WO2023051145A1 - 热管理系统和具有其的车辆 - Google Patents

热管理系统和具有其的车辆 Download PDF

Info

Publication number
WO2023051145A1
WO2023051145A1 PCT/CN2022/116347 CN2022116347W WO2023051145A1 WO 2023051145 A1 WO2023051145 A1 WO 2023051145A1 CN 2022116347 W CN2022116347 W CN 2022116347W WO 2023051145 A1 WO2023051145 A1 WO 2023051145A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve port
waterway
battery
cabin
Prior art date
Application number
PCT/CN2022/116347
Other languages
English (en)
French (fr)
Inventor
杨冬生
白云辉
张俊岩
赵尚仲
唐一峰
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to KR1020237042201A priority Critical patent/KR20240005890A/ko
Priority to AU2022356849A priority patent/AU2022356849A1/en
Priority to EP22874536.0A priority patent/EP4331886A1/en
Publication of WO2023051145A1 publication Critical patent/WO2023051145A1/zh
Priority to US18/523,892 priority patent/US20240092138A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32284Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/06Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant directly from main radiator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00914Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is a bypass of the condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00935Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising four way valves for controlling the fluid direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of vehicles, in particular to a thermal management system and a vehicle having the same.
  • the thermal management system of the vehicle in the related art can cool the interior of the vehicle through the heat pump module, and use the heat pump module to cool the battery and electric assembly, but the thermal management system in the related art cannot make full use of the electric assembly waterway and the battery waterway It is impossible to achieve separate cooling or heating of the battery and electric assembly, common cooling or heating when connected in series, and use of waste heat from the electric assembly to heat the battery when connected in series.
  • the overall integration is low And the energy consumption of vehicle is high.
  • the present application aims to solve at least one of the technical problems existing in the related art. Therefore, one purpose of this application is to propose a thermal management system that can not only make full use of the waste heat of the battery and the electric assembly, but also heat or cool the battery and the electric assembly under various working conditions. It has the advantages of high energy utilization rate and high integration.
  • the present application also proposes a vehicle with the above thermal management system.
  • a thermal management system including: a heat pump module; a battery water circuit; a water exchange circuit; a radiator water circuit; an electric assembly water circuit;
  • the first heat exchanger has a first heat exchange passage and a second heat exchange passage, the first heat exchange passage communicates with the heat pump module, and the second heat exchange passage communicates with the water exchange passage; and a control valve group, the control valve group is switchable between the first state, the second state and the third state, and the control valve group is respectively connected to the battery water circuit, the water exchange circuit, and the radiator
  • the waterway is connected to the waterway of the electric assembly; wherein, when the control valve group is in the first state, the waterway of the electric assembly is in series with the waterway of the radiator, or the waterway of the battery is connected to the heat exchange The waterway is connected in series, or the waterway of the electric assembly is connected in series with the waterway of the radiator and the waterway of the battery is connected in series with the water exchange circuit
  • the waste heat of the battery and the electric assembly can be fully utilized, and the heat pump module can generate heat, which has the advantages of high energy utilization rate and integration.
  • the control valve group includes: a first four-way valve, the first four-way valve has a first valve port, a second valve port, a third valve port and a fourth valve port, so The first valve port is connected to one end of the radiator water circuit, the second valve port is connected to one end of the battery water circuit, the third valve port is connected to one end of the water exchange circuit, and the fourth valve port is connected to one end of the battery water circuit.
  • the valve port is connected to one end of the electric assembly waterway; and a second four-way valve, the second four-way valve has a fifth valve port, a sixth valve port, a seventh valve port and an eighth valve port, and the The fifth valve port is connected to the other end of the electric assembly waterway, the sixth valve port is connected to the other end of the radiator waterway, and the seventh valve port is connected to the other end of the battery waterway, so The eighth valve port is connected to the other end of the water exchange circuit;
  • the first valve port communicates with the fourth valve port
  • the second valve port communicates with the third valve port
  • the fifth valve port communicates with the fourth valve port
  • the port communicates with the sixth valve port
  • the seventh valve port communicates with the eighth valve port
  • the first valve port communicates with the second valve port
  • the third valve port communicates with the fourth valve port
  • the fifth valve port communicates with the fourth valve port.
  • the eighth valve port is connected, and the sixth valve port is connected with the seventh valve port;
  • the first valve port communicates with the second valve port
  • the third valve port communicates with the fourth valve port
  • the fifth valve port communicates with the fourth valve port.
  • the sixth valve port is connected, the seventh valve port is connected with the eighth valve port, or the first valve port is connected with the fourth valve port, and the second valve port is connected with the third valve port.
  • the valve ports are connected, the fifth valve port is connected with the eighth valve port, and the sixth valve port is connected with the seventh valve port.
  • the water circuit of the electric power assembly includes: an electric control assembly; an intercooler, the intercooler is connected in parallel with the electric control assembly; and a motor, the motor is connected in series with the electric control assembly And the motor is located downstream of the electric control assembly, or the motor is connected in series with the intercooler and the motor is located downstream of the intercooler.
  • the radiator water circuit includes: a radiator and a first direct branch, the radiator is connected in parallel with the first direct branch, and the cooling in the radiator water circuit Liquid can selectively flow through the radiator or the first direct branch.
  • the battery water circuit includes: a battery and a second direct branch, the battery is connected in parallel with the second direct branch, and the cooling liquid in the battery water circuit can be selectively The ground flows through the battery or the second direct branch.
  • the battery water circuit includes: a heater connected to the battery.
  • the heater is a PTC or an exhaust gas heat exchanger.
  • the heat pump module includes: a compressor; at least one condenser in the cabin, one end of the condenser in the cabin is connected to one end of the compressor; One end of the external heat exchanger is selectively connected to or disconnected from the other end of the in-cabin condenser through a pre-refrigeration branch, and the other end of the external heat exchanger is connected to the The other end of the in-cabin condenser can be selectively connected or disconnected; at least one in-cabin evaporator, one end of the in-cabin evaporator is connected to the said outboard heat exchanger through a refrigeration rear branch The other end can be selectively connected or disconnected; and a gas-liquid separator, the gas-liquid separator is connected between the other end of the compressor and the other end of the evaporator in the cabin, and the outboard exchange The one end of the heater can be selectively connected or disconnected from the other end of the compressor through the post-heating branch circuit and the gas-liquid separator
  • the multiple condensers in the cabin include a first condenser in the cabin and a second condenser in the cabin, and the condenser in the first cabin
  • One end is connected to the one end of the compressor, and the other end of the first in-chamber condenser is connected to the refrigeration front branch, and one end of the second in-chamber condenser is connected to the first two-way valve through the first two-way valve.
  • the one end of the compressor is connected, and the other end of the second in-chamber condenser is connected with the pre-refrigeration branch.
  • the multiple in-cabin evaporators include a first in-cabin evaporator and a second in-cabin evaporator, and the first in-cabin evaporator One end is connected to the post-refrigeration branch through an expansion valve, the other end of the evaporator in the first cabin is connected to the gas-liquid separator, and one end of the evaporator in the second cabin is connected to the other end of the evaporator in the second cabin.
  • the expansion valve is connected with the post-refrigeration branch circuit, and the other end of the evaporator in the second cabin is connected with the gas-liquid separator.
  • a second two-way valve is provided on the pre-refrigeration branch; a first one-way valve and a third two-way valve are provided on the post-refrigeration branch, and the first one-way valve allows The refrigerant in the outdoor heat exchanger flows to the in-cabin evaporator, and the first check valve prevents the refrigerant in the in-cabin evaporator from flowing to the out-of-cabin heat exchanger;
  • a fourth two-way valve, a first electromagnetic expansion valve and a second one-way valve are provided, the second one-way valve allows the refrigerant of the in-chamber evaporator to flow to the out-of-chamber heat exchanger, and the second A one-way valve prevents the refrigerant of the outdoor heat exchanger from flowing to the evaporator in the cabin;
  • a fifth two-way valve is arranged on the post-heating branch; the one end of the first heat exchange passage passes through the second The electromagnetic expansion valve is connected
  • the heating front branch includes: a first section, one end of the first section is connected to the one end of the cabin condenser, and the other ends of the first section are respectively connected with the first one-way valve, the third two-way valve and the second electromagnetic expansion valve; and a second section, one end of the second section is connected with the other end of the first section, and the The other end of the second section is connected to the other end of the outdoor heat exchanger; wherein, the fourth two-way valve is arranged on the first section, and the first electromagnetic expansion valve and the A second one-way valve is provided on the second section.
  • the gas-liquid separator includes: a first flow path, one end of the first flow path is connected with the first one-way valve and the one end of the first section, the first flow path The other end of the flow path is connected to the third two-way valve, the second electromagnetic expansion valve is connected to the one end of the second segment; and a second flow path, one end of the second flow path is connected to the The other end of the evaporator in the cabin, the post-heating branch circuit and the other end of the first heat exchange path are connected, and the other end of the second flow path is connected to the Connect the other end.
  • the thermal management system further includes: an engine water circuit; and a second heat exchanger, the second heat exchanger has a third heat exchange path and a fourth heat exchange path, and the third The heat exchange passage is connected with the water exchange water circuit, and the fourth heat exchange passage is connected with the engine water circuit.
  • the engine water circuit includes: an engine; and a sixth two-way valve connected in series with the engine.
  • the engine water circuit includes: a warm air system connected in series with the engine.
  • a vehicle including the thermal management system according to the embodiment of the first aspect of the present application.
  • the thermal management system described in the embodiment of the first aspect of the present application not only can make full use of the waste heat of the battery and the electric assembly, but also can Under normal circumstances, it can heat or cool the battery and electric assembly, which has the advantages of high energy utilization rate and high integration.
  • Fig. 1 is a structural schematic diagram of a control valve group of an air conditioner in a first state according to an embodiment of the present application.
  • Fig. 2 is a structural schematic diagram of the control valve group of the air conditioner in a second state according to an embodiment of the present application.
  • Fig. 3 is a structural schematic diagram of the control valve group of the air conditioner in a third state according to an embodiment of the present application.
  • Fig. 4 is another structural schematic diagram of the control valve group of the air conditioner in the third state according to the embodiment of the present application.
  • Fig. 5 is a structural schematic diagram of the control valve group of the air conditioner in a first state according to another embodiment of the present application.
  • Fig. 6 is a structural schematic diagram of the control valve group of the air conditioner in a second state according to another embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of the control valve group of the air conditioner in a third state according to another embodiment of the present application.
  • Fig. 8 is another structural schematic diagram of the control valve group of the air conditioner in a third state according to another embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a heat pump module of an air conditioner during a refrigeration cycle according to an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a heat pump module of an air conditioner during a heating cycle according to an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of a heat pump module of an air conditioner during a heating cycle according to another embodiment of the present application.
  • FIG. 12 is a schematic diagram of a vehicle according to an embodiment of the present application.
  • Heat pump module 100 compressor 110, in-cabin condenser 120, first in-cabin condenser 121, second in-cabin condenser 122, outboard heat exchanger 130, pre-refrigeration branch 131, post-refrigeration branch 132, system Pre-heating branch 133, first section 134, second section 135, post-heating branch 136, gas-liquid separator 140, first flow path 141, second flow path 142, in-chamber evaporator 150, first in-chamber Evaporator 151, second cabin evaporator 152,
  • Control valve group 600 first four-way valve 610, first valve port 611, second valve port 612, third valve port 613, fourth valve port 614, second four-way valve 620, fifth valve port 621, fourth valve port
  • the first one-way valve 900 , the second one-way valve 910 , the first electromagnetic expansion valve 920 , the second electromagnetic expansion valve 930 , and the expansion valve 940 are identical to each other.
  • first feature and “second feature” may include one or more of these features.
  • thermal management system 1 according to an embodiment of the present application will be described with reference to the drawings.
  • the thermal management system 1 includes a heat pump module 100 , a battery waterway 200 , a water exchange waterway 250 , a radiator waterway 300 , an electric assembly waterway 400 , and a first heat exchanger 500 and control valve group 600.
  • the first heat exchanger 500 has a first heat exchange passage 510 and a second heat exchange passage 520, the first heat exchange passage 510 communicates with the heat pump module 100, the second heat exchange passage 520 communicates with the water exchange passage 250, and the control valve
  • the group 600 is switchable among the first state, the second state and the third state and communicates with the battery waterway 200 , the water exchange waterway 250 , the radiator waterway 300 and the electric assembly 100 waterway 400 respectively.
  • the first heat exchanger 500 may be a plate heat exchanger, and the refrigerant of the heat pump module 100 and the coolant of the water exchange circuit 250 exchange heat through the first heat exchanger 500 .
  • the radiator waterway 300 and the water exchange waterway 250 can be provided with water pumps, or the electric assembly waterway 400 and the battery waterway 200 can be provided with water pumps, or the battery waterway 200, the water exchange waterway 250, the radiator waterway 300 and The electric assembly waterways 400 can all be provided with water pumps.
  • the coolant in the battery waterway 200 , the water exchange waterway 250 , the radiator waterway 300 and the electric assembly waterway 400 may be the same.
  • the electric assembly waterway 400 is connected in series with the radiator waterway 300, and/or the battery waterway 200 is connected in series with the heat exchange waterway 250; that is, the control valve group 600 is in the first state , the electric assembly waterway 400 is connected in series with the radiator waterway 300, or the battery waterway 200 is connected in series with the radiator waterway 250, or the electric assembly waterway 400 is connected in series with the radiator waterway 300 and the battery waterway 200 is connected in series with the heat exchange waterway 250.
  • the electric assembly waterway 400 is connected in series with the heat exchange waterway 250, and/or the battery waterway 200 is connected in series with the radiator waterway 300; that is, when the control valve group 600 is in the second state, The electric assembly waterway 400 is connected in series with the heat exchange waterway 250, or the battery waterway 200 is connected in series with the radiator waterway 300, or the electric assembly waterway 400 is connected in series with the heat exchange waterway 250 and the battery waterway 200 is connected in series with the radiator waterway 300.
  • the control valve group 600 is in the third state, the battery waterway 200 , the water exchange waterway 250 , the radiator waterway 300 and the electric assembly waterway 400 are connected in series.
  • the refrigerant of the heat pump module 100 can be R-410A, R-407C, and R-134a, etc.
  • the coolants of the battery waterway 200, the water exchange waterway 250, the radiator waterway 300, and the electric assembly waterway 400 can be water and ethyl alcohol. diol mixture.
  • the first heat exchange passage 510 and the second heat exchange passage 520 are provided in the first heat exchanger 500, and the first heat exchange passage 510 is connected with the heat pump module 100, and the second The heat exchange passage 520 is connected to the water exchange passage 250, the first heat exchange passage 510 and the second heat exchange passage 520 are not connected, the refrigerant of the heat pump module 100 can flow through the first heat exchange passage 510, and the coolant of the water exchange passage 250 can Flowing through the second heat exchange passage 520 , the refrigerant of the heat pump module 100 and the coolant of the water exchange water circuit 250 can exchange heat through the first heat exchanger 500 .
  • the electric assembly waterway 400 is connected in series with the radiator waterway 300, or the battery waterway 200 is connected in series with the heat exchange waterway 250, or the electric assembly waterway 400 is connected in series with the radiator
  • the battery waterway 300 is connected in series and the battery waterway 200 is connected in series with the exchange waterway 250.
  • the waterway 400 of the electric assembly and the waterway 300 of the radiator form a separate waterway, so that the coolant can circulate in the waterway 400 of the electric assembly and the waterway 300 of the radiator, and the temperature of the coolant decreases when it flows through the waterway 300 of the radiator , the coolant flowing out from the radiator waterway 300 can cool down the electric assembly waterway 400 to ensure the normal operation of the electric assembly.
  • the battery water channel 200 and the water exchange channel 250 form a separate water channel, and the coolant can circulate in the battery water channel 200 and the water exchange channel 250 .
  • the temperature of the cooling liquid in the heat exchange water circuit 250 is lowered by the refrigerant of the heat pump module 100, that is, the temperature of the cooling liquid in the battery water circuit 200 is lowered.
  • the cooling liquid can dissipate heat and cool down the battery 210 to avoid battery 210
  • the temperature is too high to ensure the normal operation of the battery 210; when the heat pump module 100 is heating, the water exchange water circuit 250 can absorb the waste heat of the battery 210 through the battery water circuit 200, and then supply heat to the heat pump module 100 through the first heat exchanger 500, so as to The heating difficulty of the heat pump module 100 is reduced, the waste heat of the battery 210 is fully utilized, the energy utilization rate is improved, and the energy consumption is reduced.
  • the electric assembly waterway 400 is connected in series with the heat exchange waterway 250, or the battery waterway 200 is connected in series with the radiator waterway 300, or the electric assembly waterway 400 is connected with the exchange waterway
  • the hot water circuit 250 is connected in series and the battery circuit 200 and the radiator circuit 300 are connected in series.
  • the electric assembly water channel 400 and the water exchange channel 250 form a separate water channel, and the coolant can circulate in the electric assembly water channel 400 and the water exchange channel 250 .
  • the temperature of the cooling liquid in the heat exchange water circuit 250 is lowered by the refrigerant in the heat pump module 100, that is, the temperature of the cooling liquid in the electric assembly water circuit 400 is lowered. , to prevent the temperature of the electric assembly from being too high, so as to ensure the normal operation of the electric assembly;
  • the heat pump 500 provides heat for the heat pump module 100, so as to reduce the heating difficulty of the heat pump module 100, make full use of the waste heat of the electric assembly, improve energy utilization rate, and reduce energy consumption.
  • the battery waterway 200 and the radiator waterway 300 form a separate waterway, and the coolant can circulate in the battery waterway 200 and the radiator waterway 300. In this way, the temperature of the coolant flows through the radiator waterway 300.
  • the cooling fluid flowing out of 300 can dissipate heat and cool down the battery waterway 200 to ensure the normal operation of the battery 210 .
  • the battery waterway 200 , the water exchange waterway 250 , the radiator waterway 300 and the electric assembly waterway 400 are connected in series.
  • the battery waterway 200 , the water exchange waterway 250 , the radiator waterway 300 and the electric assembly waterway 400 form an integral waterway, and the coolant circulates in the battery waterway 200 , the water exchange waterway 250 , the radiator waterway 300 and the electric assembly waterway 400 flow.
  • the temperature of the coolant in the water exchange circuit 250 is lowered by the refrigerant in the heat pump module 100, that is, the temperature of the coolant in the electric assembly waterway 400 and the battery waterway 200 is lowered, and the cooling liquid is the electric assembly waterway 400 and the battery waterway 200.
  • the battery water circuit 200 performs heat dissipation and cooling to prevent the electric assembly and the battery 210 from being overheated, so as to ensure the normal operation of the battery 210 and the electric assembly.
  • the water exchange circuit 250 can absorb the waste heat of the electric assembly through the water circuit 400 of the electric assembly, and at the same time absorb the waste heat of the battery 210 through the water circuit 200 of the battery, and then supply heat to the heat pump module 100 through the first heat exchanger 500 , in order to reduce the heating difficulty of the heat pump module 100, make full use of the waste heat of the electric assembly and the battery 210, improve the energy utilization rate, and reduce energy consumption.
  • the waste heat of the electric assembly can be used alone to heat the battery 210 , reducing the time for starting the vehicle 2 .
  • valve group 600 By controlling the valve group 600 to switch between the first state, the second state and the third state to adjust the connection state of multiple waterways, not only the adjustment method is simple and convenient, but also the layout of pipelines can be reduced, thereby reducing the heat management system. 1 overall volume, higher integration.
  • the heat pump module 100 can realize two functions of cooling and heating, and make full use of the waste heat of the battery 210 and the electric assembly, reducing energy consumption, The performance of the vehicle 2 under various working conditions is optimized, the service life of the vehicle 2 can be extended, and the use cost can be reduced.
  • the thermal management system 1 can not only make full use of the waste heat of the battery 210 and the electric assembly, but also heat the battery 210 and the electric assembly under various working conditions, which has the advantages of high energy utilization rate and integration .
  • control valve group 600 includes a first four-way valve 610 and a second four-way valve 620 .
  • the first four-way valve 610 has a first valve port 611, a second valve port 612, a third valve port 613 and a fourth valve port 614, the first valve port 611 is connected to the radiator waterway 300
  • the second valve port 612 is connected to one end of the battery water circuit 200
  • the third valve port 613 is connected to one end of the water exchange water circuit 250
  • the fourth valve port 614 is connected to one end of the electric assembly water circuit 400 .
  • the second four-way valve 620 has a fifth valve port 621, a sixth valve port 622, a seventh valve port 623 and an eighth valve port 624.
  • the fifth valve port 621 is connected to the other end of the electric assembly waterway 400, and the sixth valve port
  • the port 622 is connected with the other end of the radiator waterway 300
  • the seventh valve port 623 is connected with the other end of the battery waterway 200
  • the eighth valve port 624 is connected with the other end of the water exchange waterway 250 .
  • the first valve port 611 communicates with the fourth valve port 614
  • the second valve port 612 communicates with the third valve port 613
  • the fifth valve port 612 communicates with the third valve port 613
  • the valve port 621 communicates with the sixth valve port 622
  • the seventh valve port 623 communicates with the eighth valve port 624 .
  • the electric assembly waterway 400 is connected in series with the radiator waterway 300 and the battery waterway 200 is connected in series with the heat exchange waterway 250 .
  • the coolant in the water exchange circuit 250 flows through the water pump, the second valve port 612, the third valve port 613 of the first four-way valve 610 and the battery 210, and then passes through the seventh valve port 623 and the eighth valve port of the second four-way valve 620.
  • the valve port 624 flows to the second heat exchange passage 520 of the first heat exchanger 500 , and finally flows back to the water pump, and the cycle is repeated sequentially.
  • the heat pump module 100 and the water exchange channel 250 exchange heat with the first heat exchange channel 510 through the second heat exchange channel 520.
  • the heat pump module 100 indirectly cools the battery 210; when the heat pump module 100 is heating, the heat pump module 100 can absorb waste heat from battery 210 to heat the passenger compartment.
  • the coolant in the radiator waterway 300 flows into the electric assembly waterway 400 through the first valve port 611 and the fourth valve port 614 of the first four-way valve 610 , and then passes through the sixth valve port 622 and the fifth valve port of the second four-way valve 620 .
  • the valve port 621 flows back to the radiator waterway 300 and circulates sequentially. At this time, the radiator waterway 300 dissipates heat for the electric assembly.
  • the first valve port 611 communicates with the second valve port 612
  • the third valve port 613 communicates with the fourth valve port 614
  • the fifth valve port 621 It communicates with the eighth valve port 624
  • the sixth valve port 622 communicates with the seventh valve port 623 .
  • the electric assembly waterway 400 is connected in series with the water exchange waterway 250 and the battery waterway 200 is connected in series with the radiator waterway 300 .
  • the coolant in the radiator waterway 300 flows into the battery waterway 200 through the first valve port 611 and the second valve port 612 of the first four-way valve 610 , and then passes through the seventh valve port 623 and the sixth valve port of the second four-way valve 620 622 flows back to the radiator waterway 300 and circulates sequentially.
  • the radiator water channel 300 can dissipate heat for the battery 210 alone, which can improve the heat dissipation efficiency of the battery 210 , prevent the battery 210 from being overheated, and prolong the service life of the battery 210 .
  • the coolant in the electric assembly water circuit 400 flows through the fourth valve port 614 and the third valve port 613 of the first four-way valve 610 to flow through the water exchange circuit 250 and the first port of the first heat exchanger 500 .
  • the heat exchange channel 510 flows back to the electric assembly waterway 400 through the eighth valve port 624 and the fifth valve port 621 of the second four-way valve 620 , and circulates in sequence.
  • the heat pump module 100 can absorb the waste heat of the electric assembly through the first heat exchanger 500 to realize the heating of the passenger compartment.
  • valve port 611 communicates with the second valve port 612
  • the third valve port 613 communicates with the fourth valve port 614
  • the fifth valve port 621 communicates with the sixth valve port 622
  • the seventh valve port 623 communicates with the eighth valve port 624
  • the first valve port 611 communicates with the fourth valve port 614
  • the second valve port 612 communicates with the third valve port
  • the valve port 613 communicates
  • the fifth valve port 621 communicates with the eighth valve port 624
  • the sixth valve port 622 communicates with the seventh valve port 623 .
  • the battery waterway 200 , the water exchange waterway 250 , the radiator waterway 300 and the electric assembly waterway 400 are connected in series.
  • the coolant in the battery waterway 200 flows to the radiator waterway 300 through the second valve port 612 and the first valve port 611 of the first four-way valve 610, and then passes through the fifth valve port 621 and the sixth valve port of the second four-way valve 620.
  • the valve port 622 flows to the water circuit 400 of the electric power assembly, then flows to the water exchange circuit 250 through the fourth valve port 614 and the third valve port 613 of the first four-way valve 610 , and then passes through the eighth valve port 624 of the second four-way valve 620 , the seventh valve port 623 flows back to the battery waterway 200, and circulates in turn.
  • the waste heat of the electric assembly can be used to heat the battery 210 alone, so as to avoid the temperature of the battery 210 being too low when the ambient temperature is low, and ensure the working efficiency of the battery 210 .
  • control valve group 600 may also be other types of combination valves, such as a combination of five-way valves and three-way valves, and is not limited to using other combination valves to achieve the above coupling relationship.
  • the electric assembly water circuit 400 includes an electric control assembly 410 , an intercooler 420 and a motor 430 .
  • the motor 430 is located downstream of the electric control assembly 410 and the intercooler 420. Since both the intercooler 420 and the electric control assembly 410 are control devices, the high temperature resistance of the intercooler 420 and the high temperature resistance of the electric control assembly 410 are weaker than those of the electric control assembly 410.
  • the high temperature resistance of the motor 430 therefore, setting the motor 430 at the downstream of the electric control assembly 410 and the intercooler 420 can make the coolant pass through the intercooler 420 and the electric control assembly 410 first, and the intercooler 420 and the electric control assembly After the 410 is cooled, it passes through the motor 430, thereby improving the cooling effect of the intercooler 420 and the electronic control component 410, avoiding the damage of the intercooler 420 and the electronic control component 410 due to excessive temperature, and extending the intercooler 420 and the electric control component 410.
  • the service life of the electronic control assembly 410 is not limited to the electric control assembly 410.
  • the intercooler 420 is connected in parallel with the electric control assembly 410
  • the motor 430 is connected in series with the electric control assembly 410
  • the motor 430 is connected in series with the intercooler 420 .
  • the motor 430, the electric control assembly 410 and the intercooler 420 are connected, which means that the circulation lines of the cooling fluid of these components are connected.
  • the components mentioned Communication also means that the corresponding cooling liquid circulation lines of the mentioned components are connected, so that heat exchange between multiple components can be realized by using the cooling liquid.
  • the radiator waterway 300 includes a radiator 310 and a first direct branch 330, the radiator 310 and the first direct branch 330 are connected in parallel, and the coolant in the radiator waterway 300 It can selectively flow through the radiator 310 or the first direct branch 330 .
  • the first direct branch 330 is provided with a first three-way valve 320, and the first three-way valve 320 is connected to the radiator 310 to control whether the liquid in the radiator water channel 300 flows or not. via radiator 310 .
  • the first three-way valve 320 may have one water inlet and two water outlets, the first three-way valve 320 may be arranged between the radiator 310 and the first valve port 611 of the first four-way valve 610, and The water inlet of the first three-way valve 320 is connected to the first valve port 611, one of the water outlets of the first three-way valve 320 is connected to one end of the radiator 310, and the other water outlet of the first three-way valve 320 is directly connected to the The sixth valve port 622 of the second four-way valve 620 .
  • the control valve group 600 is in the third state, that is, when the waste heat of the motor 430 and the electric control assembly 410 is used alone to heat the battery 210, the connection of the first three-way valve 320 to the The water outlet of the radiator 310 is closed, and the water outlet of the first three-way valve 320 connected to the sixth valve port 622 is opened, so that the coolant in the radiator water circuit 300 does not flow through the radiator 310, the motor 430 and the electric motor 430.
  • the waste heat of the control assembly 410 will not be dissipated by the radiator 310, and the waste heat of the motor 430 and the electric control assembly 410 is more fully utilized to heat the battery 210, further improving energy utilization.
  • the battery water circuit 200 includes a battery 210 and a second direct branch 240, the battery 210 and the second direct branch 240 are connected in parallel, and the cooling liquid in the battery water circuit 200 can be selectively Flow through the battery 210 or the second direct branch 240 .
  • a second three-way valve 220 is provided on the second direct connection branch 240, and the second three-way valve 220 is connected to the battery 210 to control whether the liquid in the battery water channel 200 flows through the battery 210 .
  • the second three-way valve 220 may also have one water inlet and two water outlets, the second three-way valve 220 may be arranged between the battery 210 and the seventh valve port 623 of the second four-way valve 620, and The water inlet of the second three-way valve 220 is connected to the seventh valve port 623, one of the water outlets of the second three-way valve 220 is connected to one end of the battery 210, and the other water outlet of the second three-way valve 220 is connected to the first The second valve port 612 of the four-way valve 610 .
  • the water outlet of the second three-way valve 220 connected to the battery 210 can be closed, And open the water outlet of the second three-way valve 220 connected to the second valve port 612 of the first four-way valve 610, so that only the electric assembly is subjected to heat exchange, the heat exchange effect is better, and the heating or cooling rate is faster .
  • the battery water circuit 200 includes a heater 230, and the heater 230 is connected to the battery 210.
  • the heater 230 can be arranged between the battery 210 and the first four-way valve 610 to heat The heater 230 can not only heat the battery 210 , but also heat the motor 430 and the electric control assembly 410 .
  • the control valve group 600 When the control valve group 600 is in the first state, when the heat pump module 100 is heating, if the waste heat of the battery 210 is insufficient, the heater 230 can be turned on to provide auxiliary heat for the heat pump module 100 .
  • the control valve group 600 when the battery 210 needs to be heated, such as plugging in a gun for charging, the control valve group 600 is in the first state, and the heater 230 can be turned on to heat the battery 210, and the heat pump module 100 does not need to be started, with low energy consumption and high safety.
  • the control valve group 600 is in the third state at this time, and the first three-way valve 320 can be controlled so that the coolant in the radiator water channel 300 does not flow through the radiator 310, Then turn on the heater 230 to heat the battery 210 and the electric assembly, and control the second three-way valve 220 so that the coolant in the battery water channel 200 does not flow through the battery 210, so that the heater 230 alone heats the electric assembly.
  • the heater 230 is a PTC (Positive Temperature Coefficient, positive temperature coefficient thermistor) or an exhaust gas heat exchanger.
  • the access voltage of the PTC can be adjusted according to the required heating capacity.
  • the temperature of the assembly and the heat supply for the heat pump module 100 are easy to adjust.
  • the flow rate of exhaust gas recovery can be increased when the required heating capacity is large, and the flow rate of exhaust gas recovery can be correspondingly reduced when the required heating capacity is small, thereby controlling the heating temperature, and the engine 710 can be controlled.
  • the exhaust gas is reused, which further improves the energy utilization rate and reduces energy consumption.
  • exhaust gas heat exchanger and the PTC can be installed at the same time, and at this time the exhaust gas heat exchanger and the PTC can be connected in parallel to improve applicability.
  • the heat pump module 100 includes a compressor 110, at least one in-cabin condenser 120, an out-of-cabin heat exchanger 130, a gas-liquid separator 140 and at least one In-cabin evaporator 150.
  • One end of the in-cabin condenser 120 is connected to one end of the compressor 110, and one end of the out-of-cabin heat exchanger 130 can be selectively connected or disconnected to the other end of the in-cabin condenser 120 through the cooling front branch 131, that is, cooling One end of the front branch 131 is connected to the outdoor heat exchanger 130 and the other end is connected to the interior condenser 120, and the other end of the exterior heat exchanger 130 is connected to the other end of the interior condenser 120 through the heating front branch 133 It can be selectively connected or disconnected, that is, one end of the heating front branch 133 is connected to the other end of the cabin condenser 120 and the other end is connected to the other end of the outdoor heat exchanger 130 .
  • One end of the in-cabin evaporator 150 can be selectively connected or disconnected to the other end of the out-of-cabin heat exchanger 130 through the cooling branch 132, and the gas-liquid separator 140 is connected to the other end of the compressor 110 and the in-cabin evaporator. Between the other end of the heat exchanger 150 , and one end of the outdoor heat exchanger 130 can be selectively connected or disconnected to the other end of the compressor 110 through the post-heating branch 136 and the gas-liquid separator 140 .
  • one end of the outdoor heat exchanger 130, one end of the pre-refrigerating branch 131 and one end of the pre-heating branch 133 are in communication with each other, and the other end of the outdoor heat exchanger 130, one end of the post-refrigerating branch 132 and the heating One end of the post-heating branch 136 is connected to the three, and the other end of the pre-refrigerating branch 131 is connected to one end of the compressor 110, wherein the other end of the pre-refrigerating branch 131 can be directly connected to one end of the compressor 110, or can be connected through
  • the non-working cabin condenser 120 is indirectly connected to one end of the compressor 110, the other end of the post-refrigeration branch 132 is connected to one end of the cabin evaporator 150, and the other end of the heating front branch 133 is connected to the cabin condenser 120.
  • the other end of the post-heating branch 136 is connected to one end of the gas-liquid separator 140 .
  • one end of the first heat exchange path 510 can be selectively connected or disconnected with the other end of the cabin condenser 120 through the pre-heating branch 133, and one end of the first heat exchange path 510 is connected through the post-refrigeration branch.
  • 132 can be selectively connected or disconnected from the other end of the outdoor heat exchanger 130 , and the other end of the first heat exchange passage 510 is connected to the other end of the compressor 110 through the gas-liquid separator 140 .
  • the refrigerant of the heat pump module 100 may flow from the compressor 110 into the in-cabin condenser 120.
  • the refrigerant flows into the pre-cooling branch 131 through the in-cabin condenser 120, and then Flow to the external heat exchanger 130, after the heat is released by the external heat exchanger 130, the refrigerant then flows through the gas-liquid separator 140, the cabin evaporator 150 and the gas-liquid separator 140 in sequence, and then flows back to the compressor 110, and circulates in turn .
  • the cabin condenser 120 does not work or is only used for dehumidification instead of heating the passenger cabin.
  • the outdoor heat exchanger 130 is used as a condenser.
  • the refrigerant of the heat pump module 100 can flow from the compressor 110 into the condenser 120 in the cabin, and the refrigerant flows into the pre-heating branch 133 through the condenser 120 in the cabin, and then flows to the gas-liquid separation
  • the external heat exchanger 140 and the external heat exchanger 130 acts as an evaporator.
  • the external heat exchanger 130 absorbs the heat outside the vehicle to provide heat for the heat pump module 100.
  • the refrigerant flows through the external heat exchanger. After the heater 130, it flows back to the compressor 110 through the post-heating branch and the gas-liquid separator 140, and circulates in sequence.
  • the refrigerant of the heat pump module 100 may flow from the compressor 110 to the condenser 120 in the cabin, and the refrigerant flows into the pre-heating branch 133 through the condenser 120 in the cabin, and then flows to the air
  • the liquid separator 140 the refrigerant flows out of the gas-liquid separator 140 and then flows to the first heat exchanger 500.
  • the first heat exchanger 500 acts as an evaporator, and the first heat exchanger can absorb the heat, and use the heat of the heat exchange circuit 250 to provide heat to the heat pump module 100 for heating, and then the refrigerant flows back to the compressor 110 through the gas-liquid separator 140, and circulates in turn.
  • a second two-way valve 800 is provided on the pre-refrigeration branch 131, and a first one-way valve 900 and a third two-way valve 820 are provided on the post-refrigeration branch 132.
  • the first one-way valve 900 allows The refrigerant in the heat exchanger 130 flows to the evaporator 150 in the cabin and prevents the refrigerant in the evaporator 150 from flowing to the heat exchanger 130 outside the cabin.
  • the second one-way valve 910 allows the refrigerant in the cabin evaporator 150 to flow to the outdoor heat exchanger 130 and prevents the refrigerant in the outdoor heat exchanger 130 from flowing to the cabin evaporator 150, after heating
  • a fifth two-way valve 830 is provided on the branch 136 , and one end of the first heat exchange passage 510 is connected to the pre-heating branch 133 and the post-cooling branch 132 through the second electromagnetic expansion valve 930 .
  • the gas-liquid separator 140 includes a first flow path 141 and a second flow path 142, one end of the first flow path 141 is connected with the first one-way valve 900 and one end of the first section 134, and the other end of the first flow path 141 is connected with the second flow path 141.
  • the three-two-way valve 820 is connected, the second electromagnetic expansion valve 850 is connected with one end of the second section 135, and one end of the second flow path 142 is connected with the other end of the cabin evaporator 150, the post-heating branch 136 and the first heat exchange
  • the other end of the passage 510 is connected, and the other end of the second flow path 142 is connected to the other end of the compressor 110 .
  • the five-two-way valve 830 is closed, and the refrigerant passes through the cabin condenser 120 and then flows to the outdoor heat exchanger 130.
  • the first check valve 900 allows the refrigerant to flow from the outdoor heat exchanger 130 to the first flow path 141.
  • the first check valve 900 The refrigerant is prevented from flowing from the first flow path 141 to the outdoor heat exchanger 130, the refrigerant flows to the first flow path 141, the third two-way valve 820 is opened, the refrigerant flows back to the compressor 110 through the in-cabin evaporator 150 and the second flow path 142, and in turn cycle.
  • the heat pump module 100 When the heat pump module 100 is cooling, if the second electromagnetic expansion valve 930 is closed, the cooling capacity of the heat pump module 100 is completely used to cool the passenger cabin;
  • the heat exchanger 500 exchanges heat with the water exchange circuit 250 , that is, part of the cooling capacity of the heat pump module 100 is used to cool the passenger compartment, and the rest of the cooling capacity of the heat pump module 100 is used to cool at least one of the battery 210 and the electric assembly.
  • the heat pump module 100 is heating, as shown in FIG. 10 , the refrigerant of the heat pump module 100 can flow from the compressor 110 to the condenser 120 in the cabin.
  • the second two-way valve 800 is closed, the fourth two-way valve 810 and the fifth two-way valve 810 are closed.
  • the one-way valve 830 is opened, the refrigerant passes through the cabin condenser 120 and then flows to the first flow path 141, the third two-way valve 820 is closed, the second one-way valve 910 allows the refrigerant to flow from the first flow path 141 to the outdoor heat exchanger 130, the second The one-way valve 910 prevents the refrigerant from flowing from the external heat exchanger 130 to the first flow path 141 , the refrigerant flows to the external heat exchanger 130 and the second flow path 142 back to the compressor 110 , and circulates in sequence.
  • the refrigerant of the heat pump module 100 may flow from the compressor 110 into the condenser 120 in the cabin.
  • the second two-way valve 800 and the fifth two-way valve 830 are closed.
  • the four-two-way valve 810 is opened, the refrigerant flows to the first flow path 141 through the condenser 120 in the cabin, the third two-way valve 820 and the first electromagnetic expansion valve 920 are closed, the second electromagnetic expansion valve 930 is opened, and the refrigerant flows to the first heat exchange 500, the refrigerant flows back to the compressor 110 through the second flow path 142, and circulates in sequence.
  • the heat pump module 100 When the heat pump module 100 is heating, if the second electromagnetic expansion valve 930 is closed, the heating capacity of the heat pump module 100 is completely used for heating the passenger compartment; if the second electromagnetic expansion valve 930 is opened, the refrigerant of the heat pump module 100 passes through the A heat exchanger 500 exchanges heat with the water exchange circuit 250, that is, part of the heating capacity of the heat pump module 100 is used to cool the passenger compartment, and the rest of the heating capacity of the heat pump module 100 is used to heat at least one of the battery 210 and the electric assembly .
  • the heating front branch 133 includes a first section 134 and a second section 135, one end of the first section 134 is connected to one end of the cabin condenser 120, and the other end of the first section 134 It is connected with the other end of the pre-refrigeration branch 131 , one end of the second section 135 is connected with one end of the cabin evaporator 150 , and the other end of the second section 135 is connected with the other side of the outdoor heat exchanger 130 .
  • the fourth two-way valve 810 is arranged on the first section 134
  • the first electromagnetic expansion valve 920 and the second one-way valve 910 are arranged on the second section 135 .
  • the other end of the pre-refrigeration branch 131, the other end of the first section 134, the other end of the cabin evaporator 150, one end of the first heat exchange path 510 and one end of the second section 135 are connected together, and can be passed through Multiple valve bodies such as the first one-way valve 900 , the third two-way valve 820 , the first electromagnetic expansion valve 920 , the second electromagnetic expansion valve 930 and the second one-way valve 910 implement different modes.
  • the gas-liquid separator 140 includes a first flow path 141 and a second flow path 142, one end of the first flow path 141 is connected with the first one-way valve 900 and one end of the first segment 134, the second The other end of the flow path 141 is connected to the third two-way valve 820, the second electromagnetic expansion valve 850 is connected to one end of the second section 135, and one end of the second flow path 142 is connected to the other end of the evaporator 150 in the cabin, after heating
  • the branch path 136 is connected to the other end of the first heat exchange path 510 , and the other end of the second flow path 142 is connected to the other end of the compressor 110 .
  • the first flow path 141 of the gas-liquid separator 140 can be a high-pressure flow path
  • the second flow path 142 can be a low-pressure flow path
  • the first flow path 141 and the second flow path 142 of the gas-liquid separator 140 can perform heat exchange
  • the cooling and heating efficiency of the heat pump module 100 is improved by separating the refrigerant flowing through the second flow path 142 into gas and liquid, and the compressor 110 can be protected.
  • the first electromagnetic expansion valve 920 can control the flow of refrigerant between the first flow path 141 and the cabin evaporator 150, wherein the first electromagnetic expansion valve 920 can be completely closed, so that the first flow path 141 and the The in-chamber evaporators 150 are disconnected, and the first electromagnetic expansion valve 920 can be replaced by a combination of an expansion valve and a two-way valve.
  • the second electromagnetic expansion valve 930 can control the flow of the coolant between the first flow path 141 and the first heat exchange path 510, wherein the second electromagnetic expansion valve 930 can be completely closed, so that the first flow path 141 and the first heat exchange path 510 A heat exchange passage 510 is disconnected, and the second electromagnetic expansion valve 930 can be replaced by a combination of an expansion valve and a two-way valve.
  • the multiple in-cabin condensers 120 include a first in-cabin condenser 121 and a second in-cabin condenser 122 .
  • a plurality of in-cabin condensers 120 can improve the heating effect on the passenger compartment, and then rapidly increase the temperature of the passenger compartment, for example, the first in-cabin condenser 121 and the second in-cabin condenser 122 can be arranged in the different positions, so that the first in-cabin condenser 121 and the second in-cabin condenser 122 can quickly transfer heat to various parts of the passenger compartment.
  • one end of the first in-cabin condenser 121 is connected to one end of the compressor 110 and the other end is connected to the second two-way valve 800 and the fourth two-way valve 810, and one end of the second in-cabin condenser 122 passes through the first
  • the two-way valve 840 is connected with one end of the compressor 110 and the other end is connected with the second two-way valve 800 and the fourth two-way valve 810 .
  • the second in-cabin condenser 122 can be communicated with the compressor 110 by opening the first two-way valve 840, or the first two-way valve can be closed when the heating demand of the passenger compartment is low or when the heat pump module 100 is cooling.
  • Valve 840 is used to disconnect the second in-cabin condenser 122, thereby reducing the heating capacity of the in-cabin condenser 120.
  • the multiple in-cabin evaporators 150 include a first in-cabin evaporator 151 and a second in-cabin evaporator. 152.
  • a plurality of in-cabin evaporators 150 can improve the cooling effect on the passenger compartment, thereby quickly reducing the temperature of the passenger compartment.
  • the first in-cabin evaporator 151 and the second in-cabin evaporator 152 can be arranged on different position, so that the first in-cabin evaporator 151 and the second in-cabin evaporator 152 can quickly transfer cold energy to various parts of the passenger compartment.
  • first in-cabin evaporator 151 is connected to the third two-way valve 820 through an expansion valve 940, and the other end of the first in-cabin evaporator 151 is connected to the fifth two-way valve 830 and the second flow path 142 respectively.
  • the other end of the second in-cabin evaporator 152 is connected to the third two-way valve 820 through another expansion valve 940, and the other end of the second in-cabin evaporator 152 is connected to the fifth two-way valve 830 and the second two-way valve 830 respectively.
  • the other end of the flow path 142 is connected.
  • the first in-cabin evaporator 151 and the second in-cabin evaporator 152 are connected in parallel.
  • the thermal management system 1 further includes an engine water circuit 700 and a second heat exchanger 720 .
  • the second heat exchanger 720 has a third heat exchange passage 721 and a fourth heat exchange passage 722 , the third heat exchange passage 721 is connected to the water exchange water passage 250 , and the fourth heat exchange passage 722 is connected to the engine water passage 700 .
  • the second heat exchanger 720 may be a plate heat exchanger.
  • the coolant in the water exchange circuit 250 may flow through the third heat exchange channel 721
  • the coolant in the engine water circuit 700 may flow through the fourth heat exchange channel 722
  • the third heat exchange channel 721 and the fourth heat exchange channel 722 are not
  • the cooling liquid in the third heat exchange passage 721 and the cooling liquid in the fourth heat exchange passage 722 can exchange heat.
  • the control valve group 600 is in the first state at this time, and the cooling of the coolant in the engine waterway 700 and the heat exchange waterway 250
  • the liquid can be exchanged through the second heat exchanger 720, and the water exchange circuit 250 can absorb the waste heat of the engine 710 through the second heat exchanger 720, and then provide heat for the heat pump module 100 through the first heat exchanger 500, thereby realizing the In-cabin heating further reduces energy consumption.
  • the control valve group 600 is in the first state, and the engine waterway 700
  • the coolant in the cooling water exchange circuit 250 can be exchanged through the second heat exchanger 720, and the water exchange circuit 250 can absorb the waste heat of the engine 710 through the second heat exchanger 720, and then provide heat for the battery 210, ensuring that the vehicle 2 can be started in pure electric mode.
  • the second three-way valve 220 can control the coolant in the battery water circuit 200 not to flow through the battery 210.
  • the liquid can be exchanged through the second heat exchanger 720, and the water exchange circuit 250 can absorb the waste heat of the engine 710 through the second heat exchanger 720, and then provide heat for the electric assembly to ensure the working efficiency of the electric assembly.
  • the engine water circuit 700 includes an engine 710 and a sixth two-way valve 850.
  • the sixth two-way valve 850 is connected in series with the engine 710.
  • the The engine waterway 700 communicates with the fourth heat exchange passage 722, and the engine waterway 700 can be disconnected from the fourth heat exchange passage 722 by closing the sixth two-way valve 850, so that when the waste heat of the engine 710 does not need to be used, for example, in the heat pump module Under 100 cooling conditions or when the battery 210 and the electric assembly do not need to be heated, the engine water channel 700 and the fourth heat exchange channel 722 can be disconnected, the structural arrangement is more reasonable, and the operation is more convenient.
  • the engine waterway 700 includes a warm air system 730 , and the warm air system 730 is connected in series with the engine 710 .
  • the heating system 730 can provide heating for the passenger compartment to increase the temperature of the passenger compartment, specifically, the sixth two-way valve 850 is in an open state, and the vehicle 2 can use the waste heat of the engine 710 at this time Together with the heating system 730, the passenger compartment is heated to improve ride comfort.
  • the vehicle 2 includes the thermal management system 1 according to the above-mentioned embodiment of the present application.
  • Vehicle 2 may be an electric vehicle or a hybrid vehicle.
  • the thermal management system 1 according to the above-mentioned embodiments of the present application, it can not only make full use of the waste heat of the battery 210 and the electric assembly, but also provide energy for the battery 210 and the electric assembly under various working conditions. It can be heated or cooled, and has the advantages of high energy utilization rate and high integration.
  • thermal management system 1 According to the embodiment of the present application and the vehicle 2 with it are known to those skilled in the art, and will not be described in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种热管理系统(1)和车辆,热管理系统(1)包括热泵模块(100)、电池水路(200)、换热水路(250)、散热器水路(300)、电动总成水路(400)、第一换热器(500)和控制阀组(600),第一换热器(500)的第一换热通路(510)与热泵模块(100)相连,第一换热器(500)的第二换热通路(520)与换热水路(250)相连,电动总成水路(400)可与散热器水路(300)或换热水路(250)串联,电池水路(200)可与散热器水路(300)或换热水路(250)串联,且电池水路(200)、换热水路(250)、散热器水路(300)和电动总成水路(400)可串联。热管理系统(1)能够充分利用电池和电动总成的余热,能在多种工况下为电池和电动总成加热或降温,具有能量利用率和集成度高的优点。

Description

热管理系统和具有其的车辆
相关申请的交叉引用
本申请基于申请号为202111161075.4、申请日为2021年09月30日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及车辆技术领域,尤其是涉及一种热管理系统和具有其的车辆。
背景技术
相关技术中的车辆的热管理系统,可以通过热泵模块为车内降温,且对利用热泵模块为电池和电动总成降温,但是相关技术中的热管理系统不能充分利用电动总成水路和电池水路的余热,无法实现电池和电动总成的单独制冷或制热、串联时共同的制冷或制热、串联时利用电动总成的余热对电池的加热等多种工况,整体的集成度较低且车辆的能耗高。
发明内容
本申请旨在至少解决相关技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种热管理系统,该热管理系统不仅能够充分利用电池和电动总成的余热,而且能在多种工况下为电池和电动总成加热或降温,具有能量利用率和集成度高等优点。
本申请还提出了一种具有上述热管理系统的车辆。
为了实现上述目的,根据本申请的第一方面实施例提出了一种热管理系统,包括:热泵模块;电池水路;换热水路;散热器水路;电动总成水路;第一换热器,所述第一换热器具有第一换热通路和第二换热通路,所述第一换热通路与所述热泵模块相连通,所述第二换热通路与所述换热水路相连通;和控制阀组,所述控制阀组在第一状态、第二状态和第三状态之间可切换,且所述控制阀组分别与所述电池水路、所述换热水路、所述散热器水路和所述电动总成水路相连通;其中,所述控制阀组处于所述第一状态时,所述电动总成水路与所述散热器水路串联,或所述电池水路与所述换热水路串联连通,或所述电动总成水路与所述散热器水路串联连通且所述电池水路与所述换热水路串联连通;所述控制阀组处于所述第二状态时,所述电动总成水路与所述换热水路串联,或所述电池水路与所述散热器水路串联连通,或所述电动总成水路与所述换热水路串联连通且所述电池水路与所述散热器水路串联连通;所述控制阀组处于所述第三状态时,所述电池水路、所述换热水路、所述散热器水路和所述电动总成水路串联连通。
根据本申请实施例的热管理系统,能够充分利用电池和电动总成的余热,而且热泵模块能够制热,具有能量利用率和集成度高等优点。
根据本申请的一些实施例,所述控制阀组包括:第一四通阀,所述第一四通阀具有第一阀口、第二阀口、第三阀口和第四阀口,所述第一阀口与所述散热器水路的一端相连,所述第二阀口与所述电池水路的一端相连,所述第三阀口与所述换热水路的一端相连,所述第四阀口与所述电动总成水路的一端相连;和第二四通阀,所述第二四通阀具有第五阀口、第六阀口、第七阀口和第八阀口,所述第五阀口与所述电动总成水路的另一端相连,所述第六阀口与所述散热器水路的另一端相连,所述第七阀口与所述电池水路的另一端相连,所述第八阀口与所述换热水路的另一端相连;
其中,所述控制阀组处于所述第一状态时,所述第一阀口与所述第四阀口连通、所述第二阀口与所述第三阀口连通、所述第五阀口与所述第六阀口连通、所述第七阀口与所述第八阀口连通;
所述控制阀组处于所述第二状态时,所述第一阀口与所述第二阀口连通、所述第三阀口与所述第四阀口连通、所述第五阀口与所述第八阀口连通、所述第六阀口与所述第七阀口连通;
所述控制阀组处于所述第三状态时,所述第一阀口与所述第二阀口连通、所述第三阀口与所述第四阀口连通、所述第五阀口与所述第六阀口连通、所述第七阀口与所述第八阀口连通,或者所述第一阀口与所述第四阀口连通、所述第二阀口与所述第三阀口连通、所述第五阀口与所述第八阀口连通、所述第六阀口与所述第七阀口连通。
根据本申请的一些实施例,所述电动总成水路包括:电控组件;中冷器,所述中冷器与所述电 控组件并联;和电机,所述电机与所述电控组件串联且所述电机位于所述电控组件的下游,或,所述电机与所述中冷器串联且所述电机位于所述中冷器的下游。
根据本申请的一些实施例,所述散热器水路包括:散热器和第一直连支路,所述散热器与所述第一直连支路并联连接,且所述散热器水路内的冷却液可选择性地流经所述散热器或所述第一直连支路。
根据本申请的一些实施例,所述电池水路包括:电池和第二直连支路,所述电池与所述第二直连支路并联连接,且所述电池水路内的冷却液可选择性地流经所述电池或所述第二直连支路。
根据本申请的一些实施例,所述电池水路包括:加热器,所述加热器与所述电池相连。
根据本申请的一些实施例,所述加热器为PTC或尾气换热器。
根据本申请的一些实施例,所述热泵模块包括:压缩机;至少一个舱内冷凝器,所述舱内冷凝器的一端与所述压缩机的一端连接;舱外换热器,所述舱外换热器的一端通过制冷前支路与所述舱内冷凝器的另一端可选择性地连接或断开连接,所述舱外换热器的另一端通过制热前支路与所述舱内冷凝器的所述另一端可选择性地连接或断开连接;至少一个舱内蒸发器,所述舱内蒸发器的一端通过制冷后支路与所述舱外换热器的所述另一端可选择性地连接或断开连接;和气液分离器,所述气液分离器连接于所述压缩机的另一端和所述舱内蒸发器的另一端之间,所述舱外换热器的所述一端通过制热后支路和所述气液分离器与所述压缩机的所述另一端可选择性地连接或断开连接;其中,所述第一换热通路的一端通过所述制热前支路与所述舱内冷凝器的所述另一端可选择性地连接或断开连接,且所述第一换热通路的所述一端通过制冷后支路与所述舱外换热器的所述另一端可选择性地连接或断开连接,所述第一换热通路的另一端连接于通过所述气液分离器与所述压缩机的所述另一端连接。
根据本申请的一些实施例,所述舱内冷凝器为多个,多个所述舱内冷凝器包括第一舱内冷凝器和第二舱内冷凝器,所述第一舱内冷凝器的一端与所述压缩机的所述一端连接,且所述第一舱内冷凝器的另一端与所述制冷前支路连接,所述第二舱内冷凝器的一端通过第一二通阀与所述压缩机的所述一端连接,且所述第二舱内冷凝器的另一端与所述制冷前支路连接。
根据本申请的一些实施例,所述舱内蒸发器为多个,多个所述舱内蒸发器包括第一舱内蒸发器和第二舱内蒸发器,所述第一舱内蒸发器的一端通过一个所述膨胀阀与所述制冷后支路连接,所述第一舱内蒸发器的另一端与所述气液分离器连接,所述第二舱内蒸发器的一端通过另一个所述膨胀阀与所述制冷后支路连接,所述第二舱内蒸发器的另一端与所述气液分离器连接。
根据本申请的一些实施例,所述制冷前支路上设有第二二通阀;所述制冷后支路上设有第一单向阀和第三二通阀,所述第一单向阀允许所述舱外换热器的冷媒流向所述舱内蒸发器,且所述第一单向阀阻止所述舱内蒸发器的冷媒流向所述舱外换热器;所述制热前支路上设有第四二通阀、第一电磁膨胀阀和第二单向阀,所述第二单向阀允许所述舱内蒸发器的冷媒流向所述舱外换热器,且所述第二单向阀阻止所述舱外换热器的冷媒流向所述舱内蒸发器;所述制热后支路上设有第五二通阀;所述第一换热通路的所述一端通过第二电磁膨胀阀连接于所述制热前支路和制冷后支路。
根据本申请的一些实施例,所述制热前支路包括:第一段,所述第一段的一端与所述舱内冷凝器的所述一端连接,所述第一段的另一端分别与所述第一单向阀、所述第三二通阀和所述第二电磁膨胀阀连接;和第二段,所述第二段的一端与所述第一段的另一端连接,所述第二段的另一端与所述舱外换热器的所述另一端连接;其中,所述第四二通阀设置在所述第一段上,所述第一电磁膨胀阀和所述第二单向阀设置在第二段上。
根据本申请的一些实施例,所述气液分离器包括:第一流路,所述第一流路的一端与所述第一单向阀和所述第一段的所述一端连接,所述第一流路的另一端与所述第三二通阀连接、所述第二电磁膨胀阀和所述第二段的所述一端连接;和第二流路,所述第二流路的一端与所述舱内蒸发器的所述另一端、所述制热后支路和所述第一换热通路的所述另一端连接,所述第二流路的另一端与所述压缩机的所述另一端连接。
根据本申请的一些实施例,所述热管理系统还包括:发动机水路;和第二换热器,所述第二换热器具有第三换热通路和第四换热通路,所述第三换热通路与所述换热水路相连,所述第四换热通路与所述发动机水路相连。
根据本申请的一些实施例,所述发动机水路包括:发动机;和第六二通阀,所述第六二通阀与 所述发动机串联。
根据本申请的一些实施例,所述发动机水路包括:暖风系统,所述暖风系统与所述发动机串联。
根据本申请的第二方面实施例提出了一种车辆,包括根据本申请的第一方面实施例所述的热管理系统。
根据本申请的第二方面实施例所述的车辆,通过利用根据本申请的第一方面实施例所述的热管理系统,不仅能够充分利用电池和电动总成的余热,而且能在多种工况下为电池和电动总成加热或者降温,具有能量利用率和集成度高等优点。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的空调器的控制阀组处于第一状态的结构示意图。
图2是根据本申请实施例的空调器的控制阀组处于第二状态的结构示意图。
图3是根据本申请实施例的空调器的控制阀组处于第三状态的结构示意图。
图4是根据本申请实施例的空调器的控制阀组处于第三状态的另一结构示意图。
图5是根据本申请另一实施例的空调器的控制阀组处于第一状态的结构示意图。
图6是根据本申请另一实施例的空调器的控制阀组处于第二状态的结构示意图。
图7是根据本申请另一实施例的空调器的控制阀组处于第三状态的结构示意图。
图8是根据本申请另一实施例的空调器的控制阀组处于第三状态的另一结构示意图。
图9是根据本申请实施例的空调器的热泵模块制冷循环时的结构示意图。
图10是根据本申请实施例的空调器的热泵模块制热循环时的结构示意图。
图11是根据本申请另一实施例的空调器的热泵模块制热循环时的结构示意图。
图12是根据本申请实施例的车辆的示意图。
附图标记:
热管理系统1、车辆、
热泵模块100、压缩机110、舱内冷凝器120、第一舱内冷凝器121、第二舱内冷凝器122、舱外换热器130、制冷前支路131、制冷后支路132、制热前支路133、第一段134、第二段135、制热后支路136、气液分离器140、第一流路141、第二流路142、舱内蒸发器150、第一舱内蒸发器151、第二舱内蒸发器152、
电池水路200、电池210、第二三通阀220、加热器230、第二直连支路240、
换热水路250、
散热器水路300、散热器310、第一三通阀320、第一直连支路330、
电动总成水路400、电控组件410、中冷器420、电机430、
第一换热器500、第一换热通路510、第二换热通路520、
控制阀组600、第一四通阀610、第一阀口611、第二阀口612、第三阀口613、第四阀口614、第二四通阀620、第五阀口621、第六阀口622、第七阀口623、第八阀口624、
发动机水路700、发动机710、
第二换热器720、第三换热通路721、第四换热通路722、暖风系统730、
第二二通阀800、第四二通阀810、第三二通阀820、第五二通阀830、第一二通阀840、第六二通阀850、
第一单向阀900、第二单向阀910、第一电磁膨胀阀920、第二电磁膨胀阀930、膨胀阀940。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,“第一特征”、“第二特征”可以包括一个或者更多个该特征。
在本申请的描述中,“多个”的含义是两个或两个以上,“若干”的含义是一个或多个。
首先参考附图描述根据本申请实施例的热管理系统1。
如图1-图8所示,根据本申请实施例的热管理系统1包括热泵模块100、电池水路200、换热水路250、散热器水路300、电动总成水路400、第一换热器500和控制阀组600。
第一换热器500具有第一换热通路510和第二换热通路520,第一换热通路510与热泵模块100相连通,第二换热通路520与换热水路250相连通,控制阀组600在第一状态、第二状态和第三状态之间可切换且分别与电池水路200、换热水路250、散热器水路300和电动总10成水路400相连通。
例如,第一换热器500可以为板式换热器,热泵模块100的冷媒和换热水路250的冷却液通过第一换热器500进行热交换。
需要说明的是,散热器水路300和换热水路250可以设有水泵,或者电动总成水路400和电池水路200可以设有水泵,再或者电池水路200、换热水路250、散热器水路300和电动总成水路400均可以设有水泵。并且,电池水路200、换热水路250、散热器水路300和电动总成水路400内的冷却液可以相同。
其中,控制阀组600处于第一状态时,电动总成水路400与散热器水路300串联,和/或电池水路200与换热水路250串联连通;也就是说,控制阀组600处于第一状态时,电动总成水路400与散热器水路300串联,或电池水路200与换热水路250串联连通,或电动总成水路400与散热器水路300串联且电池水路200与换热水路250串联连通。控制阀组600处于第二状态时,电动总成水路400与换热水路250串联,和/或电池水路200与散热器水路300串联连通;也就是说,控制阀组600处于第二状态时,电动总成水路400与换热水路250串联,或电池水路200与散热器水路300串联连通,或电动总成水路400与换热水路250串联且电池水路200与散热器水路300串联连通。控制阀组600处于第三状态时,电池水路200、换热水路250、散热器水路300和电动总成水路400串联连通。
举例而言,热泵模块100的冷媒可以R-410A、R-407C和R-134a等,电池水路200、换热水路250、散热器水路300、电动总成水路400的冷却液可以为水和乙二醇的混合液。
根据本申请实施例的热管理系统1,通过在第一换热器500设有第一换热通路510和第二换热通路520,且第一换热通路510与热泵模块100相连,第二换热通路520与换热水路250相连,第一换热通路510和第二换热通路520不连通,热泵模块100的冷媒可以流经第一换热通路510,换热水路250的冷却液可以流经第二换热通路520,热泵模块100的冷媒和换热水路250的冷却液可以通过第一换热器500进行热交换。
如图1和图5所示,控制阀组600处于第一状态时,电动总成水路400与散热器水路300串联,或电池水路200与换热水路250串联,或电动总成水路400与散热器水路300串联且电池水路200与换热水路250串联。换言之,电动总成水路400与散热器水路300形成一个单独的水路,这样,冷却液可以在电动总成水路400与散热器水路300中循环流动,且冷却液流经散热器水路300时温度降低,从散热器水路300中流出的冷却液可以为电动总成水路400进行降温,以保证电动总成的正常工作。同时,电池水路200与换热水路250形成一个单独的水路,冷却液可以在电池水路200与换热水路250中循环流动。热泵模块100制冷时,换热水路250的冷却液的温度被热泵模块100的冷媒降低,即电池水路200的冷却液的温度被降低,此时冷却液可以为电池210进行散热降温,避免电池210温度过高,以保证电池210的正常工作;热泵模块100制热时,换热水路250可以通过电池水路200吸收电池210的余热,再通过第一换热器500为热泵模块100供热,以减轻热泵模块100的制热难度,充分利用了电池210的余热,提高能量利用率,降低能耗。
如图2和图6所示,控制阀组600处于第二状态时,电动总成水路400与换热水路250串联, 或电池水路200与散热器水路300串联,或电动总成水路400与换热水路250串联且电池水路200与散热器水路300串联。换言之,电动总成水路400与换热水路250形成一个单独的水路,冷却液可以在电动总成水路400与换热水路250中循环流动。热泵模块100制冷时,换热水路250的冷却液的温度被热泵模块100的冷媒降低,即电动总成水路400的冷却液的温度被降低,此时冷却液为电动总成水路400进行散热降温,避免电动总成的温度过高,以保证电动总成的正常工作;热泵模块100制热时,换热水路250可以通过电动总成水路400吸收电动总成的余热,再通过第一换热器500为热泵模块100供热,以减轻热泵模块100的制热难度,充分利用了电动总成的余热,提高能量利用率,降低能耗。同时,电池水路200与散热器水路300形成一个单独的水路,冷却液可以在电池水路200与散热器水路300中循环流动,这样,冷却液流经散热器水路300时温度降低,从散热器水路300中流出的冷却液可以为电池水路200进行散热降温,以保证电池210的正常工作。
如图3和图4所示,控制阀组600处于第三状态时,电池水路200、换热水路250、散热器水路300和电动总成水路400串联。换言之,电池水路200、换热水路250、散热器水路300和电动总成水路400形成一个整体水路,冷却液在电池水路200、换热水路250、散热器水路300和电动总成水路400中循环流动。
热泵模块100制冷时,换热水路250的冷却液的温度被热泵模块100的冷媒降低,即电动总成水路400和电池水路200的冷却液的温度被降低,冷却液为电动总成水路400和电池水路200进行散热降温,避免电动总成和电池210的温度过高,以保证电池210和电动总成的正常工作。
热泵模块100制热时,换热水路250可以通过电动总成水路400吸收电动总成的余热,同时通过电池水路200吸收电池210的余热,再通过第一换热器500为热泵模块100供热,以减轻热泵模块100的制热难度,充分利用了电动总成和电池210的余热,提高能量利用率,降低能耗。
并且,车辆2启动时,可以单独利用电动总成的余热为电池210进行加热,减少车辆2启动时长。
通过控制阀组600在第一状态、第二状态和第三状态之间切换,来调节多个水路的连通状态,不仅调节方式简单方便,还可以减少管路的布置,进而减小热管理系统1的整体体积,集成度更高。
而且,通过控制阀组600和第一换热器500的设置,使热泵模块100可以实现制冷和制热两种功能,且充分利用了电池210和电动总成的余热,减小了能耗,优化了车辆2在各种不同工况下的性能,能够延长车辆2的使用寿命,降低使用成本。
如此,根据本申请实施例的热管理系统1不仅能够充分利用电池210和电动总成的余热,而且能在多种工况下加热电池210和电动总成,具有能量利用率和集成度高等优点。
在本申请的一些具体实施例中,如图1-图8所示,控制阀组600包括第一四通阀610和第二四通阀620。
如图1和图5所示,第一四通阀610具有第一阀口611、第二阀口612、第三阀口613和第四阀口614,第一阀口611与散热器水路300的一端相连,第二阀口612与电池水路200的一端相连,第三阀口613与换热水路250的一端相连,第四阀口614与电动总成水路400的一端相连。
第二四通阀620具有第五阀口621、第六阀口622、第七阀口623和第八阀口624,第五阀口621与电动总成水路400的另一端相连,第六阀口622与散热器水路300的另一端相连,第七阀口623与电池水路200的另一端相连,第八阀口624与换热水路250的另一端相连。具体地,如图1和图5所示,控制阀组600处于第一状态时,第一阀口611与第四阀口614连通、第二阀口612与第三阀口613连通、第五阀口621与第六阀口622连通、第七阀口623与第八阀口624连通。此时,电动总成水路400与散热器水路300串联且电池水路200与换热水路250串联。
换热水路250的冷却液流经水泵、第一四通阀610的第二阀口612、第三阀口613和电池210,再通过第二四通阀620的第七阀口623、第八阀口624流向第一换热器500的第二换热通路520,最后流回水泵,依次循环。热泵模块100和换热水路250通过第二换热通路520与第一换热通路510进行换热,热泵模块100制冷时,热泵模块100间接为电池210降温;热泵模块100制热时,热泵模块100可以吸收电池210的余热,以为乘客舱进行加热。
散热器水路300的冷却液通过第一四通阀610的第一阀口611、第四阀口614流入电动总成水路400,再经过第二四通阀620的第六阀口622、第五阀口621流回散热器水路300,依次循环。此时散热器水路300为电动总成散热。
如图2和图6所示,控制阀组600处于第二状态时,第一阀口611与第二阀口612连通、第三阀口613与第四阀口614连通、第五阀口621与第八阀口624连通、第六阀口622与第七阀口623连通。此时,电动总成水路400与换热水路250串联且电池水路200与散热器水路300串联。
散热器水路300的冷却液通过第一四通阀610的第一阀口611、第二阀口612流入电池水路200,再经过第二四通阀620的第七阀口623、第六阀口622流回散热器水路300,依次循环。在高温环境下充电时,散热器水路300可以为电池210单独散热,能够提高电池210的散热效率,避免电池210温度过高,延长电池210的使用寿命。
热泵模块100制热时,电动总成水路400的冷却液通过第一四通阀610的第四阀口614、第三阀口613流经换热水路250和第一换热器500的第一换热通路510,再通过第二四通阀620的第八阀口624、第五阀口621流回电动总成水路400,依次循环。此时,热泵模块100通过第一换热器500能够吸收电动总成的余热,实现乘员舱的制热。
如图3和图4、图5和图6所示,控制阀组600处于第三状态时,第一阀口611与第二阀口612连通、第三阀口613与第四阀口614连通、第五阀口621与第六阀口622连通、第七阀口623与第八阀口624连通,或者,第一阀口611与第四阀口614连通、第二阀口612与第三阀口613连通、第五阀口621与第八阀口624连通、第六阀口622与第七阀口623连通。此时,电池水路200、换热水路250、散热器水路300和电动总成水路400串联。
例如,电池水路200的冷却液通过第一四通阀610的第二阀口612、第一阀口611流向散热器水路300,再通过第二四通阀620的第五阀口621、第六阀口622流向电动总成水路400,再通过第一四通阀610的第四阀口614、第三阀口613流向换热水路250,再通过第二四通阀620的第八阀口624、第七阀口623流回电池水路200,依次循环。此时可以利用电动总成的余热单独为电池210进行加热,避免在环境温度较低时电池210的温度过低,保证电池210的工作效率。
需要说明的是,控制阀组600也可以为其他种类的组合阀,例如五通阀和三通阀的组合,同时不限于使用其他组合阀实现上述耦合关系。
在本申请的一些具体实施例中,如图1-图8所示,电动总成水路400包括电控组件410、中冷器420和电机430。电机430位于电控组件410和中冷器420的下游,由于中冷器420和电控组件410都属于控制设备,中冷器420的耐高温性和电控组件410的耐高温性都弱于电机430的耐高温性,因此,将电机430设于电控组件410和中冷器420的下游可以使冷却液先经过中冷器420和电控组件410,对中冷器420和电控组件410进行冷却降温后,再经过电机430,进而提高了中冷器420和电控组件410的冷却效果,避免中冷器420和电控组件410由于温度过高而损坏,延长中冷器420和电控组件410的使用寿命。
并且,中冷器420与电控组件410并联,电机430与电控组件410串联,或电机430与中冷器420串联。
可以理解的是,中冷器420的耐高温性和电控组件410的耐高温性也存在着一定的差异,以及因为两者的使用情况不同,可能导致中冷器420和电控组件410的工作温度不同,通过并联设置可以分别对中冷器420和电控组件410进行温度控制,使温度控制得更加精准,更有效地保护了中冷器420和电控组件410。
需要说明的是,电机430、电控组件410和中冷器420相连通,连通是指这些部件的冷却液的流通管路相连通,在本申请的其他实施例中,所提及的部件的连通也是指所提及的部件的对应的冷却液流通管路之间相连通,如此可以利用冷却液实现多个部件之间的热交换。
在本申请的一些具体实施例中,散热器水路300包括散热器310和第一直连支路330,散热器310与第一直连支路330并联连接,且散热器水路300内的冷却液可选择性地流经散热器310或第一直连支路330。
如图1-图8所示,第一直连支路330上设有第一三通阀320,第一三通阀320与散热器310相连,用于控制散热器水路300内的液体是否流经散热器310。
举例而言,第一三通阀320可以具有一个进水口和两个出水口,第一三通阀320可以设于散热器310和第一四通阀610的第一阀口611之间,且第一三通阀320的进水口连接于第一阀口611,第一三通阀320的其中一个出水口连接于散热器310的一端,第一三通阀320的另一个出水口直接连接于第二四通阀620的第六阀口622。
当不需要散热器310工作,例如,控制阀组600处于第三状态,即单独利用电机430和电控组件410的余热为电池210加热时,此时可以将第一三通阀320的连接于散热器310的出水口关闭,且将第一三通阀320的连接于第六阀口622的出水口打开,从而使散热器水路300内的冷却液不流经散热器310,电机430和电控组件410的余热不会被散热器310散去,更充分地利用了电机430和电控组件410的余热为电池210加热,进一步提高了能量利用率。
在本申请的一些具体实施例中,电池水路200包括电池210和第二直连支路240,电池210与第二直连支路240并联连接,且电池水路200内的冷却液可选择性地流经电池210或第二直连支路240。
如图1-图8所示,第二直连支路上240设有第二三通阀220,第二三通阀220与电池210相连,用于控制电池水路200内的液体是否流经电池210。
举例而言,第二三通阀220也可以具有一个进水口和两个出水口,第二三通阀220可以设于电池210和第二四通阀620的第七阀口623之间,且第二三通阀220的进水口连接于第七阀口623,第二三通阀220的其中一个出水口连接于电池210的一端,第二三通阀220的另一个出水口连接于第一四通阀610的第二阀口612。
当电池210不需要加热时,例如,当控制阀组600处于第三状态,只需为电动总成进行加热或者降温时,可以将第二三通阀220的连接于电池210的出水口关闭,且将第二三通阀220的连接于第一四通阀610的第二阀口612的出水口打开,这样只对电动总成进行换热,换热效果更好,加热或者降温速率更快。
在一些实施例中,如图5-图8所示,电池水路200包括加热器230,加热器230与电池210相连,加热器230可以设于电池210和第一四通阀610之间,加热器230不仅可以为电池210加热,还可以为电机430和电控组件410进行加热。
当控制阀组600处于第一状态时,热泵模块100制热时,若电池210的余热不足,可以打开加热器230为热泵模块100辅助提供热量。或者,当电池210需要加热,例如插枪充电时,此时控制阀组600处于第一状态,可以开启加热器230来加热电池210,热泵模块100可以无需启动,能耗低且安全性高。再或者,当电池210和电动总成均需要加热时,此时控制阀组600处于第三状态,可以控制第一三通阀320使散热器水路300内的冷却液不流经散热器310,再开启加热器230来加热电池210和电动总成,且可以控制第二三通阀220使电池水路200内的冷却液不流经电池210,以使加热器230单独加热电动总成。
在一些实施例中,加热器230为PTC(Positive Temperature Coefficient,正温度系数热敏电阻)或尾气换热器。
当采用PTC作为加热器230时,可以根据需求的加热量来调节PTC的接入电压,电压越大,加热器230的加热量越大,能够在外界环境较冷时来辅助提高电池210、电动总成的温度,以及为热泵模块100供热,调节方便。
当采用尾气换热器作为加热器230,需求加热量大时,可以增大废气回收的流量,需求加热量小时,可以相应地减少废气回收的流量,进而控制加热温度,且能够对发动机710的尾气进行再利用,进一步提高了能量利用率,减小了能耗。
需要说明的是,尾气换热器和PTC可以同时设置,此时尾气换热器和PTC可以并联,以提高适用性。
在本申请的一些具体实施例中,如图1-图8所示,热泵模块100包括压缩机110、至少一个舱内冷凝器120、舱外换热器130、气液分离器140和至少一个舱内蒸发器150。
舱内冷凝器120的一端与压缩机110的一端连接,舱外换热器130的一端通过制冷前支路131与舱内冷凝器120的另一端可选择性地连接或断开连接,即制冷前支路131的一端连接于舱外换热器130且另一端连接于舱内冷凝器120,舱外换热器130的另一端通过制热前支路133与舱内冷凝器120的另一端可选择性地连接或断开连接,即制热前支路133的一端连接于舱内冷凝器120的另一端且另一端连接于舱外换热器130的另一端。
舱内蒸发器150的一端通过制冷后支路132与舱外换热器130的另一端可选择性地连接或断开连接,气液分离器140连接于压缩机110的另一端和舱内蒸发器150的另一端之间,且舱外换热器130的一端通过制热后支路136和气液分离器140与压缩机110的另一端可选择性地连接或断开连 接。
或者,舱外换热器130的一端、制冷前支路131的一端和制热前支路133的一端三者连通,舱外换热器130的另一端、制冷后支路132的一端和制热后支路136的一端三者连通,制冷前支路131的另一端与压缩机110的一端连接,其中,制冷前支路131的另一端可以直接与压缩机110的一端连接,也可以通过不工作的舱内冷凝器120与压缩机110的一端间接连接,制冷后支路132的另一端与舱内蒸发器150的一端连接,制热前支路133的另一端与舱内冷凝器120的另一端连接,且制热后支路136的另一端与气液分离器140的一端连接。
其中,第一换热通路510的一端通过制热前支路133与舱内冷凝器120的另一端可选择性地连接或断开连接,且第一换热通路510的一端通过制冷后支路132与舱外换热器130的另一端可选择性地连接或断开连接,第一换热通路510的另一端通过气液分离器140与压缩机110的另一端连接。
举例而言,热泵模块100制冷时,如图9所示,热泵模块100的冷媒可以由压缩机110流入舱内冷凝器120,此时冷媒通过舱内冷凝器120流入制冷前支路131,再流向舱外换热器130,经舱外换热器130放热后,冷媒再依次流经气液分离器140、舱内蒸发器150和气液分离器140后,流回压缩机110,依次循环。
其中,热泵模块100制冷时,舱内冷凝器120不工作或者只用于除湿,而非对乘客舱加热,此时,舱外换热器130作为冷凝器。
热泵模块100制热时,如图10所示,热泵模块100的冷媒可以由压缩机110流入舱内冷凝器120,冷媒通过舱内冷凝器120流入制热前支路133,再流向气液分离器140和舱外换热器130,此时舱外换热器130起蒸发器的作用,舱外换热器130吸收车外的热量为热泵模块100提供热量制热,冷媒流经舱外换热器130后,再经过制热后支路和气液分离器140流回压缩机110,依次循环。
或者,热泵模块100制热时,如图11所示,热泵模块100的冷媒可以由压缩机110流入舱内冷凝器120,冷媒通过舱内冷凝器120流入制热前支路133,再流向气液分离器140,冷媒由气液分离器140流出后再流向第一换热器500,此时第一换热器500起到蒸发器的作用,第一换热器可以吸收换热水路250的热量,并利用换热水路250的热量为热泵模块100提供热量制热,冷媒再经过气液分离器140流回压缩机110,依次循环。
可选地,制冷前支路131上设有第二二通阀800,制冷后支路132上设有第一单向阀900和第三二通阀820,第一单向阀900允许舱外换热器130的冷媒流向舱内蒸发器150且阻止舱内蒸发器150的冷媒流向舱外换热器130,制热前支路133上设有第四二通阀810、第一电磁膨胀阀920和第二单向阀910,第二单向阀910允许舱内蒸发器150的冷媒流向舱外换热器130且阻止舱外换热器130的冷媒流向舱内蒸发器150,制热后支路136上设有第五二通阀830,第一换热通路510的一端通过第二电磁膨胀阀930连接于制热前支路133和制冷后支路132。
另外,气液分离器140包括第一流路141和第二流路142,第一流路141的一端与第一单向阀900和第一段134的一端连接,第一流路141的另一端与第三二通阀820连接、第二电磁膨胀阀850和第二段135的一端连接,第二流路142的一端与舱内蒸发器150的另一端、制热后支路136和第一换热通路510的另一端连接,第二流路142的另一端与压缩机110的另一端连接。通过多个阀体的开启和关闭,能够控制冷媒的流向。
具体地,热泵模块100制冷时,如图9所示,热泵模块100的冷媒可以由压缩机110流入舱内冷凝器120,此时第二二通阀800打开、第四二通阀810和第五二通阀830关闭,冷媒通过舱内冷凝器120再流向舱外换热器130,第一单向阀900允许冷媒由舱外换热器130流向第一流路141,第一单向阀900阻止冷媒由第一流路141流向舱外换热器130,冷媒流向第一流路141,第三二通阀820打开,冷媒通过舱内蒸发器150和第二流路142流回压缩机110,依次循环。
热泵模块100制冷时,若第二电磁膨胀阀930关闭,则热泵模块100的制冷量完全用于对乘客舱进行制冷;若第二电磁膨胀阀930打开,则热泵模块100的冷媒通过第一换热器500与换热水路250换热,即热泵模块100的部分制冷量用于对乘客舱进行制冷,热泵模块100的其余制冷量用于对电池210和电动总成中的至少一个降温。热泵模块100制热时,如图10所示,热泵模块100的冷媒可以由压缩机110流入舱内冷凝器120,此时第二二通阀800关闭、第四二通阀810和第五二通阀830打开,冷媒通过舱内冷凝器120再流向第一流路141,第三二通阀820关闭,第二单向阀910允许冷媒由第一流路141流向舱外换热器130,第二单向阀910阻止冷媒由舱外换热器130流 向第一流路141,冷媒流向舱外换热器130和第二流路142流回压缩机110,依次循环。
或者,热泵模块100制热时,如图11所示,热泵模块100的冷媒可以由压缩机110流入舱内冷凝器120,此时第二二通阀800和第五二通阀830关闭、第四二通阀810打开,冷媒通过舱内冷凝器120再流向第一流路141,第三二通阀820和第一电磁膨胀阀920关闭,第二电磁膨胀阀930打开,冷媒流向第一换热器500,冷媒再经过第二流路142流回压缩机110,依次循环。
热泵模块100制热时,若第二电磁膨胀阀930关闭,则热泵模块100的制热量完全用于对乘客舱进行制热;若第二电磁膨胀阀930打开,则热泵模块100的冷媒通过第一换热器500与换热水路250换热,即热泵模块100的部分制热量用于对乘客舱进行制冷,热泵模块100的其余制热量用于对电池210和电动总成中的至少一个加热。
在本申请的一些具体实施例中,制热前支路133包括第一段134和第二段135,第一段134的一端与舱内冷凝器120的一端连接,第一段134的另一端与制冷前支路131的另一端连接,第二段135的一端与舱内蒸发器150的一端连接,第二段135的另一端与舱外换热器130的另一侧连接。其中,第四二通阀810设置在第一段134上,第一电磁膨胀阀920和第二单向阀910设置在第二段135上。
如此,制冷前支路131的另一端、第一段134的另一端、舱内蒸发器150的另一端、第一换热通路510的一端和第二段135的一端连接在一起,并且可以通过第一单向阀900、第三二通阀820、第一电磁膨胀阀920、第二电磁膨胀阀930和第二单向阀910等多个阀体实现不同的模式。
在本申请的一些具体实施例中,气液分离器140包括第一流路141和第二流路142,第一流路141的一端与第一单向阀900和第一段134的一端连接,第一流路141的另一端与第三二通阀820连接、第二电磁膨胀阀850和第二段135的一端连接,第二流路142的一端与舱内蒸发器150的另一端、制热后支路136和第一换热通路510的另一端连接,第二流路142的另一端与压缩机110的另一端连接。
其中,气液分离器140的第一流路141可以为高压流路,第二流路142可以为低压流路,气液分离器140的第一流路141和第二流路142可以进行热交换,以对流经第二流路142的冷媒进行气液分离,提高热泵模块100的制冷以及制热效率,且能够保护压缩机110。
需要说明的是,第一电磁膨胀阀920可以控制第一流路141和舱内蒸发器150之间的冷媒的流量,其中,第一电磁膨胀阀920可以完全关断,以使第一流路141和舱内蒸发器150之间断路,第一电磁膨胀阀920可以由膨胀阀和二通阀的组合替代。
并且,第二电磁膨胀阀930可以控制第一流路141和第一换热通路510之间的冷却液的流量,其中,第二电磁膨胀阀930可以完全关断,以使第一流路141和第一换热通路510之间断路,第二电磁膨胀阀930可以由膨胀阀和二通阀的组合替代。
在一些实施例中,如图1-图8所示,舱内冷凝器120为多个,多个舱内冷凝器120包括第一舱内冷凝器121和第二舱内冷凝器122。如此,多个舱内冷凝器120可以提高对乘客舱的制热效果,进而快速提高乘客舱的温度,例如,第一舱内冷凝器121和第二舱内冷凝器122可以设于车辆2的不同位置,从而使第一舱内冷凝器121和第二舱内冷凝器122可以将热量快速传递至乘客舱的各个部位。
具体地,第一舱内冷凝器121的一端与压缩机110的一端连接且另一端与第二二通阀800和第四二通阀810连接,第二舱内冷凝器122的一端通过第一二通阀840与压缩机110的一端连接且另一端与第二二通阀800和第四二通阀810连接。
如此,可以通过开启第一二通阀840将第二舱内冷凝器122与压缩机110连通,或者在乘客舱的制热需求量较低时或者热泵模块100制冷时,可以关闭第一二通阀840来断开第二舱内冷凝器122,进而减小舱内冷凝器120的制热量。
在本申请的一些具体实施例中,如图1-图8所示,舱内蒸发器150为多个,多个舱内蒸发器150包括第一舱内蒸发器151和第二舱内蒸发器152。如此,多个舱内蒸发器150可以提高对乘客舱的制冷效果,进而快速降低乘客舱的温度,例如,第一舱内蒸发器151和第二舱内蒸发器152可以设于车辆2的不同位置,从而使第一舱内蒸发器151和第二舱内蒸发器152可以将冷量快速传递至乘客舱的各个部位。
具体地,第一舱内蒸发器151的一端通过一个膨胀阀940与第三二通阀820连接,第一舱内蒸 发器151的另一端分别与第五二通阀830和第二流路142的另一端连接,第二舱内蒸发器152的一端通过另一个膨胀阀940与第三二通阀820连接,第二舱内蒸发器152的另一端分别与第五二通阀830和第二流路142的另一端连接。其中,第一舱内蒸发器151和第二舱内蒸发器152之间并联。
在本申请的一些具体实施例中,如图1和图5所示,热管理系统1还包括发动机水路700和第二换热器720。
第二换热器720具有第三换热通路721和第四换热通路722,第三换热通路721与换热水路250相连,第四换热通路722与发动机水路700相连。其中,第二换热器720可以为板式换热器。
具体地,换热水路250的冷却液可以流经第三换热通路721,发动机水路700的冷却液可以流经第四换热通路722,第三换热通路721和第四换热通路722不连通,且第三换热通路721中的冷却液和第四换热通路722中的冷却液可以进行热交换。
如此,发动机水路700的冷却液的温度>电动总成水路400的冷却液的温度>环境温度时,此时控制阀组600处于第一状态,发动机水路700的冷却液和换热水路250的冷却液可以通过第二换热器720进行互换,换热水路250可以通过第二换热器720吸收发动机710的余热,再通过第一换热器500为热泵模块100提供热量,从而实现了乘客舱内制热,进一步减小了能耗。
或者,车辆2在较冷环境中启动时,电池水路200的冷却液的温度和环境温度都小于-5℃,热泵模块100可以不工作,此时控制阀组600处于第一状态,发动机水路700的冷却液和换热水路250的冷却液可以通过第二换热器720进行互换,换热水路250可以通过第二换热器720吸收发动机710的余热,再为电池210提供热量,保证车辆2可以以纯电动模式启动。
再或者,控制阀组600处于第三状态时,第二三通阀220可以控制电池水路200内的冷却液不流经电池210,此时,发动机水路700的冷却液和换热水路250的冷却液可以通过第二换热器720进行互换,换热水路250可以通过第二换热器720吸收发动机710的余热,再为电动总成提供热量,保证电动总成的工作效率。
在一些实施例中,如图1和图5所示,发动机水路700包括发动机710和第六二通阀850,第六二通阀850与发动机710串联,通过开启第六二通阀850可以将发动机水路700与第四换热通路722连通,通过关闭第六二通阀850可以将发动机水路700与第四换热通路722断开,从而在不需要利用发动机710余热时,例如,在热泵模块100制冷工况下或者电池210以及电动总成无需加热的工况下,可以将发动机水路700与第四换热通路722断开,结构布置更加合理,操作更加方便。
在本申请的一些具体实施例中,如图1和图5所示,发动机水路700包括暖风系统730,暖风系统730与发动机710串联。这样,在环境温度较低时,暖风系统730可以为乘客舱提供暖气,以提高乘客舱的温度,具体地,第六二通阀850处于开启状态,此时车辆2可以利用发动机710的余热和暖风系统730一同为乘客舱进行加热,提高乘坐舒适性。
下面参考附图描述根据本申请实施例的车辆2,如图12所示,车辆2包括根据本申请上述实施例的热管理系统1。车辆2可以为电动车辆或者混合动力车辆。
根据本申请实施例的车辆2,通过利用根据本申请上述实施例的热管理系统1,不仅能够充分利用电池210和电动总成的余热,而且能在多种工况下为电池210和电动总成加热或者降温,具有能量利用率和集成度高等优点。
根据本申请实施例的热管理系统1和具有其的车辆2的其他构成以及操作对于本域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“具体实施例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (17)

  1. 一种热管理系统(1),其特征在于,包括:
    热泵模块(100);
    电池水路(200);
    换热水路(250);
    散热器水路(300);
    电动总成水路(400);
    第一换热器(500),所述第一换热器(500)具有第一换热通路(510)和第二换热通路(520),所述第一换热通路(510)与所述热泵模块(100)相连通,所述第二换热通路(520)与所述换热水路(250)相连通;和
    控制阀组(600),所述控制阀组(600)在第一状态、第二状态和第三状态之间可切换,且所述控制阀组(600)分别与所述电池水路(200)、所述换热水路(250)、所述散热器水路(300)和所述电动总成水路(400)相连通;
    其中,所述控制阀组(600)处于所述第一状态时,所述电动总成水路(400)与所述散热器水路(300)串联连通,或所述电池水路(200)与所述换热水路(250)串联连通,或所述电动总成水路(400)与所述散热器水路(300)串联连通且所述电池水路(200)与所述换热水路(250)串联连通;
    所述控制阀组(600)处于所述第二状态时,所述电动总成水路(400)与所述换热水路(250)串联连通,或所述电池水路(200)与所述散热器水路(300)串联连通,或所述电动总成水路(400)与所述换热水路(250)串联连通且所述电池水路(200)与所述散热器水路(300)串联连通;
    所述控制阀组(600)处于所述第三状态时,所述电池水路(200)、所述换热水路(250)、所述散热器水路(300)和所述电动总成水路(400)串联连通。
  2. 根据权利要求1所述的热管理系统(1),其特征在于,所述控制阀组(600)包括:
    第一四通阀(610),所述第一四通阀(610)具有第一阀口(611)、第二阀口(612)、第三阀口(613)和第四阀口(614),所述第一阀口(611)与所述散热器水路(300)的一端相连,所述第二阀口(612)与所述电池水路(200)的一端相连,所述第三阀口(613)与所述换热水路(250)的一端相连,所述第四阀口(614)与所述电动总成水路(400)的一端相连;和
    第二四通阀(620),所述第二四通阀(620)具有第五阀口(621)、第六阀口(622)、第七阀口(623)和第八阀口(624),所述第五阀口(621)与所述电动总成水路(400)的另一端相连,所述第六阀口(622)与所述散热器水路(300)的另一端相连,所述第七阀口(623)与所述电池水路(200)的另一端相连,所述第八阀口(624)与所述换热水路(250)的另一端相连;
    其中,所述控制阀组(600)处于所述第一状态时,所述第一阀口(611)与所述第四阀口(614)连通、所述第二阀口(612)与所述第三阀口(613)连通、所述第五阀口(621)与所述第六阀口(622)连通、所述第七阀口(623)与所述第八阀口(624)连通;
    所述控制阀组(600)处于所述第二状态时,所述第一阀口(611)与所述第二阀口(612)连通、所述第三阀口(613)与所述第四阀口(614)连通、所述第五阀口(621)与所述第八阀口(624)连通、所述第六阀口(622)与所述第七阀口(623)连通;
    所述控制阀组(600)处于所述第三状态时,所述第一阀口(611)与所述第二阀口(612)连通、所述第三阀口(613)与所述第四阀口(614)连通、所述第五阀口(621)与所述第六阀口(622)连通、所述第七阀口(623)与所述第八阀口(624)连通,或者所述第一阀口(611)与所述第四阀口(614)连通、所述第二阀口(612)与所述第三阀口(613)连通、所述第五阀口(621)与所述第八阀口(624)连通、所述第六阀口(622)与所述第七阀口(623)连通。
  3. 根据权利要求1或2所述的热管理系统(1),其特征在于,所述电动总成水路(400)包括:
    电控组件(410);
    中冷器(420),所述中冷器(420)与所述电控组件(410)并联;和
    电机(430),所述电机(430)与所述电控组件(410)串联且所述电机(430)位于所述电控组件(410)的下游,或所述电机(430)与所述中冷器(420)串联且所述电机(430)位于所述中冷器(420)的下游。
  4. 根据权利要求1-3中任一项所述的热管理系统(1),其特征在于,所述散热器水路(300)包括:
    散热器(310)和第一直连支路(330),所述散热器(310)与所述第一直连支路(330)并联连接,且所述 散热器水路(300)内的冷却液可选择性地流经所述散热器(310)或所述第一直连支路(330)。
  5. 根据权利要求1-4中任一项所述的热管理系统(1),其特征在于,所述电池水路(200)包括:
    电池(210)和第二直连支路(240),所述电池(210)与所述第二直连支路(240)并联连接,且所述电池水路(200)内的冷却液可选择性地流经所述电池(210)或所述第二直连支路(240)。
  6. 根据权利要求5所述的热管理系统(1),其特征在于,所述电池水路(200)还包括:
    加热器(230),所述加热器(230)与所述电池(210)相连。
  7. 根据权利要求6所述的热管理系统(1),其特征在于,所述加热器(230)为PTC或尾气换热器。
  8. 根据权利要求1-7中任一项所述的热管理系统(1),其特征在于,所述热泵模块(100)包括:
    压缩机(110);
    至少一个舱内冷凝器(120),所述舱内冷凝器(120)的一端与所述压缩机(110)的一端连接;
    舱外换热器(130),所述舱外换热器(130)的一端通过制冷前支路(131)与所述舱内冷凝器(120)的另一端可选择性地连接或断开连接,所述舱外换热器(130)的另一端通过制热前支路(133)与所述舱内冷凝器(120)的所述另一端可选择性地连接或断开连接;
    至少一个舱内蒸发器(150),所述舱内蒸发器(150)的一端通过制冷后支路(132)与所述舱外换热器(130)的所述另一端可选择性地连接或断开连接;和
    气液分离器(140),所述气液分离器(140)连接于所述压缩机(110)的另一端和所述舱内蒸发器(150)的另一端之间,所述舱外换热器(130)的所述一端通过制热后支路(136)和所述气液分离器(140)与所述压缩机(110)的所述另一端可选择性地连接或断开连接;
    其中,所述第一换热通路(510)的一端通过所述制热前支路(133)与所述舱内冷凝器(120)的所述另一端可选择性地连接或断开连接,且所述第一换热通路(510)的所述一端通过制冷后支路(132)与所述舱外换热器(130)的所述另一端可选择性地连接或断开连接,所述第一换热通路(510)的另一端通过所述气液分离器(140)与所述压缩机(110)的所述另一端连接。
  9. 根据权利要求8所述的热管理系统(1),其特征在于,所述舱内冷凝器(120)为多个,多个所述舱内冷凝器(120)包括第一舱内冷凝器(121)和第二舱内冷凝器(122),所述第一舱内冷凝器(121)的一端与所述压缩机(110)的所述一端连接,且所述第一舱内冷凝器(121)的另一端与所述制冷前支路(131)连接,所述第二舱内冷凝器(122)的一端通过第一二通阀(840)与所述压缩机(110)的所述一端连接,且所述第二舱内冷凝器(122)的另一端与所述制冷前支路(131)连接。
  10. 根据权利要求8或9所述的热管理系统(1),其特征在于,所述舱内蒸发器(150)为多个,多个所述舱内蒸发器(150)包括第一舱内蒸发器(150)和第二舱内蒸发器(150),所述第一舱内蒸发器(150)的一端通过一个膨胀阀(940)与所述制冷后支路(132)连接,所述第一舱内蒸发器(150)的另一端与所述气液分离器(140)连接,所述第二舱内蒸发器(150)的一端通过另一个膨胀阀(940)与所述制冷后支路(132)连接,所述第二舱内蒸发器(150)的另一端与所述气液分离器(140)连接。
  11. 根据权利要求8-10中任一项所述的热管理系统(1),其特征在于,
    所述制冷前支路(131)上设有第二二通阀(800);
    所述制冷后支路(132)上设有第一单向阀(900)和第三二通阀(820),所述第一单向阀(900)允许所述舱外换热器(130)的冷媒流向所述舱内蒸发器(150),且所述第一单向阀(900)阻止所述舱内蒸发器(150)的冷媒流向所述舱外换热器(130);
    所述制热前支路(133)上设有第四二通阀(810)、第一电磁膨胀阀(920)和第二单向阀(910),所述第二单向阀(910)允许所述舱内蒸发器(150)的冷媒流向所述舱外换热器(130),且所述第二单向阀(910)阻止所述舱外换热器(130)的冷媒流向所述舱内蒸发器(150);
    所述制热后支路(136)上设有第五二通阀(830);
    所述第一换热通路(510)的所述一端通过第二电磁膨胀阀(930)连接于所述制热前支路(133)和制冷后支路(132)。
  12. 根据权利要求11所述的热管理系统(1),其特征在于,所述制热前支路(133)包括:
    第一段(134),所述第一段(134)的一端与所述舱内冷凝器(120)的所述一端连接,所述第一段(134)的另一端分别与所述第一单向阀(900)、所述第三二通阀(820)和所述第二电磁膨胀阀(930)连接;和
    第二段(135),所述第二段(135)的一端与所述第一段(134)的另一端连接,所述第二段(135)的另一端与所述舱外换热器(130)的所述另一端连接;
    其中,所述第四二通阀(810)设置在所述第一段(134)上,所述第一电磁膨胀阀(920)和所述第二单向阀(910)设置在第二段(135)上。
  13. 根据权利要求12所述的热管理系统(1),其特征在于,所述气液分离器(140)包括:
    第一流路(141),所述第一流路(141)的一端与所述第一单向阀(900)和所述第一段(134)的所述一端连接,所述第一流路(141)的另一端与所述第三二通阀(820)连接、所述第二电磁膨胀阀(930)和所述第二段(135)的所述一端连接;和
    第二流路(142),所述第二流路(142)的一端与所述舱内蒸发器(150)的所述另一端、所述制热后支路(136)和所述第一换热通路(510)的所述另一端连接,所述第二流路(142)的另一端与所述压缩机(110)的所述另一端连接。
  14. 根据权利要求1-13中任一项所述的热管理系统(1),其特征在于,还包括:
    发动机水路(700);和
    第二换热器(720),所述第二换热器(720)具有第三换热通路(721)和第四换热通路(722),所述第三换热通路(721)与所述换热水路(250)相连,所述第四换热通路(722)与所述发动机水路(700)相连。
  15. 根据权利要求14所述的热管理系统(1),其特征在于,所述发动机水路(700)包括:
    发动机(710);和
    第六二通阀(850),所述第六二通阀(850)与所述发动机(710)串联。
  16. 根据权利要求14或15所述的热管理系统(1),其特征在于,所述发动机水路(700)包括:
    暖风系统(730),所述暖风系统(730)与所述发动机(710)串联。
  17. 一种车辆(2),其特征在于,包括根据权利要求1-16中任一项所述的热管理系统(1)。
PCT/CN2022/116347 2021-09-30 2022-08-31 热管理系统和具有其的车辆 WO2023051145A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237042201A KR20240005890A (ko) 2021-09-30 2022-08-31 열 관리 시스템 및 이를 갖는 차량
AU2022356849A AU2022356849A1 (en) 2021-09-30 2022-08-31 Thermal management system and vehicle having same
EP22874536.0A EP4331886A1 (en) 2021-09-30 2022-08-31 Thermal management system and vehicle having same
US18/523,892 US20240092138A1 (en) 2021-09-30 2023-11-30 Thermal management system and vehicle having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111161075.4A CN115139778B (zh) 2021-09-30 2021-09-30 热管理系统和具有其的车辆
CN202111161075.4 2021-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/523,892 Continuation US20240092138A1 (en) 2021-09-30 2023-11-30 Thermal management system and vehicle having same

Publications (1)

Publication Number Publication Date
WO2023051145A1 true WO2023051145A1 (zh) 2023-04-06

Family

ID=83405112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116347 WO2023051145A1 (zh) 2021-09-30 2022-08-31 热管理系统和具有其的车辆

Country Status (7)

Country Link
US (1) US20240092138A1 (zh)
EP (1) EP4331886A1 (zh)
KR (1) KR20240005890A (zh)
CN (2) CN116252621A (zh)
AU (1) AU2022356849A1 (zh)
CL (1) CL2023003829A1 (zh)
WO (1) WO2023051145A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120085510A1 (en) * 2010-10-06 2012-04-12 Kia Motors Corporation Cooling apparatus for vehicle
KR20190016710A (ko) * 2017-08-09 2019-02-19 현대자동차주식회사 차량용 히트 펌프 시스템
CN110525169A (zh) * 2019-09-05 2019-12-03 上海理工大学 纯电动汽车用集成乘员舱热泵空调及三电热管理系统
CN111231620A (zh) * 2018-11-29 2020-06-05 比亚迪股份有限公司 车辆热管理系统及其控制方法、车辆
US20200338956A1 (en) * 2019-04-25 2020-10-29 Hyundai Motor Company Air-conditioning apparatus for vehicle
CN112339527A (zh) * 2020-12-01 2021-02-09 南京协众汽车空调集团有限公司 一种新能源汽车热管理系统及其工作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2829432B1 (fr) * 2001-09-07 2005-06-24 Renault Dispositif de gestion thermique, notamment pour vehicule automobile equipe d'une pile a combustible
US8336319B2 (en) * 2010-06-04 2012-12-25 Tesla Motors, Inc. Thermal management system with dual mode coolant loops
DE102017121188B3 (de) * 2017-09-13 2019-02-21 Borgward Trademark Holdings Gmbh Fahrzeug-Thermomanagementsystem und Fahrzeug
CN111231618B (zh) * 2018-11-29 2022-09-06 比亚迪股份有限公司 车辆热管理系统及其控制方法、车辆
CN111251802B (zh) * 2018-11-30 2022-07-15 比亚迪股份有限公司 车辆的热管理系统及车辆
CN111251801B (zh) * 2018-11-30 2022-07-15 比亚迪股份有限公司 车辆的热管理系统及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120085510A1 (en) * 2010-10-06 2012-04-12 Kia Motors Corporation Cooling apparatus for vehicle
KR20190016710A (ko) * 2017-08-09 2019-02-19 현대자동차주식회사 차량용 히트 펌프 시스템
CN111231620A (zh) * 2018-11-29 2020-06-05 比亚迪股份有限公司 车辆热管理系统及其控制方法、车辆
US20200338956A1 (en) * 2019-04-25 2020-10-29 Hyundai Motor Company Air-conditioning apparatus for vehicle
CN110525169A (zh) * 2019-09-05 2019-12-03 上海理工大学 纯电动汽车用集成乘员舱热泵空调及三电热管理系统
CN112339527A (zh) * 2020-12-01 2021-02-09 南京协众汽车空调集团有限公司 一种新能源汽车热管理系统及其工作方法

Also Published As

Publication number Publication date
AU2022356849A1 (en) 2024-01-04
CN115139778A (zh) 2022-10-04
CL2023003829A1 (es) 2024-05-17
EP4331886A1 (en) 2024-03-06
CN115139778B (zh) 2023-04-07
CN116252621A (zh) 2023-06-13
US20240092138A1 (en) 2024-03-21
KR20240005890A (ko) 2024-01-12

Similar Documents

Publication Publication Date Title
CN109774409B (zh) 汽车热管理系统
CN107351627B (zh) 汽车热管理系统和电动汽车
EP3900964B1 (en) Thermal management system
CN111251802B (zh) 车辆的热管理系统及车辆
US20180065444A1 (en) Heating System for a Vehicle and Method for Air-Conditioning a Vehicle
CN213228245U (zh) 车辆热管理系统和车辆
CN111251813B (zh) 车辆的热管理系统及车辆
CN108466532A (zh) 一种混合动力车辆温度控制系统
WO2023284356A1 (zh) 热管理系统和电动汽车
CN216659503U (zh) 车辆热管理系统
CN111251814B (zh) 车辆的热管理系统及车辆
CN216033622U (zh) 集成式热管理系统及车辆
CN218400117U (zh) 车辆热管理系统及车辆
CN111251808B (zh) 车辆的热管理系统及车辆
CN111251812B (zh) 车辆的热管理系统及车辆
CN111251801B (zh) 车辆的热管理系统及车辆
WO2023051145A1 (zh) 热管理系统和具有其的车辆
CN115891624A (zh) 热管理系统和具有其的车辆
CN113263889B (zh) 热管理系统
CN111016582B (zh) 一种电动汽车热泵系统及电动汽车
CN111251804B (zh) 车辆的热管理系统及车辆
CN218400116U (zh) 车辆热管理系统及车辆
CN220923757U (zh) 一种用于车辆的热管理系统
CN220500436U (zh) 热管理系统
CN111251803B (zh) 车辆的热管理系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874536

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022874536

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20237042201

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237042201

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2022874536

Country of ref document: EP

Effective date: 20231128

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/014964

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2022356849

Country of ref document: AU

Ref document number: AU2022356849

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 806986

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2301008486

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023026331

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2023580612

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022356849

Country of ref document: AU

Date of ref document: 20220831

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023026331

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231214