WO2021212459A1 - Physical layer enhancements for sl communication - Google Patents

Physical layer enhancements for sl communication Download PDF

Info

Publication number
WO2021212459A1
WO2021212459A1 PCT/CN2020/086641 CN2020086641W WO2021212459A1 WO 2021212459 A1 WO2021212459 A1 WO 2021212459A1 CN 2020086641 W CN2020086641 W CN 2020086641W WO 2021212459 A1 WO2021212459 A1 WO 2021212459A1
Authority
WO
WIPO (PCT)
Prior art keywords
slots
psfch
transmission
csi
period
Prior art date
Application number
PCT/CN2020/086641
Other languages
French (fr)
Inventor
Tao Chen
Original Assignee
Mediatek Singapore Pte. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Singapore Pte. Ltd. filed Critical Mediatek Singapore Pte. Ltd.
Priority to PCT/CN2020/086641 priority Critical patent/WO2021212459A1/en
Priority to CN202110433633.1A priority patent/CN113556777A/en
Priority to US17/238,929 priority patent/US20210329604A1/en
Priority to TW110114914A priority patent/TWI788825B/en
Publication of WO2021212459A1 publication Critical patent/WO2021212459A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This disclosure relates generally to wireless communications, and, more particularly, to methods and apparatus about physical layer enhancement for SL communications.
  • V2X sidelink (SL) communication may be supported by the unicast, groupcast and broadcast communications.
  • SL V2X sidelink
  • This disclosure relates generally to wireless communications, and, more particularly, to methods and apparatus about physical layer enhancement for SL communications.
  • a PSFCH overhead indicator carried in 2nd SCI can be used to indicate whether the average or zero PSFCH overhead is assumed for a TB across the initial transmission and re-transmission (s) . This can secure the same TB across all (re-) transmissions for a TB while providing the possibility of achieving the peak data rate by only using the slots without PSFCH.
  • SL CSI table is determined explicitly by the signaling or implicitly according to a mapping between CSI table and the used MCS table. Only one CSI reporting process is allowed to avoid the out-or-order delivery of the CSI reports carried in MAC layer suffering from HARQ delay.
  • a reference pattern of TDD configuration can be assumed to derive the UL slots for some TDD patterns.
  • FIG. 1 shows an exemplary block diagram of a UE (a.k.a device) according to an embodiment of the disclosure.
  • a PSFCH overhead indicator can be carried in 2nd SCI. It can be used to indicate whether the average or zero PSFCH overhead is assumed for a TB across the initial transmission and re-transmission (s) . In case of the average PSFCH overhead is assumed, the value is derived by the ratio of the total number of PSFCH symbols over the total number of symbols of PSSCH and PSFCH across all slots.
  • the number of PSSCH symbols in a slot is up to resource pool configuration and the presence of the PSFCH resources.
  • the overhead can be defined as the ratio of the total number of PSFCH symbols over the total number of SL symbols in a slot (w/wo GP/AGC symbols) over the period for PSFCH slot configuration.
  • CSI reporting there is the association between the CSI trigger and the reported CSI.
  • an indicator may be needed in (2 nd ) SCI to indicate which CSI table is assumed for CSI reporting.
  • CSI reporting can be implicitly link to the CSI table which is associated with the MCS table indicated in SCI. That is, the assumed CSI table for CSI reporting and the used MCS table indicated in SCI triggering CSI report can be associated and share the same indicator in SCI.
  • the multiple CSI-reporting can be supported for a UE. However, there will be at most one ongoing CSI reporting process per CA or per SL BWP or per resource pool for a UE, i.e., no multiple ongoing CSI reporting processes in parallel.
  • the UL slots in the dual-period patterns with the same period on P1 and P2 can be derived from the UL slots in a reference dual-period pattern indicated in the signaling.
  • the UL (or SL) slots for the pattern ⁇ 5ms, 5ms ⁇ can be indicated by some bits indicating the consecutive UL (or SL) slots.
  • the UL slots in P1 and P2 can be derived by using the indicated UL slots in P1 and P2 in a reference pattern ⁇ Pr, Pr ⁇ as such:
  • Pt is, e.g., 2ms, 2.5ms and 10ms for the corresponding target dual-period patterns ⁇ 2ms, 2ms ⁇ , ⁇ 2.5ms, 2.5ms ⁇ and ⁇ 10ms, 10ms ⁇
  • Pr is the period of the reference pattern, e.g., 5ms if ⁇ 5ms, 5ms ⁇ dual-period pattern is defined as the reference pattern.
  • the UL slots associated with a pattern can be derived from the TDD UL/DL configuration indicated in SIB.
  • the UL_slots_ ⁇ Pr, Pr ⁇ should take into account the numerology difference between SL and uu to derive the number of UL (or potential SL) slots indicated in SL SSB.
  • the SL transmission is prioritized if the priority level indicated by the “priority field” (e.g., 0 means “high” , 1 means “low” ) in DCI for the associated UL transmission is larger than the UL priority field threshold (e.g., 1 or 0) , and the priority level of PSFCH (e.g., indicated in the associated SCI) is lower than the SL priority threshold. Otherwise the UL transmission is prioritized. (or vice versa, depending on the ascending order or descending order for priority level definition) .
  • the priority level indicated by the “priority field” e.g., 0 means “high”
  • 1 means “low”
  • PSFCH e.g., indicated in the associated SCI
  • UL transmission is deprioritized if the priority level of PSFCH is higher than SL-threshold, otherwise prioritized.
  • the SL transmission is prioritized if the priority level indicated by the “priority field” (e.g., 0 means “high” , 1 means “low” ) in DCI for the associated UL transmission is larger than the UL priority field threshold (e.g., 1 or 0) , and the priority level of S-SSB is lower than the SL priority threshold. Otherwise the UL transmission is prioritized. (or vice versa, depending on the ascending order or descending order for priority level definition) .
  • the priority level indicated by the “priority field” e.g., 0 means “high”
  • 1 means “low”
  • the priority level of S-SSB is lower than the SL priority threshold.
  • UL transmission is deprioritized if the priority level of S-SSB is higher than SL-threshold, otherwise prioritized.
  • msg3 in uu interface can be always prioritized than S-SSB and/or PSFCH transmission in SL. Or it can be up to the (pre-) configuration on whether to prioritize msg3 or not.
  • FIG. 1 shows an exemplary block diagram of a UE (a. k. adevice) according to an embodiment of the disclosure.
  • a processor 810 can be configured to perform various functions of the UE 800 described above with reference to the embodiments described above.
  • the processor 810 can include signal processing circuitry to process received or to be transmitted data according to communication protocols specified in, for example, LTE and NR standards. Additionally, the processor 810 may execute program instructions, for example, stored in the memory 820, to perform functions related with different communication protocols.
  • the processor 810 can be implemented with suitable hardware, software, or a combination thereof.
  • the processor 810 can be implemented with application specific integrated circuits (ASIC) , field programmable gate arrays (FPGA) , and the like, that includes circuitry.
  • the circuitry can be configured to perform various functions of the processor 810.
  • the memory 820 can store program instructions that, when executed by the processor 810, cause the processor 810 to perform various functions as described herein.
  • the memory 820 can include a read only memory (ROM) , a random access memory (RAM) , a flash memory, a solid state memory, a hard disk drive, and the like.
  • the RF module 830 can be configured to receive a digital signal from the processor 810 and accordingly transmit a signal to a base station in a wireless communication network via an antenna 840.
  • the RF module 830 can be configured to receive a wireless signal from a base station and accordingly generate a digital signal which is provided to the processor 810.
  • the RF module 830 can include digital to analog/analog to digital converters (DAC/ADC) , frequency down/up converters, filters, and amplifiers for reception and transmission operations.
  • DAC/ADC digital to analog/analog to digital converters
  • the RF module 830 can include converter circuits, filter circuits, amplification circuits, and the like, for processing signals on different carriers or bandwidth parts.
  • the UE 800 can optionally include other components, such as input and output devices, additional CPU or signal processing circuitry, and the like. Accordingly, the UE 800 may be capable of performing other additional functions, such as executing application programs, and processing alternative communication protocols.
  • the processes and functions described herein can be implemented as a computer program which, when executed by one or more processors, can cause the one or more processors to perform the respective processes and functions.
  • the computer program may be stored or distributed on a suitable medium, such as an optical storage medium or a solid-state medium supplied together with, or as part of, other hardware.
  • the computer program may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems.
  • the computer program can be obtained and loaded into an apparatus, including obtaining the computer program through physical medium or distributed system, including, for example, from a server connected to the Internet.
  • the computer program may be accessible from a computer-readable medium providing program instructions for use by or in connection with a computer or any instruction execution system.
  • a computer readable medium may include any apparatus that stores, communicates, propagates, or transports the computer program for use by or in connection with an instruction execution system, apparatus, or device.
  • the computer-readable medium can be magnetic, optical, electronic, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium.
  • the computer-readable medium may include a computer-readable non-transitory storage medium such as a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM) , a read-only memory (ROM) , a magnetic disk and an optical disk, and the like.
  • the computer-readable non-transitory storage medium can include all types of computer readable medium, including magnetic storage medium, optical storage medium, flash medium and solid state storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

For SL PSSCH TBS determination, a PSFCH overhead indicator carried in 2nd SCI can be used to indicate whether the average or zero PSFCH overhead is assumed for a TB across the initial transmission and re-transmission (s). This can secure the same TB across all (re-) transmissions for a TB while providing the possibility of achieving the peak data rate by only using the slots without PSFCH.

Description

PHYSICAL LAYER ENHANCEMENTS FOR SL COMMUNICATION
FIELD OF INVENTION
This disclosure relates generally to wireless communications, and, more particularly, to methods and apparatus about physical layer enhancement for SL communications.
BACKGROUND OF THE INVENTION
In 5G new radio, V2X sidelink (SL) communication may be supported by the unicast, groupcast and broadcast communications. However, there are several issues to be addressed in physical layer for SL communications.
SUMMARY OF THE INVENTION
This disclosure relates generally to wireless communications, and, more particularly, to methods and apparatus about physical layer enhancement for SL communications.
For SL PSSCH TBS determination, a PSFCH overhead indicator carried in 2nd SCI can be used to indicate whether the average or zero PSFCH overhead is assumed for a TB across the initial transmission and re-transmission (s) . This can secure the same TB across all (re-) transmissions for a TB while providing the possibility of achieving the peak data rate by only using the slots without PSFCH. SL CSI table is determined explicitly by the signaling or implicitly according to a mapping between CSI table and the used MCS table. Only one CSI reporting process is allowed to avoid the out-or-order delivery of the CSI reports carried in MAC layer suffering from HARQ delay. A reference pattern of TDD configuration can be assumed to derive the UL slots for some TDD patterns.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
FIG. 1 shows an exemplary block diagram of a UE (a.k.a device) according to an embodiment of the disclosure.
DETAILED DESCRIPTION
Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following description and in the claims, the terms "include" and "comprise" are used in an open-ended fashion, and thus should be interpreted to mean "include, but not limited to ... ". Also, the term "couple" is intended to mean either an indirect or direct electrical connection. Accordingly, if one device is coupled to another device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections. The making and using of the embodiments of the disclosure are discussed in detail below. It should be appreciated, however, that the embodiments can be embodied in a wide  variety of specific contexts. The specific embodiments discussed are merely illustrative, and do not limit the scope of the disclosure. Some variations of the embodiments are described. Throughout the various views and illustrative embodiments, like reference numbers are used to designate like elements.
The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. Note that the 3GPP specifications described herein are used to teach the spirit of the invention, and the invention is not limited thereto.
For SL PSSCH TBS determination, a PSFCH overhead indicator can be carried in 2nd SCI. It can be used to indicate whether the average or zero PSFCH overhead is assumed for a TB across the initial transmission and re-transmission (s) . In case of the average PSFCH overhead is assumed, the value is derived by the ratio of the total number of PSFCH symbols over the total number of symbols of PSSCH and PSFCH across all slots. For example, given PSFCH resources are configured every 2 slots with 3 symbols of PSFCH resources including the associated GP symbol in the PSFCH slot and total N PSSCH symbols (w/wo AGC symbols) over 2 slots (e.g., 12 symbols in slot w/o PSFCH and 9 symbols in slot with PSFCH if AGC symbol is included) , then the average PSFCH overhead will be 3/ (12+9+3) = 3/24 = 12.5%. The number of PSSCH symbols in a slot is up to resource pool configuration and the presence of the PSFCH resources. Alternatively, the overhead can be defined as the ratio of the total number of PSFCH symbols over the total number of SL symbols in a slot (w/wo GP/AGC symbols) over the period for PSFCH slot configuration.
For SL CSI reporting, there is the association between the CSI trigger and the reported CSI. In case of multiple CSI tables (pre-) configured, an indicator may be needed in (2 nd) SCI to indicate which CSI table is assumed for CSI reporting. Alternatively, CSI reporting can be implicitly link to the CSI table which is associated with the MCS table indicated in SCI. That is, the assumed CSI table for CSI reporting and the used MCS table indicated in SCI triggering CSI report can be associated and share the same indicator in SCI. For example, if (1 st) SCI indicates using 64QAM MCS table for the data transmission and CSI reporting is also triggered in the corresponding (2 nd) SCI, then the 64QAM CSI table corresponding to 64QAM MCS table will be assumed for CSI reporting. To secure the association between the assumed SL CSI table and SL CSI reports, it assumes that there is no multiple CSI reporting in parallel. For example, if one SCI has triggered CSI reporting, the next or new trigger for CSI reporting can be only allowed after receiving the corresponding CSI reports and/or fail to receive CSI reports due to reaching maximum (re-) transmission times and/or exceeding the latency bound for the CSI reporting. Additionally, a timer at the Tx UE triggering CSI reporting. It starts when the CSI reporting is triggered and stops when the corresponding CSI report is received correctly. If the timer is expired or stopped, a new CSI reporting can be triggered. Otherwise, the new CSI reporting is not allowed. In case of SL CA, the multiple CSI-reporting can be supported for a UE. However, there will be at most one ongoing CSI reporting process per CA or per SL BWP or per resource pool for a UE, i.e., no multiple ongoing CSI reporting processes in parallel.
For TDD UL/DL information carried in S-SSB to determine the available SL slots, the indication for single period and dual-period patterns associated with the UL slots per period can be indicated in S-SSB derived from the TDD UL/DL configuration in uu interface (e.g., SIB messages) . Due to the limited bits in S-SSB, not all combinations can be carried. To save the bits, the patterns with the same period for each period in  the dual-period, i.e., {P1=n, P2=n} , the same indication can be used with different granularity applied for different n value.
The UL slots in the dual-period patterns with the same period on P1 and P2 can be derived from the UL slots in a reference dual-period pattern indicated in the signaling. For example, for the dual-period pattern {P1, P2} = {5ms, 5ms} , the UL (or SL) slots for the pattern {5ms, 5ms} can be indicated by some bits indicating the consecutive UL (or SL) slots. For the other patterns with the same period in P1 and P2, e.g., {2ms, 2ms} , {2.5ms, 2.5ms} and {10ms, 10ms} , they can refer to indication of UL (or SL) slots in P1 and P2 for {5ms, 5ms} reference pattern to derive the corresponding UL slots in P1 and P2 respectively taking into account the difference of the granularity. That is, for a target dual-period pattern {Pt, Pt} , the UL slots in P1 and P2 can be derived by using the indicated UL slots in P1 and P2 in a reference pattern {Pr, Pr} as such:
UL_slots_ {Pt, Pt} _P1 = floor (UL_slots_ {Pr, Pr} _P1 /Pr *Pt) ,
UL_slots_ {Pt, Pt} _P2 = floor (UL_slots_ {Pr, Pr} _P2 /Pr *Pt) ,
wherein Pt is, e.g., 2ms, 2.5ms and 10ms for the corresponding target dual-period patterns {2ms, 2ms} , {2.5ms, 2.5ms} and {10ms, 10ms} , and Pr is the period of the reference pattern, e.g., 5ms if {5ms, 5ms} dual-period pattern is defined as the reference pattern.
For example,
if the indicated UL_slots_ {5, 5} _P1 = 10 slots in P1, then UL_slots_ {2, 2} _P1 = floor (10/5*2) = 4 slots in P1 period.
if the indicated UL_slots_ {5, 5} _P2 = 15 slots in P2, then UL_slots_ {2, 2} _P2 = floor (15/5*2) = 6 slots in P2 period.
The UL slots associated with a pattern can be derived from the TDD UL/DL configuration indicated in SIB. In case of the different numerology used for SL and uu interface, the UL_slots_ {Pr, Pr} should take into account the numerology difference between SL and uu to derive the number of UL (or potential SL) slots indicated in SL SSB. For example, if uu is using 15khz and SL is 30khz, the UL_slots_SL_u1 = floor (UL_slots_uu_u2 *2^ (u1-u2) ) , wherein u1 and u2 belong to u = {0, 1, 2, 3} corresponding to 15khz, 30khz, 60khz and 120khz numerology.
For prioritization between PSFCH and UL transmission when PSFCH transmission is overlapping with UL transmission other than PUCCH carrying SL HARQ reporting:
When UL transmission is associated with a DCI with the “priority field” (e.g., URLLC case) , the SL transmission is prioritized if the priority level indicated by the “priority field” (e.g., 0 means “high” , 1 means “low” ) in DCI for the associated UL transmission is larger than the UL priority field threshold (e.g., 1 or 0) , and the priority level of PSFCH (e.g., indicated in the associated SCI) is lower than the SL priority threshold. Otherwise the UL transmission is prioritized. (or vice versa, depending on the ascending order or descending order for priority level definition) .
For the other cases, e.g., UL transmission is not associated with a DCI with the “priority field” , then UL transmission is deprioritized if the priority level of PSFCH is higher than SL-threshold, otherwise prioritized.
For prioritization between S-SSB and UL transmission when S-SSB transmission is overlapping with UL transmission other than PUCCH carrying SL HARQ reporting:
When UL transmission is associated with a DCI with the “priority field” (e.g., URLLC case) , the SL transmission is prioritized if the priority level indicated by the “priority field” (e.g., 0 means “high” , 1 means “low” ) in DCI for the associated UL transmission is larger than the UL priority field threshold (e.g., 1 or 0) , and the priority level of S-SSB is lower than the SL priority threshold. Otherwise the UL transmission is prioritized. (or vice versa, depending on the ascending order or descending order for priority level definition) .
For the other cases, e.g., UL transmission is not associated with a DCI with the “priority field” , then UL transmission is deprioritized if the priority level of S-SSB is higher than SL-threshold, otherwise prioritized.
Additionally, msg3 in uu interface can be always prioritized than S-SSB and/or PSFCH transmission in SL. Or it can be up to the (pre-) configuration on whether to prioritize msg3 or not.
FIG. 1 shows an exemplary block diagram of a UE (a. k. adevice) according to an embodiment of the disclosure. A processor 810 can be configured to perform various functions of the UE 800 described above with reference to the embodiments described above. The processor 810 can include signal processing circuitry to process received or to be transmitted data according to communication protocols specified in, for example, LTE and NR standards. Additionally, the processor 810 may execute program instructions, for example, stored in the memory 820, to perform functions related with different communication protocols. The processor 810 can be implemented with suitable hardware, software, or a combination thereof. For example, the processor 810 can be implemented with application specific integrated circuits (ASIC) , field programmable gate arrays (FPGA) , and the like, that includes circuitry. The circuitry can be configured to perform various functions of the processor 810.
In one example, the memory 820 can store program instructions that, when executed by the processor 810, cause the processor 810 to perform various functions as described herein. The memory 820 can include a read only memory (ROM) , a random access memory (RAM) , a flash memory, a solid state memory, a hard disk drive, and the like.
The RF module 830 can be configured to receive a digital signal from the processor 810 and accordingly transmit a signal to a base station in a wireless communication network via an antenna 840. In addition, the RF module 830 can be configured to receive a wireless signal from a base station and accordingly generate a digital signal which is provided to the processor 810. The RF module 830 can include digital to analog/analog to digital converters (DAC/ADC) , frequency down/up converters, filters, and amplifiers for reception and transmission operations. For example, the RF module 830 can include converter circuits, filter circuits, amplification circuits, and the like, for processing signals on different carriers or bandwidth parts.
The UE 800 can optionally include other components, such as input and output devices, additional CPU or signal processing circuitry, and the like. Accordingly, the UE 800 may be capable of performing other additional functions, such as executing application programs, and processing alternative communication protocols.
The processes and functions described herein can be implemented as a computer program which, when executed by one or more processors, can cause the one or more processors to perform the respective processes and functions. The computer program may be stored or distributed on a suitable medium, such as an optical storage medium or a solid-state medium supplied together with, or as part of, other hardware. The  computer program may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems. For example, the computer program can be obtained and loaded into an apparatus, including obtaining the computer program through physical medium or distributed system, including, for example, from a server connected to the Internet.
The computer program may be accessible from a computer-readable medium providing program instructions for use by or in connection with a computer or any instruction execution system. A computer readable medium may include any apparatus that stores, communicates, propagates, or transports the computer program for use by or in connection with an instruction execution system, apparatus, or device. The computer-readable medium can be magnetic, optical, electronic, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. The computer-readable medium may include a computer-readable non-transitory storage medium such as a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM) , a read-only memory (ROM) , a magnetic disk and an optical disk, and the like. The computer-readable non-transitory storage medium can include all types of computer readable medium, including magnetic storage medium, optical storage medium, flash medium and solid state storage medium.
While aspects of the present disclosure have been described in conjunction with the specific embodiments thereof that are proposed as examples, alternatives, modifications, and variations to the examples may be made. Accordingly, embodiments as set forth herein are intended to be illustrative and not limiting. There are changes that may be made without departing from the scope of the claims set forth below.

Claims (1)

  1. A method, comprising:
    receiving a (pre-) configuration for SL operation;
    obtaining CSI-RS and/or TDD UL/DL configuration; and
    performing transmission/reception of data and/or CSI-RS and/or S-SSB transmission/reception.
PCT/CN2020/086641 2020-04-20 2020-04-24 Physical layer enhancements for sl communication WO2021212459A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/086641 WO2021212459A1 (en) 2020-04-24 2020-04-24 Physical layer enhancements for sl communication
CN202110433633.1A CN113556777A (en) 2020-04-24 2021-04-20 Side link channel state information reporting method and user equipment
US17/238,929 US20210329604A1 (en) 2020-04-20 2021-04-23 Physical Layer Enhancements for Sidelink Communication
TW110114914A TWI788825B (en) 2020-04-24 2021-04-26 Methods and apparatus for sidelink channel state information reporting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/086641 WO2021212459A1 (en) 2020-04-24 2020-04-24 Physical layer enhancements for sl communication

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/238,929 Continuation US20210329604A1 (en) 2020-04-20 2021-04-23 Physical Layer Enhancements for Sidelink Communication

Publications (1)

Publication Number Publication Date
WO2021212459A1 true WO2021212459A1 (en) 2021-10-28

Family

ID=78101789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086641 WO2021212459A1 (en) 2020-04-20 2020-04-24 Physical layer enhancements for sl communication

Country Status (2)

Country Link
CN (1) CN113556777A (en)
WO (1) WO2021212459A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380828A (en) * 2018-04-13 2019-10-25 维沃移动通信有限公司 The operating method and terminal of Sidelink
US20200045697A1 (en) * 2018-08-06 2020-02-06 Hyundai Motor Company Method for configuring sidelink resource in communication system and apparatus for the same
CN110944405A (en) * 2018-09-21 2020-03-31 展讯通信(上海)有限公司 Data transmission method, terminal and computer readable storage medium
CN110971370A (en) * 2018-09-28 2020-04-07 夏普株式会社 Method performed by user equipment and user equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090181703A1 (en) * 2008-01-10 2009-07-16 Sam Shiaw-Shiang Jiang Method and Apparatus for Triggering Status Report in a Wireless Communications System
ES2947614T3 (en) * 2013-01-11 2023-08-14 Interdigital Patent Holdings Inc Adaptive modulation system and method
US10075868B2 (en) * 2016-11-03 2018-09-11 Qualcomm Incorporated Controlling reporting operations for wireless communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380828A (en) * 2018-04-13 2019-10-25 维沃移动通信有限公司 The operating method and terminal of Sidelink
US20200045697A1 (en) * 2018-08-06 2020-02-06 Hyundai Motor Company Method for configuring sidelink resource in communication system and apparatus for the same
CN110944405A (en) * 2018-09-21 2020-03-31 展讯通信(上海)有限公司 Data transmission method, terminal and computer readable storage medium
CN110971370A (en) * 2018-09-28 2020-04-07 夏普株式会社 Method performed by user equipment and user equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KYOCERA: "Physical Layer Procedures for CSI acquisition in unicast transmissions", 3GPP DRAFT; R1-1907103, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, Nevada; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051728549 *

Also Published As

Publication number Publication date
CN113556777A (en) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2020168452A1 (en) Control channel design for v2x communication
EP3949189B1 (en) Method and apparatus for cancelling transmission based on overlapping transmission occasions
WO2021062862A1 (en) Synchronization reference reselection procedure design for v2x communication
EP3627753A1 (en) Method for transmitting uplink control information, terminal device, and network device
CN113767691A (en) User equipment, base station and method for redundancy version determination on a micro-slotted PUSCH
WO2020087530A1 (en) Physical layer procedures for v2x communication
CN110999089B (en) Method and device
US11570786B2 (en) Wireless communication method and device
EP4322443A1 (en) Frequency hopping method and apparatus
WO2022266957A1 (en) Method and apparatus for determining cross-carrier wave beam service time
KR20160120310A (en) Method for receiving data and apparatus using same
TW202142016A (en) Methods and apparatus for sidelink channel state information reporting
CN116158161A (en) Coding rate determination for multiplexing HARQ-ACKs with different priorities on PUCCH with independent coding
CN113796143A (en) User equipment, base station and method for transport block determination for micro-slotted PUSCH
EP2484157A1 (en) Power control
US20200186299A1 (en) Method and apparatus
CN115039482A (en) Signaling and timeline requirements for multiplexing between HARQ-ACK codebooks of different priorities
WO2021212459A1 (en) Physical layer enhancements for sl communication
WO2021203411A1 (en) Enhancement for sl communication
US20150049676A1 (en) Configuration Uncertainty
WO2020062044A1 (en) Advanced v2x communication mechanism
CN116034603A (en) PUCCH resource selection and multiplexing of HARQ-ACKs with different priorities on PUCCH
TW202105946A (en) Communications apparatus and method for mitigating interference in a communications apparatus
WO2021062874A1 (en) Method for determining contention window size, network device, and terminal device
CN113796139A (en) User equipment, base station and method for interrupting uplink transmission in transmission indication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932278

Country of ref document: EP

Kind code of ref document: A1