WO2023050606A1 - 一种车辆远程插值拟合顺畅控制方法及装置 - Google Patents

一种车辆远程插值拟合顺畅控制方法及装置 Download PDF

Info

Publication number
WO2023050606A1
WO2023050606A1 PCT/CN2021/140645 CN2021140645W WO2023050606A1 WO 2023050606 A1 WO2023050606 A1 WO 2023050606A1 CN 2021140645 W CN2021140645 W CN 2021140645W WO 2023050606 A1 WO2023050606 A1 WO 2023050606A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
command
point data
control command
vehicle
Prior art date
Application number
PCT/CN2021/140645
Other languages
English (en)
French (fr)
Inventor
江浩
Original Assignee
中睿智能交通技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中睿智能交通技术有限公司 filed Critical 中睿智能交通技术有限公司
Publication of WO2023050606A1 publication Critical patent/WO2023050606A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • G05B23/0213Modular or universal configuration of the monitoring system, e.g. monitoring system having modules that may be combined to build monitoring program; monitoring system that can be applied to legacy systems; adaptable monitoring system; using different communication protocols

Definitions

  • the present application belongs to the field of vehicle remote control, and in particular relates to a method and device for smooth control of vehicle remote interpolation and fitting.
  • the usual practice is to reduce the signal acquisition frequency or increase the acquisition period, so that the acquisition period is greater than the average communication delay. For example, collect once every 10ms, adjust it to 100ms. For analog quantities that do not require high precision in operation and switching, it can solve practical problems in certain scenarios.
  • existing control schemes cannot well meet the needs of remote driving and control of commercial vehicles. There are mainly the following defects: increase the overall network delay, especially when the video surveillance needs to be increased beyond the line of sight, the driver will have a sense of operation delay; reduce the remote operation accuracy of vehicles driving at high speed or with operating devices; reduce The smoothness and continuity of the operation action.
  • the purpose of this application is to provide a vehicle remote interpolation fitting smooth control method and device to solve at least one problem existing in the prior art.
  • the first aspect of the present application provides a smooth control method for remote interpolation fitting of a vehicle, including:
  • the remote terminal obtains the control command of the control device, discards part of the control point data of the control command, obtains the control command of discarding part of the control point data, and sends the control command of discarding part of the control point data to the vehicle end;
  • the vehicle end After receiving the control command that discards part of the control point data, the vehicle end restores the control point data of the control command through interpolation, and generates a command sequence for controlling the execution device.
  • the remote terminal obtains the control command of the control device, discards part of the control point data of the control command, obtains the control command of discarding part of the control point data, and discards the control command of part of the control point data Sending to the vehicle side includes:
  • the remote control terminal obtains the control commands of different control devices in real time and stores them in the classification queue;
  • control commands of the control device include real-time operation commands of the steering wheel, real-time brakes and real-time operation commands of the joystick.
  • the vehicle end restores the control point data of the control command through interpolation, and generates a command sequence for controlling the execution device including:
  • the vehicle side parses the received control command data packet, the control command data packet includes the control command ID and the control command value;
  • both the control command and the command sequence are digital signals, or both the control command and the command sequence are analog signals.
  • the second aspect of the present application provides a vehicle remote interpolation fitting smooth control device, including:
  • the remote terminal is used to obtain the control command of the control device, discard part of the control point data of the control command, obtain the control command of discarding part of the control point data, and send the control command of discarding part of the control point data to the vehicle end;
  • the vehicle end is used to restore the control point data of the control command through interpolation after receiving the control command discarding part of the control point data, and generate a command sequence for controlling the execution device.
  • the remote control terminal includes:
  • the real-time command receiving queue module is used to obtain the control commands of different control devices in real time and store them in the classification queue;
  • the network Qos analysis module is used to record and monitor the end-to-end transmission delay, and send it through a separate socket link, save and dynamically update the delay average value, and calculate the packet loss according to the delay average value and the sampling period of the control device Strategy integer operator ⁇ , where, T is the delay average value, t is the sampling period of the control device, Indicates rounding up to an integer;
  • the classification and grouping module is used to classify and group the control commands for discarding part of the control point data, and send them to the vehicle side through the socket link.
  • control commands of the control device include real-time operation commands of the steering wheel, real-time brakes and real-time operation commands of the joystick.
  • the vehicle end includes:
  • the classification unpacking receiving module is used to analyze the received control command data packet, and the control command data packet includes the control command ID and the control command value;
  • the control curve interpolation module is used to obtain the control curve and fitting function of the corresponding control device according to the control command ID;
  • a command sequence generation module is used to fill the control points discarded by interpolation between control commands according to the fitting function, and generate a command sequence
  • the execution device command sending module is used to send the generated command sequence to the execution device.
  • both the control command and the command sequence are digital signals, or both the control command and the command sequence are analog signals.
  • the vehicle remote interpolation fitting smooth control method of the present application improves the robustness and adaptability of the network jitter carrying the remote control driving operation; retains the operation accuracy attribute of the original control device, and can improve the accuracy of the remote control operation;
  • the smoothness of the remote driving operation effect can be improved, and the smooth remote control experience of the driving operator can be improved.
  • Fig. 1 is a block diagram of a vehicle remote interpolation fitting smooth control method according to an embodiment of the present application
  • Fig. 2 is a flow chart of a vehicle remote interpolation fitting smooth control method according to an embodiment of the present application
  • Fig. 3 is a schematic diagram of a vehicle remote interpolation fitting smooth control device according to an embodiment of the present application.
  • the first aspect of the present application provides a smooth control method for remote interpolation fitting of a vehicle, including:
  • the remote terminal obtains the control command of the control device, discards part of the control point data of the control command, obtains the control command of discarding part of the control point data, and sends the control command of discarding part of the control point data to the vehicle end;
  • the vehicle end After receiving the control command that discards part of the control point data, the vehicle end restores the control point data of the control command through interpolation, and generates a command sequence for controlling the execution device.
  • the remote terminal obtains the control command of the control device, discards part of the control point data of the control command, obtains the control command of discarding part of the control point data, and sends the control command of discarding part of the control point data to the vehicle
  • the end process can be divided into four stages: real-time command receiving queue, network Qos analysis and management, command DROPOUT, and classified packet sending, including:
  • the remote control terminal obtains the control commands of different control devices in real time and stores them in the classification queue;
  • the control device may include a variety of different control devices, for example, a control device for controlling the steering wheel of the vehicle, a control device for controlling the brakes of the vehicle, and a control device for controlling the handle of the vehicle.
  • Rod control device for example, the control commands of the control device include the real-time operation command of the steering wheel, the real-time brake and the real-time operation command of the joystick.
  • the end-to-end transmission delay refers to the time-consuming from sending a data packet from the remote control end to receiving the data packet at the vehicle end, which can be statistically updated at the second level, which is T milliseconds.
  • the sampling cycle of the control device refers to the cycle of a control command issued by the control device such as the steering wheel and the accelerator pedal, which is t milliseconds.
  • the integer operator ⁇ [T/t] of the packet loss strategy, and the operator ⁇ is taken into an integer (for example, the calculated value of 2.7 or 2.1 is 3), so as to reduce network congestion.
  • the average end-to-end delay is 35ms
  • the collection period of the control device is 10ms
  • One of the 4 control command values is sent, and the other three are discarded, and the commands that need to be sent in the classification queue are processed in turn.
  • the process of restoring the control point data of the control command through interpolation and generating the command sequence for controlling the execution device can be divided into classification and unpacking There are four stages: reception, control curve interpolation model, command sequence generation and control device command transmission, including:
  • the vehicle side parses the received control command data packet, and the control command data packet includes the control command ID and the control command value;
  • the control curve of a specific control device can be obtained through the manufacturer, and each type of control device corresponds to a fitting function.
  • CAN commands are sent to the vehicle controller VCU or the corresponding execution device MCU. They may be hung on a bus or may not be on a bus, and they can be processed according to the actual situation.
  • both the control command and the command sequence are digital signals. In another embodiment of the present application, the control commands and command sequences are analog signals.
  • the second aspect of the present application provides a vehicle remote interpolation fitting smooth control device, including:
  • the remote terminal is used to obtain the control command of the control device, discard part of the control point data of the control command, obtain the control command of discarding part of the control point data, and send the control command of discarding part of the control point data to the vehicle end;
  • the vehicle end is used to restore the control point data of the control command through interpolation after receiving the control command discarding part of the control point data, and generate a command sequence for controlling the execution device.
  • the remote terminal is deployed in the remote controller, which is responsible for processing the control commands received from the control device, and the vehicle terminal is deployed in the vehicle controller, which is responsible for generating command sequences for controlling the execution device .
  • the remote control end actively abandons part of the control commands to reduce the actual control frames that need to be transmitted, and uses the interpolation method to restore the control command data points at the vehicle end to achieve the goal of remote smooth control.
  • the remote control terminal includes a real-time command receiving queue module, a network Qos analysis module, a DROPOUT module and a classification group packet module, wherein,
  • the real-time command receiving queue module is used to obtain the control commands of different control devices in real time and store them in the classification queue;
  • the network Qos analysis module is used to record and monitor the end-to-end transmission delay, and send it through a separate socket link, save and dynamically update the delay average value, and calculate the packet loss according to the delay average value and the sampling period of the control device Strategy integer operator ⁇ , where, T is the delay average value, t is the sampling period of the control device, Indicates rounding up to an integer;
  • the classification and grouping module is used to classify and group the control commands for discarding part of the control point data, and send them to the vehicle side through the socket link.
  • the vehicle remote interpolation fitting smooth control device of the present application may include a variety of different control devices, for example, a control device for controlling the steering wheel of a vehicle, a control device for controlling the brakes of a vehicle, and a control device for controlling the handle of a vehicle.
  • Rod control device a control device for controlling the handle of a vehicle.
  • the control commands of the control device include real-time operation commands of the steering wheel, real-time brakes, and real-time operation commands of the joystick, and the control commands are stored in the classification queue without changing the command sending frequency of the original control device.
  • the vehicle end includes a classification and unpacking receiving module, a control curve interpolation module, a command sequence generation module, and an execution device command sending module, wherein,
  • the classification unpacking receiving module is used to analyze the received control command data packet, and the control command data packet includes the control command ID and the control command value;
  • the control curve interpolation module is used to obtain the control curve and fitting function of the corresponding control device according to the control command ID;
  • a command sequence generation module is used to fill the control points discarded by interpolation between control commands according to the fitting function, and generate a command sequence
  • the execution device command sending module is used to send the generated command sequence to the execution device.
  • control commands output by the control device at the remote control end and the command sequence used to drive the execution device at the vehicle end are all CAN digital signals. In another embodiment of the present application, the control commands output by the control device at the remote control end and the command sequences used to drive the execution devices at the vehicle end are all analog signals.
  • the vehicle remote interpolation fitting smooth control method and device of the present application are implemented by actively discarding the real-time control frame at the remote control end and restoring the control frame generation strategy and technology at the vehicle end, and can realize real-time transmission of control commands when the network jitter does not exceed the threshold It can also achieve the smoothness and fineness of control;
  • the DROPOUT strategy of the control command frame can be calculated in real time according to the network quality, reducing the risk of network congestion;
  • the vehicle side can fit the curve function according to the control performance of the original control device, and interpolate the generated control sequence frame and
  • the control frame generated locally has a high degree of matching, and the experience consistency of the original device is preserved;
  • the control command discarding packet, grouping packet, and interpolation scheme are more flexible, and can release part of the operation network resources that are not sensitive to precision for operations that require higher control precision ;
  • the original adaptability to the original control system of the vehicle is strong, and there is no need to make any changes to the software and hardware outside the remote control system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Selective Calling Equipment (AREA)

Abstract

车辆远程控制领域中一种车辆远程插值拟合顺畅控制方法及装置。方法包括:遥控端获取控制装置的控制命令,丢弃控制命令的部分控制点数据,得到丢弃部分控制点数据的控制命令,并将丢弃部分控制点数据的控制命令发送给车辆端;车辆端接收丢弃部分控制点数据的控制命令后,通过插值恢复控制命令的控制点数据,并生成用于控制执行装置的命令序列。该车辆远程插值拟合顺畅控制方法,提高了对承载远程遥控驾驶操作的网络抖动的鲁棒性和适应性;保留了原控制装置的操作精度属性,能够提高远程遥控操作的精度;提高了远程驾驶操作效果的平滑性,能够改善驾驶操作员的遥控顺畅体验。

Description

一种车辆远程插值拟合顺畅控制方法及装置 技术领域
本申请属于车辆远程控制领域,特别涉及一种车辆远程插值拟合顺畅控制方法及装置。
背景技术
随着自动驾驶及5G的发展,商用车由于其场景特殊性,不用面临较多法规等因素束缚,能够更快的落地。但考虑产品体验及安全运营,远程操作驾驶作为车辆运营作为其必要补充,是实现商用车无人化的一个捷径。商用车除了基本的横向纵向行走控制需求,还可能面临车辆其他业务操作动作的控制如收割机的收割、挖掘机的挖掘等。在远程驾驶中,需要建设符合场景需要的通讯组网方案,承载远程操作命令的实时收发及可能的监控视频类的信息传输。
在实际应用中,根据场景的需求,有远距离程遥控,一般通过5G/4G广域通信方式;近距离程遥控,一般通过Wifi或者1.4G/2.4G ISM局域通信方式。超出视距的需要增加视频功能。在实际通信方式中,5G、Wifi、1.4G等通信一般端到端的平均传输时延在30ms左右。在实际应用中,模拟量单个控制装置指令(如方向盘、油门、手柄等)的发出周期一般在10ms左右,如果有更多的复合动作,平均指令周期会更短。也就是说,在远程驾驶场景下,一般指令采集周期小于网络通信时延,通信信道无法满足每条控制指令的实时传输,且会造成信道的拥塞产生丢包现象。
在工程实现中,通常做法是降低信号的采集频率或增大采集周期,使采集周期大于平均的通信延时。如每10ms采集一次,调整为100ms。对于开关量、操作精度要求不高的模拟量,可以解决一定场景的实际问题。作为无人驾驶运营安全保障及人工介入有效控制的目标,已有控制方案不能很好的满足对商用车远程驾驶和控制的需要。主要存在以下缺陷:增加总体网络延时,特别是超出视距需要增加视频监控的情况下,驾驶员会有操作延时感;降低了车辆高速行驶或者有作业装置的车辆的远程操作精度;降低了操作动作的平滑性和连续性。
因此,希望有一种技术方案来克服或至少减轻现有技术的至少一个上述缺陷。
发明内容
本申请的目的是提供了一种车辆远程插值拟合顺畅控制方法及装置,以解决现有技术存在的至少一个问题。
本申请的技术方案是:
本申请的第一个方面提供了一种车辆远程插值拟合顺畅控制方法,包括:
遥控端获取控制装置的控制命令,丢弃控制命令的部分控制点数据,得到丢弃部分控制点数据的控制命令,并将丢弃部分控制点数据的控制命令发送给车辆端;
车辆端接收丢弃部分控制点数据的控制命令后,通过插值恢复控制命令的控制点数据,并生成用于控制执行装置的命令序列。
在本申请的至少一个实施例中,所述遥控端获取控制装置的控制命令,丢弃控制命令的部分控制点数据,得到丢弃部分控制点数据的控制命令,并将丢弃部分控制点数据的控制命令发送给车辆端包括:
遥控端实时获取不同控制装置的控制命令,并存入分类队列;
记录监控端到端传输延时,并通过单独的socket链路进行发送,保存并动态更新延时平均值,根据延时平均值以及控制装置的采样周期,计算丢包策略整数算子μ,其中,
Figure PCTCN2021140645-appb-000001
T为延时平均值,t为控制装置的采样周期,
Figure PCTCN2021140645-appb-000002
表示向上取整数;
读取分类队列的控制命令,并根据丢包策略整数算子μ丢弃部分控制点数据,具体为从分类队列的每μ个控制命令中丢弃μ-1个,若μ=1,则不用丢弃;
对丢弃部分控制点数据的控制命令进行分类组包,并通过socket链路发送给车辆端。
在本申请的至少一个实施例中,所述控制装置的控制命令包括方向盘的实时操作指令、刹车的实时操作指令以及手柄摇杆的实时操作指令。
在本申请的至少一个实施例中,所述车辆端接收丢弃部分控制点数据的控制命令后,通过插值恢复控制命令的控制点数据,并生成用于控制执行装置的命令序列包括:
车辆端解析接收的控制命令数据包,所述控制命令数据包包含控制命令ID以及控制命令数值;
根据控制命令ID获取对应的控制装置的控制曲线以及拟合函数;
根据拟合函数在控制命令之间填补插值丢弃的控制点,并生成命令序列;
将生成的命令序列发送给执行装置。
在本申请的至少一个实施例中,所述控制命令以及所述命令序列均为数字信号,或所述控制命令以及所述命令序列均为模拟信号。
本申请的第二个方面提供了一种车辆远程插值拟合顺畅控制装置,包括:
遥控端,用于获取控制装置的控制命令,丢弃控制命令的部分控制点数据,得到丢弃部分控制点数据的控制命令,并将丢弃部分控制点数据的控制命令发送给车辆端;
车辆端,用于接收丢弃部分控制点数据的控制命令后,通过插值恢复控制命令的控制点数据,并生成用于控制执行装置的命令序列。
在本申请的至少一个实施例中,所述遥控端包括:
实时命令接收队列模块,用于实时获取不同控制装置的控制命令,并存入分类队列;
网络Qos分析模块,用于记录监控端到端传输延时,并通过单独的socket链路进行发送,保存并动态更新延时平均值,根据延时平均值以及控制装置的采样周期,计算丢包策略整数算子μ,其中,
Figure PCTCN2021140645-appb-000003
T为延时平均值,t为控制装置的采样周期,
Figure PCTCN2021140645-appb-000004
表示向上取整数;
DROPOUT处理模块,用于读取分类队列的控制命令,并根据丢包策略整数算子μ丢弃部分控制点数据,具体为从分类队列的每μ个控制命令中丢弃μ-1个,若μ=1,则不用丢弃;
分类组包模块,用于对丢弃部分控制点数据的控制命令进行分类组包,并通过socket链路发送给车辆端。
在本申请的至少一个实施例中,所述控制装置的控制命令包括方向盘的实时操作指令、刹车的实时操作指令以及手柄摇杆的实时操作指令。
在本申请的至少一个实施例中,所述车辆端包括:
分类解包接收模块,用于解析接收的控制命令数据包,所述控制命令数据包包含控制命令ID以及控制命令数值;
控制曲线插值模块,用于根据控制命令ID获取对应的控制装置的控制曲线以及拟合函数;
命令序列生成模块,用于根据拟合函数在控制命令之间填补插值丢弃的控制点,并生成命令序列;
执行装置命令发送模块,用于将生成的命令序列发送给执行装置。
在本申请的至少一个实施例中,所述控制命令以及所述命令序列均为数字信号,或所述控制命令以及所述命令序列均为模拟信号。
发明至少存在以下有益技术效果:
本申请的车辆远程插值拟合顺畅控制方法,提高了对承载远程遥控驾驶操作的网络抖动的鲁棒性和适应性;保留了原控制装置的操作精度属性,能够提高远程遥控操作的精度;提高了远程驾驶操作效果的平滑性,能够改善驾驶操作员的遥控顺畅体验。
附图说明
图1是本申请一个实施方式的车辆远程插值拟合顺畅控制方法框图;
图2是本申请一个实施方式的车辆远程插值拟合顺畅控制方法流程图;
图3是本申请个实施方式的车辆远程插值拟合顺畅控制装置示意图。
具体实施方式
为使本申请实施的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行更加详细的描述。在附图中,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。所描述的实施例是本申请一部分实施例,而不是全部的实施例。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。下面结合附图对本申请的实施例进行详细说明。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方 位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制。
下面结合附图1至图3对本申请做进一步详细说明。
本申请的第一个方面提供了一种车辆远程插值拟合顺畅控制方法,包括:
遥控端获取控制装置的控制命令,丢弃控制命令的部分控制点数据,得到丢弃部分控制点数据的控制命令,并将丢弃部分控制点数据的控制命令发送给车辆端;
车辆端接收丢弃部分控制点数据的控制命令后,通过插值恢复控制命令的控制点数据,并生成用于控制执行装置的命令序列。
在本申请的优选实施方案中,遥控端获取控制装置的控制命令,丢弃控制命令的部分控制点数据,得到丢弃部分控制点数据的控制命令,并将丢弃部分控制点数据的控制命令发送给车辆端的过程可以分为实时命令接收队列、网络Qos分析管理、命令DROPOUT以及分类组包发送四个阶段,具体包括:
遥控端实时获取不同控制装置的控制命令,并存入分类队列;
记录监控端到端传输延时,并通过单独的socket链路进行发送,保存并动态更新延时平均值,根据延时平均值以及控制装置的采样周期,计算丢包策略整数算子μ,其中,
Figure PCTCN2021140645-appb-000005
T为延时平均值,t为控制装置的采样周期,
Figure PCTCN2021140645-appb-000006
表示向上取整数;
读取分类队列的控制命令,并根据丢包策略整数算子μ丢弃部分控制点数据,具体为从分类队列的每μ个控制命令中丢弃μ-1个,若μ=1,则不用丢弃;
对丢弃部分控制点数据的控制命令进行分类组包,并通过socket链路发送给车辆端。
本申请的车辆远程插值拟合顺畅控制方法,控制装置可以包括多种不同的控制装置,例如,用于控制车辆方向盘的控制装置,用于控制车辆刹车的控制装置,以及用于控制车辆手柄摇杆的控制装置。本实施例中,控制装置的控制命令包括方向盘的实时操作指令、刹车的实时操作指令以及手柄摇杆的实时操作指令,控制命令存入分类队列时不改变原生控制装置的命令发送频率。
本申请的车辆远程插值拟合顺畅控制方法,由于环境干扰等因素,无线网络传输质量存在抖动,需要记录监控端到端传输延时,为了减少对控制命令传输的影响,优选1s探测1次,并通过单独的socket链路进行发送,保存并动态更新参考延时平均值,利用参考延时平均值和具体车辆控制装置的采样周期,计算出丢包策略整数算子μ。
本申请的车辆远程插值拟合顺畅控制方法,端到端传输延时是指从遥控端发送一个数据包到车辆端接收这个数据包的耗时,可以采用秒级进行统计更新,为T毫秒。控制装置的采样周期是指控制装置如方向盘,油门踏板等发出一个控制指令的周期,为t毫秒。在本申请的优选实施方案中,丢包策略整数算子μ=[T/t],算子μ取进一整数(如计算得出2.7或者2.1均取值为3),降低网络拥塞。丢包策略按照算子从分类队列中每u个控制命令取一个指令,丢弃μ-1个,如果μ=1,则不用丢弃。
在本申请的一个实施例中,如搭建一个5G应用网络系统,端到端延时平均值为35ms,控制装置的采集周期为10ms,则μ=[35/10]=4,分类队列中每4个控制命令取值一个发送,其他三个丢弃掉,依次处理分类队列中需要发送的指令。
在本申请的优选实施方案中,车辆端接收丢弃部分控制点数据的控制命令后,通过插值恢复控制命令的控制点数据,并生成用于控制执行装置的命令序列的过程可以分为分类解包接收、控制曲线插值模型、命令序列生成及控制装置命令发送四个阶段,具体包括:
车辆端解析接收的控制命令数据包,控制命令数据包包含控制命令ID以及控制命令数值;
根据控制命令ID获取对应的控制装置的控制曲线以及拟合函数;
根据拟合函数在控制命令之间填补插值丢弃的控制点,并生成命令序列;
将生成的命令序列发送给执行装置。
本申请的车辆远程插值拟合顺畅控制方法,可以通过厂家获取具体控制装置的控制曲线,每类控制装置对应一个拟合函数。另外,最后根据生成的各类命令序列,向整车控制器VCU或者对应的执行装置MCU发送CAN指令,它们可能挂在一个总线上,也可能不在一个总线上,根据实际情况处理即可。
在本申请的一个实施例中,控制命令以及命令序列均为数字信号。在本申请的另一个实施例中,控制命令以及命令序列均为模拟信号。
基于上述的车辆远程插值拟合顺畅控制方法,本申请的第二个方面提供了一种车辆远程插值拟合顺畅控制装置,包括:
遥控端,用于获取控制装置的控制命令,丢弃控制命令的部分控制点数据,得到丢弃部分控制点数据的控制命令,并将丢弃部分控制点数据的控制命令发送给车辆端;
车辆端,用于接收丢弃部分控制点数据的控制命令后,通过插值恢复控制命令的控制点数据,并生成用于控制执行装置的命令序列。
本申请的车辆远程插值拟合顺畅控制装置,遥控端部署在遥控端控制器,负责处理从控制装置接收的控制命令,车辆端部署在车辆端控制器,负责生成用于控制执行装置的命令序列。利用插值拟合技术,在遥控端主动放弃部分控制命令,减少实际需要传输的控制帧,并在车辆端利用插值方法恢复控制命令数据点,达到远程顺畅性控制的目标。
在本申请的优选实施方案中,遥控端包括实时命令接收队列模块、网络Qos分析模块、DROPOUT模块以及分类组包模块,其中,
实时命令接收队列模块,用于实时获取不同控制装置的控制命令,并存入分类队列;
网络Qos分析模块,用于记录监控端到端传输延时,并通过单独的socket链路进行发送,保存并动态更新延时平均值,根据延时平均值以及控制装置的采样周期,计算丢包策略整数算子μ,其中,
Figure PCTCN2021140645-appb-000007
T为延时平均值,t为控制装置的采样周期,
Figure PCTCN2021140645-appb-000008
表示向上取整数;
DROPOUT处理模块,用于读取分类队列的控制命令,并根据丢包策略整数算子μ丢弃部分控制点数据,具体为从分类队列的每μ个控制命令中丢弃μ-1个,若μ=1,则不用丢弃;
分类组包模块,用于对丢弃部分控制点数据的控制命令进行分类组包,并通过socket链路发送给车辆端。
本申请的车辆远程插值拟合顺畅控制装置,控制装置可以包括多种不同的控制装置,例如,用于控制车辆方向盘的控制装置,用于控制车辆刹车的控制装置,以及用于控制车辆手柄摇杆的控制装置。本实施例中,控制装置的控制命令包括方向盘的实时操作指令、刹车的实时操作 指令以及手柄摇杆的实时操作指令,控制命令存入分类队列时不改变原生控制装置的命令发送频率。
在本申请的优选实施方案中,车辆端包括分类解包接收模块、控制曲线插值模块、命令序列生成模块、以及执行装置命令发送模块,其中,
分类解包接收模块,用于解析接收的控制命令数据包,所述控制命令数据包包含控制命令ID以及控制命令数值;
控制曲线插值模块,用于根据控制命令ID获取对应的控制装置的控制曲线以及拟合函数;
命令序列生成模块,用于根据拟合函数在控制命令之间填补插值丢弃的控制点,并生成命令序列;
执行装置命令发送模块,用于将生成的命令序列发送给执行装置。
在本申请的一个实施例中,遥控端控制装置输出的控制命令以及用于驱动车辆端执行装置的命令序列均为CAN数字信号。在本申请的另一个实施例中,遥控端控制装置输出的控制命令以及用于驱动车辆端执行装置的命令序列均为模拟信号。
本申请的车辆远程插值拟合顺畅控制方法及装置,通过主动丢弃遥控端实时控制帧以及车辆端恢复生成控制帧策略和技术实现,在网络抖动不超过阈值情况下,既能实现控制指令实时传输又能实现控制的平滑性和精细度;可以根据网络质量实时计算控制命令帧的DROPOUT策略,降低网络拥塞风险;车辆端按照原生控制装置的控制性能拟合曲线函数,插值生成的控制序列帧和本地生成的控制帧匹配程度高,保留了原装置的体验一致性;控制命令丢弃包、组包以及插值方案比较灵活,可以释放部分对精度不敏感的操作网络资源给控制精度要求更高的操作;对车辆原生控制系统的原生性适应性较强,不用对遥控系统外的软硬件做任何改动。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种车辆远程插值拟合顺畅控制方法,其特征在于,包括:
    遥控端获取控制装置的控制命令,丢弃控制命令的部分控制点数据,得到丢弃部分控制点数据的控制命令,并将丢弃部分控制点数据的控制命令发送给车辆端;
    车辆端接收丢弃部分控制点数据的控制命令后,通过插值恢复控制命令的控制点数据,并生成用于控制执行装置的命令序列。
  2. 根据权利要求1所述的车辆远程插值拟合顺畅控制方法,其特征在于,所述遥控端获取控制装置的控制命令,丢弃控制命令的部分控制点数据,得到丢弃部分控制点数据的控制命令,并将丢弃部分控制点数据的控制命令发送给车辆端包括:
    遥控端实时获取不同控制装置的控制命令,并存入分类队列;
    记录监控端到端传输延时,并通过单独的socket链路进行发送,保存并动态更新延时平均值,根据延时平均值以及控制装置的采样周期,计算丢包策略整数算子μ,其中,
    Figure PCTCN2021140645-appb-100001
    T为延时平均值,t为控制装置的采样周期,
    Figure PCTCN2021140645-appb-100002
    表示向上取整数;
    读取分类队列的控制命令,并根据丢包策略整数算子μ丢弃部分控制点数据,具体为从分类队列的每μ个控制命令中丢弃μ-1个,若μ=1,则不用丢弃;
    对丢弃部分控制点数据的控制命令进行分类组包,并通过socket链路发送给车辆端。
  3. 根据权利要求2所述的车辆远程插值拟合顺畅控制方法,其特征在于,所述控制装置的控制命令包括方向盘的实时操作指令、刹车的实时操作指令以及手柄摇杆的实时操作指令。
  4. 根据权利要求3所述的车辆远程插值拟合顺畅控制方法,其特征在于,所述车辆端接收丢弃部分控制点数据的控制命令后,通过插值恢复控制命令的控制点数据,并生成用于控制执行装置的命令序列包括:
    车辆端解析接收的控制命令数据包,所述控制命令数据包包含控制 命令ID以及控制命令数值;
    根据控制命令ID获取对应的控制装置的控制曲线以及拟合函数;
    根据拟合函数在控制命令之间填补插值丢弃的控制点,并生成命令序列;
    将生成的命令序列发送给执行装置。
  5. 根据权利要求4所述的车辆远程插值拟合顺畅控制方法,其特征在于,所述控制命令以及所述命令序列均为数字信号,或所述控制命令以及所述命令序列均为模拟信号。
  6. 一种车辆远程插值拟合顺畅控制装置,其特征在于,包括:
    遥控端,用于获取控制装置的控制命令,丢弃控制命令的部分控制点数据,得到丢弃部分控制点数据的控制命令,并将丢弃部分控制点数据的控制命令发送给车辆端;
    车辆端,用于接收丢弃部分控制点数据的控制命令后,通过插值恢复控制命令的控制点数据,并生成用于控制执行装置的命令序列。
  7. 根据权利要求6所述的车辆远程插值拟合顺畅控制装置,其特征在于,所述遥控端包括:
    实时命令接收队列模块,用于实时获取不同控制装置的控制命令,并存入分类队列;
    网络Qos分析模块,用于记录监控端到端传输延时,并通过单独的socket链路进行发送,保存并动态更新延时平均值,根据延时平均值以及控制装置的采样周期,计算丢包策略整数算子μ,其中,
    Figure PCTCN2021140645-appb-100003
    T为延时平均值,t为控制装置的采样周期,
    Figure PCTCN2021140645-appb-100004
    表示向上取整数;
    DROPOUT处理模块,用于读取分类队列的控制命令,并根据丢包策略整数算子μ丢弃部分控制点数据,具体为从分类队列的每μ个控制命令中丢弃μ-1个,若μ=1,则不用丢弃;
    分类组包模块,用于对丢弃部分控制点数据的控制命令进行分类组包,并通过socket链路发送给车辆端。
  8. 根据权利要求7所述的车辆远程插值拟合顺畅控制装置,其特征 在于,所述控制装置的控制命令包括方向盘的实时操作指令、刹车的实时操作指令以及手柄摇杆的实时操作指令。
  9. 根据权利要求8所述的车辆远程插值拟合顺畅控制装置,其特征在于,所述车辆端包括:
    分类解包接收模块,用于解析接收的控制命令数据包,所述控制命令数据包包含控制命令ID以及控制命令数值;
    控制曲线插值模块,用于根据控制命令ID获取对应的控制装置的控制曲线以及拟合函数;
    命令序列生成模块,用于根据拟合函数在控制命令之间填补插值丢弃的控制点,并生成命令序列;
    执行装置命令发送模块,用于将生成的命令序列发送给执行装置。
  10. 根据权利要求9所述的车辆远程插值拟合顺畅控制装置,其特征在于,所述控制命令以及所述命令序列均为数字信号,或所述控制命令以及所述命令序列均为模拟信号。
PCT/CN2021/140645 2021-09-30 2021-12-23 一种车辆远程插值拟合顺畅控制方法及装置 WO2023050606A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111164028.5 2021-09-30
CN202111164028.5A CN113934196A (zh) 2021-09-30 2021-09-30 一种车辆远程插值拟合顺畅控制方法及装置

Publications (1)

Publication Number Publication Date
WO2023050606A1 true WO2023050606A1 (zh) 2023-04-06

Family

ID=79278036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140645 WO2023050606A1 (zh) 2021-09-30 2021-12-23 一种车辆远程插值拟合顺畅控制方法及装置

Country Status (2)

Country Link
CN (1) CN113934196A (zh)
WO (1) WO2023050606A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8559420B1 (en) * 2011-09-07 2013-10-15 Unmanned Systems, Inc. Method and apparatus for reducing control communication delay in a remotely controlled apparatus
CN109808705A (zh) * 2019-01-23 2019-05-28 青岛慧拓智能机器有限公司 一种用于远程遥控驾驶控制的系统
CN110850711A (zh) * 2019-12-06 2020-02-28 中国科学院自动化研究所 基于云端的辅助驾驶控制系统及方法
US20200081431A1 (en) * 2018-09-07 2020-03-12 DoorDash, Inc. Video system with frame synthesis
CN111404650A (zh) * 2020-03-17 2020-07-10 许昌泛网信通科技有限公司 一种车辆控制报文处理方法
US20210116907A1 (en) * 2018-03-18 2021-04-22 Driveu Tech Ltd. Device, System, and Method of Autonomous Driving and Tele-Operated Vehicles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6917585B1 (en) * 1999-06-02 2005-07-12 Nortel Networks Limited Method and apparatus for queue management
EP1757100B1 (en) * 2004-06-15 2008-08-27 NTT DoCoMo INC. Apparatus and method for generating a transmit frame
US8078057B2 (en) * 2006-02-21 2011-12-13 Nokia Siemens Networks Gmbh & Co. Kg Centralized congestion avoidance in a passive optical network
CN1885824A (zh) * 2006-06-07 2006-12-27 清华大学 主动队列管理的分类器实现方法
CN102291389A (zh) * 2011-07-14 2011-12-21 南京邮电大学 一种卫星网络中跨层拥塞控制方法
CA2786200C (en) * 2011-09-23 2015-04-21 Cygnus Broadband, Inc. Systems and methods for prioritization of data for intelligent discard in a communication network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8559420B1 (en) * 2011-09-07 2013-10-15 Unmanned Systems, Inc. Method and apparatus for reducing control communication delay in a remotely controlled apparatus
US20210116907A1 (en) * 2018-03-18 2021-04-22 Driveu Tech Ltd. Device, System, and Method of Autonomous Driving and Tele-Operated Vehicles
US20200081431A1 (en) * 2018-09-07 2020-03-12 DoorDash, Inc. Video system with frame synthesis
CN109808705A (zh) * 2019-01-23 2019-05-28 青岛慧拓智能机器有限公司 一种用于远程遥控驾驶控制的系统
CN110850711A (zh) * 2019-12-06 2020-02-28 中国科学院自动化研究所 基于云端的辅助驾驶控制系统及方法
CN111404650A (zh) * 2020-03-17 2020-07-10 许昌泛网信通科技有限公司 一种车辆控制报文处理方法

Also Published As

Publication number Publication date
CN113934196A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
US11218850B2 (en) Adaptive early warning method based on vehicle-to-everything and apparatus thereof
JP7484721B2 (ja) システム、サーバコンピュータ、車載装置、制御方法、半導体集積回路及びコンピュータプログラム
CN111866809A (zh) 一种无人矿卡远程遥控驾驶系统及方法
CN111245743B (zh) 一种信息处理方法、存储介质、网关及汽车
CN112752173A (zh) 一种用于m-otn系统动态无损带宽调整的方法与装置
US20220191140A1 (en) Data transmission control method, apparatus, and storage medium
CN111674345B (zh) 一种适用于高度自动驾驶的网络电气结构
WO2020037500A1 (zh) 智能驾驶方法、装置及存储介质
WO2023050606A1 (zh) 一种车辆远程插值拟合顺畅控制方法及装置
CN112437414A (zh) 一种远程驾驶车辆控制信息传输与处理方法
CN210380905U (zh) 一种基于优先级策略的信号路由转换装置及汽车
CN113442856B (zh) 基于自适应平台和ros2的控制方法、装置及存储介质
Ding et al. Edge-to-cloud intelligent vehicle-infrastructure based on 5G time-sensitive network integration
JP7499035B2 (ja) 通信装置及び通信方法
CN117880167A (zh) 一种基于深度强化学习的无人机路由调配方法
US20230262327A1 (en) Local generation of commands to a vehicle sensor
US11483568B2 (en) Data transmission to mobile devices
KR20210047626A (ko) 분산환경 패킷 전송 기반의 스트리밍 데이터 딥러닝 처리 가속화 시스템 및 이를 이용한 멀티 로케이션 멀티 스트리밍 이상상태 탐지 시스템
CN113282040B (zh) 减少整车网关转发丢帧的方法及装置
US20160301615A1 (en) Method and system for determining a number of vehicle-to-x messages to be discarded
WO2022048643A1 (zh) 车辆控制方法和装置、介质、设备、程序
CN114884887A (zh) 一种面向安全性的afdx交换机信用动态管理系统及方法
KR20240015793A (ko) 차량 데이터 수집 및 전송 장치 및 방법
CN113141415A (zh) 车辆的远程驾驶系统、方法、电子设备及存储介质
US20230198802A1 (en) Vehicle Control Device and Data Transfer Control Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21959166

Country of ref document: EP

Kind code of ref document: A1