WO2023051549A1 - 面向分布式安全量子信息处理的集成光学芯片系统 - Google Patents

面向分布式安全量子信息处理的集成光学芯片系统 Download PDF

Info

Publication number
WO2023051549A1
WO2023051549A1 PCT/CN2022/121832 CN2022121832W WO2023051549A1 WO 2023051549 A1 WO2023051549 A1 WO 2023051549A1 CN 2022121832 W CN2022121832 W CN 2022121832W WO 2023051549 A1 WO2023051549 A1 WO 2023051549A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum
optical network
integrated optical
linear optical
linear
Prior art date
Application number
PCT/CN2022/121832
Other languages
English (en)
French (fr)
Inventor
强晓刚
王超
Original Assignee
中国人民解放军军事科学院国防科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军军事科学院国防科技创新研究院 filed Critical 中国人民解放军军事科学院国防科技创新研究院
Priority to US18/289,748 priority Critical patent/US20240275495A1/en
Publication of WO2023051549A1 publication Critical patent/WO2023051549A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention is based on the Chinese patent application CN202111145661.X filed on September 28, 2021, entitled “Integrated Optical Chip System Oriented to Distributed Security Quantum Information Processing", and claims the priority of this patent application, which is incorporated by reference The disclosed content is incorporated in this disclosure in its entirety.
  • the invention relates to the technical field of quantum computing, in particular to an integrated optical chip system oriented to distributed secure quantum information processing.
  • Quantum computing is a new computing model that follows the laws of quantum mechanics and performs calculations by regulating quantum information units, namely qubits.
  • Quantum computing is a new type of computing model based on quantum mechanics. It uses quantum superposition, interference and entanglement properties to perform calculations. It has natural parallelism and large information storage capabilities, so it has a huge potential that classical computing cannot match.
  • Linear optical systems are one of the main physical approaches to quantum computing. Its main advantages include: photons have a long coherence time and are not easily decohered by external environment interference; photons are easy to achieve high-precision manipulation; photons with multiple degrees of freedom can be used to encode high-dimensional quantum.
  • Integrated optical quantum chips use integrated optical technology to integrate discrete linear optical elements into a single semiconductor integrated chip in the form of thin films. Compared with discrete optical systems, not only the volume is significantly reduced, but the entire system has better performance due to high integration stability and better scalability. Integrated optical quantum chips can realize the miniaturization and integration of discrete component optical systems on huge optical platforms, and are considered to be the most effective way to realize large-scale optical quantum computing systems.
  • quantum computing servers are deployed in several computing centers, and different customers access the quantum computing resources of these centers in a certain way to complete their respective computing tasks , that is, a distributed quantum computing system based on the user-server model.
  • the security of tasks performed by users is a key issue that needs to be considered.
  • the security of user tasks includes not only the security of input data and output results, but also the security of user algorithms themselves.
  • quantum security schemes for user data, but there are relatively few researches on the security of algorithms used by users.
  • An embodiment of the present invention provides an integrated optical chip system oriented to distributed secure quantum information processing, which is used to solve security problems in a distributed quantum computing model and protect computing privacy of users.
  • An embodiment of the present invention provides an integrated optical chip system for distributed secure quantum information processing, including a user-integrated optical quantum chip and a server-integrated optical quantum chip.
  • the user can remotely host the computing task on the quantum server to realize complex quantum computing, which is completed through a linear combination of server operations, in which the linear coefficient is configured by the user and hidden from the server.
  • the server operation is completed, the result is output to the user through the classic channel, which is conducive to protecting the user's computing privacy and encrypted communication.
  • an integrated optical chip system for distributed secure quantum information processing includes: a server-integrated optical quantum chip and a user-integrated optical quantum chip, wherein the server-integrated optical quantum chip includes: configurable Entangled multi-photon source: including interference adjustment network, N entanglement multi-photon sources and wavelength division multiplexer, where N is a natural number and N ⁇ 2, by configuring the first phase shifter and the second phase shifter in the interference adjustment network
  • the device performs interference adjustment on the light beam input to the interference adjustment network and outputs multi-path light, and generates multiple photons with entangled paths through the entangled multi-photon source.
  • the number of entangled photons generated by each entangled multi-photon source is P, so
  • the wavelength division multiplexer is set to output the plurality of photons output by the configurable entangled multi-photon source to the server linear optical network and the user integrated optical quantum chip according to the wavelength;
  • the server linear optical network divides It is divided into three parts: the initial state configures the linear optical network O, connects with the wavelength division multiplexer, and forms corresponding O 1 , O 2 ...
  • the network T is correspondingly connected with the linear optical network U configured by the unitary operator, and is set to perform projection measurement on the beam-combined optical quantum state, denoted as T 1 , T 2 ...
  • the user integrates An optical quantum chip, comprising a coefficient configuration linear optical network C, connected to the wavelength division multiplexer, set to encode the path of the photon output by the wavelength division multiplexer to obtain the coefficient of the linear term, denoted as ⁇ 1 , ⁇ 2 ... ⁇ N , and transmit the coefficients of the linear term through quantum teleportation, so as to linearly combine each item of the unitary transformation in the unitary operator configuration linear optical network, and finally obtain the quantum State result:
  • the initial state configuration linear optical network unitary operator configuration linear optical network, projection measurement linear optical network, and coefficient configuration linear optics
  • the networks are all generic linear optical networks.
  • the configurable entangled multi-photon source the initial state configuration linear optical network, the unitary operator configuration linear optical network, and projection measurement linear
  • Both the optical network and the coefficient configuration linear optical network implement path encoding through the first phase shifter and the second phase shifter.
  • the interference adjustment network of the configurable entangled multi-photon source includes a log 2 N-level Mach-Zehnder interferometer, represented by a "binary tree"
  • the form of arrangement that is, each output port of the Mach-Zehnder interferometer of the upper stage is connected to an input port of a Mach-Zehnder interferometer of the next stage, and the Mach-Zehnder interferometer of the last stage
  • a second output port is connected with a second phase shifter and an entangled multiphoton source; wherein, the Mach-Zehnder interferometer includes a first phase shifter, and two multimodes connected with the first phase shifter interferometer.
  • the first phase shifter and the second phase shifter adjust each path of light through an external classical control signal, and Make the phase of each light before reaching the entangled multi-photon source be zero.
  • the configurable entangled multi-photon source generates photons of P wavelengths, and photons of one wavelength are routed to the user integrated Optical quantum chips, and photons of P-1 kinds of wavelengths are respectively routed to P-1 groups of initial state configuration linear optical networks (N in each group); wherein, P is a natural number and P ⁇ 2.
  • the initial configuration linear optical network may include a multi-stage chain structure.
  • the unitary operator configuration linear optical network may be a triangular distribution optical network structure.
  • the projection measurement linear optical network may include a reverse tree structure.
  • each group of initial state configuration linear optical networks in the P-1 group of initial state configuration linear optical networks has N; corresponding , the unitary operator configuration linear optical network is divided into P-1 groups, N in each group, and the number of the projection measurement linear optical network is P-1; wherein, each group of unitary operator configuration linear optical The network is correspondingly connected with a group of initial configuration linear optical networks and a projection measurement linear optical network.
  • the coefficient configuration linear optical network in the user integrated optical quantum chip can be a simplified triangular distribution optical network structure.
  • the embodiment of the present invention provides an integrated optical chip system for distributed security quantum information processing.
  • a configurable entangled multi-photon source on the server integrated optical quantum chip, photons with entangled paths are generated and sent to the user integrated optical quantum chip.
  • server linear optical network to generate linear term coefficients, initial state preparation, unitary transformation, linear combination and projection measurement to realize quantum computing process.
  • An integrated optical chip system oriented to distributed secure quantum information processing provided by the embodiment of the present invention realizes the integration of optical chips used for quantum computing. Compared with discrete optical systems, not only the volume is significantly reduced, but the entire The system has better stability and better scalability due to high integration.
  • the large-scale integrated optical quantum chip technology can support the scalable implementation of linear combination schemes based on unitary operators, construct fully programmable distributed quantum computing, and realize remote quantum information processing based on photons.
  • the integrated optical chip system for distributed secure quantum information processing in the embodiment of the present invention is based on a computing protocol that allows users to convert their own tasks into linear combinations of quantum operations performed by quantum servers.
  • the linear coefficients of these combinations are configured by the user, the unitary operation is provided by the server, and the user and the server are connected through a high-dimensional quantum channel.
  • An integrated optical chip system oriented to distributed secure quantum information processing in the embodiment of the present invention provides a reliable implementation plan for protecting the privacy of user computing, which can improve the security of quantum computing and prevent servers from stealing user information It is beneficial to protect the user's computing privacy and encrypted communication. This privacy protection is critical to any user-server model.
  • Fig. 1 is one of the schematic diagrams of an integrated optical chip system oriented to distributed secure quantum information processing provided by an embodiment of the present invention
  • Fig. 2 is the second schematic diagram of an integrated optical chip system oriented to distributed secure quantum information processing provided by an embodiment of the present invention
  • FIG. 3 is a schematic flow diagram of a quantum computing process in an integrated optical chip system oriented to distributed secure quantum information processing provided by an embodiment of the present invention
  • Fig. 4 is a schematic circuit diagram for realizing linear combination operation provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an optical network used for initial configuration provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a triangular-distributed optical network structure provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an optical network for photon beam combining provided by an embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of an optical network used for projection measurement provided by an embodiment of the present invention.
  • Fig. 9 is a schematic diagram of an integrated optical chip system for two-photon entangled state 2 ⁇ 4 dimensional distributed secure quantum information processing provided by an embodiment of the present invention.
  • an integrated optical chip system for distributed secure quantum information processing in the embodiment of the present invention includes: server integrated optical quantum chip and user integrated optical quantum chip, server integrated optical quantum chip and user integrated optical quantum chip
  • the chips are connected through a high-dimensional quantum channel.
  • the user prepares the linear term coefficients, and the linear term coefficients are hidden from the server.
  • the user task is completed through the linear combination of server operations.
  • the server provides unitary transformation calculations. After the server operation is completed, it passes through the classical channel The result is output to the user, and the server cannot know the specific task of the user during the entire calculation process.
  • the server integrated optical quantum chip includes:
  • the configurable entangled multi-photon source 102 includes an interference adjustment network, N entangled multi-photon sources and a wavelength division multiplexer, where N is a natural number and N ⁇ 2.
  • the interference adjustment network is set to perform interference adjustment on the light beam input to the interference adjustment network and output multiple paths of light, the entangled multi-photon source generates multiple photons with entangled paths, and the wavelength division multiplexer is set to output the configurable entangled multi-photon source According to the wavelength, multiple photons are output to the server linear optical network and the user integrated optical quantum chip;
  • the server linear optical network is divided into three parts:
  • Configure the linear optical network (O) 104 in the initial state connect to the wavelength division multiplexer, form corresponding O 1 , O 2 ... OP-1 according to the wavelength of the output photon of the wavelength division multiplexer, set preparing an initial state for photons output by the configurable entangled multi-photon source;
  • the projection measurement linear optical network (T) 108 is correspondingly connected to the unitary operator configuration linear optical network U, and is set to perform projection measurement on the beam-combined light quantum state, denoted as T 1 , T 2 ... T P -1 .
  • linear combination refers to the linear combination of unitary transformations realized by different optical networks.
  • Projective measurement is to spectrally decompose a Hermitian operator representing an observable quantity on a system Hilbert space into multiple measurement operators. This measurement operator is actually generated by the Hermitian operator towards the corresponding eigenvalues The projection of the eigensubspace of .
  • the user integrates an optical quantum chip, including a coefficient configuration linear optical network (C) 110, which is connected to the wavelength division multiplexer, and is set to encode the path of the photon output by the wavelength division multiplexer to obtain the linear term coefficients , denoted as ⁇ 1 , ⁇ 2 ... ⁇ N , and the coefficients of the linear terms are transmitted by quantum teleportation to linearly combine each term of the unitary transformation in the unitary operator configuration linear optical network , the final quantum state result can be obtained:
  • C coefficient configuration linear optical network
  • users and servers can be distributed in a distributed layout, so that users and servers share entanglement states, so that calculations can be remotely hosted on quantum servers without revealing precise algorithms to the quantum server.
  • the user task is accomplished through the linear combination of server operations, in which the coefficients of the linear items are configured by the user and hidden from the server, and the server provides unitary transformation calculations. After the server operation is completed, the result can be output to the user through the classical channel, and the computing privacy protection of the user is realized during the entire quantum computing process.
  • the quantum server may be referred to as a server for short.
  • the server integrated optical quantum chip may also be provided with an integrated light source, which is configured to generate light beams and output them to the interference adjustment network.
  • the server integrated optical quantum chip can also be integrated with a single photon detector to detect the photons output by the server linear optical network.
  • the single photon detector can be an avalanche photodiode or a superconducting nanowire detector.
  • Quantum chip technology based on integrated optics has made great progress.
  • This technology uses semiconductor micro-nano processing technology to integrate discrete optical components into a single chip. Compared with discrete optical components, it has the advantages of small size, high stability, and strong scalability. It is an effective way to realize a large-scale optical quantum computing system.
  • the large-scale integrated optical quantum chip technology can support the scalable implementation of linear combination schemes based on unitary operators, construct fully programmable high-dimensional quantum bit computing chips, and realize photon-based multi-qubit quantum information processing.
  • the manufacturing process of integrated optical quantum chips based on silicon-based optical waveguides can be compatible with CMOS.
  • the integrated optical quantum chips in the embodiment of the present invention can be further integrated with traditional CMOS computing chips for future design and implementation of photoelectric fusion and hybrid architectures.
  • Optical quantum information processing chip can be further integrated with traditional CMOS computing chips for future design and implementation of photoelectric fusion and hybrid architectures.
  • the interferometric regulation network of configurable entangled multi-photon sources includes log 2 N-level Mach-Zehnder interferometers, which are arranged in the form of a "binary tree", that is, each of the upper-level Mach-Zehnder interferometers
  • An output port is connected to an input port of a Mach-Zehnder interferometer in the next stage, and the last-stage Mach-Zehnder interferometer
  • the first output port is connected to a second phase shifter and an entangled multiphoton source.
  • a Mach-Zehnder interferometer is an interferometer that can be used to control the relative phase shift changes produced by different paths and media after a beam emitted from a single light source is split into two collimated beams.
  • a Mach-Zehnder interferometer includes a phase shifter 211 and two multimode interferometers 212 connected to the phase shifter 211 . As shown in Figure 2, the phase shifter 211 is a first phase shifter, and the phase shifter 213 is a second phase shifter.
  • the first-stage Mach-Zehnder interferometer of the log 2 N-level Mach-Zehnder interferometer receives an external input beam 221, and the log 2 N-level Mach-Zehnder interferometer forms N paths of light according to the input beam 221, and converts N The path light is output to the entangled multiphoton source 214.
  • the number of entangled multi-photon sources included in the entangled multi-photon source 102 can be configured as N.
  • the N entangled multiphoton sources can be denoted as S 1 , S 2 , . . . , S N .
  • each entangled multiphoton source is connected with a second phase shifter. Specifically, the first phase shifter and the second phase shifter adjust each path of light through an external classical control signal, and make the phase of each path of light before reaching the entangled multi-photon source be zero.
  • the server linear optical network includes:
  • Configure the linear optical network 201 in the initial state connect to the wavelength division multiplexer, form corresponding O 1 , O 2 ... OP-1 according to the wavelength of the output photon of the wavelength division multiplexer, and set it to the The initial state of photon preparation output by the configurable entangled multi-photon source is described.
  • the projection measurement linear optical network 203 is correspondingly connected to the unitary operator configuration linear optical network U, and is set to perform projection measurement on the beam-combined light quantum states, denoted as T 1 , T 2 . . . T P-1 .
  • the phase shifter in the configurable entangled multi-photon source By setting the phase shifter in the configurable entangled multi-photon source to adjust the phase of each light output by the interference adjustment network to 0 and the beams are uniform, the efficiency of the entangled photon state generated by the configurable entangled multi-photon source can be maximized. Among them, the probability of each entangled multi-photon source producing entangled photons is Each multi-photon source produces P photons with different wavelengths.
  • the photons After the photons pass through the wavelength division multiplexer, they are respectively routed to the entrance of the user's integrated optical quantum chip and the initial state configuration linear optical network.
  • the function of the initial state configuration linear optical network is to prepare the initial state.
  • each multi-photon source generates P photons with different wavelengths
  • a photon with the same wavelength is routed to the user's integrated optical quantum chip or the same group of initial configuration linear optical networks. Therefore, it can be considered that the photons routed to the user-integrated optical quantum chip have the same wavelength, while the photons routed to the initially configured linear optical network have P-1 wavelengths.
  • the number of initial configuration linear optical networks can be set as P-1 groups, and the initial configuration linear optical networks of P-1 groups can be marked as: O 1 , O 2 , ..., O M , ..., O P-1 .
  • both M and P are natural numbers and 1 ⁇ M ⁇ P-1.
  • There are N linear optical networks configured in each group in the initial state therefore, the number of linear optical networks configured in the initial state is (P-1)*N.
  • the number of unitary operator-configured linear optical networks is (P-1)*N, which can be divided into P-1 groups, and each group includes N unitary operator-configured linear optical networks.
  • the first group of unitary operator configuration linear optical network U 1 is correspondingly connected with the first group of initial state configuration linear optical network O 1
  • the second group of unitary operator configuration linear optical network U 2 is connected with the second group of initial state configuration
  • the linear optical network O2 is correspondingly connected
  • the P-1 group unitary operator configuration linear optical network U P-1 is correspondingly connected with the P-1 group initial state configuration linear optical network O P-1 .
  • (P-1)*N unitary operator configuration linear optical networks can be denoted as U 1 (1) , U 1 (2) ... U 1 (N) , U 2 (1) , U 2 (2) ... U 2 (N) , ..., U P-1 (1) , U P-1 (2) ... U P-1 (N) .
  • the number of projection measurement linear optical networks is P-1, and each projection measurement linear optical network corresponds to a group of O and U.
  • P-1 projection measurement linear optical networks can be marked as: T 1 , T 2 , ... T M , ... T P-1 , where, 1 ⁇ M ⁇ P-1, each T M has t ports.
  • unitary transformation is a transformation that preserves the inner product, and the inner product of two vectors before unitary transformation is equal to the inner product after transformation.
  • a unitary transformation is a transformation made by using a unitary operator. There is a transformation of the base vector and a transformation of the operator. It can be considered that the unitary transformation is the isomorphism between two Hilbert (Hilbert) spaces .
  • U j is The gate acting on the d-dimensional target (T) subspace
  • ⁇ j is a complex coefficient, satisfies
  • the control qubit By moving partial states of the target qubit into the extended Hilbert space, the control qubit can be more simply acted on a single qubit unit.
  • a technique based on extended computing Hilbert space can be used to implement a linear combination circuit.
  • Any quantum unitary operation can in principle be decomposed into a linear sum of elementary operations.
  • Cartan's KAK decomposition it is possible to rewrite any two-qubit unitary operation, converting it into a linear combination of four linear terms, each of which is the tensor product of two single-qubit gates.
  • the Cartan decomposition method allows n-qubit unitary operations to be reformulated as a linear combination of tensor products of n single-qubit gates.
  • it is necessary to add coherent control for arbitrary unknown quantum operations and the technique is based on the logical Hilbert space expansion of gates for computation.
  • corresponding multi-photon path entanglement states are generated at the entrance of the initial configuration linear optical network according to different wavelengths.
  • M> N with the same wavelength is routed to the initial state configuration linear optical network OM to generate the initial state.
  • the M group of photons with the same wavelength is routed to the unitary operator configuration linear optical network U M (1) , U M (2) , ..., U M (N) to complete the unitary transformation and linear combination, where the linear term
  • the coefficients of denoted as ⁇ 1 , ⁇ 2 ... ⁇ N , are provided by the user’s integrated optical quantum chip through quantum teleportation, and the optical paths are combined.
  • the final quantum state result can be obtained:
  • the projection measurement linear optical network 203 is configured to perform projection measurement on the beam-combined light quantum states.
  • the initial state configuration linear optical network, the unitary operator configuration linear optical network, and the projection measurement linear optical network are all general linear optical networks that can realize t-dimensional unitary transformation.
  • an integrated optical chip system oriented to distributed secure quantum information processing is provided.
  • the chip system also includes: a user-integrated optical quantum chip.
  • the coefficients are configured in a linear optical network C, which is connected to the wavelength division multiplexer of the server integrated optical quantum chip, and is set to receive the photons output by the wavelength division multiplexer according to the wavelength, and after processing the photons, the coefficients of the linear term are transmitted through quantum teleportation. state is transmitted to the server.
  • the server linear optical network prepares the initial state of the photons output by the wavelength division multiplexer, and acts on each item of the unitary operator linear combination according to the linear item coefficient transmitted by the user linear optical network through quantum teleportation, and the linear combination
  • the photons are combined and projected into a measurement. Therefore, user tasks are accomplished by a linear combination of server operations.
  • the coefficient of the linear term is obtained by encoding the path of the photon output from the wavelength division multiplexer by the user's linear optical network.
  • the entangled multi-photon source is obtained and output by interferometrically adjusting the light beam input to the interferometric adjustment network according to the interferometric adjustment network of the server.
  • the embodiment of the present invention forms an integrated optical chip system oriented to distributed secure quantum information processing through the integrated optical quantum chip at the server end and the integrated optical quantum chip at the user end.
  • integrated optical waveguide technology users can remotely host computing tasks in Complicated quantum calculations can be implemented on a quantum server without revealing specific algorithms to the quantum server.
  • the user provides the algorithm and the input state
  • the server provides the operator.
  • the algorithm can be The input state can be
  • Input the algorithm, input state and operator into the linear combination circuit shown in Figure 4 for processing, and the target can be obtained, where
  • the result can be
  • the server initially configures the linear optical network as a multi-stage chain structure as shown in FIG. 5 .
  • the unitary operator configuration linear optical network includes an optical network structure in a triangular distribution as shown in FIG. 6 , and includes a beam combining optical network as shown in FIG. 7 .
  • the projection measurement linear optical network can be a reverse tree structure as shown in FIG. 8 .
  • the coefficient configuration linear optical network in the user integrated optical quantum chip can be a simplified triangular distributed optical network structure
  • the integrated optical chip system in the embodiment of the present invention is an integrated optical chip system oriented to distributed secure quantum information processing, which can allow users to convert their own tasks into linear combinations of quantum operations performed by quantum servers based on a computing protocol .
  • the linear coefficients of these combinations are configured by the user, the unitary operation is provided by the server, and the user and the server are connected through a high-dimensional quantum channel.
  • the integrated optical quantum chip in the embodiment of the present invention uses integrated optical technology to integrate discrete linear optical elements into a single semiconductor integrated chip in the form of a thin film. Compared with discrete optical systems, not only the volume is significantly reduced, but the entire system is High integration has better stability and better scalability.
  • on-chip single-photon source and entangled photon source Based on these integrated chip components, an on-chip photon source is used to generate entangled photons, and a linear optical network composed of an on-chip Mach-Zehnder interferometer and a phase controller is used to control the behavior of the photons, and then through the on-chip integrated single photon detection.
  • a large-scale integrated optical quantum chip can be designed to realize complex quantum information processing applications.
  • the integrated optical quantum chip of the embodiment of the present invention is based on the unitary operator linear combination scheme of path coding, and the entangled photons act between the server and the user respectively, providing a reliable implementation scheme for protecting the privacy of user computing.
  • the unitary operator linear combination method can realize the separation of hardware implementation modules and quantum algorithms in quantum computing, thereby constructing a distributed quantum computing mode of user-server mode, which can improve the security of quantum computing and avoid server
  • the problem of stealing user information is conducive to protecting the user's computing privacy and encrypted communication. This privacy protection is critical to any user-server model.
  • the invention uses the integrated optical waveguide technology, and compared with the discrete optical elements, the integrated optical waveguide technology improves the stability of the quantum optical system.
  • the on-chip path entangled multi-photon source is used together with a general linear optical network to establish a distributed integrated optical chip system, including the integrated optical quantum chip at the server end and the integrated optical quantum chip at the user end. quantum chip.
  • different multi-photon and multi-path entangled states are generated by the on-chip path entanglement multi-photon source to realize the user-server optical quantum regulation; different optical unitary transformations are configured through the on-chip general linear optical network, and according to the requirements Realize different computing tasks; through output measurement, obtain distributed secure quantum information processing results, and complete general quantum information computing.
  • FIG. 9 is a schematic diagram of an integrated optical chip system for two-photon entangled 2 ⁇ 4-dimensional distributed secure quantum information processing provided by an embodiment of the present invention.
  • the integrated optical quantum chip consists of two modules: a server module 901 and a user module 902.
  • the server and user modules are transmitted through the multi-dimensional quantum state.
  • the server module separates the signal photons and idler photons generated by the entangled multi-photon source using a wavelength division multiplexer, and combined with the photon post-generation selection technology can generate path-entangled photon pairs on the integrated optical quantum chip.
  • the user After receiving photons, the user encodes the path and configures the coefficients of each item in the linear combination, and the server module realizes the linear combination of unitary operations. All the phase shifters in the chip can adjust the light of each path through external classical control signals, so as to realize the programmable integrated optical quantum chip.
  • the embodiment of the present invention provides an integrated optical chip system for distributed secure quantum information processing, by setting a configurable entangled multi-photon source on the integrated optical chip to generate photons with entangled paths and send them to the user and server linear optical network , generate linear term coefficients and carry out unitary operator linear combination and projection measurement, realize quantum computing process based on distributed integrated optical chip.
  • the integrated optical chip system oriented to distributed secure quantum information processing in the embodiment of the present invention adopts integrated optical technology to integrate discrete linear optical elements on a semiconductor integrated chip in the form of a thin film. Reduced, and the whole system has better stability and better scalability due to high integration.
  • an integrated optical chip system for distributed secure quantum information processing in the embodiment of the present invention can allow users to convert their own tasks into linear combinations of quantum operations performed by quantum servers.
  • the linear coefficients of these combinations are configured by the user, the unitary operation is provided by the server, and the user and the server are connected through a high-dimensional quantum channel.
  • an integrated optical chip system oriented to distributed secure quantum information processing in the embodiment of the present invention provides a reliable implementation plan for protecting the privacy of user computing, which can improve the security of quantum computing and prevent servers from stealing users
  • the problem of information is conducive to protecting the user's computing privacy and encrypted communication. This privacy protection is critical to any user-server model.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例提供了一种面向分布式安全量子信息处理的集成光学芯片系统,包含服务器集成光学量子芯片和用户集成光学量子芯片。其中,服务器集成光学量子芯片包括:可配置纠缠多光子源,设置为产生多个光子并根据波长分别输出到服务器线性光学网络和用户线性光学网络;服务器线性光学网络,设置为对波分复用器输出的光子制备初态,进行幺正变换和线性组合,以及合束并对合束后的光子进行投影测量;用户集成光学量子芯片,通过量子隐形传态传输线性项系数,以对服务器集成光学量子芯片中幺正变换的每一项进行线性组合。服务器无法得知用户的具体计算任务,计算完成后通过经典信道将结果告知用户。采用本发明实施例的技术方案,可以保护用户的计算隐私。

Description

面向分布式安全量子信息处理的集成光学芯片系统
相关申请的交叉引用
本发明基于2021年9月28日提交的发明名称为“面向分布式安全量子信息处理的集成光学芯片系统”的中国专利申请CN202111145661.X,并且要求该专利申请的优先权,通过引用将其所公开的内容全部并入本公开。
技术领域
本发明涉及量子计算技术领域,尤其涉及一种面向分布式安全量子信息处理的集成光学芯片系统。
背景技术
量子计算是遵循量子力学规律通过调控量子信息单元即量子比特来进行计算的新型计算模式。量子计算是建立在量子力学基础上的新型计算模型,其利用量子的叠加、干涉以及纠缠特性进行计算,具有天然的并行性及超大的信息存储能力,从而具有经典计算不可比拟的巨大潜力,在诸如大数质因子分解、数据库搜索、化学分子模拟等众多应用领域具有巨大应用潜力。
线性光学系统是实现量子计算的主要物理途径之一。其主要优势包括:光子具有很长的相干时间,不容易受到外界环境干扰而退相干;光子容易实现高精度操控;光子多自由度可以用于编码高维量子。集成光学量子芯片采用集成光学技术将分立的线性光学元件以薄膜形式集成到单个半导体集成芯片上,与分立元件光学系统相比,不仅体积显著减小,而且整个系统由于高集成度而具有更好的稳定性及更好 的可扩展性。集成光学量子芯片能够实现庞大光学平台上分立元件光学系统的小型化、集成化,被认为是实现大规模光学量子计算系统的最有效途径。
实现大规模通用量子计算机不仅具有非常高的技术难度,同时也需要昂贵的费用。量子计算机在近未来的主要使用方式很可能类似于目前超级计算机的使用方式:量子计算服务器部署在若干个计算中心,不同的客户通过一定的方式访问这些中心的量子计算资源,完成各自的计算任务,即基于用户-服务器模型的分布式量子计算体系。在这种分布式的用户-服务器量子计算模型中,用户所执行任务的安全性是需要考虑的重点问题。用户任务的安全性,不仅包括输入数据的安全性、输出结果的安全性,还包括用户算法本身的安全性。目前针对用户数据的量子保密方案已有较多研究,但是针对用户所使用算法的安全性研究还比较少。因此研究针对用户算法进行加密的计算机制,使得用户在服务器上完成计算任务,但同时使得用户所采用的算法对服务器以及任意第三方隐藏,从而实现算法安全的量子计算,这将在安全、保密等领域具有巨大应用潜力。
发明内容
本发明实施例提供一种面向分布式安全量子信息处理的集成光学芯片系统,用以解决分布式量子计算模型中的安全性问题,保护用户的计算隐私。
本发明实施例提供一种面向分布式安全量子信息处理的集成光学芯片系统,包含用户集成光学量子芯片和服务器集成光学量子芯片。用户和服务器通过高维量子信道相连后,用户可以将计算任务远程托管在量子服务器上实现复杂的量子计算,通过服务器运算的线性组合来完成,其中线性系数通过用户来配置,并且对服务器是隐藏的,服务器运算完成后通过经典信道将结果输出给用户,有利于保护用户 的计算隐私及加密通信。
根据本发明实施例提供的一种面向分布式安全量子信息处理的集成光学芯片系统,包括:服务器集成光学量子芯片和用户集成光学量子芯片,其中,所述服务器集成光学量子芯片,包括:可配置纠缠多光子源:包括干涉调节网络,N个纠缠多光子源以及波分复用器,其中,N为自然数且N≥2,通过配置干涉调节网络中的第一移相器和第二移相器对输入到所述干涉调节网络的光束进行干涉调节并输出多路光,经纠缠多光子源产生路径纠缠的多个光子,记每个纠缠多光子源产生的纠缠光子的数量为P,所述波分复用器设置为将所述可配置纠缠多光子源输出的所述多个光子根据波长分别输出到服务器线性光学网络和所述用户集成光学量子芯片中;所述服务器线性光学网络分为三部分:初态配置线性光学网络O,与所述波分复用器连接,根据所述波分复用器输出光子的波长形成对应的O 1,O 2...O P-1,设置为对所述可配置纠缠多光子源输出的光子制备初态;幺正算符配置线性光学网络U,与所述初态配置线性光学网络O对应连接,设置为获取线性项系数,进行幺正变换和线性组合,以及合束,记为U 1 (i),U 2 (i)...U P-1 (i)(i=1,2,...N);投影测量线性光学网络T,与所述幺正算符配置线性光学网络U对应连接,设置为对合束后的光量子态进行投影测量,记为T 1,T 2...T P-1;所述用户集成光学量子芯片,包含系数配置线性光学网络C,与所述波分复用器连接,设置为对所述波分复用器输出的光子的路径进行编码得到所述线性项系数,记为α 1,α 2...α N,并通过量子隐形传态传输所述线性项系数,以对所述幺正算符配置线性光学网络中幺正变换的每一项进行线性组合,最终可得量子态结果:
Figure PCTCN2022121832-appb-000001
根据本发明实施例提供的一种面向分布式安全量子信息处理的集成光学芯片系统,所述初态配置线性光学网络、幺正算符配置线性光学网络、投影测量线性光学网络以及系数配置线性光学网络均属于 通用线性光学网络。
根据本发明实施例提供的一种面向分布式安全量子信息处理的集成光学芯片系统,所述可配置纠缠多光子源、初态配置线性光学网络、幺正算符配置线性光学网络、投影测量线性光学网络和系数配置线性光学网络均通过所述第一移相器和所述第二移相器实现路径编码。
根据本发明实施例提供的一种面向分布式安全量子信息处理的集成光学芯片系统,所述可配置纠缠多光子源的干涉调节网络包括log 2N级马赫-曾德尔干涉仪,以“二叉树”的形式进行排布,即上一级马赫-曾德尔干涉仪的每一个输出端口连接下一级的一个马赫-曾德尔干涉仪的一个输入端口,最后一级马赫-曾德尔干涉仪的
Figure PCTCN2022121832-appb-000002
个输出端口连接一个第二移相器和一个纠缠多光子源;其中,所述马赫-曾德尔干涉仪包括一个第一移相器,以及与所述第一移相器连接的两个多模干涉仪。
根据本发明实施例提供的一种面向分布式安全量子信息处理的集成光学芯片系统,所述第一移相器和第二移相器通过外置经典控制信号来对各路光进行调节,并使得到达所述纠缠多光子源前的各路光相位为零。
根据本发明实施例提供的一种面向分布式安全量子信息处理的集成光学芯片系统,所述可配置纠缠多光子源生成P种波长的光子,其中一种波长的光子被路由到所述用户集成光学量子芯片,另外P-1种波长的光子被分别对应路由到P-1组初态配置线性光学网络(每组N个);其中,P为自然数且P≥2。
根据本发明实施例提供的一种面向分布式安全量子信息处理的集成光学芯片系统,所述初态配置线性光学网络可以包含一种多级链式结构。
根据本发明实施例提供的一种面向分布式安全量子信息处理的 集成光学芯片系统,所述幺正算符配置线性光学网络可以为一种呈三角形分布的光网络结构。
根据本发明实施例提供的一种面向分布式安全量子信息处理的集成光学芯片系统,所述投影测量线性光学网络可以包含一种反向树状结构。
根据本发明实施例提供的一种面向分布式安全量子信息处理的集成光学芯片系统,所述P-1组初态配置线性光学网络中的每组初态配置线性光学网络具有N个;对应的,所述幺正算符配置线性光学网络被分为P-1组,每组N个,所述投影测量线性光学网络的数量为P-1个;其中,每组幺正算符配置线性光学网络与一组初态配置线性光学网络和一个投影测量线性光学网络对应连接。
根据本发明实施例提供的一种面向分布式安全量子信息处理的集成光学芯片系统,所述用户集成光学量子芯片中的系数配置线性光学网络可以为一种简化的呈三角形分布的光网络结构。
本发明实施例提供的一种面向分布式安全量子信息处理的集成光学芯片系统,通过在服务器集成光学量子芯片上设置可配置纠缠多光子源,生成路径纠缠的光子并发送到用户集成光学量子芯片和服务器线性光学网络,以生成线性项系数、初态制备、幺正变换、进行线性组合以及投影测量,实现量子计算过程。
本发明实施例提供的一种面向分布式安全量子信息处理的集成光学芯片系统,实现了用于量子计算的光学芯片的集成化,与分立元件光学系统相比,不仅体积显著减小,而且整个系统由于高集成度而具有更好的稳定性及更好的可扩展性。规模化集成光学量子芯片技术能够支撑基于幺正算符线性组合方案的可扩展实现,构造出完全可编程的分布式量子计算,实现基于光子的远程量子信息处理。
进一步地,本发明实施例中的面向分布式安全量子信息处理的集成光学芯片系统,基于一种计算协议允许用户将自身的任务转换为量 子服务器执行的量子运算的线性组合。这些组合的线性系数由用户来配置,幺正运算由服务器提供,通过高维量子信道连接用户和服务器。
本发明实施例中的一种面向分布式安全量子信息处理的集成光学芯片系统为保护用户计算的隐私提供了一种可靠的实行方案,其可以提高量子计算的安全性,避免了服务器窃取用户信息的问题,有利于保护用户的计算隐私及加密通信。这种隐私保护对于任何用户-服务器模型都至关重要。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种面向分布式安全量子信息处理的集成光学芯片系统示意图之一;
图2是本发明实施例提供的一种面向分布式安全量子信息处理的集成光学芯片系统示意图之二;
图3是本发明实施例提供的一种面向分布式安全量子信息处理的集成光学芯片系统中的量子计算过程的流程示意图;
图4是本发明实施例提供的实现线性组合运算的线路示意图;
图5是本发明实施例提供的用于初态配置的光网络结构示意图;
图6是本发明实施例提供的呈三角形分布的光网络结构示意图;
图7是本发明实施例提供的用于光子合束的光网络结构示意图;
图8是本发明实施例提供的用于投影测量的光网络结构示意图;
图9是本发明实施例提供的双光子纠缠态2×4维的分布式安全量子信息处理的集成光学芯片系统示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下结合附图,详细说明本发明各实施例提供的技术方案。
如图1所示,本发明实施例中的一种面向分布式安全量子信息处理的集成光学芯片系统包括:服务器集成光学量子芯片和用户集成光学量子芯片,服务器集成光学量子芯片和用户集成光学量子芯片通过高维量子信道相连接,用户制备线性项系数,且线性项系数对服务器是隐藏的,用户任务通过服务器运算的线性组合来完成,服务器提供幺正变换计算,服务器运算完成后通过经典信道将结果输出给用户,在整个计算过程中服务器无法得知用户具体任务。其中,服务器集成光学量子芯片包括:
可配置纠缠多光子源102:包括干涉调节网络,N个纠缠多光子源以及波分复用器,其中,N为自然数且N≥2。干涉调节网络设置为对输入到干涉调节网络的光束进行干涉调节并输出多路光,经纠缠多光子源产生路径纠缠的多个光子,波分复用器设置为将可配置纠缠多光子源输出的多个光子根据波长分别输出到服务器线性光学网络和用户集成光学量子芯片中;
服务器线性光学网络分为三部分:
初态配置线性光学网络(O)104,与所述波分复用器连接,根据所述波分复用器输出光子的波长形成对应的O 1,O 2...O P-1,设置为对所述可配置纠缠多光子源输出的光子制备初态;
幺正算符配置线性光学网络(U)106,与所述初态配置线性光学网 络O对应连接,设置为获取线性项系数,进行幺正变换和线性组合,以及合束,记为U 1 (i),U 2 (i)...U P-1 (i)(i=1,2,...N);
投影测量线性光学网络(T)108,与所述幺正算符配置线性光学网络U对应连接,设置为对合束后的光量子态进行投影测量,记为T 1,T 2...T P-1
具体地,线性组合指的是将不同光学网络实现的幺正变换进行线性组合。投影测量是将一个系统希尔伯特空间上的一个代表可观测量的厄米算符进行谱分解出多个测量算符,这个测量算符实际上是厄米算符朝着对应本征值生成的本征子空间的投影。
用户集成光学量子芯片,包含系数配置线性光学网络(C)110,与所述波分复用器连接,设置为对所述波分复用器输出的光子的路径进行编码得到所述线性项系数,记为α 1,α 2...α N,并通过量子隐形传态传输所述线性项系数,以对所述幺正算符配置线性光学网络中幺正变换的每一项进行线性组合,最终可得量子态结果:
Figure PCTCN2022121832-appb-000003
Figure PCTCN2022121832-appb-000004
采用该发明实施例的技术方案,可以将用户和服务器进行分布式布局,使得用户和服务器之间共享纠缠态,从而将计算远程托管在量子服务器上,而不必向该量子服务器透露精确的算法。用户任务通过服务器运算的线性组合来完成,其中线性项系数由用户来配置,且对服务器是隐藏的,服务器提供幺正变换计算。服务器运算完成后可以通过经典信道将结果输出给用户,整个量子计算过程中实现了对用户的计算隐私保护。
在本发明实施例中,量子服务器可以简称为服务器。
在本发明实施例中,服务器集成光学量子芯片上还可以设置有集成光源,设置为产生光束并输出到干涉调节网络。服务器集成光学量子芯片上还可以集成有单光子探测器,用以对服务器线性光学网络输出的光子进行探测。其中,单光子探测器可以为雪崩光电二极管或者 超导纳米线探测器。
基于集成光学的量子芯片技术,目前已经取得了较大的发展。该技术采用半导体微纳加工工艺将分立光学元件集成到单个芯片上,相较于分立光学元件具有体积小、稳定性高、可扩展性强等优势,是实现规模化光量子计算系统的有效途径。
集成光学量子芯片领域近年来发展迅速,实现集成光学量子计算所需要的重要组件都已经得到了实验验证,包括片上单光子源及纠缠光子源、片上高精度量子态操控、片上线性光学网络等。以这些基本单元或模块为基础,通过精心设计光学芯片结构,能够在单个芯片上实现对量子信息载体-光子的产生、操控以及测量,从而使得实现集成化、小型化、可扩展和可编程的量子计算装置成为可能。
规模化集成光学量子芯片技术能够支撑基于幺正算符线性组合方案的可扩展实现,构造出完全可编程的高维量子比特计算芯片,实现基于光子的多量子比特量子信息处理。同时,基于硅基光波导等集成光学量子芯片制造工艺可以与CMOS兼容,本发明实施例中的集成光学量子芯片能够进一步与传统的CMOS计算芯片融合,用于未来设计实现光电融合、混合架构的光量子信息处理芯片。
如图2所示,可配置纠缠多光子源的干涉调节网络包括log 2N级马赫-曾德尔干涉仪,以“二叉树”的形式进行排布,即上一级马赫-曾德尔干涉仪的每一个输出端口连接下一级的一个马赫-曾德尔干涉仪的一个输入端口,最后一级马赫-曾德尔干涉仪的
Figure PCTCN2022121832-appb-000005
个输出端口连接一个第二移相器和一个纠缠多光子源。
马赫-曾德尔干涉仪(Mach-Zehnder interferometer)是一种干涉仪,可以用来控制从单独光源发射的光束分裂成两道准直光束之后,经过不同路径与介质所产生的相对相移变化。
一个马赫-曾德尔干涉仪包括一个移相器211,与移相器211连接的两个多模干涉仪212。如图2所示,移相器211为第一移相器,移 相器213为第二移相器。
log 2N级马赫-曾德尔干涉仪的第一级马赫-曾德尔干涉仪接收外部的输入光束221,log 2N级马赫-曾德尔干涉仪根据该输入光束221形成N路光,并将N路光输出到纠缠多光子源214。
对应的,可配置纠缠多光子源102包含的纠缠多光子源的数目为N个。N个纠缠多光子源可以标记为S 1,S 2,…,S N。其中,每个纠缠多光子源与一个第二移相器连接。具体地,第一移相器和第二移相器通过外置经典控制信号来对各路光进行调节,并使得到达纠缠多光子源前的各路光相位为零。
如图2所示,服务器线性光学网络包括:
初态配置线性光学网络201,与所述波分复用器连接,根据所述波分复用器输出光子的波长形成对应的O 1,O 2...O P-1,设置为对所述可配置纠缠多光子源输出的光子制备初态。
幺正算符配置线性光学网络202,与所述初态配置线性光学网络O对应连接,设置为获取线性项系数,进行幺正变换和线性组合,以及合束,记为U 1 (i),U 2 (i)...U P-1 (i)(i=1,2,...N)。
投影测量线性光学网络203,与所述幺正算符配置线性光学网络U对应连接,设置为对合束后的光量子态进行投影测量,记为T 1,T 2...T P-1
通过设置可配置纠缠多光子源中的移相器将干涉调节网络输出的各路光的相位调整为0且光束均匀,可以使得可配置纠缠多光子源产生的纠缠光子态的效率最高。其中,每个纠缠多光子源产生纠缠光子的概率均为
Figure PCTCN2022121832-appb-000006
每个多光子源产生P个波长不同的光子。
光子经过波分复用器之后分别路由到用户集成光学量子芯片以及初态配置线性光学网络的入口处,初态配置线性光学网络的作用是制备初态。
由于每个多光子源产生P个波长不同的光子,波长相同的一种光子被路由到用户集成光学量子芯片或者同一组初态配置线性光学网络。因此,可以认为路由到用户集成光学量子芯片的光子具有相同的一种波长,而路由到初态配置线性光学网络的光子具有P-1种波长。这样,可以设置初态配置线性光学网络的数量为P-1组,P-1组初态配置线性光学网络可以标记为:O 1,O 2,...,O M,...,O P-1。其中,M和P均为自然数且1≤M≤P-1。每组初态配置线性光学网络均为N个,因此,初态配置线性光学网络的数量为(P-1)*N个。
对应地,幺正算符配置线性光学网络的数量为(P-1)*N个,其可以分为P-1组,每组包括N个幺正算符配置线性光学网络。其中,第一组幺正算符配置线性光学网络U 1与第一组初态配置线性光学网络O 1对应连接,第二组幺正算符配置线性光学网络U 2与第二组初态配置线性光学网络O 2对应连接,第P-1组幺正算符配置线性光学网络U P-1与第P-1组初态配置线性光学网络O P-1对应连接。
具体地,(P-1)*N个幺正算符配置线性光学网络可以被分别标记为U 1 (1),U 1 (2)...U 1 (N),U 2 (1),U 2 (2)...U 2 (N),...,U P-1 (1),U P-1 (2)...U P-1 (N)
投影测量线性光学网络的数量为P-1个,每个投影测量线性光学网络对应一组O和U。P-1个投影测量线性光学网络可以标记为:T 1,T 2,...T M,...T P-1,其中,1≤M≤P-1,每个T M均有t个端口。
在相关技术中,在数学中,幺正变换是保留内积的变换,幺正变换之前的两个向量的内积等于其转换后的内积。幺正变换是使用幺正算符所做的变换,有对基矢的变换,有对算符的变换,可以认为,幺正变换是两个希尔伯特(Hilbert)空间之间的同构。
具体地,若要实现某种幺正矩阵V T——这里V T可以表示为 V T=α jU j,(j=0,1,2...n-1),其中,U j是作用于d维目标(T)子空间的门,α j是复系数,满足
Figure PCTCN2022121832-appb-000007
当受控U j门可用时,我们可以概率方式实现V T。α j被编码为k量子比特控制(C)的初始态
Figure PCTCN2022121832-appb-000008
Figure PCTCN2022121832-appb-000009
其中n=2 k,j标记计算基,当最后在计算基中测量所有控制量子位为0时,线路成功。通过将目标量子比特的部分态移动到扩展的Hilbert空间中,控制量子比特可以更加简单地作用到单个量子比特酉中。在本发明实施例中,可以使用基于扩展计算Hilbert空间的技术来实现线性组合线路。
任何量子幺正运算在原理上都可以分解为基本运算的线性和。例如,利用Cartan的KAK分解,可以重写任意两个量子比特幺正运算,将其转换为四个线性项的线性组合,每个线性项为两个单量子比特门的张量积。此外,Cartan分解方法允许n个量子比特幺正运算被重新构造为n个单量子比特门的张量积的线性组合。为了实现量子操作的线性组合,需要为任意未知量子操作添加相干控制,该技术基于用于计算的逻辑希尔伯特空间扩展的门。
根据所需,光子经过波分复用器之后根据波长不同在初态配置线性光学网络的入口处生成对应的多光子路径纠缠态。波长相同的第M组光子|M> 1|M> 2...|M> N中的每个光子均被路由到初态配置线性光学网络O M产生初态。
波长相同的第M组光子被路由到幺正算符配置线性光学网络U M (1),U M (2),...,U M (N)完成幺正变换和线性组合,其中线性项的系数,记为α 1,α 2...α N,由用户集成光学量子芯片通过量子隐形传态提供,且光路被合束,合束后最终可得量子态结果:
Figure PCTCN2022121832-appb-000010
Figure PCTCN2022121832-appb-000011
投影测量线性光学网络203设置为对合 束后的光量子态进行投影测量。
其中,初态配置线性光学网络、幺正算符配置线性光学网络和投影测量线性光学网络均是多个可实现t维幺正变换的通用线性光学网络。
本发明实施例中,提供一种面向分布式安全量子信息处理的集成光学芯片系统。如图2所示,该芯片系统还包括:用户集成光学量子芯片。系数配置线性光学网络C,与服务器集成光学量子芯片的波分复用器连接,设置为接收波分复用器根据波长分别输出的光子,并对光子进行处理后将线性项系数通过量子隐形传态传输到服务器。服务器线性光学网络对波分复用器输出的光子制备初态,并根据用户线性光学网络通过量子隐形传态传输的线性项系数作用在幺正算符线性组合的每一项,将线性组合后的光子合束并进行投影测量。因此,用户任务是通过服务器运算的线性组合方式来完成的。
其中,线性项系数由用户线性光学网络对波分复用器输出的光子的路径进行编码得到,光子为服务器的可配置纠缠多光子源产生的路径纠缠的多个光子,多路光由可配置纠缠多光子源根据服务器的干涉调节网络对输入到干涉调节网络的光束进行干涉调节得到并输出。
本发明实施例通过服务器端的集成光学量子芯片和用户端的集成光学量子芯片构成了一种面向分布式安全量子信息处理的集成光学芯片系统,通过使用集成光波导技术,用户可以将计算任务远程托管在量子服务器上实现复杂的量子计算,而不必向该量子服务器透露具体的算法。
如图3所示,在本发明实施例中,用户提供算法和输入态,服务器提供算子。这里,算法可以为
Figure PCTCN2022121832-appb-000012
输入态可以为|ψ>,算子可以为U (i)。将算法、输入态和算子输入如图4所示的线性组合线路进行处理,可以得到目标,其中,|ψ>编码在n*d维量子空间中第一个d维子空间,X (1,j)表示|ψ>第一个子空间和第j个子空间对应基 元素的交换操作,这些操作由用户中的量子位控制。如图3所示,结果可以为
Figure PCTCN2022121832-appb-000013
在本发明实施例中,服务器初态配置线性光学网络可以为如图5所示的多级链式结构。幺正算符配置线性光学网络包含如图6所示的呈三角型分布的光网络结构,包含如图7所示的合束光网络。投影测量线性光学网络可以为如图8所示的一种反向的树状结构。
在本发明实施例中,用户集成光学量子芯片中的系数配置线性光学网络可以为一种简化的呈三角形分布的光网络结构
本发明实施例中的集成光学芯片系统是一种面向分布式安全量子信息处理的集成光学芯片系统,其基于一种计算协议能够允许用户将自身的任务转换为量子服务器执行的量子运算的线性组合。这些组合的线性系数由用户来配置,幺正运算由服务器提供,通过高维量子信道连接用户和服务器。
本发明实施例中的集成光学量子芯片是采用集成光学技术将分立的线性光学元件以薄膜形式集成到单个半导体集成芯片上,与分立元件光学系统相比,不仅体积显著减小,而且整个系统由于高集成度而具有更好的稳定性及更好的可扩展性。
集成光学量子芯片所需要的重要组件都已经分别得到了实验实现,如片上单光子源及纠缠光子源、片上波分复用器、片上通用线性光学网络实现等。基于这些集成芯片组件,用片上集成的光子源来产生纠缠光子,用片上集成的马赫-曾德尔干涉仪及相位控制器组成的线性光学网络来控制光子的行为,再通过片上集成的单光子探测器来进行光子的探测,就可以设计出规模化的集成光学量子芯片,用于实现复杂的量子信息处理应用。
本发明实施例的集成光学量子芯片基于路径编码的幺正算符线 性组合方案,纠缠光子分别作用在服务器和用户之间,为保护用户计算的隐私提供了一种可靠的实行方案。同时,幺正算符线性组合方法能够实现量子计算中硬件实现模块与量子算法的分离,从而构建出一种用户-服务器模式的分布式量子计算模式,可以提高量子计算的安全性,避免了服务器窃取用户信息的问题,有利于保护用户的计算隐私及加密通信。这种隐私保护对于任何用户-服务器模型都至关重要。
本发明使用集成光波导技术,相较于分立光学元件,集成光波导技术提高了量子光学系统的稳定性。
在本发明实施例中,通过集成光学量子芯片途径,将片上路径纠缠多光子源和通用的线性光学网络配合使用,建立分布式集成光学芯片系统,包括服务器端的集成光学量子芯片和用户端的集成光学量子芯片。具体地,在本发明实施例中,通过片上路径纠缠多光子源产生不同的多光子多路径纠缠态,实现对用户-服务器光量子调控;通过片上通用线性光学网络配置不同光学幺正变换,根据需求实现不同的计算任务;通过进行输出测量,得到分布式安全量子信息处理结果,完成通用量子信息计算。
如图9所示的是本发明实施例提供的一种双光子纠缠态2×4维的分布式安全量子信息处理的集成光学芯片系统示意图。该集成光学量子芯片由服务器模块901和用户模块902两个模块组成。服务器和用户模块通过多维量子态进行传输。通过调节纠缠多光子源前的马赫-曾德尔干涉仪,可以使各路光的相位为0。服务器模块将纠缠多光子源产生的信号光子和闲频光子使用波分复用器进行分离,并结合光子的后产生选择技术可以在集成光学量子芯片上产生路径纠缠的光子 对。用户在接收光子后通过对路径进行编码,配置线性组合中每一项的系数,服务器模块实现幺正运算的线性组合。芯片中所有移相器均可以通过外置经典控制信号来对各路光进行调节,从而实现对集成光学量子芯片的可编程。
如图9所示,单光子经过纠缠光子源产生信号光子和闲频光子,记产生的量子比特状态分别为|α> a,|β> b,|α> c,|β> d,通过马赫-曾德尔干涉仪调好相位后,得到最大纠缠态
Figure PCTCN2022121832-appb-000014
对服务器模块的两路进行扩维,此处扩为4维。线性光学网络的幺正变换U (1)和U (2)作用在|α> c和|β> d上,实际中,|α> c和|β> d可以用定义的一组基|0>=[1 0 0 0] T,|1>=[0 1 0 0] T,|2>=[0 0 1 0] T,|3>=[0 0 0 1] T来表示。经过通用光网络幺正变换U (1)和U (2)的作用后态为
Figure PCTCN2022121832-appb-000015
Figure PCTCN2022121832-appb-000016
最后的结果是用户要求服务器进行相应操作完成计算4维的量子态,得到4维量子比特
Figure PCTCN2022121832-appb-000017
Figure PCTCN2022121832-appb-000018
其中|0>是由线性光学网络O提供,幺正变换U (1)和U (2)由服务器提供,线性项系数α和β由用户提供,并且对服务器是隐藏的。
本发明实施例提供的一种面向分布式安全量子信息处理的集成光学芯片系统,通过在集成光学芯片上设置可配置纠缠多光子源,以生成路径纠缠的光子并发送到用户和服务器线性光学网络,生成线性项系数和进行幺正算符线性组合以及投影测量,基于分布式集成化的光芯片实现量子计算过程。
本发明实施例中的面向分布式安全量子信息处理的集成光学芯 片系统是采用集成光学技术将分立的线性光学元件以薄膜形式集成到半导体集成芯片上,与分立元件光学系统相比,不仅体积显著减小,而且整个系统由于高集成度而具有更好的稳定性及更好的可扩展性。
进一步地,本发明实施例中的一种面向分布式安全量子信息处理的集成光学芯片系统,其基于一种计算协议能够允许用户将自身的任务转换为量子服务器执行的量子运算的线性组合。这些组合的线性系数由用户来配置,幺正运算由服务器提供,通过高维量子信道连接用户和服务器。可见,本发明实施例的一种面向分布式安全量子信息处理的集成光学芯片系统为保护用户计算的隐私提供了一种可靠的实行方案,其可以提高量子计算的安全性,避免了服务器窃取用户信息的问题,有利于保护用户的计算隐私及加密通信。这种隐私保护对于任何用户-服务器模型都至关重要。
最后应说明的是:以上实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (11)

  1. 一种面向分布式安全量子信息处理的集成光学芯片系统,包括:服务器集成光学量子芯片和用户集成光学量子芯片,所述服务器集成光学量子芯片和所述用户集成光学量子芯片通过高维量子信道相连接,其中,
    所述服务器集成光学量子芯片包括:
    可配置纠缠多光子源,包括干涉调节网络,N个纠缠多光子源以及波分复用器,其中,N为自然数且N≥2,通过配置干涉调节网络中的第一移相器和第二移相器对输入到所述干涉调节网络的光束进行干涉调节并输出多路光,经纠缠多光子源产生路径纠缠的多个光子,记每个纠缠多光子源产生的纠缠光子的数量为P,所述波分复用器设置为将所述可配置纠缠多光子源输出的所述多个光子根据波长分别输出到服务器线性光学网络和所述用户集成光学量子芯片中;
    所述服务器线性光学网络包括:
    初态配置线性光学网络O,与所述波分复用器连接,根据所述波分复用器输出光子的波长形成对应的O 1,O 2…O P-1,设置为对所述可配置纠缠多光子源输出的光子制备初态;
    幺正算符配置线性光学网络U,与所述初态配置线性光学网络O对应连接,设置为获取线性项系数,进行幺正变换和线性组合,以及合束,记为U 1 (i),U 2 (i)…U P-1 (i)(i=1,2,…N);
    投影测量线性光学网络T,与所述幺正算符配置线性光学网络U对应连接,设置为对合束后的光量子态进行投影测量,记为T 1,T 2…T P-1
    所述用户集成光学量子芯片,包含系数配置线性光学网络C,与所述波分复用器连接,设置为对所述波分复用器输出的光子的路径进行编码得到所述线性项系数,记为α 1,α 2…α N,并通过量子隐形传态传输所述线性项系数,以对所述幺正算符配置线性光学网络中幺正变 换的每一项进行线性组合,最终可得量子态结果:
    Figure PCTCN2022121832-appb-100001
    Figure PCTCN2022121832-appb-100002
  2. 根据权利要求1所述的一种面向分布式安全量子信息处理的集成光学芯片系统,其中,所述初态配置线性光学网络、所述幺正算符配置线性光学网络、所述投影测量线性光学网络以及所述系数配置线性光学网络均属于通用线性光学网络。
  3. 根据权利要求1所述的一种面向分布式安全量子信息处理的集成光学芯片系统,其中,所述可配置纠缠多光子源、初态配置线性光学网络、幺正算符配置线性光学网络、投影测量线性光学网络和系数配置线性光学网络均通过所述第一移相器和所述第二移相器实现路径编码。
  4. 根据权利要求1所述的一种面向分布式安全量子信息处理的集成光学芯片系统,其中,所述可配置纠缠多光子源的干涉调节网络包括log 2N级马赫-曾德尔干涉仪,以二叉树的形式进行排布,即上一级马赫-曾德尔干涉仪的每一个输出端口连接下一级的一个马赫-曾德尔干涉仪的一个输入端口,最后一级马赫-曾德尔干涉仪的
    Figure PCTCN2022121832-appb-100003
    个输出端口连接一个第二移相器和一个纠缠多光子源;其中,所述马赫-曾德尔干涉仪包括一个第一移相器,以及与所述第一移相器连接的两个多模干涉仪。
  5. 根据权利要求4所述的一种面向分布式安全量子信息处理的集成光学芯片系统,其中,所述第一移相器和第二移相器通过外置经典控制信号来对各路光进行调节,并使得到达所述纠缠多光子源前的各路光相位为零。
  6. 根据权利要求1所述的一种面向分布式安全量子信息处理的集成光学芯片系统,其中,所述可配置纠缠多光子源生成P种波长的光子,其中一种波长的光子被路由到所述用户集成光学量子芯片,另 外P-1种波长的光子被分别对应路由到P-1组初态配置线性光学网络;其中,P为自然数且P≥2。
  7. 根据权利要求1所述的一种面向分布式安全量子信息处理的集成光学芯片系统,其中,所述初态配置线性光学网络包含一种多级链式结构。
  8. 根据权利要求1所述的一种面向分布式安全量子信息处理的集成光学芯片系统,其中,所述幺正算符配置线性光学网络为一种呈三角形分布的光网络结构。
  9. 根据权利要求1所述的一种面向分布式安全量子信息处理的集成光学芯片系统,其中,所述投影测量线性光学网络包含一种反向树状结构。
  10. 根据权利要求6所述的一种面向分布式安全量子信息处理的集成光学芯片系统,其中,所述P-1组初态配置线性光学网络中的每组初态配置线性光学网络具有N个;对应的,所述幺正算符配置线性光学网络被分为P-1组,每组N个,所述投影测量线性光学网络的数量为P-1个;其中,每组幺正算符配置线性光学网络与一组初态配置线性光学网络和一个投影测量线性光学网络对应连接。
  11. 根据权利要求1所述的一种面向分布式安全量子信息处理的集成光学芯片系统,其中,所述用户集成光学量子芯片中的系数配置线性光学网络为一种简化的呈三角形分布的光网络结构。
PCT/CN2022/121832 2021-09-28 2022-09-27 面向分布式安全量子信息处理的集成光学芯片系统 WO2023051549A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/289,748 US20240275495A1 (en) 2021-09-28 2022-09-27 Integrated Photonic Chip System for Distributed Secure Quantum Information Processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111145661.XA CN113935494B (zh) 2021-09-28 2021-09-28 面向分布式安全量子信息处理的集成光学芯片系统
CN202111145661.X 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023051549A1 true WO2023051549A1 (zh) 2023-04-06

Family

ID=79277508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121832 WO2023051549A1 (zh) 2021-09-28 2022-09-27 面向分布式安全量子信息处理的集成光学芯片系统

Country Status (3)

Country Link
US (1) US20240275495A1 (zh)
CN (1) CN113935494B (zh)
WO (1) WO2023051549A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113935494B (zh) * 2021-09-28 2024-07-26 中国人民解放军军事科学院国防科技创新研究院 面向分布式安全量子信息处理的集成光学芯片系统
CN113935493A (zh) * 2021-09-28 2022-01-14 中国人民解放军军事科学院国防科技创新研究院 一种基于集成光学的可编程高维量子计算芯片结构
CN116362342B (zh) * 2023-04-19 2024-02-23 中国人民解放军军事科学院国防科技创新研究院 面向哈密顿量含时演化模拟的集成光学量子计算芯片结构
CN116435001B (zh) * 2023-06-13 2023-11-10 华翊博奥(北京)量子科技有限公司 一种芯片离子阱

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090180776A1 (en) * 2008-01-15 2009-07-16 Mikhail Brodsky Architecture for reconfigurable quantum key distribution networks based on entangled photons by wavelength division multiplexing
CN109213603A (zh) * 2018-05-31 2019-01-15 合肥本源量子计算科技有限责任公司 一种用于对接量子计算机与用户的云平台及平台运行方法
CN111478735A (zh) * 2020-04-13 2020-07-31 中国人民解放军国防科技大学 一种基于集成光学的通用量子漫步模拟芯片结构
CN112862103A (zh) * 2021-03-05 2021-05-28 中国科学技术大学 集成光量子计算芯片及其制备方法
CN113179155A (zh) * 2021-03-26 2021-07-27 广东工业大学 一种基于纠缠交换的单服务器盲量子计算方法
CN113935494A (zh) * 2021-09-28 2022-01-14 中国人民解放军军事科学院国防科技创新研究院 面向分布式安全量子信息处理的集成光学芯片系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9774401B1 (en) * 2013-07-15 2017-09-26 Paul Borrill Entangled links, transactions and trees for distributed computing systems
GB201402599D0 (en) * 2014-02-14 2014-04-02 Univ Edinburgh Client server communication system
CN107864019A (zh) * 2017-11-13 2018-03-30 安徽工程大学 一种采用量子通信的分布式储能功率变换系统
CN109510706B (zh) * 2019-01-07 2022-01-11 青岛理工大学 基于光子超纠缠态的异构无线通信方法及系统
CN113033703B (zh) * 2021-04-21 2021-10-26 北京百度网讯科技有限公司 量子神经网络训练方法及装置、电子设备和介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090180776A1 (en) * 2008-01-15 2009-07-16 Mikhail Brodsky Architecture for reconfigurable quantum key distribution networks based on entangled photons by wavelength division multiplexing
CN109213603A (zh) * 2018-05-31 2019-01-15 合肥本源量子计算科技有限责任公司 一种用于对接量子计算机与用户的云平台及平台运行方法
CN111478735A (zh) * 2020-04-13 2020-07-31 中国人民解放军国防科技大学 一种基于集成光学的通用量子漫步模拟芯片结构
CN112862103A (zh) * 2021-03-05 2021-05-28 中国科学技术大学 集成光量子计算芯片及其制备方法
CN113179155A (zh) * 2021-03-26 2021-07-27 广东工业大学 一种基于纠缠交换的单服务器盲量子计算方法
CN113935494A (zh) * 2021-09-28 2022-01-14 中国人民解放军军事科学院国防科技创新研究院 面向分布式安全量子信息处理的集成光学芯片系统

Also Published As

Publication number Publication date
CN113935494B (zh) 2024-07-26
US20240275495A1 (en) 2024-08-15
CN113935494A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
WO2023051549A1 (zh) 面向分布式安全量子信息处理的集成光学芯片系统
US11164104B2 (en) Quantum mechanical framework for interaction of OAM with matter and applications in solid states, biosciences and quantum computing
Erhard et al. Twisted photons: new quantum perspectives in high dimensions
Cuomo et al. Towards a distributed quantum computing ecosystem
US11080614B2 (en) Systems and methods for quantum coherence preservation of qubits
WO2023051550A1 (zh) 一种基于集成光学的可编程高维量子计算芯片结构
Kilin Quantum information
WO2021055000A1 (en) Quantum mechanical framework for interaction of oam with matter and applications in solid states, biosciences and quantum computing
Zou et al. Teleportation implementation of nondeterministic quantum logic operations by using linear optical elements
Djordjevic Integrated optics modules based proposal for quantum information processing, teleportation, QKD, and quantum error correction employing photon angular momentum
KR20220165761A (ko) 양자 데이터 로더
Diker Deterministic construction of arbitrary $ W $ states with quadratically increasing number of two-qubit gates
Nemirovsky-Levy et al. Increasing quantum communication rates using hyperentangled photonic states
Mastriani On the spectral nature of entanglement
Smith et al. A radix-4 chrestenson gate for optical quantum computation
Sharma et al. Milestone developments in quantum information and No-Go theorems
CN114970868A (zh) 空间并行的相干伊辛机及包含其的求解器
Iliyasu et al. Insights into the Viability of Using Available Photonic Quantum Technologies for Efficient Image and Video Processing Applications.
Smith et al. Higher-radix chrestenson gates for photonic quantum computation
Lima et al. Integrated photonic circuits for contextuality tests via sequential measurements in three-level quantum systems
Ramelow et al. Matchgate quantum computing and non-local process analysis
Sharma Quantum Entanglement and Its Applications in Quantum Information Processing
Shahandeh et al. Arbitrary multi-qubit generation
Zhang et al. Variational quantum circuit learning of entanglement purification in multi-degree-of-freedom
Biswas et al. Design and realization of a quantum Controlled NOT gate using optical implementation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874934

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18289748

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE