WO2023051095A1 - 功率设备的授权控制方法、装置、电子设备和存储介质 - Google Patents

功率设备的授权控制方法、装置、电子设备和存储介质 Download PDF

Info

Publication number
WO2023051095A1
WO2023051095A1 PCT/CN2022/113999 CN2022113999W WO2023051095A1 WO 2023051095 A1 WO2023051095 A1 WO 2023051095A1 CN 2022113999 W CN2022113999 W CN 2022113999W WO 2023051095 A1 WO2023051095 A1 WO 2023051095A1
Authority
WO
WIPO (PCT)
Prior art keywords
execution node
node
authorization
fortification
execution
Prior art date
Application number
PCT/CN2022/113999
Other languages
English (en)
French (fr)
Inventor
张德地
熊勇
王小波
肖胜贤
陶安祥
石思潮
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22874488.4A priority Critical patent/EP4391576A1/en
Publication of WO2023051095A1 publication Critical patent/WO2023051095A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom

Definitions

  • the present application relates to the field of communication power supplies, and in particular to an authorization control method, device, electronic equipment and storage medium for power equipment.
  • Power conversion modules are used in a wide range of applications, such as power supply units, drive motors, DC transmission, etc., so a finished power conversion module can easily be used for other purposes. Based on its application value, it is easy to become the target of theft.
  • the anti-theft device includes a radio wave receiving part and a control part, and the control part performs an alarm action when it is determined that the receiving part part is in a position where the monitoring radio wave of a predetermined frequency cannot be detected.
  • Another scheme is an intelligent positioning and anti-theft system based on General packet radio service (General packet radio service, GPRS for short) and Global Positioning System (Global Positioning System, GPS for short), which belongs to the field of electronic detection communication.
  • the intelligent positioning and anti-theft system of GPS includes three parts: the intelligent positioning and anti-theft host, the user terminal system and the object positioning system.
  • the intelligent positioning and anti-theft host is composed of a sensing unit, a control unit, a communication unit and a power supply unit; It is composed of a display operation unit, wherein the display operation unit includes an alarm system; the item positioning system is an independent system by a positioning unit with a communication function.
  • an application for an anti-theft device that detects theft by means of radio waves can achieve anti-theft in a small area, it needs to increase the hardware devices for sending and receiving radio waves.
  • the intelligent positioning anti-theft system based on GPRS and GPS can perform location tracking, it also needs to be added. Hardware cost and space cost.
  • An embodiment of the present application provides an authorization control method for a power device, which is applied to a control node, including: sending a defense command to an execution node for the execution node to modify the defense state to fortified; after receiving the execution node Register the execution node after feeding back the information representing the success of fortification; after detecting that the execution node that has been registered and has been fortified starts up, issue a trigger command to the execution node.
  • the embodiment of the present application also provides a power device authorization control method, which is applied to the execution node, including: receiving the defense command issued by the control node; modifying the defense state to defensed, and feeding back to the control node to indicate the success of the defense information for the control node to register with the execution node; in the fortified state, if the trigger command issued by the control node is not received within a preset time, work is prohibited.
  • the embodiment of the present application also provides an authorization control device for power equipment, which is applied to a control node, including: a first sending module, configured to send a defense command to an execution node, for the execution node to modify the defense state to fortified ; A registration module, configured to register the execution node after receiving the information indicating that the fortification is successful fed back by the execution node; a second sending module, configured to detect that the execution node that has been registered and is in the fortified state After the node is started, a trigger command is issued to the execution node.
  • a first sending module configured to send a defense command to an execution node, for the execution node to modify the defense state to fortified
  • a registration module configured to register the execution node after receiving the information indicating that the fortification is successful fed back by the execution node
  • a second sending module configured to detect that the execution node that has been registered and is in the fortified state After the node is started, a trigger command is issued to the execution node.
  • the embodiment of the present application also provides an authorization control device for power equipment, which is applied to the execution node, and includes: a receiving module, used to receive the defense command sent by the control node; a defense module, used to modify the defense state to fortified, And feed back the information representing the success of fortification to the control node, so that the control node can register the execution node; the execution module is used for in the fortified state, if the control node does not receive the download information within the preset time. issued trigger command, prohibit work.
  • the embodiment of the present application also provides an authorization control system for power equipment, including: a control node and an execution node; the control node is used to execute the above authorization control method for power equipment applied to the control node; It is used to execute the authorization control method applied to the power equipment of the execution node.
  • the embodiment of the present application also provides an electronic device, including: at least one processor; and a memory connected in communication with the at least one processor; wherein, the memory stores information that can be executed by the at least one processor. Instructions, the instructions are executed by the at least one processor, so that the at least one processor can execute the above authorization control method applied to the power equipment of the control node, or can execute the above authorization applied to the power equipment of the execution node Control Method.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores a computer program, and is characterized in that, when the computer program is executed by a processor, the above-mentioned authorization control method applied to a power device of a control node is implemented, or the above-mentioned application is executed The authorization control method of the power equipment of the node.
  • FIG. 1 is a flowchart of an authorization control method for a power device provided by an embodiment of the present application
  • Fig. 2 is a flow chart of the disarming operation of the power device provided by an embodiment of the present application
  • FIG. 3 is a flow chart of a power device authorization control method provided in another embodiment of the present application.
  • Fig. 4 is a physical block diagram of the authorization control system of the power device provided in the first embodiment and the second embodiment of the present application;
  • FIG. 5 is a first schematic diagram of an authorization control device according to another embodiment of the present application.
  • FIG. 6 is a second schematic diagram of an authorization control device according to another embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of an electronic device provided by another embodiment of the present application.
  • the purpose of the embodiments of the present application is mainly to provide a power device authorization control method, device, electronic device and storage medium, which can realize anti-theft of the power module without increasing hardware costs, and the operation is simple and easy to implement.
  • An embodiment of the present application relates to a power device authorization control method, which is applied to a control node.
  • the control node when the control node detects that the fortification status of the execution node is no defense, it will issue a The fortification command is used for the execution node to modify the fortification status to fortified according to the fortification command.
  • control node After the control node receives the information that the fortification is successful fed back by the execution node, it registers the execution node to make the control node and the execution node complete Matching and binding, so that after the control node detects that the execution node is started, it can query the fortification status and registration information of the execution node, and issue a trigger command to the execution node to make the execution node control the power module to work normally without increasing hardware costs On the basis of this, only the control node issues a trigger command to determine the normal work of the execution node, thereby realizing the anti-theft of the power module.
  • FIG. 1 The implementation details of the authorization control method of the power equipment in this embodiment will be described in detail below, and the following content is only the implementation details provided for the convenience of understanding, and is not necessary for implementing the solution.
  • the specific flow of the authorization control method for power equipment in this embodiment may be shown in FIG. 1, including:
  • Step 101 issue a defense command to the execution node.
  • the control node can be a monitoring unit, and protocol communication can be performed between the control node and the execution node, and the control node will first obtain the fortification status and the unique identification code of the power module.
  • the execution node is embedded in the power module, so the unique identification code of the power module is the unique identification code of the execution node, and the execution node can directly control the work of the power module, and the power module can be a rectifier.
  • the control node detects that the fortification state of the execution node is the unarmed state, it will issue a defense command to the execution node for the execution node to modify the fortification state to fortified. After the execution node modifies the fortification state to fortified , will send information indicating successful fortification to the control node.
  • control node directly sends a defense command to the execution node, and the execution node modifies the defense state according to the defense command directly sent by the control node.
  • control node will receive the fortification command sent from the remote authorization device, forward the received fortification command sent from the remote authorization device to the execution node, and then the execution node will perform the fortification state according to the forwarded fortification command Modifications.
  • control node stores the defense states and unique identification codes of multiple power modules, so the control node can issue a defense command to any execution node as required.
  • the fortification command issued by the control node to the execution node may also carry attribute information of the execution node, so that the execution node can determine whether the received attribute information matches its own attribute information.
  • Step 102 register execution node information.
  • control node registers the execution node after receiving the information indicating successful fortification fed back by the execution node. After the execution node sets the fortification status to fortified, it will feed back information indicating the success of the fortification to the control node. After receiving the information indicating the success of the fortification fed back by the execution node, the control node can , register the execution node, complete the matching and binding between the control node and the execution node, that is, complete the fortification process.
  • Step 103 detecting whether the fortified status of the execution node is fortified and information has been registered.
  • control node After the control node detects that the execution node is started, it first judges the fortification status and registration information of the execution node. In one example, the control node detects that the execution node is in the fortification state, and the If the node information has been registered in the control node, go to step 104.
  • Step 104 sending a trigger command to the execution node.
  • the control node sends a trigger command to the execution node after detecting that the execution node that has been registered and is in the fortification state starts. After the control node and the execution node are matched and bound, the control node needs to issue a trigger command to the execution node, and the execution node can only work normally after receiving the trigger command. Therefore, when the control node is working normally, if it detects that an execution node has been powered on and started, it will query the fortification status and registration information of the execution node. After that, the control node will issue a trigger command to the execution node so that the execution node can work normally.
  • control node sends a trigger command to the execution node to ensure normal operation, and the control command does not carry attribute information.
  • step 103 if the control node detects that the fortification state of the execution node is fortified, but the information of the execution node is not registered in the control node, the control node will regard this execution node as an external execution node, and thus will not A trigger command is issued to the execution node, but after the execution node is powered on and does not receive the trigger command issued by the control node, it cannot work normally and will modify the fortification state to an abnormal state.
  • the fortification state of the execution node is in an abnormal state because the registration of the execution node information failed due to the influence of the network or other factors when registering the execution node information, that is, the binding between the control node and the execution node failed.
  • the control node can be artificially issued a trigger command so that the execution node can work normally, or the execution node can be disarmed, that is, the matching and binding between the control node and the execution node can be canceled.
  • Step 201 receiving the authorization code of the execution node.
  • the administrator first applies to the execution node for the unique identification code of the execution node, and then sends the applied unique identification code to the remote authorization device, which uses authorization
  • the code generation algorithm calculates the unique identification code of the execution node to obtain an m-digit authorization code, and then sends the generated authorization code to the administrator, and then inputs the authorization code into the control node through the administrator.
  • the authorization code generation algorithm is to sequentially connect the reserved bit string (106 characters '0') and the date string (YYMMDD0000) to the unique identification code of the execution node to generate a new string, in Transpose the string.
  • the string s1 is obtained again after concatenating the reserved bit string and the date string to the transposed string.
  • the character string s1 is encoded using the utf-8 encoding method, and then the encoded character string is encrypted using the SHA256 algorithm, and the encrypted result is presented in a hexadecimal form to obtain a new character string s2.
  • the CRC-32 algorithm uses the CRC-32 algorithm to process the s3 string, output the 8-digit hexadecimal check code, and check the final 8-digit hexadecimal
  • the verification code can be converted into a character string to obtain the authorization code.
  • the fixed character string "xxxxxxxx” added after obtaining the s2 character string is the same 64-character length as s2, and the fixed character string is used as filling content, which can be manufacturer information, user information or password information here, and is extended While distinguishing the range, the repeatability of the results generated by the CRC-32 algorithm is further reduced.
  • the authorization code adopts SHA256 and CRC-32 two-level encryption algorithm, which minimizes the probability of repeated authorization codes, and at the same time facilitates on-site entry and increases ease of use.
  • the unique identification code and reserved bit string for generating the authorization code can be any one of manufacturer information, location information, user information, MAC address, or a combination of multiple information types, which increases the expansion of the algorithm for generating authorization codes and suitable for different application scenarios.
  • Step 202 judging whether the received authorization code matches the locally generated authorization code.
  • control node After the control node receives the m-digit authorization code input by the administrator, it calculates the unique identification code of the execution node according to its own authorization code generation algorithm to obtain an m-digit authorization code. The calculation process is the same as step 201. The process is the same as in , and will not be repeated here.
  • the control node receives the authorization code of the execution node, it matches the received authorization code with the locally generated authorization code of the execution node. When the matching is successful, it means that the execution node is a legal execution node.
  • step 203 In order to allow the legal execution node to continue to work normally, it will enter step 203, and the control node will issue a disarm command to the execution node for the execution node to set up The state is changed to undefended; if the matching fails, it means that the execution node may be an illegal execution node from outside, and there is a risk of embezzlement, then enter sub-step 204 and do not disarm the execution node.
  • the control node sends a defense command to the execution node in the power module and registers the information of the execution node, matches and binds the control node and the execution node, and the control node controls the work of the execution node in real time, that is, That is, the normal operation of the power module is determined by the control node sending a trigger command, which avoids theft of the power module and realizes the anti-theft of the power module on the basis of not increasing the hardware cost. And if the execution node is to be disarmed to make it work normally, the authorization of the remote device is required, which improves the security of the method in this embodiment.
  • FIG. 3 Another embodiment of the present application relates to a power device authorization control method, which is applied to an execution node.
  • the implementation details of the power device authorization control method in this embodiment are described in detail below. The following content is provided for the convenience of understanding. The details are not necessary for the implementation of this scheme.
  • the specific process is shown in Figure 3, which may include the following steps:
  • Step 301 receiving a defense command issued by a control node.
  • the execution node is embedded in the power module and directly controls the work of the power module.
  • the execution node includes three defense states: no defense, defense and abnormality. When the execution node is in the unarmed state, it will receive the fortification command issued by the control node.
  • the fortification command carries attribute information of the execution node, and the attribute information is manufacturer information and version information of the execution node.
  • the execution node can match the attribute information issued by the control node with its own attribute information. If the match is successful, it will operate according to the fortification command with attribute information issued by the control node. If the match fails, it will reject the The command of the control node performs an action.
  • the execution node controls the power module to work normally in the unarmed state.
  • Step 302 modify the fortification state and feed back the information representing the success of the fortification to the control node.
  • the execution node judges whether the attribute information carried in the fortification command issued by the control node matches its own attribute information. If it matches, the execution node will modify the fortification status from no fortification to fortification, and report to the control node Feedback information representing successful fortification for the control node to register with the execution node.
  • Step 303 judging whether a trigger command issued by the control node is received.
  • the execution node After the execution node is powered on, it judges its own fortification status. If it is fortified, it needs to wait for a preset time. In order to ensure the normal execution of the control node, the execution node will work normally within the preset time, and Keep working normally after receiving the trigger command issued by the control node within the preset time. If the trigger command issued by the control node is not received within the preset time, the execution node will stop working and change the fortification status to abnormal status , until it receives a trigger command issued by the control node, it can work normally.
  • control the normal output of the power module that is, enter step 304 , to complete the normal startup process of the execution node.
  • the execution node if it does not receive the trigger command issued by the control node within 5 minutes, it will stop working and not output, and at the same time modify the fortified state to an abnormal state, then enter step 305 to prohibit the work of the power module .
  • step 304 the execution node starts normally.
  • the execution node receives the trigger command issued by the control node, and controls the power module to work normally.
  • the execution node receives a trigger command issued by the control node, and controls the power module to work normally according to the control command, and the trigger command does not carry attribute information of the execution node.
  • one way is to only receive commands issued by the control node for a fixed number of times, and the execution node can continue to work even after leaving the control node; the other way is to periodically receive commands from the control node. In this case, the execution node cannot separate from the control node.
  • step 305 the execution node changes the defense state to abnormal, and prohibits work.
  • Step 306 the execution node judges again whether a trigger command is received.
  • step 307 After the fortification state of the execution node becomes abnormal, it continues to wait for the trigger command issued by the control node. If it is judged again that the execution node has received the trigger command issued by the control node, it enters step 307 and the execution node resumes work. If not, go to step 308 .
  • Step 308 the execution node judges whether a disarm command is received.
  • the execution node if it has not received the trigger command issued by the control node, it will judge whether it has received the disarm command issued by the control node. If it receives the disarm command, it will enter step 309, and the execution node will modify the defense state Leave it unarmed and get back to work.
  • the execution node after the execution node is matched and bound with the control node, once it leaves the matching control node, it will stop working after waiting for a certain period of time and only need to execute the command of the control node to realize the arming and disarming operations, which simplifies the execution
  • the implementation logic of the node minimizes the running space and storage space occupied by the program.
  • Fig. 4 is a physical block diagram of the authorization control system for power equipment provided in the first embodiment and the second embodiment of the present application, including:
  • the execution node can establish a one-to-many relationship with the control node through the unique identification code, and can also establish a many-to-many relationship through the location code, and can also be extended to a matching relationship between user information and version information.
  • the control node may be a monitoring unit in the power system, and the power device can continue to work only if the power device matches the power system.
  • the remote authorization device can be a power supply network management system. After the fortification is successful, only by applying for an authorization code from the power supply network management system and entering the authorization code on the power supply system interface can the match be canceled, and the fortification status of the power device be changed to no defense, and then continue to work .
  • the power system may be a server, and the power system interface is a human-computer interaction interface, that is, the administrator cancels the matching relationship between the power device and the power system by inputting an authorization code on the human-computer interaction interface.
  • the fortification operation can be started on the power user interface, and can also be started remotely through the power network management system, but the disarm operation can only be started remotely through the power network management system.
  • multiple power devices are configured in the power system, and the power devices need to match the power system to work.
  • the authorization code can only be applied for through the remote power network management system. Enter the authorization code on the power system interface to cancel match.
  • the power system obtains the defense status and unique identification code from the power device through the communication protocol, and then judges the defense status. If it is in the non-defense state, it sends a defense command to the power device; after the power device receives the defense command, it modifies the defense status For fortification, after completing the fortification, return success information to the power system; after receiving the returned success information, the power system registers the execution node information with the unique identification code, and completes the fortification process of the power system and power equipment.
  • the normal startup process of the power equipment that has been fortified. After the power equipment is powered on and started, it will judge its own fortification status. If it is fortified, it will wait for the power system to issue a trigger command through the communication protocol, and it can work normally within 5 minutes; power system detection After the power device is started, query the defense status and the unique identification code. If the obtained defense status is armed or abnormal and the unique identification code has been registered in the power system, a trigger command is sent to the power device through the communication protocol; the power After the device receives the trigger command sent by the power system, it maintains normal output and completes the normal startup process.
  • the abnormal startup process of the power equipment that has been fortified. After the power equipment is powered on and started, judge its own fortification status. If it is fortified, wait for the power system to issue a trigger command through the communication protocol, and it can work normally within 5 minutes; power system detection After the power device is started, check the defense status and the unique identification code. If the obtained defense status is armed or abnormal, but the unique identification code is not registered in the power system, no trigger command will be issued to the power device; If no trigger command from the power supply system is received within 5 minutes, it will stop working and no longer output, and at the same time, the fortification status will be changed to abnormal, and the abnormal start of the power equipment will be completed.
  • the power system inquires that the fortification status of the power device is abnormal. If the disarming of the power device needs to be completed, the administrator needs to send the unique identification code of the power device with an abnormal Receive the unique identification code of the power equipment whose fortification state is abnormal, use the unique identification code as input to generate an 8-digit authorization code according to a fixed algorithm, and return it to the administrator. The administrator enters the received authorization code into the power system through the user interface. The power system uses the unique identification code of the power device as input to generate an 8-digit authorization code according to the same fixed algorithm, and then compares it with the authorization code entered by the administrator. If they are the same, a disarm command is issued to the power device, and the power device receives the disarm command. After that, change the defense state to no defense, and resume normal work at the same time.
  • multiple power devices are configured in the power system, and the power devices need to match the power system to work.
  • Arming can be enabled on the user interface of the power system, or remotely through the power network management system, but disarming can only be done through the power supply.
  • the network management system is opened remotely. The specific process is as follows:
  • the power supply network management system obtains the defense status and unique identification code of the power equipment from the power system, and then judges the defense status.
  • Command to the power device after the power device receives the defense command, it modifies the defense state to fortified, and returns a success message to the power system after the defense is completed; after the power system receives the returned success message, it registers the execution node with the unique identification code information, and then return a success message to the power network management system to complete the entire fortification process.
  • the power system inquires that the fortification status of the power device is abnormal.
  • the unique identification code of the power device whose fortification state is abnormal use the unique identification code as input to generate an 8-digit authorization code according to a fixed algorithm, then find the corresponding power device according to the unique identification code, and directly send the 8-digit authorization code to the power system, the power supply
  • the system uses the unique identification code of the power device as input to generate an 8-digit authorization code according to the same fixed algorithm, and then compares it with the authorization code sent by the power network management. If they are the same, it will issue a disarm command to the power device. , change the defense state to no defense, and resume normal work at the same time.
  • step division of the above various methods is only for the sake of clarity of description. During implementation, it can be combined into one step or some steps can be split and decomposed into multiple steps. As long as they include the same logical relationship, they are all within the scope of protection of this application ; Adding insignificant modifications or introducing insignificant designs to the algorithm or process, but not changing the core design of the algorithm and process are all within the scope of protection of this application.
  • FIG. 5 is a schematic diagram of the authorization control apparatus for power equipment described in this embodiment, including: a first sending module 501, a registration module 502 and the second sending module 503.
  • the first sending module 501 is configured to send a defense command to the execution node, so that the execution node can modify the defense state to be fortified.
  • the defense command may be issued directly by the control node, or may be a defense command forwarded from a remote authorized device.
  • the registration module 502 is configured to register the execution node after receiving the information indicating successful fortification fed back by the execution node. In an example, the registration module 502 registers the execution node according to the unique identification code of the execution node.
  • the second sending module 503 is configured to send a trigger command to the execution node after detecting that the execution node that has been registered and is in the defense state starts.
  • the second sending module 503 sends a disarm command to the execution node, so that the execution node will Status changed to unarmed.
  • this embodiment is an apparatus embodiment corresponding to the above-mentioned method embodiment applied to the control node, and this embodiment can be implemented in cooperation with the above-mentioned method embodiment.
  • the relevant technical details and technical effects mentioned in the above embodiments are still valid in this embodiment, and will not be repeated here to reduce repetition.
  • the relevant technical details mentioned in this embodiment can also be applied in the above embodiments.
  • FIG. 6 is a schematic diagram of the authorization control device for power equipment described in this embodiment, including: a receiving module 601 , a defense module 602 and an execution module 603 .
  • the receiving module 601 is configured to receive a defense command issued by the control node.
  • the fortification command carries attribute information of the execution node.
  • the fortification module 602 is configured to modify the fortification state to be fortified, and feed back information indicating successful fortification to the control node, so that the control node can register with the execution node.
  • the execution node judges whether the attribute information carried in the fortification command issued by the control node matches its own attribute information. If it matches, the fortification module 602 will modify the fortification status from no fortification to fortified, and send the The control node feeds back information representing the success of fortification.
  • the fortification module 602 when the execution node is in the fortified state, if the fortification module 602 does not receive the trigger command from the control node within a preset time, the fortification state is changed to abnormal.
  • the execution module 603 is configured to prohibit work if the trigger command issued by the control node is not received within a preset time in the fortified state.
  • this embodiment is an apparatus embodiment corresponding to the above-mentioned method embodiment applied to the execution node, and this embodiment can be implemented in cooperation with the above-mentioned method embodiment.
  • the relevant technical details and technical effects mentioned in the above embodiments are still valid in this embodiment, and will not be repeated here to reduce repetition.
  • the relevant technical details mentioned in this embodiment can also be applied in the above embodiments.
  • a logical unit may be a physical unit, or a part of a physical unit, or Realized as a combination of multiple physical units.
  • the above two implementations did not introduce units that are not closely related to solving the technical problems raised by the application, but this does not mean that there are no other elements in the above two implementations. unit.
  • FIG. 7 Another embodiment of the present application relates to an electronic device, as shown in FIG. 7 , including: at least one processor 701; and a memory 702 communicatively connected to the at least one processor 701; wherein, the memory 702 stores Instructions that can be executed by the at least one processor 701, the instructions are executed by the at least one processor 701, so that the at least one processor 701 can execute the authorization control methods for power devices in the above-mentioned embodiments.
  • the memory and the processor are connected by a bus
  • the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors and various circuits of the memory together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, further, the antenna also receives the data and transmits the data to the processor.
  • the processor is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interface, voltage regulation, power management, and other control functions. Instead, memory can be used to store data that the processor uses when performing operations.
  • Another embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • the program is stored in a storage medium, and includes several instructions to make a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

本申请实施例涉及通信电源领域,特别涉及一种功率设备的授权控制方法、装置、电子设备和存储介质。其中功率设备的授权控制方法包括:向执行节点下发设防命令,供所述执行节点将设防状态修改为已设防;在接收到所述执行节点反馈的表征设防成功的信息后,对所述执行节点进行注册;在检测到已注册且处于已设防的所述执行节点启动后,向所述执行节点下发触发命令。

Description

功率设备的授权控制方法、装置、电子设备和存储介质
相关申请的交叉引用
本申请基于申请号为“202111154822.1”、申请日为2021年9月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请涉及通信电源领域,特别涉及一种功率设备的授权控制方法、装置、电子设备和存储介质。
背景技术
功率转换模块的应用比较广泛,比如电源装置、驱动电机、直流输电等,所以一个功率转换模块成品很容易被改为其他用途,基于它的应用价值,很容易成为偷盗的目标。
有多种防盗的解决方案中,一种方案是借助电波检出盗窃的防盗装置以及防盗系统。防盗装置包含电波接收部件和控制部件,控制部件在判断为位于无法由接收部部件检出既定频率的监视电波的位置的情况下进行报警动作。另一种方案是一种基于通用无线分组业务(General packet radio service,简称GPRS)和全球定位系统(Global Positioning System,简称GPS)的智能定位防盗系统,属于电子检测通信领域,这种基于GPRS和GPS的智能定位防盗系统,包括智能定位防盗主机、用户终端系统和物品定位系统三部分,智能定位防盗主机由传感单元、控制单元、通信单元和供电单元组成;用户终端系统由信号接收发单元和显示操作单元组成,其中,显示操作单元包含报警系统;物品定位系统由具有通信功能的定位单元自成独立系统。
然而,申请申请借助电波检出盗窃的防盗装置虽然可以实现小范围内的防盗,但是需要增加收发电波的硬件器件,而基于GPRS和GPS的智能定位防盗系统虽然能够进行定位追踪,但同样需要增加硬件成本和空间成本。
发明内容
本申请实施例提供了一种功率设备的授权控制方法,应用于控制节点,包括:向执行节点下发设防命令,供所述执行节点将设防状态修改为已设防;在接收到所述执行节点反馈的表征设防成功的信息后,对所述执行节点进行注册;在检测到已注册且处于已设防的所述执行节点启动后,向所述执行节点下发触发命令。
本申请实施例还提供了一种功率设备的授权控制方法,应用于执行节点,包括:接收控制节点下发的设防命令;将设防状态修改为已设防,并向所述控制节点反馈表征设防成功的信息,供所述控制节点对所述执行节点进行注册;在已设防状态下,若在预设时间内未收到所述控制节点下发的触发命令,则禁止工作。
本申请实施例还提供了一种功率设备的授权控制装置,应用于控制节点,包括:第一发送模块,用于向执行节点下发设防命令,供所述执行节点将设防状态修改为已设防;注册模 块,用于在接收到所述执行节点反馈的表征设防成功的信息后,对所述执行节点进行注册;第二发送模块,用于在检测到已注册且处于设防状态的所述执行节点启动后,向所述执行节点下发触发命令。
本申请实施例还提供了一种功率设备的授权控制装置,应用于执行节点,包括:接收模块,用于接收控制节点下发的设防命令;设防模块,用于将设防状态修改为已设防,并向所述控制节点反馈表征设防成功的信息,供所述控制节点对所述执行节点进行注册;执行模块,用于在已设防状态下,若预设时间内未收到所述控制节点下发的触发命令,禁止工作。
本申请实施例还提供了一种功率设备的授权控制系统,包括:控制节点,执行节点;所述控制节点用于执行上述的应用于控制节点的功率设备的授权控制方法;所述执行节点用于执行上述应用于执行节点的功率设备的授权控制方法。
本申请实施例还提供了一种电子设备,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述应用于控制节点的功率设备的授权控制方法,或能够执行上述应用于执行节点的功率设备的授权控制方法。
本申请实施例还提供了计算机可读存储介质,存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现上述应用于控制节点的功率设备的授权控制方法,或上述应用于执行节点的功率设备的授权控制方法。
附图说明
图1是本申请一个实施例提供的功率设备的授权控制方法的流程图;
图2是本申请一个实施例提供的功率设备的撤防操作的流程图;
图3是本申请另一个实施例提供的功率设备的授权控制方法的流程图;
图4是本申请第一实施例和第二实施例提供的功率设备的授权控制系统的物理框图;
图5是本申请另一个实施例的授权控制装置的示意图一;
图6是本申请另一个实施例的授权控制装置的示意图二;
图7是本申请另一个实施例提供的电子设备的结构示意图。
具体实施方式
本申请实施例的目的主要在于提出一种功率设备的授权控制方法、装置、电子设备和存储介质,可以在不增加硬件成本的基础上实现功率模块的防盗,且操作简单易于实现。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请的一个实施例涉及一种功率设备的授权控制方法,应用于控制节点,在本实施例中,控制节点在检测到执行节点的设防状态为无设防时,会向所述执行节点下发设防命令, 供执行节点根据设防命令将设防状态修改为已设防,控制节点在接收到执行节点反馈的表征设防成功的信息后,通过对所述执行节点进行节点注册,使控制节点与执行节点完成匹配绑定,以便在控制节点检测到执行节点启动后,查询到所述执行节点的设防状态与注册信息,并向执行节点下发触发命令使得执行节点控制功率模块正常工作,在不增加硬件成本的基础上,只通过控制节点下发触发命令来决定执行节点的正常工作,从而实现了功率模块的防盗。
下面对本实施例的功率设备的授权控制方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。本实施例的功率设备的授权控制方法的具体流程可以如图1所示,包括:
步骤101,向执行节点下发设防命令。
具体而言,在本实施例中,控制节点可以是一个监控单元,控制节点与执行节点间可以进行协议通讯,控制节点首先会获取功率模块的设防状态和唯一识别码。所述执行节点嵌入在功率模块中,因此功率模块的唯一识别码即为执行节点的唯一识别码,且执行节点可以直接控制功率模块的工作,所述功率模块可以是一个整流器。当控制节点检测到执行节点的设防状态为无设防状态时,就会向执行节点下发设防命令,供所述执行节点将设防状态修改为已设防,执行节点在将设防状态修改为已设防后,会向控制节点发送表征设防成功的信息。
在一个例子中,控制节点直接向执行节点下发设防命令,执行节点根据所述控制节点直接下发的设防命令进行设防状态的修改。
在另一个例子中,控制节点会接收从远程授权设备发送的设防命令,将所述接收的从远程授权设备发送的设防命令转发给执行节点,然后执行节点根据所述转发的设防命令进行设防状态的修改。
具体实现中,控制节点中存有多个功率模块的设防状态与唯一识别码,因此,控制节点可以根据需要对任一执行节点下发设防命令。
在步骤101中,控制节点向执行节点下发的设防命令中也可以携带有所述执行节点的属性信息,以便执行节点判断接收的属性信息与自身的属性信息是否匹配。
步骤102,注册执行节点信息。
具体而言,控制节点在接收到所述执行节点反馈的表征设防成功的信息后,对所述执行节点进行注册。由于在执行节点将设防状态设置为已设防后,会向控制节点反馈表征设防成功的信息,控制节点在接收到执行节点反馈的表征设防成功的信息后,可以根据获取的执行节点的唯一识别码,对所述执行节点进行注册,完成控制节点与执行节点的匹配绑定,即完成设防过程。
步骤103,检测执行节点的设防状态是否为已设防且已注册信息。
具体而言,控制节点在检测到执行节点启动后,会先判断所述执行节点的设防状态与注册信息,在一个例子中,控制节点检测到执行节点的设防状态为已设防,并且所述执行节点的信息在控制节点中已注册,则进入步骤104。
步骤104,向执行节点下发触发命令。
具体而言,控制节点在检测到已注册且处于设防状态的所述执行节点启动后,向所述执行节点下发触发命令。由于控制节点与执行节点匹配绑定后,需要控制节点向执行节点下发触发命令,执行节点收到触发命令后才能正常工作。因此,控制节点在正常工作时,若检测到某个执行节点已经上电启动,便会查询所述执行节点的设防状态与注册信息,在检测到执 行节点的设防状态为已设防且已注册信息后,控制节点会向执行节点下发触发命令,以便执行节点正常工作。
在一个例子中,控制节点向执行节点下发触发命令,使其保证正常工作,控制命令中不携带属性信息。
在步骤103中,若控制节点检测到执行节点的设防状态为已设防,但是所述执行节点的信息在控制节点中没有注册,控制节点会将此执行节点视作外来的执行节点,因而不会向该执行节点下发触发命令,而执行节点在上电启动后,没有接收到控制节点下发的触发命令后,不能正常工作并会将设防状态修改为异常状态。
在一个例子中,执行节点的设防状态处于异常状态是由于在注册执行节点信息时,网络或其他因素的影响导致在注册执行节点信息时未能成功注册,即控制节点与执行节点绑定失败,为了使执行节点继续正常工作,可以通过人为使控制节点下发触发命令以便执行节点正常工作,也可以对执行节点进行撤防操作,即取消控制节点与执行节点的匹配绑定。
为了确保本实施例方法的可行性,若需要对执行节点进行撤防操作,控制节点不能直接下发撤防命令,需要远程授权设备的授权才能执行,撤防操作的具体实现过程可以通过以下子步骤来实现,具体流程如图2所示,包括:
步骤201,接收执行节点的授权码。
具体而言,若需要对执行节点进行撤防操作,首先管理员向执行节点申请所述执行节点的唯一识别码,再将申请到的唯一识别码发送给远程授权设备,远程授权设备中会采用授权码生成算法对执行节点的唯一识别码计算得到一个m位的授权码,再将生成的授权码发送给所述管理员,然后通过管理员将授权码输入到控制节点中。
在一个例子中,授权码生成算法是将预留位字符串(106个字符‘0’)和日期字符串(YYMMDD0000)顺序连接到执行节点的唯一识别码之后,会生成新的字符串,在对该字符串进行转置。将预留位字符串和日期字符串连接到转置后的字符串之后再次得到字符串s1。采用utf-8编码方式对所述字符串s1进行编码,然后使用SHA256算法对编码完成的字符串进行加密,将加密后的结果以16进制的形式呈现获得新的字符串s2。s2+“xxxxxxxx”+54个“0”得到字符串s3,接着采用CRC--32算法对s3字符串进行处理,输出8位的16进制校验码,将最终的8位的16进制校验码转换为字符串形式可以的到授权码。其中,在得到s2字符串后增加的固定字符串“xxxxxxxx”为与s2相同的64字符长度,所述固定字符串作为填充内容,在这里可以是厂家信息、用户信息或密码信息,在扩展了区分范围的同时,进一步降低了CRC--32算法生成结果的重复度。
具体实现中,授权码采用SHA256和CRC--32二级加密算法,最大限度地减少授权码重复地概率,同时方便了现场录入,增加了易用性。而生成授权码的唯一识别码和预留位字符串可以是厂家信息、区位信息、用户信息、MAC地址中的任一个,也可以是多个信息种类的组合,增加了生成授权码算法的扩展性,并且适用于不同的应用场景。
步骤202,判断接收的授权码与本地生成的授权码是否匹配。
具体而言,控制节点接收到管理员输入的m位授权码后,根据自身也存有的授权码生成算法对执行节点的唯一识别码进行计算,得到一个m位授权码,计算过程与步骤201中的过程相同,此处不再赘述。控制节点在接收到所述执行节点的授权码的情况下,将接收的授权码与本地生成的所述执行节点的授权码进行匹配。当匹配成功时,说明所述执行节点是合法 的执行节点,为了让所述合法的执行节点继续正常工作,会进入步骤203,控制节点向执行节点下发撤防命令,供所述执行节点将设防状态修改为无设防;若匹配失败,说明所述执行节点可能是外来的非法执行节点,会存在盗用的风险,则进入子步骤204,不对执行节点进行撤防。
由于借助电波检测盗窃或采用基于GPRS和GPS的智能定位防盗系统去实现功率模块的防盗时,都去要增加硬件成本与空间成本,成本太高且不易实现。而本申请的实施例通过控制节点对功率模块中的执行节点下发设防命令并注册所述执行节点的信息,将控制节点与执行节点匹配绑定,控制节点实时控制执行节点的工作,也就是说,通过控制节点下发触发命令决定功率模块的正常工作,避免了功率模块被盗用,在不增加硬件成本的基础上实现了功率模块的防盗。并且如果要对执行节点进行撤防使其正常工作,需要远程设备的授权,提升了本实施例方法的安全性。
本申请的另一个实施例涉及一种功率设备的授权控制方法,应用于执行节点,下面对本实施例的功率设备的授权控制方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须,具体流程如图3所示,可以包括如下步骤:
步骤301,接收控制节点下发的设防命令。
具体而言,执行节点嵌入在功率模块中,直接控制功率模块的工作,所述执行节点包括三个设防状态:无设防、已设防和异常。在执行节点处于无设防状态时,会接收到控制节点下发的设防命令。
在一个例子中,所述设防命令中会携带有执行节点的属性信息,所述属性信息是执行节点的厂家信息、版本信息。执行节点可以根据控制节点下发的所述属性信息与自身的属性信息进行匹配,若匹配成功,才会根据控制节点下发的携带有属性信息的设防命令进行操作,若匹配失败,会拒绝对控制节点的命令进行动作。在本实施例中,无设防状态下执行节点会控制功率模块正常工作。
步骤302,修改设防状态并向控制节点反馈表征设防成功的信息。
具体而言,执行节点判断控制节点下发的设防命令中携带的属性信息是否与自身的属性信息匹配,若匹配,执行节点会将设防状态从无设防修改为已设防,并向所述控制节点反馈表征设防成功的信息,供控制节点对所述执行节点进行注册。
步骤303,判断是否接收到控制节点下发的触发命令。
具体而言,执行节点在上电启动后,判断自身的设防状态,若为已设防,需要等待一段预设时间,为了确保控制节点的正常执行,在预设时间内执行节点会正常工作,且在预设时间内接收到控制节点下发的触发命令后保持正常工作,若在预设时间内未接收到控制节点下发的触发命令,则执行节点停止工作,并将设防状态修改为异常状态,直到接收到控制节点下发的触发命令才能正常工作。
在一个例子中,在执行节点启动后,等待5分钟,并在等待的5分钟内正常工作,若5分钟内接收到控制节点下发的触发命令,则控制功率模块正常输出,即进入步骤304,完成执行节点的正常启动过程。
在另一个例子中,执行节点在5分钟内若未接收到控制节点下发的触发命令,则停止工作,不在输出,同时将设防状态修改为异常状态,则进入步骤305,禁止功率模块的工作。
步骤304,执行节点正常启动。
具体而言,执行节点接收到控制节点下发的触发命令,控制功率模块正常工作。
在一个例子中,执行节点接收控制节点下发的触发命令,根据所述控制命令控制功率模块正常工作,所述触发命令不携带执行节点的属性信息。
具体实现中,执行节点在启动后一种方式是只接收固定次数控制节点下发的命令,则执行节点即使在脱离控制节点后也能继续工作;另一种方式是周期性的接收控制节点下发的命令,这种情况下执行节点不能脱离控制节点。
步骤305,执行节点将设防状态修改为异常,禁止工作。
步骤306,执行节点再次判断是否接收到触发命令。
具体而言,执行节点的设防状态变为异常后,继续等待控制节点下发触发命令,若经再次判断,执行节点接收到了控制节点下发的触发命令,则进入步骤307,执行节点恢复工作。若为否,则进入步骤308。
步骤308,执行节点判断是否接收到撤防命令。
具体而言,若执行节点一直未接收到控制节点下发的触发命令,会判断是否接收到控制节点下发的撤防命令,若接收到该撤防命令,则进入步骤309,执行节点将设防状态修改为无设防,并恢复工作。
在本实施例中,执行节点与控制节点匹配绑定后,一旦脱离与其匹配的控制节点,在等待一定时间后会停止工作并且只需执行控制节点的命令,实现设防与撤防操作,简化了执行节点的实现逻辑,从而最大限度地减少了程序占用地运行空间和存储空间。
图4是本申请第一实施例与第二实施例提供的功率设备的授权控制系统的物理框图,包括:
远程授权设备、控制节点和执行节点。
在一个例子中,执行节点可以通过唯一识别码与控制节点建立一对多的关系,也可以通过区位码建立多对多的关系,也可以扩展为用户信息、版本信息的匹配关系。
在第一实施例与第二实施例中,控制节点可以是电源系统中的监控单元,只有功率设备与电源系统所匹配,功率设备才能继续工作。远程授权设备可以是电源网管系统,设防成功后,只有向所述电源网管系统申请授权码,并在电源系统界面输入授权码才能取消匹配,将功率设备的设防状态修改为无设防,然后继续工作。其中,电源系统可以是一个服务器,电源系统界面为一个人机交互的界面,即管理员通过在该人机交互界面输入授权码来取消功率设备与电源系统的匹配关系。
其中,设防操作可以在电源用户界面开启,也可以通过电源网管系统远程开启,但是撤防操作只能通过电源网管系统远程开启。
具体而言,在一个例子中,电源系统中配置了多台功率设备,功率设备需要与电源系统匹配才能工作,同时只能通过远程的电源网管系统申请授权码,在电源系统界面输入授权码取消匹配。具体过程如下:
设防过程,电源系统通过通讯协议从功率设备获取设防状态和唯一识别码,然后判断设防状态,如果为无设防状态,则下发设防命令给功率设备;功率设备收到设防命令后,修改设防状态为已设防,完成设防后,返回成功信息给电源系统;电源系统收到返回的成功信息后,以唯一识别码为标识注册执行节点信息,完成电源系统与功率设备的设防过程。
已设防功率设备的正常启动过程,功率设备上电启动后,判断自身的设防状态,如果为 已设防则等待电源系统通过通讯协议下发触发命令,并在5分钟内可正常工作;电源系统检测到功率设备启动后,查询设防状态和唯一识别码,如果获取到的设防状态为已设防或异常状态并且唯一识别码在电源系统中已注册,则通过通讯协议下发触发命令给功率设备;功率设备收到电源系统发送的触发命令后,保持正常输出,完成正常启动过程。
已设防功率设备的异常启动过程,功率设备上电启动后,判断自身的设防状态,如果为已设防则等待电源系统通过通讯协议下发触发命令,并在5分钟内可正常工作;电源系统检测到功率设备启动后,查询设防状态和唯一识别码,如果获取到的设防状态为已设防或异常状态,但是唯一识别码没有在电源系统中注册,则不下发触发命令给功率设备;功率设备在5分钟内没有收到电源系统的触发命令,则停止工作,不再输出,同时设防状态改为异常,完成功率设备的异常启动。
已设防功率设备的撤防过程,电源系统查询功率设备的设防状态为异常,如果需要完成功率设备的撤防,管理员需要把设防状态为异常的功率设备的唯一识别码发送给电源网管系统,网管系统收到设防状态为异常的功率设备的唯一识别码,以唯一识别码为输入按照固定算法生成8位授权码,返回给管理员,管理员把收到的授权码通过用户界面输入到电源系统,电源系统以功率设备的唯一识别码为输入按照相同的固定算法生成8位授权码,然后与管理员输入的授权码比较,如果相同,则给功率设备下发撤防命令,功率设备收到撤防命令后,更改设防状态为无设防,同时恢复正常工作。
在另一个例子中,电源系统中配置了多台功率设备,功率设备需要与电源系统匹配才能工作,设防可以在电源系统用户界面开启,也可以通过电源网管系统远程开启,但撤防只能通过电源网管系统远程开启。具体过程如下:
设防过程,电源网管系统从电源系统获取功率设备的设防状态和唯一识别码,然后判断设防状态,如果为无设防状态,则下发设防命令电源系统,电源系统受到设防命令后,则下发设防命令给功率设备;功率设备收到设防命令后,修改设防状态为已设防,完成设防后,返回成功信息给电源系统;电源系统收到返回的成功信息后,以唯一识别码为标识注册执行节点信息,然后返回成功信息给电源网管系统,完成整个设防过程。
已设防功率设备的撤防过程,电源系统查询功率设备的设防状态为异常,如果需要完成功率设备的撤防,管理员需要把设防状态为异常的功率设备的唯一识别码发送给网管系统,网管系统收到设防状态为异常的功率设备的唯一识别码,以唯一识别码为输入按照固定算法生成8位授权码,然后根据唯一识别码找到对应的功率设备,直接发送8位授权码给电源系统,电源系统以功率设备的唯一识别码为输入按照相同的固定算法生成8位授权码,然后与电源网管发送的授权码比较,如果相同,则给功率设备下发撤防命令,功率设备收到撤防命令后,更改设防状态为无设防,同时恢复正常工作。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本申请的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在本申请的保护范围内。
本申请的另一个实施例涉及一种功率设备的授权控制装置,应用于控制节点,图5是本实施例所述的功率设备的授权控制装置的示意图,包括:第一发送模块501、注册模块502和第二发送模块503。
具体而言,第一发送模块501,用于向执行节点下发设防命令,供所述执行节点将设防状态修改为已设防。所述设防命令可以是控制节点直接下发,也可以是转发远程授权设备的设防命令。
注册模块502,用于在接收到所述执行节点反馈的表征设防成功的信息后,对所述执行节点进行注册。在一个例子中,所述注册模块502根据所述执行节点的唯一识别码,对所述执行节点进行注册。
第二发送模块503,用于在检测到已注册且处于设防状态的所述执行节点启动后,向所述执行节点下发触发命令。
在一个例子中,所述第二发送模块503在接收的授权码与本地生成的所述执行节点的授权码进行匹配成功后,向所述执行节点下发撤防命令,供所述执行节点将设防状态修改为无设防。
不难发现,本实施例为与上述应用于控制节点的方法实施例对应的装置实施例,本实施例可以与上述方法实施例互相配合实施。上述实施例中提到的相关技术细节和技术效果在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在上述实施例中。
本申请的另一个实施例涉及一种功率设备的授权控制装置,应用于执行节点,下面对本实施例的功率设备的授权控制装置的细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本例的必须,图6是本实施例所述的功率设备的授权控制装置的示意图,包括:接收模块601、设防模块602和执行模块603。
具体而言,接收模块601,用于接收控制节点下发的设防命令。所述设防命令中携带有执行节点的属性信息。
设防模块602,用于将设防状态修改为已设防,并向所述控制节点反馈表征设防成功的信息,供所述控制节点对所述执行节点进行注册。在一个例子中,执行节点判断控制节点下发的设防命令中携带的属性信息是否与自身的属性信息匹配,若匹配,设防模块602会将设防状态从无设防修改为已设防,并向所述控制节点反馈表征设防成功的信息。
在另一个例子中,所述设防模块602在执行节点处于已设防状态下时,若在预设时间内未收到所述控制节点下发的触发命令,将所述设防状态修改为异常。
执行模块603,用于在已设防状态下,若预设时间内未收到所述控制节点下发的触发命令,禁止工作。
在一个例子中,所述执行模块在执行节点禁止工作后,接收到所述控制节点下发的撤防指令,会恢复工作,并将设防状态修改为无设防。不难发现,本实施例为与上述应用于执行节点的方法实施例对应的装置实施例,本实施例可以与上述方法实施例互相配合实施。上述实施例中提到的相关技术细节和技术效果在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在上述实施例中。
值得一提的是,本申请上述两个实施方式中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,上述两个实施方式中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明上述两个实施方式中不存在其它的单元。
本申请另一个实施例涉及一种电子设备,如图7所示,包括:至少一个处理器701;以及,与所述至少一个处理器701通信连接的存储器702;其中,所述存储器702存储有可被所述至少一个处理器701执行的指令,所述指令被所述至少一个处理器701执行,以使所述至少一个处理器701能够执行上述各实施例中的功率设备的授权控制方法。
其中,存储器和处理器采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器。
处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果,未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请另一个实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (16)

  1. 一种功率设备的授权控制方法,应用于控制节点,包括:
    向执行节点下发设防命令,供所述执行节点将设防状态修改为已设防;
    在接收到所述执行节点反馈的表征设防成功的信息后,对所述执行节点进行注册;
    在检测到已注册且处于已设防的所述执行节点启动后,向所述执行节点下发触发命令。
  2. 根据权利要求1所述的功率设备的授权控制方法,其中,所述对所述执行节点进行注册,包括:
    获取所述执行节点的唯一识别码;
    根据所述唯一识别码,对所述执行节点进行注册。
  3. 根据权利要求1至2中任一项所述的功率设备的授权控制方法,其中,在对所述执行节点进行注册后,还包括:
    在接收到所述执行节点的授权码的情况下,将接收的授权码与本地生成的所述执行节点的授权码进行匹配;
    当匹配成功时,向所述执行节点下发撤防命令,供所述执行节点将设防状态修改为无设防。
  4. 根据权利要求3所述的功率设备的授权控制方法,其中,所述执行节点的授权码通过采用二级加密算法对所述执行节点的所述唯一识别码进行计算得到。
  5. 根据权利要求4所述的功率设备的授权控制方法,其中,所述采用二级加密算法对所述执行节点的所述唯一识别码进行计算,包括:
    将预留位字符串和日期字符串顺序连接到所述执行节点的唯一识别码之后,得到第一更新字符串;
    对所述第一更新字符串进行转置,并将所述预留位字符串和日期字符串连接到所述转置后的第一更新字符串之后,得到第二更新字符串;
    对所述第二更新字符串进行编码;
    采用二级加密算法对编码后的第二更新字符串进行计算,生成得到所述执行节点的授权码;
    其中,所述预留位字符串包括以下信息之一或其任意组合:厂家信息、区位信息、用户信息、MAC地址。
  6. 根据权利要求1至5中任一项所述的功率设备的授权控制方法,其中,所述设防命令携带所述执行节点的属性信息,供所述执行节点在检测到所述设防命令属性信息与自身的属性信息匹配的情况下,将所述设防状态修改为已设防。
  7. 根据权利要求1至6中任一项所述的功率设备的授权控制方法,其中,在所述向执行节点下发设防命令之前,还包括:
    接收远程授权设备发送的设防命令;
    所述向执行节点下发设防命令,包括:
    向所述执行节点转发所述远程授权设备发送的设防命令;
    所述在接收到所述执行节点反馈的表征设防成功的信息后,还包括:
    向所述远程授权设备转发所述表征设防成功的信息。
  8. 一种功率设备的授权控制方法,应用于执行节点,包括:
    接收控制节点下发的设防命令;
    将设防状态修改为已设防,并向所述控制节点反馈表征设防成功的信息,供所述控制节点对所述执行节点进行注册;
    在已设防状态下,若在预设时间内未收到所述控制节点下发的触发命令,则禁止工作。
  9. 根据权利要求8所述的功率设备的授权控制方法,其中,所述方法还包括:
    在所述禁止工作后,若接收到所述控制节点下发的撤防指令,则恢复工作,并将设防状态修改为无设防。
  10. 根据权利要求8至9中任一项所述的功率设备的授权控制方法,其中,所将设防状态修改为已设防后,还包括:
    在已设防状态下,若在预设时间内未收到所述控制节点下发的触发命令,将所述设防状态修改为异常。
  11. 根据权利要求8至10中任一项所述的功率设备的授权控制方法,其中,所述设防命令携带所述执行节点的属性信息;
    在所述将设防状态修改为已设防之前,还包括:
    检测所述设防命令携带的所述属性信息与自身的属性信息是否匹配,若匹配,则再执行所述将设防状态修改为已设防。
  12. 一种功率设备的授权控制装置,应用于控制节点,包括:
    第一发送模块,用于向执行节点下发设防命令,供所述执行节点将设防状态修改为已设防;
    注册模块,用于在接收到所述执行节点反馈的表征设防成功的信息后,对所述执行节点进行注册;
    第二发送模块,用于在检测到已注册且处于已设防的所述执行节点启动后,向所述执行节点下发触发命令。
  13. 一种功率设备的授权控制装置,应用于执行节点,包括:
    接收模块,用于接收控制节点下发的设防命令;
    设防模块,用于将设防状态修改为已设防,并向所述控制节点反馈表征设防成功的信息,供所述控制节点对所述执行节点进行注册;
    执行模块,用于在已设防状态下,若预设时间内未收到所述控制节点下发的触发命令,禁止工作。
  14. 一种功率设备的授权控制系统,包括:控制节点,执行节点;
    所述控制节点用于执行如权利要求1至7中任一项所述的应用于控制节点的功率设备的授权控制方法;
    所述执行节点用于执行如权利要求8至11中任一项所述的应用于执行节点的功率设备的授权控制方法。
  15. 一种电子设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理 器执行,以使所述至少一个处理器能够执行如权利要求1至7中任一项所述的应用于控制节点的功率设备的授权控制方法,或者,能够执行如权利要求8至11中任一项所述的应用于执行节点的功率设备的授权控制方法。
  16. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的功率设备的授权控制方法,或者,实现权利要求8至11中任一项所述的应用于执行节点的功率设备的授权控制方法。
PCT/CN2022/113999 2021-09-29 2022-08-22 功率设备的授权控制方法、装置、电子设备和存储介质 WO2023051095A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22874488.4A EP4391576A1 (en) 2021-09-29 2022-08-22 Authorization control method and apparatus for power device, electronic device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111154822.1 2021-09-29
CN202111154822.1A CN113596627B (zh) 2021-09-29 2021-09-29 功率设备的授权控制方法、装置、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023051095A1 true WO2023051095A1 (zh) 2023-04-06

Family

ID=78242761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113999 WO2023051095A1 (zh) 2021-09-29 2022-08-22 功率设备的授权控制方法、装置、电子设备和存储介质

Country Status (3)

Country Link
EP (1) EP4391576A1 (zh)
CN (1) CN113596627B (zh)
WO (1) WO2023051095A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113596627B (zh) * 2021-09-29 2022-02-22 中兴通讯股份有限公司 功率设备的授权控制方法、装置、电子设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070118645A1 (en) * 2003-11-13 2007-05-24 Koninklijke Philips Electronics N.V. Method and apparatus for theft protection for devices in a network
CN105991821A (zh) * 2015-02-02 2016-10-05 中兴通讯股份有限公司 防盗处理方法及装置
CN111259463A (zh) * 2020-01-08 2020-06-09 Oppo(重庆)智能科技有限公司 防盗保护方法和装置、电子设备、计算机可读存储介质
US20200351240A1 (en) * 2019-04-30 2020-11-05 Verisign, Inc. Systems and methods for secure authorization of registry functions
CN113596627A (zh) * 2021-09-29 2021-11-02 中兴通讯股份有限公司 功率设备的授权控制方法、装置、电子设备和存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4120608B2 (ja) * 2004-03-31 2008-07-16 トヨタ自動車株式会社 車両盗難防止システム及び車両用盗難防止装置
JP2005307877A (ja) * 2004-04-22 2005-11-04 Fujitsu Ten Ltd 車両の遠隔始動装置
CN101039346A (zh) * 2006-03-16 2007-09-19 上海晨兴电子科技有限公司 手机防盗方法、设备以及含有该设备的通信终端
US8199894B2 (en) * 2007-07-31 2012-06-12 Honeywell International Inc. Advanced call forwarding
JP4777396B2 (ja) * 2008-07-01 2011-09-21 三菱電機株式会社 エンジン制御装置
CN103921866B (zh) * 2014-05-04 2016-08-24 上海新世纪机器人有限公司 电动车防盗告警方法及其应用
CN106033641A (zh) * 2015-03-12 2016-10-19 上海蜂电网络科技有限公司 电力线载波实现的多功能智能控制系统及其控制方法
CN106094708B (zh) * 2016-07-07 2018-12-21 揭阳市易捷五金机电有限公司 Plc远程在线监控方法、系统、监控终端及远程服务器
CN109849842B (zh) * 2019-02-26 2021-02-12 广州恒众车联网智能电子技术有限公司 车辆设防方法、装置、计算机设备和存储介质
CN209650419U (zh) * 2019-03-20 2019-11-19 成都德泽停车场管理有限公司 一种兼具防盗和规范行驶功能的电动车自动化管理系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070118645A1 (en) * 2003-11-13 2007-05-24 Koninklijke Philips Electronics N.V. Method and apparatus for theft protection for devices in a network
CN105991821A (zh) * 2015-02-02 2016-10-05 中兴通讯股份有限公司 防盗处理方法及装置
US20200351240A1 (en) * 2019-04-30 2020-11-05 Verisign, Inc. Systems and methods for secure authorization of registry functions
CN111259463A (zh) * 2020-01-08 2020-06-09 Oppo(重庆)智能科技有限公司 防盗保护方法和装置、电子设备、计算机可读存储介质
CN113596627A (zh) * 2021-09-29 2021-11-02 中兴通讯股份有限公司 功率设备的授权控制方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
CN113596627A (zh) 2021-11-02
EP4391576A1 (en) 2024-06-26
CN113596627B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
US11463246B2 (en) Vehicle access systems and methods
US10925102B2 (en) System and method for NFC peer-to-peer authentication and secure data transfer
KR102341247B1 (ko) 익스프레스 크리덴셜 트랜잭션 시스템
KR101829018B1 (ko) 디지털 도어락 시스템
US11665151B2 (en) Utilizing caveats for wireless credential access
US20150145648A1 (en) Apparatus, system and method for vehicle authentication management and reporting
WO2020197745A1 (en) Verifying vehicular identity
WO2023051095A1 (zh) 功率设备的授权控制方法、装置、电子设备和存储介质
WO2019037603A1 (zh) 一种用于对用户设备进行无线连接预授权的方法与设备
US10764734B2 (en) Service operation management using near-field communications
WO2021203817A1 (zh) 开放接口的管理方法、电子设备以及存储介质
KR100772877B1 (ko) 디바이스 상호간 계층적 연결 장치 및 방법
US9860238B2 (en) Smart remote control system
US11928667B2 (en) Systems and methods for multicomputer data transferring to activate contactless communication
US20200119586A1 (en) Wireless charging of depleted mobile device for access control
US11995931B2 (en) Universal credential
CN116600297B (zh) 基于5g专网的注册方法、装置、系统和通信设备
US12014189B2 (en) Remote system configuration
CN114365450B (zh) 密钥处理方法和装置
KR102276799B1 (ko) 대여 기반 물품 보관 시스템을 제어하는 방법 및 장치
JP2016165061A (ja) 携帯端末キーシステム
CN117955727A (zh) 一种认证方法、装置及相关设备
CN117834717A (zh) 一种金融设备物联共享使用的服务化实现和管理方法
CN114117399A (zh) 一种按键操作的控制方法及装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022874488

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022874488

Country of ref document: EP

Effective date: 20240320

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024005477

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE