WO2023050908A1 - 一种提高测量范围和全量程精度的风速风向传感器 - Google Patents

一种提高测量范围和全量程精度的风速风向传感器 Download PDF

Info

Publication number
WO2023050908A1
WO2023050908A1 PCT/CN2022/099952 CN2022099952W WO2023050908A1 WO 2023050908 A1 WO2023050908 A1 WO 2023050908A1 CN 2022099952 W CN2022099952 W CN 2022099952W WO 2023050908 A1 WO2023050908 A1 WO 2023050908A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind speed
silicon
wind
sensor
measurement
Prior art date
Application number
PCT/CN2022/099952
Other languages
English (en)
French (fr)
Inventor
齐博
秦明
王振军
易真翔
黄庆安
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2023050908A1 publication Critical patent/WO2023050908A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/08Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring variation of an electric variable directly affected by the flow, e.g. by using dynamo-electric effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane

Definitions

  • the invention is a two-dimensional wind speed and direction sensor with thin film structure manufactured based on micromachining technology, especially a high-precision wide-range wind speed and direction sensor that combines wind pressure measurement and heat distribution measurement.
  • MEMS thermal wind speed and direction sensors are gradually developing in the direction of miniaturization, integration and intelligence.
  • MEMS thermal wind speed and direction sensor has no moving parts, has the advantages of small size and low power consumption, and has gradually become the mainstream of wind sensor research and has high application value.
  • MEMS thermal wind speed and direction sensors are usually composed of heating elements and temperature measuring elements, limited by the working principle, the sensor output sensitivity gradually decreases with the increase of wind speed.
  • increasing the heating power can improve the overall sensitivity of the sensor, due to the characteristics of the heating element material, the heating temperature usually cannot be increased without limit, and cannot play an effective role in the process of ultra-high wind speed measurement. Therefore, how to improve the measurement accuracy of high wind speed and widen the measurement range on the basis of maintaining the advantages of the original thermal wind speed sensor is an urgent problem to be solved.
  • the present invention proposes a wind speed and direction sensor structure that improves the measurement range and full range accuracy. Utilizing the high sensitivity of heat distribution measurement principle in low wind environment and the high sensitivity of wind pressure measurement principle in high wind environment, the heat distribution measurement and wind pressure measurement are cleverly combined in the same structure.
  • the sensor structure is made on a silicon film, and consists of a heating element, four centrally symmetrically distributed temperature measuring elements, and four centrally symmetrically distributed silicon piezoresistors. During operation, the sensor measures the heat distribution deviation on the surface of the silicon film to achieve low wind speed. Measurement, through the silicon piezoresistive measurement of the overall pressure of the silicon film to achieve high wind speed detection.
  • a wind deflector is added above the silicon film. Due to the unique structure of the wind deflector, the incoming wind from each horizontal direction is deflected downward at a certain angle to the center surface of the silicon film.
  • the heat distribution measurement mainly indirectly characterizes the wind speed and direction by monitoring the temperature distribution on the chip surface.
  • the heating element in the center of the chip generates Joule heat after power supply, which makes the surface temperature of the chip higher than the ambient temperature.
  • the thermal field on the surface of the sensor chip is evenly distributed, and the temperature of the temperature measuring elements in the four directions is the same. , the temperature difference is zero.
  • the distribution of the thermal field changes with the wind speed and direction. The greater the wind speed, the greater the offset of the thermal field relative to the center of the chip.
  • Two pairs of temperature measuring elements distributed orthogonally to each other detect the temperature difference in the horizontal and vertical directions respectively, and the vector synthesis of the two sets of temperature difference signals can be used to represent the wind speed and direction information.
  • the wind pressure measurement mainly indirectly characterizes the wind speed and direction by monitoring the edge pressure of the silicon film.
  • the wind pressure formula under standard conditions is
  • W 0 is the dynamic pressure and V is the wind speed. It can be seen from the above formula that the wind pressure is proportional to the square of the wind speed, that is, the greater the wind speed, the higher the sensitivity of measuring the pressure difference on both sides of the silicon membrane to characterize the wind speed.
  • the stress at the midpoint of the edge of the silicon film is the largest, and silicon piezoresistors can be fabricated at these positions to obtain the greatest measurement sensitivity.
  • the frontal pressure of the membrane is zero.
  • the wind deflector above the chip makes the wind deflect at a certain angle in the vertical direction, which causes the film to deform.
  • the stress difference of piezoresistance can be used to characterize the change of wind speed.
  • the sensor chip is injection molded at the center of the circular heat insulating ring to ensure good heat insulation, and it is bonded to the plastic base.
  • a fairing including arc-shaped wind deflectors and rectifying columns is installed above the plastic chip of the sensor to realize the wind-sensing structure design combining wind pressure measurement and heat distribution measurement.
  • the wind flowing through the wind deflector deflects at a certain angle in the vertical direction and acts on the silicon film, and the pressure difference on both sides of the silicon film changes. The larger the deflection angle, the greater the force acting on the silicon film, and the higher the sensitivity of wind pressure measurement.
  • Fig. 1 is the sectional view of sensor chip of the present invention
  • Fig. 2 is the top view of sensor chip of the present invention
  • Fig. 3 is the sectional view of the central axis position of the overall structure of the present invention.
  • Figures 1 and 2 have unified labels.
  • the sensor chip 10 11. Silicon substrate; 12. Substrate surface oxide layer; 13. Metal electrodes and metal leads; 14. Silicon piezoresistive; 15. Temperature measuring element; 16. Heating element; 17. Silicon thin film; 18 . Sensor back cavity;
  • the labels in Fig. 3 are: 10. sensor chip; 20. wind deflector; 30. rectification grid; 40. lower bottom cover; 50. heat insulating ring.
  • a kind of wind speed wind direction sensor chip 10 of the present invention improves measuring range and full-scale precision by silicon substrate 11, substrate surface oxide layer 12, metal electrode and metal lead 13, silicon A piezoresistor 14, a temperature measuring element 15, a heating element 16, a silicon thin film 17, and a sensor back chamber 18 are composed.
  • the heating element 16 is located at the center of the silicon film 17, and the four temperature measuring elements 15 are arranged on the silicon film 17, and are symmetrically distributed around the heating element 16.
  • Four silicon piezoresistors 14 are arranged on the edge of the silicon film 17, and the same center Symmetrically distributed around the heating element 16 .
  • the heating element 16 forms a centrally symmetrical temperature field, and the positions of the four temperature measuring elements 15 have the same temperature, so the output temperature difference signal is zero; the pressure difference on both sides of the silicon film is zero, and the four The silicon piezoresistor suffers from zero longitudinal stress and transverse stress, so the wind pressure signal output is zero.
  • the heat is carried from upstream to downstream by the wind, and the temperature of the corresponding positions of the four temperature measuring elements 15 distributed symmetrically in the center changes.
  • Two sets of temperature measuring elements 15 orthogonal to each other can decompose the sensor surface temperature difference orthogonally is the temperature difference in the east-west and north-south directions, and the wind speed and wind direction information can be obtained through vector synthesis; the air flow is deflected by a certain angle through the wind deflector 20 and acts on the silicon film 17, and two groups of silicon piezoresistors 14 orthogonal to each other are respectively Subject to longitudinal stress and transverse stress, the magnitude of the stress increases with the increase of the wind speed, and the pressure difference on both sides of the silicon film 17 can reflect the wind speed information.
  • a wind speed and direction sensor with improved measurement range and full-scale accuracy, and its manufacturing method, the steps are as follows:
  • Ion implantation prepares sensitive elements such as the heating element 16 , the temperature measuring element 15 , and the silicon piezoresistor 14 .
  • Silicon wafer is oxidized on both sides and silicon nitride is deposited by LPCVD as a passivation layer protection, and the photoresist is used as a mask to etch and open windows on the back of the silicon wafer.
  • Metal sputtering, metal leads and electrodes 13 are realized after stripping excess metal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种提高测量范围和全量程精度的风速风向传感器,首先通过离子注入制备加热元件(16)、测温元件(15)、硅压阻(14)等敏感元件。然后双面氧化硅片并淀积氮化硅做钝化层保护,硅片背面开窗并腐蚀形成传感器背腔(18)与硅薄膜(17)。最后去除氮化硅保护层后刻蚀引线孔,溅射金属并剥离多余部分实现金属引线和电极(13)。通过在硅薄膜(17)上同时制备加热元件(16)、测温元件(15)以及硅压阻(14),并在传感器芯片(10)上方加装导风板(20)以实现风压测量,以弥补热分布测量量程低、高风速测量灵敏度低的缺点,有效提升了传感器测量范围及全量程精度。

Description

一种提高测量范围和全量程精度的风速风向传感器 技术领域
本发明是一种基于微机械加工技术制造的薄膜结构的二维风速方向传感器,尤其是将风压测量和热分布测量结合在一起的高精度宽量程风速风向传感器。
背景技术
随着微电子机械系统(MEMS)技术的飞速发展,风速风向传感器正逐步向小型化、集成化、智能化方向发展。MEMS热式风速风向传感器没有可动部件,具有体积小、功耗低等优点,逐渐成为风传感器研究的主流,具有很高的应用价值。MEMS热式风速风向传感器通常由加热元件与测温元件组成,受限于工作原理,传感器输出灵敏度随风速的增大而逐渐减小。虽然增大加热功率能提升传感器整体灵敏度,但由于加热元件材料的特性,加热温度通常无法无限制增大,在超高风速测量的过程中无法发挥有效作用。因此,如何在保持原来热式风速传感器优点的基础上提升高风速测量精度和拓宽量程是亟待攻克的重点问题。
发明内容
发明目的:针对上述问题,本发明提出了一种提高测量范围和全量程精度的风速风向传感器结构。利用热分布测量原理在低风环境下测量灵敏度高以及风压测量原理在高风环境下灵敏度高的特点,将热分布测量和风压测量巧妙结合在同一个结构中。
技术方案:
该传感器结构制作在硅薄膜上,由加热元件、四个中心对称分布的测温元件以及四个中心对称分布的硅压阻组成,传感器在工作中通过测量硅薄膜表面热分布偏差以实现低风速测量,通过硅压阻测量硅薄膜的整体受压情况以实现高风速的检测。芯片封装过程中,在硅薄膜上方加入一块导风板,由于导风板的特有结构,将各个水平方向的来风以一定角度的向下偏转吹向硅薄膜中心表面,偏转角度越大,硅薄膜表面硅压阻受到的纵向、横向应力越大,风压测量的灵敏度越高。 但偏转角度增大的同时会降低热分布测量的量程和灵敏度,选取合适的偏转角度对保证两种测量方案的灵敏度至关重要。
低风速范围内,热分布测量主要通过监测芯片表面温度分布情况来间接表征风速风向值。芯片中央的加热元件供电后产生焦耳热,使芯片表面温度高于环境温度,无风状态下由传感器芯片的对称结构,传感器芯片表面的热场均匀分布,四个方向上的测温元件温度相同,温度差为零。芯片薄膜正面有风吹过时,热场分布随风速风向而发生改变,风速越大,热场相对芯片中心的偏移量越大。通过相互正交分布的两对测温元件分别检测水平、垂直方向上的温度差,将两组温差信号进行矢量合成即可用于表征风速风向信息。
高风速范围内,风压测量主要通过监测硅薄膜边缘压力情况来间接表征风速风向值。标准状态下的风压公式为
Figure PCTCN2022099952-appb-000001
其中W 0为动压强,V为风速。由上式可知,风压与风速的平方成正比,即风速越大,通过测量硅薄膜两侧压力差表征风速的灵敏度越高。
硅薄膜边缘中点位置的应力最大,在这些位置制备硅压阻可获得最大测量灵敏度。无风状态下,薄膜正面压力为零。有风吹过时,芯片上方导风板使得风向在垂直方向上产生一定角度的偏转,从而引起薄膜形变,两组硅压阻分别受到水平应力和垂直应力的作用而发生阻值变化,两对硅压阻的应力差即可用于表征风速变化情况。
为了实现热分布测量与压差测量结合的风速风向传感器的感风结构设计,需要完成以下步骤。首先将传感器芯片注塑于圆形绝热环中心位置,以保证良好的隔热,并将其粘接于塑料底座上。最后在传感器塑封芯片上方加装包含弧形导风板和整流柱的整流罩,以实现风压测量与热分布测量结合的感风结构设计。
有益效果:1)热分布测量的方法表征风速时加热功率的变化率随风速的增高而增大,即热分布测量的方法表征高风速时具有较低的能效比。热敏电阻和硅压阻的组合,在保证风向测量灵敏度的前提下,引入压差检测使风速测量的量程显著提升;2)由硅薄膜两侧的压力差与风速的二次方成正比可知,风速越大,灵敏度越高。低风速时热场检测表征风速的灵敏度高,高风速时风压测量表征风速的灵敏度高,二者互补,得到一种高灵敏度的风速、风向传感器结构。3)风 流过导风板在垂直方向上发生一定角度的偏转作用在硅薄膜上,硅薄膜两侧的压力差发生改变。偏转角度越大,作用在硅薄膜上的力越大,风压测量的灵敏度越高。
附图说明
图1是本发明传感器芯片的剖视图;
图2是本发明传感器芯片的俯视图;
图3是本发明整体结构中轴线位置的剖面图;
图1与图2中具有统一的标注。其中传感器芯片10:11.硅衬底;12.衬底表面氧化层;13.金属电极与金属引线;14.硅压阻;15.测温元件;16.加热元件;17.硅薄膜;18.传感器背腔;
图3中标注分别为:10.传感器芯片;20.导风板;30.整流栅格;40.下底盖;50.绝热圆环。
具体实施方式
下面结合附图与实施例对本发明技术方案进行说明。
如图1和图2所示,本发明所述的一种提高测量范围和全量程精度的风速风向传感器芯片10由硅衬底11,衬底表面氧化层12,金属电极与金属引线13,硅压阻14,测温元件15,加热元件16,硅薄膜17,传感器背腔18组成。
加热元件16位于硅薄膜17的中心,四个测温元件15设置在硅薄膜17上,且中心对称的分布于加热元件16周围,四个硅压阻14设置在硅薄膜17的边缘,同样中心对称的分布在加热元件16周围。当无风时,加热元件16形成中心对称的温度场,四个测温元件15所在位置具有相同的温度,因此输出的温度差值信号为零;硅薄膜两侧的压力差为零,四个硅压阻所受纵向应力和横向应力均为零,因此风压信号输出为零。
当有风吹过,热量被风从上游带至下游,中心对称分布的四个测温元件15对应位置的温度发生变化,两组互相正交的测温元件15可将传感器表面温差正交分解为东西、南北两个方向上的温差,通过矢量合成即可得到风速、风向信息;气流经过导风板20偏转一定角度后作用在硅薄膜17上,两组相互正交的硅压阻14分别受到纵向应力和横向应力,应力的大小随风速的增大而增大,硅薄膜17两侧压力差的大小可反映风速信息。
一种提高测量范围和全量程精度的风速风向传感器,其制造方法,步骤如下:
(1)离子注入制备加热元件16、测温元件15、硅压阻14等敏感元件。
(2)双面氧化硅片并通过LPCVD淀积氮化硅做钝化层保护,以光刻胶为掩膜在硅片背面刻蚀开窗。
(3)湿法腐蚀晶圆形成背腔与硅薄膜17,并去除氮化硅保护层。
(4)以光刻胶为掩膜刻蚀引线孔。
(5)溅射金属,剥离多余金属后实现金属引线和电极13。
以上是本风速风向传感器的基本制造流程。

Claims (5)

  1. 一种提高测量范围和全量程精度的风速风向传感器,其特征在于:传感器芯片(10)包括硅薄膜(17)、传感器背腔(18),在硅薄膜(17)设置有中央加热元件(16)、四个中心对称的测温元件(15)以及四个中心对称的硅压阻(14),以及导风板(20)、整流栅格(30)、下底盖(40)、绝热圆环(50)。
  2. 根据权利要求1所述的一种提高测量范围和全量程精度的风速风向传感器,其特征在于:硅薄膜(17)的形状是任意中心对称的形状。
  3. 根据权利要求1所述的一种提高测量范围和全量程精度的风速风向传感器,其特征在于:导风板(20)的形状是任意使风向发生偏转至正面硅薄膜(17)的中心对称形状。
  4. 根据权利要求1所述的一种提高测量范围和全量程精度的风速风向传感器,其特征在于:整流栅格(30)的形状是柱状或网状。
  5. 根据权利要求1所述的一种提高测量范围和全量程精度的风速风向传感器,其特征在于:绝热圆环(50)由任意低热导率材料组成。
PCT/CN2022/099952 2021-09-28 2022-06-20 一种提高测量范围和全量程精度的风速风向传感器 WO2023050908A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111142905.9 2021-09-28
CN202111142905.9A CN113884701B (zh) 2021-09-28 2021-09-28 一种提高测量范围和全量程精度的风速风向传感器

Publications (1)

Publication Number Publication Date
WO2023050908A1 true WO2023050908A1 (zh) 2023-04-06

Family

ID=79007436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099952 WO2023050908A1 (zh) 2021-09-28 2022-06-20 一种提高测量范围和全量程精度的风速风向传感器

Country Status (2)

Country Link
CN (1) CN113884701B (zh)
WO (1) WO2023050908A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884701B (zh) * 2021-09-28 2023-04-25 东南大学 一种提高测量范围和全量程精度的风速风向传感器
CN115508578A (zh) * 2022-10-20 2022-12-23 南方电网数字电网研究院有限公司 基于差分热敏电容的风速风向传感器及检测装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6460411B1 (en) * 1997-02-14 2002-10-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Flow sensor component
KR20030003208A (ko) * 2002-12-13 2003-01-09 (주)니즈 실리콘기판에 집적된 미세가공기술을 이용한 디지털대기환경 측정장치
CN101271164A (zh) * 2007-03-21 2008-09-24 中国科学院电子学研究所 一种导引式风向风速传感器
RU2548135C1 (ru) * 2014-12-18 2015-04-10 Морской гидрофизический институт Термоанемометрический способ определения скорости и направления потока жидкости или газа и устройство для его осуществления
CN104730283A (zh) * 2015-03-12 2015-06-24 东南大学 一种基于mems技术的三维风速风向传感器及其制备方法
CN105675916A (zh) * 2016-01-19 2016-06-15 东南大学 高灵敏硅二维热式风速计及其制备方法
CN108593956A (zh) * 2018-04-28 2018-09-28 中国空气动力研究与发展中心超高速空气动力研究所 双模式微流速计及其制备方法
CN109001486A (zh) * 2018-06-21 2018-12-14 东南大学 一种宽量程风速传感器及其制作方法
CN109188015A (zh) * 2018-06-21 2019-01-11 东南大学 一种高灵敏硅二维风速计及其制作方法
CN113092809A (zh) * 2021-04-09 2021-07-09 东南大学 一种正面感风背面引线的膜式风速风向传感器及其制造方法
CN113884701A (zh) * 2021-09-28 2022-01-04 东南大学 一种提高测量范围和全量程精度的风速风向传感器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000039537A1 (en) * 1998-12-28 2000-07-06 Raytheon Company Fluid flow sensor
CN1325879C (zh) * 2005-04-13 2007-07-11 东南大学 温度、风速、风向和气压集成传感器
CN101294977B (zh) * 2007-04-25 2010-06-23 中国科学院电子学研究所 一种基于微机电技术的硅压阻式风速风向传感器
CN100582784C (zh) * 2008-07-04 2010-01-20 东南大学 微机械二维风速风向传感器及其信号处理电路
CN101655569B (zh) * 2008-08-20 2011-04-13 中国科学院电子学研究所 一种微机械电容式风速风向传感器
CN102095888B (zh) * 2010-12-14 2012-07-18 东南大学 一种具有热隔离结构的热式风速风向传感器及其制备方法
JP2013167451A (ja) * 2012-02-14 2013-08-29 Tokyo Electron Ltd 風速計測方法及び風速計測装置
JP2014071106A (ja) * 2012-10-02 2014-04-21 Hitachi Metals Ltd 流速センサ
CN102998479B (zh) * 2012-12-31 2014-08-13 哈尔滨理工大学 氮化铝基集成阵列结构的二维风速风向传感器及其制造方法
US9927455B2 (en) * 2013-01-22 2018-03-27 Mingqiang Yi MEMS chip for wind speed measurements
US10480974B2 (en) * 2015-10-05 2019-11-19 Siargo Ltd. Composite MEMS flow sensor on silicon-on-insulator device and method of making the same
CN105547371B (zh) * 2016-01-19 2018-05-08 东南大学 基于陶瓷封装的二维热式风速风向传感器及其制作方法
CN106443056A (zh) * 2016-09-21 2017-02-22 东南大学 一种基于圆片级封装的mems风速风向传感器结构及封装方法
KR101743668B1 (ko) * 2016-11-14 2017-06-07 한국생산기술연구원 열대류형 가속도 센서 및 이의 제조방법
US10209156B2 (en) * 2016-12-15 2019-02-19 Wisenstech Ltd. Micromachined pressure sensor and method of making the same
CN108562761B (zh) * 2018-03-02 2023-10-20 北京天创金农科技有限公司 一种阵列式风速风向传感器及其制作方法
CN109164270B (zh) * 2018-06-21 2020-01-17 东南大学 一种超宽量程风速仪及制造方法
CN109283358B (zh) * 2018-11-27 2020-12-01 东南大学 一种基于柔性螺旋电感结构的风速传感器及其制备方法
CN110542498A (zh) * 2019-09-06 2019-12-06 重庆大学 一种mems应变式差分式压力传感器及制作方法
US11073415B2 (en) * 2019-10-21 2021-07-27 Flusso Limited Thermal fluid flow sensor having a dielectric membrane comprising discontinuities between the heating element and an edge
CN110672876B (zh) * 2019-10-25 2021-03-02 北京航空航天大学 一种柔性矢量流速传感器、传感器阵列及传感器制备方法
CN112129969A (zh) * 2020-09-17 2020-12-25 青岛芯笙微纳电子科技有限公司 一种微型风速计

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6460411B1 (en) * 1997-02-14 2002-10-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Flow sensor component
KR20030003208A (ko) * 2002-12-13 2003-01-09 (주)니즈 실리콘기판에 집적된 미세가공기술을 이용한 디지털대기환경 측정장치
CN101271164A (zh) * 2007-03-21 2008-09-24 中国科学院电子学研究所 一种导引式风向风速传感器
RU2548135C1 (ru) * 2014-12-18 2015-04-10 Морской гидрофизический институт Термоанемометрический способ определения скорости и направления потока жидкости или газа и устройство для его осуществления
CN104730283A (zh) * 2015-03-12 2015-06-24 东南大学 一种基于mems技术的三维风速风向传感器及其制备方法
CN105675916A (zh) * 2016-01-19 2016-06-15 东南大学 高灵敏硅二维热式风速计及其制备方法
CN108593956A (zh) * 2018-04-28 2018-09-28 中国空气动力研究与发展中心超高速空气动力研究所 双模式微流速计及其制备方法
CN109001486A (zh) * 2018-06-21 2018-12-14 东南大学 一种宽量程风速传感器及其制作方法
CN109188015A (zh) * 2018-06-21 2019-01-11 东南大学 一种高灵敏硅二维风速计及其制作方法
CN113092809A (zh) * 2021-04-09 2021-07-09 东南大学 一种正面感风背面引线的膜式风速风向传感器及其制造方法
CN113884701A (zh) * 2021-09-28 2022-01-04 东南大学 一种提高测量范围和全量程精度的风速风向传感器

Also Published As

Publication number Publication date
CN113884701A (zh) 2022-01-04
CN113884701B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
WO2023050908A1 (zh) 一种提高测量范围和全量程精度的风速风向传感器
Ozaki et al. An air flow sensor modeled on wind receptor hairs of insects
CN104730283B (zh) 一种基于mems技术的三维风速风向传感器及其制备方法
CN100374838C (zh) 单片硅基soi高温低漂移压力传感器
CN101294977B (zh) 一种基于微机电技术的硅压阻式风速风向传感器
CN1974372B (zh) 差压/绝压/温度三参数单片集成传感器芯片
CN109001486B (zh) 一种宽量程风速传感器及其制作方法
CN102798498A (zh) 一种多量程集成压力传感器芯片
CN104482971B (zh) 一种基于mems技术的热式流量传感器
CN101692099A (zh) 具有片上零偏补偿的压阻式双轴微加速度计及制作方法
CN109239392B (zh) 一种基于mems技术的三维风速风向传感器及其制作方法
US20220205852A1 (en) MEMS Pressure Sensor and Preparation Method thereof
US20120152014A1 (en) Sensor bridge with thermally isolating apertures
CN113526452B (zh) 一种碳化硅mems温压复合式传感器芯片及其制备方法
CN102243126B (zh) 纳米硅薄膜晶体管压力传感器
CN104697681A (zh) 一种带自检测装置的压阻式压力传感器及其制备方法
CN104155472A (zh) 一种热膜风速风向传感器及其制备方法
WO2019242349A1 (zh) 一种超小型高灵敏度二维风速计及其制作方法
CN113371674A (zh) 一种宽量程压力传感器芯片及其单片集成制备方法
CN105716750B (zh) 一种mems压阻式压力传感器及其制备方法
CN111238714B (zh) 一种微压传感器的制作工艺方法
CN103196596B (zh) 基于牺牲层技术的纳米膜压力传感器及其制造方法
CN206362469U (zh) 一种高温薄膜压力敏感元件
CN108545691A (zh) 新型表压传感器及其制作方法
CN114199323B (zh) 一种单片集成mems差压流量计及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE