WO2023050985A1 - 低压降式乙苯蒸发器及苯乙烯脱氢反应系统中乙苯汽化的节能工艺 - Google Patents

低压降式乙苯蒸发器及苯乙烯脱氢反应系统中乙苯汽化的节能工艺 Download PDF

Info

Publication number
WO2023050985A1
WO2023050985A1 PCT/CN2022/107413 CN2022107413W WO2023050985A1 WO 2023050985 A1 WO2023050985 A1 WO 2023050985A1 CN 2022107413 W CN2022107413 W CN 2022107413W WO 2023050985 A1 WO2023050985 A1 WO 2023050985A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylbenzene
heat exchange
low
pressure
steam
Prior art date
Application number
PCT/CN2022/107413
Other languages
English (en)
French (fr)
Inventor
和成刚
顾佳慧
张晶
周海燕
徐志刚
Original Assignee
常州瑞华化工工程技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州瑞华化工工程技术股份有限公司 filed Critical 常州瑞华化工工程技术股份有限公司
Priority to US18/555,757 priority Critical patent/US20240207755A1/en
Priority to EP22874382.9A priority patent/EP4302853A1/en
Publication of WO2023050985A1 publication Critical patent/WO2023050985A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/22Evaporating by bringing a thin layer of the liquid into contact with a heated surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the embodiment of the present application relates to the field of chemical technology, for example, an energy-saving process and core equipment in which ethylbenzene, the raw material of a styrene plant, is vaporized by distributing water vapor.
  • Styrene is one of the most important basic organic chemical raw materials, most of which are produced by negative pressure adiabatic dehydrogenation of ethylbenzene. Styrene is mainly used in polystyrene/expanded polystyrene (PS/EPS), ABS, styrene-acrylonitrile copolymer (SAN), unsaturated polyester resin (UPR), styrene-butadiene rubber (SBR), styrene Styrene thermoplastic elastomer (SBS) and other chemical products.
  • PS/EPS polystyrene/expanded polystyrene
  • SAN styrene-acrylonitrile copolymer
  • UMR unsaturated polyester resin
  • SBR styrene-butadiene rubber
  • SBS thermoplastic elastomer
  • the overall styrene plant adopts the process scheme of negative pressure adiabatic dehydrogenation of ethylbenzene. Since styrene is a heat-sensitive material, a large amount of steam needs to be consumed in the reaction unit and rectification unit of the plant, and the plant as a whole belongs to a type with high energy consumption. become the focus of research.
  • the energy consumption of the rectification unit is mainly the consumption of ethylbenzene/styrene separation. For the energy-saving measures for the separation of ethylbenzene/styrene, a lot of research has been carried out at home and abroad, and various technical solutions have been proposed.
  • Patent CN200810043495.0 divides the ethylbenzene/styrene separation tower from a single tower into two towers for operation, part or all of the steam at the top of ethylbenzene/styrene separation tower A is introduced into the compressor, and the pressurized gas is used as ethylbenzene/benzene
  • the heat source of the reboiler at the bottom of the ethylene separation tower B, and the technical scheme used, can effectively reduce the operating energy consumption and reduce the loss of styrene polymerization.
  • Patent 201410670489.3 enters the dehydrogenation liquid containing ethylbenzene and styrene into the ethylbenzene/styrene separation tower T101 to obtain the overhead gas stream I containing ethylbenzene, which is compressed and enters the ethylbenzene/water azeotropic evaporator to heat the external
  • the ethylbenzene/water mixture obtains the ethylbenzene/water azeotrope after the heat exchange and goes to the reaction unit, partly returns to the T101 tower top after the stream I condenses, and partly extracts and enters the ethylbenzene separation tower;
  • the ethylbenzene separation tower is divided into two towers ( T102A, B) operation, T102A tower has higher pressure, T102B tower has lower pressure, and the technical scheme that the gas phase at the top of tower A is used to heat the liquid at the bottom of tower B can effectively solve the problem of
  • a dehydrogenation liquid preheater is added after the azeotropic heat exchanger in the ethylbenzene/styrene distillation separation column, and the uncondensed gas phase materials in the azeotropic heat exchanger enter the dehydrogenation liquid preheater and The dehydrogenation liquid is heat-exchanged, so that the dehydrogenation liquid entering the dehydrogenation liquid preheater is heated, and the dehydrogenation liquid pre-separation tower is heated from the normal temperature feed to the bubble point feed; at the same time, the gas phase material is cooled and partially condensed, and the uncondensed The gas phase material enters the tail gas condenser to cool and condense. Adopting this energy-saving method reduces the consumption of circulating cooling water and heating steam.
  • the primary steam distribution of the ethylbenzene evaporator uses 0.3MPaG low-pressure steam mixed with liquid-phase ethylbenzene to vaporize part of ethylbenzene, which requires a large amount of steam and high energy consumption. If 0.04MPaG low-pressure steam can be used as the ethylbenzene With vaporized primary distribution, the energy consumption of styrene reaction unit will be greatly reduced.
  • the ethylbenzene evaporator cannot use 0.04MPaG low-pressure steam as the primary steam distribution.
  • the main bottleneck lies in the equipment structure of the ethylbenzene evaporator and the steam distribution control process.
  • the two cause the steam pressure entering the ethylbenzene evaporator to be above 0.2MPaG, so if If the above bottleneck problem can be solved, the energy-saving process of ethylbenzene vaporization can be realized. Moreover, the current industrial ethylbenzene vaporizer still has the problem of tube bundle vibration damage.
  • the technical problem to be solved in this application is that the primary steam distribution of the ethylbenzene evaporator in the existing styrene technology uses 0.3MPaG low-pressure steam, which causes the problem of high energy consumption of the device.
  • the energy-saving technology and the supporting low-pressure-drop ethylbenzene vaporizer can effectively reduce the energy consumption of the styrene reaction unit.
  • a low-pressure-drop ethylbenzene evaporator including a heat exchange unit, also includes a gas-liquid separation unit that realizes gas-liquid separation of the inflowing vaporized mixture, and forms a double-layer structure with the heat exchange unit, and the gas-liquid separation in the upper layer
  • the unit communicates with the lower heat exchange unit through an intermediate pipe;
  • the top of the gas-liquid separation unit is provided with an exhaust pipe, and the bottom is provided with a separation liquid return pipe;
  • the heat exchange unit is a horizontal shell-and-tube heat exchange unit, which includes a shell side, a tube box arranged at one end of the shell side, and a horizontally placed heat exchange tube arranged in the middle of the tube plate of the tube box; the tube box There is a heat medium inlet and outlet on the top, and a liquid flow inlet is arranged on the bottom of the shell side;
  • a low-pressure steam feed pipe is also provided on the side wall of the shell side, which is located below the heat exchange tube and close to the position of the heat exchange tube.
  • the 0.04MpaG steam is more evenly distributed on the shell side, and to be well utilized, the number of the low-pressure steam feed pipes is designed to be 6-10, and they are evenly distributed horizontally.
  • a steam distributor is provided, and the steam distributor is connected with the low-pressure steam feed pipe, and the steam distributor is evenly distributed with nozzles facing all directions.
  • the method of adding water vapor to the ethylbenzene evaporator at one time becomes a method of multi-inlet and entry from the bottom of the heat exchange tube, and with the steam distributor, the steam enters from two points in the original process, and becomes multi-point, Multi-angle enters the way of mixed vaporization with ethylbenzene, the distribution of gas and liquid is more uniform, avoiding the vibration of the tube bundle caused by the unevenness of the gas-liquid two-phase during the vaporization process, and solving the problem of vibration damage of the tube bundle of the ethylbenzene vaporizer.
  • the outlet end of the separation liquid return pipe is located above the heat exchange tube and close to the position of the heat exchange tube.
  • the heat exchange tubes are "U"-shaped tube bundles with 4-6 layers.
  • Such a horizontally arranged tube bundle has a low height, which can reduce the pressure drop of the hydrostatic column of the equipment, so that low-pressure water vapor can enter the ethylbenzene evaporator under the condition of low pressure drop.
  • the gas-liquid separation unit in order to ensure that the flow rate of the vaporized stream is controlled below 10m/s, and to realize gas-liquid separation at the top of the gas-liquid separation unit, so as to prevent the liquid that has been transferred from causing damage to downstream equipment, the gas-liquid separation unit
  • the cross-sectional radius is larger than the intermediate tube diameter.
  • An energy-saving process for the vaporization of ethylbenzene at a low pressure drop in a styrene plant comprising the following steps:
  • the main cooler adopts a falling film heat exchanger with a temperature difference range of 10-12 degrees; the pressure drop of the falling film heat exchanger is more conducive to the generation of steam.
  • the steam compressor adopts a multi-stage centrifugal compressor, and its outlet pressure range is 90-160kpaA, which meets the requirements for the primary steam distribution of the ethylbenzene vaporizer.
  • the special form of low-pressure-drop ethylbenzene evaporator designed in the embodiment of the present application sets the steam inlet at the bottom of the heat exchange tube bundle to reduce the height of the liquid layer and generate a pressure drop, so that low-pressure steam can enter the evaporator smoothly; in order to ensure that the steam Mixed gasification effect with ethylbenzene, set up a steam distributor to enhance the heat exchange effect, and the steam distributor is equipped with multi-angle nozzles to fully mix ethylbenzene and water vapor to ensure the temperature difference of the heat exchanger; moreover, evenly distributed ethylbenzene and water vapor It will not cause strong vibration, and the heat exchange tube can avoid vibration and erosion damage, ensuring long-term stable operation of the heat exchanger.
  • the dehydrogenation reaction materials in the styrene plant are all gas phase materials before the main cooler, and the heat recovered from the reaction materials at about 565 °C at the outlet of the reactor to the front of the main cooler is all sensible heat, and the energy is limited. .
  • the main problem causing the high energy consumption of the styrene plant is the loss of the heat of condensation of the reaction materials.
  • the above-mentioned low-pressure-drop ethylbenzene evaporator structure is fully utilized, and a large amount of heat of condensation of the dehydrogenation reaction materials is recovered through the design of the process route.
  • the steam of 6-32kpaA is generated, and after being pressurized by the steam compressor, it is used for the primary steam distribution of the ethylbenzene vaporizer, replacing the external supply of 0.21MPaG low-pressure steam in the steam pipe network of related devices, and greatly reducing the consumption of low-pressure steam in the reaction system.
  • the use of circulating water in the device is reduced. The process only consumes the power consumption of the compressor, greatly saves the consumption of low-pressure steam and circulating water, and has a remarkable energy-saving effect.
  • Fig. 1 is conventional ethylbenzene vaporization technological process
  • Fig. 2 is the structural representation of the low pressure drop type ethylbenzene vaporizer in the embodiment of the present application;
  • Fig. 3 is the side view of low pressure drop type ethylbenzene vaporizer in the embodiment of the present application;
  • Fig. 4 is a schematic diagram of an energy-saving process for ethylbenzene vaporization in an embodiment of the present application.
  • a low-pressure drop ethylbenzene evaporator includes a heat exchange unit 61, and also includes a gas-liquid separation unit 62 that realizes gas-liquid separation of the inflowing vaporized mixture, and is connected with the heat exchange unit 61 forms a double-layer structure, and the gas-liquid separation unit 62 on the upper floor communicates with the heat exchange unit 61 on the lower floor by setting two left and right middle pipes 63; the top of the gas-liquid separation unit 62 is provided with an exhaust pipe 622, and the bottom is provided with There is a separation liquid return pipe 621.
  • the outlet end of the separation liquid return pipe 621 is located above the heat exchange tube 612 and is close to the position of the heat exchange tube.
  • the heat exchange unit 61 is a horizontal shell-and-tube heat exchange unit, which includes a shell side, a tube box 611 and a heat exchange tube 612 arranged at one end of the shell side; the heat exchange tube 612 is a "U"-shaped tube bundle, and the heat exchange tube 612 is horizontally arranged in the middle of the tube sheet, and the number of heat exchange tube layers is preferably 4-6 layers. This embodiment is 5 layers.
  • the low height of the tube bundle can reduce the pressure drop of the hydrostatic column of the equipment.
  • the pipe box 611 is provided with a heat medium inlet and outlet.
  • the heat medium inlet is located at the upper end, and is used to feed 0.21 MPaG heating steam during operation;
  • the heat medium outlet is located at the lower end of the pipe box, and water vapor is also set on the pipe box.
  • Condensate level gauge control the stable discharge of condensate.
  • the bottom of the shell side is provided with a liquid stream inlet port 614, which is used to pass through liquid ethylbenzene during operation; in order to allow the water vapor pressurized by the compressor to enter the shell side of the ethylbenzene evaporator under low pressure drop conditions, the side wall of the shell side A number of low-pressure steam feed pipes 613 are arranged on the top, which are located below the heat exchange tube and close to the heat exchange tube 612, and are used to feed 0.04MpaG steam during operation;
  • the number of low-pressure steam feed pipes 613 is preferably 6-10, and the present embodiment is 9, and the feed pipes are equipped with a steam distributor 64 to make the steam distribution even.
  • the drop makes the ethylbenzene entering from the bottom of the ethylbenzene evaporator easier to vaporize, and the 0.04MpaG steam is well utilized.
  • the cross-section of the gas-liquid separation unit is circular, Its radius is greater than the diameter of the intermediate tube.
  • the working principle of this application is: the 0.04MpaG steam produced by the pressurization of the steam compressor enters the shell side of the ethylbenzene evaporator together with ethylbenzene, and evaporates after being indirectly heated by the 0.21MPaG steam in the tube side.
  • the vaporized ethylbenzene and water vapor mixture realizes gas-liquid separation in the gas-liquid separation unit on the upper layer to prevent the metasomatized liquid from causing damage to downstream equipment. Finally, the vaporized ethylbenzene and water vapor flow out from the exhaust pipe, and the separated The liquid returns to the heat exchange unit through the separation liquid return pipe.
  • the shell side of the ethylbenzene evaporator is operated under the normal pressure of 90KPaA, the vapor pressure is 0.04MpaG, and the pressure difference between the two is small.
  • This application solves the problem that 0.04MpaG steam cannot be used due to the high pressure drop of the liquid layer of the related ethylbenzene vaporizer.
  • the energy-saving process of ethylbenzene vaporization in the styrene dehydrogenation reaction system involved in this embodiment comprises the following steps:
  • the specific operation process of this embodiment is as follows: after the dehydrogenation reaction product airflow mainly containing ethylbenzene, styrene, and water vapor is quenched to about 67°C by quenching water, it enters the shell side of the main cooler 1, and the main cooler 1 uses Falling film heat exchanger, the medium on the side of the tube is boiler feed water, and the outlet pressure is controlled at 12kpaA, that is, the boiler feed water is heated to generate 12kpaA steam (temperature is 49.6°C); the unevaporated water is pressurized by the water circulation pump 2. Boiler feed water goes to the top tube box of main cooler 1.
  • the dehydrogenation reaction product is cooled to 60°C to realize gas-liquid separation, and the liquid phase formed by separation enters the oil-water separation tank 5; the gas phase formed by separation enters the aftercooler 3; in the aftercooler 3, it is cooled to 38°C with circulating water, The liquid phase formed by the cooling of the aftercooler 3 enters the oil-water separation tank 5, while the uncondensed tail gas enters the subcooler to continue cooling, and the subsequent process is the same as the conventional process.
  • the 0.04MPaG saturated steam enters the low-pressure-drop ethylbenzene evaporator 6 designed by this application together with ethylbenzene as process distribution steam On the shell side, it is indirectly heated by 0.21MPaG steam on the tube side and then evaporated to obtain an ethylbenzene-water vapor mixture with a temperature of about 98°C, which then enters the shell side of the superheater for subsequent processes.
  • the steam pressure generated by the main cooler involved in the present application is preferably 12-16kpaA, and the present embodiment is 12kpaA.
  • the compressor adopts a multi-stage centrifugal compressor, and the design range of the outlet pressure of the compressor is preferably 120-140kpaA, which meets the requirements for primary steam distribution of the ethylbenzene vaporizer.
  • the main cooler in the form of falling film is adopted, the pressure is low, and the steam gas-liquid separation tank is directly installed under the main cooler, the partially vaporized water can directly enter the lower tank, and the water vapor enters the steam compressor , The water that has not been evaporated is recycled. Due to the low steam pressure of 12kpaA, the conventional horizontal heat exchanger will affect the gasification of water due to the pressure of the hydrostatic column. The falling film heat exchanger can effectively solve the problem of the hydrostatic column pressure, and the falling film heat exchanger The pressure drop is more conducive to the generation of steam.
  • the main cooler in the form of falling film in this embodiment adopts a vertical structure, and the design temperature difference range is preferably 10-12°C.
  • Ethylbenzene evaporator is a process equipment for the liquid-phase raw material ethylbenzene and the added water vapor to completely transform into a gas phase and enter the reaction system.
  • the mixture of ethylbenzene and water vapor evaporates on the shell side, the evaporation temperature is about 95 ° C, and the tube side uses 140 ° C Left and right steam heating.
  • the steam pressure entering the ethylbenzene vaporizer needs to be above 0.2MPaG, and the low-pressure steam of 0.04MPaG recovered by the device cannot be used as primary steam distribution.
  • the heat exchange tube bundle vibrates, and the heat exchange tubes are prone to damage in about 2 years, affecting the stable operation of the device.
  • the conventional process is shown in Figure 1.
  • the main cooler cools the dehydrogenation reactant stream to 52°C.
  • the cooled stream is in gas-liquid two-phase and realizes gas-liquid separation; the uncooled gas phase enters the aftercooler and is cooled by circulating water to 38°C; the stream cooled to liquid phase enters the oil-water separation tank, and the uncondensed gas enters the subcooler to continue cooling.
  • the circulating water of the main cooler and the aftercooler is connected in series, and the total consumption of circulating water is 8568t/h. Calculated according to the "Petrochemical Design Energy Consumption Standard" GB/T-50441, the energy consumption of this part is 6.9kg standard oil/t styrene.
  • the dehydrogenation reaction gas at 67°C is cooled to 60°C through the main cooler, and 12kpaA steam is generated on the side of the tube, with a total of 41t/h, compressed to 0.04MPaG by a steam compressor, and then entered as process gas
  • the ethylbenzene evaporator and steam compressor are equipped with a motor power of 6400kw, and the power consumption of the water circulation pump is 20kw.
  • the dehydrogenation reaction gas flow is cooled to 60°C and becomes a gas-liquid two-phase, the liquid phase enters the oil-water separation tank, the gas phase enters the aftercooler and is cooled to 38°C with circulating water, and the liquid phase after secondary cooling enters the oil-water separation tank, and the uncondensed gas Enter the subcooler to continue cooling.
  • the aftercooler consumes 6658t/h of circulating water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本文公布一种低压降式乙苯蒸发器,包括换热单元与气液分离单元组成的双层结构,其上层与下层之间通过中间管连通;气液分离单元顶部设有排气管,底部设有分离液返回管;换热单元包括壳侧和换热管;所述壳侧底部设有液态物流进入口;壳侧侧壁上设有低压蒸汽进料管,其位于换热管下方且接近换热管位置。本申请涉及的乙苯汽化的节能工艺,通过主冷器回收大量热量产生6-32kpaA的蒸汽,并经过压缩机增压后用于本申请设计的乙苯汽化器的一次配汽,代替相关装置蒸汽管网外补0.21MPaG的低压蒸汽,大幅度降低反应系统低压蒸汽的用量,同时减少装置循环水的使用,所述工艺仅消耗压缩机的电耗,大幅度节省低压蒸汽及循环水用量。

Description

低压降式乙苯蒸发器及苯乙烯脱氢反应系统中乙苯汽化的节能工艺 技术领域
本申请实施例涉及化工技术领域,例如一种苯乙烯装置原料乙苯通过配水蒸汽达到汽化的节能工艺及核心设备。
背景技术
苯乙烯是最重要的基本有机化工原料之一,绝大部分是由乙苯通过负压绝热脱氢法制得。苯乙烯主要应用于聚苯乙烯/发泡聚苯乙烯(PS/EPS)、ABS、苯乙烯-丙烯腈共聚物(SAN)、不饱和聚酯树脂(UPR)、丁苯橡胶(SBR)、苯乙烯热塑性弹性体(SBS)及其他化工产品。
苯乙烯装置整体采用乙苯负压绝热脱氢的工艺方案,由于苯乙烯为热敏性物料,在装置的反应单元和精馏单元需要消耗大量蒸汽,装置整体属于能耗较高的类型,因此如何节能成为研究重点。精馏单元的能耗主要为乙苯/苯乙烯分离的消耗。对于乙苯/苯乙烯分离的节能措施,国内外都进行了大量的研究,提出了多种技术方案。
专利CN200810043495.0将乙苯/苯乙烯分离塔由单塔分为两塔操作,乙苯/苯乙烯分离塔A塔顶蒸汽的一部分或全部导入压缩机,增压后的气体作为乙苯/苯乙烯分离塔B塔底再沸器的热源,使用的技术方案,能有效的降低操作能耗和减少苯乙烯聚合损失。
专利201410670489.3将含乙苯和苯乙烯的脱氢液进入乙苯/苯乙烯分离塔T101,得到含乙苯的塔顶气物流I经压缩后进入乙苯/水共沸蒸发器,加热界外来的乙苯/水混合物,得到换热后的乙苯/水共沸物去反应单元,物流I冷凝后部分返回T101塔顶,部分采出进入乙苯分离塔;乙苯分离塔分为两塔(T102A、B)操作,T102A塔压力较高、T102B塔压力较低,A塔顶气相用于加热B塔底部液体的技术方案,能有效的解决苯乙烯分离系统工业装置能耗高的问题。
专利201610491783.7在乙苯/苯乙烯精馏分离塔塔项的恒沸换热器之后增设一台脱氢液预热器,恒沸换热器中未冷凝的气相物料进入脱氢液预热器与脱氢液换热,使得进入脱氢液预热器的脱氢液被加热,脱氢液预分塔由常温进料被加热至泡点进料;同时气相物料冷却并部分冷凝,未冷凝的气相物料进入尾气冷凝器 冷却并冷凝。采用该节能方法,降低了循环冷却水和加热蒸汽的消耗。
对于乙苯/苯乙烯分离的节能措施已有大量专利报道,而苯乙烯反应单元的节能措施,主要集中在低水比的研究,但是受催化剂结焦等情况的限制,目前低水比只能做到1.0(水蒸汽与乙苯重量比),进一步节能空间有限。因此,反应单元其他的节能工艺研究成为热点。
相关苯乙烯工艺中,乙苯蒸发器的一次配汽采用0.3MPaG的低压蒸汽与液相乙苯混合汽化部分乙苯,蒸汽用量大且能耗高,如果能使用0.04MPaG低低压蒸汽作为乙苯汽化的一次配汽,苯乙烯反应单元能耗将大幅度降低。目前,乙苯蒸发器无法使用0.04MPaG低低压蒸汽作为一次配汽的主要瓶颈在于乙苯汽化器的设备结构及配汽控制工艺,两者导致进入乙苯汽化器的蒸汽压力需要0.2MPaG以上,因此如果能解决以上瓶颈问题,将可以实现乙苯汽化节能工艺。而且,目前工业化乙苯汽化器还存在管束振动损坏问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请要解决的技术问题是现有苯乙烯技术中乙苯蒸发器的一次配汽采用0.3MPaG的低压蒸汽,造成装置能耗高的问题,提供一种使用0.04MPaG低低压蒸汽作为一次配汽的节能工艺及配套使用的低压降式乙苯汽化器,其可有效降低苯乙烯反应单元能耗。
本申请一实施例采用的技术方案为:
一种低压降式乙苯蒸发器,包括换热单元,还包括将流入的汽化后的混合物实现气液分离的气液分离单元,并与换热单元形成双层结构,其上层的气液分离单元与下层的换热单元之间通过设置中间管连通;
所述气液分离单元顶部设有排气管,底部设有分离液返回管;
所述换热单元为卧式管壳式换热单元,其包括壳侧,设在壳侧一端的管箱,设置在管箱管板中间位置、且水平放置的换热管;所述管箱上设有热媒进出口,所述壳侧底部设有液态物流进入口;
所述壳侧侧壁上还设有低压蒸汽进料管,位于换热管下方且接近换热管位置。
在本申请实施例中由于蒸汽进料分布器顶部液层只有气液两相的短程压降,为使得从乙苯蒸发器底部进入的乙苯更易汽化,0.04MpaG蒸汽在壳侧分布更均匀,并得到很好的利用,所述低压蒸汽进料管设计数量为6-10个,且水平均匀分布。
同时设置蒸汽分布器,所述蒸汽分布器与低压蒸汽进料管相连,且蒸汽分布器上均布有面向各个方向喷射的喷嘴。
这样使得乙苯蒸发器一次配入水蒸汽的方式变成为多进口并从换热管底部进入的方式进行,再配合蒸汽分布器,使得蒸汽由原有工艺的两点进入,变为多点、多角度进入与乙苯混合汽化的方式,气液分布更加均匀,避免由于气液两相在汽化过程中不均匀带来的管束振动,解决乙苯汽化器管束振动损坏问题。
为了防止气相物料从分离液返回管流出,所述分离液返回管出口端位于换热管上方,且接近于换热管位置。
本申请一实施例中,所述换热管为“U”型管束,设有4-6层。这样水平布置的管束,其高度低,可以降低设备静液柱压降,使得低低压水蒸汽能够低压降情况下进入乙苯蒸发器内。
本申请一实施例中,为了保证将汽化物流的流速控制在10m/s以下,并在气液分离单元的顶部实现气液分离,防止交代的液体对下游设备造成损坏,所述气液分离单元横截面半径大于中间管直径。
本申请一实施例涉及的一种苯乙烯装置低压降乙苯汽化的节能工艺,包括如下步骤:
a)、设置主冷器、后冷器和油水分离罐,原料苯乙烯脱氢反应物料和锅炉给水分布进入主冷器的壳侧和管侧进行热交换,管侧出口压力控制为6-32kpaA,管侧未蒸发水通过水循环泵增压后与原料锅炉给水返回管侧;
苯乙烯脱氢反应物料冷却后经气液分离形成的液相进入油水分离罐,形成的气相再经后冷器二次冷却后分离出的二次液相进入油水分离罐,分离出的尾气进入后续处理单元;
b)设置蒸汽压缩机和权利要求1所述的低压降式乙苯蒸发器,主冷器管侧产生的6-32kpaA蒸汽经蒸汽压缩机压缩至0.04MpaG的饱和蒸汽作为配汽与原料乙苯分别从低压降式乙苯蒸发器的低压蒸汽进料管和液态物流进入口一起进入壳侧,被通入换热管的热蒸汽加热蒸发形成乙苯与水蒸汽混合物进入过热器 形成下一步工序。
为了能有效解决静液柱压力的问题,所述主冷器采用降膜式换热器,其温差范围为10-12度;降膜换热器压降低,更利于蒸汽的产生。
本申请一实施例中,所述蒸汽压缩机采用多级离心式压缩机,其出口压力范围为90-160kpaA,满足乙苯汽化器一次配汽使用要求。
本申请实施例的原理和有益效果为:
本申请实施例设计的特殊形式的低压降式乙苯蒸发器,将蒸汽的进口设置在换热管束底部,降低液层的高度产生压降,使得低低压蒸汽可以顺利进入蒸发器;为保证蒸汽与乙苯混合气化效果,设置增强换热效果的蒸汽分布器,蒸汽分布器设置多角度喷嘴,充分混合乙苯与水蒸气,保证换热器温差;而且,均匀分布的乙苯与水蒸汽不会引起强烈的振动,换热管可以避免振动、冲刷损坏,保证换热器长周期稳定运行。
本申请实施例工艺中苯乙烯装置中脱氢反应物料在主冷器前全部为气相物料,从反应器出口约565℃的反应物料至主冷器前回收利用的热量全部为显热,能量有限。造成苯乙烯装置能耗高的主要问题为反应物料冷凝热的损失,本申请工艺中充分利用了上述低压降式乙苯蒸发器结构,通过工艺路线设计,回收大量的脱氢反应物料冷凝热量,发生6-32kpaA的蒸汽,并经过蒸汽压缩机增压后,用于乙苯汽化器的一次配汽,代替相关装置蒸汽管网外补0.21MPaG的低压蒸汽,大幅度降低反应系统低压蒸汽的用量,同时减少装置循环水的使用。所述工艺仅消耗压缩机的电耗,大幅度节省低压蒸汽及循环水用量,节能效果显著。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为常规乙苯汽化工艺流程;
图2为本申请实施例中低压降型乙苯汽化器的结构示意图;
图3为本申请实施例中低压降型乙苯汽化器的侧视图;
图4为本申请实施例中乙苯汽化的节能工艺示意图。
具体实施方式
实施例1
如图2、图3所示:一种低压降式乙苯蒸发器,包括换热单元61,还包括将流入的汽化后的混合物实现气液分离的气液分离单元62,并与换热单元61形成双层结构,其上层的气液分离单元62与下层的换热单元61之间通过设置左右两个中间管63连通;所述气液分离单元62顶部设有排气管622,底部设有分离液返回管621,为了防止气相物料从分离液返回管窜出,所述分离液返回管621出口端位于换热管612上方,且接近于换热管位置,当乙苯蒸发器6工作时,乙苯液体正好漫过分离液返回管出口端,这样可尽量减少乙苯液体高度。
所述换热单元61为卧式管壳式换热单元,其包括壳侧,设在壳侧一端的管箱611和换热管612;换热管612为“U”型管束,换热管612水平布置在管板中间位置,设计换热管层数优选4-6层,本实施例为5层,管束的高度低可以降低设备静液柱压降。
所述管箱611上设有热媒进出口,本实施例中热媒进口位于上端,工作时用于通入0.21MPaG的加热蒸汽;热媒出口位于管箱下端,管箱上还设置水蒸汽凝液液位计,控制凝液稳定排出。
所述壳侧底部设有液态物流进入口614,工作时用于通过液态乙苯;为使得经过压缩机增压的水蒸汽能够低压降情况下进入乙苯蒸发器壳侧,在壳侧侧壁上设置若干低压蒸汽进料管613,位于换热管下方且接近换热管612位置,工作时用于通入0.04MpaG蒸汽;
低压蒸汽进料管613数量优选6-10根,本实施例为9根,而且进料管配置蒸汽分布器64,使得蒸汽分布均匀,由于蒸汽分布器顶部液层只有气液两相的短程压降,使得从乙苯蒸发器底部进入的乙苯更易气化,0.04MpaG蒸汽得到很好的利用。
为了保证将汽化物流的流速控制在10m/s以下,并在气液分离单元62的顶部实现气液分离,防止交代的液体对下游设备造成损坏,所述气液分离单元横截面为圆形,其半径大于中间管直径。
本申请的工作原理为:蒸汽压缩机加压产生的0.04MpaG蒸汽与乙苯一起进 入乙苯蒸发器壳侧,被管程0.21MPaG蒸汽间接加热后蒸发。
汽化后的乙苯及水蒸汽混合物,在上层的气液分离单元内实现气液分离,防止交代的液体对下游设备造成损坏,最终汽化后的乙苯及水蒸汽从排气管流出,分离的液体通过分离液返回管回流至换热单元内。
本申请乙苯蒸发器壳侧在接近常压90KPaA下操作,蒸汽压力为0.04MpaG,两者压差较小。
本申请解决了相关乙苯汽化器液层压降高,导致0.04MpaG蒸汽无法使用的问题。
如图4所示:本实施例涉及的苯乙烯脱氢反应系统中乙苯汽化的节能工艺,包括如下步骤:
本实施例具体的运行过程为:主要含乙苯、苯乙烯、水蒸气的脱氢反应产物气流被急冷水骤冷到67℃左右后,进入主冷器1的壳程,主冷器1采用降膜式换热器,管侧介质为锅炉给水,出口压力控制在12kpaA,即锅炉给水被加热后产生12kpaA蒸汽(温度为49.6℃);未被蒸发的水经水循环泵2增压后与界外锅炉给水一起至主冷器1的顶部管箱。脱氢反应产物被冷却至60℃后实现气液分离,分离形成的液相进入油水分离罐5;分离形成的气相进入后冷器3;在后冷器3中用循环水冷却至38℃,后冷器3冷却形成的液相进入油水分离罐5,而未凝尾气进入过冷器继续冷却,后续工艺与常规工艺相同。
主冷器1产生的12kpaA的蒸汽经蒸汽压缩机4三级压缩至0.04MPaG后,该0.04MPaG的饱和蒸汽作为工艺配汽与乙苯一起进入本申请设计的低压降式乙苯蒸发器6的壳侧,被管程0.21MPaG的蒸汽间接加热后蒸发,获得温度约98℃的乙苯-水蒸汽混合物,然后进入过热器壳程进行后续工艺。
本申请涉及的主冷器发生的蒸汽压力优选12-16kpaA,本实施例为12kpaA。
本实施例中压缩机采用多级离心式压缩机,压缩机出口压力设计范围优选120-140kpaA,满足乙苯汽化器一次配汽使用要求。
本实施例中,采用降膜形式的主冷器,压降低,且主冷器下方直接设置蒸汽气液分离罐,被部分气化的水可直接进入下方的罐中,水蒸气进入蒸汽压缩机,未被蒸发的水循环使用。由于12kpaA蒸汽压力较低,常规卧式换热器会因静液柱压力而影响水的气化,采用降膜形式换热器,能有效解决静液柱压力的问题,且降膜换热器压降低,更利于蒸汽的产生。本实施例中降膜形式的主冷 器采用立式结构形式,设计温差范围优选10-12℃。
本实施例与原有工艺的对比分析:
乙苯蒸发器为液相原料乙苯与配入的水蒸气完全转变为气相进入反应系统的工艺设备,乙苯与水蒸气的混合物在壳侧蒸发,蒸发温度约95℃,管侧使用140℃左右的蒸汽加热。根据工艺需要,原料乙苯的汽化需要配置一定比例的水蒸汽,配置比例为乙苯流量的30%左右,因此蒸汽的需求量较大;目前常规工艺中,如图1所示,乙苯蒸发器的一次配汽采用0.3MPaG的低压蒸汽,能耗高,液体乙苯与水蒸汽都从换热器底部进入乙苯蒸发器,受制于液体的静液柱高度产生压降、蒸汽调节阀压降、配管管道压降等,进入乙苯汽化器的蒸汽压力需要0.2MPaG以上,无法使用装置回收的0.04MPaG低低压蒸汽作为一次配汽。另一方面,由于常规换热器中液体乙苯与水蒸气进入壳侧后的气液两相不均匀问题,导致换热管束振动,换热管2年左右容易出现损坏,影响装置稳定运行。
实施例2
以60万吨/年苯乙烯装置(年操作时间8000小时)生产为例:
常规工艺如图1所示,主冷器将脱氢反应物流冷却至52℃,冷却后的物流呈气液两相并实现气液分离;未被冷却的气相进入后冷器,并用循环水冷却至38℃;冷却成液相的物流进入油水分离罐,未凝气进入过冷器继续冷却。主冷器和后冷器的循环水采用串联形式,共耗循环水8568t/h。按照《石油化工设计能耗标准》GB/T-50441计算,该部分能耗6.9kg标油/t苯乙烯。
采用如图4所示的节能工艺,67℃的脱氢反应气流经主冷器冷却至60℃,管侧产生12kpaA蒸汽共41t/h,经蒸汽压缩机压缩至0.04MPaG后作为工艺配气进入乙苯蒸发器,蒸汽压缩机配置电机功率为6400kw,水循环泵的电耗为20kw。脱氢反应气流被冷却到60℃后呈气液两相,液相进入油水分离罐,气相进入后冷器用循环水冷却至38℃,二次冷却后的液相进入油水分离罐,未凝气进入过冷器继续冷却。后冷器消耗循环水6658t/h。
由此可见,本申请涉及的节能工艺,在苯乙烯反应单元能耗可降低12.3kg标油/t苯乙烯,节能效果明显。

Claims (9)

  1. 一种低压降式乙苯蒸发器,包括换热单元,其中,还包括将流入的汽化后的混合物实现气液分离的气液分离单元,并与换热单元形成双层结构,其上层的气液分离单元与下层的换热单元之间通过设置中间管连通;所述气液分离单元顶部设有排气管,底部设有分离液返回管;所述换热单元为卧式管壳式换热单元,其包括壳侧,设在壳侧一端的管箱,设置在管箱管板中间位置、且水平放置的换热管;所述管箱上设有热媒进出口,所述壳侧底部设有液态物流进入口;所述壳侧侧壁上还设有低压蒸汽进料管,位于换热管下方且接近换热管位置。
  2. 根据权利要求1所述的低压降式乙苯蒸发器,其中,设有蒸汽分布器,所述蒸汽分布器与低压蒸汽进料管相连,且蒸汽分布器上均布有面向各个方向喷射的喷嘴。
  3. 根据权利要求1或2所述的低压降式乙苯蒸发器,其中,所述低压蒸汽进料管设计数量为6-10个,且水平均匀分布。
  4. 根据权利要求1所述的低压降式乙苯蒸发器,其中,所述分离液返回管出口端位于换热管上方,且接近于换热管位置。
  5. 根据权利要求1所述的低压降式乙苯蒸发器,其中,所述换热管为“U”型管束,设有4-6层。
  6. 根据权利要求1所述的低压降式乙苯蒸发器,其中,所述气液分离单元横截面半径大于中间管直径。
  7. 一种苯乙烯脱氢反应系统中乙苯汽化的节能工艺,其包括如下步骤:
    a)、设置主冷器、后冷器和油水分离罐,原料苯乙烯脱氢反应物料和锅炉给水分布进入主冷器的壳侧和管侧进行热交换,管侧出口压力控制为6-32kpaA,管侧未蒸发水通过水循环泵增压后与原料锅炉给水返回管侧;
    苯乙烯脱氢反应物料冷却后经气液分离形成的液相进入油水分离罐,形成的气相再经后冷器二次冷却后分离出的二次液相进入油水分离罐,分离出的尾气进入后续处理单元;
    b)设置蒸汽压缩机和权利要求1所述的低压降式乙苯蒸发器,主冷器管侧产生的6-32kpaA蒸汽经蒸汽压缩机压缩至0.04MpaG的饱和蒸汽作为配汽与原料乙苯分别从低压降式乙苯蒸发器的低压蒸汽进料管和液态物流进入口一起进 入壳侧,被通入换热管的热蒸汽加热蒸发形成乙苯与水蒸汽混合物进入过热器形成下一步工序。
  8. 根据权利要求7所述的一种苯乙烯脱氢反应系统中乙苯汽化的节能工艺,其中,所述主冷器采用降膜式换热器,其温差范围为10-12度。
  9. 根据权利要求7所述的一种苯乙烯脱氢反应系统中乙苯汽化的节能工艺,其中,所述蒸汽压缩机采用多级离心式压缩机,其出口压力范围为90-160kpaA。
PCT/CN2022/107413 2021-09-28 2022-07-22 低压降式乙苯蒸发器及苯乙烯脱氢反应系统中乙苯汽化的节能工艺 WO2023050985A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/555,757 US20240207755A1 (en) 2021-09-28 2022-07-22 Low-pressure drop ethylbenzene evaporator and energy-saving process for ethylbenzene vaporization in styrene dehydrogenation reaction system
EP22874382.9A EP4302853A1 (en) 2021-09-28 2022-07-22 Low-pressure drop ethylbenzene evaporator and energy-saving process for ethylbenzene vaporization in styrene dehydrogenation reaction system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111144648.2A CN113941163B (zh) 2021-09-28 2021-09-28 低压降式乙苯蒸发器及苯乙烯脱氢反应系统中乙苯汽化的节能工艺
CN202111144648.2 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023050985A1 true WO2023050985A1 (zh) 2023-04-06

Family

ID=79328943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107413 WO2023050985A1 (zh) 2021-09-28 2022-07-22 低压降式乙苯蒸发器及苯乙烯脱氢反应系统中乙苯汽化的节能工艺

Country Status (4)

Country Link
US (1) US20240207755A1 (zh)
EP (1) EP4302853A1 (zh)
CN (1) CN113941163B (zh)
WO (1) WO2023050985A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113941163B (zh) * 2021-09-28 2023-04-07 常州瑞华化工工程技术股份有限公司 低压降式乙苯蒸发器及苯乙烯脱氢反应系统中乙苯汽化的节能工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245779A1 (en) * 2002-06-12 2005-11-03 Oleksy Slawomir A Eb/sm splitter heat recovery
CN101825271A (zh) * 2009-03-06 2010-09-08 中国石油化工股份有限公司 一种多液相平行分布的换热器
CN102288051A (zh) * 2011-06-16 2011-12-21 徐志刚 蒸发具有最低恒沸组成液体的立式双管板管壳式换热器
CN204177245U (zh) * 2014-09-15 2015-02-25 郑州四维淀粉技术开发有限公司 卧式双相变换热器
CN209745057U (zh) * 2019-01-16 2019-12-06 华东理工大学 一种适用于真空系统的管壳式换热器
CN113941163A (zh) * 2021-09-28 2022-01-18 常州瑞华化工工程技术股份有限公司 低压降式乙苯蒸发器及苯乙烯脱氢反应系统中乙苯汽化的节能工艺

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB588820A (en) * 1942-12-31 1947-06-04 James Alexander Powell Method and apparatus for purifying vapor from an evaporator
GB1333940A (en) * 1970-11-23 1973-10-17 Bergman Borsig Gorlitzer Masch Apparatus for thermal degasification of feed water of steam generators and evaporators
GB1443814A (en) * 1972-07-31 1976-07-28 Riley Beaird Liquid evaporator with shrouded heating tube bundle
CN102258877B (zh) * 2011-05-24 2013-08-28 徐志刚 乙苯和水共沸物的蒸发方法和装置
CN107540508A (zh) * 2016-06-29 2018-01-05 中石化上海工程有限公司 一种乙苯催化脱氢生产苯乙烯的方法及其设备
CN106287627B (zh) * 2016-07-29 2018-07-17 西安交通大学 一种优化流场布置的自然循环分体管壳式余热锅炉
CN206334367U (zh) * 2016-12-22 2017-07-18 范亚平 一种低能耗刮板蒸发器
CN207880443U (zh) * 2018-02-08 2018-09-18 天津昱丞高科工程设计有限公司 卧式蒸汽换热lng气化装置
CN211935622U (zh) * 2020-02-27 2020-11-17 江苏嘉尚环保科技有限公司 一种新型的水平横管降膜蒸发器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245779A1 (en) * 2002-06-12 2005-11-03 Oleksy Slawomir A Eb/sm splitter heat recovery
CN101825271A (zh) * 2009-03-06 2010-09-08 中国石油化工股份有限公司 一种多液相平行分布的换热器
CN102288051A (zh) * 2011-06-16 2011-12-21 徐志刚 蒸发具有最低恒沸组成液体的立式双管板管壳式换热器
CN204177245U (zh) * 2014-09-15 2015-02-25 郑州四维淀粉技术开发有限公司 卧式双相变换热器
CN209745057U (zh) * 2019-01-16 2019-12-06 华东理工大学 一种适用于真空系统的管壳式换热器
CN113941163A (zh) * 2021-09-28 2022-01-18 常州瑞华化工工程技术股份有限公司 低压降式乙苯蒸发器及苯乙烯脱氢反应系统中乙苯汽化的节能工艺

Also Published As

Publication number Publication date
CN113941163A (zh) 2022-01-18
CN113941163B (zh) 2023-04-07
EP4302853A1 (en) 2024-01-10
US20240207755A1 (en) 2024-06-27

Similar Documents

Publication Publication Date Title
WO2023050985A1 (zh) 低压降式乙苯蒸发器及苯乙烯脱氢反应系统中乙苯汽化的节能工艺
CN104853840A (zh) 烷醇的制备装置
WO2023050988A1 (zh) 一种降膜式再沸器和热泵技术组合提供分离塔所需热源的苯乙烯精制方法
CN216536963U (zh) 一种硫酸烷基化反应产物的分离系统
CN101734999B (zh) 乙苯/苯乙烯顺序分离共沸热回收方法
US20230191277A1 (en) Energy saving and emission reduction system for chemical separation and purification process
CN110256202A (zh) 一种四塔四效的粗甲醇精制工艺方法
CN103030522B (zh) 乙苯脱氢制苯乙烯原料汽化的方法
CN208406117U (zh) 一种连续式溶剂蒸发回收装置
CN106631697A (zh) 一种正丙醇和异丙醇的分离方法
CN113440882B (zh) 一种应用于苯乙烯分离系统的装置及方法
KR100730630B1 (ko) 에너지 절감을 위한 스티렌 제조방법
CN114436744B (zh) 乙苯脱氢制备苯乙烯的方法和系统
CN212901433U (zh) 一种二甲酚精馏余热回收装置
CN112569618B (zh) 一种重沸器系统及其蒸汽进料方法
CN206375840U (zh) 苯乙烯节能生产装置
CN105692744A (zh) 一种医用多效蒸馏水机
CN212655718U (zh) 用于乙苯苯乙烯分离的低能耗成套设备
CN105669352B (zh) 乙苯苯乙烯节能分离方法
RU2802428C1 (ru) Способ очистки стирола с использованием совместного действия ребойлеров c падающей пленкой и технологии теплового насоса с целью получения источника тепла для разделительной колонны
CN218900864U (zh) 二乙烯苯提纯系统
CN216062074U (zh) 一种烷基化反应产物的分离装置
CN217119360U (zh) 精馏回收装置
CN220496334U (zh) 一种异丁烷正构反应废气回收系统
CN104557607A (zh) 一种制备环己酮肟气体的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874382

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022874382

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18555757

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022874382

Country of ref document: EP

Effective date: 20231004

NENP Non-entry into the national phase

Ref country code: DE