WO2023051567A1 - 太阳能相变蓄能供热通风间壁墙及其模块化供热系统 - Google Patents

太阳能相变蓄能供热通风间壁墙及其模块化供热系统 Download PDF

Info

Publication number
WO2023051567A1
WO2023051567A1 PCT/CN2022/121980 CN2022121980W WO2023051567A1 WO 2023051567 A1 WO2023051567 A1 WO 2023051567A1 CN 2022121980 W CN2022121980 W CN 2022121980W WO 2023051567 A1 WO2023051567 A1 WO 2023051567A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
phase change
air valve
heat storage
damper
Prior art date
Application number
PCT/CN2022/121980
Other languages
English (en)
French (fr)
Inventor
赵靖
刘德涵
吕石磊
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to US18/039,671 priority Critical patent/US11994304B2/en
Publication of WO2023051567A1 publication Critical patent/WO2023051567A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/005Hot-air central heating systems; Exhaust gas central heating systems combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • F24D15/02Other domestic- or space-heating systems consisting of self-contained heating units, e.g. storage heaters
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/006Central heating systems using heat accumulated in storage masses air heating system
    • F24D11/007Central heating systems using heat accumulated in storage masses air heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/06Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated
    • F24D5/10Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated with hot air led through heat-exchange ducts in the walls, floor or ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/66Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of facade constructions, e.g. wall constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/10Arrangements for storing heat collected by solar heat collectors using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the invention relates to the field of novel building wall structures, in particular to a ventilation and heating partition wall and a heating system utilizing solar energy storage technology.
  • phase change energy storage technology the integration of phase change materials into building components can well solve the problem of mismatch between supply and demand of solar heating in terms of time, and play a role in stabilizing room temperature.
  • Chinese patent 202010383587.4 discloses "A Sandwich Ventilated Phase Change Heat Storage Structure and Its Laying Method", and provides a sandwich structure composed of phase change heat storage bags using macroscopic encapsulation, and uses air channels to improve the storage capacity of phase change materials.
  • the rate of heat or heat release increases the thermal insulation performance of the envelope, providing solutions for building solar heating in winter and radiant cooling in summer.
  • the phase change heat storage structure in this invention mainly provides heating or cooling for the room through radiation, and the heat exchange efficiency is low, which easily leads to waste of heat storage.
  • the phase change material is packaged in nylon thin bags, and the heat storage structure is bonded with glue. The process is relatively complicated, the construction is difficult, and it is difficult to popularize and apply.
  • the present invention proposes a modular solar phase change energy storage heating ventilation partition wall and a modular heating system, which realizes a modular solar energy system composed of several phase change thermal storage modules.
  • the phase change heat storage module formed by the combination of phase change energy storage heating and ventilation partition walls is connected with the solar air heat collector.
  • a solar phase change energy storage heat supply ventilation partition wall is composed of a solid partition wall, an insulation layer, a decorative layer, a steel skeleton, a reflective layer and a phase change heat storage module; wherein, the phase change heat storage module An internal air channel is also provided; the phase change heat storage module is installed and fixed on the steel skeleton, the top and bottom of the phase change heat storage module are provided with tooth-shaped structures, and the inner wall is provided with ribs to enhance heat transfer.
  • the phase change heat storage module is a hollow cylinder, a hollow semi-cylinder or an annular hollow cylinder.
  • phase change heat storage module is welded by stainless steel, filled with phase change heat storage material, and the phase change temperature is between 20°C and 25°C.
  • a modular heating system using solar phase change energy storage to heat ventilation partition walls includes solar air heat collectors and modularly deployed phase change heat storage units to realize energy storage heating; the phase change heat storage The unit includes multiple phase change heat storage subunits, each phase change heat storage subunit is composed of several meshed phase change heat storage modules, and the phase change heat storage subunits are connected in parallel; among them,
  • the top and bottom of the phase change heat storage unit are connected with the fourth air valve, the fifth air valve, the sixth air valve, the seventh air valve, the eighth air valve, the ninth air valve, the tenth air valve, the Eleven air valves are connected to form the air inlet at the top and the air exchange port at the bottom;
  • the phase change heat storage unit is connected to the air return port of the solar air heat collector through a third air valve, and is connected to the air outlet of the solar air heat collector through an axial flow fan and a second air valve;
  • the hot air of the air collector enters from the upper part of the phase change thermal storage unit and returns from the lower part;
  • first air valve arranged in the bypass pipeline, opening the first air valve realizes the communication between the hot air in the air duct and the indoor air.
  • phase-change heat storage module Seal the custom-made three-way or four-way valves with the reserved connection ports on the top and bottom of the phase-change heat storage module, connect the internal air channel in parallel with other phase-change heat storage units through the air duct, and connect the parallel air
  • the tubes are connected to a solar air collector.
  • the system has three working conditions: daytime energy storage, natural convection heat release and forced ventilation heat release:
  • Daytime energy storage working condition when the weather conditions are good during the day, the air temperature inside the solar air collector rises, the second air valve and the third air valve are opened, the fourth air valve, the fifth air valve, and the sixth air valve , the seventh air valve, the eighth air valve, the ninth air valve, the tenth air valve, the eleventh air valve and the first air valve are closed; the axial flow fan is turned on, and the high temperature inside the solar air collector is cooled by the axial flow fan The air is pressurized to store energy and provide heat for the phase change heat storage module in the solid partition wall, and the low-temperature air after heat exchange returns from the bottom of the phase change heat storage unit to the solar air heat collector for circulation;
  • Natural convection heat release condition when the indoor air temperature begins to drop at night, the first damper, the second damper and the third damper are closed, the fourth damper, the fifth damper, the sixth damper, and the seventh damper are closed. Valve, the eighth air valve, the ninth air valve, the tenth air valve and the eleventh air valve are opened, and the axial fan is closed. At this time, the air in the inner channel of the phase-change thermal storage unit in the solid partition wall is heated and naturally rises, and the indoor cold air enters through the ventilation opening at the bottom of the phase-change thermal storage unit of the partition wall, and heats the room through natural convection;
  • Forced ventilation heat release working condition when natural convection at night supplies limited heat to the room, the fourth damper, fifth damper, sixth damper, seventh damper, second damper and third damper are closed, The eighth air valve, the ninth air valve, the tenth air valve and the eleventh air valve are opened, and the first air valve and the axial flow fan are opened to exchange the high-temperature air inside the phase-change heat storage unit in the solid partition wall through its bottom.
  • the air port heats the room, and sends the cold air from the top of the room into the phase-change thermal storage unit in the solid partition wall for internal heating, and the forced circulation provides heat for the room.
  • the present invention has the following advantages:
  • the modular heat storage partition wall components have simple manufacturing process, flexible assembly, and can be freely arranged and combined according to actual conditions;
  • the system collects solar energy through the solar air collector during the day, and stores the heat in the phase change heat storage module of the partition wall. At the same time, the high-temperature flowing air can heat the room in the form of radiation through the heat storage partition wall, improving the the comfort of the room;
  • the heat stored in the phase-change thermal storage module heats the room through natural convection or forced air supply, which can quickly increase the indoor air temperature and improve the heat utilization rate of the phase-change thermal storage module.
  • Fig. 1 is a cross-sectional view of the structure of the solar phase change energy storage heat supply ventilation partition wall heat storage partition wall of the present invention
  • Fig. 2 is a cross-sectional view of the structure of the hollow cylinder phase-change thermal storage module of Embodiment 1;
  • Fig. 3 is a cross-sectional view of the hollow semi-cylindrical phase-change thermal storage module of Embodiment 2;
  • Fig. 4 is a cross-sectional view of the annular hollow cylinder phase-change heat storage module of Embodiment 3;
  • Fig. 5 is a schematic diagram of the overall structure of the modular heating system of the solar phase change energy storage heating ventilation partition wall of the present invention.
  • Fig. 6 is a schematic diagram of the overall structure of the partition wall in the daytime operating condition
  • Figure 7 is a schematic diagram of the overall structure of the partition wall in the nighttime operating condition
  • Phase change heat storage module 7. Air channel inside the phase change heat storage module, 8 , tooth structure, 9, fins, 10, axial flow fan, 11, first air valve, 12, second air valve, 13, solar air collector, 14, third air valve, 15, fourth air Valve, 16, the fifth damper, 17, the sixth damper, 18, the seventh damper, 19, the eighth damper, 20, the ninth damper, 21, the tenth damper, 22, the eleventh damper Valve, 23, phase change heat storage unit, 231, phase change heat storage sub-unit.
  • the present invention provides a sectional view of a solar phase change energy storage heating and ventilation partition wall structure
  • the partition wall is composed of a solid partition wall 1, an insulating layer 2, a decorative layer 3, a steel skeleton 4, a reflective layer 5 and a phase Variable heat storage module 6 constitutes.
  • the phase change heat storage module is also provided with an internal air channel 7 .
  • the phase-change heat storage module is welded by stainless steel, filled with phase-change heat storage materials, and its phase change temperature is between 20°C and 25°C, which is conducive to maintaining the stability of the indoor temperature during the day and the release of heat at night, so as to achieve peak shifting and filling. valley purpose.
  • the steel frame 4 provides restraint and support for the phase change heat storage module, which facilitates the installation and fixing of the phase change heat storage module.
  • the phase-change heat storage module 6 is a hollow cylinder in the first embodiment, a hollow semi-cylindrical in the second embodiment or an annular hollow cylinder in the third embodiment.
  • Fins 9 for enhancing heat transfer are installed on the inner wall of the module.
  • the phase change heat storage module is welded by stainless steel plates and fins, which improves the heat exchange efficiency with the air; the packaging process of the phase change material is simplified, and the material has good sealing performance and is not easy to leak out.
  • FIG. 2 it is a cross-sectional view of the structure of a hollow cylindrical phase-change thermal storage module according to Embodiment 1 of the present invention.
  • the top and bottom of the hollow cylindrical phase-change thermal storage module reserve a tooth-like structure, which is convenient for the meshing and splicing of each phase-change thermal storage module during construction.
  • the inner surface of the phase-change thermal storage module is equipped with ribs to strengthen its connection with the air. Heat exchange effect.
  • its sides are welded by stainless steel. First, the stainless steel is cut into the required shape of each side of the module, and then the rectangular steel plate of the inner cylinder is evenly welded horizontally.
  • the inner cylinder and the outer cylinder of the phase change thermal storage module are welded, and then the steel plate on the bottom ring is welded to the inner and outer cylinders, and then the phase change range is located at 20°C to 25°C
  • the molten phase change material is injected into the module through the top opening, and the top is welded and sealed after the phase change material is completely filled inside the module to complete the construction of the phase change thermal storage module.
  • FIG. 3 a cross-sectional view of a hollow semi-cylindrical phase-change heat storage module according to Embodiment 2 of the present invention.
  • the difference between the hollow semi-cylindrical phase-change thermal storage module and the hollow cylindrical phase-change thermal storage module is that its side is plane, so as to facilitate the construction and installation of the partition wall in a small space.
  • longitudinal fins are evenly welded on its inner surface.
  • longitudinal fins are evenly welded on its inner surface.
  • tooth-shaped structures are reserved on the top and bottom to facilitate the meshing and splicing of each phase-change heat storage module during construction. The construction and packaging process is consistent with the hollow cylindrical phase-change heat storage module.
  • FIG. 4 it is a cross-sectional view of an annular hollow cylinder phase change heat storage module according to Embodiment 3 of the present invention.
  • the difference between the annular hollow cylinder phase change heat storage module and the hollow cylinder phase change heat storage module is that its interior is not completely hollow, but an annular vent is reserved inside, and its heat storage capacity is greater than that of the hollow cylinder Heat storage module.
  • additional connection ports are welded on the top of the internal air passage, which is convenient for the splicing and combination of various phase change heat storage modules during construction. Its specific construction and packaging process is consistent with that of the hollow cylinder phase change heat storage module.
  • FIG. 5 it is a schematic diagram of the overall structure of the modular heating system of the solar phase change energy storage heating ventilation partition wall of the present invention.
  • the system mainly includes phase change heat storage unit, ventilation duct and solar air collector.
  • the energy storage heating of the system in winter is realized by connecting the air duct with the solar air heat collector.
  • the top and bottom of the modularized phase change thermal storage unit 23 are connected with customized three-way or four-way fourth damper 15, fifth damper 16, sixth damper 17, seventh damper 18, second damper 12.
  • the third damper 14 is closed, the eighth damper 19, the ninth damper 20, the tenth damper 21 and the eleventh damper 22 are connected, that is, the tuyere at the bottom (top) of the damper is connected to the phase change thermal storage module Connection, the bottom (top) air outlet is connected with the indoor air, the left and right air outlets are connected to the fourth air valve 15, the fifth air valve 16, the sixth air valve 17, the seventh air valve 18 and the eighth air valve 19, the ninth air valve
  • the distributed air pipes between the air valve 20, the tenth air valve 21, and the eleventh air valve 22, the phase change heat storage unit 23 includes a plurality of phase change heat storage subunits 231, and each phase change heat storage subunit 231 It consists of several meshed phase change heat storage modules.
  • the phase change thermal storage sub-units 231 are connected in parallel.
  • the phase change thermal storage unit 23 is connected to the air return port of the solar air heat collector 13 through the third air valve 14 and its air pipe, and connected to the air outlet of the solar air heat collector through the axial flow fan 10 and the second air valve 12, There is a bypass pipeline between the second damper 12 and the axial flow fan 10 to connect with the indoor air through the first damper 11 .
  • the hot air from the solar air heat collector 13 is pressurized by the axial flow fan 10 and enters from the upper part of the phase change thermal storage module 6 after passing through the second damper 12, and the return air from the lower part flows back to the solar air heat collector 13 through the third damper 14 middle.
  • the dry pipe where the axial flow fan 10 and the second damper 12 are located is the air inlet duct, and the main duct where the third damper 14 is located is the return air duct.
  • the solar phase change energy storage heat supply ventilation partition wall of the present invention is arranged in the room, and several phase change heat storage units are arranged inside the air partition wall, wherein each phase change heat storage unit is composed of several phase change heat storage units Composition of modules.
  • each phase change heat storage unit is composed of several phase change heat storage units Composition of modules.
  • its specific structure has different forms, such as hollow cylinder phase change heat storage module, hollow semi-cylindrical phase change heat storage module, ring Shaped hollow cylinder phase change heat storage module.
  • Each phase-change thermal storage module is spliced with the bottom connection of other identical phase-change thermal storage modules through the top connection port to realize a phase-change thermal storage unit with internal ventilation.
  • the phase change thermal storage unit is fixedly combined with the partition wall through the prefabricated steel skeleton.
  • the thermal insulation layer 2 is laid on the solid partition wall 1 to enhance the thermal insulation effect of the partition wall and reduce the heat exchange between the phase change heat storage unit and the outside;
  • the bottom and the top are additionally reserved to enhance the supporting effect of the steel skeleton, and on the outside of the phase change heat storage unit are flexible steel wire ropes to improve the binding effect.
  • the width of the steel skeleton is slightly larger than the outer diameter of the phase change heat storage module, which is convenient for the phase change heat storage unit.
  • a reflective layer 5 is added between the phase change heat storage unit and the steel bar to reduce the radiation heat dissipation outside the phase change heat storage unit.
  • phase change thermal storage unit and the steel skeleton on the decorative layer 3 Fix the phase change thermal storage unit and the steel skeleton on the decorative layer 3 .
  • Daytime energy storage working condition as shown in Figure 6, when the daytime weather conditions are good, the air temperature inside the solar air collector 13 rises, the second air valve 12 and the third air valve 14 are opened, and the fourth air valve 15 , the fifth damper 16, the sixth damper 17, the seventh damper 18, the eighth damper 19, the ninth damper 20, the tenth damper 21, the eleventh damper 22 and the first damper 11 are closed (Ensure that the hot air in the air duct does not communicate with the indoor air); the axial flow fan 10 is turned on, and the high temperature air inside the solar air heat collector 13 is pressurized by the axial flow fan 10, which is the phase change heat storage module in the solid partition wall 1 6. Store energy and provide heat, and the low-temperature air after heat exchange returns to the solar air heat collector 13 from the bottom of the phase change thermal storage unit 23 for circulation.
  • Natural convection heat release working condition as shown in Figure 7, when the indoor air temperature begins to drop at night, the first damper 11, the second damper 12 and the third damper 14 are closed, the fourth damper 15, the fifth damper The valve 16, the sixth damper 17, the seventh damper 18, the eighth damper 19, the ninth damper 20, the tenth damper 21 and the eleventh damper 22 are opened, and the axial fan 10 is closed. At this time, the air in the inner channel of the phase-change heat storage unit in the solid partition wall 1 is heated and naturally rises, and the indoor cold air enters through the ventilation opening at the bottom of the phase-change heat storage unit of the partition wall to heat the room through natural convection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Architecture (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Building Environments (AREA)
  • Central Heating Systems (AREA)

Abstract

一种太阳能相变蓄能供热通风间壁墙及其模块化供热系统,间壁墙由实体间壁墙(1)、保温层(2)、装饰层(3)、预制钢筋骨架(4)、反射层(5)和相变蓄热模块(6)构成;模块化供热系统包括太阳能空气集热器(13)和模块化部署的相变蓄热单元(23),实现蓄能供暖。与现有技术相比能够达成1)实现模块化的蓄热间壁墙构件制作工艺简便,组装灵活,可根据实际情况自由布置组合;2)在白天通过太阳能空气集热器收集太阳能,并将热量存储在间壁墙的相变蓄热模块内,同时高温的流动空气可以通过蓄热间壁墙以辐射的形式为房间供暖,提升了房间的舒适性;3)在保温性和蓄热性提高的同时提升了美观性,减少了对室内空间的占用率。

Description

太阳能相变蓄能供热通风间壁墙及其模块化供热系统 技术领域
本发明涉及新型建筑墙体构造领域,尤其涉及一种利用太阳能蓄能技术的通风供暖间壁墙及供热系统。
背景技术
当前我国建筑能源消耗量巨大,尤其冬季取暖造成了大量一次能源消耗。因此,如何将清洁能源应用在建筑采暖过程中成为了推动绿色低碳建筑的发展亟需解决的问题所在。太阳能作为最常见的可再生绿色能源,作为热源应用在供暖系统中可以很好的减少建筑能源消费,降低建筑采暖所产生的碳排放。
传统太阳能供暖技术多为直接利用太阳辐射或将热量短暂的存储到建筑围护结构当中,具有波动性强、稳定性差、不能实现连续供暖的特点。随着相变蓄能技术的发展,将相变材料融入到建筑构件中可以很好的解决太阳能供暖在时间上供需不匹配的问题,起到稳定室温的作用。
中国专利202010383587.4公开了《一种夹层通风式相变蓄热结构及其铺设方法》,并给出了利用宏观封装方式的相变蓄热袋组成的夹层式结构,利用空气通道提高相变材料储热或放热的速率,增加围护结构的保温隔热性能,为建筑在冬季太阳能取暖以及在夏季辐射供冷提供解决思路。但是该发明中相变蓄热结构主要通过辐射的方式为室内供暖或供冷,换热效率较低,容易造成蓄热量的浪费。相变材料使用尼龙薄袋封装,蓄热结构采用胶水粘接,工艺较为复杂,施工难度较大,难以推广应用。
发明内容
为了弥补和改善了现有技术的不足,本发明提出一种模块化太阳能相变蓄能供热通风间壁墙及模块化供热系统,实现了由数个相变蓄热模块组成的模块化太阳能相变蓄能供热通风间壁墙组合而成的相变蓄热模块与太阳能空气集热器相连接。
本发明为解决上述问题而采取的技术方案如下:
一种太阳能相变蓄能供热通风间壁墙,该间壁墙由实体间壁墙、保温层、装饰层、钢 筋骨架、反射层和相变蓄热模块构成;其中,所述相变蓄热模块中还设置有内部空气通道;所述相变蓄热模块安装和固定在钢筋骨架上,所述相变蓄热模块顶部和底部均设置有齿形结构,内壁上设置有强化传热的肋片。
所述相变蓄热模块为中空圆柱体、中空半圆柱体或者环状中空圆柱体。
所述相变蓄热模块由不锈钢焊接而成,内部填充相变蓄热材料,相变温度在20℃~25℃之间。
一种利用太阳能相变蓄能供热通风间壁墙的模块化供热系统,该系统包括太阳能空气集热器和模块化部署的相变蓄热单元,实现蓄能供暖;所述相变蓄热单元包括多个相变蓄热子单元,每个相变蓄热子单元由数个啮合的相变蓄热模块构成,各相变蓄热子单元之间并联;其中,
在所述相变蓄热单元的顶部和底部均与第四风阀、第五风阀、第六风阀、第七风阀、第八风阀、第九风阀、第十风阀、第十一风阀连接,分别形成位于顶部的进气口和位于底部的换气口;
所述相变蓄热单元通过第三风阀与所述太阳能空气集热器的回风口相连接、并且通过轴流风机和第二风阀与太阳能空气集热器的出风口相连;所述太阳能空气集热器的热风自相变蓄热单的上部进入以及自下部回风;
所述第二风阀与所述轴流风机之间有设置于旁通管路的第一风阀,开启第一风阀实现了风道内的热空气与室内空气的连通。
在相变蓄热模块的顶部和底部将定制的三通或四通阀门与之预留的连接口密封连接,将内部空气通道通过风管与其他相变蓄热单元并联,将并联后的风管连接到太阳能空气集热器。
该系统具有昼间储能、自然对流放热和强制通风放热三种工况:
昼间储能工况:当白天气象条件良好时,太阳能空气集热器内部空气温度升高,第二风阀、第三风阀开启,第四风阀、第五风阀、第六风阀、第七风阀、第八风阀、第九风阀、第十风阀、第十一风阀以及第一风阀关闭;轴流风机开启,通过轴流风机将太阳能空气集热器内部高温空气加压,为实体间壁墙中的相变蓄热模块储能和提供热量,换热后的低温空气自相变蓄热单元底部回到太阳能空气集热器进行循环;
自然对流放热工况:当夜间室内空气温度开始下降时,第一风阀、第二风阀以及第三风阀关闭,第四风阀、第五风阀、第六风阀、第七风阀、第八风阀、第九风阀、第十风阀 和第十一风阀开启,轴流风机关闭。此时实体间壁墙中的相变蓄热单元内部通道空气受热自然上升,室内冷空气通过间壁墙相变蓄热单元底部换气口进入,通过自然对流为室内的供暖;
强制通风放热工况:当夜间自然对流为房间供热量有限时,第四风阀、第五风阀、第六风阀、第七风阀,第二风阀、第三风阀关闭,第八风阀、第九风阀、第十风阀和第十一风阀开启,第一风阀、轴流风机开启,将实体间壁墙中的相变蓄热单元内部高温空气通过其底部换气口为房间供暖,并将房间顶部冷空气送入实体间壁墙中的相变蓄热单元内部加热,强制循环为房间提供热量。
与现有技术相比,本发明具有以下优点:
1、模块化的蓄热间壁墙构件制作工艺简便,组装灵活,可根据实际情况自由布置组合;
2、该系统在白天通过太阳能空气集热器收集太阳能,并将热量存储在间壁墙的相变蓄热模块内,同时高温的流动空气可以通过蓄热间壁墙以辐射的形式为房间供暖,提升了房间的舒适性;
3、相变蓄热模块储存的热量通过自然对流或强制送风的方式为房间供暖,可以快速提高室内空气温度,提升了相变蓄热模块热量的利用率。
4、在保温性和蓄热性提高的同时提升了美观性,减少了对室内空间的占用率。
附图说明
图1为本发明的太阳能相变蓄能供热通风间壁墙蓄热间壁墙结构剖视图;
图2为实施例一的中空圆柱体相变蓄热模块结构剖视图;
图3为实施例二的中空半圆柱体相变蓄热模块剖视图;
图4为实施例三的环状中空圆柱体相变蓄热模块剖视图;
图5为本发明的太阳能相变蓄能供热通风间壁墙的模块化供热系统整体架构示意图;
图6为白天运行工况的间壁墙整体结构示意图;
图7为夜间运行工况的间壁墙整体结构示意图;
附图标记:1、实体间壁墙,2、保温层,3、装饰层,4、钢筋骨架,5、反射层,6、相变蓄热模块,7、相变蓄热模块内部空气通道,8、齿形结构,9、肋片,10、轴流风机,11、第一风阀,12、第二风阀,13、太阳能空气集热器,14、第三风阀,15、第四风阀, 16、第五风阀,17、第六风阀,18、第七风阀,19、第八风阀,20、第九风阀,21、第十风阀,22、第十一风阀,23、相变蓄热单元,231、相变蓄热子单元。
具体实施方式
下面结合附图和具体实施例对本发明技术方案作进一步详细描述。
如图1所示,本发明提供一种太阳能相变蓄能供热通风间壁墙结构剖视图,该间壁墙由实体间壁墙1、保温层2、装饰层3、钢筋骨架4、反射层5和相变蓄热模块6构成。其中,相变蓄热模块还设置有内部空气通道7。相变蓄热模块由不锈钢焊接而成,内部填充相变蓄热材料,其相变温度在20℃~25℃之间,有利于维持白天室内温度的稳定以及夜间热量的释放,达到削峰填谷的目的。钢筋骨架4为相变蓄热模块提供束缚和支持作用,便于相变蓄热模块的安装和固定。
如图2、图3、图4所示,所述相变蓄热模块6为实施例一的中空圆柱体、实施例二的中空半圆柱体或实施例三的环状中空圆柱体。在模块顶部和底部为齿形结构8,以便各相变蓄热模块上下之间通过啮合连接。在模块内部壁面上加装有强化传热的肋片9。相变蓄热模块通过不锈钢板和肋片焊接而成,提升了与空气的换热效率;相变材料封装工艺简化,材料密封性好,不易外渗。
如图2所示,为本发明实施例一的中空圆柱体相变蓄热模块结构剖视图。该中空圆柱体相变蓄热模块的顶部和底部预留齿状结构,便于施工时各个相变蓄热模块互相啮合拼接,相变蓄热模块内表面装有肋片,以强化其与空气的换热效果。为保证相变蓄热模块的密封性以及换热效率,其各面由不锈钢焊接而成,首先将不锈钢切割为模块各面所需形状,再将内部圆柱体的长方形钢板上横向均匀焊接上起换热作用的肋片,其次将相变蓄热模块内部圆柱体以及外部圆柱体焊接完成,再将底面的圆环的钢板与内外圆柱体焊接相连,然后将相变区间位于20℃~25℃的熔融态相变材料通过顶部开口注入模块内部,待相变材料完全充满模块内部后将顶部焊接密封,完成相变蓄热模块构建。
如图3所示,本发明实施例二的中空半圆柱体相变蓄热模块剖视图。该中空半圆柱体相变蓄热模块与中空圆柱体相变蓄热模块的不同之处在于其侧面为平面,以方便在空间较小的空间的间壁墙施工安装。为强化其与空气的换热效果,于其内表面均匀焊接纵向肋片。为方便在空间较小的空间的间壁墙施工安装。为强化其与空气的换热效果,于其内表面均匀焊接纵向肋片。与中空圆柱体相变蓄热模块类似,其顶部和底部预留齿状结构,便于施 工时各个相变蓄热模块互相啮合拼接,其构建封装过程与中空圆柱体相变蓄热模块一致。
如图4所示,为本发明实施例三的环状中空圆柱体相变蓄热模块剖视图。环状中空圆柱体相变蓄热模块与中空圆柱体相变蓄热模块的不同之处在于其内部并非完全中空,而是在其内部预留了环状通风口,其蓄热量大于中空圆柱体蓄热模块。为方便不同的环状中空圆柱体相变蓄热模块之间的组合,在其内部空气通道顶部额外焊接有连接口,便于施工时各个相变蓄热模块拼接组合。其具体构建封装过程与中空圆柱体相变蓄热模块一致。
如图5所示,为本发明的太阳能相变蓄能供热通风间壁墙的模块化供热系统整体架构示意图。该系统主要包括相变蓄热单元、通风管道和太阳能空气集热器。通过空气风道与太阳能空气集热器连接实现系统的冬季蓄能供暖,具体说明如下:
模块化的相变蓄热单元23顶部和底部均与定制的三通或四通的第四风阀15、第五风阀16、第六风阀17、第七风阀18,第二风阀12、第三风阀14关闭,第八风阀19、第九风阀20、第十风阀21和第十一风阀22连接,即风阀底(顶)部风口与相变蓄热模块连接,底(顶)部风口与室内空气连通,左、右风口接第四风阀15、第五风阀16、第六风阀17、第七风阀18以及第八风阀19、第九风阀20、第十风阀21、第十一风阀22之间的分布的风管,相变蓄热单元23包括多个相变蓄热子单元231,每个相变蓄热子单元231由数个啮合的相变蓄热模块构成。各相变蓄热子单元231之间为并联关系。相变蓄热单元23通过第三风阀14及其风管与太阳能空气集热器13的回风口相连接,通过轴流风机10和第二风阀12与太阳能空气集热的出风口相连,第二风阀12与轴流风机10之间有旁通管路通过第一风阀11与室内空气相连。太阳能空气集热器13的热风经第二风阀12后由轴流风机10加压自相变蓄热模块6的上部进入,下部回风经过第三风阀14回流至太阳能空气集热器13中。轴流风机10、第二风阀12所在干管即为进风风管,第三风阀14所在的干管即为回风管。
本发明具体实施例描述如下:
本发明的太阳能相变蓄能供热通风间壁墙蓄热间壁墙设置于房间内,风间壁墙内部设置数个相变蓄热单元,其中每个相变蓄热单元由数个相变蓄热模块拼接组成。为适应不同地区的不同通风形式,提高相变蓄热模块与空气的换热效率,其具体构造有不同的形式,中空圆柱体相变蓄热模块、中空半圆柱体相变蓄热模块、环状中空圆柱体相变蓄热模块。各相变蓄热模块通过顶部连接口与其他相同的相变蓄热模块底部的连接进行拼接,实现内部通风的相变蓄热单元。
相变蓄热单元通过预制的钢筋骨架拼与间壁墙进行固定组合。首先在实体间壁墙1上铺设保温层2,增强间壁墙的保温效果,减少相变蓄热单元与外部的换热;钢筋骨架4通过膨胀螺钉打入墙体内部,并且在相变蓄热模块底部和顶部额外预留提高支持作用的钢筋骨架,在相变蓄热单元外侧为提高束缚作用的柔性钢丝绳索,钢筋骨架的宽度略大于相变蓄热模块外径,便于相变蓄热单元的安装。在相变蓄热单元与钢筋之间加设反射层5,减少相变蓄热单元外部的辐射散热。将相变蓄热单元和钢筋骨架在装饰层3上固定好。在相变蓄热模块6的顶部和底部将定制的三通或四通阀门与之预留的连接口密封连接,将内部空气通道7通过风管与其他相变蓄热单元并联,将并联后的风管连接到太阳能空气集热器。
本发明的工作过程如下:
昼间储能工况:如图6所示,当白天气象条件良好时,太阳能空气集热器13内部空气温度升高,第二风阀12、第三风阀14开启,第四风阀15、第五风阀16、第六风阀17、第七风阀18、第八风阀19、第九风阀20、第十风阀21、第十一风阀22以及第一风阀11关闭(保证风道内的热空气与室内空气不连通);轴流风机10开启,通过轴流风机10将太阳能空气集热器13内部高温空气加压,为实体间壁墙1中的相变蓄热模块6储能和提供热量,换热后的低温空气自相变蓄热单元23底部回到太阳能空气集热器13进行循环。
自然对流放热工况:如图7所示,当夜间室内空气温度开始下降时,第一风阀11、第二风阀12以及第三风阀14关闭,第四风阀15、第五风阀16、第六风阀17、第七风阀18、第八风阀19、第九风阀20、第十风阀21和第十一风阀22开启,轴流风机10关闭。此时实体间壁墙1中的相变蓄热单元内部通道空气受热自然上升,室内冷空气通过间壁墙相变蓄热单元底部换气口进入,通过自然对流为室内的供暖。
强制通风放热工况:当夜间自然对流为房间供热量有限时,第四风阀15、第五风阀16、第六风阀17、第七风阀18,第二风阀12、第三风阀14关闭,第八风阀19、第九风阀20、第十风阀21和第十一风阀22开启,第一风阀11、轴流风机10开启,将实体间壁墙1中的相变蓄热单元23内部高温空气通过其底部换气口为房间供暖,并将房间顶部冷空气送入实体间壁墙1中的相变蓄热单元内部加热,强制循环为房间提供热量。

Claims (3)

  1. 一种太阳能相变蓄能供热通风间壁墙的模块化供热系统,其特征在于,该系统包括太阳能空气集热器(13)和模块化部署的相变蓄热单元(23)和间壁墙,实现蓄能供暖;所述间壁墙实体间壁墙(1)、保温层(2)、装饰层(3)、钢筋骨架(4)、反射层(5)和相变蓄热模块(6)构成;其中,所述相变蓄热模块(6)中还设置有内部空气通道(7);所述相变蓄热模块(6)安装和固定在钢筋骨架(4)上,所述相变蓄热单元(23)包括多个相变蓄热子单元(231),每个相变蓄热子单元(231)由数个啮合的相变蓄热模块构成,各相变蓄热子单元(231)之间并联;其中:
    在所述相变蓄热单元(23)的顶部和底部均与第四风阀(15)、第五风阀(16)、第六风阀(17)、第七风阀(18)、第八风阀(19)、第九风阀(20)、第十风阀(21)和第十一风阀(22)连接,分别形成位于顶部的进气口和位于底部的换气口;
    所述相变蓄热单元(23)通过第三风阀(14)与所述太阳能空气集热器(13)的回风口相连接、并且通过轴流风机(10)和第二风阀(12)与太阳能空气集热器(13)的出风口相连;所述太阳能空气集热器(13)的热风自相变蓄热单元(23)的上部进入以及自下部回风;
    所述第二风阀(12)与所述轴流风机(10)之间有设置于旁通管路的第一风阀(11),开启第一风阀(11)实现了风道内的热空气与室内空气的连通;
    在相变蓄热模块(6)的顶部和底部将定制的三通或四通阀门与之预留的连接口密封连接,将内部空气通道(7)通过风管与其他相变蓄热单元并联,将并联后的风管连接到太阳能空气集热器;
    该系统具有昼间储能、自然对流放热和强制通风放热三种工况:
    昼间储能工况:当白天气象条件良好时,太阳能空气集热器内部空气温度升高,第二风阀、第三风阀开启,第四风阀、第五风阀、第六风阀、第七风阀、第八风阀、第九风阀、第十风阀、第十一风阀以及第一风阀关闭;轴流风机开启,通过轴流风机将太阳能空气集热器内部高温空气加压,为实体间壁墙中的相变蓄热模块储能和提供热量,换热后的低温空气自相变蓄热单元底部回到太阳能空气集热器进行循环;
    自然对流放热工况:当夜间室内空气温度开始下降时,第一风阀、第二风阀以及第三风阀关闭,第四风阀、第五风阀、第六风阀、第七风阀、第八风阀、第九风阀、第十风阀和第十一风阀开启,轴流风机关闭。此时实体间壁墙中的相变蓄热单元内部通道空气受热自然上升,室内冷空气通过间壁墙相变蓄热单元底部换气口进入,通过自然对流 为室内的供暖;
    强制通风放热工况:当夜间自然对流为房间供热量有限时,第四风阀、第五风阀、第六风阀、第七风阀,第二风阀、第三风阀关闭,第八风阀、第九风阀、第十风阀和第十一风阀开启,第一风阀、轴流风机开启,将实体间壁墙中的相变蓄热单元内部高温空气通过其底部换气口为房间供暖,并将房间顶部冷空气送入实体间壁墙中的相变蓄热单元内部加热,强制循环为房间提供热量。
  2. 如权利要求1所述的一种太阳能相变蓄能供热通风间壁墙的模块化供热系统,其特征在于,所述相变蓄热模块(6)为中空圆柱体、中空半圆柱体或者环状中空圆柱体。
  3. 如权利要求1所述的一种太阳能相变蓄能供热通风间壁墙的模块化供热系统,其特征在于,所述相变蓄热模块(6)顶部和底部均设置有齿形结构(8),内壁上设置有强化传热的肋片(9)。
PCT/CN2022/121980 2021-09-29 2022-09-28 太阳能相变蓄能供热通风间壁墙及其模块化供热系统 WO2023051567A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/039,671 US11994304B2 (en) 2021-09-29 2022-09-28 Solar phase-change energy storage heating ventilation partition wall and modular heating system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111152843.XA CN113587200B (zh) 2021-09-29 2021-09-29 太阳能相变蓄能供热通风间壁墙的模块化供热系统
CN202111152843.X 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023051567A1 true WO2023051567A1 (zh) 2023-04-06

Family

ID=78242793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121980 WO2023051567A1 (zh) 2021-09-29 2022-09-28 太阳能相变蓄能供热通风间壁墙及其模块化供热系统

Country Status (3)

Country Link
US (1) US11994304B2 (zh)
CN (1) CN113587200B (zh)
WO (1) WO2023051567A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115110682A (zh) * 2022-06-28 2022-09-27 甘肃建投土木工程建设集团有限责任公司 一种寒冷地区用相变蓄能节能幕墙结构
CN115162560B (zh) * 2022-08-10 2024-01-26 河北工业大学 基于动态相变材料的保温承重剪力墙及其施工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2714047B2 (ja) * 1988-10-04 1998-02-16 株式会社アイジー技術研究所 家 屋
CN201093907Y (zh) * 2007-07-05 2008-07-30 上海海事大学 新型相变式热管蓄热器
CN104145747A (zh) * 2014-07-07 2014-11-19 兰州交通大学 一种日光温室主被动协同蓄热墙体供热系统
CN104674979A (zh) * 2015-01-18 2015-06-03 北京工业大学 一种高性能相变蓄热轻质墙体太阳能空气供暖体系
CN104746647A (zh) * 2015-02-04 2015-07-01 北京工业大学 主动式与被动式相结合的全年性利用相变储能房
CN110595244A (zh) * 2019-10-18 2019-12-20 山东双涵石化装备有限公司 一种模块化合金相变蓄放热装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4258696A (en) * 1978-04-05 1981-03-31 Johnson Controls, Inc. Passive thermal energy phase change storage apparatus
US4393861A (en) * 1979-10-09 1983-07-19 Beard Buddy M Apparatus for the utilization of solar energy
US4282752A (en) * 1979-11-29 1981-08-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multi-channel temperature measurement amplification system
CN101672115A (zh) * 2009-09-10 2010-03-17 宋钊 集热蓄热墙式被动太阳房
CN103968564B (zh) * 2014-04-28 2016-02-03 江苏恒星聚能能源科技有限公司 一种平板聚光型太阳能无水箱热水器
US20210270470A1 (en) * 2017-02-17 2021-09-02 Ceres Greenhouse Solutions Llc Energy efficient enclosure temperature regulation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2714047B2 (ja) * 1988-10-04 1998-02-16 株式会社アイジー技術研究所 家 屋
CN201093907Y (zh) * 2007-07-05 2008-07-30 上海海事大学 新型相变式热管蓄热器
CN104145747A (zh) * 2014-07-07 2014-11-19 兰州交通大学 一种日光温室主被动协同蓄热墙体供热系统
CN104674979A (zh) * 2015-01-18 2015-06-03 北京工业大学 一种高性能相变蓄热轻质墙体太阳能空气供暖体系
CN104746647A (zh) * 2015-02-04 2015-07-01 北京工业大学 主动式与被动式相结合的全年性利用相变储能房
CN110595244A (zh) * 2019-10-18 2019-12-20 山东双涵石化装备有限公司 一种模块化合金相变蓄放热装置

Also Published As

Publication number Publication date
CN113587200B (zh) 2021-12-31
US11994304B2 (en) 2024-05-28
CN113587200A (zh) 2021-11-02
US20230417425A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
WO2023051567A1 (zh) 太阳能相变蓄能供热通风间壁墙及其模块化供热系统
CN107313520B (zh) 一种基于通风墙体的双层相变储能辐射空调系统
CN104746647B (zh) 主动式与被动式相结合的全年性利用相变储能房
WO2016197663A1 (zh) 一种具有太阳能、低谷电加热蓄能的热水供热装置及应用
CN108425427A (zh) 一种高节能型储能建筑
CN211775076U (zh) 固型相变材料与毛细辐射管集成的双工况调温墙体面板
CN109235717A (zh) 一种新型太阳能pv/t建筑一体化幕墙构件及多能互补供能系统
CN205919556U (zh) 一种太阳能‑地源热泵耦合供能系统
CN106930491A (zh) 一种模块化相变蓄能装饰墙系统
CN104613531B (zh) 分离式热管平板太阳能室内供热系统
CN101984297B (zh) 一种具有双流道的节能炕
CN211114586U (zh) 拼接式双层相变蓄热蓄冷地板
CN205593045U (zh) 一种基于跨季节水体储热的太阳能供热系统
CN111635740A (zh) 一种相变储热材料及储热装置
CN205919538U (zh) 一种基于跨季节水体储热的太阳能中温供热系统
CN214371009U (zh) 多功能热管式光伏光热高低温相变地板耦合系统
CN201866844U (zh) 一种具有双流道的节能炕
CN114543217A (zh) 利用太阳能和天空辐射冷却的嵌管式相变围护结构系统
CN209495388U (zh) 一种用于太阳能的蓄热舱
CN209801827U (zh) 太阳能集热、储热和释热的太阳能应用系统
CN209706374U (zh) 主动式太阳能聚热储能系统
CN113062494A (zh) 一种使用相变材料的多功能太阳能墙体系统
CN105937814A (zh) 一种建筑被动式降温与太阳能热水综合利用装置
CN111006401A (zh) 多器件并联型太阳能电热联产系统
CN110701799A (zh) 一种基于搭接式微热管阵列的真空管太阳能集热-储热一体化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874952

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18039671

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE