WO2023050326A1 - Inter-ue coordination for sl resource allocation - Google Patents

Inter-ue coordination for sl resource allocation Download PDF

Info

Publication number
WO2023050326A1
WO2023050326A1 PCT/CN2021/122211 CN2021122211W WO2023050326A1 WO 2023050326 A1 WO2023050326 A1 WO 2023050326A1 CN 2021122211 W CN2021122211 W CN 2021122211W WO 2023050326 A1 WO2023050326 A1 WO 2023050326A1
Authority
WO
WIPO (PCT)
Prior art keywords
request
transmission
resources
resource
psfch
Prior art date
Application number
PCT/CN2021/122211
Other languages
French (fr)
Inventor
Tao Chen
Original Assignee
Mediatek Singapore Pte. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Singapore Pte. Ltd. filed Critical Mediatek Singapore Pte. Ltd.
Priority to PCT/CN2021/122211 priority Critical patent/WO2023050326A1/en
Priority to CN202211186373.3A priority patent/CN115915063A/en
Priority to EP22198754.8A priority patent/EP4161184A1/en
Priority to TW111137208A priority patent/TW202337255A/en
Priority to US17/956,823 priority patent/US20230094330A1/en
Publication of WO2023050326A1 publication Critical patent/WO2023050326A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This disclosure relates generally to wireless communications, and, more particularly, to methods and apparatus about inter-UE coordination for SL resource allocation.
  • V2X sidelink (SL) communication can be supported by the unicast, groupcast and broadcast communications.
  • the inter-UE coordination can be used to assist the SL resource allocation for performance improvement.
  • the assisted UE can request the assisting UEs to provide the inter-UE coordination message which can help assisted UE to perform resource allocation. Whether/how to send the request message is critical for the latency, the overhead and the performance.
  • the UE can request the other UE (s) to provide the information about the preferred resources for transmission.
  • Such request can be realized by PSFCH based physical channel, 1st SCI and/or 2nd SCI based SL control information, and/or MAC-CE based physical data channel.
  • the container for the request can be selected depending on the contents of the request and QoS requirement (latency, congestion control, etc) .
  • the request can sent via the (pre-) configured resources.
  • the resource for the request transmission can be SL pair specific, e.g., derived based on the both UEs’ IDs.
  • FIG. 1 shows an exemplary block diagram of a UE (a.k.a device) according to an embodiment of the disclosure.
  • FIG. 2 shows the procedure for illustration according to an embodiment of the disclosure.
  • the UE can request the other UE (s) to provide the information about the preferred resources for transmission.
  • Such request can be realized by PSFCH based physical channel.
  • PSFCH based physical channel is sequence based physical channel.
  • One PSFCH resource (one time and/or frequency and/or sequence resource) is used for sending the request for one directional or bi-directional SL connection.
  • the PSFCH resource for transmission of the request can be selected from PSFCH resource set which is (pre-) configured per BWP or resource pool.
  • the resources in the PSFCH resources set for the transmission of the request can be ordered in time (slot level) , frequency (RB level) and/or sequence level.
  • the PSFCH resources for transmission of the request can be (pre-) configured, e.g., one occasion every N slots. Each occasion is corresponding to the (pre-) configured or pre-defined symbol (s) in a slot, e.g., symbol#12 and symbol#13 in a slot. Symbol#12 and symbol#13 are repeated for transmission of the request.
  • the first symbol, e.g., symbol#12 can also assist AGC operation in the receiving UE.
  • a UE can be (pre-) configured to send the request based on the certain condition (e.g., the buffer status, packet arrival, packet high priority, UE capability and the peer UE capability to support this feature) .
  • the peer UE may also indicate its capability or provide the configuration via PC5-RRC signaling or the field in 1 st and/or 2 nd SCI that it can’t receive the request message.
  • the transmission of the request by the UE can be enabled/disabled by the peer Tx UE via PC5-RRC signaling or the field in 1 st and/or 2 nd SCI.
  • the maximum number of the repetitions for transmission of the request can be (pre-) configured per BWP or per resource pool for a UE.
  • the UE may change the resources for the request per repetition, e.g., the time/frequency/sequence resources for repetitions of the request.
  • the change of the resources can be determined based on a function of the repetition number and/or the pre-defined pattern.
  • the first transmission is based on resource 1 and the 2 nd transmission is based on resource 2.
  • the difference between resource 1 and resources 2 can be determined by an offset between the resources in time/frequency/sequence domain and/or the IDs for UEs transmitting/receiving the request.
  • Such offset or pattern can be (pre-) configured. Or the offset can be randomly selected.
  • the UE can select resources for the transmission of the request (s) corresponding to the traffic or packets with the highest priorities and/or the packets with the smallest (remaining) delay budgets.
  • the prioritization rule can be applied.
  • the priority of the request can be determined or derived based on the priority of the packet to be transmitted (over the preferred resources derived /indicated from the corresponding response message) . Then the priority for the request transmission can be used to compare with a priority threshold and/or the priority of the other channels to determine which transmission/reception should be prioritized/dropped.
  • the priority of the request can be (pre-)configured or defined by default, especially in case of there is no associated data for transmission.
  • a UE can be (pre-) configured with multiple resources sets for the request transmission. Each resource set can be associated to the different priority level. A UE can select the resource set according to the priority of the packet to be transmitted on the resources derived from the corresponding response message triggered by the request.
  • a UE can be provided, by sl-Request-Period, a number of slots in a resource pool for a period of request transmission occasion resources. If the number is zero, request transmissions from the UE in the resource pool are disabled.
  • a UE may be indicated by higher layers to not transmit a request signaling.
  • a UE can be provided, by sl-Request-StartOffset, to determine the starting occasion resources within sl-Request-Period. It can be counted based on the available slots or physical slots. For example,
  • slotNumber is the occasion for the request transmission.
  • the occasion for the request transmission can be determined or derived based on the IDs of the UEs transmitting and/or receiving the request. For example, A UE determines a slot index of a resource for the request transmission as:
  • Tx_id is an ID for UE transmitting the request and Rx_id is the ID for UE receiving the request.
  • a UE For PSFCH based request transmission, a UE expects that a slot has a PSFCH based request transmission occasion resource if k mod and T′ max is a number of slots for SL transmission that belong to the resource pool within e.g., 10240 msec, and is provided by sl-Request-Period. And there may or may not have sl-Request-StartOffset in this case.
  • a UE For PSFCH based request transmission, a UE is provided by sl-PSFCH-Request-RB-Set a set of PRBs in a resource pool or BWP for PSFCH based request transmission in a PRB of the resource pool or BWP.
  • the starting PRB in the resource pool or SL BWP and the number of PRBs can be (pre-) configured to determine the set of PRBs for transmission of the requests.
  • a UE determines a number of PSFCH resources available for multiplexing request information in a PSFCH transmission as where is a number of cyclic shift (pairs) for the resource pool or BWP provided by sl-Request-NumMuxCS (e.g., within a PRB) .
  • the PSFCH resources for request transmissions are first indexed according to an ascending order of the PRB index, from the set of PRBs for request transmissions, and then according to an ascending order of the cyclic shift (pair) index from the cyclic shift pairs. Alternatively, it can be ordered firstly according to the cyclic shift (pair) index and then the PRB index.
  • UE determines an index of a PSFCH resource for a request transmission based on the IDs of UEs transmitting and/or receiving the request as:
  • a UE determines a m 0 value, for computing a value of cyclic shift ⁇ [4, TS 38.211] , from a cyclic shift index corresponding to a PSFCH resource index and from using Table 1.
  • a UE can be (pre-) configured a m cs value, for computing a value of cyclic shift ⁇ [4, TS 38.211] .
  • the UE can request the other UE (s) to provide the information about the preferred resources for transmission. Such request can be transmitted via 1st SCI and/or 2nd SCI w/or w/o the associated data channel. In this case, one field in the SCI needs to indicate this is the request message for the proper interpretation in the receiving UE.
  • the UE can be provided with a set of PRBs or resource pool for the request transmission. The starting PRB index for the request transmission within the set of PRBs or resource pool can be determined by the IDs of the UEs transmitting/receiving the request and the number of PRBs of the resource set or the resource pool.
  • FIG. 1 shows an exemplary block diagram of a UE (a.k.a device) according to an embodiment of the disclosure.
  • a processor 810 can be configured to perform various functions of embodiments of the invention.
  • the processor 810 can include signal processing circuitry to process received or to be transmitted data according to communication protocols specified in, for example, LTE and NR standards. Additionally, the processor 810 may execute program instructions, for example, stored in the memory 820, to perform functions related with different communication protocols.
  • the processor 810 can be implemented with suitable hardware, software, or a combination thereof.
  • the processor 810 can be implemented with application specific integrated circuits (ASIC) , field programmable gate arrays (FPGA) , and the like, that includes circuitry.
  • the circuitry can be configured to perform various functions of the processor 810.
  • the memory 820 can store program instructions that, when executed by the processor 810, cause the processor 810 to perform various functions as described herein.
  • the memory 820 can include a read only memory (ROM) , a random access memory (RAM) , a flash memory, a solid state memory, a hard disk drive, and the like.
  • the RF module 830 can be configured to receive a digital signal from the processor 810 and accordingly transmit a signal to a base station in a wireless communication network via an antenna 840.
  • the RF module 830 can be configured to receive a wireless signal from a base station and accordingly generate a digital signal which is provided to the processor 810.
  • the RF module 830 can include digital to analog/analog to digital converters (DAC/ADC) , frequency down/up converters, filters, and amplifiers for reception and transmission operations.
  • DAC/ADC digital to analog/analog to digital converters
  • the RF module 830 can include converter circuits, filter circuits, amplification circuits, and the like, for processing signals on different carriers or bandwidth parts.
  • the UE 800 can optionally include other components, such as input and output devices, additional CPU or signal processing circuitry, and the like. Accordingly, the UE 800 may be capable of performing other additional functions, such as executing application programs, and processing alternative communication protocols.
  • the processes and functions described herein can be implemented as a computer program which, when executed by one or more processors, can cause the one or more processors to perform the respective processes and functions.
  • the computer program may be stored or distributed on a suitable medium, such as an optical storage medium or a solid-state medium supplied together with, or as part of, other hardware.
  • the computer program may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems.
  • the computer program can be obtained and loaded into an apparatus, including obtaining the computer program through physical medium or distributed system, including, for example, from a server connected to the Internet.
  • the computer program may be accessible from a computer-readable medium providing program instructions for use by or in connection with a computer or any instruction execution system.
  • a computer readable medium may include any apparatus that stores, communicates, propagates, or transports the computer program for use by or in connection with an instruction execution system, apparatus, or device.
  • the computer-readable medium can be magnetic, optical, electronic, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium.
  • the computer-readable medium may include a computer-readable non-transitory storage medium such as a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM) , a read-only memory (ROM) , a magnetic disk and an optical disk, and the like.
  • the computer-readable non-transitory storage medium can include all types of computer readable medium, including magnetic storage medium, optical storage medium, flash medium and solid state storage medium.
  • FIG. 2 shows the procedure for illustration.
  • UE-B will send the request via PSFCH-like channel, SCI or MAC-CE to UE-A.
  • UE-A Upon reception of the request, UE-A will provide the response to UE-B with the preferred resources information via PSFCH-like channel, SCI or MAC-CE to UE-A. then UE-B can derive the resources based on the preferred resources indicated by UE-A and its own sensing results for data transmission, or use the preferred resources indicated by UE-A directly for data transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This disclosure relates generally to wireless communications, and, more particularly, to methods and apparatus about inter-UE coordination for SL enhancement. The UE can request the other UE (s) to provide the information about the preferred resources for transmission. Such request can be realized by PSFCH based physical channel, 1st SCI and/or 2nd SCI based SL control information, and/or MAC-CE based physical data channel. The container for the request can be selected depending on the contents of the request and QoS requirement (latency, congestion control, etc). The request can sent via the (pre-) configured resources. Moreover, the resource for the request transmission can be SL pair specific, e.g., derived based on the both UEs' IDs.

Description

INTER-UE COORDINATION FOR SL RESOURCE ALLOCATION
FIELD OF INVENTION
This disclosure relates generally to wireless communications, and, more particularly, to methods and apparatus about inter-UE coordination for SL resource allocation.
BACKGROUND OF THE INVENTION
In 5G new radio, V2X sidelink (SL) communication can be supported by the unicast, groupcast and broadcast communications. Moreover, the inter-UE coordination can be used to assist the SL resource allocation for performance improvement.
For SL resource allocation, the assisted UE can request the assisting UEs to provide the inter-UE coordination message which can help assisted UE to perform resource allocation. Whether/how to send the request message is critical for the latency, the overhead and the performance.
SUMMARY OF THE INVENTION
This disclosure relates generally to wireless communications, and, more particularly, to methods and apparatus about inter-UE coordination for SL enhancement. The UE can request the other UE (s) to provide the information about the preferred resources for transmission. Such request can be realized by PSFCH based physical channel, 1st SCI and/or 2nd SCI based SL control information, and/or MAC-CE based physical data channel. The container for the request can be selected depending on the contents of the request and QoS requirement (latency, congestion control, etc) . The request can sent via the (pre-) configured resources. Moreover, the resource for the request transmission can be SL pair specific, e.g., derived based on the both UEs’ IDs.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of the present disclosure. The drawings illustrate implementations of the disclosure and, together with the description, serve to explain the principles of the disclosure. It is appreciable that the drawings are not necessarily in scale as some components may be shown to be out of proportion than the size in actual implementation in order to clearly illustrate the concept of the present disclosure.
FIG. 1 shows an exemplary block diagram of a UE (a.k.a device) according to an embodiment of the disclosure.
FIG. 2 shows the procedure for illustration according to an embodiment of the disclosure.
DETAILED DESCRIPTION
Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function.  In the following description and in the claims, the terms "include" and "comprise" are used in an open-ended fashion, and thus should be interpreted to mean "include, but not limited to ... " . Also, the term "couple" is intended to mean either an indirect or direct electrical connection. Accordingly, if one device is coupled to another device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections. The making and using of the embodiments of the disclosure are discussed in detail below. It should be appreciated, however, that the embodiments can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative, and do not limit the scope of the disclosure. Some variations of the embodiments are described. Throughout the various views and illustrative embodiments, like reference numbers are used to designate like elements.
The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. Note that the 3GPP specifications described herein are used to teach the spirit of the invention, and the invention is not limited thereto.
The UE can request the other UE (s) to provide the information about the preferred resources for transmission. Such request can be realized by PSFCH based physical channel. PSFCH based physical channel is sequence based physical channel. One PSFCH resource (one time and/or frequency and/or sequence resource) is used for sending the request for one directional or bi-directional SL connection. The PSFCH resource for transmission of the request can be selected from PSFCH resource set which is (pre-) configured per BWP or resource pool. The resources in the PSFCH resources set for the transmission of the request can be ordered in time (slot level) , frequency (RB level) and/or sequence level. For example, in the time domain, the PSFCH resources for transmission of the request can be (pre-) configured, e.g., one occasion every N slots. Each occasion is corresponding to the (pre-) configured or pre-defined symbol (s) in a slot, e.g., symbol#12 and symbol#13 in a slot. Symbol#12 and symbol#13 are repeated for transmission of the request. The first symbol, e.g., symbol#12 can also assist AGC operation in the receiving UE.
A UE can be (pre-) configured to send the request based on the certain condition (e.g., the buffer status, packet arrival, packet high priority, UE capability and the peer UE capability to support this feature) . The peer UE may also indicate its capability or provide the configuration via PC5-RRC signaling or the field in 1 st and/or 2 nd SCI that it can’t receive the request message. Or the transmission of the request by the UE can be enabled/disabled by the peer Tx UE via PC5-RRC signaling or the field in 1 st and/or 2 nd SCI.
The maximum number of the repetitions for transmission of the request can be (pre-) configured per BWP or per resource pool for a UE. For repetitions of the request, the UE may change the resources for the request per repetition, e.g., the time/frequency/sequence resources for repetitions of the request. The change of the resources can be determined based on a function of the repetition number and/or the pre-defined pattern. For example, the first transmission is based on resource 1 and the 2 nd transmission is based on resource 2. The difference between resource 1 and resources 2 can be determined by an offset between the resources in time/frequency/sequence domain and/or the IDs for UEs transmitting/receiving the request. Such offset or pattern can be (pre-) configured. Or the offset can be randomly selected.
In case of selection of one or a few requests to the other UEs from a set of requests due to restriction of UE capability, the UE can select resources for the transmission of the request (s) corresponding to  the traffic or packets with the highest priorities and/or the packets with the smallest (remaining) delay budgets.
In case of collision of the request transmissions with the other data or control channel transmission/reception, the prioritization rule can be applied. For example, the priority of the request can be determined or derived based on the priority of the packet to be transmitted (over the preferred resources derived /indicated from the corresponding response message) . Then the priority for the request transmission can be used to compare with a priority threshold and/or the priority of the other channels to determine which transmission/reception should be prioritized/dropped. Alternatively, the priority of the request can be (pre-)configured or defined by default, especially in case of there is no associated data for transmission.
Additionally, A UE can be (pre-) configured with multiple resources sets for the request transmission. Each resource set can be associated to the different priority level. A UE can select the resource set according to the priority of the packet to be transmitted on the resources derived from the corresponding response message triggered by the request.
A UE can be provided, by sl-Request-Period, a number of slots in a resource pool for a period of request transmission occasion resources. If the number is zero, request transmissions from the UE in the resource pool are disabled.
A UE may be indicated by higher layers to not transmit a request signaling.
Additionally, a UE can be provided, by sl-Request-StartOffset, to determine the starting occasion resources within sl-Request-Period. It can be counted based on the available slots or physical slots. For example,
if (slotNumber mod sl-Request-Period) = sl-Request-StartOffset,
then slotNumber is the occasion for the request transmission.
Alternatively, the occasion for the request transmission can be determined or derived based on the IDs of the UEs transmitting and/or receiving the request. For example, A UE determines a slot index of a resource for the request transmission as:
(Tx_id + Rx_id) mod sl-Request-Period
where Tx_id is an ID for UE transmitting the request and Rx_id is the ID for UE receiving the request.
More specifically, for PSFCH based request transmission, a UE expects that a slot
Figure PCTCN2021122211-appb-000001
Figure PCTCN2021122211-appb-000002
has a PSFCH based request transmission occasion resource if k mod
Figure PCTCN2021122211-appb-000003
and T′ max is a number of slots for SL transmission that belong to the resource pool within e.g., 10240 msec, and 
Figure PCTCN2021122211-appb-000004
is provided by sl-Request-Period. And there may or may not have sl-Request-StartOffset in this case.
For PSFCH based request transmission, a UE is provided by sl-PSFCH-Request-RB-Set a set of 
Figure PCTCN2021122211-appb-000005
PRBs in a resource pool or BWP for PSFCH based request transmission in a PRB of the resource pool or BWP. The starting PRB in the resource pool or SL BWP and the number of PRBs can be (pre-) configured to determine the set of PRBs for transmission of the requests.
The second OFDM symbol l′ of PSFCH based request transmission in a slot is defined as l′= startSLsymbols+ lengthSLsymbols –2, especially in case only part of the symbols in the slot is available for SL transmission.
A UE determines a number of PSFCH resources available for multiplexing request information in a PSFCH transmission as
Figure PCTCN2021122211-appb-000006
where
Figure PCTCN2021122211-appb-000007
is a number of cyclic shift (pairs) for the resource pool or BWP provided by sl-Request-NumMuxCS (e.g., within a PRB) .
The PSFCH resources for request transmissions are first indexed according to an ascending order of the PRB index, from the set of PRBs for request transmissions, and then according to an ascending order of the cyclic shift (pair) index from the
Figure PCTCN2021122211-appb-000008
cyclic shift pairs. Alternatively, it can be ordered firstly according to the cyclic shift (pair) index and then the PRB index.
UE determines an index of a PSFCH resource for a request transmission based on the IDs of UEs transmitting and/or receiving the request as:
(Tx_id + Rx_id) mod
Figure PCTCN2021122211-appb-000009
A UE determines a m 0 value, for computing a value of cyclic shift α [4, TS 38.211] , from a cyclic shift index corresponding to a PSFCH resource index and from
Figure PCTCN2021122211-appb-000010
using Table 1.
Table 1: Set of cyclic shift (pairs)
Figure PCTCN2021122211-appb-000011
A UE can be (pre-) configured a m cs value, for computing a value of cyclic shift α [4, TS 38.211] .
The UE can request the other UE (s) to provide the information about the preferred resources for transmission. Such request can be transmitted via 1st SCI and/or 2nd SCI w/or w/o the associated data channel. In this case, one field in the SCI needs to indicate this is the request message for the proper interpretation in the receiving UE. Similarly, the UE can be provided with a set of PRBs or resource pool for the request transmission. The starting PRB index for the request transmission within the set of PRBs or resource pool can be determined by the IDs of the UEs transmitting/receiving the request and the number of PRBs of the resource set or the resource pool.
FIG. 1 shows an exemplary block diagram of a UE (a.k.a device) according to an embodiment of the disclosure. A processor 810 can be configured to perform various functions of embodiments of the invention. The processor 810 can include signal processing circuitry to process received or to be transmitted data according to communication protocols specified in, for example, LTE and NR standards. Additionally, the processor 810 may execute program instructions, for example, stored in the memory 820, to perform functions related with different communication protocols. The processor 810 can be implemented with suitable hardware, software, or a combination thereof. For example, the processor 810 can be implemented with application specific integrated circuits (ASIC) , field programmable gate arrays (FPGA) , and the like, that  includes circuitry. The circuitry can be configured to perform various functions of the processor 810.
In one example, the memory 820 can store program instructions that, when executed by the processor 810, cause the processor 810 to perform various functions as described herein. The memory 820 can include a read only memory (ROM) , a random access memory (RAM) , a flash memory, a solid state memory, a hard disk drive, and the like.
The RF module 830 can be configured to receive a digital signal from the processor 810 and accordingly transmit a signal to a base station in a wireless communication network via an antenna 840. In addition, the RF module 830 can be configured to receive a wireless signal from a base station and accordingly generate a digital signal which is provided to the processor 810. The RF module 830 can include digital to analog/analog to digital converters (DAC/ADC) , frequency down/up converters, filters, and amplifiers for reception and transmission operations. For example, the RF module 830 can include converter circuits, filter circuits, amplification circuits, and the like, for processing signals on different carriers or bandwidth parts.
The UE 800 can optionally include other components, such as input and output devices, additional CPU or signal processing circuitry, and the like. Accordingly, the UE 800 may be capable of performing other additional functions, such as executing application programs, and processing alternative communication protocols.
The processes and functions described herein can be implemented as a computer program which, when executed by one or more processors, can cause the one or more processors to perform the respective processes and functions. The computer program may be stored or distributed on a suitable medium, such as an optical storage medium or a solid-state medium supplied together with, or as part of, other hardware. The computer program may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems. For example, the computer program can be obtained and loaded into an apparatus, including obtaining the computer program through physical medium or distributed system, including, for example, from a server connected to the Internet.
The computer program may be accessible from a computer-readable medium providing program instructions for use by or in connection with a computer or any instruction execution system. A computer readable medium may include any apparatus that stores, communicates, propagates, or transports the computer program for use by or in connection with an instruction execution system, apparatus, or device. The computer-readable medium can be magnetic, optical, electronic, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. The computer-readable medium may include a computer-readable non-transitory storage medium such as a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM) , a read-only memory (ROM) , a magnetic disk and an optical disk, and the like. The computer-readable non-transitory storage medium can include all types of computer readable medium, including magnetic storage medium, optical storage medium, flash medium and solid state storage medium.
While aspects of the present disclosure have been described in conjunction with the specific embodiments thereof that are proposed as examples, alternatives, modifications, and variations to the examples may be made. Accordingly, embodiments as set forth herein are intended to be illustrative and not limiting. There are changes that may be made without departing from the scope of the claims set forth below.
FIG. 2 shows the procedure for illustration. UE-B will send the request via PSFCH-like channel, SCI or MAC-CE to UE-A. Upon reception of the request, UE-A will provide the response to UE-B with the preferred resources information via PSFCH-like channel, SCI or MAC-CE to UE-A. then UE-B can derive the resources based on the preferred resources indicated by UE-A and its own sensing results for data transmission, or use the preferred resources indicated by UE-A directly for data transmission.

Claims (1)

  1. A method performed by a UE, comprising:
    receiving the (pre-) configuration for transmission of the request message;
    determining the resource for transmission of the request message based on IDs of UEs; and transmitting/receiving the request and/or the number of resources.
PCT/CN2021/122211 2021-09-30 2021-09-30 Inter-ue coordination for sl resource allocation WO2023050326A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2021/122211 WO2023050326A1 (en) 2021-09-30 2021-09-30 Inter-ue coordination for sl resource allocation
CN202211186373.3A CN115915063A (en) 2021-09-30 2022-09-27 Method and device for coordinating user equipment
EP22198754.8A EP4161184A1 (en) 2021-09-30 2022-09-29 Inter-ue coordination for enhancement of sidelink communications
TW111137208A TW202337255A (en) 2021-09-30 2022-09-30 Methods for inter-ue coordination and an apparatus thereof
US17/956,823 US20230094330A1 (en) 2021-09-30 2022-09-30 Inter-UE Coordination For Enhancement Of Sidelink Communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122211 WO2023050326A1 (en) 2021-09-30 2021-09-30 Inter-ue coordination for sl resource allocation

Publications (1)

Publication Number Publication Date
WO2023050326A1 true WO2023050326A1 (en) 2023-04-06

Family

ID=85737811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122211 WO2023050326A1 (en) 2021-09-30 2021-09-30 Inter-ue coordination for sl resource allocation

Country Status (2)

Country Link
CN (1) CN115915063A (en)
WO (1) WO2023050326A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200099479A1 (en) * 2018-09-21 2020-03-26 Kt Corporation Method and apparatus for transmitting sidelink harq feedback information
US20200205165A1 (en) * 2018-12-20 2020-06-25 Asustek Computer Inc. Method and apparatus for handling collision between sidelink feedback and sidelink data in a wireless communication system
US20210288778A1 (en) * 2018-11-02 2021-09-16 Innovative Technology Lab Co., Ltd. Method for performing harq feedback procedure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200099479A1 (en) * 2018-09-21 2020-03-26 Kt Corporation Method and apparatus for transmitting sidelink harq feedback information
US20210288778A1 (en) * 2018-11-02 2021-09-16 Innovative Technology Lab Co., Ltd. Method for performing harq feedback procedure
US20200205165A1 (en) * 2018-12-20 2020-06-25 Asustek Computer Inc. Method and apparatus for handling collision between sidelink feedback and sidelink data in a wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Sidelink physical layer procedures for NR V2X", 3GPP DRAFT; R1-1906008, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 23, XP051708050 *
VIVO: "Discussion on mode 2 resource allocation mechanism", 3GPP DRAFT; R1-1906139 DISCUSSION ON MODE 2 RESOURCE ALLOCATION MECHANISM_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 4 May 2019 (2019-05-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 13, XP051708180 *

Also Published As

Publication number Publication date
CN115915063A (en) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2020168452A1 (en) Control channel design for v2x communication
US10841948B2 (en) Methods to support UL transmission on multiple numerologies in NR system
US10616864B2 (en) Allocating resources for wireless sidelink direct communications
CN112970214B (en) Feedback signaling for side links
US20200366334A1 (en) Frequency hopping processing method and device
EP3573277B1 (en) Sounding reference signal, srs, transmission method, apparatus
WO2018171635A1 (en) Data sending method and apparatus, and data receiving method and apparatus
WO2021026885A1 (en) Channel structure design for v2x communication
WO2021035466A1 (en) Physical channnels for sl communication
WO2021072620A1 (en) Physical channnel structures for sidelink communication
EP4322443A1 (en) Frequency hopping method and apparatus
EP3547632A1 (en) Method for terminal communication and related device
WO2019214523A1 (en) Communication method and apparatus
EP3573299A1 (en) Time information determining method, network node, and terminal device
CN111294940B (en) Transmission power distribution method and device, storage medium and terminal
TW201826747A (en) Method for resource mapping and communication equipment
WO2022087968A1 (en) Sl resource allocation enhancements
WO2022027592A1 (en) Partial sensing enhancement for sl resource allocation
WO2019191971A1 (en) Data transmission method, terminal device, and network device
WO2023050326A1 (en) Inter-ue coordination for sl resource allocation
WO2020168450A1 (en) Ssb design for v2x communication
WO2020024229A1 (en) Frequency domain location determination method, apparatus and device
WO2021203411A1 (en) Enhancement for sl communication
EP4187944A1 (en) Communication method and apparatus, and readable storage medium
WO2021212459A1 (en) Physical layer enhancements for sl communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE