WO2023050454A1 - User equipment, base station, and methods for ed threshold configuration for cot sharing - Google Patents

User equipment, base station, and methods for ed threshold configuration for cot sharing Download PDF

Info

Publication number
WO2023050454A1
WO2023050454A1 PCT/CN2021/122499 CN2021122499W WO2023050454A1 WO 2023050454 A1 WO2023050454 A1 WO 2023050454A1 CN 2021122499 W CN2021122499 W CN 2021122499W WO 2023050454 A1 WO2023050454 A1 WO 2023050454A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
cot
gnb
transmission
computer program
Prior art date
Application number
PCT/CN2021/122499
Other languages
French (fr)
Inventor
Jia SHENG
Original Assignee
Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd filed Critical Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd
Priority to PCT/CN2021/122499 priority Critical patent/WO2023050454A1/en
Priority to CN202180096603.4A priority patent/CN117099437A/en
Publication of WO2023050454A1 publication Critical patent/WO2023050454A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the present disclosure relates generally to methods and apparatus for cellular wireless communication in the high frequency spectrum, and in particular embodiments, to user equipment, base station and methods for COT sharing in 5G NR systems operating on high frequency unlicensed spectrum.
  • 5G NR New Radio
  • 5G NR is the latest in the series of 3GPP standards and a key feature of the 5G NR is its ability to operate in two different frequency ranges: sub-6GHz and millimeter wave (mmWave) .
  • sub-6GHz sub-6GHz
  • mmWave millimeter wave
  • 3GPP 5G NR standards define new Physical Layer (Layer 1) and Medium Access Control layer (Layer 2) features to support directional communications with a larger number of antenna elements and provide an additional beamforming gain.
  • Efficient beam management is crucial for user equipment (UE) and base station (BS) , e.g., gNodeB (gNB) , to regularly identify the optimal beams to work on at any given point of time.
  • Beam management refers to a set of Layer 1 and Layer 2 procedures to acquire and maintain a set of beam pair links, with a beam used at gNB paired with a beam used at UE. And beam management procedures are applied for both downlink (DL) and uplink (UL) transmission.
  • LBT Listen Before Talk
  • BS/UE first sense its radio environment before it starts a transmission.
  • the energy in the channel is measured and compared with energy detection (ED) threshold. If the received energy is below ED threshold, the channel is deemed to be clear and the transmission can take place.
  • ED energy detection
  • the initiator of the transmission e.g., BS
  • the receivers e.g., UE
  • COT maximum channel occupancy time
  • NR-U unlicensed spectrum
  • one of the fundamental operations is that if UE has passed the LBT and acquires a COT in a channel, UE can share the COT with corresponding gNB upon the completion of its UL transmission, then the gNB can make use of the remaining COT for DL transmission, so called as “COT sharing” . As shown in Fig. 1, after the completion of the UL transmission, UE shares the COT with gNB for DL transmission.
  • both gNB and UE should obtain the same channel conditions, e.g., interference levels, in the shared COT.
  • ED threshold at UE should be configured according to ED threshold at gNB for COT sharing.
  • a higher layer parameter “ul-toDL-COT-SharingED-Threshold-r16” related with ED threshold at gNB is indicated to UE for ED threshold configuration at UE, as shown in FIG. 2, and the gNB should adopt the channel related parameters, e.g., transmit power, in determining the ED threshold at gNB which is presented by this higher layer parameter.
  • UE adopts the higher layer parameter as ED threshold at UE to contend the channel with LBT.
  • 52.6GHz is highly directional, wherein the configurations of antenna for both transmission and reception are beamformed according to the targeted direction, the impacts of beamforming are investigated and thus directional LBT is introduced to cope with directional transmission and reception on the unlicensed high frequency band.
  • LBT is performed in an omni-directional way and ED threshold does not take into account beam related parameters including beamforming gain, beam direction, and/or beamwidth for transmission and reception.
  • UE may not exactly know how to associate the indicated ED threshold with the specific beam (s) , and the ED threshold irrelevant to beam (s) is likely to make COT sharing with directional LBT work improperly. Therefore, there is a need for methods and apparatus for ED threshold configuration for COT sharing in high frequency, in particular above 52.6GHz.
  • An object of the present disclosure is to propose methods, user equipment and base station for ED threshold configuration for COT sharing in high frequency spectrum.
  • one or more embodiments of the present disclosure provide a method for ED threshold configuration for COT sharing, executable in a user equipment (UE) for wireless communication in high frequency spectrum, comprising: receiving a signaling including an ED threshold obtained at a base station (BS) ; and configuring the ED threshold wherein the beamforming gain of the beam involved at the BS is excluded and the beamforming gain of at least one beam for COT sharing at the UE is included; and performing at least one listen before talk (LBT) time interval on the beam for COT sharing.
  • LBT listen before talk
  • one or more embodiments of the present disclosure provide a UE for wireless communication in high frequency spectrum, comprising: processing circuitry configured to receive a signaling including an energy detection (ED) threshold obtained at a base station (BS) ; and configure the ED threshold wherein the beamforming gain of the beam involved at the BS is excluded and the beamforming gain of at least one beam for COT sharing at the UE is included; and perform at least one listen before talk (LBT) time interval on the beam for COT sharing.
  • ED energy detection
  • BS base station
  • LBT listen before talk
  • one or more embodiments of the present disclosure provide a method for ED threshold configuration for COT sharing, executable in base station (BS) for wireless communication in high frequency spectrum, comprising: obtaining an ED threshold; and transmitting a signaling including the ED threshold wherein the beamforming gain of the beam related to the ED threshold can be excluded from.
  • BS base station
  • one or more embodiments of the present disclosure provide a BS for wireless communication in high frequency spectrum, comprising: processing circuitry configured to obtain an energy detect (ED) threshold; and transmit a signaling including the ED threshold wherein the beamforming gain of the beam related to the ED threshold can be excluded from.
  • ED energy detect
  • the disclosed method may be implemented in a chip.
  • the chip may include a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
  • the disclosed method may be programmed as computer-executable instructions stored in a non-transitory computer-readable medium.
  • the non-transitory computer-readable medium when loaded to a computer, directs a process of the computer to execute the disclosed method.
  • the non-transitory computer-readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read-Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read-Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
  • the disclosed method may be programmed as a computer program product, which causes a computer to execute the disclosed method.
  • the disclosed method may be programmed as a computer program, which causes a computer to execute the disclosed method.
  • ED threshold is configured with associated beam-related spatial information, which is beneficial for discovering interference situation for directional LBT, and making UE work properly with the configuration of ED threshold concerning beamforming gain with spatial information provided no matter what implicitly or explicitly , and making COT sharing work properly with miscellaneous relationship of sensing beam and transmission beam, and leading to a better throughput performance compared to COT sharing by ED threshold without spatial information.
  • FIG. 1 illustrates a schematic view showing COT sharing feature of UL transmission to DL transmission.
  • FIG. 2 illustrates a schematic view showing the signaling of ED threshold to UE by gNB for COT sharing with omni-directional LBT.
  • FIG. 3 illustrates a schematic view showing the signaling of ED threshold to UE by gNB for COT sharing with directional LBT.
  • FIG. 4 illustrates a schematic view showing an example of one pair of beams between gNB and UE.
  • FIG. 5 illustrates a schematic view showing an embodiment of the disclosed method for ED threshold configuration for COT sharing.
  • FIG. 6 illustrates a schematic view showing an example of COT sharing feature of UL transmission to DL transmission via one pair of beams.
  • FIG. 7 illustrates a schematic view showing an embodiment of the disclosed method for ED threshold configuration for COT sharing.
  • FIG. 8 illustrates a schematic view showing an embodiment of the disclosed method for ED threshold configuration for COT sharing.
  • FIG. 9 illustrates a schematic view showing an embodiment of the disclosed method for ED threshold configuration for COT sharing.
  • FIG. 10 illustrates a schematic view showing an example of multiple pairs of beams between gNB and UE.
  • FIG. 11 illustrates a schematic view showing an example of multiple pairs of beams between gNB and UE with one wide beam covering several narrow beams at gNB
  • FIG. 12 illustrates a schematic view showing an embodiment of the disclosed method for ED threshold configuration for COT sharing.
  • FIG. 13 illustrates a schematic view showing an embodiment of the disclosed method for ED threshold configuration for COT sharing.
  • FIG. 14 illustrates a schematic view showing an example of multiple pairs of beams between gNB and UE with one wide beam covering several narrow beams both at gNB and UE.
  • FIG. 15 illustrates a schematic view showing an embodiment of the disclosed method for ED threshold configuration for COT sharing.
  • FIG. 16 illustrates a schematic view showing an example of a UE.
  • FIG. 17 illustrates a schematic view showing an example of a BS.
  • FR1 is sub-6GHz, from 450MHz to 6000MHz whereas FR2 is millimeter wave (mmWave) band, from 24.25GHz to 52.6GHz, and a term FR2-2 is newly introduced to refer to the high frequency from 52.6GHz to 71GHz.
  • mmWave band uses very high frequency, it leads to propagation loss and other losses.
  • directional communication is required, particularly for wireless communication in FR2-2.
  • Antenna arrays with large number of antenna elements make it possible due to small wavelengths. This provides beamforming gain to the RF link budget which helps in compensation of propagation loss.
  • large antenna array helps to achieve higher data rate due to spatial multiplexing technique.
  • a user equipment (UE) 20 for a wireless communication in high frequency, includes a processing circuitry 21 configured to acquire a channel occupancy time (COT) and determine a number of remaining consecutive slots allocated for physical uplink shared channel (PUSCH) transmission to a base station (BS) 10.
  • UE 20 may generate uplink control information (UCI) to indicate a COT sharing boundary that is occurring at the end of remaining consecutive slots.
  • the UE 20 also includes radio frequency (RF) interface 22 that is coupled with the processor circuitry 21.
  • the RF interface 22 is configured to transmit the UCI in the PUSCH transmission during one of the remaining consecutive slots.
  • the processing circuitry 21 is also configured to monitor downlink transmissions from the base station 10 following the COT sharing boundary.
  • a base station (BS) 10 for a wireless communication in high frequency, includes a processing circuitry 11 configured to transmit a radio resource control (RRC) message to define a time domain allocation for PUSCH transmission to a UE 20, and to transmit a UE specific search space, a downlink control information (DCI) for scheduling of the PUSCH, and to receive the PUSCH transmission.
  • RRC radio resource control
  • DCI downlink control information
  • the BS 10 also includes radio frequency (RF) interface 12 that is coupled with the processing circuitry 11.
  • the RF interface 12 is configured to transmit the DCI in the PDCCH transmission.
  • a baseline to perform LBT is omni-directional sensing by the potential transmitter.
  • the operation in the higher frequency particularly for above 52.6GHz is highly directional, wherein the configuration of antenna for both transmission and reception are beamformed according to the targeted direction.
  • the potential transmitter needs to perform a LBT according to the same direction as it intended transmit beam direction, called as “directional LBT” , making it feasible to cope with directional transmission/reception on the unlicensed band and to improve spatial reuse in a more effective way.
  • directional LBT can lead to better channel access probability and correspondingly better spatial reuse under the same ED threshold as omni-directional LBT, and the gain is expected to be larger by using a different ED threshold for directional LBT.
  • the channel access gain for directional LBT will further outweigh its potential Signal to Interference &Noise Ratio (SINR) performance loss compared to omni-directional LBT, which correspondingly will lead to a better throughput performance than the omni-directional LBT.
  • SINR Signal to Interference &Noise Ratio
  • the main idea of this present disclosure is to provide a method for ED threshold configuration mechanism for COT sharing in high frequency unlicensed spectrum, through which ED threshold configuration takes into account the spatial information as well as beam related parameters for UL/DL transmission.
  • the spatial information is including, but not limited to, spatial filter, QCL type, TCI state, spatial relation, beamwidth, and/or antenna ports.
  • the beam related parameters is including, but not limited to beamforming gain, beam directions, and/or beamwidth.
  • gNB sweeps beam and UE selects a best one and report it to gNB, and then gNB refine beam for transmitter (gNB Tx) and UE detects the best one and report it to gNB, and then the gNB fixes a beam and UE refines its receiver beam. Thereafter, a set of beam pair links can be set between gNB and UE. As shown in the FIG. 3, there is one pair of beams between gNB 10 and UE 20 (one beam used at gNB paired with a beam 30 used at UE.
  • the calculation of the ED threshold at gNB is affected by the beamforming gain of the sensing beam, which cannot reflect the actual channel conditions for transmission and reception. Therefore, the ED threshold indicated to UE is to be excluded from the impact of the beamforming gain of the relevant beam at gNB, and is to be included with the spatial information which can associate the ED threshold with the beam (s) paired at UE.
  • the term “spatial ED threshold” is introduced here.
  • the spatial ED threshold should be configured to include the ED threshold indicated by gNB which can reflect the actual energy in the channel without the impact of the beamforming gain, and also include the spatial information which can associate the indicated ED threshold with the corresponding beam (s) at UE side.
  • the spatial information is of the spatial relationship among the beams at gNB and/or at UE, including but not limited to spatial filter, QCL type, TCI state, spatial relation, beamwidth, and/or antenna ports.
  • gNB should transmit a signaling indicating ED threshold to UE via beam pair links.
  • the beam pair links between gNB and UE are completed by the procedures of beam management.
  • the quantity of beam pair links can be one or more, depending on the results of beam sweeping and beam refinement for transmitter and receiver.
  • Sensing beam at gNB side and/or at UE side, is for the process (es) of the measurement and calculation of an ED threshold.
  • Signaling beam, at gNB side, is for the process (es) of gNB transmitting the signaling including ED threshold for COT sharing.
  • Sharing beam is for the process (es) of gNB sharing the COT for DL transmission upon the completion of UL transmission.
  • Beam A and Beam B there is one pair of beams between gNB and UE for COT sharing, so called Beam A and Beam B respectively.
  • Beam A at gNB takes the roles of sensing beam, signaling beam and sharing beam, while Beam B paired at UE by the procedures of beam management.
  • FIG. 5 is a flowchart of one embodiment of a method 100 in which the spatial information for the configuration of spatial ED threshold is provided implicitly.
  • the method 100 begins at block 110 where gNB obtains the measurement for an ED threshold via Beam A as a sensing beam and gNB calculates a “revised ED threshold” which the beamforming gain of Beam A is excluded from an ED threshold.
  • the calculation of the ED threshold may be determined according to several factors, including, but not limited to, channel bandwidth, transmit power of wireless device, and/or transmit antenna gain of wireless device. However, such calculation is bound to be under the influence of the beamforming gain of Beam A.
  • the revised ED threshold indicated by gNB to UE is calculated to exclude the beamforming gain of Beam A.
  • gNB transmits a signaling including revised ED threshold to UE via Beam A acting as a signaling beam.
  • UE receives the signaling including revised ED threshold from gNB via Beam B.
  • UE configures a spatial ED threshold with the revised ED threshold and the beamforming gain of Beam B, and performs LBT via Beam B with the spatial ED threshold.
  • UE passes LBT and acquires a COT
  • UE performs the UL transmission via Beam B.
  • gNB makes use of the remaining COT to perform DL transmission via Beam A acting as a sharing beam.
  • FIG. 6 shows the method 100 wherein COT sharing feature of UL to DL which is beam specific.
  • UE performs a full LBT via Beam B and acquires the COT.
  • UE first transmits the UL data via Beam B while gNB receives the UL data via Beam A.
  • gNB performs one short LBT via Beam A and transmits DL data via Beam A while UE receives the DL data via Beam B.
  • the short LBT performed by gNB is not mandatory when the gap between UL transmission and DL transmission is narrow enough according to requirement specifications.
  • any one or any two of sensing beam, signaling beam and sharing beam may be different beams, but these beams are of the same spatial information.
  • the beams are related with same QCL type, TCI state, and/or antenna ports. Thereby the method 100 can be applied as well.
  • FIG. 7 is a flowchart of one embodiment of a method 200 in which the spatial information for the configuration of spatial ED threshold is provided implicitly and UE knows the beamforming gain of Beam A for LBT processing.
  • the method 200 begins at block 210 where gNB obtains the measurement for an ED threshold via Beam A acting as a sensing beam and gNB calculates the ED threshold according to the factors including but not limited to channel bandwidth, transmit power of wireless device, and/or transmit antenna gain of wireless device.
  • gNB transmits a signaling including the ED threshold to UE via Beam A acting as a signaling beam.
  • UE receives the signaling including ED threshold via Beam B.
  • UE configures a spatial ED threshold by excluding the beamforming gain of Beam A from the ED threshold and including the beamforming gain of Beam B to the ED threshold, and then UE performs LBT.
  • UE passes LBT by using the spatial ED threshold and acquires a COT
  • UE performs UL transmission via Beam B.
  • gNB makes use of the remaining COT to perform DL transmission via Beam A acting as a sharing beam.
  • Beam A and Beam B there is one pair of beams between gNB and UE for COT sharing, so called Beam A and Beam B respectively.
  • Beam A at gNB takes the roles of sensing beam, signaling beam and sharing beam, while Beam B paired at UE by the procedures of beam management.
  • FIG. 8 is a flowchart of one embodiment of a method 300 in which the spatial information for the configuration of spatial ED threshold is provided explicitly.
  • the spatial information includes but not limited to QCL type, TCI state, spatial relation, beamwidth, and/or antenna ports.
  • FIG. 4 there is one pair of beams between gNB and UE for COT sharing, so called Beam A and Beam B respectively.
  • Beam A and Beam B respectively.
  • the functions of sensing beam, signaling beam and sharing beam at gNB are taken by the same beam, which is Beam A.
  • Beam B at UE is paired with Beam A.
  • a transmission configuration indication (TCI) state is used to establish the Quasi co-location (QCL) connection between the target reference signals (RS) and the source RS.
  • TCI states are configured for physical downlink control channel (PDCCH) or a physical downlink shared channel (PDSCH) in order to convey the QCL indication for the respective RS.
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the method 300 begins at block 310 where gNB obtains the measurement for an ED threshold via Beam A acting as a sensing beam and gNB calculates a “revised ED threshold” which the beamforming gain of Beam A is excluded from the ED threshold.
  • the calculation of the ED threshold is determined according to several factors including, but not limited to, channel bandwidth, transmit power of wireless device, and/or transmit antenna gain of wireless device, thus accompanied by the impact of the beamforming gain of Beam A. If gNB just transmit the ED threshold to UE for LBT and COT sharing, UE cannot associate the ED threshold with the specific beam (s) and cannot make sure of the actual channel conditions between gNB and UE, thus leading to the likelihood of improper UL/DL transmission.
  • the revised ED threshold indicated by gNB to UE excludes the beamforming gain of Beam A.
  • gNB transmits a signaling including the revised ED threshold and TCI state as the spatial information to UE via Beam A acting as a signaling beam.
  • UE receives the signaling including the revised ED threshold and TCI state from gNB via Beam B.
  • UE checks the TCI state whether it matches for Beam B.
  • the scenario is simplified by one pair of beams between gNB and UE. Usually there are multiple pairs of beams paired between gNB and UE under the operation of beam management.
  • UE will choose another beam for TCI state matching.
  • TCI state matches for Beam B UE configures a spatial ED threshold with the revised ED threshold and the beamforming gain of Beam B, and performs LBT via Beam B with the spatial ED threshold.
  • UE passes LBT and acquires a COT UE performs the UL transmission via Beam B.At block 370, gNB makes use of the remaining COT to perform DL transmission via Beam A acting as a sharing beam.
  • the signaling including the spatial information may be RRC signaling or DCI field.
  • any one or any two of sensing beam, signaling beam and sharing beam at gNB may be different beams, but these beams are of the same spatial information.
  • the beams are related with same QCL type, antenna ports, TCI state, and/or spatial relation.
  • the method 300 can be applied as well.
  • gNB does not need to calculate the revised ED threshold and may directly transmit the ED threshold to UE through the signaling.
  • UE may configure the spatial ED threshold by excluding the beamforming gain of the sensing beam and including the beamforming gain of the beam for COT sharing.
  • gNB when UE knows the beamforming gain of the sharing beam, gNB does not need to calculate the revised ED threshold and may directly transmit the ED threshold to UE through the signaling. Upon the reception of the signaling, UE may configure the spatial ED threshold by excluding the beamforming gain of the sharing beam and including the beamforming gain of the beam for COT sharing.
  • FIG. 9 is a flowchart of one embodiment of a method 400 in which the spatial information for the configuration of spatial ED threshold is provided explicitly and UE knows the beamforming gain of Beam A when performing LBT.
  • the method 400 begins at block 410 where gNB obtains the measurement for an ED threshold via Beam A acting as a sensing beam and gNB calculates an ED threshold according to the factors including but not limited to channel bandwidth, transmit power of wireless device, and/or transmit antenna gain of wireless device.
  • gNB beam transmits a signaling including the ED threshold and TCI state as the spatial information to UE via Beam A acting as a signaling beam.
  • UE receives the signaling including the ED threshold and TCI state via Beam B, and checks the TCI state whether it matches for Beam B.
  • UE checks the TCI state whether it matches for Beam B.
  • UE configures a spatial ED threshold by excluding the beamforming gain of Beam A from the ED threshold and including the beamforming gain of Beam B to the ED threshold, and performs LBT via Beam B with the spatial ED threshold.
  • UE passes LBT and acquires a COT
  • UE performs the UL transmission via Beam B.
  • gNB makes use of the remaining COT to perform DL transmission via Beam A acting as a sharing beam.
  • a revised ED threshold is in a form of a list or a table which contains the revised ED thresholds respectively for Beam A1 and Beam A2.
  • the signaling including the list or the table containing the revised ED thresholds respectively for Beam A1 and Beam A2 may be transmitted via Beam A1 or Beam A2.
  • the signaling may also include the spatial information of Beam A1and Beam A2, here the spatial information is to indicate the relationship of Beam A1 and Beam B1 and is to indicate the relationship of Beam A2 and Beam B2. Beam A1 and Beam A2 is not necessarily to be spatial related.
  • the signaling indication including the spatial information may be completed by RRC signaling or DCI field.
  • the revised ED thresholds respectively for Beam A1 and Beam A2 may be calculated separately and the revised ED thresholds may be transmitted separately to UE by different signalings via Beam A1 and Beam A2 respectively. And UE receives the revised ED thresholds via Beam B1 and Beam B2 accordingly.
  • revised ED threshold or unrevised ED threshold is updated periodically or non-periodically.
  • the beams at gNB are Beam W, Beam A1, Beam A2 and Beam A3, while the beams at UE are Beam B1, Beam B2 and Beam B3 paired with Beam A1, Beam A2 and Beam A3 respectively.
  • Beam W plays the role as sensing beam.
  • Beam A1, Beam A2 and Beam A3 may play the role as signaling beam or sharing beam.
  • FIG. 12 is a flowchart of one embodiment of a method 500 in which the spatial information for the configuration of spatial ED threshold is provided explicitly.
  • the spatial information may include QCL type, TCI state, or antenna ports.
  • the spatial information should be a set of beam-related information at gNB, e.g., several TCI states or several QCL types, e.g., QCL-Ds.
  • the method 500 begins at block 510 where gNB obtains the measurement for an ED threshold via Beam W acting as a sensing beam and gNB calculates a “revised ED threshold” which the beamforming gain of Beam W is excluded from the ED threshold.
  • gNB transmits a signaling including the revised ED threshold and TCI states as the spatial information to UE via Beam A1 acting as a signaling beam.
  • UE receives the signaling including the revised ED threshold and TCI states from gNB via Beam B1.
  • UE checks TCI states whether they match for Beam B1, Beam B2 and Beam B3.
  • UE configures a spatial ED threshold per Beam with the revised ED threshold and the beamforming gain of Beam B1, Beam B2 and Beam B3 respectively, and performs LBT via Beam B1, Beam B2 and Beam B3 with corresponding spatial ED threshold.
  • UE passes LBT and acquires a COT via Beam B1, Beam B2 and/or Beam B3, UE performs the UL transmission via Beam B1, Beam B2 and/or Beam B3.
  • gNB makes use of the remaining COT to perform DL transmission via corresponding beam including any combination of elements in the set of Beam A1, Beam A2 and Beam A3 as a sharing beam at gNB.
  • the gNB may transmit the signaling including the revised ED threshold and TCI states via any narrow beam, such as Beam A1, Beam A2 or Beam A3, since these beams covered by Beam W can be conceived as spatial related.
  • the signaling may be provided to UE via a third node as a helper node which is different from gNB in this present disclosure.
  • the helper node may be one base station, one relay or one UE.
  • new QCL type called as QCL-E may be introduced to define the “covering” spatial relationship among Beam W, Beam A1, Beam A2 and Beam A3.
  • gNB may use a spatial domain sensing filter that covers the spatial domain transmission filter used for the subsequent transmission during COT, e.g. based on the new type of QCL information provided to the intended UE in association with a DL Reference Signal (RS) , or in associated with any other DL-RS QCL type with that DL-RS.
  • RS DL Reference Signal
  • UE may use a spatial domain sensing filter that covers the spatial domain transmission filter used for the subsequent transmission during a COT, e.g., based on the new type of QCL information provided to the intended UE in association with DL RS for UL transmission, or in associated with any other DL-RS QCL type with that DL-RS for UL transmission.
  • FIG. 13 is a flowchart of one embodiment of a method 600 in which the spatial information for the configuration of spatial ED threshold is provided explicitly.
  • the spatial information may include the new QCL type called as “QCL-E” in this present disclosure, and QCL-E is configured with the spatial information of Beam W, Beam A1, Beam A2 and Beam A3, as shown in FIG. 11.
  • the method 600 begins at block 610 where gNB obtains the measurement for an ED threshold via Beam W acting as a sensing beam and gNB calculates a “revised ED threshold” which the beamforming gain of Beam W is excluded from the ED threshold.
  • gNB transmits a signaling including the revised ED threshold and QCL-E as the spatial information to UE via Beam A1 acting as a signaling beam.
  • UE receives the signaling including the revised ED threshold and QCL-E from gNB via Beam B1.
  • UE checks QCL-E whether it matches for Beam B1, Beam B2 and Beam B3.
  • UE configures a spatial ED threshold per Beam with the revised ED threshold and the beamforming gain of Beam B1, Beam B2 and Beam B3 respectively, and performs LBT via Beam B1, Beam B2 and Beam B3 with corresponding spatial ED threshold.
  • UE passes LBT and acquires a COT via Beam B1, Beam B2 and/or Beam B3, UE performs UL transmission via Beam B1, Beam B2 and/or Beam B3.
  • gNB makes use of the remaining COT to perform DL transmission via corresponding beam as a sharing beam at gNB.
  • the ED threshold may refer to several threshold values related to wide beam and narrow beams with the relationship of covering as shown in FIG. 11. Therefore, the spatial information may include several TCI states and/or several QCL-Ds. And threshold values may be calculated by the relative spatial locations of wide beam and narrow beams. The relative spatial locations are described by such parameters as the beamwidth, and/or beamforming gain of the specific narrow beam in certain direction relative to wide beam.
  • the spatial information may include QCL types, TCI states, or antenna ports.
  • the spatial information should be a set of beam-related information, e.g., several TCI states or several QCL-Ds.
  • FIG. 15 is a flowchart of one embodiment of a method 700 in which the spatial information for the configuration of spatial ED threshold is provided explicitly.
  • the method 700 begins at block 710 where gNB obtains the measurement for an ED threshold via Beam W acting as a sensing beam and gNB calculates a “revised ED threshold” which the beamforming gain of Beam W is excluded from the ED threshold.
  • gNB transmits a signaling including the revised ED threshold and TCI states as the spatial information to UE via Beam A1 acting as a signaling beam.
  • UE receives the signaling including the revised ED threshold and TCI states from gNB via Beam B1.
  • UE checks TCI states whether they match for Beam B1, Beam B2 and Beam B3.
  • TCI states match for Beam B1, Beam B2 and Beam B3, UE configures a spatial ED threshold with the revised ED threshold and the beamforming gain of Beam V, and UE performs LBT via Beam V with the spatial ED threshold, and/or UE configures a spatial ED threshold respectively for Beam B1, Beam B2 and Beam B3 with the revised ED threshold and the beamforming gain of Beam B1, Beam B2 and Beam B3 correspondingly, and UE performs LBT via Beam B1, Beam B2 and/or Beam B3.
  • At block 760 for every beam at UE, when UE passes LBT and acquires a COT via Beam B1, Beam B2 and/or Beam B3, UE performs UL transmission via Beam B1, Beam B2 and/or Beam B3 respectively.
  • gNB makes use of
  • the spatial information may be QCL-E which can define the spatial relationship among Beam W, Beam A1, Beam A2 and Beam A3.
  • the spatial information including QCL-E transmitted to UE matches for Beam V, Beam B1, Beam B2 and Beam B3, the beamforming gain of Beam V is adopted for the configuration of the spatial ED threshold for Beam B1, Beam B2 and Beam B3.
  • the gNB may transmit the signaling including revised ED threshold and QCL-E via any narrow beam, such as Beam A1, Beam A2 or Beam A3, since these beams are covered by the same beam which is Beam W.
  • any narrow beam such as Beam A1, Beam A2 or Beam A3, since these beams are covered by the same beam which is Beam W.
  • the signaling may be provided to UE via a third node as a helper node which is different from gNB in this present disclosure.
  • the helper node may be one base station, one relay or one UE.
  • the spatial information should include the relative spatial location/misalignment of wide beams both at gNB and UE.
  • the narrow beam when one narrow beam may be covered by more than one wide beam at gNB, the narrow beam may be related to several QCL-Es reflecting the spatial relationship between wide beam and narrow beam. Any one of these several QCL-Es can be associated with the ED threshold signaling, when the signaling is provided to the UE. When any QCL-E matches the beam (s) at UE, UE may configure the spatial ED threshold with the revised ED threshold.
  • the ED threshold at gNB may also be obtained from the reference signals (RS) of DL/UL transmission, instead of the measurement via a sensing beam and thereafter the calculation accordingly.
  • RS reference signals
  • the steps of measurement and calculation of the ED threshold at gNB via a sensing beam is preferred on account of the processing efficiency.
  • the beam related parameters for the spatial ED threshold may be beam directions and/or beamwidth instead of beamforming gain.
  • the Background Art section of the present disclosure may contain background information about the problem or environment of the present disclosure rather than describe prior art by others. Thus, inclusion of material in the Background Art section is not an admission of prior art by the Applicant.

Abstract

User equipment, base station and methods for ED threshold configuration for COT sharing are provided for wireless communication in high frequency unlicensed spectrum. A user equipment (UE) includes a processor circuitry configured to receive a signaling including an ED threshold obtained at a base station (BS); and configure the ED threshold wherein the beamforming gain of the beam at the BS is excluded and the beamforming gain of at least one beam for COT sharing at the UE is included; and perform at least one listen before talk (LBT) time interval on the beam for COT sharing. Abase station (BS) includes a processor circuitry configured to obtain an energy detect (ED) threshold; and transmit a signaling including the ED threshold.

Description

USER EQUIPMENT, BASE STATION, AND METHODS FOR ED THRESHOLD CONFIGURATION FOR COT SHARING Technical Field
The present disclosure relates generally to methods and apparatus for cellular wireless communication in the high frequency spectrum, and in particular embodiments, to user equipment, base station and methods for COT sharing in 5G NR systems operating on high frequency unlicensed spectrum.
Background Art
Unless otherwise indicated herein, approaches described in this section are not prior art to the claims listed below and are not admitted as prior art by inclusion in this section.
5G NR (New Radio) is the latest in the series of 3GPP standards and a key feature of the 5G NR is its ability to operate in two different frequency ranges: sub-6GHz and millimeter wave (mmWave) . As mmWave is a short-range, high-frequency wave operating above 24GHz spectrum which offers higher capacity, mmWave frequency bands with wider bandwidths is becoming more predominant.
As mmWave band uses very high frequency, it leads to propagation loss and other undesirable qualities such as signal blockage and fading effects. To address these limitations, 3GPP 5G NR standards define new Physical Layer (Layer 1) and Medium Access Control layer (Layer 2) features to support directional communications with a larger number of antenna elements and provide an additional beamforming gain. Efficient beam management is crucial for user equipment (UE) and base station (BS) , e.g., gNodeB (gNB) , to regularly identify the optimal beams to work on at any given point of time. Beam management refers to a set of Layer 1 and Layer 2 procedures to acquire and maintain a set of beam pair links, with a beam used at gNB paired with a beam used at UE. And beam management procedures are applied for both downlink (DL) and uplink (UL) transmission.
For 5G NR systems operating in higher frequency of above 52.6GHz, in order to minimize the interference into ongoing transmissions, the transmitter devices will use Listen Before Talk (LBT) approach where they sense the channel before initial transmissions. LBT is a technique used in radio communication whereby BS/UE first sense its radio environment before it starts a transmission. During the sensing period, the energy in the channel is measured and compared with energy detection (ED)  threshold. If the received energy is below ED threshold, the channel is deemed to be clear and the transmission can take place. After the channel is found clear (or idle) and hence available for transmission, the initiator of the transmission, e.g., BS, and the receivers, e.g., UE, could have successive transmissions for a duration up to the maximum channel occupancy time (COT) .
Technical Problem
For 5G NR in unlicensed spectrum (NR-U) , one of the fundamental operations is that if UE has passed the LBT and acquires a COT in a channel, UE can share the COT with corresponding gNB upon the completion of its UL transmission, then the gNB can make use of the remaining COT for DL transmission, so called as “COT sharing” . As shown in Fig. 1, after the completion of the UL transmission, UE shares the COT with gNB for DL transmission.
In order to have gNB and UE share a COT in a proper way, both gNB and UE should obtain the same channel conditions, e.g., interference levels, in the shared COT. Thereby, ED threshold at UE should be configured according to ED threshold at gNB for COT sharing. In technical specification (TS) 37.213-g30, a higher layer parameter “ul-toDL-COT-SharingED-Threshold-r16” related with ED threshold at gNB is indicated to UE for ED threshold configuration at UE, as shown in FIG. 2, and the gNB should adopt the channel related parameters, e.g., transmit power, in determining the ED threshold at gNB which is presented by this higher layer parameter. Thus UE adopts the higher layer parameter as ED threshold at UE to contend the channel with LBT.
As to the operation above 52.6GHz is highly directional, wherein the configurations of antenna for both transmission and reception are beamformed according to the targeted direction, the impacts of beamforming are investigated and thus directional LBT is introduced to cope with directional transmission and reception on the unlicensed high frequency band. For currently supported unlicensed techniques in 3GPP, LBT is performed in an omni-directional way and ED threshold does not take into account beam related parameters including beamforming gain, beam direction, and/or beamwidth for transmission and reception. If the same ED threshold obtained at gNB is indicated to UE by gNB as NR-U R16 does, UE may not exactly know how to associate the indicated ED threshold with the specific beam (s) , and the ED threshold irrelevant to beam (s) is likely to make COT sharing with directional LBT work improperly. Therefore, there is a need for methods and apparatus for ED  threshold configuration for COT sharing in high frequency, in particular above 52.6GHz.
Technical Solution
The following summary is illustrative only and is not intended to be limiting in any way. That is, the following summary is provided to introduce concepts, highlights, benefits and advantages of the novel and non-obvious techniques described herein. Select implementations are further described below in the detailed description. Thus, the following summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.
An object of the present disclosure is to propose methods, user equipment and base station for ED threshold configuration for COT sharing in high frequency spectrum.
According to a first aspect, one or more embodiments of the present disclosure provide a method for ED threshold configuration for COT sharing, executable in a user equipment (UE) for wireless communication in high frequency spectrum, comprising: receiving a signaling including an ED threshold obtained at a base station (BS) ; and configuring the ED threshold wherein the beamforming gain of the beam involved at the BS is excluded and the beamforming gain of at least one beam for COT sharing at the UE is included; and performing at least one listen before talk (LBT) time interval on the beam for COT sharing.
According to a second aspect, one or more embodiments of the present disclosure provide a UE for wireless communication in high frequency spectrum, comprising: processing circuitry configured to receive a signaling including an energy detection (ED) threshold obtained at a base station (BS) ; and configure the ED threshold wherein the beamforming gain of the beam involved at the BS is excluded and the beamforming gain of at least one beam for COT sharing at the UE is included; and perform at least one listen before talk (LBT) time interval on the beam for COT sharing.
According to a third aspect, one or more embodiments of the present disclosure provide a method for ED threshold configuration for COT sharing, executable in base station (BS) for wireless communication in high frequency spectrum, comprising: obtaining an ED threshold; and transmitting a signaling including the ED threshold wherein the beamforming gain of the beam related to the ED threshold can be excluded from.
According to a fourth aspect, one or more embodiments of the present disclosure provide a BS for  wireless communication in high frequency spectrum, comprising: processing circuitry configured to obtain an energy detect (ED) threshold; and transmit a signaling including the ED threshold wherein the beamforming gain of the beam related to the ED threshold can be excluded from.
The disclosed method may be implemented in a chip. The chip may include a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
The disclosed method may be programmed as computer-executable instructions stored in a non-transitory computer-readable medium. The non-transitory computer-readable medium, when loaded to a computer, directs a process of the computer to execute the disclosed method.
The non-transitory computer-readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read-Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read-Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
The disclosed method may be programmed as a computer program product, which causes a computer to execute the disclosed method.
The disclosed method may be programmed as a computer program, which causes a computer to execute the disclosed method.
Advantageous Effects
The disclosed methods wherein ED threshold is configured with associated beam-related spatial information, which is beneficial for discovering interference situation for directional LBT, and making UE work properly with the configuration of ED threshold concerning beamforming gain with spatial information provided no matter what implicitly or explicitly , and making COT sharing work properly with miscellaneous relationship of sensing beam and transmission beam, and leading to a better throughput performance compared to COT sharing by ED threshold without spatial information.
Description of Drawings
In order to more clearly illustrate the embodiments of the present disclosure or related art, the following figures which will be described in the embodiments are briefly introduced. These drawings should not be construed to limit the present disclosure.
FIG. 1 illustrates a schematic view showing COT sharing feature of UL transmission to DL transmission.
FIG. 2 illustrates a schematic view showing the signaling of ED threshold to UE by gNB for COT sharing with omni-directional LBT.
FIG. 3 illustrates a schematic view showing the signaling of ED threshold to UE by gNB for COT sharing with directional LBT.
FIG. 4 illustrates a schematic view showing an example of one pair of beams between gNB and UE.
FIG. 5 illustrates a schematic view showing an embodiment of the disclosed method for ED threshold configuration for COT sharing.
FIG. 6 illustrates a schematic view showing an example of COT sharing feature of UL transmission to DL transmission via one pair of beams.
FIG. 7 illustrates a schematic view showing an embodiment of the disclosed method for ED threshold configuration for COT sharing.
FIG. 8 illustrates a schematic view showing an embodiment of the disclosed method for ED threshold configuration for COT sharing.
FIG. 9 illustrates a schematic view showing an embodiment of the disclosed method for ED threshold configuration for COT sharing.
FIG. 10 illustrates a schematic view showing an example of multiple pairs of beams between gNB and UE.
FIG. 11 illustrates a schematic view showing an example of multiple pairs of beams between gNB and UE with one wide beam covering several narrow beams at gNB
FIG. 12 illustrates a schematic view showing an embodiment of the disclosed method for ED threshold configuration for COT sharing.
FIG. 13 illustrates a schematic view showing an embodiment of the disclosed method for ED threshold configuration for COT sharing.
FIG. 14 illustrates a schematic view showing an example of multiple pairs of beams between gNB and UE with one wide beam covering several narrow beams both at gNB and UE.
FIG. 15 illustrates a schematic view showing an embodiment of the disclosed method for ED  threshold configuration for COT sharing.
FIG. 16 illustrates a schematic view showing an example of a UE.
FIG. 17 illustrates a schematic view showing an example of a BS.
Detailed Description of Illustrative Embodiments
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not limit the scope of the present disclosure.
Reference in the specification to “one embodiment” , “an embodiment” , “one or more embodiments” or the like means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Moreover, the term “embodiment” in various places in the specification is not necessarily referring to the same embodiment. That is, various features are described which may be exhibited by some embodiments and not by other embodiments.
5G supports FR1 and FR2 frequency bands. FR1 is sub-6GHz, from 450MHz to 6000MHz whereas FR2 is millimeter wave (mmWave) band, from 24.25GHz to 52.6GHz, and a term FR2-2 is newly introduced to refer to the high frequency from 52.6GHz to 71GHz. As mmWave band uses very high frequency, it leads to propagation loss and other losses. To compensate for the losses, directional communication is required, particularly for wireless communication in FR2-2. Antenna arrays with large number of antenna elements make it possible due to small wavelengths. This provides beamforming gain to the RF link budget which helps in compensation of propagation loss. Moreover, large antenna array helps to achieve higher data rate due to spatial multiplexing technique. These directional links require accurate alignment of transmitted and received beams.
For the process of COT sharing, as shown in FIG. 16, a user equipment (UE) 20, for a wireless communication in high frequency, includes a processing circuitry 21 configured to acquire a channel occupancy time (COT) and determine a number of remaining consecutive slots allocated for physical uplink shared channel (PUSCH) transmission to a base station (BS) 10. UE 20 may generate uplink control information (UCI) to indicate a COT sharing boundary that is occurring at the end of remaining  consecutive slots. The UE 20 also includes radio frequency (RF) interface 22 that is coupled with the processor circuitry 21. The RF interface 22 is configured to transmit the UCI in the PUSCH transmission during one of the remaining consecutive slots. And the processing circuitry 21 is also configured to monitor downlink transmissions from the base station 10 following the COT sharing boundary.
For the process of COT sharing, as shown in FIG. 17, a base station (BS) 10, for a wireless communication in high frequency, includes a processing circuitry 11 configured to transmit a radio resource control (RRC) message to define a time domain allocation for PUSCH transmission to a UE 20, and to transmit a UE specific search space, a downlink control information (DCI) for scheduling of the PUSCH, and to receive the PUSCH transmission. The BS 10 also includes radio frequency (RF) interface 12 that is coupled with the processing circuitry 11. The RF interface 12 is configured to transmit the DCI in the PDCCH transmission.
For currently supported unlicensed techniques in 3GPP, including Rel-16 NR-U, a baseline to perform LBT is omni-directional sensing by the potential transmitter. However, the operation in the higher frequency particularly for above 52.6GHz is highly directional, wherein the configuration of antenna for both transmission and reception are beamformed according to the targeted direction. Thus, the potential transmitter needs to perform a LBT according to the same direction as it intended transmit beam direction, called as “directional LBT” , making it feasible to cope with directional transmission/reception on the unlicensed band and to improve spatial reuse in a more effective way.
Compared to the baseline omni-directional LBT, directional LBT can lead to better channel access probability and correspondingly better spatial reuse under the same ED threshold as omni-directional LBT, and the gain is expected to be larger by using a different ED threshold for directional LBT. The channel access gain for directional LBT will further outweigh its potential Signal to Interference &Noise Ratio (SINR) performance loss compared to omni-directional LBT, which correspondingly will lead to a better throughput performance than the omni-directional LBT.
The main idea of this present disclosure is to provide a method for ED threshold configuration mechanism for COT sharing in high frequency unlicensed spectrum, through which ED threshold configuration takes into account the spatial information as well as beam related parameters for UL/DL transmission. The spatial information is including, but not limited to, spatial filter, QCL type, TCI state,  spatial relation, beamwidth, and/or antenna ports. The beam related parameters is including, but not limited to beamforming gain, beam directions, and/or beamwidth. By using a different ED threshold, both BS and UE can discover interference situation more precisely when performing directional-LBT.
In the operation of beam management, gNB sweeps beam and UE selects a best one and report it to gNB, and then gNB refine beam for transmitter (gNB Tx) and UE detects the best one and report it to gNB, and then the gNB fixes a beam and UE refines its receiver beam. Thereafter, a set of beam pair links can be set between gNB and UE. As shown in the FIG. 3, there is one pair of beams between gNB 10 and UE 20 (one beam used at gNB paired with a beam 30 used at UE. Considering the process of ED threshold measurement at gNB may be via a sensing beam, the calculation of the ED threshold at gNB is affected by the beamforming gain of the sensing beam, which cannot reflect the actual channel conditions for transmission and reception. Therefore, the ED threshold indicated to UE is to be excluded from the impact of the beamforming gain of the relevant beam at gNB, and is to be included with the spatial information which can associate the ED threshold with the beam (s) paired at UE. In the present disclosure the term “spatial ED threshold” is introduced here. The spatial ED threshold should be configured to include the ED threshold indicated by gNB which can reflect the actual energy in the channel without the impact of the beamforming gain, and also include the spatial information which can associate the indicated ED threshold with the corresponding beam (s) at UE side.
The spatial information is of the spatial relationship among the beams at gNB and/or at UE, including but not limited to spatial filter, QCL type, TCI state, spatial relation, beamwidth, and/or antenna ports.
As show in the FIG. 4, gNB should transmit a signaling indicating ED threshold to UE via beam pair links. The beam pair links between gNB and UE are completed by the procedures of beam management. As a matter of fact, the quantity of beam pair links can be one or more, depending on the results of beam sweeping and beam refinement for transmitter and receiver.
In the present disclosure, according to the functions for one beam in the COT sharing, roles per functionality are defined as follows:
Sensing beam, at gNB side and/or at UE side, is for the process (es) of the measurement and calculation of an ED threshold.
Signaling beam, at gNB side, is for the process (es) of gNB transmitting the signaling including  ED threshold for COT sharing.
Sharing beam, at gNB side, is for the process (es) of gNB sharing the COT for DL transmission upon the completion of UL transmission.
And for beam with the roles above at gNB side, there is also one beam paired at UE side correspondingly, which is also completed by beam management.
In one or more embodiments, as shown in FIG. 4, there is one pair of beams between gNB and UE for COT sharing, so called Beam A and Beam B respectively. Beam A at gNB takes the roles of sensing beam, signaling beam and sharing beam, while Beam B paired at UE by the procedures of beam management.
FIG. 5 is a flowchart of one embodiment of a method 100 in which the spatial information for the configuration of spatial ED threshold is provided implicitly. The method 100 begins at block 110 where gNB obtains the measurement for an ED threshold via Beam A as a sensing beam and gNB calculates a “revised ED threshold” which the beamforming gain of Beam A is excluded from an ED threshold. The calculation of the ED threshold may be determined according to several factors, including, but not limited to, channel bandwidth, transmit power of wireless device, and/or transmit antenna gain of wireless device. However, such calculation is bound to be under the influence of the beamforming gain of Beam A. If gNB just transmit the ED threshold without revision to UE for LBT and COT sharing, UE cannot associate the ED threshold with the specific beam (s) and cannot make sure of the actual channel conditions between gNB and UE, thus leading to the likelihood of improper UL/DL transmission. Hence, the revised ED threshold indicated by gNB to UE is calculated to exclude the beamforming gain of Beam A. At block 120, gNB transmits a signaling including revised ED threshold to UE via Beam A acting as a signaling beam. At block 130, UE receives the signaling including revised ED threshold from gNB via Beam B. At block 140, UE configures a spatial ED threshold with the revised ED threshold and the beamforming gain of Beam B, and performs LBT via Beam B with the spatial ED threshold. At block 150, when UE passes LBT and acquires a COT, UE performs the UL transmission via Beam B. At block 160, gNB makes use of the remaining COT to perform DL transmission via Beam A acting as a sharing beam.
FIG. 6 shows the method 100 wherein COT sharing feature of UL to DL which is beam specific. UE performs a full LBT via Beam B and acquires the COT. During the COT, UE first transmits the  UL data via Beam B while gNB receives the UL data via Beam A. Then gNB performs one short LBT via Beam A and transmits DL data via Beam A while UE receives the DL data via Beam B. The short LBT performed by gNB is not mandatory when the gap between UL transmission and DL transmission is narrow enough according to requirement specifications.
As an alternative to the embodiment described above, any one or any two of sensing beam, signaling beam and sharing beam may be different beams, but these beams are of the same spatial information. For instance, the beams are related with same QCL type, TCI state, and/or antenna ports. Thereby the method 100 can be applied as well.
FIG. 7 is a flowchart of one embodiment of a method 200 in which the spatial information for the configuration of spatial ED threshold is provided implicitly and UE knows the beamforming gain of Beam A for LBT processing. The method 200 begins at block 210 where gNB obtains the measurement for an ED threshold via Beam A acting as a sensing beam and gNB calculates the ED threshold according to the factors including but not limited to channel bandwidth, transmit power of wireless device, and/or transmit antenna gain of wireless device. At block 210, there is no need for gNB to calculate a revised ED threshold by excluding the beamforming gain of Beam A from the ED threshold. At block 220, gNB transmits a signaling including the ED threshold to UE via Beam A acting as a signaling beam. At block 230, UE receives the signaling including ED threshold via Beam B. At block 240, UE configures a spatial ED threshold by excluding the beamforming gain of Beam A from the ED threshold and including the beamforming gain of Beam B to the ED threshold, and then UE performs LBT. At block 250, when UE passes LBT by using the spatial ED threshold and acquires a COT, UE performs UL transmission via Beam B. At block 260, gNB makes use of the remaining COT to perform DL transmission via Beam A acting as a sharing beam.
In one or more embodiments, as shown in FIG. 4, there is one pair of beams between gNB and UE for COT sharing, so called Beam A and Beam B respectively. Beam A at gNB takes the roles of sensing beam, signaling beam and sharing beam, while Beam B paired at UE by the procedures of beam management.
FIG. 8 is a flowchart of one embodiment of a method 300 in which the spatial information for the configuration of spatial ED threshold is provided explicitly. The spatial information includes but not limited to QCL type, TCI state, spatial relation, beamwidth, and/or antenna ports. As shown in FIG. 4,  there is one pair of beams between gNB and UE for COT sharing, so called Beam A and Beam B respectively. Thus, the functions of sensing beam, signaling beam and sharing beam at gNB are taken by the same beam, which is Beam A. And Beam B at UE is paired with Beam A.
For 5G NR, a transmission configuration indication (TCI) state is used to establish the Quasi co-location (QCL) connection between the target reference signals (RS) and the source RS. TCI states are configured for physical downlink control channel (PDCCH) or a physical downlink shared channel (PDSCH) in order to convey the QCL indication for the respective RS.
The method 300 begins at block 310 where gNB obtains the measurement for an ED threshold via Beam A acting as a sensing beam and gNB calculates a “revised ED threshold” which the beamforming gain of Beam A is excluded from the ED threshold. The calculation of the ED threshold is determined according to several factors including, but not limited to, channel bandwidth, transmit power of wireless device, and/or transmit antenna gain of wireless device, thus accompanied by the impact of the beamforming gain of Beam A. If gNB just transmit the ED threshold to UE for LBT and COT sharing, UE cannot associate the ED threshold with the specific beam (s) and cannot make sure of the actual channel conditions between gNB and UE, thus leading to the likelihood of improper UL/DL transmission. Hence, the revised ED threshold indicated by gNB to UE excludes the beamforming gain of Beam A. At block 320, gNB transmits a signaling including the revised ED threshold and TCI state as the spatial information to UE via Beam A acting as a signaling beam. At block 330, UE receives the signaling including the revised ED threshold and TCI state from gNB via Beam B. At block 340, UE checks the TCI state whether it matches for Beam B. Here the scenario is simplified by one pair of beams between gNB and UE. Usually there are multiple pairs of beams paired between gNB and UE under the operation of beam management. Thus, if the TCI state received by UE does not match for Beam B, UE will choose another beam for TCI state matching. At block 350, when TCI state matches for Beam B, UE configures a spatial ED threshold with the revised ED threshold and the beamforming gain of Beam B, and performs LBT via Beam B with the spatial ED threshold. At block 360, when UE passes LBT and acquires a COT, UE performs the UL transmission via Beam B.At block 370, gNB makes use of the remaining COT to perform DL transmission via Beam A acting as a sharing beam.
As an alternative to the embodiment described above, the signaling including the spatial  information may be RRC signaling or DCI field.
As an alternative to the embodiment described above, any one or any two of sensing beam, signaling beam and sharing beam at gNB may be different beams, but these beams are of the same spatial information. For instance, the beams are related with same QCL type, antenna ports, TCI state, and/or spatial relation. The method 300 can be applied as well. When UE knows the beamforming gain of the sensing beam, gNB does not need to calculate the revised ED threshold and may directly transmit the ED threshold to UE through the signaling. Upon the reception of the signaling, UE may configure the spatial ED threshold by excluding the beamforming gain of the sensing beam and including the beamforming gain of the beam for COT sharing. Likewise, when UE knows the beamforming gain of the sharing beam, gNB does not need to calculate the revised ED threshold and may directly transmit the ED threshold to UE through the signaling. Upon the reception of the signaling, UE may configure the spatial ED threshold by excluding the beamforming gain of the sharing beam and including the beamforming gain of the beam for COT sharing.
FIG. 9 is a flowchart of one embodiment of a method 400 in which the spatial information for the configuration of spatial ED threshold is provided explicitly and UE knows the beamforming gain of Beam A when performing LBT. The method 400 begins at block 410 where gNB obtains the measurement for an ED threshold via Beam A acting as a sensing beam and gNB calculates an ED threshold according to the factors including but not limited to channel bandwidth, transmit power of wireless device, and/or transmit antenna gain of wireless device. At block 410, there is no need for gNB to calculate a revised ED threshold by excluding the beamforming gain of Beam A from the ED threshold. At block 420, gNB beam transmits a signaling including the ED threshold and TCI state as the spatial information to UE via Beam A acting as a signaling beam. At block 430, UE receives the signaling including the ED threshold and TCI state via Beam B, and checks the TCI state whether it matches for Beam B. At block 440, UE checks the TCI state whether it matches for Beam B. At block 450, when TCI state matches for Beam B, UE configures a spatial ED threshold by excluding the beamforming gain of Beam A from the ED threshold and including the beamforming gain of Beam B to the ED threshold, and performs LBT via Beam B with the spatial ED threshold. At block 460, when UE passes LBT and acquires a COT, UE performs the UL transmission via Beam B. At block 470, gNB makes use of the remaining COT to perform DL transmission via Beam A acting as a sharing  beam.
As an alternative to the embodiment described above, there are multiple pairs of beams between gNB and UE for COT sharing. As shown in FIG. 10, the beams at gNB are Beam A1 and Beam A2, while the beams at UE are Beam B1 and Beam B2 paired with Beam A1 and Beam A2 respectively. Hence a revised ED threshold is in a form of a list or a table which contains the revised ED thresholds respectively for Beam A1 and Beam A2. The signaling including the list or the table containing the revised ED thresholds respectively for Beam A1 and Beam A2 may be transmitted via Beam A1 or Beam A2. And the signaling may also include the spatial information of Beam A1and Beam A2, here the spatial information is to indicate the relationship of Beam A1 and Beam B1 and is to indicate the relationship of Beam A2 and Beam B2. Beam A1 and Beam A2 is not necessarily to be spatial related. The signaling indication including the spatial information may be completed by RRC signaling or DCI field.
As an alternative to the embodiment described above, the revised ED thresholds respectively for Beam A1 and Beam A2 may be calculated separately and the revised ED thresholds may be transmitted separately to UE by different signalings via Beam A1 and Beam A2 respectively. And UE receives the revised ED thresholds via Beam B1 and Beam B2 accordingly.
As an alternative to the embodiment described above, revised ED threshold or unrevised ED threshold is updated periodically or non-periodically.
In one or more embodiments, as shown in FIG. 11, there are multiple pairs of beams between gNB and UE for COT sharing, and at gNB one wide beam covers several narrow beams. The beams at gNB are Beam W, Beam A1, Beam A2 and Beam A3, while the beams at UE are Beam B1, Beam B2 and Beam B3 paired with Beam A1, Beam A2 and Beam A3 respectively. Beam W plays the role as sensing beam. Beam A1, Beam A2 and Beam A3 may play the role as signaling beam or sharing beam. Beam W covers Beam A1, Beam A2 and Beam A3, which may refer to that the angle included in the [X] dB beamwidth of the signaling beam or sharing beam is included in the [X] dB beamwidth of the sensing beam while X is a value, for example X=3.
FIG. 12 is a flowchart of one embodiment of a method 500 in which the spatial information for the configuration of spatial ED threshold is provided explicitly. The spatial information may include QCL type, TCI state, or antenna ports. As shown in FIG. 11, the spatial information should be a set of  beam-related information at gNB, e.g., several TCI states or several QCL types, e.g., QCL-Ds.
The method 500 begins at block 510 where gNB obtains the measurement for an ED threshold via Beam W acting as a sensing beam and gNB calculates a “revised ED threshold” which the beamforming gain of Beam W is excluded from the ED threshold. At block 520, gNB transmits a signaling including the revised ED threshold and TCI states as the spatial information to UE via Beam A1 acting as a signaling beam. At block 530, UE receives the signaling including the revised ED threshold and TCI states from gNB via Beam B1. At block 540, UE checks TCI states whether they match for Beam B1, Beam B2 and Beam B3. At block 550, when TCI states match for Beam B1, Beam B2 and Beam B3, UE configures a spatial ED threshold per Beam with the revised ED threshold and the beamforming gain of Beam B1, Beam B2 and Beam B3 respectively, and performs LBT via Beam B1, Beam B2 and Beam B3 with corresponding spatial ED threshold. At block 560, for every beam at UE, when UE passes LBT and acquires a COT via Beam B1, Beam B2 and/or Beam B3, UE performs the UL transmission via Beam B1, Beam B2 and/or Beam B3. At block 570, gNB makes use of the remaining COT to perform DL transmission via corresponding beam including any combination of elements in the set of Beam A1, Beam A2 and Beam A3 as a sharing beam at gNB.
As an alternative to the embodiment described above, the gNB may transmit the signaling including the revised ED threshold and TCI states via any narrow beam, such as Beam A1, Beam A2 or Beam A3, since these beams covered by Beam W can be conceived as spatial related.
As an alternative to the embodiment described above, the signaling may be provided to UE via a third node as a helper node which is different from gNB in this present disclosure. The helper node may be one base station, one relay or one UE.
Regarding the details of extending the beam correspondence framework and/or QCL/TCI framework, new QCL type called as QCL-E may be introduced to define the “covering” spatial relationship among Beam W, Beam A1, Beam A2 and Beam A3. For DL transmission, gNB may use a spatial domain sensing filter that covers the spatial domain transmission filter used for the subsequent transmission during COT, e.g. based on the new type of QCL information provided to the intended UE in association with a DL Reference Signal (RS) , or in associated with any other DL-RS QCL type with that DL-RS. For UL transmission, UE may use a spatial domain sensing filter that covers the spatial domain transmission filter used for the subsequent transmission during a COT, e.g., based on the new  type of QCL information provided to the intended UE in association with DL RS for UL transmission, or in associated with any other DL-RS QCL type with that DL-RS for UL transmission.
FIG. 13 is a flowchart of one embodiment of a method 600 in which the spatial information for the configuration of spatial ED threshold is provided explicitly. The spatial information may include the new QCL type called as “QCL-E” in this present disclosure, and QCL-E is configured with the spatial information of Beam W, Beam A1, Beam A2 and Beam A3, as shown in FIG. 11.
The method 600 begins at block 610 where gNB obtains the measurement for an ED threshold via Beam W acting as a sensing beam and gNB calculates a “revised ED threshold” which the beamforming gain of Beam W is excluded from the ED threshold. At block 620, gNB transmits a signaling including the revised ED threshold and QCL-E as the spatial information to UE via Beam A1 acting as a signaling beam. At block 630, UE receives the signaling including the revised ED threshold and QCL-E from gNB via Beam B1. At block 640, UE checks QCL-E whether it matches for Beam B1, Beam B2 and Beam B3. At block 650, when QCL-E matches for Beam B1, Beam B2 and Beam B3, UE configures a spatial ED threshold per Beam with the revised ED threshold and the beamforming gain of Beam B1, Beam B2 and Beam B3 respectively, and performs LBT via Beam B1, Beam B2 and Beam B3 with corresponding spatial ED threshold. At block 660, for every beam at UE, when UE passes LBT and acquires a COT via Beam B1, Beam B2 and/or Beam B3, UE performs UL transmission via Beam B1, Beam B2 and/or Beam B3. At block 670, gNB makes use of the remaining COT to perform DL transmission via corresponding beam as a sharing beam at gNB.
As an alternative to the embodiment described above, the ED threshold may refer to several threshold values related to wide beam and narrow beams with the relationship of covering as shown in FIG. 11. Therefore, the spatial information may include several TCI states and/or several QCL-Ds. And threshold values may be calculated by the relative spatial locations of wide beam and narrow beams. The relative spatial locations are described by such parameters as the beamwidth, and/or beamforming gain of the specific narrow beam in certain direction relative to wide beam.
In one or more embodiments, as shown in FIG. 14, there are multiple pairs of beams between gNB and UE for COT sharing, and at gNB one wide beam covers several narrow beams while at UE another wide beam covers several narrow beams as well. At gNB Beam W covers Beam A1, Beam A2 and Beam A3, and at UE Beam V covers Beam B1, Beam B2 and Beam B3. Beam W plays the role of  sensing beam. Beam A1, Beam A2 and Beam A3 may play the role as signaling beam or sharing beam. Beam A1, Beam A2 and Beam A3 are paired with Beam B1, Beam B2 and Beam B3 respectively. The spatial information may include QCL types, TCI states, or antenna ports. The spatial information should be a set of beam-related information, e.g., several TCI states or several QCL-Ds.
FIG. 15 is a flowchart of one embodiment of a method 700 in which the spatial information for the configuration of spatial ED threshold is provided explicitly. The method 700 begins at block 710 where gNB obtains the measurement for an ED threshold via Beam W acting as a sensing beam and gNB calculates a “revised ED threshold” which the beamforming gain of Beam W is excluded from the ED threshold. At block 720, gNB transmits a signaling including the revised ED threshold and TCI states as the spatial information to UE via Beam A1 acting as a signaling beam. At block 730, UE receives the signaling including the revised ED threshold and TCI states from gNB via Beam B1. At block 740, UE checks TCI states whether they match for Beam B1, Beam B2 and Beam B3. At block 750, if TCI states match for Beam B1, Beam B2 and Beam B3, UE configures a spatial ED threshold with the revised ED threshold and the beamforming gain of Beam V, and UE performs LBT via Beam V with the spatial ED threshold, and/or UE configures a spatial ED threshold respectively for Beam B1, Beam B2 and Beam B3 with the revised ED threshold and the beamforming gain of Beam B1, Beam B2 and Beam B3 correspondingly, and UE performs LBT via Beam B1, Beam B2 and/or Beam B3.At block 760, for every beam at UE, when UE passes LBT and acquires a COT via Beam B1, Beam B2 and/or Beam B3, UE performs UL transmission via Beam B1, Beam B2 and/or Beam B3 respectively. At block 770, gNB makes use of the remaining COT to perform DL transmission via corresponding beam as a sharing beam at gNB.
As an alternative to the embodiment described above, the spatial information may be QCL-E which can define the spatial relationship among Beam W, Beam A1, Beam A2 and Beam A3. When the spatial information including QCL-E transmitted to UE matches for Beam V, Beam B1, Beam B2 and Beam B3, the beamforming gain of Beam V is adopted for the configuration of the spatial ED threshold for Beam B1, Beam B2 and Beam B3.
As an alternative to the embodiment described above, the gNB may transmit the signaling including revised ED threshold and QCL-E via any narrow beam, such as Beam A1, Beam A2 or Beam A3, since these beams are covered by the same beam which is Beam W.
As an alternative to the embodiment described above, the signaling may be provided to UE via a third node as a helper node which is different from gNB in this present disclosure. The helper node may be one base station, one relay or one UE.
As an alternative to the embodiment described above, one set of narrow beams covered by wide beams at gNB and another set of narrow beams covered by wide beam at UE are not aligned, the spatial information should include the relative spatial location/misalignment of wide beams both at gNB and UE.
As an alternative to the embodiment described above, when one narrow beam may be covered by more than one wide beam at gNB, the narrow beam may be related to several QCL-Es reflecting the spatial relationship between wide beam and narrow beam. Any one of these several QCL-Es can be associated with the ED threshold signaling, when the signaling is provided to the UE. When any QCL-E matches the beam (s) at UE, UE may configure the spatial ED threshold with the revised ED threshold.
As an alternative to all embodiments described above, the ED threshold at gNB may also be obtained from the reference signals (RS) of DL/UL transmission, instead of the measurement via a sensing beam and thereafter the calculation accordingly. The steps of measurement and calculation of the ED threshold at gNB via a sensing beam is preferred on account of the processing efficiency.
As an alternative to all embodiments described above, the beam related parameters for the spatial ED threshold may be beam directions and/or beamwidth instead of beamforming gain.
The Background Art section of the present disclosure may contain background information about the problem or environment of the present disclosure rather than describe prior art by others. Thus, inclusion of material in the Background Art section is not an admission of prior art by the Applicant.

Claims (36)

  1. A method for energy detection (ED) threshold configuration for channel occupancy time (COT) sharing, executable in a user equipment (UE) for wireless communication in high frequency spectrum, comprising:
    receiving a signaling including an ED threshold obtained at a base station (BS) ; and
    configuring the ED threshold wherein the beamforming gain of the beam involved at the BS is excluded and the beamforming gain of at least one beam for COT sharing at the UE is included; and
    performing at least one listen before talk (LBT) time interval on the beam for COT sharing.
  2. The method of claim 1, wherein the signaling includes the spatial information related to at least one pair of beams for COT sharing.
  3. The method of claim 2, wherein the spatial information includes spatial filter, QCL type, TCI state, spatial relation, and/or antenna port.
  4. The method of claim 2, wherein the UE checks the spatial information with the beam for COT sharing before configuring the ED threshold for the beam for COT sharing.
  5. The method of claim 1, wherein the ED threshold is obtained via at least one sensing beam, or is obtained from reference signals (RS) for UL transmission and/or DL transmission.
  6. The method of claim 1, wherein the UE acquires a COT and performs uplink (UL) communication after the UE passes the LBT.
  7. A user equipment (UE) for wireless communication in high frequency spectrum, the UE comprising:
    processing circuitry configured to:
    receive a signaling including an energy detection (ED) threshold obtained at a base station (BS) ; and
    configure the ED threshold wherein the beamforming gain of the beam involved at the BS is excluded and the beamforming gain of at least one beam for COT sharing at the UE is included; and
    perform at least one listen before talk (LBT) time interval on the beam for COT sharing.
  8. The UE of claim 7, wherein the signaling includes the spatial information related to at least one pair of beams for COT sharing.
  9. The UE of claim 8, wherein the spatial information includes spatial filter, QCL type, TCI state, spatial relation, and/or antenna port.
  10. The UE of claim 8, wherein the UE checks the spatial information with the beam for COT sharing before configuring the ED threshold for the beam for COT sharing.
  11. The UE of claim 7, wherein the ED threshold is obtained via at least one sensing beam, or is obtained from reference signals (RS) for UL transmission and/or DL transmission.
  12. The UE of claim 7, wherein the UE acquires a COT and performs uplink (UL) communication after the UE passes the LBT.
  13. A method for energy detection (ED) threshold configuration for channel occupancy time (COT) sharing, executable in a base station (BS) for wireless communication in high frequency spectrum, comprising:
    obtaining an ED threshold; and
    transmitting a signaling including the ED threshold wherein the beamforming gain of the beam related to the ED threshold can be excluded from.
  14. The method of claim 13, wherein the signaling includes spatial information associated with the ED threshold, and the spatial information is related to at least one pair of beams for COT sharing.
  15. The method of claim 14, wherein the spatial information includes spatial filter, QCL type, TCI state, spatial relation, and/or antenna port.
  16. The method of claim 14, wherein the ED threshold and the spatial information is obtained by the measurement via at least one sensing beam and the calculation accordingly.
  17. The method of claim 16, wherein the beamforming gain of the sensing beam is excluded from the ED threshold before transmitting the signaling.
  18. The method of claim 14, wherein the ED threshold and the spatial information is obtained from reference signals (RS) for UL transmission and/or DL transmission.
  19. The method of claim 18, wherein the beamforming gain of the beam relevant to RS is excluded from the ED threshold before transmitting the signaling.
  20. The method of claim 13, wherein the BS perform downlink (DL) communication via at least one transmission beam for COT sharing.
  21. A base station (BS) for wireless communication in high frequency spectrum, the BS comprising:
    processing circuitry configured to:
    obtain an energy detect (ED) threshold; and
    transmit a signaling including the ED threshold wherein the beamforming gain of the beam related to the ED threshold can be excluded from.
  22. The BS of claim 21, wherein the signaling includes spatial information related to at least one pair of beams for COT sharing.
  23. The BS of claim 22, wherein the spatial information includes spatial filter, QCL type, TCI state, spatial relation, and/or antenna port.
  24. The BS of claim 21, wherein the ED threshold is obtained by the measurement via at least one sensing beam and the calculation accordingly.
  25. The BS of claim 24, wherein the beamforming gain of the sensing beam is excluded from the ED threshold before transmitting the signaling.
  26. The BS of claim 21, wherein the ED threshold is obtained from reference signals (RS) for UL transmission and/or DL transmission.
  27. The BS of claim 26, wherein the beamforming gain of the beam relevant to RS is excluded from the ED threshold before transmitting the signaling.
  28. The BS of claim 26, wherein the BS perform downlink (DL) communication via at least one transmission beam for COT sharing.
  29. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the method of any of claims 1 to 6.
  30. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute the method of any of claims 1 to 6.
  31. A computer program product, comprising a computer program, where in the computer program causes a computer to execute the method of any of claims 1 to 6.
  32. A computer program, wherein the computer program causes a computer to execute the method of any of claims 1 to 6.
  33. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device  in which the chip is installed to execute the method of any of claims 13 to 20.
  34. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute the method of any of claims 13 to 20.
  35. A computer program product, comprising a computer program, where in the computer program causes a computer to execute the method of any of claims 13 to 20.
  36. A computer program, wherein the computer program causes a computer to execute the method of any of claims 13 to 20.
PCT/CN2021/122499 2021-10-02 2021-10-02 User equipment, base station, and methods for ed threshold configuration for cot sharing WO2023050454A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/122499 WO2023050454A1 (en) 2021-10-02 2021-10-02 User equipment, base station, and methods for ed threshold configuration for cot sharing
CN202180096603.4A CN117099437A (en) 2021-10-02 2021-10-02 User equipment, base station and method for ED threshold configuration for COT sharing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122499 WO2023050454A1 (en) 2021-10-02 2021-10-02 User equipment, base station, and methods for ed threshold configuration for cot sharing

Publications (1)

Publication Number Publication Date
WO2023050454A1 true WO2023050454A1 (en) 2023-04-06

Family

ID=85780396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122499 WO2023050454A1 (en) 2021-10-02 2021-10-02 User equipment, base station, and methods for ed threshold configuration for cot sharing

Country Status (2)

Country Link
CN (1) CN117099437A (en)
WO (1) WO2023050454A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110651529A (en) * 2017-05-30 2020-01-03 华为技术有限公司 Method and system for LBT threshold setting for directional reception and transmission
CN111758293A (en) * 2018-01-23 2020-10-09 三星电子株式会社 Listen-before-talk for broadband operation of NR unlicensed spectrum
US20210058967A1 (en) * 2018-02-14 2021-02-25 Idac Holdings, Inc. Methods, apparatus, and system using multiple antenna techniques for new radio (nr) operations in unlicensed bands
WO2021108817A2 (en) * 2020-05-22 2021-06-03 Futurewei Technologies, Inc. Methods and apparatus for channel sensing for beamformed transmissions
US20210266962A1 (en) * 2020-02-24 2021-08-26 Qualcomm Incorporated Dwell time based channel contention in wireless communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110651529A (en) * 2017-05-30 2020-01-03 华为技术有限公司 Method and system for LBT threshold setting for directional reception and transmission
CN111758293A (en) * 2018-01-23 2020-10-09 三星电子株式会社 Listen-before-talk for broadband operation of NR unlicensed spectrum
US20210058967A1 (en) * 2018-02-14 2021-02-25 Idac Holdings, Inc. Methods, apparatus, and system using multiple antenna techniques for new radio (nr) operations in unlicensed bands
US20210266962A1 (en) * 2020-02-24 2021-08-26 Qualcomm Incorporated Dwell time based channel contention in wireless communications
WO2021108817A2 (en) * 2020-05-22 2021-06-03 Futurewei Technologies, Inc. Methods and apparatus for channel sensing for beamformed transmissions

Also Published As

Publication number Publication date
CN117099437A (en) 2023-11-21

Similar Documents

Publication Publication Date Title
JP6985343B2 (en) Beam detection and tracking in wireless networks
EP3593507B1 (en) System and method for beam management in high frequency multi-carrier operations with spatial quasi co-locations
EP3456084B1 (en) System and method for managing neighbors in a communications system with beamforming
CN107534467B (en) Information transmission method, base station and user equipment
CN106134236B (en) Method and apparatus for tracking uplink beam
CN105637939B (en) Terminal, base station controller and millimeter wave cellular communication method
US20170026102A1 (en) Method for mixedly indicating uplink and downlink beams, base station, terminal and system
EP3289795B1 (en) Methods and apparatuses for inter-network measurement in a wireless network
CN108781374B (en) Beam transmitting and receiving method, base station, terminal and wireless communication system
KR20180091351A (en) Method and apparatus for beam searching and management in a wireless communication system
CN112368953A (en) Configuration of beam management
CN111756426B (en) Method and device for selecting receiving beam
US11528071B2 (en) Beam training performed by a terminal device
US20170181193A1 (en) Method and apparatus for receiving uplink signal
KR20160082925A (en) Method and apparatus for random access in communication system
US20230059284A1 (en) Facilitating explicit latency mode determination in beam switching
CN112585883B (en) Beamformed signaling from network nodes
WO2023050454A1 (en) User equipment, base station, and methods for ed threshold configuration for cot sharing
KR101973776B1 (en) Method and apparatus for receiving uplink signal
KR20240024590A (en) Method and apparatus for supporting multi-transmission-reception point (multi-trp) operation in a wireless communication system
WO2016106575A1 (en) Method for acquiring channel space characteristic information, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959018

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180096603.4

Country of ref document: CN