WO2023050925A1 - 一种雾化控制方法及装置 - Google Patents

一种雾化控制方法及装置 Download PDF

Info

Publication number
WO2023050925A1
WO2023050925A1 PCT/CN2022/100893 CN2022100893W WO2023050925A1 WO 2023050925 A1 WO2023050925 A1 WO 2023050925A1 CN 2022100893 W CN2022100893 W CN 2022100893W WO 2023050925 A1 WO2023050925 A1 WO 2023050925A1
Authority
WO
WIPO (PCT)
Prior art keywords
inhalation
average
data
inspiratory
aerosol
Prior art date
Application number
PCT/CN2022/100893
Other languages
English (en)
French (fr)
Inventor
赵波洋
赵贯云
阳广龙
胡治朋
丁俊
Original Assignee
深圳市吉迩科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市吉迩科技有限公司 filed Critical 深圳市吉迩科技有限公司
Publication of WO2023050925A1 publication Critical patent/WO2023050925A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts

Definitions

  • the present application relates to the field of atomization technology, in particular to a method and device for controlling an atomization device.
  • the aerosol generating device is one of the electronic entertainment products that are widely favored by people.
  • the user needs to activate the atomizer in the device through the suction generated by the mouth, and aerosol will be generated during the working process. Due to the amount of aerosol generated and the inhalation data generated by the user (Including inhalation intensity and inhalation duration), some users who lack self-control will generate more inhalation data in the process of using the aerosol generating device, thereby inhaling a large amount of aerosol into the body. However, one-time inhalation of a large amount of aerosol will cause adverse effects on human health. Therefore, it is necessary to provide an atomization control method to control the amount of aerosol inhaled by the user.
  • the present application provides an atomization control method and device, which are used to alleviate and control the amount of aerosol inhaled by a user.
  • the application provides an atomization control method, including:
  • the target aerosol volume corresponding to the current inhalation data is obtained, and an atomization operation is performed according to the target aerosol volume.
  • an atomization control device including:
  • a data determination module configured to determine current inhalation data according to the detected current suction signal
  • the data reading module is used to read the average inhalation data and the average aerosol volume stored in the memory
  • a comparison module configured to compare the average inhalation data and the current inhalation data to obtain a comparison result
  • a first atomization module configured to perform an atomization operation according to the average aerosol amount when the comparison result indicates that the current inhalation data is greater than or equal to the average inhalation data
  • the second atomization module is configured to obtain the target aerosol amount corresponding to the current inhalation data when the comparison result indicates that the current inhalation data is smaller than the average inhalation data, and The amount of sol is atomized.
  • the application provides an atomization control method and device; after detecting the current suction signal, the method determines the current inhalation data according to the current suction signal, and reads the average inhalation data and the average inhalation data stored in the memory. The amount of aerosol, and then compare the average inhalation data with the current inhalation data to obtain the comparison result.
  • the comparison result indicates that the current inhalation data is greater than or equal to the average inhalation data
  • the atomization operation is performed according to the average aerosol amount, but
  • the target aerosol amount corresponding to the current inhalation data is obtained, and the atomization operation is performed according to the target aerosol amount.
  • the method provided by this application starts from the health of the user who uses the aerosol generating device, and determines the amount of aerosol that should be provided through the size relationship between the current inhalation data and the average inhalation data, so that the atomization operation is performed according to the corresponding aerosol amount , to control the amount of aerosol inhaled by the user as little as possible.
  • Fig. 1 is a schematic diagram of a scene of an atomization control system provided by an embodiment of the present application.
  • Fig. 2 is a schematic flowchart of an atomization control method provided by an embodiment of the present application.
  • Fig. 3 is another schematic flowchart of the atomization control method provided by the embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of an atomization control device provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of an aerosol generating device provided in an embodiment of the present application.
  • the suction signal refers to the signal generated by the user using the aerosol generating device when inhaling the aerosol generating device, and the signal includes inhalation size and inhalation duration.
  • the amount of aerosol refers to the amount of aerosol generated by the aerosol generating device based on the aerosol substrate under a certain inhalation size and inhalation time.
  • the present application provides an atomization control method and device to achieve the purpose of controlling the amount of aerosol inhaled by a user.
  • Figure 1 is a schematic structural diagram of the atomization control system provided by the present application, as shown in Figure 1, the atomization control system mainly includes an aerosol generating device 100 and a terminal 200, and the aerosol generating device 100 and Including host 110, atomizer 120 and interface 130, wherein:
  • the aerosol generating device 100 and the terminal 200 are connected and communicated through the Internet composed of various gateways.
  • the terminal 200 can scan the factory QR code of the aerosol generating device 100 for pairing and connection operation;
  • the connection between the aerosol generating device 100 and the terminal 200 is not specifically limited in this application, such as pairing connection with the aerosol generating device through Bluetooth.
  • the user can send user-defined average inhalation data and average aerosol volume to the aerosol generating device 100 through the terminal 200, so that the aerosol generating device 100 stores them in the memory.
  • the host 110 includes a circuit board, memory, and switching elements, etc., wherein the circuit board is mainly used to supply power to the host 110 and the atomizer 120, and the memory can be Static Random-Access Memory (SRAM), which has a relatively high speed.
  • SRAM Static Random-Access Memory
  • the switch element can include a microphone, and the microphone is mainly used for sensing the The electrical parameters generated by the negative pressure generated by the change of the air flow, and output the sensing signal to the circuit board according to the change of the electrical parameter, and at the same time transmit the air flow to the suction sensor in the atomizer 120 for detection.
  • EEPROM Electronically Erasable Programmable Read-Only Memory
  • Flash Memory Flash Memory
  • the atomizer 120 includes an atomizing core, connectors, atomizing electrodes, sensors and the like.
  • the atomizing core includes an atomizing chamber, an aerosol matrix storage chamber, an air outlet channel, a suction nozzle, a liquid guide, and a heating element;
  • the sensor includes a suction sensor, a thermal sensor, a speed sensor, and an acceleration sensor, etc.
  • the suction sensor is mainly used for Detect suction signal.
  • the host 110 and the atomizer 120 are connected through an interface 130, which may be a Type-C interface, a Type-B interface, a USB interface, etc., and is not specifically limited here.
  • Figure 2 is a schematic flow diagram of the atomization control method provided by this application, as shown in Figure 2 , the atomization control method provided by the application at least includes the following steps:
  • the suction signal is a signal generated when the user makes a suction action on the microphone of the aerosol generating device during use.
  • the suction force signal includes the size of the inhalation and the duration of the inhalation; wherein, the size of the inhalation is the pressure generated by the change of the airflow in the air intake channel when the user inhales the aerosol generating device; the duration of the inhalation is is the duration of airflow change in the air intake channel during the user inhales the aerosol generating device (that is, the duration of one inhalation by the user).
  • the aerosol generating device when the user uses the aerosol generating device, it will generate a corresponding suction signal, and when the aerosol generating device detects the suction signal, it will perform corresponding data processing according to the detected suction signal.
  • the steps include: by detecting the suction signal; when the suction signal is detected, analyzing the suction signal to obtain the inhalation size and the inhalation duration, and using the inhalation size and the inhalation duration as the current inhalation data.
  • the suction sensor in the nebulizer 120 in the aerosol generating device detects the suction signal, it will analyze the suction signal according to the data processing module in the nebulizer 120, so as to obtain the suction force corresponding to the suction signal.
  • Inhalation size and inhalation duration and use the inhalation size and inhalation duration as the user's current inhalation data.
  • the atomizer 120 when the atomizer 120 detects that the user is using the aerosol generating device (that is, when a suction signal is detected), the average inhalation data and the average aerosol volume will be read from the memory of the host 110
  • the specific steps include: triggering a reading instruction according to the current suction signal; reading the average inhalation data and the average aerosol volume from the memory according to the reading instruction.
  • the atomizer 120 when the atomizer 120 detects the suction signal, it will trigger the atomizer 120 to send a read instruction to the host, which can be generated by the control board in the atomizer 120 and sent to the host 110, After receiving the read instruction, the host computer 110 reads the pre-stored average inhalation data and average aerosol volume from its memory in response to the read instruction.
  • the above-mentioned memory includes read-only memory (ROM) and random read/write memory (RAM).
  • ROM read-only memory
  • RAM random read/write memory
  • ROM read-only memory
  • SRAM Static Random-Access Memory
  • EEPROM Electronically Erasable Programmable Read-Only Memory
  • flash Memory flash Memory
  • the host computer 110 can calculate the historical data stored therein through the data processing module, so as to obtain the average inhalation data and the average aerosol volume, and the specific steps include: reading the preset historical data stored in the memory Inspiratory size, inspiratory duration, and inspiratory times in the period; according to the inspiratory size and the inspiratory times, determine the average inspiratory size; according to the inspiratory duration and the inspiratory times, determine the average Inhalation duration; the average inhalation size and the average inhalation duration are used as average inhalation data, and the corresponding average aerosol volume is determined according to the average inhalation data.
  • the inhalation size and inhalation duration generated by the user each time the aerosol generating device is used will be stored in the memory of the host 110. After the user uses the aerosol generating device for many times, the aerosol generating device can pass The inhalation data within a certain period is calculated to obtain the average inhalation data and the corresponding average aerosol volume.
  • the user can communicate with the aerosol generating device 100 through the terminal 200, and the user sets 8:00 to 12:00 on September 10, 2021 as the preset historical period through the terminal 200, and then the preset The historical cycle is sent to the aerosol generating device 100, and the aerosol generating device 100 has specified that the preset historical cycle is from 8:00 to 12:00 on September 10, 2021, so the aerosol generating device 100 starts from its memory through the host 110 Read the inspiratory size, inspiratory duration, and inspiratory times in this time period. It should be noted that the inspiratory size and inspiratory duration in this time period are the total inspiratory size and total inspiratory duration in this time period.
  • the average inhalation size can be obtained by dividing the total inhalation size by the number of inhalations
  • the average inhalation time can be obtained by dividing the total inhalation duration by the inhalation times
  • the data composed of the inspiratory duration is the average inspiratory data, which is stored in the memory and marked as "average inspiratory data from 8:00 to 12:00 on September 10, 2021".
  • the user in addition to calculating the average inhalation data within the time period through the user setting the historical cycle, the user can also set a certain number of inhalation times to calculate the average inhalation data within the set number of times.
  • Inhalation data the specific steps of which include: reading the inspiratory size and inspiratory duration within the preset inspiratory times stored in the memory; determining the average inspiratory size according to the inspiratory size and the preset inspiratory times ; According to the inhalation duration and the preset inhalation times, determine the average inhalation duration; use the average inhalation size and the average inhalation duration as the average inhalation data, and according to the average inhalation data , to determine the corresponding mean aerosol volume.
  • the user can communicate with the aerosol generating device 100 through the terminal 200, and the user sets the number of inhalations between the first use and the tenth use as the preset number of inhalations through the terminal 200, and then the preset Assuming that the number of inhalations is sent to the aerosol generating device 100, the aerosol generating device 100 has defined the number of inhalations as the number of inhalations between the first use and the tenth use, so the aerosol generating device 100 starts from the host 110 Its memory reads the inhalation size and inhalation duration within the inhalation times.
  • the average inhalation size can be obtained by dividing the total inhalation size by the preset inhalation times, and the average inhalation time can be obtained by dividing the total inhalation time by the preset inhalation times, and by
  • the data consisting of the average inspiratory size and the average inspiratory duration is the average inspiratory data, and it is stored in the memory, and the storage is marked as "the average of the inspiratory times between the first use and the tenth use. Inspiratory Data".
  • the average inspiratory data in addition to calculating the average inspiratory data by specifying data within a certain period and a certain number of times, can also be dynamically updated.
  • the specific steps include: when the current inspiratory data is less than the average inspiratory data Inhalation data, update the average inhalation data according to the current inhalation data to obtain updated average inhalation data; determine the corresponding average aerosol volume according to the average inhalation data; store the updated Mean inhalation data and said mean aerosol volume are in said memory.
  • the average inhalation data obtained according to any of the aforementioned methods is the average inhalation size of 120Pa, if the current user’s inhalation size is 100Pa, because 100Pa is less than 120Pa, that is, the current inhalation data is smaller than the average inhalation data, then you can Through the data processing module, the number of inhalations corresponding to the average inhalation size of 120Pa is 9, and then the average inhalation size is updated by the formula (120Pa*9+100Pa)/(9+1) to obtain the updated average inhalation size is 118Pa, after the average inspiratory data is updated, the updated average inspiratory data is stored in the memory in the host computer 110 .
  • the average inhalation data can also be directly customized through the terminal.
  • the specific steps include: receiving from The data storage request of the terminal; in response to the data storage request, obtain the average inhalation data; determine the corresponding average aerosol volume according to the average inhalation data; store the average inhalation data and the average aerosol volume in the memory.
  • the user can communicate with the terminal 200 through the two-dimensional code on the aerosol generating device 100 or Bluetooth when using it. After the connection is successful, the average inhalation data can be set through the relevant setting interface on the terminal.
  • the storage request carrying the average inhalation data is sent to the aerosol generating device 100 through the terminal 200.
  • the aerosol generating device 100 responds to the storage request and customizes the setting
  • the average inhalation data and the corresponding aerosol volume are stored in the memory of the host computer 110 .
  • the corresponding aerosol volume can be uniquely determined according to the inhalation data, and the specific steps include: obtaining a mapping relationship between the inhalation data and the aerosol volume; , to determine the target aerosol volume corresponding to the average inhalation data.
  • the aerosol generating device 100 has set attributes when leaving the factory, and its attributes include the amount of aerosol corresponding to the inhalation data, that is, the mapping relationship between the inhalation data and the aerosol amount, and the host 110 can use the mapping relationship Stored in the memory, and then when the corresponding inhalation data is detected, it will be judged how much aerosol should be provided according to the mapping relationship.
  • the aerosol generating device 100 can perform corresponding data processing operations through the control board in the host 110, such as comparing the magnitude relationship between the average inhalation data and the current inhalation data, and generating corresponding comparison results.
  • the control board in the host 110 In order to control the amount of aerosol inhaled by the user, when the control board in the host 110 obtains that the current inhalation data is greater than or equal to the average inhalation data (for example, the current inhalation data is an inhalation size of 130 Pa, and the average inhalation data is an inhalation size 120Pa), it will send atomization instructions to the atomizer 120 for atomization operations based on the average amount of aerosol, and the atomizer 120 will control the aerosol substrate to provide the atomizer with a corresponding amount of Aerosol nebulization.
  • the control board in the host 110 obtains that the current inhalation data is greater than or equal to the average inhalation data (for example, the current inhalation data is an inhalation size of 130 Pa, and the average inhalation data is an inhalation size 120Pa)
  • the atomizer 120 will control the aerosol substrate to provide the atomizer with a corresponding amount of Aerosol nebulization.
  • the control board in the host 110 obtains when the current inhalation data is less than the average inhalation data (for example, the current inhalation data is an inhalation size of 110Pa, and the average inhalation data is an inhalation size of 120Pa. ), will first obtain the target aerosol volume corresponding to the inhalation size 110Pa according to the mapping relationship between the inhalation data and the aerosol volume, and then send an atomization instruction to the nebulizer 120 for atomization operation according to the target aerosol volume, and the atomization After receiving relevant instructions, the device 120 will control the aerosol substrate to provide a corresponding amount of aerosol to the atomizer for atomization.
  • the current inhalation data is an inhalation size of 110Pa
  • the average inhalation data is an inhalation size of 120Pa.
  • the aerosol generator compares the size of the current inhalation data with the average inhalation data, so as to provide the user with the least amount of aerosol as possible according to the smaller inhalation data, and controls the user's inhalation into the body.
  • the amount of aerosol avoids the harm to the body caused by excessive inhalation of the user.
  • Figure 3 is another schematic flow chart of the atomization control method
  • Figure 3 shows the interaction process between the host 110 and the atomizer 120 in the aerosol generating device 100, through the interaction process To realize the atomization control method.
  • the atomizer 120 detects the suction signal through the suction sensor arranged therein, and when it detects that there is a current suction signal, converts the signal into corresponding current suction data, and sends the current suction data to the host 110 , while sending a read command to it, so that the host 110 receives the current suction data, and reads the pre-stored average inhalation data and average aerosol volume from the memory of the host 110 in response to the read command, and then the host 110
  • the control board will perform the comparison operation by itself, that is, compare the current inhalation data with the average inhalation data to obtain the comparison result; when the comparison result indicates that the current inhalation data is greater than or equal to the average inhalation data, the average aerosol Generate an atomization command (that is, provide an average aerosol amount of aerosol to the user), and then the host 110 sends the generated atomization command to the atomizer 120, and the atomizer 120 responds to the atomization command after receiving the atomization command.
  • the host 110 will determine the target aerosol volume corresponding to the current inhalation data according to the mapping relationship between the inhalation data and the aerosol volume, and then generate an atomization instruction according to the target aerosol volume (that is, provide the aerosol with the target aerosol volume to the user), Send the generated atomization instruction to the nebulizer 120, and the atomizer 120 responds to the atomization instruction after receiving the atomization instruction, and controls the aerosol matrix storage chamber in the atomizer 120 to release only the target gas.
  • the aerosol of the sol amount is sent to the atomization chamber for atomization.
  • the user can also connect with the aerosol generating device through the terminal 200, for example, connect through bluetooth, wifi and the like. Therefore, the user can directly set the parameters of the aerosol generating device through the terminal 200, such as the average inhalation data and the like.
  • the atomization control method provided by the present application always provides the user with the least amount of aerosol as possible through the above method, so that the user cannot obtain the amount of aerosol exceeding the limit and cause harm to the body.
  • the embodiments of the present application provide an atomization control device.
  • the atomization control device is used to implement the atomization control method provided in the above method embodiment, specifically, please refer to Figure 4, the device includes:
  • a data determination module 401 configured to determine current inhalation data according to the detected current suction signal
  • a data reading module 402 configured to read the average inhalation data and the average aerosol volume stored in the memory
  • a comparison module 403, configured to compare the average inhalation data and the current inhalation data to obtain a comparison result
  • the first atomization module 404 is used to perform an atomization operation according to the average aerosol amount when the comparison result indicates that the current inhalation data is greater than or equal to the average inhalation data;
  • the second atomization module 405 is configured to obtain the target aerosol volume corresponding to the current inhalation data when the comparison result indicates that the current inhalation data is smaller than the average inhalation data, and The amount of aerosol is atomized.
  • the data reading module 402 includes:
  • the first reading module is used to read the inspiratory size, inspiratory duration and inspiratory times in the preset historical period stored in the memory;
  • a first determining module configured to determine an average inhalation size according to the inhalation size and the number of inhalation times
  • the second determination module is used to determine the average inhalation duration according to the inhalation duration and the inhalation times;
  • the third determination module is configured to use the average inhalation size and the average inhalation duration as average inhalation data, and determine the corresponding average aerosol volume according to the average inhalation data.
  • the data reading module 402 also includes:
  • the second reading module is used to read the inspiratory size and inspiratory duration within the preset inspiratory times stored in the memory;
  • the fourth determination module is used to determine the average inhalation size according to the inhalation size and the preset inhalation times;
  • the fifth determination module is used to determine the average inhalation duration according to the inhalation duration and the preset inhalation times;
  • the sixth determination module is configured to use the average inhalation size and the average inhalation duration as average inhalation data, and determine the corresponding average aerosol volume according to the average inhalation data.
  • the atomization control device also includes:
  • a data update module configured to update the average inspiratory data according to the current inspiratory data when the current inspiratory data is smaller than the average inspiratory data, to obtain updated average inspiratory data
  • the seventh determination module is used to determine the corresponding average aerosol volume according to the average inhalation data
  • a first data storage module configured to store the updated average inhalation data and the average aerosol volume in the memory.
  • the atomization control device also includes:
  • a request receiving module configured to receive a data storage request from a terminal
  • a request response module configured to obtain average inspiratory data in response to the data storage request
  • An eighth determination module configured to determine the corresponding average aerosol volume according to the average inhalation data
  • the second data storage module is used for storing the average inhalation data and the average aerosol volume in the memory.
  • the atomization control device also includes:
  • a relationship acquisition module configured to acquire the mapping relationship between inhalation data and aerosol volume
  • a ninth determining module configured to determine the target aerosol volume corresponding to the average inhalation data according to the average inhalation data and the mapping relationship.
  • the data determination module 401 includes:
  • a signal detection module configured to detect a suction signal through a suction sensor
  • the signal analysis module is configured to analyze the suction signal when a suction signal is detected, obtain the inhalation size and the inhalation duration, and use the inhalation size and the inhalation duration as the current inhalation data.
  • the memories in the above modules include Static Random-Access Memory (SRAM), Electronically Erasable Programmable Read-Only Memory (EEPROM), and Flash Memory (Flash Memory), etc.
  • SRAM Static Random-Access Memory
  • EEPROM Electronically Erasable Programmable Read-Only Memory
  • Flash Memory Flash Memory
  • the atomization control device of the embodiment of the present application can be used to implement the technical solutions of the foregoing method embodiments, and its implementation principle and technical effect are similar, and will not be repeated here.
  • the atomization control device provided by this application is equipped with a comparison module.
  • the comparison module Through the comparison module, the size relationship between the inhalation data and the average inhalation data can be compared, and the gas that should be provided can be determined according to the comparison result.
  • FIG. 5 is a schematic structural diagram of an aerosol generating device provided in an embodiment of the present application.
  • the aerosol generating device includes a host 110 and an atomizer 120 .
  • the atomizer 120 includes an atomizing core 70, a connecting piece 80, an atomizing electrode 90, an atomizing chamber 71, an aerosol substrate storage chamber 72, an air outlet channel 73, a suction nozzle 74, a liquid guide 74 and a heating element. 76 , the atomizing core 70 is connected to the connecting piece 80 , and the atomizing electrode 90 is fixed in the connecting piece 80 .
  • the aerosol base material storage chamber 72 communicates with the atomization chamber 71
  • the atomization chamber 71 communicates with the air outlet channel 73
  • the air outlet channel 73 communicates with the suction nozzle 74
  • the liquid guide 75 and the heating element 76 are located in the atomization chamber 71 .
  • the aerosol base material storage cavity 72 is used to store the aerosol base material
  • the liquid guide member 75 is located between the aerosol base material storage cavity 72 and the heating element 76, so as to guide the aerosol base material into the atomization chamber 71, and the heating element 76 generates heat under the control of circuit board 40 to atomize the aerosol substrate and generate aerosol.
  • the connector 80 includes a third receiving groove 81, the atomizing electrode 90 is accommodated and fixed in the third receiving groove 81, and the atomizing electrode 90 is electrically connected with the host electrode 30, and the atomizing electrode 90 is also connected to the heating element 76 Electrically connected to form a circuit loop, the circuit board 40 controls the power supply device 50 to supply power to the heating element 76 through the circuit loop, so that the heating element 76 generates heat to atomize the aerosol substrate and generate aerosol.
  • the connecting piece 80 also includes a second air intake channel 82 .
  • One end of the second air intake channel 82 is in communication with the atomization chamber 71, and under the action of the suction generated by the suction nozzle 74, the outside air enters the air intake channel 82, enters the atomization chamber 71 from the air intake channel 82, and The aerosol generated in the atomization chamber 71 is driven into the air outlet channel 73 , and enters the mouth of the user of the aerosol generating device 100 from the suction nozzle 74 .
  • the air inlet channel 82 and the atomizing electrode 90 are separately provided.
  • the air intake channel 82 and the atomization electrode 90 are combined, that is, the atomization electrode 90 is set to be hollow, and the hollow part of the atomization electrode is the air intake channel 82, and the host electrode is inserted into the atomization electrode 90 in.
  • the atomizer 120 is also provided with a second magnetic attraction (not shown in the figure), the second magnetic attraction is arranged on the atomization connection end surface 122 of the atomizer 120 and is connected to the first magnetic attraction (not shown in the figure) are located opposite each other, and the host 110 and the atomizer 120 are fixed together by the first magnetic attraction and the second magnetic attraction.
  • only the first magnetic attraction is provided in the main body 110, and the area of the end face of the atomizing electrode 90 facing the main body 110 is increased, so that the first magnetic attraction can absorb
  • the atomizing electrode 90 is connected by magnetic adsorption.
  • the material of the atomizing electrode 90 is ferromagnetic material, such as iron, nickel, cobalt and other metals.
  • the main unit 110 may not be provided with the first magnetic member, and the atomizer 120 may not be provided with the second magnetic member, but are mechanically connected together by buckles or the like.

Landscapes

  • Medicinal Preparation (AREA)

Abstract

本申请提供一种雾化控制方法及装置;该方法先根据检测到的当前吸力信号确定当前吸气数据,然后从存储器中读取存储的平均吸气数据和平均气溶胶量,并比对平均吸气数据和当前吸气数据以得到比对结果,当该比对结果表征当前吸气数据大于或者等于平均吸气数据时,根据平均气溶胶量进行雾化操作,当该比对结果表征当前吸气数据小于平均吸气数据时,获取当前吸气数据对应的目标气溶胶量,并根据目标气溶胶量进行雾化操作。本申请提供的方法可以通过当前吸气数据和平均吸气数据的大小关系确定对应的气溶胶量,从而根据对应的气溶胶量进行雾化操作,以控制用户吸入体内的气溶胶量。

Description

一种雾化控制方法及装置 技术领域
本申请涉及雾化技术领域,尤其涉及一种雾化装置控制方法及装置。
背景技术
随着人们生活水平的不断提高,市面上出现了各式各样的电子娱乐产品,气溶胶产生装置即为其中一种广受人们青睐的电子娱乐产品。
气溶胶产生装置在使用过程中,需要使用者通过口腔产生的吸力启动该装置中的雾化器工作,且工作过程中会产生气溶胶,由于气溶胶的产生量与使用者产生的吸气数据(包括吸气强度和吸气时长)有关,部分缺乏自控力的使用者在使用气溶胶产生装置的过程中会通过产生较多的吸气数据,从而吸入大量的气溶胶进入体内。然而一次性吸入大量的气溶胶会对人体健康造成不良影响,因此,需要提供一种雾化控制方法以控制用户吸入体内的气溶胶量。
发明内容
本申请提供一种雾化控制方法及装置,用于缓解控制用户吸入体内的气溶胶量。
为了解决上述技术问题,本申请提供以下技术方案:
本申请提供一种雾化控制方法,包括:
根据检测到的当前吸力信号,确定当前吸气数据;
读取存储器中存储的平均吸气数据和平均气溶胶量;
比对所述平均吸气数据和所述当前吸气数据,得到比对结果;
当所述比对结果表征所述当前吸气数据大于或者等于所述平均吸气数据时,根据所述平均气溶胶量进行雾化操作;
当所述比对结果表征所述当前吸气数据小于所述平均吸气数据时,获取所述当前吸气数据对应的目标气溶胶量,并根据所述目标气溶胶量进行 雾化操作。
相应的,本申请还提供一种雾化控制装置,包括:
数据确定模块,用于根据检测到的当前吸力信号,确定当前吸气数据;
数据读取模块,用于读取存储器中存储的平均吸气数据和平均气溶胶量;
比对模块,用于比对所述平均吸气数据和所述当前吸气数据,得到比对结果;
第一雾化模块,用于当所述比对结果表征所述当前吸气数据大于或者等于所述平均吸气数据时,根据所述平均气溶胶量进行雾化操作;
第二雾化模块,用于当所述比对结果表征所述当前吸气数据小于所述平均吸气数据时,获取所述当前吸气数据对应的目标气溶胶量,并根据所述目标气溶胶量进行雾化操作。
有益效果:本申请提供了一种雾化控制方法及装置;该方法在检测到当前吸力信号后,根据当前吸力信号确定当前吸气数据,并读取存储器中存储的平均吸气数据和平均气溶胶量,然后比对该平均吸气数据和当前吸气数据得到比对结果,在比对结果表征当前吸气数据大于或者等于平均吸气数据时,根据平均气溶胶量进行雾化操作,但当比对结果表征当前吸气数据小于平均吸气数据时,获取当前吸气数据对应的目标气溶胶量,并根据目标气溶胶量进行雾化操作。本申请提供的方法从使用气溶胶产生装置的用户的健康角度出发,通过当前吸气数据和平均吸气数据的大小关系确定应该提供的气溶胶量,从而根据对应的气溶胶量进行雾化操作,以控制用户吸入体内的气溶胶量尽可能的少。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1是本申请实施例提供的雾化控制系统的场景示意图。
图2是本申请实施例提供的雾化控制方法的一种流程示意图。
图3是本申请实施例提供的雾化控制方法的另一种流程示意图。
图4是本申请实施例提供的雾化控制装置的结构示意图。
图5是本申请实施例提供的气溶胶产生装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,吸力信号指的是使用气溶胶产生装置的用户在抽吸气溶胶产生装置时产生的信号,该信号包括吸气大小和吸气时长。
在本申请中,气溶胶量指的是气溶胶产生装置在一定吸气大小和吸气时长下基于气溶胶基材产生的气溶胶的量。
本申请提供一种雾化控制方法及装置,以实现控制用户吸入体内的气溶胶量的目的。
第一实施例
请参阅图1,图1为本申请提供的雾化控制系统的结构示意图,如图1所示,该雾化控制系统主要包括气溶胶产生装置100和终端200,而该气溶胶产生装置100又包括主机110、雾化器120以及接口130,其中:
气溶胶产生装置100和终端200之间通过各种网关组成的互联网等方式连接通信。例如,在初次使用前,终端200可以通过扫描气溶胶产生装置100的出厂二维码进行配对连接操作;又例如,使用者可以通过气溶胶产生装置100的蓝牙按钮打开蓝牙,以使得终端200能通过蓝牙与气溶胶产生装置进行配对连接等,本申请不对气溶胶产生装置100和终端200之间的连接方式进行具体限定。其中,用户可以通过终端200向气溶胶产生装置100发送用户自定义的平均吸气数据和平均气溶胶量,使得气溶胶产生装置100将其存储在存储器中。
主机110包括电路板、存储器以及开关元件等,其中电路板主要用于向主机110和雾化器120进行供电,存储器可以是静态随机存储器(Static Random-Access Memory,SRAM),这种存储器速度较快;也可以是电子 可擦除只读存储器(Electrically Erasable Programmable Read-OnlyMemory,EEPROM),这种存储器的更新速度快,其断电时仍能保存数据;还可以是闪存存储器(Flash Memory),这种存储器可以写入和读取,容量大,速度快,能提高存储性能,也还可以是其他合适的存储器;开关元件可以包括咪头,咪头主要用于感测因进气通道内的气流的变化产生的负压而产生的电气参数,并根据电气参数的变化输出感测信号给电路板,同时将气流传给雾化器120中的吸力传感器进行检测。
雾化器120包括雾化芯、连接件、雾化电极、传感器等。其中,雾化芯包括雾化腔、气溶胶基质储存腔、出气通道、吸嘴、导液件及发热件;传感器包括吸力传感器、热敏传感器、速度传感器以及加速度传感器等,吸力传感器主要用于检测吸力信号。
主机110和雾化器120之间通过接口130连接,接口130可以是Type-C接口、Type-B接口以及USB接口等,在此不做具体限定。
第二实施例
综合上述雾化控制系统的场景,下面将对本申请中雾化控制方法进行详细的介绍,请参阅图2,图2为本申请提供的雾化控制方法的一种流程示意图,如图2所示,本申请提供的雾化控制方法至少包括以下步骤:
201:根据检测到的当前吸力信号,确定当前吸气数据。
吸力信号为使用者在使用时对气溶胶产生装置的咪头发出吸力动作时所产生的信号。具体地,吸力信号包括吸气大小和吸气时长;其中,吸气大小为使用者在对气溶胶产生装置进行吸气过程中,进气通道内气流的变化而产生的压力大小;吸气时长为使用者在对气溶胶产生装置进行吸气过程中,进气通道内气流变化的时长(也即使用者一次吸气的持续时间)。
在一种实施例中,当使用者使用气溶胶产生装置时会产生相应的吸力信号,而气溶胶产生装置在检测到吸力信号时,会根据检测到的吸力信号进行相应的数据处理,其具体步骤包括:通过检测吸力信号;在检测到有吸力信号时,解析所述吸力信号,得到吸气大小和吸气时长,并将所述吸气大小和所述吸气时长作为当前吸气数据。具体地,气溶胶产生装置中的雾化器120中的吸力传感器在检测到吸力信号后,会根据雾化器120中的 数据处理模块对该吸力信号进行解析,从而得到该吸力信号对应的吸气大小和吸气时长,并将吸气大小和吸气时长作为使用者的当前吸气数据。
202:读取存储器中存储的平均吸气数据和平均气溶胶量。
在一种实施例中,当雾化器120检测到使用者在使用气溶胶产生装置时(即检测到吸力信号时),会从主机110的存储器中读取平均吸气数据和平局气溶胶量,其具体步骤包括:根据所述当前吸力信号触发读取指令;根据所述读取指令从存储器中读取平均吸气数据和平均气溶胶量。具体地,雾化器120在检测到吸力信号时,就会触发雾化器120向主机发送一个读取指令,该读取指令可以由雾化器120中的控制主板生成并发送至主机110,主机110在接收到该读取指令后,响应于该读取指令,从其存储器中读取预先存储的平均吸气数据和平均气溶胶量。
其中,上述存储器包括只读存储器(ROM)和随机读/写存储器(RAM)。具体地,可以是静态随机存储器(Static Random-Access Memory,SRAM),这种存储器速度较快;也可以是电子可擦除只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM),这种存储器的更新速度快,其断电时仍能保存数据;还可以是闪存存储器(Flash Memory),这种存储器可以写入和读取,容量大,速度快,能提高存储性能,也还可以是其他合适的存储器。
在一种实施例中,主机110可以通过数据处理模块对存储于其中的历史数据进行计算,从而得到平均吸气数据和平均气溶胶量,其具体步骤包括:读取存储器中存储的预设历史周期内的吸气大小、吸气时长以及吸气次数;根据所述吸气大小和所述吸气次数,确定平均吸气大小;根据所述吸气时长和所述吸气次数,确定平均吸气时长;将所述平均吸气大小和所述平均吸气时长作为平均吸气数据,并根据所述平均吸气数据,确定对应的平均气溶胶量。具体地,使用者每一次使用气溶胶产生装置时产生的吸气大小和吸气时长都会被存储于主机110的存储器中,在使用者多次使用气溶胶产生装置后,气溶胶产生装置可以通过一定周期内的吸气数据计算得到平均吸气数据和对应的平均气溶胶量。
例如,使用者可以通过终端200与气溶胶产生装置100进行通讯连接,使用者通过终端200设置2021年9月10日的8:00至12:00为预设历史 周期,然后将该预设的历史周期发送至气溶胶产生装置100,气溶胶产生装置100明确了预设历史周期为2021年9月10日的8:00至12:00,因此气溶胶产生装置100从通过主机110从其存储器中读取该时间段内的吸气大小、吸气时长以及吸气次数,需要说明的是该时间段的吸气大小和吸气时长为该时间段内的总吸气大小和总吸气时长,通过均值计算方法,将总吸气大小除以吸气次数即可得到平均吸气大小,将总吸气时长除以吸气次数即可得到平均吸气时长,而由平均吸气大小和平均吸气时长组成的数据即为平均吸气数据,并将其存储于存储器中,且存储标识为“2021年9月10日的8:00至12:00的平均吸气数据”。
在一种实施例中,除了通过使用者设定历史周期来计算该时间段内的平均吸气数据外,还可以通过使用者设定一定的吸气次数,从而计算该设定次数内的平均吸气数据,其具体步骤包括:读取存储器中存储的预设吸气次数内的吸气大小和吸气时长;根据所述吸气大小和所述预设吸气次数,确定平均吸气大小;根据所述吸气时长和所述预设吸气次数,确定平均吸气时长;将所述平均吸气大小和所述平均吸气时长作为平均吸气数据,并根据所述平均吸气数据,确定对应的平均气溶胶量。
例如,使用者可以通过终端200与气溶胶产生装置100进行通讯连接,使用者通过终端200设置第一次使用至第十次使用之间的吸气次数为预设吸气次数,然后将该预设吸气次数发送至气溶胶产生装置100,气溶胶产生装置100明确了吸气次数为第一次使用至第十次使用之间的吸气次数,因此气溶胶产生装置100从通过主机110从其存储器中读取该吸气次数内的吸气大小和吸气时长,需要说明的是该吸气次数内的吸气大小和吸气时长为该吸气次数内的总吸气大小和总吸气时长,通过均值计算方法,将总吸气大小除以预设吸气次数即可得到平均吸气大小,将总吸气时长除以预设吸气次数即可得到平均吸气时长,而由平均吸气大小和平均吸气时长组成的数据即为平均吸气数据,并将其存储于存储器中,且存储标识为“第一次使用至第十次使用之间的吸气次数间的平均吸气数据”。
在一种实施例中,除上述通过指定一定周期一定次数内数据计算平均吸气数据外,还可以动态更新平均吸气数据,其具体步骤包括:在所述当前吸气数据小于所述平均吸气数据时,根据所述当前吸气数据更新所述平 均吸气数据,得到更新后的平均吸气数据;根据所述平均吸气数据,确定对应的平均气溶胶量;存储所述更新后的平均吸气数据和所述平均气溶胶量于所述存储器中。
例如,根据前述任一种方法获得的平均吸气数据为平均吸气大小120Pa,如果当前使用者的吸气大小为100Pa,因为100Pa小于120Pa,即当前吸气数据小于平均吸气数据,则可以通过数据处理模块得到平均吸气大小120Pa对应的吸气次数为9,然后通过公式(120Pa*9+100Pa)/(9+1)对平均吸气大小进行更新,得到更新后的平均吸气大小为118Pa,将平均吸气数据更新后,再通过主机110中的存储器对更新后的平均吸气数据进行存储。
在一种实施例中,除上述需要通过气溶胶产生装置100的数据处理模块进行计算得到平均吸气数据外,还可以直接通过终端自定义设定平均吸气数据,其具体步骤包括:接收来自终端的数据存储请求;响应于所述数据存储请求,得到平均吸气数据;根据所述平均吸气数据,确定对应的平均气溶胶量;存储所述平均吸气数据和所述平均气溶胶量于所述存储器中。具体地,使用者在使用时可以通过气溶胶产生装置100上的二维码或者蓝牙与终端200进行通讯连接,连接成功后,可以通过终端上的相关设置界面对平均吸气数据进行设定,设定完后通过终端200将携带该平均吸气数据的存储请求发送至气溶胶产生装置100,气溶胶产生装置100在接收到该存储请求后,响应于该存储请求,并将自定义设定的平均吸气数据和对应的气溶胶量存储于主机110的存储器中。
在一种实施例中,根据吸气数据可以唯一确定其对应的气溶胶量,其具体步骤包括:获取吸气数据与气溶胶量的映射关系;根据所述平均吸气数据和所述映射关系,确定所述平均吸气数据对应的目标气溶胶量。具体地,气溶胶产生装置100在出厂时都有设定的属性,其属性包括吸气数据对应的气溶胶量,也即吸气数据与气溶胶量的映射关系,主机110可以将该映射关系存储于存储器中,然后在检测到相应的吸气数据时,就会根据该映射关系判断得到应该提供多少气溶胶量。
203:比对平均吸气数据和所述当前吸气数据,得到比对结果。
气溶胶产生装置100可以通过主机110中的控制主板进行相应的数据处 理操作,例如比对平均吸气数据和当前吸气数据的大小关系,并生成相应的比对结果。
204:当比对结果表征所述当前吸气数据大于或者等于平均吸气数据时,根据平均气溶胶量进行雾化操作。
为了控制使用者吸入体内的气溶胶量,主机110中的控制主板在得到当前吸气数据大于或者等于平均吸气数据时(例如当前吸气数据为吸气大小130Pa,平均吸气数据为吸气大小120Pa),会向雾化器120发出根据平均气溶胶量进行雾化操作的雾化指令,雾化器120在接收到相关指令后,会控制气溶胶基材向雾化器提供相应量的气溶胶进行雾化。
205:当比对结果表征当前吸气数据小于平均吸气数据时,获取当前吸气数据对应的目标气溶胶量,并根据目标气溶胶量进行雾化操作。
为了控制使用者吸入体内的气溶胶量,主机110中的控制主板在得到当前吸气数据小于平均吸气数据时(例如当前吸气数据为吸气大小110Pa,平均吸气数据为吸气大小120Pa),会先根据吸气数据与气溶胶量的映射关系得到吸气大小110Pa对应的目标气溶胶量,然后向雾化器120发出根据目标气溶胶量进行雾化操作的雾化指令,雾化器120在接收到相关指令后,会控制气溶胶基材向雾化器提供相应量的气溶胶进行雾化。
在本申请中,气溶胶产生装置通过比对当前吸气数据与平均吸气数据的大小,从而根据较小的吸气数据提供尽可能少的气溶胶量给使用者,控制了使用者吸入体内的气溶胶量,避免了使用者吸食过量而对身体造成伤害。
第三实施例
如图3所示,图3为雾化控制方法的另一种流程示意图,图3中示出了气溶胶产生装置100中的主机110和雾化器120之间的交互过程,通过该交互过程以实现雾化控制方法。
具体地,雾化器120通过设置于其中的吸力传感器进行吸力信号的检测,在检测到当前具有吸力信号时,将该信号转换为对应的当前吸力数据,并把当前吸力数据发送至主机110端,同时向其发送读取指令,以使得主机110接收到当前吸力数据,并响应于读取指令从主机110的存储器中读取预 先存储的平均吸气数据和平均气溶胶量,然后主机110中的控制主板会自行进行比对操作,即将当前吸气数据和平均吸气数据进行比对得到比对结果;当比对结果表征当前吸气数据大于或者等于平均吸气数据时,根据平均气溶胶量生成雾化指令(即提供平均气溶胶量的气溶胶给用户),然后主机110将生成的雾化指令发送至雾化器120,雾化器120在接收到该雾化指令后,响应该雾化指令,并控制雾化器120中的气溶胶基质储存腔仅释放平均气溶胶量的气溶胶至雾化腔进行雾化;当比对结果表征当前吸气数据小于平均吸气数据时,主机110会根据吸气数据与气溶胶量的映射关系确定当前吸气数据对应的目标气溶胶量,然后根据目标气溶胶量生成雾化指令(即提供目标气溶胶量的气溶胶给用户),将生成的雾化指令发送至雾化器120,雾化器120在接收到该雾化指令后,响应于该雾化指令,并控制雾化器120中的气溶胶基质储存腔仅释放目标气溶胶量的气溶胶至雾化腔进行雾化。
需要说明的是,在上述过程中,使用者还可以通过终端200与气溶胶产生装置进行连接,例如通过蓝牙、wifi等方式进行连接。从而使用者可以直接通过终端200对气溶胶产生装置的参数进行设定,例如平均吸气数据等。
本申请提供的雾化控制方法,通过上述方式始终给使用者提供尽可能少的气溶胶量,以使得使用者无法获取超过限制的气溶胶量从而对身体造成伤害。
第四实施例
基于上述实施例的内容,本申请实施例提供了一种雾化控制装置。该雾化控制装置用于执行上述方法实施例中提供的雾化控制方法,具体地,请参阅图4,该装置包括:
数据确定模块401,用于根据检测到的当前吸力信号,确定当前吸气数据;
数据读取模块402,用于读取存储器中存储的平均吸气数据和平均气溶胶量;
比对模块403,用于比对所述平均吸气数据和所述当前吸气数据,得到比对结果;
第一雾化模块404,用于当所述比对结果表征所述当前吸气数据大于或 者等于所述平均吸气数据时,根据所述平均气溶胶量进行雾化操作;
第二雾化模块405,用于当所述比对结果表征所述当前吸气数据小于所述平均吸气数据时,获取所述当前吸气数据对应的目标气溶胶量,并根据所述目标气溶胶量进行雾化操作。
在一种实施例中,数据读取模块402包括:
第一读取模块,用于读取存储器中存储的预设历史周期内的吸气大小、吸气时长以及吸气次数;
第一确定模块,用于根据所述吸气大小和所述吸气次数,确定平均吸气大小;
第二确定模块,用于根据所述吸气时长和所述吸气次数,确定平均吸气时长;
第三确定模块,用于将所述平均吸气大小和所述平均吸气时长作为平均吸气数据,并根据所述平均吸气数据,确定对应的平均气溶胶量。
在一种实施例中,数据读取模块402还包括:
第二读取模块,用于读取存储器中存储的预设吸气次数内的吸气大小和吸气时长;
第四确定模块,用于根据所述吸气大小和所述预设吸气次数,确定平均吸气大小;
第五确定模块,用于根据所述吸气时长和所述预设吸气次数,确定平均吸气时长;
第六确定模块,用于将所述平均吸气大小和所述平均吸气时长作为平均吸气数据,并根据所述平均吸气数据,确定对应的平均气溶胶量。
在一种实施例中,雾化控制装置还包括:
数据更新模块,用于在所述当前吸气数据小于所述平均吸气数据时,根据所述当前吸气数据更新所述平均吸气数据,得到更新后的平均吸气数据;
第七确定模块,用于根据所述平均吸气数据,确定对应的平均气溶胶量;
第一数据存储模块,用于存储所述更新后的平均吸气数据和所述平均气溶胶量于所述存储器中。
在一种实施例中,雾化控制装置还包括:
请求接收模块,用于接收来自终端的数据存储请求;
请求响应模块,用于响应于所述数据存储请求,得到平均吸气数据;
第八确定模块,用于根据所述平均吸气数据,确定对应的平均气溶胶量;
第二数据存储模块,用于存储所述平均吸气数据和所述平均气溶胶量于所述存储器中。
在一种实施例中,雾化控制装置还包括:
关系获取模块,用于获取吸气数据与气溶胶量的映射关系;
第九确定模块,用于根据所述平均吸气数据和所述映射关系,确定所述平均吸气数据对应的目标气溶胶量。
在一种实施例中,数据确定模块401包括:
信号检测模块,用于通过吸力传感器检测吸力信号;
信号解析模块,用于在检测到有吸力信号时,解析所述吸力信号,得到吸气大小和吸气时长,并将所述吸气大小和所述吸气时长作为当前吸气数据。
其中,上述模块中的存储器包括静态随机存储器(Static Random-Access Memory,SRAM)、电子可擦除只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)以及闪存存储器(Flash Memory)等,各个存储器都有其各自的优势,对于不同的需求可以采用不同的存储器。
本申请实施例的雾化控制装置,可以用于执行前述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
区别于当前的技术,本申请提供的雾化控制装置,设置了比对模块,通过比对模块可以比对吸气数据和平均吸气数据的大小关系,并根据比对结果确定应该提供的气溶胶量,从而根据对应的气溶胶量进行雾化操作,以控制用户吸入体内的气溶胶量尽可能的少。
第五实施例
请参阅图5,图5为本申请实施例提供的气溶胶产生装置的结构示意图。 该气溶胶产生装置包括主机110和雾化器120。
具体地,雾化器120包括雾化芯70、连接件80及雾化电极90、雾化腔71、气溶胶基材储存腔72、出气通道73、吸嘴74、导液件74及发热件76,雾化芯70与连接件80连接,雾化电极90固定在连接件80内。
其中,气溶胶基材储存腔72与雾化腔71连通,雾化腔71与出气通道73连通,出气通道73与吸嘴74连通,导液件75及发热件76均位于雾化腔71内。气溶胶基材储存腔72用于存储气溶胶基材,导液件75位于气溶胶基材储存腔72与发热件76之间,以将气溶胶基材引导至雾化腔71内,发热件76在电路板40的控制下发热以雾化气溶胶基材,产生气溶胶。
其中,连接件80包括第三收容槽81,雾化电极90收容且固定在第三收容槽81内,且雾化电极90与所述主机电极30电连接,雾化电极90还与发热件76电连接,以形成一个电路回路,电路板40通过电路回路控制供电装置50给发热件76供电,使得发热件76发热,以雾化气溶胶基材,产生气溶胶。
其中,连接件80还包括第二进气通道82。第二进气通道82的一端与雾化腔71相连通,在吸嘴74产生的吸力作用下,外界的空气进入进气通道82内,再从进气通道82进入雾化腔71内,并带动雾化腔71内产生的气溶胶进入出气通道73,并从吸嘴74进入气溶胶产生装置100的使用者的口中。
可选地,进气通道82与雾化电极90是分开设置的。
在其他实施例中,进气通道82与雾化电极90是合并设置的,也即雾化电极90设置成中空的,雾化电极的中空部分即为进气通道82,主机电极插入雾化电极90中。
可选地,雾化器120上还设置有第二磁吸件(图中未示出),第二磁吸件设置在雾化器120的雾化连接端面122上且与第一磁吸件(图中未示出)位置相对,主机110与雾化器120通过第一磁吸件和第二磁吸件固定在一起。
在本申请另一可选实施例中,只在主机110内设置第一磁吸件,并增大雾化电极90的面向所述主机110的端面的面积,使得第一磁吸件能够吸住雾化电极90,实现磁吸附连接,此时,雾化电极90的材质为具有铁磁性 的物质,如铁、镍、钴等金属。
可选地,主机110还可以不设置第一磁吸件,雾化器120上还可以不设置第二磁吸件,而是通过卡扣等机械连接在一起。
以上对本申请实施例所提供的雾化装置控制方法及装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种雾化控制方法,其特征在于,包括:
    根据检测到的当前吸力信号,确定当前吸气数据;
    读取存储器中存储的平均吸气数据和平均气溶胶量;
    比对所述平均吸气数据和所述当前吸气数据,得到比对结果;
    当所述比对结果表征所述当前吸气数据大于或者等于所述平均吸气数据时,根据所述平均气溶胶量进行雾化操作;
    当所述比对结果表征所述当前吸气数据小于所述平均吸气数据时,获取所述当前吸气数据对应的目标气溶胶量,并根据所述目标气溶胶量进行雾化操作。
  2. 根据权利要求1所述的雾化控制方法,其特征在于,所述读取存储器中存储的平均吸气数据和平均气溶胶量的步骤,包括:
    读取存储器中存储的预设历史周期内的吸气大小、吸气时长以及吸气次数;
    根据所述吸气大小和所述吸气次数,确定平均吸气大小;
    根据所述吸气时长和所述吸气次数,确定平均吸气时长;
    将所述平均吸气大小和所述平均吸气时长作为平均吸气数据,并根据所述平均吸气数据,确定对应的平均气溶胶量。
  3. 根据权利要求1所述的雾化控制方法,其特征在于,所述读取存储器中存储的平均吸气数据和平均气溶胶量的步骤,包括:
    读取存储器中存储的预设吸气次数内的吸气大小和吸气时长;
    根据所述吸气大小和所述预设吸气次数,确定平均吸气大小;
    根据所述吸气时长和所述预设吸气次数,确定平均吸气时长;
    将所述平均吸气大小和所述平均吸气时长作为平均吸气数据,并根据所述平均吸气数据,确定对应的平均气溶胶量。
  4. 根据权利要求1所述的雾化控制方法,其特征在于,还包括:
    在所述当前吸气数据小于所述平均吸气数据时,根据所述当前吸气数据更 新所述平均吸气数据,得到更新后的平均吸气数据;
    根据所述平均吸气数据,确定对应的平均气溶胶量;
    存储所述更新后的平均吸气数据和所述平均气溶胶量于所述存储器中。
  5. 根据权利要求1所述的雾化控制方法,其特征在于,还包括:
    接收来自终端的数据存储请求;
    响应于所述数据存储请求,得到平均吸气数据;
    根据所述平均吸气数据,确定对应的平均气溶胶量;
    存储所述平均吸气数据和所述平均气溶胶量于所述存储器中。
  6. 根据权利要求2所述的雾化控制方法,其特征在于,所述根据所述平均吸气数据,确定对应的平均气溶胶量的步骤,包括:
    获取吸气数据与气溶胶量的映射关系;
    根据所述平均吸气数据和所述映射关系,确定所述平均吸气数据对应的目标气溶胶量。
  7. 根据权利要求3所述的雾化控制方法,其特征在于,所述根据所述平均吸气数据,确定对应的平均气溶胶量的步骤,包括:
    获取吸气数据与气溶胶量的映射关系;
    根据所述平均吸气数据和所述映射关系,确定所述平均吸气数据对应的目标气溶胶量。
  8. 根据权利要求4所述的雾化控制方法,其特征在于,所述根据所述平均吸气数据,确定对应的平均气溶胶量的步骤,包括:
    获取吸气数据与气溶胶量的映射关系;
    根据所述平均吸气数据和所述映射关系,确定所述平均吸气数据对应的目标气溶胶量。
  9. 根据权利要求5所述的雾化控制方法,其特征在于,所述根据所述平均 吸气数据,确定对应的平均气溶胶量的步骤,包括:
    获取吸气数据与气溶胶量的映射关系;
    根据所述平均吸气数据和所述映射关系,确定所述平均吸气数据对应的目标气溶胶量。
  10. 根据权利要求1所述的雾化控制方法,其特征在于,所述根据吸力传感器检测到的当前吸力信号,确定当前吸气数据的步骤,包括:
    通过吸力传感器检测吸力信号;
    在检测到有吸力信号时,解析所述吸力信号,得到吸气大小和吸气时长,并将所述吸气大小和所述吸气时长作为当前吸气数据。
  11. 根据权利要求1所述的雾化控制方法,其特征在于,所述存储器包括电子可擦除只读存储器。
  12. 根据权利要求1所述的雾化控制方法,其特征在于,所述存储器包括静态随机存储器。
  13. 根据权利要求1所述的雾化控制方法,其特征在于,所述存储器包括闪存存储器。
  14. 根据权利要求1所述的雾化控制方法,其特征在于,读取存储器中存储的平均吸气数据和平均气溶胶量的步骤,包括:
    根据所述当前吸力信号触发读取指令;
    根据所述读取指令从存储器中读取平均吸气数据和平均气溶胶量。
  15. 一种雾化控制装置,其特征在于,包括:
    数据确定模块,用于根据检测到的当前吸力信号,确定当前吸气数据;
    数据读取模块,用于读取存储器中存储的平均吸气数据和平均气溶胶量;
    比对模块,用于比对所述平均吸气数据和所述当前吸气数据,得到比对结 果;
    第一雾化模块,用于当所述比对结果表征所述当前吸气数据大于或者等于所述平均吸气数据时,根据所述平均气溶胶量进行雾化操作;
    第二雾化模块,用于当所述比对结果表征所述当前吸气数据小于所述平均吸气数据时,获取所述当前吸气数据对应的目标气溶胶量,并根据所述目标气溶胶量进行雾化操作。
  16. 根据权利要求15所述的雾化控制装置,其特征在于,所述数据读取模块包括:
    第一读取模块,用于读取存储器中存储的预设历史周期内的吸气大小、吸气时长以及吸气次数;
    第一确定模块,用于根据所述吸气大小和所述吸气次数,确定平均吸气大小;
    第二确定模块,用于根据所述吸气时长和所述吸气次数,确定平均吸气时长;
    第三确定模块,用于将所述平均吸气大小和所述平均吸气时长作为平均吸气数据,并根据所述平均吸气数据,确定对应的平均气溶胶量。
  17. 根据权利要求15所述的雾化控制装置,其特征在于,所述数据读取模块包括:
    第二读取模块,用于读取存储器中存储的预设吸气次数内的吸气大小和吸气时长;
    第四确定模块,用于根据所述吸气大小和所述预设吸气次数,确定平均吸气大小;
    第五确定模块,用于根据所述吸气时长和所述预设吸气次数,确定平均吸气时长;
    第六确定模块,用于将所述平均吸气大小和所述平均吸气时长作为平均吸气数据,并根据所述平均吸气数据,确定对应的平均气溶胶量。
  18. 根据权利要求15所述的雾化控制装置,其特征在于,所述雾化控制装置还包括:
    数据更新模块,用于在所述当前吸气数据小于所述平均吸气数据时,根据所述当前吸气数据更新所述平均吸气数据,得到更新后的平均吸气数据;
    第七确定模块,用于根据所述平均吸气数据,确定对应的平均气溶胶量;
    第一数据存储模块,用于存储所述更新后的平均吸气数据和所述平均气溶胶量于所述存储器中。
  19. 根据权利要求15所述的雾化控制装置,其特征在于,所述雾化控制装置还包括:关系获取模块,用于获取吸气数据与气溶胶量的映射关系;
    第九确定模块,用于根据所述平均吸气数据和所述映射关系,确定所述平均吸气数据对应的目标气溶胶量。
  20. 根据权利要求15所述的雾化控制装置,其特征在于,所述数据确定模块包括:
    信号检测模块,用于通过吸力传感器检测吸力信号;
    信号解析模块,用于在检测到有吸力信号时,解析所述吸力信号,得到吸气大小和吸气时长,并将所述吸气大小和所述吸气时长作为当前吸气数据。
PCT/CN2022/100893 2021-09-28 2022-06-23 一种雾化控制方法及装置 WO2023050925A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111144081.9A CN113693299A (zh) 2021-09-28 2021-09-28 一种雾化控制方法及装置
CN202111144081.9 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023050925A1 true WO2023050925A1 (zh) 2023-04-06

Family

ID=78662157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100893 WO2023050925A1 (zh) 2021-09-28 2022-06-23 一种雾化控制方法及装置

Country Status (2)

Country Link
CN (1) CN113693299A (zh)
WO (1) WO2023050925A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113693299A (zh) * 2021-09-28 2021-11-26 深圳市吉迩科技有限公司 一种雾化控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190589A2 (ko) * 2017-04-11 2018-10-18 주식회사 케이티앤지 에어로졸 생성 장치 및 에어로졸 생성 장치에서 흡연 제한 기능을 제공하는 방법
CN109619696A (zh) * 2019-01-28 2019-04-16 深圳市卓力能电子有限公司 气溶胶发生装置及其抽吸输出控制方法
CN109924548A (zh) * 2019-04-04 2019-06-25 惠州市新泓威科技有限公司 可控制摄入剂量的雾化装置及其控制方法
CN110839968A (zh) * 2019-10-24 2020-02-28 深圳麦克韦尔科技有限公司 一种电子雾化装置及其气溶胶形成基质摄入量的检测方法
CN113693299A (zh) * 2021-09-28 2021-11-26 深圳市吉迩科技有限公司 一种雾化控制方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1474198B1 (en) * 2002-01-15 2015-12-30 Novartis AG System for clearing aerosols from the effective anatomic dead space
WO2013098334A1 (en) * 2011-12-27 2013-07-04 Activaero Gmbh Inhalation device with feedback system
WO2019113836A1 (zh) * 2017-12-13 2019-06-20 惠州市吉瑞科技有限公司深圳分公司 气溶胶发生装置及其控制方法、应用于气溶胶发生装置的微处理器
GB202010611D0 (en) * 2019-10-16 2020-08-26 Nicoventures Trading Ltd System comprising an aerosol provision system and a computer
GB202010609D0 (en) * 2020-07-10 2020-08-26 Nicoventures Trading Ltd Aerosol provision system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190589A2 (ko) * 2017-04-11 2018-10-18 주식회사 케이티앤지 에어로졸 생성 장치 및 에어로졸 생성 장치에서 흡연 제한 기능을 제공하는 방법
CN109619696A (zh) * 2019-01-28 2019-04-16 深圳市卓力能电子有限公司 气溶胶发生装置及其抽吸输出控制方法
CN109924548A (zh) * 2019-04-04 2019-06-25 惠州市新泓威科技有限公司 可控制摄入剂量的雾化装置及其控制方法
CN110839968A (zh) * 2019-10-24 2020-02-28 深圳麦克韦尔科技有限公司 一种电子雾化装置及其气溶胶形成基质摄入量的检测方法
CN113693299A (zh) * 2021-09-28 2021-11-26 深圳市吉迩科技有限公司 一种雾化控制方法及装置

Also Published As

Publication number Publication date
CN113693299A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2020199634A1 (zh) 可控制摄入剂量的雾化装置及其控制方法
CN110604344B (zh) 预判吸烟动作后自动预热的电子烟及其控制方法
US11660405B2 (en) Electronic cigarette and method thereof
WO2016172821A1 (zh) 一种电子烟雾化控制方法以及电子烟控制电路
WO2023050925A1 (zh) 一种雾化控制方法及装置
WO2020088602A1 (zh) 电子烟的控制方法、装置及电子烟
CN110141000B (zh) 一种电子雾化装置及其雾化器、电源组件、控制方法
CN110996695A (zh) 电子吸烟系统
CN109717511B (zh) 电子烟、电子烟的控制方法及装置
WO2020233216A1 (zh) 雾化装置的控制方法及雾化装置、控制系统
JP2023510451A (ja) エアロゾル生成装置及びその動作方法
CN209965231U (zh) 一种雾化器以及电子烟
EP3945884B1 (en) Cartridge and aerosol generating device comprising the same
WO2021059380A1 (ja) バッテリユニット、情報処理方法、及びプログラム
KR20210150928A (ko) 카트리지 및 이를 포함하는 에어로졸 생성 장치
CN111887487A (zh) 电子雾化器的工作方法、存储设备、电子雾化器
WO2021059377A1 (ja) バッテリユニット、情報処理方法、及びプログラム
JP7413539B2 (ja) 振動子を含むエアロゾル生成装置及びその動作方法
WO2023050924A1 (zh) 设备状态管理方法、装置及存储介质
CN115190767A (zh) 气溶胶生成装置
CN212368311U (zh) 一种雾化装置
JP7179158B2 (ja) 情報処理装置、情報処理方法、及びプログラム
WO2019109898A1 (zh) 雾化器及电子烟
CN112841749B (zh) 电子烟的控制方法和装置
KR20210158262A (ko) 외부 디바이스에서 에어로졸 생성 장치를 제어하는 방법 및 에어로졸 생성 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE