
同时,现有光伏柔性组件多次弯折的可靠性难以保证,而且实现成本太高。
目前市场上大部分柔性组件实质是准柔性组件,不具备多次大曲率弯折的能力。如CN104038142B中披露的光伏板一样,这种组件的电池和电池之间采用常规的涂锡铜带实现光伏电池之间的连接。薄膜电池存在类似情况,如美国miasole公司在美国专利US20210217913A1披露的CIGS电池也通过覆膜Cu线实现导电连接。这种连接方式不具备多次弯曲的能力。经过发明人的实验发现,常规涂锡焊带90度左右折弯的情况下,一般在30-45次折弯后就会被折断。这是大部分柔性组件面临的问题。
专利CN102945873B披露了通过增加导线线槽等方式,让导线具有一定松弛度,从而增加折弯性能,据称可4000次以上的折叠次数。这种方式也增加了制造成本,然而,仍难保证每件产品的性能。如同一发明人在专利CN110140448B正文中披露的,多次折叠后产品仍可能发 生太阳能电池芯片连接导线断路、膨胀和难折叠等技术问题。
专利CN110140448B中披露了一种军用光伏系统,采用柔性导电片(如Cu片)加强电池组件之间的连接,以提升可靠性。但这种方法太贵,难以民用,更谈不上大面积应用到光伏建筑一体化或电动车的移动光伏领域了。
发明内容
本发明所要解决的技术问题是:现有的该光伏组件无法实现柔性制造;
进一步解决技术问题:现有柔性光伏组件多次弯折的可靠性难以保证,而且实现成本太高;
本发明解决其技术问题所采用的技术方案是:一种光伏电池组件,包括面板、背板和封装在面板和背板之间的光伏电池层,光伏电池层包括n1个光伏发电组,每个光伏发电组包括n2个沿第二方向排列的光伏电池单元,光伏电池单元内的电流汇集后沿与第二方向垂直的第一方向流动,每个光伏发电组通过上下2条光伏导电带进行互联并引出电流,2条光伏导电带平行设置并沿第二方向延伸,每个光伏发电组内的光伏电池单元位于2条光伏导电带之间,光伏电池单元的两端分别与2条光伏导电带连接,光伏发电组之间通过光伏导电带进行互联并引出电流,光伏发电组的2条光伏导电带上具有间断点,用于改变光伏发电组内的光伏电池单元之间的串、并联连接关系,n1≥1,n2≥1。
进一步限定,光伏电池单元为光伏电池串,该光伏电池串由光伏电池通过同面互联的互联主栅线串焊而成,2条光伏导电带相对光伏电池串位于同一侧,光伏电池串的两端部光伏电池的背向对应光伏导电带的一面上的互联主栅线伸出至光伏电池串的外部,光伏电池串的两端部光伏电池的面向对应光伏导电带的另一面上的互联主栅线位于光伏电池串的内部,光伏电池串的一端与对应光伏导电带的连接部位位于该端的伸出的互联主栅线上,光伏电池串的另一端与光伏导电带的连接部位位于该端的端部光伏电池的表面。
或者,光伏电池单元为光伏电池串,该光伏电池串由光伏电池通过叠瓦或叠焊方式串焊而成,2条光伏导电带相对光伏电池串分别位于受光面一侧和背光面一侧,光伏电池串的一端通过该端的端部光伏电池的受光面的电极与受光面一侧的光伏导电带进行连接,光伏电池串的另一端通过该端的端部光伏电池的背光面的电极与背光面一侧的光伏导电带进行连接。
更进一步限定,光伏电池串内的光伏电池为由光伏电池分成的小块光伏电池构成。
进一步限定,当n1≥2时,光伏电池层内的光伏发电组沿第一方向排列,并且光伏发电组内的各个光伏电池单元与其他光伏发电组内对应位置的光伏电池单元沿第一方向呈一列对齐。
进一步限定,还包括旁路二级管,旁路二级管通过光伏导电带接入光伏发电组。
更进一步限定,当n1=1时,光伏发电组的一侧的光伏导电带的外侧还具有第三条沿第二方向延伸的光伏导电带,该第三条光伏导电带与同侧的光伏导电带之间连接有组件的旁路二极管和沿第一方向延伸的竖向光伏导电带,旁路二极管和竖向光伏导电带与临近的光伏电池单元在第一方向上对齐,该第三条光伏导电带通过自身的间断点和竖向光伏导电带将旁路二级管接入光伏发电组,与第三条光伏导电带同侧的光伏导电带的两端为正、负极引出端,该光伏电池组件为柔性组件,面板和背板为柔性材质,沿第二方向延伸的光伏导电带为金属箔导电带、导电浆料带或者柔性排线,或者,光伏导电带均为金属箔导电带、导电浆料带或者柔性排线。
进一步限定,光伏电池层通过封装粘结层封装在面板和背板之间,光伏导电带复合在与其同侧的封装粘结层上;或者光伏导电带复合在与其同侧的面板或背板,封装粘结层具有让位镂空,光伏电池单元和光伏导电带通过让位镂空进行连接。
进一步限定,光伏电池单元与光伏导电带之间采用低温焊接材料或低温固化导电浆料形成机械和电气连接关系,低温焊接材料的焊接温度与光伏组件的层压温度匹配,低温固化导电浆料的固化温度与光伏组件的层压温度匹配。
为保证实现光伏组件的柔性化,以及柔性光伏组件的多次弯折的可靠性,更进一步限定,该光伏电池组件为柔性组件,面板和背板为柔性材质,光伏导电带为金属箔导电带、导电浆料带或者柔性排线。
更进一步限定,金属箔导电带为表面具有低温焊接材料层的厚度为5~100um的铜箔带或铝箔带或者其他金属箔带,柔性排线为表面具有低温焊接材料层的FFC排线、FPC排线或PTF排线,低温焊接材料层的焊接温度与光伏组件的层压温度匹配。
更进一步限定,光伏电池组件分为多个沿第二方向排布的硬质的最小折叠单元,沿第一方向的同一列的光伏电池单元都位于一个最小折叠单元内,最小折叠单元之间留有折叠间隙。
更进一步限定,最小折叠单元通过在光伏电池单元的受光面一侧覆盖硬质防护板的方式形成,硬质防护板与光伏电池单元之间通过封装粘结层结合在一起;或者,最小折叠单元通过在光伏电池单元的受光面一侧覆盖滴胶材料保护层的方式形成。
一种上述的光伏电池组件的制造方法,首先进行光伏电池单元的制备;然后进行光伏电池单元、光伏导电带、面板和背板的排板;再然后进行层压,制得光伏电池组件,光伏电池单元与光伏导电带的电连接在层压时完成,在层压温度和压力作用下,光伏电池单元和光伏导电带的连接部位结合在一起,并通过低温焊接材料或低温固化导电浆料形成机械和电气连接关系,低温焊接材料或低温固化导电浆料为光伏电池单元和光伏导电带的连接部位本身自带,或者排版时置于连接部位上,或者,首先进行光伏电池单元的制备;然后将光伏电池单 元与光伏导电带先进行排版并预焊成为半成品;再然后进行该半成品、面板和背板的排版;再然后进行层压,制得光伏电池组件。
进一步限定,当光伏电池单元为光伏电池串,该光伏电池串由光伏电池通过同面互联的互联主栅线串焊而成,2条光伏导电带相对光伏电池串位于同一侧,光伏电池串的两端的端部光伏电池的背向与光伏导电带的一面上的互联主栅线伸出光伏电池串,面向与光伏导电带的另一面上的互联主栅线位于光伏电池串内部,光伏电池串的一端与光伏导电带的连接部位位于该端的伸出的互联主栅线上,光伏电池串的另一端与光伏导电带的连接部位位于该端的端部光伏电池的表面时,通过在排版时调整光伏电池串在第一方向的上下位置和/或间断点的位置,在光伏电池串之间形成不同电路连接关系;
或者,当光伏电池单元为光伏电池串,该光伏电池串由光伏电池通过叠瓦或叠焊方式串焊而成,2条光伏导电带相对光伏电池串分别位于受光面一侧和背光面一侧,光伏电池串的一端通过该端的端部光伏电池的受光面的电极与受光面一侧的光伏导电带进行连接,光伏电池串的另一端通过该端的端部光伏电池的背光面的电极与背光面一侧的光伏导电带进行连接时,通过在排版时调整光伏电池串的两端朝向和正反面朝向,和/或调整间断点的位置,在光伏电池串之间形成不同电路连接关系。
进一步限定,光伏电池焊成串后,通过沿第一方向进行裂片,将大的光伏电池串分成独立的小的光伏电池串,该小的光伏电池串用于后续排版步骤。
本发明的有益效果是:通过在排版时调整间断点的位置以及光伏电池串的两端朝向、上下位置和正反面朝向,可以方便地调整光伏组件的电性能参数和串并联设置,实现柔性化制造。
光伏电池单元通过上下两条光伏导电带进行互联的设计,可减少光伏导电带的用量而且光伏导电带在产业上在产业上实现成本低,可降低组件成本。
通过金属箔导电带、导电浆料带特别是柔性排线进行光伏电池串之间的互联,使得光伏电池间的柔性连接成为可能,从而使晶体硅组件高可靠、低成本的柔性可折叠成为现实。事实上,在手机应用上,FPC或PTF或FFC柔性排线、电路板已经可以实现80000次可靠折叠的批量生产。预期本发明的柔性光伏组件也可以实现80000次以上的折叠,因此,使得光伏晶硅电池、薄膜电池组件的折叠和卷轴式高可靠产品成为可能。
组件内的光伏电池可成串或整版地采用同面互联方式通过互联主栅线连接在一起,然后裁切为所需的各个光伏电池单元,使生产效率大幅度提升。
另外,避免互联主栅线同时连接相邻光伏电池的受光面和背光面,可以大大降低碎片几率,提升组件制造的良率,降低成本。这对高效电池的薄片化应用意义重大。
附图说明
下面结合附图和实施例对本发明进一步说明;
图1是本发明的实施例1的正面状态结构原理图;
图2是本发明的实施例1的简略画法示意图;
图3是本发明的实施例2的正面状态结构原理图;
图4是本发明的实施例2的简略画法示意图;
图5是本发明的实施例4的侧面状态结构原理图;
图6是本发明的实施例10的简略画法示意图;
图7是本发明的实施例11的光伏电池串通过光伏导电带进行互联的结构示意图;
图7a是本发明的实施例11的光伏电池串调整两端朝向改变电路连接关系的示意图;
图8是本发明的实施例12的光伏电池串通过光伏导电带进行互联的结构示意图;
图8a是本发明的实施例12的光伏电池串调整两端朝向改变电路连接关系的示意图;
图中,1.面板,2.背板,3.光伏电池串,3-1.光伏电池,4.互联主栅线,5.光伏导电带,5-1.第三条光伏导电带,5-2.竖向光伏导电带,6.间断点,7.旁路二极管,8.硬质防护板,9.封装粘结层。
具体实施方式
实施例1,如图1和2所示,一种光伏电池组件,包括面板1、背板2和封装在面板1和背板2之间的光伏电池层,光伏电池层包括n1个光伏发电组,每个光伏发电组包括n2个沿第二方向排列的光伏电池单元,光伏电池单元为光伏电池串3,光伏电池串3内的光伏电池3-1沿与第二方向垂直的第一方向排布,光伏电池串3内的电流汇集后沿第一方向流动,每个光伏发电组通过上下2条光伏导电带5进行互联并引出电流,2条光伏导电带5平行设置并沿第二方向延伸,每个光伏发电组内的光伏电池串3位于2条光伏导电带5之间,光伏电池串3的两端分别与2条光伏导电带5连接,2条光伏导电带5上具有间断点6,用于改变光 伏发电组内的光伏电池串3之间的串、并联连接关系,n1=1,n2=16。
如图1所示,光伏电池串3由光伏电池3-1通过同面互联的互联主栅线4串焊而成,光伏电池串3的两端部光伏电池3-1的背向对应光伏导电带5的一面上的互联主栅线4伸出至光伏电池串3的外部,光伏电池串3的两端部光伏电池3-1的面向对应光伏导电带5的另一面上的互联主栅线4位于光伏电池串3的内部,光伏电池串3的一端与对应光伏导电带5的连接部位位于该端的伸出的互联主栅线4上,光伏电池串3的另一端与对应光伏导电带5的连接部位位于该端的端部光伏电池3-1的表面。具体为:互联光伏发电组的上下2条光伏导电带5都位于光伏电池串3的背光面一侧。光伏电池串3的受光面和背光面都通过一条互联主栅线4进行同面互联,并且受光面和背光面的互联主栅线4彼此错开。光伏电池串3的受光面的互联主栅线4的两端都伸出至光伏电池串3的外部,光伏电池串3的背光面的互联主栅线4的两端都位于光伏电池串3的内部,光伏电池串3的一端通过伸出的互联主栅线4与对应光伏导电带5焊接连接,光伏电池串3的另一端通过该端的端部光伏电池3-1的背光面上的电极与对应光伏导电带5焊接连接。
为保护光伏发电组内的光伏电池串,还包括旁路二级管7,旁路二级管7通过光伏导电带5接入光伏发电组。
具体为:光伏发电组的一侧的光伏导电带5的外侧还具有第三条沿第二方向延伸的光伏导电带5,该第三条光伏导电带5-1与同侧的光伏导电带5之间连接有组件的旁路二极管7和竖向光伏导电带5-2,旁路二极管7和竖向光伏导电带5-2都沿第一方向延伸,旁路二极管7和竖向光伏导电带5-2与临近的光伏电池串在第一方向上对齐,该第三条光伏导电带5-1通过自身的间断点6和竖向光伏导电带5-2将旁路二级管7接入光伏发电组,与第三条光伏导电带5-1同侧的光伏导电带5的两端为正、负极引出端。
该光伏电池组件为柔性组件,面板1和背板2为柔性材质,沿第二方向延伸的光伏导电带5为金属箔导电带或者柔性排线。当竖向光伏导电带5-2与临近的光伏电池单元在第一方向上对齐时,因为不会受到弯折作用,竖向光伏导电带5-2不需要考虑其耐弯折性,竖向光伏导电带5-2可以是金属丝、焊带等等,焊接在第三条光伏导电带5-1与同侧的光伏导电带5之间。该柔性光伏电池组件的长度方向即为第二方向。
金属箔导电带为表面具有焊接材料层的厚度为5~100um的铜箔带或铝箔带,柔性排线为表面具有焊接材料层的FFC排线、FPC排线或PTF排线。
一种光伏电池组件的制造方法,具有如下步骤:
S1、进行光伏电池串3的制备:具体为,光伏电池3-1焊成串后,沿第一方向通过机械裂片的方式进行分片(具体为:光伏电池3-1在制绒前在硅片表面形成一定深度的激光划痕, 采用机械力分片时,电池片将沿划痕的机械薄弱点裂开),将大的光伏电池串3分成独立的小的光伏电池串3,该小的光伏电池串3用于后续步骤;
S2、将光伏电池串3与光伏导电带5先进行排版,在排版时调整光伏电池串3在第一方向的上下位置和/或间断点6的位置,间断点6通过对光伏导电带5进行冲剪的方式形成,在光伏电池串3之间形成不同电路连接关系,然后进行预焊,将光伏电池串3、旁路二极管7与光伏导电带5焊接在一起,成为半成品;
S3、再然后将背板2、封装粘结层9、S2中准备好的半成品、封装粘结层9、面板1依次排版,背板2为PET或TPT,封装粘结层9为EVA或POE或PVB,面板1为FRP或ETFE;
S4、通过层压,制得光伏电池组件。
在本实施例1中,当光伏导电带5为柔性排线时,间断点可为柔性排线自带,在柔性排线制造过程中形成。
实施例2,如图3和4所示,和实施例1基本相同,区别在于:光伏电池串3由光伏电池3-1通过叠瓦或叠焊方式串焊而成,互联光伏发电组的上下2条光伏导电带5分别位于光伏电池串3的受光面一侧和背光面一侧,光伏电池串3的一端通过该端的端部光伏电池3-1的受光面的电极与位于其受光面的光伏导电带5进行连接,光伏电池串3的另一端通过该端的端部光伏电池3-1的背光面的电极与位于其背光面的光伏导电带5进行连接。
光伏电池串3的光伏电池3-1具体为正面和背面均为23.5%效率的异质结电池。
该实施例2的光伏电池组件的制造方法,具有如下步骤:
S1、进行光伏电池串3的制备:具体为,光伏电池3-1通过叠瓦或叠焊方式焊成串后,沿第一方向通过机械裂片的方式进行分片,将大的光伏电池串3分成独立的小的光伏电池串3,该小的光伏电池串3用于后续步骤;
S2、将光伏电池串3与光伏导电带5先进行排版,在排版时调整光伏电池串3的两端朝向(即旋转180度)和正反面朝向(如正面朝上或反面朝上),和/或调整间断点6的位置,间断点6通过对光伏导电带5进行冲剪的方式形成,在光伏电池串3之间形成不同电路连接关系,然后进行预焊,将光伏电池串3、旁路二极管7与光伏导电带5焊接在一起,成为半成品,
在本实施例2中,光伏电池串3按照一个光伏电池串3的正面朝上,一个光伏电池串3的反面朝上的规律沿第二方向进行排布;
S3、再然后将背板2、封装粘结层9、S2中准备好的半成品、封装粘结层9、面板1依次排版,背板2为PET或TPT,封装粘结层9为EVA或POE或PVB,面板1为FRP或ETFE;
S4、通过层压,制得光伏电池组件。
实施例3,和实施例1基本相同,区别在于:金属箔导电带为表面具有低温焊接材料层的厚度为5~100um的铜箔带或铝箔带,柔性排线为表面具有低温焊接材料层的FFC排线、FPC排线或PTF排线,低温焊接材料层的焊接温度与光伏组件的层压温度匹配。
该实施例3的光伏电池组件的制造方法,具有如下步骤:
S1、进行光伏电池串3的制备;
S2、首先在排版工作台上铺设好背板2,然后铺设作为封装粘结层9,在封装粘结层9上铺光伏导电带5,在光伏导电带5上铺光伏电池串3,调整光伏电池串3在第一方向的上下位置和/或间断点6的位置,在该实施例3中,优选第三条光伏导电带5-1与同侧的光伏导电带5集成为一条柔性排线,第三条光伏导电带5-1与同侧的光伏导电带5为柔性排线上的两条柔性电路,旁路二级管7和竖向光伏导电带5-2在排版前就焊接在该柔性排线上,甚至竖向光伏导电带5-2也为该柔性排线上的柔性电路,更甚至旁路二级管7也为集成在柔性排线上的柔性二级管;
S3、进行层压,在层压温度和压力作用下,光伏电池串3和光伏导电带5的连接部位结合在一起,并通过低温焊接材料形成机械和电气连接关系,低温焊接材料为光伏电池串3和光伏导电带5的连接部位本身自带,最后制得光伏电池组件。
实施例1和实施例3相比,实现例1通过预焊可以减小在层压时封装粘结层9推动光伏导电带5发生位移,实施例3和实施例1相比优点在于制造更方便,成本更低。
当然,光伏电池串3和光伏导电带5还可通过低温固化导电浆料形成机械和电气连接关系,低温固化导电浆料为光伏电池串3和光伏导电带5的连接部位本身自带,或者排版时置于连接部位上,最后制得光伏电池组件。
当然,光伏电池串3和光伏导电带5还可通过排版时置于连接部位上的低温焊接材料形成机械和电气连接关系。
实施例4,如图5所示,和实施例1基本相同,区别在于:光伏电池组件分为多个沿第二方向排布的硬质的最小折叠单元,光伏发电组的每个光伏电池串3都位于一个最小折叠单元内,最小折叠单元之间留有间隙。优选,光伏电池串3和光伏导电带5的连接部位位于最小折叠单元内。
最小折叠单元通过在光伏电池串3的受光面一侧覆盖硬质防护板8的方式形成,硬质防护板8与光伏电池串3之间通过它们之间的封装粘结层9结合在一起。
该实施例4的光伏电池组件的制造方法,具有如下步骤:
S1、进行光伏电池串3的制备;
S2、将光伏电池串3与光伏导电带5先进行排版,在排版时调整光伏电池串3在第一方 向的上下位置和/或间断点6的位置,间断点6通过对光伏导电带5进行冲剪的方式形成,在光伏电池串3之间形成不同电路连接关系,然后进行预焊成为半成品;
S3、再然后将背板2、封装粘结层9、S2中准备好的半成品、封装粘结层9、硬质防护板8、封装粘结层9、面板1依次排版;
S4、通过层压,制得光伏电池组件。
当然在该实施例4中,也可在步骤s2中,制得的半成品上覆盖封装粘结层9、硬质防护板8,先形成最小折叠单元后,将s2的半成品排版至面板1和背板2之间。
在该实施例中最小折叠单元设计是为了在柔性弯曲、折叠时保护组件内的光伏电池3-1,当组件为硬质组件时,或保护要求低时可以省略。
实施例5,和实施例4基本相同,区别在于:在光伏电池串3的受光面一侧通过滴胶固化方式覆盖一层滴胶材料保护层,滴胶材料为透明环氧树脂等。可很好的代替硬质防护板8,直接形成硬质的最小折叠单元。
实施例6,和实施例1基本相同,区别在于:光伏导电带5复合在与其同侧的封装粘结层9上。优选,光伏导电带5通过粘结剂粘结复合。
光伏电池组件的结构自上而下依次为:面板1、封装粘结层9、光伏电池串3、复合光伏导电带5的封装粘结层9和背板2。
优选,光伏导电带5的表面具有低温焊接材料层,低温焊接材料层的焊接温度与光伏组件的层压温度匹配。在层压时完成光伏电池串3与光伏导电带5的电连接,如实施例3。
实施例7,和实施例6基本相同,区别在于:光伏导电带5为导电浆料带,导电浆料通过丝网印刷方式印刷并复合在封装粘结层9上。导电浆料为低温固化导电浆料,低温固化导电浆料的固化温度与光伏组件的层压温度匹配。
该实施例7的光伏电池组件的制造方法,具有如下步骤:
S1、进行光伏电池串3的制备,复合导电浆料带的封装粘结层9的制备;
S2、首先在排版工作台上铺设好背板2,然后铺设复合导电浆料带的封装粘结层9,在光伏导电带5上铺光伏电池串3,调整光伏电池串3在第一方向的上下位置和间断点6的位置,
S3、进行层压,在层压温度和压力作用下,光伏电池串3和导电浆料带的连接部位结合在一起,并通过低温固化导电浆料的固化形成机械和电气连接关系。
实施例8,和实施例1基本相同,区别在于:光伏导电带5复合在与其同侧的背板2上。
光伏电池组件的结构自上而下依次为:面板1、封装粘结层9、光伏电池串3、具有让位镂空的封装粘结层9和复合光伏导电带5的背板2。
优选,在层压时完成光伏电池串3与光伏导电带5的电连接,如实施例3。
实施例9,和实施例2基本相同,区别在于:受光面一侧的光伏导电带5复合在上层的封装粘结层9上,背光面一侧的光伏导电带5复合在下层的封装粘结层9上。
光伏电池组件的结构自上而下依次为:面板1、复合受光面一侧的光伏导电带5的封装粘结层9、光伏电池串3、复合背光面一侧的光伏导电带5和第三条光伏导电带5-1的封装粘结层9和背板2。
该实施例9在层压时完成光伏电池串3与光伏导电带5的电连接,如实施例3。
实施例10,和实施例1基本相同,区别在于:光伏电池层内具有n1≥2个光伏发电组,n1≥2个光伏发电组沿第一方向排列,并且光伏发电组内的各个光伏电池单元与其他光伏发电组内对应位置的光伏电池单元沿第一方向呈一列对齐。
光伏电池组件分为多个沿第二方向排布的硬质的最小折叠单元,沿第一方向的同一列的光伏电池串3都位于一个最小折叠单元内,最小折叠单元之间留有间隙。
当然在本实施例10、实施例4和5中,不排除通过其他方式形成最小折叠单元,例如在面板1外贴附硬质防护板8或滴胶,形成硬质的最小折叠单元。
如图6所示,光伏电池层内具体2个光伏发电组,2个光伏发电组在第一方向上对称设置。光伏电池组件分为16个沿第二方向排布的硬质的最小折叠单元。
为实现由多个光伏电池串3构成的光伏发电组通过上下2条光伏导电带5进行互联并引出电流,光伏电池串3即可以一端通过伸出的互联主栅线4与光伏导电带5连接,另一端通过光伏电池3-1的表面的电极与光伏导电带5连接,如实施例1,也可以光伏电池串3的两端都通过光伏电池3-1的表面的电极与光伏导电带5连接,如实施例2,还可以光伏电池串3的两端都通过伸出互联主栅线4与光伏导电带5连接,当光伏电池串3的两端都通过伸出互联主栅线4与光伏导电带5连接时,不管光伏导电带5位于哪一侧,伸出互联主栅线4都可以与光伏导电带5连接,所以可以不需要考虑2条光伏导电带5相对光伏电池串3是同一侧布置还是不同侧布置。根据光伏电池串3本身的互联形式、2条光伏导电带5的布置方向和光伏电池串3与光伏导电带5的连接方式,可选择性地调整光伏电池串3在第一方向的上下位置、调整光伏电池串3的两端朝向、正反面朝向、以及调整间断点6,即可在光伏电池串3之间形成不同电路连接关系。
下面以光伏电池串3的两端都通过伸出互联主栅线4与光伏导电带5连接为例,对本发明进行进一步阐述。
实施例11,和实施例1基本相同,区别在于:如图7所示,光伏电池串3由光伏电池3-1通过异面互联的互联主栅线4串焊而成,连接相邻光伏电池3-1的互联主栅线4分别位于一块光伏电池3-1的受光面和相邻光伏电池3-1的背光面。
光伏电池串3的上端的光伏电池3-1的受光面上的互联主栅线4伸出至光伏电池串3的外部,光伏电池串3的下端的光伏电池3-1的背光面上的互联主栅线4伸出至光伏电池串3的外部,光伏电池串3的两端都通过伸出的互联主栅线4与对应光伏导电带5焊接连接。
如图7a所示,通过调整光伏电池串3的两端朝向即旋转180度,就可在光伏电池串3之间形成不同电路连接关系。
该实施例11的光伏电池串3采用常规异面互联的方式进行互联,由于存在光伏电池3-1和互联主栅线4交错焊接而造成薄片的光伏电池3-1破片的风险,所以比较适用于较厚的光伏电池3-1。实施例1与之相比,对薄片的光伏电池3-1有更好的兼容性。
实施例12,和实施例1基本相同,光伏电池串3也由光伏电池3-1通过同面互联的互联主栅线4串焊而成,区别在于:如图8所示,受光面的互联主栅线4从光伏电池串3的上端伸出,背光面的互联主栅线4从光伏电池串3的下端伸出,光伏电池串3的两端都通过伸出的互联主栅线4与对应光伏导电带5焊接连接。
如图8a所示,通过调整光伏电池串3的两端朝向即旋转180度,就可在光伏电池串3之间形成不同电路连接关系。

Claims (16)

  1. 一种光伏电池组件,包括面板、背板和封装在面板和背板之间的光伏电池层,其特征是:所述的光伏电池层包括n1个光伏发电组,每个光伏发电组包括n2个沿第二方向排列的光伏电池单元,光伏电池单元内的电流汇集后沿与第二方向垂直的第一方向流动,每个光伏发电组通过上下2条光伏导电带进行互联并引出电流,2条光伏导电带平行设置并沿第二方向延伸,每个光伏发电组内的光伏电池单元位于2条光伏导电带之间,光伏电池单元的两端分别与2条光伏导电带连接,
    光伏发电组之间通过光伏导电带进行互联并引出电流,
    光伏发电组的2条光伏导电带上具有间断点,用于改变光伏发电组内的光伏电池单元之间的串、并联连接关系,
    n1≥1,n2≥1。
  2. 根据权利要求1所述的光伏电池组件,其特征是:所述的光伏电池单元为光伏电池串,该光伏电池串由光伏电池通过同面互联的互联主栅线串焊而成,2条光伏导电带相对光伏电池串位于同一侧,光伏电池串的两端部光伏电池的背向对应光伏导电带的一面上的互联主栅线伸出至光伏电池串的外部,光伏电池串的两端部光伏电池的面向对应光伏导电带的另一面上的互联主栅线位于光伏电池串的内部,光伏电池串的一端与对应光伏导电带的连接部位位于该端的伸出的互联主栅线上,光伏电池串的另一端与光伏导电带的连接部位位于该端的端部光伏电池的表面;
    或者,光伏电池单元为光伏电池串,该光伏电池串由光伏电池通过叠瓦或叠焊方式串焊而成,2条光伏导电带相对光伏电池串分别位于受光面一侧和背光面一侧,光伏电池串的一端通过该端的端部光伏电池的受光面的电极与受光面一侧的光伏导电带进行连接,光伏电池串的另一端通过该端的端部光伏电池的背光面的电极与背光面一侧的光伏导电带进行连接。
  3. 根据权利要求2所述的光伏电池组件,其特征是:所述的光伏电池串内的光伏电池为由光伏电池分成的小块光伏电池构成。
  4. 根据权利要求1所述的光伏电池组件,其特征是:当n1≥2时,光伏电池层内的光伏发电组沿第一方向排列,并且光伏发电组内的各个光伏电池单元与其他光伏发电组内对应位置的光伏电池单元沿第一方向呈一列对齐。
  5. 根据权利要求1所述的光伏电池组件,其特征是:还包括旁路二级管,旁路二级管通过光伏导电带接入光伏发电组。
  6. 根据权利要求5所述的光伏电池组件,其特征是:当n1=1时,光伏发电组的一侧的光伏导电带的外侧还具有第三条沿第二方向延伸的光伏导电带,该第三条光伏导电带与同侧 的光伏导电带之间连接有组件的旁路二极管和沿第一方向延伸的竖向光伏导电带,旁路二极管和竖向光伏导电带与临近的光伏电池单元在第一方向上对齐,该第三条光伏导电带通过自身的间断点和沿第一方向延伸的竖向光伏导电带将旁路二级管接入光伏发电组,与第三条光伏导电带同侧的光伏导电带的两端为正、负极引出端,
    该光伏电池组件为柔性组件,面板和背板为柔性材质,沿第二方向延伸的光伏导电带为金属箔导电带、导电浆料带或者柔性排线,或者,光伏导电带均为金属箔导电带、导电浆料带或者柔性排线。
  7. 根据权利要求5所述的光伏电池组件,其特征是:光伏发电组的一侧的光伏导电带的外侧还具有第三条沿第二方向延伸的光伏导电带,该第三条光伏导电带与同侧的光伏导电带之间连接有组件的旁路二极管和沿第一方向延伸的竖向光伏导电带,该第三条光伏导电带通过自身的间断点和沿第一方向延伸的竖向光伏导电带将旁路二级管接入光伏发电组。
  8. 根据权利要求1所述的光伏电池组件,其特征是:所述的光伏电池层通过封装粘结层封装在面板和背板之间,光伏导电带复合在与其同侧的封装粘结层上;或者光伏导电带复合在与其同侧的面板或背板,封装粘结层具有让位镂空,光伏电池单元和光伏导电带通过让位镂空进行连接。
  9. 根据权利要求1所述的光伏电池组件,其特征是:所述的光伏电池单元与光伏导电带之间采用低温焊接材料或低温固化导电浆料形成机械和电气连接关系,低温焊接材料的焊接温度与光伏组件的层压温度匹配,低温固化导电浆料的固化温度与光伏组件的层压温度匹配。
  10. 根据权利要求1或2或3或4或5或7或8或9所述的光伏电池组件,其特征是:该光伏电池组件为柔性组件,所述的面板和背板为柔性材质,光伏导电带为金属箔导电带、导电浆料带或者柔性排线。
  11. 根据权利要求10所述的光伏电池组件,其特征是:所述的金属箔导电带为表面具有低温焊接材料层的厚度为5~100um的铜箔带或铝箔带,柔性排线为表面具有低温焊接材料层的FFC排线、FPC排线或PTF排线,低温焊接材料层的焊接温度与光伏组件的层压温度匹配。
  12. 根据权利要求10所述的光伏电池组件,其特征是:分为多个沿第二方向排布的硬质的最小折叠单元,每个光伏发电组的每个光伏电池单元都位于一个最小折叠单元内,最小折叠单元之间留有折叠间隙。
  13. 根据权利要求12所述的光伏电池组件,其特征是:所述的最小折叠单元通过在光伏电池单元的受光面一侧覆盖硬质防护板的方式形成,硬质防护板与光伏电池单元之间通过封装粘结层结合在一起;
    或者,最小折叠单元通过在光伏电池单元的受光面一侧覆盖滴胶材料保护层的方式形成。
  14. 一种权利要求1所述的光伏电池组件的制造方法,其特征是:首先进行光伏电池单元的制备;然后进行光伏电池单元、光伏导电带、面板和背板的排板;再然后进行层压,制得光伏电池组件,
    光伏电池单元与光伏导电带的电连接在层压时完成,在层压温度和压力作用下,光伏电池单元和光伏导电带的连接部位结合在一起,并通过低温焊接材料或低温固化导电浆料形成机械和电气连接关系,低温焊接材料或低温固化导电浆料为光伏电池单元和光伏导电带的连接部位本身自带,或者排版时置于连接部位上,
    或者,首先进行光伏电池单元的制备;然后将光伏电池单元与光伏导电带先进行排版并预焊成为半成品;再然后进行该半成品、面板和背板的排版;再然后进行层压,制得光伏电池组件。
  15. 根据权利要求14所述的光伏电池组件的制造方法,其特征是:当光伏电池单元为光伏电池串,该光伏电池串由光伏电池通过同面互联的互联主栅线串焊而成,2条光伏导电带相对光伏电池串位于同一侧,光伏电池串的两端的端部光伏电池的背向与光伏导电带的一面上的互联主栅线伸出光伏电池串,面向与光伏导电带的另一面上的互联主栅线位于光伏电池串内部,光伏电池串的一端与光伏导电带的连接部位位于该端的伸出的互联主栅线上,光伏电池串的另一端与光伏导电带的连接部位位于该端的端部光伏电池的表面时,
    通过在排版时调整光伏电池串在第一方向的上下位置和/或间断点的位置,在光伏电池串之间形成不同电路连接关系;
    或者,当光伏电池单元为光伏电池串,该光伏电池串由光伏电池通过叠瓦或叠焊方式串焊而成,2条光伏导电带相对光伏电池串分别位于受光面一侧和背光面一侧,光伏电池串的一端通过该端的端部光伏电池的受光面的电极与受光面一侧的光伏导电带进行连接,光伏电池串的另一端通过该端的端部光伏电池的背光面的电极与背光面一侧的光伏导电带进行连接时,
    通过在排版时调整光伏电池串的两端朝向和正反面朝向,和/或调整间断点的位置,在光伏电池串之间形成不同电路连接关系。
  16. 根据权利要求15所述的光伏电池组件的制造方法,其特征是:光伏电池焊成串后,通过沿第一方向进行裂片,将大的光伏电池串分成独立的小的光伏电池串,该小的光伏电池串用于后续排版步骤。
PCT/CN2022/122050 2021-09-28 2022-09-28 光伏电池组件及其制造方法 WO2023051587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111146524.8A CN115966622A (zh) 2021-09-28 2021-09-28 光伏电池组件及其制造方法
CN202111146524.8 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023051587A1 true WO2023051587A1 (zh) 2023-04-06

Family

ID=85781326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122050 WO2023051587A1 (zh) 2021-09-28 2022-09-28 光伏电池组件及其制造方法

Country Status (2)

Country Link
CN (1) CN115966622A (zh)
WO (1) WO2023051587A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102945873B (zh) 2012-11-19 2015-06-03 深圳市创益科技发展有限公司 一种多维折叠的柔性太阳能电池组件及其制造方法
CN110140448B (zh) 2014-07-01 2016-01-27 深圳市创益科技发展有限公司 一种军用通讯装备的太阳能智能供电设备及管理控制方法
CN104038142B (zh) 2014-06-17 2017-10-24 信阳师范学院 通用型易安装光伏构件及使用该构件的光伏安装结构
CN207624723U (zh) * 2017-08-17 2018-07-17 泰州隆基乐叶光伏科技有限公司 带有柔性导电条带的叠瓦式太阳能光伏组件
US20190165189A1 (en) * 2017-11-29 2019-05-30 Miasolé Hi-Tech Corp. Bus bar for use in flexible photovoltaic modules
CN109904240A (zh) * 2019-02-26 2019-06-18 江苏禾木传感技术有限公司 集成化智能光伏组件结构
CN109920878A (zh) * 2019-02-28 2019-06-21 苏州携创新能源科技有限公司 一种柔性光伏组件制造方法
CN110892534A (zh) * 2017-07-14 2020-03-17 联邦科学和工业研究组织 光伏装置及方法
CN112768539A (zh) * 2021-01-06 2021-05-07 苏州爱康光电科技有限公司 一种光伏双面电池排版及其组装方法
US20210217913A1 (en) 2017-12-12 2021-07-15 Miasole Equipment Integration (Fujian) Co., Ltd. Flexible photovoltaic module

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102945873B (zh) 2012-11-19 2015-06-03 深圳市创益科技发展有限公司 一种多维折叠的柔性太阳能电池组件及其制造方法
CN104038142B (zh) 2014-06-17 2017-10-24 信阳师范学院 通用型易安装光伏构件及使用该构件的光伏安装结构
CN110140448B (zh) 2014-07-01 2016-01-27 深圳市创益科技发展有限公司 一种军用通讯装备的太阳能智能供电设备及管理控制方法
CN110892534A (zh) * 2017-07-14 2020-03-17 联邦科学和工业研究组织 光伏装置及方法
CN207624723U (zh) * 2017-08-17 2018-07-17 泰州隆基乐叶光伏科技有限公司 带有柔性导电条带的叠瓦式太阳能光伏组件
US20190165189A1 (en) * 2017-11-29 2019-05-30 Miasolé Hi-Tech Corp. Bus bar for use in flexible photovoltaic modules
US20210217913A1 (en) 2017-12-12 2021-07-15 Miasole Equipment Integration (Fujian) Co., Ltd. Flexible photovoltaic module
CN109904240A (zh) * 2019-02-26 2019-06-18 江苏禾木传感技术有限公司 集成化智能光伏组件结构
CN109920878A (zh) * 2019-02-28 2019-06-21 苏州携创新能源科技有限公司 一种柔性光伏组件制造方法
CN112768539A (zh) * 2021-01-06 2021-05-07 苏州爱康光电科技有限公司 一种光伏双面电池排版及其组装方法

Also Published As

Publication number Publication date
CN115966622A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
JP6923275B2 (ja) 太陽電池列のための高効率構成
CN109920878B (zh) 一种柔性光伏组件制造方法
CN101689576B (zh) 太阳能电池模块的制造方法
CN108649087B (zh) 一种太阳能电池组件及其制备方法
US20150349175A1 (en) Shingled solar cell panel employing hidden taps
US20120006378A1 (en) Thin film solar cell strings
CN103022201A (zh) 晶硅太阳能电池模块及其制造方法
KR102243603B1 (ko) 태양전지 모듈 및 그 제조 방법
CN206976368U (zh) 一种透光柔性光伏组件
CN217280809U (zh) 一种具有薄膜的无主栅光伏组件
CN116995109A (zh) 一种低温焊接的背接触光伏组件及其制备方法
CN114864721A (zh) 一种无主栅的光伏组件及其制备方法、焊带焊接方法
CN109801981B (zh) 太阳能电池片用l形连接件及其应用
CN105576050B (zh) 一种柔性太阳能电池组件及其制备方法
CN111261741A (zh) 叠瓦组件的制造方法及叠瓦组件
WO2023036288A1 (zh) 柔性光伏电池组件及其制造方法
CN111554767B (zh) 导电胶带、叠瓦组件及其制备方法
WO2024012161A1 (zh) 无主栅ibc电池组件单元及制作方法、电池组件、电池组串
WO2023051587A1 (zh) 光伏电池组件及其制造方法
CN114050195B (zh) 一种柔性cic电池及其制备方法与应用
CN110649119A (zh) 一种基于晶硅的太阳能发电组件及其制备方法
CN207038538U (zh) 用于光伏组件的背接触式导电集成背板及光伏组件
CN110957977A (zh) 一种磁吸连接的新型光伏组件
CN209981247U (zh) 一种曲面叠瓦光伏组件
CN109802012B (zh) 太阳能电池组件的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022874971

Country of ref document: EP

Effective date: 20240429