WO2023051338A1 - 一种电池控制方法、装置及设备 - Google Patents

一种电池控制方法、装置及设备 Download PDF

Info

Publication number
WO2023051338A1
WO2023051338A1 PCT/CN2022/120132 CN2022120132W WO2023051338A1 WO 2023051338 A1 WO2023051338 A1 WO 2023051338A1 CN 2022120132 W CN2022120132 W CN 2022120132W WO 2023051338 A1 WO2023051338 A1 WO 2023051338A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
base station
traffic volume
backup battery
service
Prior art date
Application number
PCT/CN2022/120132
Other languages
English (en)
French (fr)
Inventor
姚国强
万云冬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023051338A1 publication Critical patent/WO2023051338A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the present application relates to the technical field of communications, and in particular to a battery control method, device and equipment.
  • the base station (Base Station) is an important part of the communication system, which can be used to connect terminal devices such as mobile phones to the network.
  • the base station mainly uses mains power as the power source. Therefore, when the mains power fails, the base station cannot continue to work, and cannot provide access services for terminal equipment.
  • a backup battery can be set in the base station.
  • the base station uses the mains power as a power source.
  • the base station can use a backup battery as a power source to ensure the normal operation of the base station.
  • the backup battery of the base station is only used in the case of a mains power outage, and the backup battery itself has a limited life, resulting in high operating costs of the base station.
  • the present application provides a battery control method, device and equipment, aiming at reducing the operating cost of a base station.
  • the present application provides a battery control method, which can be used to control a backup battery of a base station.
  • the traffic volume that the base station may carry within the first preset time in the future may be predicted first, so as to obtain the first traffic volume.
  • the first target power required by the base station to carry the service of the first traffic volume may be determined according to the corresponding relationship. That is, the first target power is the minimum value of power required to maintain the normal operation of the base station within a first preset time in the future in a power outage state.
  • the remaining power of the backup battery is greater than the first target power, it means that the backup battery can be used to realize off-peak power consumption and reduce the power consumption cost of the base station. Then, when the remaining power of the backup battery is greater than the first target power and the power characteristic value satisfies the first condition, the power supply of the base station can be switched from the mains to the backup battery, thereby avoiding the use of the high-cost market at the current moment. power supply. In this way, since the remaining power of the backup battery is greater than the first target power during the peak-staggered power distribution, even if the mains power fails, the power stored in the backup battery can still support the continuous operation of the base station for the first preset time. In this way, on the basis of ensuring that the backup power of the base station is sufficient, peak-shift power supply is realized, and the operating cost of the base station is reduced.
  • the correspondence may include a correspondence between service volume and power consumption
  • the first target power consumption may be determined according to possible power consumption of the base station. Specifically, in the process of determining the first target power quantity, the possible power consumption variation trend of the base station within a first preset time in the future may be determined first according to the first traffic volume and the corresponding relationship. Next, the first target electric power may be determined according to the power consumption change trend of the base station within the first preset time and in combination with time. In this way, by determining the possible power consumption of the base station in various time periods within the first preset time, the obtained first target power is more accurate.
  • the first traffic volume may also be corrected according to the power reserve policy, so that the first target power calculated according to the first traffic volume is closer to the actual power consumption of the base station.
  • the power reserve policy reflects the support of the base station for services in a power outage state, for example, it may instruct the base station to refuse to support some services in the state of mains power outage.
  • the second traffic volume may be determined first according to the first traffic volume and the power reserve policy.
  • the second service volume is the service volume still supported by the base station in the power outage state generated within the first preset time, that is, the service volume that the base station actually needs to support in the power outage state.
  • the power consumption variation trend of the base station within the first preset time period may be determined according to the second traffic volume and the corresponding relationship.
  • the power reserve policy may include a first power reserve policy, and the first power reserve policy may be used to support the base station in refusing to support the first service in a state of mains power failure. Then, in the process of calculating the second service volume, the service volume that may be generated by the first service within the first preset time in the future may be determined according to the first power reserve policy, to obtain the third service volume. Then subtract the third traffic volume from the first traffic volume, and the obtained difference is the traffic volume generated by the services supported by the base station in the power outage state within the first preset time, that is, the second traffic volume.
  • the first traffic volume may be obtained according to historical working conditions of the base station. Specifically, the traffic volume of the base station within a first preset time in the future may be predicted according to the historical traffic volume data and the current time to obtain the first traffic volume.
  • the historical traffic data includes the situation of carrying traffic by the base station in multiple time periods in the past. In this way, in combination with the historical working conditions of the base station, the traffic volume that may be generated by the base station within the first preset time in the future can be determined more accurately.
  • the remaining power of the backup battery will continuously decrease. If the remaining power of the backup battery is not greater than the first target power, it means that the power stored in the backup battery may not be able to continue to support the base station to continue working for the first preset time in the state of mains power failure. Then, when the remaining power of the backup battery is less than the first target power, the power supply of the base station may be switched from the backup battery to the mains.
  • the mains power can also be further used to charge the backup battery. Specifically, it may be detected whether the electric power characteristic value of the mains power satisfies the second condition. If the power characteristic value satisfies the second condition, it means that the cost of using the mains power supply for power supply is low, then the mains power can be used to charge the backup battery to supplement the power consumed by the backup battery when powering the base station.
  • a utility power outage may occur. Then, after the mains power failure, the backup battery can be controlled to supply power to the base station, so that the base station can continue to work in the state of the mains power failure, thereby ensuring the normal operation of the communication system.
  • the base station may be controlled to refuse to support some services in a state of mains power failure, so as to reduce the power consumption of the base station, thereby prolonging the operation time of the base station.
  • the base station may acquire the remaining power of the backup battery, and determine whether the remaining power of the backup battery is greater than the second target power. If the remaining power of the backup battery is not greater than the second target power, a preset control strategy may be determined according to the remaining power, and the second service of the base station may be turned off according to the preset control strategy.
  • the preset control policy is used to instruct the base station to turn off the second service in the state of mains power failure, and the second service may include any one or more services supported by the base station. In this way, when the mains power fails and the remaining power in the backup battery is low, part of the services carried by the base station can be turned off to reduce the power consumption of the base station, so as to prolong the use time of the base station.
  • the preset control strategy can be changed according to the remaining power of the backup battery. Specifically, if it is detected that the remaining power of the backup battery is not greater than the third target power, the preset control strategy may be adjusted according to the remaining power, thereby further reducing the services carried by the base station and prolonging the use time of the base station. Wherein the third target electric quantity is smaller than the second target electric quantity.
  • the second service may include a fifth generation mobile communication technology new radio (5th Generation Mobile Communication Technology New Radio, 5G NR) service.
  • 5G NR fifth generation mobile communication technology new radio
  • the present application provides a battery control device, which is used to control the backup battery of the base station, including:
  • a first determining unit configured to determine a first traffic volume, where the first traffic volume is the traffic volume of the base station within a first preset time in the future;
  • the second determining unit is configured to determine a first target power amount according to the first traffic volume and the corresponding relationship, where the first target power amount is the theoretical power consumption of the base station within the first preset time, so The above correspondence reflects the correspondence between business volume and power consumption;
  • a switching unit configured to control the base station to switch from mains power to the backup battery for power supply in response to the remaining power of the backup battery being greater than the first target power and the characteristic value of the power satisfying the first condition.
  • the characteristic value reflects the cost of the base station using mains power supply.
  • the corresponding relationship includes a corresponding relationship between traffic volume and power consumption
  • the second determining unit is configured to determine, according to the first traffic volume and the corresponding relationship, that the base station is The power consumption variation trend within the first preset time; determining the first target electric quantity according to the power consumption variation trend and the first preset time.
  • the second determination unit is configured to determine the second traffic volume according to the first traffic volume and a power reserve policy, and the power reserve policy reflects the business supported by the base station in a power outage state In the case where the second traffic volume is the business supported by the base station in the power outage state, the traffic volume within the first preset time; according to the second traffic volume and the corresponding relationship, determine the The power consumption trend of the base station within the first preset time
  • the power reserve policy includes a first power reserve policy
  • the second determining unit is configured to determine the second power reserve policy in response to the power reserve policy being the first power reserve policy.
  • a third business volume generated by a business within a first preset time in the future; the second business volume is obtained by making a difference between the first business volume and the third business volume.
  • the first determining unit is configured to predict the traffic volume of the base station within a first preset time in the future according to the historical traffic volume data and the current time, to obtain the first traffic volume , the historical traffic data reflects traffic bearing conditions of the base station in multiple time periods in the past.
  • the switching unit is further configured to control the base station from The backup battery is switched to the commercial power for power supply.
  • the device further includes a charging control unit; the charging control unit is configured to charge the backup battery through the commercial power in response to the power characteristic value satisfying a second condition; wherein, The cost of using mains power supply for the base station under the condition that the power characteristic value satisfies the second condition is lower than the cost of using mains power supply under the condition that the power characteristic value meets the first condition.
  • the switching unit is further configured to control the backup battery to supply power to the base station in response to the utility power failure.
  • the switching unit is configured to obtain the remaining power of the backup battery; in response to the remaining power being not greater than the second target power, determine a preset control strategy according to the remaining power, the preset It is assumed that the control policy is used to instruct the base station to close the second service in the state of mains power failure; the base station is controlled to close the second service according to the preset control policy.
  • the switching unit is further configured to adjust the preset control strategy in response to the remaining power being not greater than a third target power, the fourth target power being lower than the third target power .
  • the second service includes a 5G New Radio 5G NR service.
  • the present application provides a device, where the device includes a memory and a processor;
  • the memory is used to store instructions
  • the processor is configured to execute the instructions in the memory, and execute the battery control method as described in the aforementioned first aspect.
  • the present application provides a base station, the base station includes a backup battery and a control device; the backup battery is used to store electric energy; the control device is used to perform the battery control described in the first aspect above method.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium includes instructions, and when it is run on a computer, the computer executes the battery control method as described in the aforementioned first aspect .
  • FIG. 1 is a schematic diagram of an application scenario of a base station provided by an embodiment of the present application
  • FIG. 2 is a flow chart of a battery control method provided in an embodiment of the present application.
  • Fig. 3 is another method flowchart of the battery control method provided by the embodiment of the present application.
  • FIG. 4-A is a schematic diagram of the law of the power consumption of the base station over time according to the embodiment of the present application.
  • FIG. 4-B is another schematic diagram of the law of the power consumption of the base station over time provided by the embodiment of the present application.
  • FIG. 4-C is another schematic diagram of the law of the power consumption of the base station over time provided by the embodiment of the present application.
  • FIG. 4-D is another schematic diagram of the law of the power consumption of the base station over time provided by the embodiment of the present application.
  • FIG. 4-E is another schematic diagram of the law of the power consumption of the base station over time provided by the embodiment of the present application.
  • FIG. 5 is another schematic diagram of the law of the power consumption of the base station over time according to the embodiment of the present application.
  • FIG. 6 is a structural block diagram of a battery control device provided in an embodiment of the present application.
  • FIG. 7 is a hardware architecture diagram of a device provided by an embodiment of the present application.
  • the figure is a schematic diagram of an application scenario of a base station provided by an embodiment of the present application.
  • the base station 10 is connected to the backup battery 20 and the mains grid 30 respectively.
  • the base station 10 can obtain electric energy from the commercial power grid 30 to work.
  • the mains power grid 30 cannot provide sufficient power to the base station 10 .
  • the base station 10 can switch the power supply from the commercial power grid 30 to the backup battery 20, and use the backup battery as an energy source to work. In this way, even if there is a mains power outage, the base station 10 can also use the backup battery 20 to provide power, ensuring that the user can normally use mobile communication services such as calling and surfing the Internet.
  • the backup battery of the base station As for the backup battery of the base station, it will only be used in the case of a mains power failure. However, the life of the backup battery is mostly limited. Even if the base station uses the backup battery less frequently, the backup battery of the base station still needs to be replaced regularly, and the cost of replacing the backup battery will undoubtedly increase the operating cost of the base station. That is to say, due to the low utilization rate of the backup battery of the base station in the traditional technology, the operation cost of the base station is relatively high.
  • the inventors of the present application have found through research that the electricity price in some areas may change with time. Electricity prices may vary at different times of the day. For example, from 19:00 to 22:00 every day may be the peak period of electricity consumption, so in order to limit electricity consumption, the electricity price during these time periods may be relatively high. However, there may be fewer people using electricity from 22:00 to 7:00 every day, and the electricity price during these time periods may be relatively low. Therefore, if the backup battery of the base station can be used to achieve off-peak power consumption, the backup battery can be used to supply power when the electricity price is high, and the backup battery can be charged when the electricity price is low, which can effectively reduce the operating cost of the base station.
  • the embodiment of the present application provides a battery control method, which can determine the first target power that needs to be reserved for mains power outages according to the traffic volume of the base station and the corresponding relationship, and when the remaining power is greater than the first target power and the power consumption
  • the backup battery is used as the power source of the battery base station. In this way, on the basis of ensuring the normal operation of the base station in a power outage state, the utilization rate of the backup battery is improved, and the operating cost of the base station is reduced by using electricity at off-peak times.
  • the battery control method provided in the embodiment of the present application may be applied to the base station 10 in the application scenario shown in FIG. 1 .
  • the base station 10 may include a device having a data processing function such as a computer, and the battery control method provided in the embodiment of the present application may be executed by the device having a data processing function.
  • the battery control method provided in the embodiment of the present application may also be executed by an independent control device, so as to control the power supply system of the base station.
  • FIG. 2 this figure is a schematic flow chart of the battery control method provided by the embodiment of the present application.
  • the battery control method provided by the embodiment of the present application may include the following steps:
  • the first traffic volume that may be generated by the base station may be determined first.
  • the first traffic volume is traffic volume that may be generated by the base station within a first preset time in the future. That is, within the first preset time in the future, if the normal operation of the communication system is guaranteed, the base station needs to bear the first traffic volume. Then, in order to enable the communication system to continue to work normally in the state of mains power failure, the power corresponding to the first service volume may be reserved in the backup battery. In this way, even if there is a mains power failure, the remaining power in the backup battery can still support the base station to carry the first traffic, so that the communication system can operate normally.
  • the operating conditions of the base station may change over time.
  • the traffic carried by the base station may be different in different time periods every day, and the traffic carried by the base station in the same time period on different days may be relatively close.
  • the business volume during working hours (for example, 9:00 to 16:00 pm) on weekdays may be relatively small, while the traffic volume during corresponding hours on rest days may be relatively large.
  • the first traffic volume may be determined according to the historical working conditions of the base station. Specifically, historical traffic data may be acquired first, and the historical traffic data includes traffic bearing conditions of the base station in multiple time periods in the past. Next, according to the historical traffic data and the current time, the traffic volume of the base station in the first preset time in the future may be predicted to obtain the first traffic volume. For example, the traffic carried by the base station at the same time period on the same day in the previous week may be used as the first traffic.
  • the first service volume may also be obtained according to the maximum load of the base station. For example, the maximum traffic loadable by the base station within a unit time may be multiplied by the length of the first preset time, and the obtained result is the maximum traffic loadable by the base station within the first preset time. In order to ensure the normal operation of the base station in the state of mains power outage, the maximum traffic volume may be used as the first traffic volume.
  • S202 Determine a first target power amount according to the first traffic volume and the corresponding relationship.
  • the first target electricity quantity may be determined according to the first traffic volume and the corresponding relationship.
  • the first target power is the power required by the base station to support the service of the first traffic, and the corresponding relationship may reflect the corresponding relationship between the traffic and the power consumption.
  • the first traffic volume may include the traffic volume of the base station in multiple time intervals within the first preset time, for example, it may include the traffic volume of the base station in the future The amount of traffic that needs to be carried per minute within an hour.
  • the corresponding relationship may include the corresponding relationship between traffic and power consumption, indicating the power consumed by the base station to bear the corresponding traffic in a unit time.
  • the first preset time includes a plurality of time intervals, and the first traffic volume includes the traffic volume of the base station in each time interval, then in the process of determining the first target electric quantity, it may first be based on the first traffic volume and the corresponding relationship, Determine the power consumption of the base station in each of the multiple time intervals, and obtain the power consumption variation trend of the base station within a first preset time. Next, the total power consumption of the base station within the first preset time may be determined according to the time and power consumption trend, to obtain the first target power consumption.
  • the power consumption change trend may be a power consumption change curve in a time coordinate system, and the first target electric power may be calculated by integrating the power consumption change curve.
  • the corresponding relationship may be obtained according to the historical work data of the base station. Specifically, the traffic generated by the base station during operation and the power consumption of the base station when carrying the corresponding traffic can be collected in advance, and the traffic and power consumption can be analyzed to determine the relationship between the power consumption of the base station and the traffic carried. Correspondence. For example, in some possible implementation manners, a natural week may be used as a data collection period. In the process of determining the corresponding relationship, the service data of the base station in the latest period or multiple periods may be associated with the power consumption data, and statistical learning is performed on it to determine the corresponding relationship between the service volume of the base station and the power consumption data.
  • the base station in order to ensure the normal operation of the base station in a power outage state, more power may be reserved for the backup battery. Then, after the first target power is calculated, the first target power can be increased according to the policy of power reservation.
  • a base station may support multiple types of services, and the power consumption of the base station for providing services for different services may be different.
  • a base station may simultaneously support the fifth generation mobile communication technology (5th generation Mobile Communication Technology, 5G) business, the fourth generation mobile communication technology (4th generation mobile communication technology, 4G) business and the second generation mobile phone communication technology (2nd generation wireless telephone technology) three types of business.
  • 5G services have the highest power consumption
  • 2G services have the lowest power consumption.
  • the base station can be controlled to refuse to support some services, so as to prolong the working hours of the base station.
  • the first traffic volume may be corrected first according to the power reservation policy to obtain the second traffic volume, and then the first target power volume may be calculated according to the second traffic volume.
  • the power reserve policy is obtained according to the business conditions supported by the base station in the power outage state, which reflects what kind of business the base station supports in the power outage state, and what kind of business it refuses to support.
  • the first target power consumption may be obtained according to the power consumption variation trend of the base station within the first preset time. Then, before calculating the first target power, the second traffic can be determined according to the first traffic and the power reservation policy, and then the power consumption change trend of the base station within the first preset time can be calculated according to the second traffic.
  • the second traffic volume is the traffic volume generated by the business supported by the base station in the power outage state within the first preset time.
  • the business supported by the base station in the state of mains power outage can be determined first according to the power reservation strategy, and then the business volume of this part of the business within the first preset time can be determined (i.e. second business volume), and finally calculate the power consumption variation trend according to the second traffic volume, and determine the first target electric power according to the power consumption variation trend.
  • the power reserve policy may be used to instruct the base station to refuse to support some services in a state of mains power failure.
  • the service that the base station refuses to support in the state of mains power outage is referred to as the first service.
  • the first service may include 5G services with high power consumption, such as refusing to support 5G NR services. Then, when determining the second business volume, the first business volume can be determined according to the power reserve strategy first, and the third business volume generated by the first business within the first preset time can be determined, and then the first business volume can be combined with the third business volume If the volume is poor, the second business volume is obtained.
  • the remaining power of the backup battery can be compared with the first target power. If the remaining power of the backup battery is less than the first target power, it means that the electric energy currently stored in the backup battery cannot support the base station to work for the first preset time period in the state of mains power failure. In this case, using the backup battery for off-peak power supply may not guarantee the normal operation of the base station. Therefore, it is possible to control the base station to continue to use the mains power as the power source, and further judge whether the backup battery needs to be charged according to the power characteristic value.
  • the power characteristic value can be used to represent the cost of the base station using mains power supply.
  • the electric power characteristic value may be a parameter such as a cost generated by a unit of electric energy consumed by the base station (for example, kilowatt-hour), that is, a unit electric price of mains power.
  • the remaining power of the backup battery is greater than the first target power, it means that the power stored in the backup battery can support the base station to work for the first preset time in the state of mains power outage, that is, the backup battery can support the base station to use electricity during off-peak hours, then It may be further determined whether the electric power characteristic value satisfies the first condition.
  • the first condition is used to indicate that the cost of the base station using mains power supply is higher than the first threshold.
  • the first condition may mean that the unit electricity price of the mains power is at the highest value in the electricity price cycle, or that the unit electricity price of the city power is higher than the average value in the electricity price cycle.
  • the change of the power characteristic value over time can be obtained from the power supply unit of the mains power, and the change of the power characteristic value over time can be stored in the base station. In this way, during the operation of the base station, the characteristic value of electric power at the current moment can be determined according to time.
  • the real-time power characteristic value of the mains power may be obtained through network query.
  • the base station when the power characteristic value satisfies the first condition, the cost of using commercial power for the base station is relatively high. If the base station continues to use commercial power as a power source, the operating cost of the base station may increase. Therefore, in order to reduce the operating cost of the base station, the base station can be controlled to stop using the mains power as the power source, and instead use the backup battery to provide the power required for its work, so as to prevent the base station from continuing to use the mains power with a higher power characteristic value as the power source.
  • the base station After controlling the base station to switch from mains power to the backup battery for power supply, the remaining power and power characteristic value of the backup battery can be monitored. If it is detected that the remaining power of the backup battery is not greater than the first target power, or the power characteristic value of the mains power does not meet the first condition, the base station may be controlled to switch the power supply from the backup battery to the mains.
  • the remaining power of the backup battery is less than the first target power, it means that the power stored in the backup battery cannot supply the base station to continue working for the first preset time in the state of mains power failure. If the mains power failure occurs, the base station may not continue to work long enough First preset time. If the remaining power of the backup battery is equal to the first target power, then if the backup battery continues to be used to power the base station, the remaining power of the backup battery will continue to decline, and the base station will not be able to work for the first preset time in the state of mains power failure.
  • the base station can be controlled to use mains power as a power source, stop consuming the power stored in the backup battery, and ensure that the base station has sufficient power when the mains power fails Provide access services for terminal devices.
  • the power characteristic value of the mains power does not satisfy the first condition, it means that the cost of using the mains power to provide electric energy for the base station is relatively low.
  • the operating cost of using the mains power supply for the base station may be lower than the operating cost of using the backup battery for power consumption of the base station. Therefore, even if the remaining power of the backup battery is greater than the first target power, if the power characteristic of the mains power does not meet the first condition, the base station can be controlled to switch from the backup battery to the mains power as the source of electric energy.
  • the base station may use the electric energy stored in the backup battery as a power source.
  • the backup battery may be charged through commercial power when the power characteristic value satisfies the second condition.
  • the second condition is used to indicate that the cost of using mains power supply for the base station is relatively low, for example, the second condition can handle that the power characteristic value of the mains power is less than or equal to the second threshold.
  • the second threshold may be the same as the first threshold, or may be lower than the first threshold.
  • the unit electricity price of the mains power within a day may include three mains electricity prices: unit electricity price A, unit electricity price B, and unit electricity price C.
  • the unit electricity price A is greater than the unit electricity price B
  • the unit electricity price B is greater than the unit electricity price C.
  • the first threshold is the unit price A
  • the second threshold is the unit price C
  • the base station can be controlled to use the backup battery Instead of mains electricity as a power source.
  • the base station can be controlled to use the mains instead of the backup battery as the power source to ensure that the backup battery
  • the stored electric energy is enough for the base station to use in the state of mains power failure.
  • the mains electricity can be used to charge the backup battery for use when the electricity price of the mains electricity rises next time. In this way, the power stored in the backup battery is used as a buffer to realize peak-shift power consumption under different mains electricity prices, and reduce the operating cost of the base station while ensuring sufficient backup power.
  • the remaining power of the backup battery may be reduced to the first target power or below, and the electricity cost of the mains power may be high.
  • the mains power can still be controlled to charge the backup battery to ensure the power stored in the backup battery Stay above the first target power level.
  • the base station during the operation of the base station, it is possible to predict the traffic volume that the base station may carry in the first preset time in the future, obtain the first traffic volume, and determine the first traffic volume carried by the base station according to the corresponding relationship The first target power required by the business. Determining the minimum value of power required to maintain the normal operation of the base station within a first preset time in the future in a power outage state. Next, if the remaining power of the backup battery is greater than the first target power, it means that the backup battery can be used to realize off-peak power consumption and reduce the power consumption cost of the base station.
  • the power supply of the base station can be switched from the mains to the backup battery, so as to avoid using the high-cost market at the current moment. power supply.
  • the power stored in the backup battery can still support the continuous operation of the base station for the first preset time. In this way, on the basis of ensuring that the backup power of the base station is sufficient, peak-shift power supply is realized, and the operating cost of the base station is reduced.
  • the backup battery can store electric energy from the mains when the cost of the mains is low, and provide power sources for the base station when the cost of the mains is high, so as to achieve staggered peak power consumption and reduce Base station operating costs.
  • the power of the backup battery is always greater than the first target power. After a power outage occurs in the mains, the electric energy stored in the backup battery can be used as the power source of the base station.
  • the first target power is obtained by predicting the traffic that the base station may need to carry within the first preset time.
  • the traffic carried by the base station in the state of mains power outage may be more than that carried in the state of normal power supply, and the time of the mains power outage may also be longer than the first preset time, resulting in the need for the base station to state to carry more traffic. That is to say, in the state of mains power outage, the electric energy stored in the backup battery may not be able to support the base station to carry all the services. Therefore, in some possible implementations, in the event of a mains power outage, the base station can be controlled to refuse to support some services according to the remaining power of the backup battery, thereby prolonging the working time of the base station under the mains power failure.
  • FIG. 3 is a method flow chart of the battery control method provided by the embodiment of the present application in a power failure state, including:
  • S301 In response to the mains power being in a power outage state, control the backup battery to supply power to the base station, and acquire the remaining power of the backup battery.
  • the backup battery can be controlled to supply power to the base station to ensure the normal operation of the base station in the power failure state. After the backup battery is controlled to supply power to the base station, the remaining power of the backup battery can be obtained, so as to adjust the working conditions of the base station in time.
  • the first traffic volume may be corrected according to the electric quantity reservation policy.
  • the power reserve policy is used to instruct the base station to refuse to support some services in the state of mains power failure.
  • the base station may be controlled to refuse to support some services according to the indication of the power reserve policy.
  • the power reserve policy may be used to instruct the base station to close part of service channels of one or more services, and may also be used to instruct the base station to close one or more services.
  • a service may include one or more service channels, and each service channel may correspond to one or more terminal devices.
  • one service channel may correspond to one communication board in the base station.
  • the base station can support 5G NR service, Long Term Evolution (LTE) service and global system for mobile (GSM) service under normal conditions
  • LTE Long Term Evolution
  • GSM global system for mobile
  • area 401 represents the power consumption of 5G NR services
  • area 402 represents the power consumption of LTE services
  • area 403 represents the power consumption of G services.
  • the base station may close one or more services or one or more service channels of one or more services according to the power reserve policy. The following are introduced respectively.
  • the power reserve policy is used to instruct the base station to close some service channels of the 5G NR service after the mains power failure. That is, the base station can refuse to support some 5G NR services after the mains power outage, for example, the base station can turn off the communication boards corresponding to some 5G NR services. Then the power consumption trend of the base station over time can be shown in Figure 4-B, where t1 is the moment when the mains power outage occurs, area 404 represents the power consumption of 5G NR services after the mains power outage, and the remaining areas represent The meaning is the same as in Fig. 4-A. It can be seen from Figure 4-B that the power consumption of the 5G NR service of the base station is reduced after the power outage, thereby reducing the total power consumption of the base station and prolonging the working time of the base station in the state of mains power failure.
  • the power reserve policy is used to instruct the base station to close some service channels of the 5G NR service and some service channels of the LTE service after the mains power failure. That is, the base station can refuse to support some 5G NR services and some LTE services after the mains power outage. Then the change trend of the power consumption of the base station over time can be shown in Figure 4-C, where t1 is the moment when the mains power outage occurs, area 405 represents the power consumption of LTE services after the mains power outage, and the meanings of the remaining areas Same as in Fig. 4-B.
  • the power reserve policy can be used to instruct the base station to turn off the 5G NR service after the mains power failure.
  • closing the 5G NR service may refer to closing multiple service channels corresponding to the 5G NR service.
  • the breathing connection of the 5G NR service can be retained while the 5G NR service is turned off.
  • the power reserve policy can be used to instruct the base station to turn off the 5G NR service and the LTE service after the mains power failure.
  • disabling the LTE service may refer to disabling multiple service channels corresponding to the LTE service.
  • the breathing connection of the LTE service can be kept while the LTE service is turned off.
  • the base station can be controlled to close any service or service channel according to the requirements of the base station.
  • the remaining capacity of the backup battery will continue to decrease.
  • the remaining power of the backup battery can be acquired multiple times, and the remaining power is compared with the second target power (the second target power is smaller than the first target power). If the remaining power of the backup battery is reduced to the second target power or below, it means that the power stored in the backup battery is insufficient. If the base station continues to maintain the current service, the power in the backup battery may be exhausted before the power supply is restored, causing the base station to stop working. Therefore, in order to prolong the operating time of the base station as much as possible, the preset control strategy may be determined according to the remaining power when the remaining power of the backup battery is not greater than the third target power.
  • the preset control policy is used to instruct the base station to turn off the second service
  • the second service may be any service supported by the base station in a power failure state. That is to say, in the state of mains power failure, if the remaining power of the backup battery is lower than the second target power or below, the base station can be controlled to further shut down the second service, so as to prolong the operation time of the base station in the power failure state.
  • the remaining power of the backup battery is different, and the corresponding preset control strategies are also different.
  • the lower the remaining power of the backup battery the more services the preset control strategy requires the base station to shut down.
  • the preset control strategy can be expressed in the form of Table 1.
  • Remaining power (percentage) default control strategy 50% ⁇ X ⁇ 100% - 25% ⁇ X ⁇ 50% Close 5G NR business 10% ⁇ X ⁇ 25% Disable LTE service X ⁇ 10% Close the G business
  • X represents the ratio of the remaining power of the backup battery to the total power of the backup battery. It can be seen from Table 1 that the lower the remaining power of the backup battery, the more services the base station refuses to support.
  • the preset control strategy can be adjusted according to the remaining power of the backup battery. For example, if it is detected that the remaining power of the backup battery is lower than the third target power (the third target power is less than the second target power), the preset control strategy may be adjusted according to the third target power.
  • S303 Control the base station to disable the second service according to a preset control policy.
  • the base station can be controlled to turn off the second service according to the preset strategy, reducing the load of the base station, thereby reducing the power consumption of the base station.
  • the base station can support the three services of 5G NR service, LTE service and G service under normal conditions, then under normal conditions, the power consumption of the base station varies with time as shown in Figure 4-A. After the mains power failure, the base station uses a backup battery as the power source, and the power consumption of the base station varies with time as shown in Figure 5.
  • t1 is the moment when the mains power fails
  • t2 is the moment when the remaining power reaches the second target power
  • t3 is the time when the remaining power reaches the third target power.
  • area 501 is the power consumption of 5G NR service under normal power supply state
  • area 502 is the power consumption of LTE service under normal power supply state
  • area 503 is the power consumption of G service under normal power supply state.
  • the base station can be controlled to close some service channels of the 5G NR service, so the power consumption of the base station supporting the 5G NR service is reduced from area 501 to area 504.
  • the base station can refuse to continue to support 5G NR services, and close some service channels of LTE services, and only keep the heartbeat connection of 5G NR services. Then the power consumption of the base station on the 5G NR service is further reduced from the area 504 to the area 505, and the power consumption on the LTE service is reduced from the area 502 to the area 506.
  • the base station may refuse to continue to support the LTE service, and only keep the heartbeat connection of the LTE service. Then the power consumption of the base station on the LTE service is further reduced from the area 506 to the area 507 . In this way, by setting multiple power reserve policies, more services can be provided for terminal equipment on the basis of prolonging the operating time of the base station.
  • the embodiment of the present application also provides a battery control device 600 , which can be applied to a base station or a control device of a base station to implement the battery control function shown in the corresponding embodiment in FIG. 2 or FIG. 3 .
  • the base station is connected to the backup battery and the mains grid respectively.
  • the battery control device 600 includes:
  • the first determining unit 601 is configured to determine a first traffic volume, where the first traffic volume is traffic volume of the base station within a first preset time in the future.
  • the second determining unit 602 is configured to determine a first target power consumption according to the first traffic volume and the corresponding relationship, where the first target power consumption is the theoretical power consumption of the base station within the first preset time,
  • the corresponding relationship reflects the corresponding relationship between service volume and power consumption.
  • the switching unit 603 is configured to control the base station to switch from mains power to the backup battery for power supply in response to that the remaining power of the backup battery is greater than the first target power and the characteristic value of the power satisfies the first condition.
  • the power characteristic value reflects the cost of the base station using mains power supply.
  • the battery control device can realize the control function of the backup battery and the base station in the foregoing method embodiments.
  • an embodiment of the present application provides a device 700 that can implement the function of controlling a battery or a base station in the embodiment corresponding to FIG. 2 or FIG. 3 .
  • the device 700 includes a memory 701, a processor 702 and a communication interface 703,
  • the memory 701 is used to store instructions; in the case of realizing the embodiment shown in FIG. 6, and the units described in the embodiment of FIG. 6 are realized by software, execute the first determining unit 601, Software or program codes required for the functions of the second determining unit 602 and the switching unit 603 are stored in the memory 701 .
  • the processor 702 is configured to execute the instructions in the memory 701 to execute the battery control method provided in the above-mentioned embodiment shown in FIG. 2 or FIG. 3 .
  • the communication interface 703 is used for communication.
  • the memory 701, the processor 702 and the communication interface 703 are connected to each other by a bus 704;
  • the bus 704 can be a peripheral component interconnect standard (peripheral component interconnect, referred to as PCI) bus or an extended industry standard architecture (extended industry standard architecture, referred to as EISA) bus wait.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 7 , but it does not mean that there is only one bus or one type of bus.
  • the processor 701 is configured to determine a first traffic volume, where the first traffic volume is the traffic volume of the base station within a first preset time in the future; according to the first traffic volume and the corresponding relationship, Determining a first target power amount, the first target power amount is the theoretical power consumption of the base station within the first preset time, and the correspondence reflects the correspondence between traffic volume and power consumption; in response to The remaining power of the backup battery is greater than the first target power, and the power characteristic value satisfies the first condition, and the base station is controlled to switch from the mains to the backup battery for power supply, and the power characteristic value reflects that the base station uses Cost of mains electricity supply.
  • the specific implementation manner please refer to the description in the embodiments shown in FIG. 2 and FIG. 3 , and details are not repeated here.
  • memory 701 can be random access memory (random-access memory, RAM), flash memory (flash), read only memory (read only memory, ROM), erasable programmable read only memory (erasable programmable read only memory, EPROM) ), electrically erasable programmable read only memory (electrically erasable programmable read only memory, EEPROM), register (register), hard disk, removable hard disk, CD-ROM or any other form of storage medium known to those skilled in the art.
  • RAM random-access memory
  • flash memory flash memory
  • read only memory read only memory
  • ROM read only memory
  • EPROM erasable programmable read only memory
  • EEPROM electrically erasable programmable read only memory
  • register register
  • hard disk removable hard disk
  • CD-ROM any other form of storage medium known to those skilled in the art.
  • the above-mentioned processor 702 can be, for example, a central processing unit (central processing unit, CPU), a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application-specific integrated circuit (application-specific integrated circuit, ASIC), field programmable Gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and so on.
  • the aforementioned communication interface 703 may be, for example, an interface card, etc., and may be an Ethernet (ethernet) interface or an asynchronous transfer mode (asynchronous transfer mode, ATM) interface.
  • Ethernet Ethernet
  • asynchronous transfer mode asynchronous transfer mode, ATM
  • the embodiment of the present application also provides a chip, which is set in a control device, and the control device can be applied inside or outside the base station, and is used to control the base station and the backup power supply of the base station.
  • the chip includes a processor and interface circuits.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is configured to run code instructions to execute the above-mentioned battery control method provided in the embodiment shown in FIG. 2 or FIG. 3 .
  • the processor is configured to determine a first traffic volume, where the first traffic volume is the traffic volume of the base station within a first preset time in the future; according to the first traffic volume and the corresponding relationship, determine the first traffic volume A target power amount, the first target power amount is the theoretical power consumption of the base station within the first preset time, and the correspondence reflects the correspondence between traffic volume and power consumption; in response to the The remaining power of the backup battery is greater than the first target power, and the power characteristic value satisfies the first condition, and the base station is controlled to switch from the mains power to the backup battery for power supply, and the power characteristic value reflects that the base station uses the mains power The cost of supplying electricity.
  • the processor is configured to determine a first traffic volume, where the first traffic volume is the traffic volume of the base station within a first preset time in the future; according to the first traffic volume and the corresponding relationship, determine the first traffic volume A target power amount, the first target power amount is the theoretical power consumption of the base station within the first preset time, and the correspondence
  • the embodiment of the present application also provides a base station, where the base station includes a backup battery and a control device.
  • the backup battery can be used to store electric energy, so as to realize the shifted peak power consumption of the base station.
  • the control device may be used to control the backup battery, so as to execute the battery control method provided in any embodiment of the present application.
  • the base station may also include a communication device for carrying services, and the control device may also instruct the communication device to close any one or more services, or to close any one or more service channels when the mains power is cut off.
  • the base station may also include a communication device for carrying services, and the control device may also instruct the communication device to close any one or more services, or to close any one or more service channels when the mains power is cut off.
  • An embodiment of the present application also provides a computer-readable storage medium, including instructions, which, when run on a computer, cause the computer to execute the battery control method provided in any embodiment of the present application.
  • a computer-readable storage medium including instructions, which, when run on a computer, cause the computer to execute the battery control method provided in any embodiment of the present application.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical business division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or integrated. to another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each business unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software business units.
  • the integrated unit is realized in the form of a software business unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods in various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the services described in the present invention may be implemented by hardware, software, firmware or any combination thereof.
  • the services may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

本申请公开了一种电池控制方法、装置及设备,旨在保证基站的备电充足的基础上,通过备用电池实现错峰供电,降低基站的运营成本。其中,所述电池控制方法用于对基站的备用电池进行控制,包括:确定第一业务量,所述第一业务量为所述基站在未来第一预设时间内的业务量;根据所述第一业务量和对应关系,确定第一目标电量,所述第一目标电量为所述基站在所述第一预设时间内的理论耗电量,所述对应关系体现业务量和耗电量之间的对应关系;响应于所述备用电池的剩余电量大于所述第一目标电量,且电力特征值满足第一条件,控制所述基站从市电切换至所述备用电池进行供电,所述电力特征值体现所述基站采用市电供电的成本。

Description

一种电池控制方法、装置及设备
本申请要求于2021年09月29日提交中国国家知识产权局、申请号为202111155643.X、发明名称为“一种电池控制方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种电池控制方法、装置及设备。
背景技术
基站(Base Station)是通信系统中的重要组成部分,可以用于将手机等终端设备接入网络。基站主要以市电作为电力来源。因此,当市电出现停电时,基站无法继续工作,也就无法为终端设备提供接入服务。
因此,为了保证基站在停电条件下的正常工作,可以在基站中设置备用电池。这样,当市电正常供电的情况下,基站采用市电作为电力来源。在市电出现停电的情况下,基站可以采用备用电池作为电力来源,从而保证基站的正常工作。
但是,目前基站的备用电池仅在市电停电的情况下被使用,而备用电池本身寿命有限,导致基站的运营成本较高。
发明内容
本申请提供了一种电池控制方法、装置及设备,旨在降低基站的运营成本。
第一方面,本申请提供了一种电池控制方法,该方法可以用于对基站的备用电池进行控制。在基站的运营过程中,可以先对基站在未来的第一预设时间内可能承载的业务量进行预测,得到第一业务量。在确定第一业务量之后,可以根据对应关系确定基站承载第一业务量的业务所需的第一目标电量。即,第一目标电量为停电状态下维持基站在未来的第一预设时间内正常工作所需要的电量的最小值。接着,如果备用电池的剩余电量大于第一目标电量,说明可以利用备用电池实现错峰用电,降低基站的用电成本。那么在备用电池的剩余电量大于第一目标电量,且电力特征值满足第一条件的情况下,可以将基站的供电电源从市电切换到备用电池,从而在当前时刻避免采用成本较高的市电进行供电。这样,由于错峰配电的过程中备用电池的剩余电量大于第一目标电量,即使市电停电,备用电池中所储备的电能仍然可以支持基站持续工作第一预设时间。如此,在保证基站的备电充足的基础上,实现了错峰供电,降低了基站的运营成本。
在一些可能的实现中,对应关系可以包括业务量和功耗之间的对应关系,第一目标电量可以是根据基站可能的功耗确定的。具体地,在确定第一目标电量的过程中,可先根据第一业务量和对应关系,确定基站在未来的第一预设时间内可能的功耗变化趋势。接着,可以根据基站在第一预设时间内的功耗变化趋势,并结合时间确定第一目标电量。如此,通过确定基站在第一预设时间内各个时间段可能的功耗,得到的第一目标电量更加准确。
在一些可能的实现中,还可以根据电量预留策略对第一业务量进行修正,使得根据第一业务量计算出的第一目标电量更加接近基站实际的用电情况。其中,电量预留策略体现基站在停电状态下对业务的支持情况,例如可以指示基站在市电停电状态下拒绝支持部分业务。具体地,在确定功耗变化趋势之前,可以先根据第一业务量和电量预留策略确定第 二业务量。其中,第二业务量为停电状态下仍然被基站支持的业务在第一预设时间内产生的业务量,即停电状态下基站实际需要支持的业务量。在得到第二业务量之后,可以根据第二业务量和对应关系确定基站在第一预设时间内的功耗变化趋势。
在一些可能的实现中,电量预留策略可以包括第一电量预留策略,第一电量预留策略可以用于支持基站在市电停电的状态下拒绝支持第一业务。那么在计算第二业务量的过程中,可以先根据第一电量预留策略确定在未来的第一预设时间内,第一业务可能产生的业务量,得到第三业务量。接着利用第一业务量减去第三业务量,得到的差即为基站在停电状态下支持的业务在第一预设时间内产生的业务量,即第二业务量。
在一些可能的实现中,第一业务量可以是根据基站的历史工作情况得到的。具体地,可以根据历史业务量数据和当前时间,对基站在未来第一预设时间内的业务量进行预测,得到第一业务量。其中,历史业务量数据包括基站在过去的多个时间段内对业务的承载情况。如此,结合基站历史的工作情况,可以较为准确地确定基站在未来第一预设时间内可能产生的业务量。
在一些可能的实现中,随着备用电池为基站进行供电,备用电池的剩余电量会不断减小。如果备用电池的剩余电量不大于第一目标电量,说明备用电池所储备的电能可能无法继续支持基站在市电停电状态下继续工作第一预设时间。那么,在备用电池的剩余电量小于第一目标电量时,可以将基站的电源从备用电池切换到市电。
在一些可能的实现中,还可以进一步利用市电为备用电池充电。具体地,可以检测市电的电力特征值是否满足第二条件。如果电力特征值满足第二条件,说明采用市电进行供电的成本较低,那么可以采用市电为备用电池充电,补充备用电池为基站供电时消耗的电能。
在一些可能的实现中,市电可能发生停电。那么在市电停电之后,可以控制备用电池为基站供电,使得基站在市电停电状态下的继续工作,进而保障通信系统的正常运行。
在一些可能的实现中,在市电停电状态下,可以控制基站拒绝支持部分业务,以减少基站的功耗,从而延长基站的运营时间。具体地,基站可以获取备用电池的剩余电量,并判断备用电池的剩余电量是否大于第二目标电量。如果备用电池的剩余电量不大于第二目标电量,可以根据剩余电量确定预设控制策略,并根据预设控制策略关闭基站的第二业务。其中,预设控制策略用于指示基站在市电停电的状态下关闭第二业务,第二业务可以包括基站支持的任意一种或多种业务。如此,在市电停电且备用电池中的剩余电量较少的情况下,可以关闭基站所承载的部分业务,降低基站的功耗,以延长基站的使用时间。
在一些可能的实现中,预设控制策略可以随着备用电池的剩余电量改变。具体地,如果检测到备用电池的剩余电量不大于第三目标电量,可以根据剩余电量调整预设控制策略,从而进一步减少基站所承载的业务,延长基站的使用时间。其中第三目标电量小于第二目标电量。
在一些可能的实现中,第二业务可以包括第五代移动通信技术新无线(5th Generation Mobile Communication Technology New Radio,5G NR)业务。
第二方面,本申请提供了一种电池控制装置,所述装置用于对基站的备用电池进行控 制,包括:
第一确定单元,用于确定第一业务量,所述第一业务量为所述基站在未来第一预设时间内的业务量;
第二确定单元,用于根据所述第一业务量和对应关系,确定第一目标电量,所述第一目标电量为所述基站在所述第一预设时间内的理论耗电量,所述对应关系体现业务量和耗电量之间的对应关系;
切换单元,用于响应于所述备用电池的剩余电量大于所述第一目标电量,且电力特征值满足第一条件,控制所述基站从市电切换至所述备用电池进行供电,所述电力特征值体现所述基站采用市电供电的成本。
在一些可能的实现中,所述对应关系包括业务量和功耗之间的对应关系,所述第二确定单元,用于根据所述第一业务量和所述对应关系,确定所述基站在所述第一预设时间内的功耗变化趋势;根据所述功耗变化趋势和所述第一预设时间确定所述第一目标电量。
在一些可能的实现中,所述第二确定单元,用于根据所述第一业务量和电量预留策略确定第二业务量,所述电量预留策略体现停电状态下所述基站支持的业务的情况,所述第二业务量为所述停电状态下所述基站支持的业务,在所述第一预设时间内的业务量;根据所述第二业务量和所述对应关系,确定所述基站在所述第一预设时间内的功耗变化趋势
在一些可能的实现中,所述电量预留策略包括第一电量预留策略,所述第二确定单元,用于响应于所述电量预留策略为第一电量预留策略,确定所述第一业务在未来第一预设时间内产生的第三业务量;将所述第一业务量和所述第三业务量做差,得到所述第二业务量。
在一些可能的实现中,所述第一确定单元,用于根据历史业务量数据和当前时间,对所述基站在未来第一预设时间内的业务量进行预测,得到所述第一业务量,所述历史业务量数据体现所述基站在过去的多个时间段内业务量的承载情况。
在一些可能的实现中,所述切换单元,还用于响应于所述备用电池的剩余电量不大于所述第一目标电量,或所述电力特征值不满足第一条件,控制所述基站从所述备用电池切换至所述市电进行供电。
在一些可能的实现中,所述装置还包括充电控制单元;所述充电控制单元,用于响应于所述电力特征值满足第二条件,通过所述市电为所述备用电池充电;其中,所述基站在所述电力特征值满足第二条件的条件下采用市电供电的成本,低于在所述电力特征值满足第一条件的条件下采用市电供电的成本。
在一些可能的实现中,所述切换单元,还用于响应于所述市电停电,控制所述备用电池为所述基站供电。
在一些可能的实现中,所述切换单元,用于获取所述备用电池的剩余电量;响应于所述剩余电量不大于第二目标电量,根据所述剩余电量确定预设控制策略,所述预设控制策略用于指示所述基站在市电停电状态下关闭第二业务;根据所述预设控制策略控制所述基站关闭所述第二业务。
在一些可能的实现中,所述切换单元,还用于响应于所述剩余电量不大于第三目标电量,调整所述预设控制策略,所述第四目标电量低于所述第三目标电量。
在一些可能的实现中,所述第二业务包括5G新无线5G NR业务。
第三方面,本申请提供了一种设备,所述设备包括存储器和处理器;
所述存储器,用于存储指令;
所述处理器,用于执行所述存储器中的所述指令,执行如前述第一方面所述的电池控制方法。
第四方面,本申请提供了一种基站,所述基站包括备用电池和控制设备;所述备用电池,用于存储电能;所述控制设备,用于执行如前述第一方面所述的电池控制方法。
第五方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质包括指令,当其在计算机上运行时,使得所述计算机执行如前述第一方面所述的电池控制方法。
附图说明
图1为本申请实施例提供的基站的一种应用场景的示意图;
图2为本申请实施例提供的电池控制方法的一种方法流程图;
图3为本申请实施例提供的电池控制方法的另一种方法流程图;
图4-A为本申请实施例提供的基站的功耗随时间变化规律的一种示意图;
图4-B为本申请实施例提供的基站的功耗随时间变化规律的又一种示意图;
图4-C为本申请实施例提供的基站的功耗随时间变化规律的另一种示意图;
图4-D为本申请实施例提供的基站的功耗随时间变化规律的再一种示意图;
图4-E为本申请实施例提供的基站的功耗随时间变化规律的又一种示意图;
图5为本申请实施例提供的基站的功耗随时间变化规律的另一种示意图;
图6为本申请实施例提供的一种电池控制装置的结构框图;
图7为本申请实施例提供的一种设备的硬件架构图。
具体实施方式
下面结合附图对传统技术和本申请实施例提供的电池控制方法进行介绍。
参见图1,该图为本申请实施例提供的基站的一种应用场景的示意图。在图1所示应用场景中,基站10分别与备用电池20和市电电网30连接。在市电正常供电的情况下,基站10可以从市电电网30获取电能进行工作。而在市电出现故障的情况下,市电电网30无法向基站10提供足够的电能。基站10可以将供电电源由市电电网30切换到备用电池20,采用备用电池作为能源进行工作。如此,即使发生市电停电,基站10也能够采用备用电池20进行供电,保证用户能够正常使用通话和上网等移动通信业务。
对于基站的备用电池,其只有在市电停电的情况下才会得到应用。但是备用电池的寿命大多有限,即使基站使用备用电池的次数较少,基站的备用电池仍然需要定期更换,而更换备用电池产生的费用无疑会增加基站的运营成本。也就是说,由于传统技术对基站的备用电池的利用率较低,导致基站的运营成本较高。
为了解决上述问题,本申请发明人经研究发现,部分地区的电价可能随着时间的变化而变化。每天的不同时段的电价可能不同。例如,每日19时至22时可能是用电的高峰期,那么为了限制用电,这些时间段的电价可能相对较高。而每日22时至7时的用电人数可能较少,这些时间段的电价可能相对较低。因此,如果能够利用基站的备用电池实现错峰用 电,在电价较高时利用备用电池供电,在电价较低时为备用电池进行充电,可以有效地降低基站的运营成本。
为此,本申请实施例提供了一种电池控制方法,可以根据基站的业务量和对应关系确定需要为市电停电预留的第一目标电量,并在剩余电量大于第一目标电量且用电成本较高的情况下改用备用电池作为电池基站的电力来源。这样,在保证基站在停电状态下的正常工作的基础上,提高了备用电池的利用率,通过错峰用电降低了基站的运营成本。
本申请实施例提供的电池控制方法可以应用于图1所示应用场景中的基站10。其中,基站10可以包括计算机等具有数据处理功能的设备,本申请实施例提供的电池控制方法可以由该具有数据处理功能的设备执行。可选地,本申请实施例提供的电池控制方法也可以由独立的控制设备执行,用于对基站的供电系统进行控制。
参见图2,该图为本申请实施例提供的电池控制方法的一种流程示意图,本申请实施例提供的电池控制方法可以包括如下步骤:
S201:确定第一业务量。
为了确保基站的备用电池能够在市电停电的情况下支持基站保持工作状态,在控制采用备用电池为基站供电之前,可以先确定基站可能产生的第一业务量。其中,第一业务量为基站在未来第一预设时间内可能产生的业务量。即,在未来的第一预设时间内,若保证通信系统的正常工作,基站需要承载第一业务量的业务。那么为了使得通信系统可以在市电停电的状态下继续正常工作,可以在备用电池中预留第一业务量对应的电量。这样,即使出现市电停电,备用电池中剩余的电量仍然能够支持基站承载第一业务量的业务,使得通信系统可以正常运行。
在一些可能的实现方式中,基站的工作情况可能随时间变化。例如,每天不同时间段基站承载的业务量可能不同,且不同日期同一时间段基站承载的业务量可能较为接近。例如,对于居民区附近的基站,工作日工作时间(例如9:00至下午16:00)的业务量可能相对较少,而休息日对应时间的业务量可能相对较多。
因此,在本申请实施例中,可以根据基站的历史工作情况确定第一业务量。具体地,可以先获取历史业务量数据,历史业务量数据包括基站在过去多个时间段内业务量的承载情况。接着,可以根据历史业务量数据和当前时间,对基站在未来第一预设时间内的业务量进行预测,得到第一业务量。例如,可以将基站在上一周同一天的同一时间段所承载的业务量作为第一业务量。
在一些其他可能的实现中,第一业务量也可能是根据基站的最大负载得到的。例如,可以将基站在单位时间内能够负载的最大业务量与第一预设时间的长度相乘,得到的结果为基站在第一预设时间内能够承载的最大业务量。为了确保基站在市电停电状态下的正常工作,可以将该最大业务量作为第一业务量。
S202:根据第一业务量和对应关系,确定第一目标电量。
在得到第一业务量之后,可以根据第一业务量和对应关系确定第一目标电量。其中,第一目标电量为基站支持第一业务量的业务所需要的电量,对应关系可以体现业务量和耗电量之间的对应关系。
业务量在时间上的分布不同,基站承载对应业务所需的电量可能也不同。也就是说,如果第一业务量集中在较短的时间间隔内出现,基站消耗的电量可能较多;如果第一业务量平均分布在第一预设时间中,基站消耗的电量可能较少。因此,为了提高第一目标电量计算的准确率,在一些可能的实现方式中,第一业务量可以包括在第一预设时间内多个时间间隔中基站的业务量,例如可以包括基站在未来一小时内每分钟所需承载的业务量。相应地,对应关系可以包括业务量和功耗之间的对应关系,表示基站在单位时间内,承载对应业务量需要消耗的功率。
如果第一预设时间包括多个时间间隔,第一业务量包括基站在每个时间间隔内的业务量,那么在确定第一目标电量的过程中,可以先根据第一业务量和对应关系,确定基站在多个时间间隔中每个时间间隔内的功耗,得到基站在第一预设时间内的功耗变化趋势。接着,可以根据时间和功耗变化趋势,确定基站在第一预设时间内的总功耗,得到第一目标电量。可选地,功耗变化趋势可以是时间坐标系下的功耗变化曲线,可以通过对功耗变化曲线进行积分的方式计算得到第一目标电量。
在本申请实施例中,对应关系可以是根据基站的历史工作数据得到的。具体地,可以预先收集基站在运营过程中产生的业务量和承载对应业务量时基站的功耗,并对业务量和功耗进行分析,确定基站的功耗与所承载的业务量之间的对应关系。例如,在一些可能的实现方式中,可以以一个自然周为一个数据采集周期。在确定对应关系的过程中,可以将基站最近一个周期或多个周期的业务数据与功耗数据相关联,对其进行统计学习,确定基站的业务量和之间的对应关系。
在一些可能的实现方式中,为了确保基站在停电状态下的正常工作,可以为备用电池预留更多的电量。那么在计算得到第一目标电量之后,可以根据电量预留的策略增加第一目标电量。
随着通信技术的发展,一台基站可能支持多类业务,而基站为不同的业务提供服务的功耗可能不同。例如,一台基站可能同时支持第五代移动通信技术(5th generation Mobile Communication Technology,5G)类业务、第四代移动通信技术(4th generation mobile communication technology,4G)类业务和第二代手机通信技术(2nd generation wireless telephone technology)类业务三类业务。而其中5G类业务的功耗最高,2G类业务的功耗最低。在市电停电后,可以控制基站拒绝支持部分业务,以延长基站的工作时间。
由于基站在市电停电后会拒绝支持部分业务,第一业务量可能与基站在停电后实际承载的业务量之间存在一定的差异。因此,在一些可能的实现方式中,可以先根据电量预留策略对第一业务量进行修正,得到第二业务量,再根据第二业务量计算第一目标电量。其中,电量预留策略是根据基站在停电状态下支持的业务情况得到的,体现基站在停电状态下支持何种业务,以及拒绝支持何种业务。关于电量预留策略的详细介绍可以参见图3对应实施例的介绍,这里不再赘述。
根据前文介绍可知,第一目标电量可以是根据基站在第一预设时间内的功耗变化趋势得到的。那么在计算第一目标电量之前,可以先根据第一业务量和电量预留策略确定第二业务量,再根据第二业务量计算基站在第一预设时间内的功耗变化趋势。其中,第二业务 量为基站在停电状态下支持的业务在第一预设时间内产生的业务量。也就是说,在计算第一目标电量的过程中,可以先根据电量预留策略确定基站在市电停电状态下支持的业务,再确定这部分业务在第一预设时间内的业务量(即第二业务量),最后再根据第二业务量计算功耗变化趋势,通过功耗变化趋势确定第一目标电量。
在一些可能的实现方式中,电量预留策略可能用于指示基站在市电停电的状态下拒绝支持部分业务。在本申请实施例中,基站在市电停电状态下拒绝支持的业务被称为第一业务。可选地,第一业务可以包括耗电量较高的5G类业务,例如拒绝支持5G NR业务。那么在确定第二业务量时,可以先根据电量预留策略确定第一业务,并确定第一业务在第一预设时间内产生的第三业务量,再将第一业务量与第三业务量做差,得到第二业务量。
S203:响应于备用电池的剩余电量大于第一目标电量,且电力特征值满足第一条件,控制基站从市电切换至备用电池进行供电。
在计算得到第一目标电量之后,可以比较备用电池的剩余电量和第一目标电量之间的大小。如果备用电池的剩余电量小于第一目标电量,说明备用电池当前所储备的电能无法支持基站在市电停电状态下工作第一预设时长。在这种情况下利用备用电池进行错峰供电可能无法保证基站的正常工作。因此,可以控制基站继续以市电作为电力来源,并根据电力特征值进一步判断是否需要对备用电池进行充电。其中,电力特征值可以用于表征基站采用市电供电的成本。可选地,电力特征值可以是基站消耗单位电能(例如千瓦时)产生的费用等参数,即市电的单位电价。
如果备用电池的剩余电量大于第一目标电量,说明备用电池当前所储备的电能能够支持基站在市电停电的状态下工作第一预设时长,即备用电池能够支持基站进行错峰用电,那么可以进一步判断电力特征值是否满足第一条件。其中,第一条件用于指示基站采用市电供电的成本高于第一阈值。可选地,第一条件可以指市电的单位电价处于电价循环周期内的最高值,也可以指市电的单位电价高于电价循环周期内的平均。
在本申请实施例中,可以在从市电的供电单位处查询得到电力特征值随时间的变化情况,并将电力特征值随时间的变化情况存储到基站中。这样,在基站的运营过程中,可以根据时间确定当前时刻的电力特征值。在一些其他可能的实现方式中,可以通过联网查询的方式获取市电的实时电力特征值。
也就是说,在电力特征值满足第一条件的情况下,基站采用市电进行供电的成本较高,如果基站继续采用市电作为电力来源,可能会增加基站的运营成本。因此,为了降低基站的运营成本,可以控制基站停止采用市电作为电源,转而利用备用电池为自身提供工作所需的电能,避免基站继续采用电力特征值较高的市电作为电源。
S204:响应于备用电池的剩余电量不大于第一目标电量,或电力特征值不满足第一条件,控制基站从备用电池切换至市电进行供电。
在控制基站从市电切换至备用电池进行供电之后,可以对备用电池的剩余电量和电力特征值进行监控。如果检测到备用电池的剩余电量不大于第一目标电量,或者市电的电力特征值不满足第一条件,可以控制基站将供电电源从备用电池切换至市电。
如果备用电池的剩余电量小于第一目标电量,说明备用电池所储备的电能无法供应基 站在市电停电状态下继续工作第一预设时长,如果发生市电停电,基站可能无法继续工作足够长的第一预设时间。如果备用电池的剩余电量等于第一目标电量,那么如果继续使用备用电池为基站供电,会导致备用电池的剩余电量继续下降,也会导致基站在市电停电状态下无法工作第一预设时间。因此,如果检测到备用电池的剩余电量小于或等于第一目标电量,可以控制基站采用市电作为电力来源,停止消耗备用电池中所储备的电能,确保基站在市电停电状态下具有足够的电能为终端设备提供接入服务。
如果市电的电力特征值不满足第一条件,说明采用市电为基站提供电能的成本较低。这样,出于减少备用电池的充放电时间,延长备用电池的使用寿命的考虑,采用市电为基站供电所产生的运营成本可能小于采用备用电池为基站进行用电所产生的运营成本。因此,即使备用电池的剩余电量大于第一目标电量,如果市电的电力特征是不满足第一条件,也可以控制基站从备用电池转为市电作为电能的来源。
S205:响应于所述电力特征值满足第二条件,通过所述市电为所述备用电池充电。
在步骤S204中,基站可以使用备用电池中所储备的电能作为电力来源。为了补充备用电池中储备的电能,在一些可能的实现方式中,可以在电力特征值满足第二条件的情况下,通过市电为备用电池充电。其中,第二条件用于指示基站采用市电供电的成本较低,例如第二条件可以办理市电的电力特征值小于或等于第二阈值。可选地,第二阈值和前述第一阈值可以相同,也可以低于第一阈值。
举例说明。在一些可能的实现方式中,一天内市电的单位电价可能包括单位电价A、单位电价B和单位电价C三种市电电价。其中单位电价A大于单位电价B,单位电价B大于单位电价C。假设第一阈值为单位电价A,第二阈值为单位电价C,那么在市电的单位电价为单位电价A的情况下,如果备用电池的剩余电量大于第一目标电量,可以控制基站采用备用电池代替市电作为电力来源。如果市电的单位电价从单位电价A变化为单位电价B或单位电价C,或者备用电池的剩余电量小于第一目标电量,那么可以控制基站采用市电代替备用电池作为电力来源,以确保备用电池所储备的电能足够基站在市电停电状态下使用。进一步地,如果市电的单位电价降低至单位电价C,可以采用市电为备用电池进行充电,以待下一次市电电价上升时使用。如此,通过备用电池所储备的电能作为缓冲,实现了不同市电电价下的错峰用电,在保证备电足够的情况下降低了基站的运营成本。
在一些可能的实现方式中,当基站使用备用电池作为电力来源时,备用电池的剩余电量可能降低至第一目标电量或以下,而市电的用电成本可能较高。为了确保基站在市电停电状态下的正常工作,即使电力特征值满足第一条件,或电力特征值不满足第二条件,仍然可以控制市电为备用电池充电,确保备用电池中所储备的电能保持在第一目标电量之上。
在本申请实施例中,可以在基站的运营过程中对基站在未来的第一预设时间内可能承载的业务量进行预测,得到第一业务量,并根据对应关系确定基站承载第一业务量的业务所需的第一目标电量。确定停电状态下,维持基站在未来的第一预设时间内正常工作所需要的电量的最小值。接着,如果备用电池的剩余电量大于第一目标电量,说明可以利用备用电池实现错峰用电,降低基站的用电成本。那么在备用电池的剩余电量大于第一目标电量,且电力特征值满足第一条件的情况下,可以将基站的供电电源从市电切换到备用电池, 从而在当前时刻避免采用成本较高的市电进行供电。这样,由于错峰配电的过程中备用电池的剩余电量大于第一目标电量,即使市电停电,备用电池中所储备的电能仍然可以支持基站持续工作第一预设时间。如此,在保证基站的备电充足的基础上,实现了错峰供电,降低了基站的运营成本。
在上文的介绍中,备用电池可以在市电的用电成本较低时从市电存储电能,并在市电的用电成本较高时为基站提供电力来源,实现错峰用电,降低基站的运营成本。在这个过程中,备用电池的电量始终大于第一目标电量。在市电发生停电之后,可以采用备用电池所储备的电能作为基站的电力来源。
但是,根据前文介绍可知,第一目标电量是根据基站在第一预设时间内可能需要承载的业务量进行预测得到的。在一些应用场景中,基站在市电停电状态下承载的业务量可能比正常供电状态下承载的业务量更多,而且市电停电的时间可能也大于第一预设时间,导致基站需要在停电状态下承载更多的业务量。也就是说,在市电停电状态下,备用电池内所储备的电能可能无法支持基站承载全部业务。因此,在一些可能的实现方式中,在市电停电的情况下,可以根据备用电池剩余的电量控制基站拒绝支持部分业务,从而延长基站在市电停电下的工作时间。
下面结合图3,对停电状态下备用电池以及基站的控制方法进行介绍。参见图3,该图为停电状态下,本申请实施例提供的电池控制方法的方法流程图,包括:
S301:响应于市电处于停电状态,控制备用电池为基站供电,并获取备用电池的剩余电量。
在确定市电停电之后,可以控制备用电池为基站进行供电,保证基站在停电状态下的正常工作。在控制备用电池为基站进行供电之后,可以获取备用电池的剩余电量,以便及时调整基站的工作情况。
根据S202中的介绍可知,在计算第一目标电量的过程中,可以根据电量预留策略对第一业务量进行修正。其中电量预留策略用于指示基站在市电停电状态下拒绝支持部分业务。相应地,在控制备用电池为基站进行供电之后,可以控制基站根据电量预留策略的指示拒绝支持部分业务。
在本申请实施例中,电量预留策略可以用于指示基站关闭一种或多种业务的部分业务通道,也可以用于指示基站关闭一种或多种业务。其中,一种业务可以包括一个或多个业务通道,每个业务通道可以对应一个或多个终端设备。可选地,一个业务通道可以对应基站中一块通信板卡。
举例说明。假设基站在正常情况下可以支持5G NR业务、长期演进(Long Term Evolution,LTE)业务和全球通(global system for mobile,GSM)业务三种业务,那么在正常情况下,基站的功耗随时间的变化趋势可以如图4-A所示。其中,区域401表示5G NR业务的功耗,区域402表示LTE业务的功耗,区域403表示G业务的功耗。在市电发生停电之后,基站可以根据电量预留策略关闭一种或多种业务,或关闭一种或多种业务的一个或多个业务通道。下面分别进行介绍。
在第一种可能的实现方式中,电量预留策略用于指示基站在市电停电后关闭5G NR业 务的部分业务通道。即,基站可以在市电停电之后拒绝支持部分5G NR业务,例如基站可以关闭部分5G NR业务对应的通信板卡。那么基站的功耗随时间的变化趋势可以如图4-B所示,其中,t1为发生市电停电的时刻,区域404表示市电停电后5G NR业务的功耗,剩余各个区域所表示的含义与图4-A中相同。从图4-B中可以看出,基站的5G NR业务的功耗在停电后降低,从而减少了基站的总功耗,延长了基站在市电停电状态下的工作时间。
在第二种可能的实现方式中,电量预留策略用于指示基站在市电停电后关闭5G NR业务的部分业务通道和LTE业务的部分业务通道。即,基站可以在市电停电之后拒绝支持部分5G NR业务和部分LTE业务。那么基站的功耗随时间的变化趋势可以如图4-C所示,其中,t1为发生市电停电的时刻,区域405表示市电停电后LTE业务的功耗,剩余各个区域所表示的含义与图4-B中相同。从图4-C中可以看出,基站的5G NR业务的功耗和LTE业务的功耗在停电后降低,从而减少了基站的总功耗,延长了基站在市电停电状态下的工作时间。另外,相较于第一种可能的实现方式,由于基站还关闭了LTE业务的部分业务通道,可以进一步降低基站的功耗,延长了基站在停电状态下的使用时间。
在第三种可能的实现方式中,电量预留策略可以用于指示基站在市电停电后关闭5G NR业务。其中,关闭5G NR业务可以指关闭5G NR业务对应的多个业务通道。另外,为了避免恢复供电后重新连接,可以在关闭5G NR业务的同时保留5G NR业务的呼吸连接。即,基站的功耗随时间的变化趋势可以如图4-D所示,其中t1为发生市电停电的时刻,区域404表示维持5G NR业务呼吸连接的功耗,区域406表示市电停电后5G NR业务的功耗,剩余各个区域所表示的含义与图4-A中相同。如此,相较于第一种实现方式,由于关闭了5G NR业务,仅保留5G NR业务的呼吸连接,进一步降低了基站的功耗,延长基站在停电状态下的使用时间。
在第四种可能的实现方式中,电量预留策略可以用于指示基站在市电停电后关闭5G NR业务和LTE业务。其中,关闭LTE业务可以指关闭LTE业务对应的多个业务通道。另外,为了避免恢复供电后重新连接,可以在关闭LTE业务的同时保留LTE业务的呼吸连接。那么基站的功耗随时间的变化趋势可以如图4-E所示,其中t1为发生市电停电的时刻,区域405表示维持LTE业务呼吸连接的功耗,区域407表示市电停电后LTE业务的功耗,剩余各个区域所表示的含义与图4-D中相同。如此,相较于前三种实现方式,由于关闭了更多的业务,进一步降低了基站的功耗,进一步延长基站在停电状态下的使用时间。
需要说明的是,上述四种可能的实现方式仅作为示例给出,并不代表全部可能的实现方式。在实际的应用场景中,可以根据基站的需求控制基站关闭任意业务或业务通道。
S302:响应于剩余电量不大于第二目标电量,根据剩余电量确定预设控制策略。
随着基站的运行,备用电池的剩余电量会不断减少。在这个过程中,可以多次获取备用电池的剩余电量,并比较剩余电量和第二目标电量的大小(第二目标电量小于第一目标电量)。如果备用电池的剩余电量降低至第二目标电量或以下,说明备用电池中储备的电能不足。如果基站继续维持当前业务,可能在恢复供电之前将备用电池中的电量耗尽,导致基站停止工作。因此,为了尽可能地延长基站的运营时间,可以在备用电池的剩余电量不大于第三目标电量的情况下,根据剩余电量确定预设控制策略。
其中,预设控制策略用于指示基站关闭第二业务,第二业务可以是基站在停电状态下支持的任意业务。也就是说,在市电停电的状态下,如果备用电池的剩余电量低至第二目标电量或以下,可以控制基站进一步关闭第二业务,以延长基站在停电状态下的运营时间。
在一些可能的实现方式中,备用电池的剩余电量不同,对应的预设控制策略也不同。可选地,备用电池的剩余电量越低,预设控制策略要求基站关闭的业务可能越多。例如,假设基站在正常情况下支持5G NR业务、LTE业务和G业务三种业务,那么预设控制策略可以以表1的形式表示。
表1
剩余电量(百分比) 预设控制策略
50%≤X<100% -
25%≤X<50% 关闭5G NR业务
10%≤X<25% 关闭LTE业务
X<10% 关闭G业务
其中,X表示备用电池的剩余电量占备用电池的总电量的占比。从表1中可以看出,备用电池的剩余电量越低,基站拒绝支持的业务也就越多。
那么,在基站运行的过程中,可以根据备用电池的剩余电量调整预设控制策略。例如,如果检测到备用电池的剩余电量低于第三目标电量(第三目标电量小于第二目标电量),可以根据第三目标电量调整预设控制策略。
S303:根据预设控制策略控制基站关闭第二业务。
在确定预设控制策略之后,可以根据预设策略控制基站关闭第二业务,降低基站的负载,从而降低基站的耗电量。
举例说明。假设基站在正常情况下可以支持5G NR业务、LTE业务和G业务三种业务,那么在正常情况下,基站的功耗随时间的变化趋势可以如图4-A所示。在市电停电之后,基站采用备用电池作为电力来源,那么基站的功耗随时间的变化趋势可以如图5所示。
其中,t1为市电停电的时刻,t2为剩余电量达到第二目标电量的时刻,t3为剩余电量达到第三目标电量的时刻。其中,区域501为正常供电状态下5G NR业务的功耗,区域502为正常供电状态下LTE业务的功耗,区域503为正常供电状态下G业务的功耗。
在市电停电之后,可以控制基站关闭5G NR业务的部分业务通道,那么基站支持5G NR业务的功耗从区域501降低为区域504。在备用电池的剩余电量降低至第二目标电量时(即t2时刻),基站可以拒绝继续支持5G NR业务,并关闭LTE业务的部分业务通道,仅保留5G NR业务的心跳连接。那么基站在5G NR业务上的功耗从区域504进一步降低至区域505,在LTE业务上的功耗从区域502降低至区域506。
在备用电池的剩余电量降低至第三目标电量时(即t3时刻),基站可以拒绝继续支持LTE业务,仅保留LTE业务的心跳连接。那么基站在LTE业务上的功耗从区域506进一步降低至区域507。如此,通过设置多种电量预留策略,在延长基站运行时间的基础上,能够为终端设备提供更多的服务。
相应的,参见图6,本申请实施例还提供了一种电池控制装置600,该装置可以应用于基站或基站的控制设备,以实现图2或图3对应实施例所示的电池控制功能。该基站分别与备用电池和市电电网连接。具体地,电池控制装置600包括:
第一确定单元601,用于确定第一业务量,所述第一业务量为所述基站在未来第一预设时间内的业务量。
第二确定单元602,用于根据所述第一业务量和对应关系,确定第一目标电量,所述第一目标电量为所述基站在所述第一预设时间内的理论耗电量,所述对应关系体现业务量和耗电量之间的对应关系。
切换单元603,用于响应于所述备用电池的剩余电量大于所述第一目标电量,且电力特征值满足第一条件,控制所述基站从市电切换至所述备用电池进行供电,所述电力特征值体现所述基站采用市电供电的成本。
该电池控制装置能够实现前述方法实施例中对备用电池和基站的控制功能,具体执行步骤请参考前述方法实施例,此处不在赘述。
参见图7,本申请实施例提供了一种设备700,该设备700可以实现上述图2或图3对应实施例中对电池或基站的控制功能。设备700包括存储器701、处理器702和通信接口703,
存储器701,用于存储指令;在实现图6所示实施例的情况下,且图6实施例中所描述的各单元为通过软件实现的情况下,执行图6中的第一确定单元601、第二确定单元602和切换单元603功能所需的软件或程序代码存储在存储器701中。
处理器702,用于执行存储器701中的指令,执行上述应用于图2或图3所示实施例中提供的电池控制方法。
通信接口703,用于进行通信。
存储器701、处理器702和通信接口703通过总线704相互连接;总线704可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在具体实施例中,处理器701用于确定第一业务量,所述第一业务量为所述基站在未来第一预设时间内的业务量;根据所述第一业务量和对应关系,确定第一目标电量,所述第一目标电量为所述基站在所述第一预设时间内的理论耗电量,所述对应关系体现业务量和耗电量之间的对应关系;响应于所述备用电池的剩余电量大于所述第一目标电量,且电力特征值满足第一条件,控制所述基站从市电切换至所述备用电池进行供电,所述电力特征值体现所述基站采用市电供电的成本。具体实现方式,请参考图2和图3中所示实施例中的描述,这里不再赘述。
上述存储器701可以是随机存取存储器(random-access memory,RAM)、闪存(flash)、 只读存储器(read only memory,ROM)、可擦写可编程只读存储器(erasable programmable read only memory,EPROM)、电可擦除可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、寄存器(register)、硬盘、移动硬盘、CD-ROM或者本领域技术人员知晓的任何其他形式的存储介质。
上述处理器702例如可以是中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
上述通信接口703例如可以是接口卡等,可以为以太(ethernet)接口或异步传输模式(asynchronous transfer mode,ATM)接口。
本申请实施例还提供了一种芯片,芯片设置在控制设备中,所述控制设备可以应用于基站内或基站外,用于对基站和基站的备用电源进行控制。芯片包括处理器和接口电路。
接口电路用于接收代码指令并传输至处理器。
处理器用于运行代码指令以执行上述应用于图2或图3所示实施例中提供的电池控制方法。
在具体实施例中,处理器用于确定第一业务量,所述第一业务量为所述基站在未来第一预设时间内的业务量;根据所述第一业务量和对应关系,确定第一目标电量,所述第一目标电量为所述基站在所述第一预设时间内的理论耗电量,所述对应关系体现业务量和耗电量之间的对应关系;响应于所述备用电池的剩余电量大于所述第一目标电量,且电力特征值满足第一条件,控制所述基站从市电切换至所述备用电池进行供电,所述电力特征值体现所述基站采用市电供电的成本。该处理器的详细处理过程请参考上述图2或图3所示实施例中的详细描述,这里不再赘述。
本申请实施例还提供了一种基站,该基站包括备用电池和控制设备。其中,备用电池可以用于存储电能,以实现基站的错峰用电。控制设备可以用于对备用电池进行控制,以执行本申请任一实施例提供的电池控制方法。另外,基站还可以包括用于承载业务的通信设备,在市电停电状态下,控制设备还可以指示通信设备关闭任意一个或多个业务,或关闭任意一个或多个业务通道。具体实现方式,请参考图2和图3所示实施例中的详细描述,这里不再赘述。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行本申请任一实施例提供的电池控制方法。具体实现方式,请参考图2和图3所示实施例中的详细描述,这里不再赘述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意 图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑业务划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各业务单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件业务单元的形式实现。
集成的单元如果以软件业务单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的业务可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些业务存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施方式而已。
以上,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (26)

  1. 一种电池控制方法,其特征在于,所述方法用于对基站的备用电池进行控制,包括:
    确定第一业务量,所述第一业务量为所述基站在未来第一预设时间内的业务量;
    根据所述第一业务量和对应关系,确定第一目标电量,所述第一目标电量为所述基站在所述第一预设时间内的理论耗电量,所述对应关系体现业务量和耗电量之间的对应关系;
    响应于所述备用电池的剩余电量大于所述第一目标电量,且电力特征值满足第一条件,控制所述基站从市电切换至所述备用电池进行供电,所述电力特征值体现所述基站采用市电供电的成本。
  2. 根据权利要求1所述的方法,其特征在于,所述对应关系包括业务量和功耗之间的对应关系,所述根据所述第一业务量和对应关系,确定第一目标电量包括:
    根据所述第一业务量和所述对应关系,确定所述基站在所述第一预设时间内的功耗变化趋势;
    根据所述功耗变化趋势和所述第一预设时间确定所述第一目标电量。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第一业务量和所述对应关系,确定所述基站在所述第一预设时间内的功耗变化趋势包括:
    根据所述第一业务量和电量预留策略确定第二业务量,所述电量预留策略体现停电状态下所述基站支持的业务的情况,所述第二业务量为所述停电状态下所述基站支持的业务,在所述第一预设时间内的业务量;
    根据所述第二业务量和所述对应关系,确定所述基站在所述第一预设时间内的功耗变化趋势。
  4. 根据权利要求3所述的方法,其特征在于,所述电量预留策略包括第一电量预留策略,所述第一电量预留策略用于指示所述基站在市电停电状态下拒绝支持第一业务;
    所述根据所述第一业务量和电量预留策略确定第二业务量包括:
    响应于所述电量预留策略为第一电量预留策略,确定所述第一业务在未来第一预设时间内产生的第三业务量;
    将所述第一业务量和所述第三业务量做差,得到所述第二业务量。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述确定第一业务量包括:
    根据历史业务量数据和当前时间,对所述基站在未来第一预设时间内的业务量进行预测,得到所述第一业务量,所述历史业务量数据体现所述基站在过去的多个时间段内业务量的承载情况。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    响应于所述备用电池的剩余电量不大于所述第一目标电量,或所述电力特征值不满足第一条件,控制所述基站从所述备用电池切换至所述市电进行供电。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    响应于所述电力特征值满足第二条件,通过所述市电为所述备用电池充电;
    其中,所述基站在所述电力特征值满足第二条件的条件下采用市电供电的成本,低于在所述电力特征值满足第一条件的条件下采用市电供电的成本。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    响应于所述市电停电,控制所述备用电池为所述基站供电。
  9. 根据权利要求8所述的方法,其特征在于,所述控制所述备用电池为所述基站供电包括:
    获取所述备用电池的剩余电量;
    响应于所述剩余电量不大于第二目标电量,根据所述剩余电量确定预设控制策略,所述预设控制策略用于指示所述基站在市电停电状态下关闭第二业务;
    根据所述预设控制策略控制所述基站关闭所述第二业务。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    响应于所述剩余电量不大于第三目标电量,调整所述预设控制策略,所述第四目标电量低于所述第三目标电量。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第二业务包括第五代移动通信技术新无线5G NR业务。
  12. 一种电池控制装置,其特征在于,所述装置用于对基站的备用电池进行控制,包括:
    第一确定单元,用于确定第一业务量,所述第一业务量为所述基站在未来第一预设时间内的业务量;
    第二确定单元,用于根据所述第一业务量和对应关系,确定第一目标电量,所述第一目标电量为所述基站在所述第一预设时间内的理论耗电量,所述对应关系体现业务量和耗电量之间的对应关系;
    切换单元,用于响应于所述备用电池的剩余电量大于所述第一目标电量,且电力特征值满足第一条件,控制所述基站从市电切换至所述备用电池进行供电,所述电力特征值体现所述基站采用市电供电的成本。
  13. 根据权利要求12所述的装置,其特征在于,所述对应关系包括业务量和功耗之间的对应关系,
    所述第二确定单元,用于根据所述第一业务量和所述对应关系,确定所述基站在所述第一预设时间内的功耗变化趋势;根据所述功耗变化趋势和所述第一预设时间确定所述第一目标电量。
  14. 根据权利要求13所述的装置,其特征在于,
    所述第二确定单元,用于根据所述第一业务量和电量预留策略确定第二业务量,所述电量预留策略体现停电状态下所述基站支持的业务的情况,所述第二业务量为所述停电状态下所述基站支持的业务,在所述第一预设时间内的业务量;根据所述第二业务量和所述对应关系,确定所述基站在所述第一预设时间内的功耗变化趋势。
  15. 根据权利要求12所述的装置,其特征在于,所述电量预留策略包括第一电量预留策略,
    所述第二确定单元,用于响应于所述电量预留策略为第一电量预留策略,确定所述第一业务在未来第一预设时间内产生的第三业务量;将所述第一业务量和所述第三业务量做差,得到所述第二业务量。
  16. 根据权利要求12-15任一项所述的装置,其特征在于,
    所述第一确定单元,用于根据历史业务量数据和当前时间,对所述基站在未来第一预设时间内的业务量进行预测,得到所述第一业务量,所述历史业务量数据体现所述基站在过去的多个时间段内业务量的承载情况。
  17. 根据权利要求12-16任一项所述的装置,其特征在于,
    所述切换单元,还用于响应于所述备用电池的剩余电量不大于所述第一目标电量,或所述电力特征值不满足第一条件,控制所述基站从所述备用电池切换至所述市电进行供电。
  18. 根据权利要求12-17任一项所述的装置,其特征在于,所述装置还包括充电控制单元;
    所述充电控制单元,用于响应于所述电力特征值满足第二条件,通过所述市电为所述备用电池充电;其中,所述基站在所述电力特征值满足第二条件的条件下采用市电供电的成本,低于在所述电力特征值满足第一条件的条件下采用市电供电的成本。
  19. 根据权利要求12-18任一项所述的装置,其特征在于,
    所述切换单元,还用于响应于所述市电停电,控制所述备用电池为所述基站供电。
  20. 根据权利要求19所述的装置,其特征在于,
    所述切换单元,用于获取所述备用电池的剩余电量;响应于所述剩余电量不大于第二目标电量,根据所述剩余电量确定预设控制策略,所述预设控制策略用于指示所述基站在市电停电状态下关闭第二业务;根据所述预设控制策略控制所述基站关闭所述第二业务。
  21. 根据权利要求20所述的装置,其特征在于,
    所述切换单元,还用于响应于所述剩余电量不大于第三目标电量,调整所述预设控制策略,所述第四目标电量低于所述第三目标电量。
  22. 根据权利要求20或21所述的装置,其特征在于,所述第二业务包括第五代移动通信技术新无线5G NR业务。
  23. 一种设备,其特征在于,所述设备包括存储器和处理器;
    所述存储器,用于存储指令;
    所述处理器,用于执行所述存储器中的所述指令,执行如权利要求1-11任意一项所述的电池控制方法。
  24. 一种基站,其特征在于,所述基站包括备用电池和控制设备;
    所述备用电池,用于存储电能;
    所述控制设备,用于执行如权利要求1-11任一项所述的电池控制方法。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-11任意一项所述的电池控制方法。
  26. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-11任意一项所述的电池控制方法。
PCT/CN2022/120132 2021-09-29 2022-09-21 一种电池控制方法、装置及设备 WO2023051338A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111155643.X 2021-09-29
CN202111155643.XA CN115882545A (zh) 2021-09-29 2021-09-29 一种电池控制方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2023051338A1 true WO2023051338A1 (zh) 2023-04-06

Family

ID=85756542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120132 WO2023051338A1 (zh) 2021-09-29 2022-09-21 一种电池控制方法、装置及设备

Country Status (2)

Country Link
CN (1) CN115882545A (zh)
WO (1) WO2023051338A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117134467B (zh) * 2023-10-23 2024-01-30 成都秦川物联网科技股份有限公司 基于物联网的气体流量计电源管理方法、系统、设备
CN117277317B (zh) * 2023-11-22 2024-03-15 深圳创芯技术股份有限公司 工业供电电源电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1518373A (zh) * 2003-01-16 2004-08-04 华为技术有限公司 基站掉电保护机制的实现方法
CN109088737A (zh) * 2017-06-14 2018-12-25 上海华为技术有限公司 一种油机节能方法、相关设备及系统
CN112421701A (zh) * 2019-08-22 2021-02-26 上海华为技术有限公司 一种备电控制方法、装置及系统
CN112531761A (zh) * 2020-12-11 2021-03-19 长沙新材料产业研究院有限公司 一种直流削峰填谷系统、装置和方法
CN112803495A (zh) * 2021-02-24 2021-05-14 华北电力大学 基于能量共享的5g基站微网光储系统容量优化配置方法
CN112968456A (zh) * 2021-03-01 2021-06-15 华北电力大学 一种计及基站通信负载状态的5g基站储能调控方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1518373A (zh) * 2003-01-16 2004-08-04 华为技术有限公司 基站掉电保护机制的实现方法
CN109088737A (zh) * 2017-06-14 2018-12-25 上海华为技术有限公司 一种油机节能方法、相关设备及系统
CN112421701A (zh) * 2019-08-22 2021-02-26 上海华为技术有限公司 一种备电控制方法、装置及系统
CN112531761A (zh) * 2020-12-11 2021-03-19 长沙新材料产业研究院有限公司 一种直流削峰填谷系统、装置和方法
CN112803495A (zh) * 2021-02-24 2021-05-14 华北电力大学 基于能量共享的5g基站微网光储系统容量优化配置方法
CN112968456A (zh) * 2021-03-01 2021-06-15 华北电力大学 一种计及基站通信负载状态的5g基站储能调控方法

Also Published As

Publication number Publication date
CN115882545A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
WO2023051338A1 (zh) 一种电池控制方法、装置及设备
CN102811289B (zh) 终端和终端的电源管理方法
JP5792836B2 (ja) 電力しきい値を使用したモバイル通信端末のためのスマート電力マネージメントの方法および装置
WO2021031742A1 (zh) 一种备电控制方法、装置及系统
US11196284B2 (en) Energy storage system and controlling method thereof
US10170921B2 (en) Methods and systems for efficient battery charging and usage
CN101772177B (zh) 一种基带资源管理方法、系统及装置
CN104137382A (zh) Ups中智能能量存储的系统和方法
WO2012170320A1 (en) System and method for managing power consumption
TWI441009B (zh) 用於電腦系統之處理單元的時脈頻率調整方法及相關裝置
CN106413053B (zh) 一种移动终端及其省电方法
JP2014176087A (ja) 再生可能エネルギーを使用する基地局、カバレッジエリアの調整方法、及びセルラー無線システム
CN105516515A (zh) 一种智能终端自动切换省电模式的方法及系统
CN110650518A (zh) 一种基站设备的节能方法和设备
KR20200005862A (ko) 에너지 관리 시스템 및 그 에너지 관리 시스템을 구비한 에너지 저장 시스템
JP5533343B2 (ja) 電力平準化システム
JP7058786B1 (ja) 蓄電池制御装置
WO2024066910A1 (zh) 通信站及其电源控制方法、装置及计算机存储介质
EP3872602A1 (en) Sleep of power supply, sleep determination method and device, sleep device
JP2017005845A (ja) 電力制御方法および電力制御装置
JP2013162571A (ja) 省エネルギーシステム
KR20130026668A (ko) 이동통신 시스템에서 기지국의 에너지 효율을 기반으로 운영하는 중앙제어 장치 및 방법
JP2022182742A (ja) 蓄電池管理システム
TW202215746A (zh) 能源調度系統、裝置及方法
WO2023273861A1 (zh) 一种备电方法以及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE