WO2023051070A1 - 基于握手协议的智能调机方法及系统 - Google Patents
基于握手协议的智能调机方法及系统 Download PDFInfo
- Publication number
- WO2023051070A1 WO2023051070A1 PCT/CN2022/112941 CN2022112941W WO2023051070A1 WO 2023051070 A1 WO2023051070 A1 WO 2023051070A1 CN 2022112941 W CN2022112941 W CN 2022112941W WO 2023051070 A1 WO2023051070 A1 WO 2023051070A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- machine
- numerical control
- intelligent
- measurement
- compensation value
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 103
- 238000005259 measurement Methods 0.000 claims abstract description 158
- 238000005457 optimization Methods 0.000 claims abstract description 28
- 238000012545 processing Methods 0.000 claims description 56
- 230000008569 process Effects 0.000 claims description 48
- 239000011159 matrix material Substances 0.000 claims description 12
- 238000001028 reflection method Methods 0.000 claims description 7
- 238000003860 storage Methods 0.000 claims description 7
- 238000004590 computer program Methods 0.000 claims description 6
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 238000002939 conjugate gradient method Methods 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 3
- 230000002452 interceptive effect Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 description 24
- 238000004422 calculation algorithm Methods 0.000 description 19
- 238000012360 testing method Methods 0.000 description 18
- 238000012795 verification Methods 0.000 description 15
- 238000004364 calculation method Methods 0.000 description 14
- 238000007689 inspection Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 238000001514 detection method Methods 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 6
- 238000003754 machining Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011545 laboratory measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000012372 quality testing Methods 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 230000004622 sleep time Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4097—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/31—From computer integrated manufacturing till monitoring
- G05B2219/31129—Universal interface for different fieldbus protocols
Definitions
- the invention relates to the technical field of numerical control machining, in particular to an intelligent adjustment method and system based on a handshake protocol.
- design drawings - DFM process dismantling - NPI processing verification - mass production The DFM process dismantling includes dismantling a part into multiple processing procedures, the processing description, equipment requirements, process drawings, tool fixture information, SIP inspection standards, and program overview of each process; when entering the NPI processing verification stage, it is necessary to select Fix the machine table, fixtures, tools, and carry out production verification. "Machine adjustment" is the core link of production verification. What it needs to do is to adjust the tool compensation value and coordinate system compensation value used in part processing to make all dimensions meet the quality standards.
- the basic process of "adjusting the machine” is: when each machine produces and processes the first piece of material, the production technicians will rely on visual observation and work experience to manually adjust the tool compensation and coordinates used for processing The compensation value is used to produce finished parts, and then the parts are sent to the offline equipment for inspection and measurement to see if all dimensions meet the standards. If the standard is met, the adjustment machine will pass. If it does not meet the standard, change the material, process and adjust the machine again, and send it for inspection until all dimensions of a finished product are qualified. It is generally necessary to repeatedly adjust the machine to meet the product size requirements. Since each size may be related, one knife or one coordinate system will participate in the processing of multiple sizes.
- the size of a problem may be adjusted to meet the standard, while another related size has a problem. Therefore, in the existing "machine adjustment" process, the necessary condition is "sufficient quantity and rich technical experience" production technicians. Only by ensuring this condition can the production verification phase be completed as scheduled, and the technical verification can be passed as scheduled, thereby ensuring the smooth acquisition of mass production orders.
- the reality is that it is becoming more and more difficult to recruit production technicians, and the corresponding labor costs are also increasing, which has become a major pain point for manufacturing companies.
- the time-consuming process of "machine adjustment” is not only the time for adjusting the tool compensation and coordinate system compensation for reprocessing, but also in the inspection process of the product after each machine adjustment and production.
- the inspection of the adjustment results of the factory is mostly carried out outside the machine, that is, after a piece of parts is produced, it must be taken to the laboratory, using professional testing equipment, and outputting a test report.
- the ratio gap between testing equipment and production equipment is huge, reaching 1.5:100.
- a piece of material just may need to wait several hours, even longer.
- the present invention proposes an intelligent adjustment method and system based on the handshake protocol.
- One embodiment of the present invention discloses a method of intelligent machine adjustment based on handshake protocol, which is used for intelligent machine adjustment of at least one numerical control machine, including the following steps:
- S1 Obtain the measurement model parameters of the NC machine, and receive the actual measurement data of the processed parts collected by the NC machine, wherein the NC machine is received by establishing a handshake protocol based on system macro variables with the NC machine The actual measurement data of the processed parts collected by the machine;
- S4 Send the optimized compensation value back to the numerical control machine, so that the numerical control machine performs machine adjustment according to the optimized compensation value.
- the measurement model parameters obtained in step S1 include the type, standard value and tolerance standard of each dimension to be measured of the machined part of the CNC machine, and the tool compensation coefficient of the CNC machine.
- step S1 further includes: correcting the actual measurement data of the processed part collected by the numerical control machine by using the point deformation of the standard block.
- using standard block point deformation to correct the actual measurement data collected by the CNC machine specifically includes: providing standard blocks corresponding to the dimensions of the processed parts to be measured, and each standard block is provided with a plurality of Calibration point, obtain the reference value of each calibration point of the standard block corresponding to each size to be measured; when receiving the actual measurement data of the processed parts collected by the numerical control machine, also receive each The actual measurement data of the processed parts collected by the numerical control machine is corrected according to the reference value and the calibration value of each calibration point of the standard block corresponding to each size to be measured.
- step S1 there are two system macro variables in step S1, namely "a macro variable contains the lock and the program name" and "a double-word variable stores the three coordinate values of x, y, and z".
- the number of system macro variables in step S1 is less than the number of variables of the numerical control machine, wherein a variable with a word length can indicate the state of the lock variable, the measurement state of the numerical control machine and the position of the current measurement point as three interactive variables.
- receiving the actual measurement data of the processed parts collected by the numerical control machine by establishing a handshake agreement with the numerical control machine specifically includes:
- A1 Establish a long link with the CNC machine to notify the CNC machine to enter the collection state when receiving data, and introduce a separate lock variable during the collection process;
- A2 Receive the feature number transmitted by the CNC machine in the form of a macro variable and a corresponding point measurement data collected, and check the lock variable at the same time;
- A3 Reset the macro variable, and judge whether the CNC machine has collected all the points, if yes, complete the reception, if not, notify the CNC machine to enter the measurement and reporting of the next point, and return Step A2.
- step S2 further includes: judging according to the measurement model parameters whether the obtained measurement data in a standard format is up to standard, and if not, sending an alarm signal to the numerical control machine, so that the numerical control machine suspends processing Component.
- step S3 specifically includes: the weighted optimization problem model based on the trust region established according to the measurement data in the standard format and the measurement model parameters is expressed as follows:
- using the trust region reflection method to solve the above optimization problem model to obtain the optimal compensation value of the numerical control machine specifically includes:
- Construct function f(x) and calculate X and ⁇ by minimizing f(x) on trust region N through trial steps s, where trust region N is the neighborhood of function f(x) at point x.
- minimizing f(x) on the trust region N through the trial step s specifically includes:
- B1 Construct a two-dimensional trust region subproblem: Among them, g is the gradient of the function f at the current point x, H is the Hessian matrix, D is the diagonal scaling matrix, s is the trial step, and ⁇ is the radius of the trust region;
- the optimal compensation value of the CNC machine obtained according to the optimization problem model and the measurement
- the model parameters correct the optimal compensation value of the numerical control machine.
- step S4 Before sending the optimized compensation value back to the numerically controlled machine in step S4, it is judged whether the optimized compensated value exceeds a preset threshold, and if so, an intervention signal is sent to the numerically controlled machine, so that The numerical control machine suspends processing parts; if not, the optimized compensation value is sent back to the numerical control machine.
- step S4 Before sending the optimized compensation value back to the CNC machine in step S4, it is judged whether the optimized compensation value exceeds a preset threshold, and if so, the standard block is used again to collect the data collected by the CNC machine. The actual measurement data of the processed part is corrected; if the threshold is still exceeded after correction, an intervention signal is sent to the CNC machine to make the CNC machine suspend processing the part; if the preset threshold is not exceeded, the optimized The compensation value is sent back to the numerical control machine.
- Another embodiment of the present invention discloses an intelligent machine tuning system based on the handshake protocol, which is used for intelligent machine tuning of at least one numerical control machine, which is characterized in that it includes: a processor and a storage medium, and the storage medium A computer program is stored in the computer, and the processor is configured to run the computer program to execute the above-mentioned intelligent tuning method.
- the beneficial effect of the present invention lies in: the intelligent adjustment method and system based on the handshake protocol proposed by the present invention, wherein the numerical control is received by establishing a handshake protocol based on the system macro variable with the numerical control machine.
- the actual measurement data of the processed parts collected by the machine enables the measurement to be carried out inside the machine, saving the time for machine adjustment.
- the weighted optimization problem model based on the trust region is used to solve the optimal compensation value of the CNC machine to guide the CNC machine to adjust machine, making machine tuning a standardized process.
- the tool compensation or coordinate compensation value can no longer only rely on empirical calculations.
- the entire process of machine adjustment and compensation does not require professional manual participation, and only ordinary operators need to perform processing, loading, unloading and processing operations.
- the factory has completely solved the problem of difficulty in recruiting workers for biotechnology and high cost.
- the algorithm and measurement method used in the intelligent tuning method make the accuracy and precision of the tuning compensation parameters reach the best, and the tuning effect is beyond the reach of excellent biotechnology.
- the intelligent adjustment system has increased the efficiency of machine adjustment by more than half; in the past, machine adjustment and material preparation had to be repeated 6 times or more. After using the machine adjustment method and system, it can be done in one go. In the past, with manual participation, repeated adjustments needed to go back and forth to the laboratory or offline testing equipment for judgment.
- the detection of the adjustment result is carried out in the machine, and the actual data of the machined parts collected by the CNC machine is measured with a standard block.
- the measurement data is corrected, saving the adjustment time.
- the actual measurement data of the processed parts collected by the CNC machine is received by establishing a handshake protocol based on system macro variables with the CNC machine, so that the measurement can be carried out inside the machine, saving the adjustment time.
- Fig. 1 is the flow chart of the intelligent machine tuning method based on the handshake protocol of the preferred embodiment of the present invention
- Fig. 2 is the schematic diagram of the standard block of a specific embodiment of the present invention.
- Fig. 3 is the flow chart of the intelligent tuning machine method of the specific embodiment of the present invention.
- Fig. 4 is the frame diagram of the intelligent tuning machine system of the specific embodiment of the present invention.
- FIG. 5 is a schematic diagram of correcting the result value of workpiece measurement.
- the preferred embodiment of the present invention discloses an intelligent adjustment method based on the handshake protocol, which is used for intelligent adjustment of at least one numerical control machine, so that the adjustment process is smoother, and the adjustment compensation data reaches the target at one time.
- the target process is: after the machining of the CNC machine is completed, the probe is used to measure the size points in the machine.
- the system collects the measurement points in real time to calculate each size value of the part.
- the system page visually displays the size measurement results of the processed parts and automatically calculates all
- the optimal value of the tool compensation and coordinate system compensation involved in the processing, the compensation value can be written back to the machine with one click of the compensation button, and the CNC machine can be processed and measured again to produce products of various sizes that meet the standards.
- This adjustment process is not limited by the CNC machine system, and is applicable to all types of CNC machines.
- the intelligent tuning method specifically includes the following steps:
- S1 Obtain the measurement model parameters of the CNC machine, and receive the actual measurement data of the processed parts collected by the CNC machine, wherein the data collected by the CNC machine is received by establishing a handshake protocol based on system macro variables with the CNC machine The actual measurement data of the processed parts;
- the acquired measurement model parameters include the type, standard value and tolerance standard of each dimension to be measured of the machined parts of the CNC machine, the tool compensation coefficient of the CNC machine, and the like.
- each CNC machine When a part starts to be processed, verified and adjusted, each CNC machine needs to pass the adjustment. That is to ensure that each CNC machine is capable of producing parts that meet the quality requirements, or when the first piece of material is produced every day, machine adjustment verification is also required.
- the basis of the machine adjustment work is that the process and programming departments have determined the drawing version of the processed parts, formulated the process methods (such as process splitting, processing NC programs, processing tools, processing fixtures, processing equipment performance requirements, etc.), and have determined Quality inspection requirements, such as the size of the inspection, and its tolerance standards. For example, for a length dimension, the standard is 0.83cm. If the upper line is within the range of 0.09cm and the lower line is 0.05cm, the standard is met, that is, the produced size is 0.78cm to 0.92cm, and it is judged as qualified.
- Each process contains a series of inspection dimensions; (7)
- Each dimension has a set of tolerance standards, a set of processing tool information, and a set of processing coordinate system information .
- Both tool and coordinate system information have actual impact information, such as tool length or tool radius will affect the processing of the size, and the impact coefficient will be recorded, that is, the coefficient relationship between tool/coordinate system compensation and size. For different sizes, under different tool cutting methods, the ratio of coefficients affected by different tool compensations.
- the NC machine is equipped with probe hardware and uses the "measurement NC program" to detect a series of point values in the processed parts; through the part drawings, the relationship between these point positions and the dimensions of the parts is obtained, and all points are calculated through the point values. size value.
- the point deformation of the standard block is also used to correct the actual measurement data of the processed parts collected by the CNC machine to solve the above error problem.
- the schematic diagram of the standard block is shown in Figure 2, there is one standard block in each of the X and Y directions, and the size of the "marking point" of the standard block is measured and calibrated by three coordinates in advance (marked in the figure Reference value).
- the standard block After the standard block is installed, measure the standard block with the built-in probe. After finding the origin, the machine measures the coordinate values (ie, the calibration value) of all "calibration points" in the standard block. In this way, the error value between the in-machine detection value and the three-coordinate detection value of each calibration point can be calculated, as shown in Table 1. For example, taking the length from A1 to A2 as an example, its theoretical diameter is
- 24mm.
- 24.002mm. In the subsequent compensation calculation and value acquisition, the coordinate values that have been compensated by the standard block are taken for the next calculation.
- Table 1 The reference value, calibration value and corresponding error of each calibration point of the standard block
- receiving the actual measurement data of the processed parts collected by the CNC machine is specifically: receiving the actual measurement data of the processed parts collected by the CNC machine by establishing an interactive handshake protocol with the CNC machine, further specifically including the following steps:
- A1 Establish a long link with the CNC machine to notify the CNC machine to enter the collection state at the beginning of receiving data, and introduce a separate lock variable during the collection process;
- A2 Receive the feature number transmitted by the CNC machine in the form of macro variables and a corresponding point measurement data collected, and check the variables of the above lock at the same time; that is, every time the CNC machine obtains a measured point result, it will The point result and the agreed feature number are transmitted to the intelligent tuning system in the form of macro variables; among them, a total of two system macro variables are used for information interaction, which are "a macro variable contains the lock and program name", "A double-word variable stores the three coordinate values of x, y, and z.”
- A3 Reset the macro variable, and judge whether the CNC machine has collected all the points. If so, complete the reception, then notify the CNC machine to start the measurement and reporting of the next point, and return to step A2. That is, when all the measurement point data are measured, the CNC machine sends an end signal, and the intelligent machine adjustment system obtains the end signal, ends a round of data reception, and reports all the results of the collected point data to the intelligent machine adjustment system After receiving the data, the server will complete the subsequent size calculation, size judgment and compensation calculation.
- the main goal of the handshake protocol is to ensure that the result data of the in-machine measurement can be correctly acquired by the acquisition program.
- 5 to 6 macro variables are required to store the measurement results and measurement status data, thereby ensuring the coordination of in-machine measurement and acquisition.
- macro variables with continuous addresses are used to realize the above functions, because in many CNC machines, APIs can be used to read a group of continuous macro variables, which is used to reduce the number of interactions between the acquisition program and the CNC machine, and shorten the machine time.
- variable compression technology can also be used in some specific scenarios, such as compressing the values of 5-6 variables in the business into 2-3 macro variables of the machine, further saving the machine storage space.
- the interaction variables of handshake are mainly divided into two categories: the first category is used to define the measurement status and control signals, which are the corresponding lock variables (lock status 0
- the second type is used to define the measurement data.
- the value range of the coordinate value is usually a floating-point number below 10 digits, and each requires a double
- the variable of the word length is stored; this embodiment performs difference processing on the collected coordinate value and the reference value in the measurement program, and the difference is usually in the range of +0.1 ⁇ +-0.0001; therefore, it is further enlarged by 10000 double processing, the final result is that all coordinate values become an integer whose absolute value is less than 1000, and then use 12+12+12 respectively, a double-word variable can store three coordinate values, further reducing the The use of Taiwan macro variables.
- the CNC machine program and the external acquisition program may access a set of macro variables of the CNC machine at the same time, which causes the variable access problem in the critical section in fact.
- the existing handshake protocol usually only considers the acquisition time sequence To ensure the correctness of data access in the critical area, and there will be an assumption that the variable read and write speed of the CNC machine is recorded in milliseconds, which is negligible compared to the time of an in-machine measurement (approximately in seconds) . Applying this assumption to the handshake protocol leads to overwriting of the variables in the critical section that store the result data of in-machine measurements in some extreme cases (such as write delays caused by heavy machine pressure).
- the handshake protocol in this embodiment introduces a separate lock variable.
- the current lock waiting strategy chooses the spin mode, that is, when the writing process finds that the lock is held by the other process, it waits in a loop through a short sleep time, thus forming a shared macro in a multi-process environment.
- the reading and writing protection of variables realizes the consistency of reading and writing of variables in the critical area, thus overcoming the problem of overwriting of variables that store in-machine measurement result data in the critical area existing in the existing handshake protocol.
- the normal processing of the CNC machine can be achieved without affecting the normal processing of the CNC machine, the handshake efficiency is high, the macro variables occupying the CNC machine are small, and the number of handshakes is small, but the data interaction can be guaranteed to be stable without data loss. Or wrong collection and reception.
- the actual measurement data is converted into the measurement data in the standard format, it is also judged according to the measurement model parameters whether the obtained measurement data in the standard format is up to the standard, and if it is not up to the standard, an alarm signal is sent to the numerical control machine, so that the numerical control The machine pauses to process parts.
- the system realizes the real-time reception of measurement data points. After point conversion is calculated into part size, it is compared with the dimensional tolerance specified in the quality standard document in the system, and a report on whether each size meets the standard is output.
- the information contained in the report includes the measurement time of a part, the code of the part piece, the serial number of the part processing and testing machine, the standard value and tolerance of the part size, the actual value of the part size, the judgment of whether the size meets the standard, and the size deviation value.
- the point measurement value is collected in real time. Real-time judgment whether the measurement size is qualified or not.
- the above-mentioned system display results not only include the final calculated size result value, but also include the "standard determination” (OK or NG) and the deviation value.
- the machine will be notified, causing the CNC machine to stop and generate an alarm to notify the on-site personnel that the processing measurement of this equipment has not passed and needs to be compensated. In order to avoid the next substandard processed product.
- the system needs to calculate the compensation value of the tool and the coordinate axis related to the processing of the non-standard size, so that in the next machining process of the machine, after the tool compensation and coordinate system compensation are used, the produced size meets the standard parts.
- a change of a tool offset or a coordinate axis may affect multiple dimensions, because the calculation of the compensation value cannot be simply calculated by the inequality of a single dimension.
- the actual measured value should be within the tolerance range of the standard value plus the tool compensation value (compensation value), so the actual measured value should be equal to the standard value plus the tool compensation coefficient multiplied by the tool compensation plus floating tolerance.
- the tool compensation coefficient and the standard value are given by the system and obtained in step S1, and the measured value is given by the on-site numerical control machine measurement, and the compensation value and tolerance need to be obtained.
- the actual physical quantity known to be measured is recorded as C ⁇ R n , the compensation coefficient z ⁇ R k ⁇ n , the standard value S ⁇ R n , the unknown tolerance ⁇ R n and the compensation value X ⁇ R k (where n and k are both positive integers, representing the dimension of the space, and R represents the real number space, for example, R n represents the n-dimensional real number space). So there are equations:
- the unknowns are the compensation value X and the tolerance ⁇ , so the number of unknowns is k+n, and the number of equations is n, so it can be known that the number of unknowns is greater than the number of effective equations, so the problem is transformed into underdetermined System of equations solving problems.
- lsp, usp ⁇ R n+k are the upper bound and lower bound of the unknown quantity respectively.
- the problem is modeled as a weighted optimization problem solution:
- E ⁇ R n ⁇ (n+k) is the weight.
- the key issues are how to choose and compute the approximation q (defined at the current point x), how to choose and modify the trust region N, and how to exactly solve the trust region sub question.
- the quadratic approximation q is defined by the first terms of the Taylor approximation of f at x; the neighborhood N is usually spherical or elliptical.
- the trust region subproblem is usually written as
- g is the gradient of f at the current point x
- H is the Hessian matrix (symmetric matrix of the second derivative)
- D is the diagonal scaling matrix
- ⁇ is the radius of the trust region, which is a positive scalar
- Such second-order algorithms usually involve calculating all the eigenvalues of H, and applying Newton's method to the following characteristic equations
- Equation (7) can provide an exact solution to Equation (6); the eigenvalues of H are generally calculated using eigenvalue decomposition, and the optimal iterative format for solving Equation (6) requires calculating the eigenvalue decomposition of H, and applying these eigenvalues and ⁇ calculates the iterative direction, which involves a theorem for solving quadratic programming problems with constraints:
- s * is the global minimum solution of formula (6) if and only if s * is feasible and there exists ⁇ 0 such that:
- ⁇ 1 ⁇ 2 ⁇ ... ⁇ n is the eigenvalue of H.
- the two-dimensional subspace K is determined by means of the following preconditioned conjugate gradient method.
- K is chosen in this way to force global convergence (via the direction of steepest descent or negative curvature) and achieve fast local convergence (via Newton steps, if it exists).
- the trust region radius ⁇ is adjusted according to standard rules. Specifically, it decreases when a trial step is not accepted (i.e. f(x+s) ⁇ f(x)). Repeat the four steps B1 to B4 until the algorithm converges, and then the solution of the optimization problem f(x) (compensation value X and tolerance ⁇ ) is obtained.
- the compensation value is determined by the standard value of the size, the tolerance interval, the compensation coefficient, and the size relationship. Therefore, the present invention designs a set of linear equations by modeling, and the compensation value of the unknown quantity and the tolerance As a variable, a set of underdetermined equations is formed by combining the above corresponding parameters. Then, according to the importance of the variables, an optimal weighted algorithm is designed to convert the solution of the underdetermined equations into a constrained optimization problem. The above algorithm helps to solve the best compensation difference, but this compensation difference is not the tool compensation value or coordinate system compensation value that is finally written into the machine.
- the intelligent machine tuning system has already carried out a collection of corresponding tool compensation and coordinate system compensation according to the standard documents of the currently processed parts. And store the data to prepare for the compensation value to be written into the machine.
- S4 Send the optimized compensation value back to the CNC machine, so that the CNC machine can adjust the machine according to the optimized compensation value.
- the initial value of tool compensation (including radius tool compensation wear and length tool compensation wear) of each tool position and the initial value of each coordinate axis will be collected. Calculate the compensation difference through an algorithm. Finally, the compensation value is written back by adding the compensation difference to the initial value.
- the system creatively performs fool-proof and error-proof processing, and sets a threshold range. Once the compensation value is found to exceed the threshold, it will not be able to make up for it, and a prompt will be issued to inform that compensation of all sizes that meet the standard is required this time. The value may cause the danger of machine processing, prompting manual intervention to solve it.
- the absolute value of the compensation value is 0.1 as the limit.
- the security scope can be customized according to the scene requirements. If all compensation values are within the safe range, it can be written back with one key, which is convenient and quick. According to this process, the adjustment of the machine only needs two processing and measurement in total. The first measurement helps to calculate the compensation parameters of the equipment, and the second processing can complete the production of a part with all dimensions up to standard.
- the preferred embodiment of the present invention also discloses an intelligent machine tuning system based on the handshake protocol, which is used for intelligent machine tuning of at least one numerical control machine, including: a processor and a storage medium, and the computer program is stored in the storage medium , the processor is configured to run the computer program to execute the above-mentioned intelligent tuning method.
- the machine tuning scheme of the preferred embodiment of the present invention is a set of "automation and intelligence" integration, and a higher degree of scheme: first, the automatic and real-time reading of measurement data is realized by "in-machine measurement”; In this process, the possibility of machine processing defective products during laboratory measurement and waiting time is avoided. Secondly, a complete model is also established for the measurement data and parameters, and the problem of geometric calculation is transformed into an "optimization problem", in which various optimization algorithms are used to solve the problem. This solution has greatly improved the reliability of ensuring the accuracy of all size adjustments.
- precision testing equipment In the process of machine production and processing, precision testing equipment will be used to conduct product quality testing inside the machine, outside the machine, or both at the same time, and obtain the test results of each process and each size of the product.
- the intelligent tuning system will obtain various testing data in real time by interacting with testing equipment. And calculate the test data to determine whether each size meets the standard or not. If all dimensions meet the standard, the product has passed the quality verification and can be delivered. If there is a size out of tolerance, the system will calculate the best tool compensation or the best coordinate system compensation for machining of this size through the optimization algorithm. At the same time, the intelligent adjustment system will directly communicate with the processing equipment, and write the best adjustment data into the equipment to complete the adjustment.
- the intelligent adjustment system improves the adjustment efficiency by 80%, calculates the optimal result at one time, and ensures that all dimensions pass the inspection. , and through the direct interaction between the system and testing equipment and processing equipment, the testing and processing process is optimized and manual misoperation is prevented.
- whether the product quality meets the standard is not only related to the standard process, but also has a lot to do with the performance characteristics of the processing equipment and the experience of the adjustment personnel. After using the intelligent adjustment system for adjustment operation, the quality of equipment and adjustment personnel Dependence will disappear, which once again improves efficiency and reduces the cost of machine adjustment.
- FIG. 3 it is a flow chart of an intelligent machine tuning method according to a specific embodiment of the present invention, which specifically includes the following steps:
- Modus generates a measurement program.
- This module is the pre-work for the intelligent machine tuning system to start working. Since the machine tuning platform needs to collect measurement content, here, the generation process of the measurement program will be introduced first.
- Modus is the software system supporting Renishaw's measuring probes. Its work content is "inputting the part processing drawing, marking the measurement size, marking the measurement point, and generating the corresponding measurement program". Therefore, the first step can cooperate with software such as Modus to output the NC program of the measurement point. This step itself does not require the intervention of the machine tuning platform, but the process of running the measurement NC program in the machine needs to establish a handshake with the acquisition program of the intelligent machine tuning system.
- C2 Import the measurement model and quality parameters into the IMIQ system, and import the basic data into the intelligent adjustment system for subsequent compensation calculations.
- the imported data content includes: project, part, process, process method, quality standard.
- the measurement program will be automatically started during the machining process of the machine, and the acquisition program is resident and running on the edge acquisition hardware in the form of a service, and the measurement data is collected through a specific protocol during the automatic measurement process of the machine. And the measurement block data at the corresponding time point are stored and reported.
- C4 For all the collected data, in this step, the first step of calculation conversion will be performed, and the point data will be converted into size data. The first is to store all the point data of the entire part, and then interface with Modus for transmission. Calculate the size with the help of the existing point position and size relationship of Modus. Of course, when collecting the original point value, the intelligent adjustment system will consider the point deformation of the standard block to process the original point (by calculating the deformation coefficient of the measurement block to calculate the coordinate offset of each measurement point), and then use calculate.
- C6 The last part is the compensation value write-back part.
- the intelligent machine adjustment system itself will have a set of inspection mechanisms to filter out compensation results that are greater than the safety threshold. Subsequently, it is necessary to manually confirm the compensation and write it back to the machine.
- FIG. 4 it is a frame diagram of an intelligent machine tuning system according to a specific embodiment of the present invention.
- the system adopts a B/S-based hybrid computing architecture. Users can complete all operations of the system based on the browser.
- the system computing is completed through the central high-performance server cluster (providing a high-availability mechanism and linear expansion) and cooperating with the hardware and software of the edge computing.
- the CNC machine connects the equipment to the computing network through a network cable or wireless router.
- the central server is responsible for communicating with all CNC machines. After the measurement data is collected, the parameters are calculated and the results are fed back to the CNC machine.
- Edge edge controller
- the corresponding Edge will be deployed on the machine side and directly connected to the machine. Edge is responsible for communicating with the measurement program of the CNC machine and implementing the data collection of each group of sensors. All the data is aggregated and simply calculated on the Edge (mainly including matching with the meta data of the part measurement, verification and data completion, etc.) and then sent to the central server for subsequent processing.
- the intelligent machine adjustment system of this specific embodiment includes a controlled CNC machine 10 and a corresponding probe 11, a measurement CAM server (Modus) 20, an access switch 30, a client 40, an edge computing server 50,
- the specific applications of wireless AP 60 and intelligent terminal 70 are as follows:
- the external edge computing server box (including processors, IO modules, reserved sensor interfaces, etc.) is directly connected to the machine tool. And the measurement point data collected on the high-speed receiver station through a specific handshake protocol.
- DMIS data service refers to the background service that can support the calculation of dimensions or tolerances defined in the commonly used ⁇ Dimension Measurement Interface Standard>, such as Renishaw's modus service , internal DMIS data service) into standard measurement data (supports different standards.
- the internal standard is used in the communication protocol. Because it is more concise and has better performance. But it can also be converted into industry-wide standards, such as QIF).
- the adjustment parameters may be automatically written back to the CNC machine to affect the next processing.
- the write-back has also been dealt with fool-proof and error-proof (according to the rules set manually).
- the model of the off-line test carried out by the three-coordinate measuring instrument in the laboratory can also be imported (manually, automatically) into the system of the present invention and the optimization algorithm of the present invention is also used to give the optimal value of the tuning parameters.
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
Abstract
一种基于握手协议的智能调机方法及系统,用于对至少一台数控机台进行智能调机,方法包括以下步骤:S1:获取数控机台的测量模型参数,并接收数控机台采集的加工零件的实际测量数据,其中通过与数控机台建立基于系统宏变量的握手协议来接收数控机台采集的加工零件的实际测量数据;S2:根据测量模型参数将数控机台采集到的加工零件的实际测量数据转换为标准格式的测量数据;S3:根据标准格式的测量数据和测量模型参数求解数控机台的优化补偿值;S4:将优化补偿值回传给数控机台,以使得数控机台根据优化补偿值进行调机。解决了现有技术中的"调机"问题。
Description
本发明涉及数控加工技术领域,尤其涉及一种基于握手协议的智能调机方法及系统。
在CNC金属加工行业,将一个零件按照设计图纸最终加工成型的过程需要分解成多个阶段:设计图纸——DFM工艺拆解——NPI加工验证——量产。其中DFM工艺拆解包含将一个零件拆解为多个加工工序,每个工序的加工描述、设备要求、工序图纸、刀具夹具信息、SIP检验标准、程序概述;进入到NPI加工验证阶段则需要选定机台、夹治具、刀具、进行生产验证。“调机”作为生产验证的核心环节,其要做的就是通过调整零件加工时使用的刀具补偿值和坐标系补偿值,使得所有尺寸都达到质量标准。而“调机”的成功与否是由上下游各条件作用共同影响,包括:工艺拆解的合理性、质量管控的可实践性、生产所使用的设备的性能稳定性、夹治具的装配规范性、刀具选用和切割程序的方法优劣性等等,这些所有条件的组合共同影响了调机结果。因而,“调机”是整个生产验证阶段完成快慢的根本决定因素,各相关工作进程的结果验证,都是靠“调机”结果来反映。“调机”越快通过,企业越快可以接到量产订单,越快可以完成产品交付。
在现有的CNC金属加工领域,“调机”的基本进程是:每一台机生产加工第一片料时,生产技术人员会依靠肉眼观察,工作经验,手动调整加工使用的刀具补偿和坐标系补偿值,产出成品零件,再将零件送去线下设备检验测量,看是否能所有尺寸达标。若达标,调机通过。若不达标,换料再次加工调机、送检,直至一片成品所有尺寸合格。产品尺寸达标一般需要进行多次反复调机,由于各尺寸之间都可能有关联性,一把刀或一个坐标系会参与多个尺寸的加工,若进行“头痛医头,脚痛医脚”的补偿,结果可能某处问题尺寸经过调整可达标,而另一处相关尺寸出现问题。因此,在现有的“调机”流程中,必要条件就是“满足数量的并且技术经验丰富”的生产技术人员。只有保证这个条件,才可能使得生产验证阶段如期完成,才可能如期通过技术验证,进而保证顺利获取量产订单。而现实是,当下生产技术人员的招工越来越困难,相应的人力成本也越来越大,成为了制造企业一大痛点。
如果企业能够保证生产技术人员到位,正常进行调机验证,接下来面对的便是“效率受阻”的难点。“调机”的过程耗时不仅仅是一次次调整刀补、坐标系补偿重新加工的时间,还出现在每次调机生产结束后对产品的检测过程上。当下工厂对调机结果的检测多在机外进行,即生产出一片零件后,要拿去实验室,使用专业检测设备,输出检测报告。而检测设备和生产设备之间的比例差距极大,达到了1.5:100。这样,自然产生了大量排队等待检测时间,一片料就可能需要等待数小时,甚至更久。如此一来,一台CNC加工设备通过调机可能花费数天,完成上百台设备的调机,也需要两个月的时间。“调机”耗费的时长,亦是工厂设备可用时间的损耗,提升“调机”效率,最大程度加快生产验证阶段,就能最大程度释放设备可用时间,进 而转化为产能。
当下调机除了面对人员、效率问题,随之还产生了“物料浪费”的问题。调机失败生产出来的零件,往往不能进行二次加工,形成了一片废料。那么调机的一次达成率越高,物料损耗也就越少。随之带来的良品率数据也会越好。同时,除了上面所说在生产能力验证阶段需要调机,批量生产的过程中也需要调机。比如每日,每台机在做第一片料的时候,在更新了机内夹治具的时候,在换刀之后,都需要对随之而来生产的料进行一次调机检测,保障量产的良品率。因此,“调机”的场景贯穿着CNC金属加工的每个环节,解决“调机”问题将带来生产能力的巨大提升。
以上背景技术内容的公开仅用于辅助理解本发明的构思及技术方案,其并不必然属于本专利申请的现有技术,在没有明确的证据表明上述内容在本专利申请的申请日已经公开的情况下,上述背景技术不应当用于评价本申请的新颖性和创造性。
发明内容
为解决上述“调机”时各尺寸之间可能有的关联性所造成的问题,本发明提出一种基于握手协议的智能调机方法及系统。
为了达到上述目的,本发明采用以下技术方案:
本发明的一个实施例公开了一种基于握手协议的智能调机方法,用于对至少一台数控机台进行智能调机,包括以下步骤:
S1:获取所述数控机台的测量模型参数,并接收所述数控机台采集的加工零件的实际测量数据,其中通过与所述数控机台建立基于系统宏变量的握手协议来接收所述数控机台采集的加工零件的实际测量数据;
S2:根据所述测量模型参数将所述数控机台采集到的加工零件的实际测量数据转换为标准格式的测量数据;
S3:根据标准格式的测量数据和测量模型参数求解所述数控机台的优化补偿值;
S4:将所述优化补偿值回传给所述数控机台,以使得所述数控机台根据所述优化补偿值进行调机。
优选地,步骤S1中获取的测量模型参数包括所述数控机台的加工零件的各待测尺寸的类型、标准值和公差标准、所述数控机台的刀补系数。
优选地,步骤S1中还包括:采用标准块点位形变对所述数控机台采集的加工零件的实际测量数据进行校正。
优选地,采用标准块点位形变对所述数控机台采集的实际测量数据进行校正具体包括:提供待测量的加工零件的各待测尺寸对应的标准块,每个标准块上设有多个标定点,获取各待测尺寸对应的标准块的每个标定点的基准值;在接收所述数控机台采集的加工零件的实际测量数据时,还接收各待测尺寸对应的标准块的每个标定点的标定值,根据各待测尺寸对应的标准块的每个标定点的基准值和标定值对所述数控机台采集的加工零件的实际测量数据进行校正。
优选地,步骤S1中所述系统宏变量有两个,分别为“一个宏变量包含锁和程序名”、“一个双字的变量存放x、y、z这三个坐标值”。
优选地,通过变量压缩使得步骤S1中所述系统宏变量的数量少于所述数控机台的变量的数量,其中一个字长的变量可表明锁变量的状态、所述数控机台的测量状态和当前测量点的位置三个交互变量。
优选地,通过与所述数控机台建立握手协议来接收所述数控机台采集的加工零件的实际测量数据具体包括:
A1:与所述数控机台建立长链接,以在接收数据开始时通知所述数控机台进入采集状态,并在采集过程中引入单独的锁变量;
A2:接收所述数控机台以宏变量形式传输的特征编号和对应采集到的一个点位测量数据,并同时检查所述锁变量;
A3:重置宏变量,并判断所述数控机台是否采集完所有点位,如果是,则完成接收,如果否,则通知所述数控机台进入下一个点位的测量和上报,并返回步骤A2。
优选地,步骤S2中还包括:根据所述测量模型参数判断得到的标准格式的测量数据是否达标,如果不达标,则发送报警信号给所述数控机台,以使得所述数控机台暂停加工零件。
优选地,步骤S3具体包括:根据标准格式的测量数据和测量模型参数建立的基于信赖域的加权优化问题模型表示如下:
s.t.lsp≤x≤usp
Ax=b
并采用信赖域反射法对上述优化问题模型进行求解以得到所述数控机台的优化补偿值;
其中,A=[z,I]
T∈R
n×(n+k),x=[X,ε]∈R
n+k,b=C-S∈R
n,C∈R
n为标准格式的测量数据,S∈R
n为测量模型参数中包含的加工零件的各待测尺寸的标准值,z∈R
k×n为测量模型参数中包含的数控机台的刀补系数,ε∈R
n为待求解的数控机台的公差,X∈R
k为待求解的数控机台的补偿值,I为单位矩阵,E∈R
n×(n+k)为权重,lsp,usp∈R
n+k分别为未知量x的上限和下限。
优选地,采用信赖域反射法对上述优化问题模型进行求解以得到所述数控机台的优化补偿值具体包括:
构建函数f(x),并通过试探步s在信赖域N上最小化f(x)以计算得到X和ε,其中信赖域N是函数f(x)在点x的邻域。
优选地,通过试探步s在信赖域N上最小化f(x)具体包括:
B2:求解二维信赖域子问题,以确定试探步s;
B3:判断f(x+s)是否小于f(x),如果是,则使得x=x+s,并返回步骤B1;如果否,当前点保持不变,减小信赖域半径Δ,并返回步骤B1;
B4:重复步骤B1~B3,直至二维信赖域子问题收敛,得到优化问题f(x)的解。
优选地,步骤B2中在求解二维信赖域子问题时,将二维信赖域子问题限制在二维子空间K内进行求解,二维子空间K根据下述预条件共轭梯度法确定:将二维子空间K定义为由k
1和k
2确定的线性空间,其中k
1是梯度g的方向,k
2满足H·k
2=-g或
的条件。
优选地,采用信赖域反射法对上述优化问题模型进行求解以得到所述数控机台的优化补偿值之后还包括:根据求解优化问题模型得到的所述数控机台的优化补偿值和所述测量模型参数对所述数控机台的优化补偿值进行修正。
优选地,步骤S4中将所述优化补偿值回传给所述数控机台之前,判断所述优化补偿值是否超过预设阈值,如果是,则发送干预信号给所述数控机台,以使得所述数控机台暂停加工零件;如果否,则将所述优化补偿值回传给所述数控机台。
优选地,步骤S4中将所述优化补偿值回传给所述数控机台之前,判断所述优化补偿值是否超过预设阈值,如果是,则再次采用标准块对所述数控机台采集的加工零件的实际测量数据进行校正;如果校正后仍然超过阈值,则发送干预信号给所述数控机台,以使得所述数控机台暂停加工零件;如果未超过预设阈值,则将所述优化补偿值回传给所述数控机台。
本发明的另一实施例公开了一种基于握手协议的智能调机系统,用于对至少一台数控机台进行智能调机,其特征在于,包括:处理器和存储介质,所述存储介质中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述的智能调机方法。
与现有技术相比,本发明的有益效果在于:本发明提出的基于握手协议的智能调机方法及系统,其中通过与所述数控机台建立基于系统宏变量的握手协议来接收所述数控机台采集的加工零件的实际测量数据,使得测量得以能在机内进行,节约了调机时间。通过建立上述握手协议,可以不影响数控机台的正常加工,握手效率高,占用数控机台的宏变量少,握手次数少但是又能够保证数据交互稳妥,不出现丢数据或错采集接收。
在进一步的实施例中,通过接收数控机台的加工零件的实际测量数据和测量模型参数,采用基于信赖域的加权的优化问题模型求解数控机台的优化补偿值,以指导数控机台进行调机,使得调机成了标准化的流程。其中的刀补或者坐标补偿值不再只能依靠经验计算,整个调机补偿的过程,可以无需专业人工的参与,只需普通操作工进行加工上下料和加工操作。从而使得工厂对于生技招工难,成本大的问题得到了彻底解决。而且,智能调机方法中所使用的算法和测量方法,使得调机补偿参数的准确性和精确性达到了最佳,调机效果是优秀生技都无法做到的。同时,这种准确性和精确性不会因为设备、环境的不同而有所区别,极其稳定。另外,智能调机系统使得调机效率提升一半以上;曾经调机做料需要反复6次及以上,使用该调机方法及系统后,可以做到一次完成。曾经的反复调机在人工参与下,需要来回实验室或线下检测设 备处进行判断,耗时花费包括“线下检测时间”、“人工判断时间”、“反复加工时间”、“等待检测设备时间(考虑到检测设备数量远少于生产设备,约为1.5:100,加工完的零件要进行线下检测,需要排队等待设备空闲时间)”,而机内调机时间只有“两次作料加工时间”和“一次机内测量程序运行时间”。在新品验证爬坡阶段,使用智能调机方法及系统能使原先调机时长减少一半。同时,由于大部分尺寸的测量转移到了数控机台内,把问题提前在机内测量暴露出来并解决,这样也大大降低了实验室测量仪的需求压力。
在进一步的方案中,在通过接收数控机台的加工零件的实际测量数据和测量模型参数,实现对调机结果的检测在机内进行,并用标准块对所述数控机台采集的加工零件的实际测量数据进行校正,节省了调机时间。
在进一步的方案中,通过与数控机台建立基于系统宏变量的握手协议来接收数控机台采集的加工零件的实际测量数据,使得测量得以能在机内进行,节约了调机时间。通过建立上述握手协议,可以在不影响数控机台的正常加工,握手效率高,占用数控机台的宏变量少,握手次数少但是又能够保证数据交互稳妥,不出现丢数据或错采集接收。
图1是本发明优选实施例的基于握手协议的智能调机方法流程图;
图2是本发明一具体实施例的标准块的示意图;
图3是本发明具体实施例的智能调机方法的流程图;
图4是本发明具体实施例的智能调机系统的框架图;
图5是对工件测量的结果值进行修正的示意图。
下面对照附图并结合优选的实施方式对本发明作进一步说明。
本发明优选实施例公开了一种基于握手协议的智能调机方法,用于对至少一台数控机台进行智能调机,使得调机流程更加顺畅,使调机补偿数据一次性达到目标,其目标流程为:数控机台加工完成后,在机台内使用探头进行尺寸点位测量,系统实时采集测量点计算出零件每个尺寸值,系统页面可视化展示加工零件的尺寸测量结果,自动计算所有参与加工的刀补和坐标系补偿最优值,一键补偿按键即可将补偿值写回机台,数控机台再次加工测量就可产出各尺寸达标产品。此调机过程不受数控机台系统限制,适用于所有类型的数控机台。
如图1所示,该智能调机方法具体包括以下步骤:
S1:获取数控机台的测量模型参数,并接收数控机台采集的加工零件的实际测量数据,其中通过与所述数控机台建立基于系统宏变量的握手协议来接收所述数控机台采集的加工零件的实际测量数据;
其中,获取的测量模型参数包括所述数控机台的加工零件的各待测尺寸的类型、标准值和公差标准、所述数控机台的刀补系数等。
在一个零件开始加工验证调机的过程中,需要每一台数控机台都通过调机。即保证每台数控机台都有能力生产满足质量需求的零件,或者在每日生产的首片料时,也需要进行调机验证工作。调机工作的基础,是工艺、编程部门已经确定了加工零件的图纸版本,制定了工艺方法(如工序拆分、加工NC程序、加工刀具、加工夹具、加工设备性能需求等),并已经确定了质量检测要求,如检测的尺寸,及其公差标准。如一个长度尺寸,标准是0.83cm,若做到上线0.09cm和下线0.05cm范围内就算达标,即生产出来的尺寸在0.78cm到0.92cm便判定为合格。
具体地,开始调机前,需要存储以下数据内容:(1)加工的项目;(2)为项目所分配的加工设备;(3)项目下的零件;(4)零件的各个图纸版本;(5)每个图纸版本下的多工序;(6)每个工序下包含了一系列检测尺寸;(7)每一个尺寸都拥有一套公差标准、一套加工刀具信息、一套加工坐标系信息。刀具和坐标系信息中都拥有实际影响信息,如是刀具长度,还是刀具半径会影响该尺寸的加工,并且会记录影响系数,即刀具/坐标系补偿和尺寸的系数关系。如不同尺寸,在不同刀具切割方法下,受到其不同刀补影响的系数比例。(7)每一个尺寸有存在多点位尺寸。即从不同点位出发,测量的值有所不同。如厚度尺寸、半径尺寸等,会有多点位数据进行展示。
数控机台使用探针硬件装备,使用“测量NC程序”,探测加工零件内的一些列点位值;通过零件图纸,获取这些点位置和零件各尺寸的关系,并通过点位值计算出所有尺寸值。在测量过程中,往往存在一些误差问题:热变形导致的误差、毛刺导致的误差、形变导致的误差等等。在本实施例中,在接收到数控机台采集的加工零件的实际测量数据之后,还采用标准块点位形变对数控机台采集的加工零件的实际测量数据进行校正以解决上述误差问题。
在一个具体的实施例中,标准块的示意图如图2所示,X和Y方向各有1个标准块,标准块“标定点”尺寸提前由三坐标进行测量标定(图示中已标注出基准值)。标准块安装之后,用机内测头对标准块进行测量,找到原点后,机内测出标准块内所有“标定点”的坐标值(即标定值)。如此,便可算出每个标定点在机内检测值和三坐标检测值的误差值,如表1所示。例如,采用A1到A2点的长度作为案例,其理论直径为|A2-A1|=24mm。A1点在线测量坐标为-118.0,此位置在标准块上最相近的“标定点”为表1中的9号点,值为-117.0,其误差为0.009。因此取此标定点的误差值对A1点进行修正,修正后的A1坐标为-118.0-0.009=-118.009。同理对A2点坐标进行修正-142.0-0.011=-142.011。A1、A2点修正后,圆的直径|A2-A1|=24.002mm。在后续进行补偿计算取值时,取进行过标准块补偿的坐标值进行下一步计算。
表1 标准块的每个标定点的基准值、标定值和相应的误差
其中,在接收数控机台采集的加工零件的实际测量数据具体为:通过与数控机台建立进行交互的握手协议来接收数控机台采集的加工零件的实际测量数据,进一步具体包括以下步骤:
A1:与数控机台建立长链接,以在接收数据开始时通知数控机台进入采集状态,并在采集过程中引入单独的锁的变量;
A2:接收数控机台以宏变量形式传输的特征编号和对应采集到的一个点位测量数据,并同时检查上述锁的变量;也即,数控机台在每获取测量的一个点位结果,就将该点位结果和约定好的特征编号通过宏变量形式传输到智能调机系统中;其中,总共采用了两个系统宏变量进行信息交互,分别为“一个宏变量包含锁和程序名”、“一个双字的变量存放x、y、z这三个 坐标值”。
A3:重置宏变量,并判断数控机台是否采集完所有点位,如果是,则完成接收,则通知数控机台进入下一个点位的测量和上报,并返回步骤A2。即当所有测量点位数据都测量完成时,数控机台发出结束信号,智能调机系统获取结束信号,结束一轮数据的接收,并将采集点位数据全部结果计提上报到智能调机系统的服务端,数据接收完成后,服务端将完成后续的尺寸计算、尺寸判定和补偿计算工作。
握手协议的主要目标是保证机内测量的结果数据能够被采集程序正确获取,通常需要5~6个宏变量用来存放测量结果和测量状态数据,进而保证机内测量和采集的协同进行。本实施例中使用了地址连续的宏变量实现上述的功能,因为在很多CNC机台,可以使用API读取一组连续的宏变量,用来减少采集程序和CNC机台的交互次数,缩短机内测量的时间;同时,在一些特定场景下还可以使用变量压缩的技术,例如把业务上的5~6个变量的值压缩到了机台的2~3个宏变量中,进一步节省了机台的存储空间。
目前握手的交互变量主要分成两类:第一类用来定义测量状态和控制信号,分别为对应的锁变量(锁状态0|1、锁持有者0|1)、机台测量状态(四种状态)、当前测量点ID(不超过2000的正整数),本实施例中分别用2+2+12,总共一个字长的变量表明了这三个状态,进而实现了控制变量的压缩;第二类用来定义测量数据,目前是三个值,分别对应采集点位的X、Y、Z的坐标值,坐标值的取值范围通常是一个10位以下的浮点数,各自需要一个双字长度的变量去存放;本实施例在测量程序中对采集到的坐标值和基准值做了差值处理,差值通常是在+0.1~+-0.0001的范围内;因此进一步做了放大10000倍的处理,最终的结果就是所有的坐标值变成了一个绝对值小于1000的整数,然后分别用12+12+12,一个双字的变量就可存放三个坐标值,进一步减少了对机台宏变量的使用。
此外,CNC机台程序和外部的采集程序可能会同时访问CNC机台的一组宏变量,这就造成了事实上的临界区的变量访问问题,现有的握手协议通常只是考虑了通过采集时序去保证临界区数据访问的正确性,并且会有个假设,就是CNC机台的变量读写速度是以毫秒记的,相对于一次机内测量的时间(大约是以秒记)是可以忽略的。将这个假设使用到了握手协议中,就导致了在一些极端情况下(例如机台压力大导致的写入延迟),临界区内存放机内测量的结果数据的变量会出现覆盖的情况。而本实施例中的握手协议引入了单独的锁的变量,无论是采集进程还是CNC机台程序在读写机内测量的结果数据时,都需要检查该锁变量,并在需要的时候加锁,目前锁等待的策略选择了自旋的模式,即写入进程发现锁被对方进程持有时,就在循环中通过很短的睡眠时间进行等待,这样就形成了多进程环境下对共享宏变量的读写保护,实现了临界区中变量的读写一致性,从而克服了现有的握手协议中所存在的临界区内存放机内测量的结果数据的变量会出现覆盖的问题。
综上所述,通过建立上述握手协议,可以在不影响数控机台的正常加工,握手效率高,占用数控机台的宏变量少,握手次数少但是又能够保证数据交互稳妥,不出现丢数据或错采集接收。
S2:根据测量模型参数将数控机台采集到的加工零件的实际测量数据转换为标准格式的测量数据;
在零件图纸中找到测量点位和检测尺寸的关系,通过形位几何公式,计算尺寸的结果值。此部分操作可在智能检测调机系统内部完成,也可以依赖市场已存在的检测系统对接来完成。如计算“圆度”、“同轴度”、“平行度”、“垂直度”、“对称度”等形位尺寸值,可将需要测量的尺寸在图纸中标出,系统引导选择计算所需要的测量点位。如此,检测程序只要将这些测量点位的(x,y,z)坐标测出,系统就可使用已建立的几何计算模型自动完成尺寸结果计算和显示。
其中,在将实际测量数据转换为标准格式的测量数据之后,还根据测量模型参数判断得到的标准格式的测量数据是否达标,如果不达标,则发送报警信号给所述数控机台,以使得数控机台暂停加工零件。
具体地,通过自定义握手协议,系统实现对测量数据点位的实时接收。点位转化计算为零件尺寸之后,与系统内的质量标准文档中规定的尺寸公差进行比较,输出每个尺寸达标与否的报告。报告包含信息包括,一个零件测量时间、零件片编码、零件加工检测机台序列号、零件尺寸的标准值和公差、零件尺寸的实际值,尺寸达标与否判断、尺寸偏差值。根据测量程序,实时采集点位测量值。实时判定测量尺寸是否合格。
因此,上述的系统显示结果不仅包含最终计算出的尺寸结果值,同时包括“达标判定”(OK或者NG),包含偏差值。通过查看最最终采集结果,能立刻知道整片零件测量了多少尺寸,是否全部通过,有多少尺寸未达标,每个尺寸偏差是多少,偏差超过一定范围的尺寸又是哪些。若有尺寸未达标,除了在系统检测结果中展示,还会通知机台,使得数控机台停机并产生报警,通知现场人员,此台设备加工测量没有通过,需要进行补偿。以免出现下一片不达标加工产品。
S3:根据标准格式的测量数据和测量模型参数建立基于信赖域的加权的优化问题模型,并对该优化问题求解,得到数控机台的优化补偿值;
在尺寸不达标的情况下,系统需要计算出和不达标尺寸加工相关的刀具和坐标轴的补偿值,使得机台下次加工过程中,采用了刀补和坐标系补偿后,生产出尺寸达标的零件。在计算补偿值的过程中,由于尺寸之间存在相关性,同时,一个刀补或一个坐标轴的改变可能会影响多个尺寸,因为补偿值的计算不能简单通过单个尺寸的不等式计算。本实施例中将尺寸、标准值、公差、补偿系统、未知补偿变量、补偿变量的补偿系数首创构成了一组欠定方程组,并考虑到不同尺寸达到公差标准重要性的不同,加入了加权求解的方法,最终将此方程组转化为约束最优化问题,进行求解。在这种补偿值算法的帮助下,能够帮助调机获取最优方案,将每个尺寸做到最好的值,而不仅仅是达标。具体补偿算法如下述的详细阐释。
S31:构建模型。
在数控机台补偿中,实际的测量值应当在标准值加上刀补值(补偿值)的公差范围之内,所以实际测量值应该等于标准值加上刀补系数乘以刀补加上浮动公差。其中刀补系数和标准值 由系统给定已在步骤S1中获取,测量值由现场数控机台测量给出,需要求出补偿值和公差。因此在补偿算法中,已知测量的实际物理量记为C∈R
n,补偿系数z∈R
k×n,标准值S∈R
n,未知量公差ε∈R
n和补偿值X∈R
k(其中n、k均为正整数,表示空间的维度,R表示实数空间,例如R
n表示n维实数空间)。因此有方程组:
C=S+z
TX+ε (1)
其中未知量为补偿值X和公差ε,所以未知数的个数是k+n,而方程的数量是n个,因此可知未知量的个数大于有效方程组的个数,故问题转化为欠定方程组求解问题。
进一步地,化简方程组到标准格式令,x=[X,ε]∈R
n+k,A=[z,I]
T∈R
n×(n+k),b=C-S∈R
n,由于实际情况中对补偿值和公差有范围要求,本发明将原问题等价于求解带约束的欠定方程组:
其中lsp,usp∈R
n+k分别为未知量的上界和下界。
若方程组(2)存在可行解,其解必然是下列约束优化问题的最优解:
实际中,对于可行解往往有更多的要求,例如求最小二范数解或者加权解。因此本发明中将问题建模为带权的优化问题求解:
这里E∈R
n×(n+k)是权重。
S32:模型求解:上述二次规划问题求解可以采用内点法或者信赖域反射最小二乘方法求解,实验中由于数值很小,内点法求解经常会出现误差,故而采用信赖域反射最小二乘方法求解。
S33:信赖域反射法:
考虑无约束最小化问题,最小化f(x):R
n→R。假设现在位于n维空间中的点x处,需要寻找函数值更小的点。基本思路是用较简单的函数q来逼近f,该函数需能充分反映函数f在点x的邻域N中的行为。此邻域N就是信赖域N。试探步s是通过在信赖域N上进行最小化(或近似最小化)来计算的。以下是信赖域子问题:
min
s{q(s),s∈N} (5)
如果f(x+s)<f(x),当前点更新为x+s;否则,当前点保持不变,信赖域N缩小,算法再次计算试探步。
在定义特定信赖域方法以最小化f(x)的过程中,关键问题是如何选择和计算逼近q(在当前点x上定义)、如何选择和修改信赖域N,以及如何准确求解信赖域子问题。在标准信赖域方法中,二次逼近q由f在x处的泰勒逼近的前两项定义;邻域N通常是球形或椭圆形。以数学语言表述,信赖域子问题通常写作
其中,g是f在当前点x处的梯度,H是Hessian矩阵(二阶导数的对称矩阵),D是对角缩放矩阵,Δ是信赖域半径,是一个正标量,||.||是2-范数。此类2阶算法(涉及求Hessian矩阵以及求逆的算法,在大规模求解时耗时耗力且计算复杂)通常涉及计算H的所有特征值,并将牛顿法应用于以下特征方程
公式(7)可以提供公式(6)的精确解;H的特征值一般是用特征值分解计算,而求解公式(6)的优化迭代格式需要计算H的特征值分解,以及应用这些特征值和Δ计算迭代方向,这里涉及到一个求解带约束的二次规划问题的定理:
s
*是公式(6)的全局最小解当且仅当s
*是可行的且存在λ≥0使得:
(H+λI)s
*=-g
λ(Δ-||s
*||)=0
(H+λI)≥0
根据上述定理,可以知道迭代格式s(λ)=-(H+λI)
-1g是关于λ的一族向量,可以通过计算最优的λ
*找到最优的s
*。
设H有特征值分解H=QΛQ
T,其中Q=[q
1,q
2,...,q
n]是正交矩阵,Λ=Diag(λ
1,λ
2,...,λ
n)是对角矩阵,λ
1≤λ
2≤...≤λ
n是H的特征值。为了方便,以下仅考虑λ
1≤0且λ
1是单特征根的情形,其他情形可类似分析。显然,H+λI有特征值分解H+λI=Q(Λ+λI)Q
T。对λ>-λ
1≥0,可直接写出s(λ)的表达式:
这正是s(λ)的正交分解,由正交性可容易求出
根据连续函数介值定理,由互补松弛性质知道||s(λ)||=Δ(等价于公式(7))的解必存在且唯一,因此可以通过牛顿法计算公式(7)一元方程的根得到λ
*,进而计算得到s
*。
但是,求解H的特征值要耗费与H的几个分解成比例的时间。因此,对于信赖域问题,本发明中采取另一种方法,这种方法是将信赖域子问题限制在二维子空间K内进行近似求解,一旦计算出二维子空间K,即使需要完整的特征值/特征向量信息,求解公式(6)的工作量也不大,所以主要工作已转移到子空间的确定上。
二维子空间K是借助下述预条件共轭梯度法确定的。求解器将K定义为由k
1和k
2确定的线性空间,其中k
1是梯度g的方向,k
2是近似牛顿方向(即H·k
2=-g的解)或是负曲率的方向
以此种方式选择K的思路是强制全局收敛(通过最陡下降方向或负曲率方向)并实现快速局部收敛(通过牛顿步,如果它存在)。
基于上述分析,可以给出基于信赖域的无约束最小化的框架:
B1:构造二维信赖域子问题。
B2:求解公式(6)以确定试探步s。
B3:如果f(x+s)<f(x),则x=x+s。
B4:调整信赖域半径Δ。
信赖域半径Δ根据标准规则进行调整。具体来说,它会在试探步不被接受(即f(x+s)≥f(x))时减小。重复B1~B4这四个步骤,直到算法收敛,就得到了优化问题f(x)的解(补偿值X和公差ε)。
在上述补偿算法中,可知补偿值是由尺寸标准值、公差区间、补偿系数、尺寸关系所决定,因此,本发明通过建模的方式,设计一组线性方程组,由未知量补偿值和公差作为变量,结合上述相应的参数构成一组欠定方程组。然后根据变量之间的重要程度,设计最优的加权求解算法,将欠定方程组的求解转化为约束最优化问题求解。以上算法帮助求解了最佳补偿差值,但此补偿差值并不是最终写入机台的刀补值或者坐标系补偿值。考虑到补偿可能分次完成,或者考虑到机台此次加工本身已经使用了一定补偿的情况,因为需要考虑获取此次采集本身所使用的原始刀补和原始坐标系补偿值,再和此次计算补偿差值进行加总,才是生产达标尺寸零件所需的机台补偿值。因此,在握手接收数据的过程开始时,智能调机系统已经根据当下加工零件的标准文档,进行了一次相应刀补和坐标系补偿的采集。并将数据存储下来,为最终要写入机台的补偿值做准备。
S4:将优化补偿值回传给数控机台,以使得数控机台根据优化补偿值进行调机。
在测量时,将采集每个刀位的刀补(包含半径刀补磨耗、长度刀补磨耗)初始值,以及每个坐标轴的初始值。通过算法,计算出补偿差值。最后,通过初始值加上补偿差值的方式对补偿值进行回写。并且,在补偿回写过程中,系统创造性地进行了防呆防错处理,设置了阈值区间,一旦发现补偿值超过阈值,将无法补回,并发出提示,告知此次需要所有尺寸达标的补偿 值可能产生机台加工危险,提示人工干预,进行解决。例如,补偿值的绝对值0.1为界限,一旦判定计算补偿值合并原始机台采集补偿值累加超过此值,则无法直接通过系统补偿回写机台。安全范围可以根据场景要求进行自定义设置。若所有补偿值都在安全范围内,则一键回写,方便快捷。按此过程操作,调机总共只需要两次加工和测量,第一次测量帮助计算出该台设备的各个补偿参数,第二次加工即可完成一片全部尺寸达标的零件生产。
本发明优选实施例还公开了一种基于握手协议的智能调机系统,用于对至少一台数控机台进行智能调机,包括:处理器和存储介质,所述存储介质中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述的智能调机方法。
从补偿方案上来说,目前,除依靠技术人员经验调机,一些大型企也出现一些半自动的机床调参方案,基本处理流程为:将被测工件拿到测量室通过三坐标等测量仪器进行测量,并选择其中的一部分测量结果手工录入到excel文档,或者带有算法的系统。Excel文档或系统中,会建立基于经验的“几何公式”,通过这些公式可以相对快速及统一地计算出调参的结果。这种计算方案在一定程度上解决了标准化的问题。但在“效率”和“准确性”方面还有很大的提升空间。本发明优选实施例的调机方案是一套集“自动化和智能化”一体,并程度更高的方案:首先,用“机内测量”的实现了测量数据的自动和实时的读取;在这一过程中,避免了实验室测量及等待时间中机台加工次品的可能性。其次,也为测量数据和参数建立了完整的模型,并将几何计算的问题转化成了一个“优化问题”,其中使用了多种优化算法对该问题进行求解。此解在保障所有尺寸调机精准度上可靠性有极大地提升。
机器生产加工流程中,将采用精密检测设备在机内、或机外、或二者同时进行产品质量检测,获取产品各工序各尺寸检测结果值。智能调机系统将通过和检测设备交互,实时获取各类检测数据。并对检测数据进行计算,判定各尺寸达标与否。若尺寸全部达标,则产品通过质量验证,可交付。若存在尺寸超差,系统将通过优化算法,计算出用于该尺寸加工的最佳刀补或最佳坐标系补偿。同时,智能调机系统将直接与加工设备通信,将最佳调机数据写入设备,完成调机。相比过去人工凭借经验反复调试错、反复整补偿方案,最终实现全部尺寸质检达标的流程,智能调机系统将调机效率提升了80%,一次计算出最优结果,保证所有尺寸通过检测,并通过系统与检测设备、与加工设备直接交互的方式,优化了检测加工流程,防止了人工误操作。另外,产品质量达标与否不仅与标准工艺相关,还和加工设备的性能特征,调机人员的经验深浅有较大关系,使用智能调机系统进行调机操作之后,对设备和调机人员的依赖将消失,再一次提升了效率,降低了调机成本。
下述结合具体实施例对本发明的基于握手协议的智能调机方法及系统做进一步的说明。
如图3所示,是本发明具体实施例的智能调机方法流程图,具体包括以下步骤:
C1:Modus生成测量程序。此模块为智能调机系统开始工作的前置工作,由于调机平台需要采集测量内容,在此,先介绍测量程序的生成过程。Modus为雷尼绍测量探针配套的软件系统,其工作内容为“传入零件加工图制,标出测量尺寸,标出测量点位,生成相应的测量程 序”。因此,第一步工作可以配合Modus此一类软件,进行测量点位的NC程序输出。此步骤本身随无需调机平台介入,但此测量NC程序在机内运行的过程需要和智能调机系统的采集程序建立握手。
C2:将测量模型和质量参数导入IMIQ系统,在智能调机系统内导入基础数据,用于随后的补偿计算。导入数据内容包括:项目、零件、工序、工艺方法、质量标准。
C3:随后是“接收”,包含“接收零件测量点”和“接收传感器或测量块数据”。这一部分无需人工介入,机台加工过程中会自动启动测量程序,而采集程序则是以服务的形式常驻运行在边缘采集硬件上,并在机台自动测量过程中通过特定的协议采集测量数据和相应时间点的测量块数据并进行存储和上报.。
C4:采集到的所有数据,在这一步会进行第一步计算转换,将点位数据转换为尺寸数据。首先是将整片零件的所有点位数据进行存储,再和Modus进行接口传输。借助Modus已有的点位和尺寸关系,进行尺寸的计算。当然,在采集原始点位值的时候,智能调机系统会考虑标准块点位形变对原始点进行加工(通过计算测量块的形变系数来计算各个测量点位的坐标偏移),再用于计算。
C5:优化求解机台参数为调机平台算法得出。
C6:最后便是补偿值回写部分。为了防呆防错,智能调机系统自身会有一套检查机制,过滤掉大于安全阈值的补偿结果。随后,需要人工确认补偿,写回机台。
如图4所示,是本发明具体实施例的智能调机系统的框架图,该系统采用了基于B/S的混合计算架构。用户可以基于浏览器完成系统的所有的操作。系统计算是通过中央的高性能服务器集群(提供高可用的机制并可以线性扩展)并配合边缘计算的软硬件共同完成。
目前设备有两种接入方式:
1)轻量级的接入。数控机台通过一条网线或者无线路由器将设备接入到计算网络。中央服务器负责和所有数控机台进行通讯。采集测量数据之后进行参数的计算并将结果反馈到数控机台。
2)更智能的接入方案。适合面向测量点位比较多,测量精度要求比较高的场景。会在机台侧部署相应的Edge(边缘控制器)和机台直连。Edge负责和数控机台的测量程序进行通讯并实施采集各组传感器的数据。所有的数据先在Edge进行汇总和简单计算(主要包含和零件测量的meta数据进行匹配,校验和数据补全等逻辑)后再发送到中央服务器进行后续的处理。
如图4,本具体实施例的智能调机系统包括被控的数控机台10和对应的测头11、测量CAM服务器(Modus)20、接入交换机30、客户端40、边缘计算服务器50、无线AP 60和智能终端70,其具体应用如下:
1)人工根据测量标准文件、测量点位2D图判断哪些尺寸可在数控机台的机内测量,生成机内测量点位文件并上传到系统。
2)用Modus软件打开对应夹位3D图,根据机内测量点位文件在3D图上标记对应的测量点位,生成测量CNC程序。
3)外接的边缘计算服务器盒子(包含处理器、IO模块、预留的传感器接口等等)和机床直连。并通过特定的握手协议高速接收机台上采集的测量点数据。
4)温度造成的热变形对工件测量结果影响会比较大。为了进一步提升测量精度。在数控机台内放置了相应的标准块,对工件进行机内测量的同时也会采集标准块的测量数据。并利用相关的经验公式对工件测量的结果值进行修正,如图5所示。
5)所有的工件测量点数据采集完成后,会通过DMIS数据服务(DMIS数据服务是指能够支持常用<尺寸测量接口标准>中定义的尺寸或者公差计算的后台服务,例如雷尼绍的modus服务、内部的DMIS数据服务)加工成标准的测量数据(支持不同的标准。目前在通讯协议上使用的是内部的标准。因为更简洁,性能更好。但也可以转换成行业通用的标准,例如QIF)。
6)将3)、4)、5)的结果数据汇总和规整之后会被填入预先建立的加工数据模型中。并利用各类优化算法计算出各类调机参数的最优值具体算法公式在下方详述。
7)调机参数能够会自动写回CNC机台以影响下一次的加工。回写也做了防呆防错(根据人工设置的规则)的处理。
8)利用实验室的三坐标测量仪器进行的离线测试的模型也可以导入(人工、自动)导入到本发明的系统并同样利用本发明的优化算法给出调机参数的最优值。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。
Claims (16)
- 一种基于握手协议的智能调机方法,用于对至少一台数控机台进行智能调机,其特征在于,包括以下步骤:S1:获取所述数控机台的测量模型参数,并接收所述数控机台采集的加工零件的实际测量数据,其中通过与所述数控机台建立基于系统宏变量的握手协议来接收所述数控机台采集的加工零件的实际测量数据;S2:根据所述测量模型参数将所述数控机台采集到的加工零件的实际测量数据转换为标准格式的测量数据;S3:根据标准格式的测量数据和测量模型参数求解所述数控机台的优化补偿值;S4:将所述优化补偿值回传给所述数控机台,以使得所述数控机台根据所述优化补偿值进行调机。
- 根据权利要求1所述的智能调机方法,其特征在于,步骤S1中获取的测量模型参数包括所述数控机台的加工零件的各待测尺寸的类型、标准值和公差标准、所述数控机台的刀补系数。
- 根据权利要求1所述的智能调机方法,其特征在于,步骤S1中还包括:采用标准块点位形变对所述数控机台采集的加工零件的实际测量数据进行校正。
- 根据权利要求3所述的智能调机方法,其特征在于,采用标准块点位形变对所述数控机台采集的实际测量数据进行校正具体包括:提供待测量的加工零件的各待测尺寸对应的标准块,每个标准块上设有多个标定点,获取各待测尺寸对应的标准块的每个标定点的基准值;在接收所述数控机台采集的加工零件的实际测量数据时,还接收各待测尺寸对应的标准块的每个标定点的标定值,根据各待测尺寸对应的标准块的每个标定点的基准值和标定值对所述数控机台采集的加工零件的实际测量数据进行校正。
- 根据权利要求1所述的智能调机方法,其特征在于,步骤S1中所述系统宏变量有两个,分别为“一个宏变量包含锁和程序名”、“一个双字的变量存放x、y、z这三个坐标值”。
- 根据权利要求1所述的智能调机方法,其特征在于,通过变量压缩使得步骤S1中所述系统宏变量的数量少于所述数控机台的变量的数量,其中一个字长的变量可表明锁变量的状态、所述数控机台的测量状态和当前测量点的位置三个交互变量。
- 根据权利要求1所述的智能调机方法,其特征在于,通过与所述数控机台建立握手协议来接收所述数控机台采集的加工零件的实际测量数据具体包括:A1:与所述数控机台建立长链接,以在接收数据开始时通知所述数控机台进入采集状态, 并在采集过程中引入单独的锁变量;A2:接收所述数控机台以宏变量形式传输的特征编号和对应采集到的一个点位测量数据,并同时检查所述锁变量;A3:重置宏变量,并判断所述数控机台是否采集完所有点位,如果是,则完成接收,如果否,则通知所述数控机台进入下一个点位的测量和上报,并返回步骤A2。
- 根据权利要求1所述的智能调机方法,其特征在于,步骤S2中还包括:根据所述测量模型参数判断得到的标准格式的测量数据是否达标,如果不达标,则发送报警信号给所述数控机台,以使得所述数控机台暂停加工零件。
- 根据权利要求1至8任一项所述的智能调机方法,其特征在于,步骤S3具体包括:根据标准格式的测量数据和测量模型参数建立的基于信赖域的加权优化问题模型表示如下:s.t.lsp≤x≤uspAx=b并采用信赖域反射法对上述优化问题模型进行求解以得到所述数控机台的优化补偿值;其中,A=[z,I] T∈R n×(n+k),x=[X,ε]∈R n+k,b=C-S∈R n,C∈R n为标准格式的测量数据,S∈R n为测量模型参数中包含的加工零件的各待测尺寸的标准值,z∈R k×n为测量模型参数中包含的数控机台的刀补系数,ε∈R n为待求解的数控机台的公差,X∈R k为待求解的数控机台的补偿值,I为单位矩阵,E∈R n×(n+k)为权重,lsp,usp∈R n+k分别为未知量x的上限和下限。
- 根据权利要求9所述的智能调机方法,其特征在于,采用信赖域反射法对上述优化问题模型进行求解以得到所述数控机台的优化补偿值具体包括:构建函数f(x),并通过试探步s在信赖域N上最小化f(x)以计算得到X和ε,其中信赖域N是函数f(x)在点x的邻域。
- 根据权利要求9所述的智能调机方法,其特征在于,采用信赖域反射法对上述优化问题模型进行求解以得到所述数控机台的优化补偿值之后还包括:根据求解优化问题模型得到的所述数控机台的优化补偿值和所述测量模型参数对所述数控机台的优化补偿值进行修正。
- 根据权利要求1所述的智能调机方法,其特征在于,步骤S4中将所述优化补偿值回传给所述数控机台之前,判断所述优化补偿值是否超过预设阈值,如果是,则发送干预信号给所述数控机台,以使得所述数控机台暂停加工零件;如果否,则将所述优化补偿值回传给所述数控机台。
- 根据权利要求1所述的智能调机方法,其特征在于,步骤S4中将所述优化补偿值回传给所述数控机台之前,判断所述优化补偿值是否超过预设阈值,如果是,则再次采用标准块对所述数控机台采集的加工零件的实际测量数据进行校正;如果校正后仍然超过阈值,则发送干预信号给所述数控机台,以使得所述数控机台暂停加工零件;如果未超过预设阈值,则将所述优化补偿值回传给所述数控机台。
- 一种基于握手协议的智能调机系统,用于对至少一台数控机台进行智能调机,其特征在于,包括:处理器和存储介质,所述存储介质中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行权利要求1至15任一项所述的智能调机方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111157930.4A CN113589759B (zh) | 2021-09-30 | 2021-09-30 | 基于握手协议的智能调机方法及系统 |
CN202111157930.4 | 2021-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023051070A1 true WO2023051070A1 (zh) | 2023-04-06 |
Family
ID=78242683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/112941 WO2023051070A1 (zh) | 2021-09-30 | 2022-08-17 | 基于握手协议的智能调机方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113589759B (zh) |
WO (1) | WO2023051070A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113589759B (zh) * | 2021-09-30 | 2021-12-14 | 杭州数途信息科技有限公司 | 基于握手协议的智能调机方法及系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030114954A1 (en) * | 2001-09-14 | 2003-06-19 | Toyoda Koki Kabushiki Kaisha | Method of compensating profile data, and numerical controller and machine tool for practicing the method |
CN109032067A (zh) * | 2018-05-29 | 2018-12-18 | 上海大学 | 一种具有移动通讯能力支持数据定制的数控机床运行数据采集终端 |
CN109976265A (zh) * | 2017-12-27 | 2019-07-05 | 富泰华精密电子(郑州)有限公司 | 机台参数控制装置、方法和存储设备 |
CN110625441A (zh) * | 2019-11-05 | 2019-12-31 | 东莞信柏结构陶瓷股份有限公司 | 在数控机床上在机检测产品尺寸的方法 |
CN111381556A (zh) * | 2018-12-29 | 2020-07-07 | 鸿富锦精密电子(成都)有限公司 | 加工设备误差补正方法及系统 |
US20210078126A1 (en) * | 2019-09-12 | 2021-03-18 | Hexagon Technology Center Gmbh | Method for correcting tool parameters of a machine tool for machining of workpieces |
CN113589759A (zh) * | 2021-09-30 | 2021-11-02 | 杭州数途信息科技有限公司 | 基于握手协议的智能调机方法及系统 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109960832A (zh) * | 2017-12-22 | 2019-07-02 | 财团法人工业技术研究院 | 调机方法及其调机系统暨仿真单元与仿真方法 |
CN111381557B (zh) * | 2018-12-29 | 2023-09-19 | 鸿富锦精密电子(成都)有限公司 | 基于单机的加工设备误差补正方法及系统 |
CN211590195U (zh) * | 2020-01-13 | 2020-09-29 | 上汽大众汽车有限公司 | 机器人定位校准装置 |
CN111624944B (zh) * | 2020-06-16 | 2023-09-08 | 富联裕展科技(深圳)有限公司 | 刀具控制装置及方法 |
-
2021
- 2021-09-30 CN CN202111157930.4A patent/CN113589759B/zh active Active
-
2022
- 2022-08-17 WO PCT/CN2022/112941 patent/WO2023051070A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030114954A1 (en) * | 2001-09-14 | 2003-06-19 | Toyoda Koki Kabushiki Kaisha | Method of compensating profile data, and numerical controller and machine tool for practicing the method |
CN109976265A (zh) * | 2017-12-27 | 2019-07-05 | 富泰华精密电子(郑州)有限公司 | 机台参数控制装置、方法和存储设备 |
CN109032067A (zh) * | 2018-05-29 | 2018-12-18 | 上海大学 | 一种具有移动通讯能力支持数据定制的数控机床运行数据采集终端 |
CN111381556A (zh) * | 2018-12-29 | 2020-07-07 | 鸿富锦精密电子(成都)有限公司 | 加工设备误差补正方法及系统 |
US20210078126A1 (en) * | 2019-09-12 | 2021-03-18 | Hexagon Technology Center Gmbh | Method for correcting tool parameters of a machine tool for machining of workpieces |
CN110625441A (zh) * | 2019-11-05 | 2019-12-31 | 东莞信柏结构陶瓷股份有限公司 | 在数控机床上在机检测产品尺寸的方法 |
CN113589759A (zh) * | 2021-09-30 | 2021-11-02 | 杭州数途信息科技有限公司 | 基于握手协议的智能调机方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113589759A (zh) | 2021-11-02 |
CN113589759B (zh) | 2021-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023051072A1 (zh) | 基于优化补偿的智能调机方法及系统 | |
CN104700200B (zh) | 一种面向数字化车间的产品多元质量监控方法 | |
Ameta et al. | Comparison of spatial math models for tolerance analysis: tolerance-maps, deviation domain, and TTRS | |
US6490498B1 (en) | Integrated support system for supporting sheet metal machining | |
WO2023051070A1 (zh) | 基于握手协议的智能调机方法及系统 | |
Zhu et al. | A distance function based approach for localization and profile error evaluation of complex surface | |
Zhao et al. | Dimensional metrology interoperability and standardization in manufacturing systems | |
Grigoriev et al. | The problems of metrological support for the preparation of production in machine construction | |
US20230066703A1 (en) | Method for estimating structural vibration in real time | |
WO2021221916A1 (en) | Morphic manufacturing | |
Tao et al. | A review of digital twin intelligent assembly technology and application for complex mechanical products | |
Tang et al. | Dimensional variation analysis for rigid part assembly with an improvement of Monte Carlo simulation | |
Semere et al. | Skin model based tolerance and variations analysis | |
Zhu et al. | Optimal design of measurement point layout for workpiece localization | |
Saif et al. | Integration models for closed loop inspection based on step-nc standard | |
Sergent et al. | Identification of machining defects by Small Displacement Torsor and form parameterization method | |
Zhao | An integrated process planning system for machining and inspection | |
Lealin | Comparison and evaluation of classical methods of dimensional chains theory and their modern analogues | |
CN113936823A (zh) | 获取堆外探测器刻度系数的方法、系统、装置及存储介质 | |
CN111399440B (zh) | 一种数控机床精度解耦测试系统及方法 | |
Liu et al. | Gear Mapping Technology Based on Differential Envelope Principle | |
WO2024178752A1 (zh) | 一种曲面装配质量预测与修配补偿方法和装置 | |
CN114461622A (zh) | 一种数据质量检验的方法及装置 | |
Chiboub et al. | Generation of reference softgauges for minimum zone fitting algorithms: Case of aspherical and freeform surfaces. Nanomaterials 2021: 11 | |
Semere et al. | Skin Model Based Tolerance Analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22874465 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22874465 Country of ref document: EP Kind code of ref document: A1 |