WO2023050163A1 - 一种指纹识别基板、电子设备和指纹识别方法 - Google Patents

一种指纹识别基板、电子设备和指纹识别方法 Download PDF

Info

Publication number
WO2023050163A1
WO2023050163A1 PCT/CN2021/121740 CN2021121740W WO2023050163A1 WO 2023050163 A1 WO2023050163 A1 WO 2023050163A1 CN 2021121740 W CN2021121740 W CN 2021121740W WO 2023050163 A1 WO2023050163 A1 WO 2023050163A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
fingerprint
pole
shielding layer
substrate
Prior art date
Application number
PCT/CN2021/121740
Other languages
English (en)
French (fr)
Inventor
刘浩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180002788.8A priority Critical patent/CN116210034A/zh
Priority to PCT/CN2021/121740 priority patent/WO2023050163A1/zh
Publication of WO2023050163A1 publication Critical patent/WO2023050163A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present disclosure relates to the field of fingerprint identification, in particular to a fingerprint identification substrate, electronic equipment and a fingerprint identification method.
  • self-capacitive capacitance fingerprint is a method to realize fingerprint identification.
  • the self-capacitive capacitance fingerprint recognition structure relies on detecting the capacitance formed between the valley and ridge of the fingerprint and the plate of the sensing unit, and detecting the relative difference between the two capacitances to distinguish the valley and ridge of the fingerprint and form an image In order to realize fingerprint detection and recognition.
  • an embodiment of the present disclosure provides a fingerprint recognition substrate, including a substrate, a driving circuit layer on the substrate, a shielding layer on the side of the driving circuit layer away from the substrate, and a The shielding layer is away from the detection electrode on the side of the substrate, and the detection electrode is electrically connected to the fingerprint detection circuit located on the driving circuit layer;
  • the shielding layer is insulated from the detection electrode, and the orthographic projection of the shielding layer on the substrate at least partially overlaps with the orthographic projection of the detection electrode on the substrate.
  • the shielding layer is connected to the ground wire.
  • the shielding layer is electrically connected to the excitation signal source to obtain the excitation signal provided by the excitation signal source.
  • the fingerprint detection circuit includes a first switch tube, a second switch tube and an output circuit
  • Both the first switch tube and the second switch tube include a control pole, a first pole and a second pole;
  • the control pole of the first switch tube is connected to the charging control signal source, the first pole of the first switch tube is connected to the charging signal source, and the second pole of the first switch tube is electrically connected to the detection electrode;
  • the control pole of the second switch tube is electrically connected to the discharge detection control signal source, the first pole of the second switch tube is electrically connected to the detection electrode, and the second pole of the second switch tube is connected to the output electric circuit connection;
  • the output circuit is used to output the collected fingerprint signal.
  • the output circuit includes an amplifier and a feedback capacitor
  • the amplifier includes a positive pole, a negative pole and an output pole, the negative pole of the amplifier is connected to the second pole of the second switch tube, the positive pole of the amplifier is connected to the reference signal source, the output pole of the amplifier is connected to the output signal terminal connected to output the collected fingerprint signal;
  • the first end of the feedback capacitor is connected to the negative pole of the amplifier, and the second end of the feedback capacitor is connected to the output pole of the amplifier.
  • the output circuit further includes a reset subcircuit, the two ends of the reset subcircuit are respectively connected to the negative pole and the output pole of the amplifier, and the reset subcircuit is used to make a connection or disconnection between the negative terminal of the amplifier and the output terminal.
  • the detection electrode is electrically connected to the first switch tube and the second switch tube through a via hole penetrating through the shielding layer;
  • the orthographic projection of the shielding layer on the substrate covers the orthographic projection of the semiconductor layer of the first switching transistor on the substrate, and the orthographic projection of the shielding layer on the substrate covers the first Orthographic projections of the semiconductor layers of the two switch transistors on the substrate.
  • the fingerprint identification substrate includes a first gate layer, a second gate layer, a first source-drain metal layer, a second source-drain metal layer, and a second gate layer.
  • An electrode layer, the first gate layer includes a plurality of first gate patterns and first signal line patterns, the second gate layer includes a plurality of second gate patterns, the first gate patterns and The second gate pattern forms the gate of the switch tube, the first source-drain metal layer includes a source-drain pattern and a second signal line pattern, the second source-drain metal layer includes a shielding layer pattern, and the source The drain pattern forms the source and drain of the switch tube, the shielding layer pattern forms the shielding layer, the first electrode layer includes a plurality of first electrode patterns, and the first electrode patterns form the detection electrodes.
  • the shielding layer pattern includes a dividing line, and the dividing line extends from the via hole to the edge of the shielding layer pattern.
  • the first signal line pattern is used to form one or more of the following:
  • the first signal line is used to transmit the charging control signal provided by the charging control signal source
  • the second signal line is used to transmit the discharge detection control signal provided by the discharge detection control signal source.
  • the second signal line pattern is used to form one or more of the following:
  • the third signal line is used to transmit the charging signal provided by the charging signal source
  • the fourth signal line is used to output the signal detected by the detection electrode.
  • an embodiment of the present disclosure provides an electronic device, including the fingerprint identification substrate described in any one of the first aspect.
  • the fingerprint identification substrate includes an identification area and a peripheral area
  • the shielding layer and the detection electrodes are both located in the identification area
  • the peripheral area is provided with an excitation signal source, a charging control signal source, One or more of the charging signal source, the discharge detection control signal source and the discharge detection control signal source.
  • an embodiment of the present disclosure provides a fingerprint identification method, which is applied to the electronic device described in the second aspect, and the method includes the following steps:
  • the excitation signal is input to the shielding layer through the excitation signal source, and the fingerprint signal is obtained through the detection electrode, including:
  • a discharge detection control signal inputting a reset signal to the reset sub-circuit, and receiving a fingerprint signal output by the output circuit;
  • the rising edge of the excitation signal corresponds to the falling edge of the reset signal, and the rising edge of the excitation signal corresponds to the rising edge of the charging control signal;
  • the rising edge of the reset signal corresponds to the falling edge of the charging control signal, and the rising edge of the reset signal corresponds to the falling edge of the charging signal;
  • the falling edge of the excitation signal is located after the rising of the reset signal, and the falling edge of the initial reset signal is located between the rising of the reset signal and the falling edge of the excitation signal;
  • the rising edge of the discharge detection control signal corresponds to the falling edge of the excitation signal, and the rising edge of the discharge detection control signal corresponds to the falling edge of the charging signal;
  • the rising edge of the charging signal is located after the falling edge of the excitation signal, and the rising edge of the charging signal corresponds to the falling edge of the discharge detection control signal;
  • the rising edge of the initial reset signal is located after the falling edge of the discharge detection control signal
  • the beginning of the fingerprint signal corresponds to the rise of the discharge detection control signal, and the end of the fingerprint signal corresponds to the falling edge of the initial reset signal.
  • FIG. 1 is a schematic diagram of a fingerprint recognition scene according to an embodiment of the present disclosure
  • FIG. 2 is a circuit diagram of a fingerprint identification substrate according to an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of a fingerprint detection voltage signal of a fingerprint identification substrate
  • Fig. 4 is a partially enlarged schematic diagram of Fig. 3;
  • FIG. 5 is a circuit diagram of a fingerprint recognition substrate according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a fingerprint detection voltage signal of a fingerprint identification substrate provided by an embodiment of the present disclosure
  • Fig. 7 is a partially enlarged schematic diagram of Fig. 6;
  • FIG. 8 is a schematic structural view of a fingerprint recognition substrate according to an embodiment of the present disclosure.
  • FIG. 9 is a circuit diagram of a fingerprint recognition circuit according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a fingerprint recognition substrate according to an embodiment of the present disclosure.
  • Fig. 12 is another structural schematic diagram of a fingerprint identification substrate according to an embodiment of the present disclosure.
  • Fig. 12 is another structural schematic diagram of a fingerprint identification substrate according to an embodiment of the present disclosure.
  • Fig. 13 is a schematic diagram of virtual fingerprint detection in an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a fingerprint recognition substrate.
  • the fingerprint recognition substrate includes a substrate, a driving circuit layer on the substrate, a shielding layer Sh on the side of the driving circuit layer away from the substrate, and a shielding layer Sh on the side away from the substrate.
  • the detection electrode Cap on the bottom side is electrically connected to the fingerprint detection circuit located on the driving circuit layer.
  • the fingerprint mainly includes two structures of valleys and ridges.
  • the equivalent capacitance is formed between the Caps, and the distance between the valleys and ridges and the fingerprint recognition substrate is different, so that there will be a certain difference between the formed capacitances.
  • the valleys and ridges of the fingerprint can be determined
  • the corresponding position forms an image according to the recognition result, so that the fingerprint pattern can be obtained, and the fingerprint detection and recognition can be realized.
  • the fingerprint recognition substrate may be integrated with other structures, for example, it may be integrated with a display substrate to realize the fingerprint recognition function in a certain part of the display area of the display device.
  • the fingerprint identification substrate can also be set separately to realize the fingerprint identification function.
  • the drive circuits may be used to drive the pixel units in the display panel.
  • TFT Thin film transistors
  • MOS tubes metal oxide semiconductor field effect transistors
  • conductive traces etc.
  • a shielding layer Sh located between the driving circuit layer and the detection electrode Cap is further provided in this embodiment.
  • the shielding layer Sh is insulated from the detection electrode Cap, and the shielding layer Sh is in the The orthographic projection on the substrate and the orthographic projection of the detection electrode Cap on the substrate at least partially overlap, thus reducing noise interference, helping to improve fingerprint collection accuracy and avoiding affecting signals of the driving circuit in the driving circuit layer.
  • the shielding layer Sh is grounded, specifically, it can be connected to the ground wire, which can keep the level of the shielding layer Sh stable, thereby reducing noise interference, helping to improve the accuracy of fingerprint collection and Avoid affecting the signal of the driver circuit in the driver circuit layer.
  • the equivalent capacitance between the fingerprint and the detection electrode Cap is Cf.
  • Cf includes the equivalent capacitance formed between the ridge of the fingerprint and the fingerprint identification substrate, which is CR, and also includes the valley of the fingerprint and the time of the fingerprint.
  • the equivalent capacitance between the other substrates is CV; the equivalent capacitance Cp is formed between the detection electrode Cap and the shielding layer Sh.
  • Cf refers to the equivalent capacitance between the pattern and the detection electrode Cap
  • Vtx is the driving voltage of the detection electrode Cap
  • Vref is the reference voltage
  • Cf1 is the feedback capacitance of the charge integration amplifier
  • Vout is the output voltage of the charge integration amplifier.
  • the detection of fingerprints can be realized, and the cost is relatively low, compared with the prior art.
  • the signal-to-noise ratio can be improved, so as to improve the accuracy of the collected signal.
  • the inventors of the present disclosure have found through further research that the touching finger can be understood as a virtual ground connection.
  • the detection electrode Cap When the detection electrode Cap is stimulated and charged, Cf and Cp will be charged or discharged at the same time, which leads to subsequent further processing of the collected data.
  • the collected data may be integrally amplified by an integral amplifier, and the two capacitors, Cfinger and Cp, may be integrally amplified at the same time.
  • Cp is the same component of a common mode, which does not increase the capacitance difference corresponding to the valley and the ridge, but makes the relative difference of the capacitance of the valley and ridge smaller. This property can be expressed by the following formula (5):
  • Cp is greater than or much greater than Cf, which causes the Vout output signal to be pulled down.
  • the normal working output range is generally between AVSSI and Vref+0.5V , here, AVSSI refers to the standard voltage of the SSI interface, and in this embodiment, the range of Vout is 2.5-4.5V.
  • Figure 3 is a voltage waveform diagram when the shielding layer Sh is grounded, wherein the last row of signals is the waveform diagram of the fingerprint output signal
  • Figure 4 is a partial enlarged diagram of the waveform diagram of the fingerprint output signal
  • the upper waveform represents the output voltage signal of the fingerprint valley, which is about 2.71 volts
  • the lower waveform represents the output voltage signal of the fingerprint ridge, which is about 2.56 volts.
  • the output signal corresponding to the fingerprint valley ridge is small, only 0.15V.
  • the output voltage signal corresponding to the valley and ridge of the fingerprint is pulled down, which only occupies a small part of the output range of the AFE (Active Front End, rectification/feedback unit), resulting in a part of the output voltage signal being wasted, which compresses the work of the AFE charge integration amplifier gain.
  • AFE Active Front End, rectification/feedback unit
  • the shielding layer Sh is electrically connected to the excitation signal source to obtain the excitation signal provided by the excitation signal source, and the excitation signal is used to adjust the level difference between the detection electrode Cap and the shielding layer Sh, so that Keep as consistent as possible, so that the potentials at both ends of the equivalent capacitance Cp formed between the detection electrode Cap and the shielding layer Sh can be equalized, so as to suppress the charging and discharging of the equivalent capacitance Cp.
  • the last line of signals in Figure 6 is the voltage waveform when the excitation signal is provided to the shielding layer Sh, wherein the last line of signals is the waveform of the fingerprint output signal, and Figure 7 is the waveform of the fingerprint output signal A partial enlargement of the figure.
  • the driving voltage Vtx applied to the detection electrode Cap can all act on the equivalent capacitance Cf formed between the fingerprint and the detection electrode Cap, so that the effective capacitance of the fingerprint recognition substrate is given by Cf+Cp Decrease to Cf, so that the output voltage Vout increases.
  • the upper waveform represents the output voltage signal of the fingerprint valley, which is about 3.93 volts
  • the lower row of waveforms represents the output voltage signal of the fingerprint ridge, which is about 3.07 volts, so that the output corresponding to the fingerprint valley ridge
  • the semaphore increases to about 0.86V.
  • the fingerprint identification substrate provided by the embodiment of the present disclosure can avoid crosstalk between the fingerprint identification substrate and the drive circuit in the drive circuit layer by setting the shielding layer Sh, which helps to improve the reliability of the fingerprint identification substrate.
  • the shielding layer Sh is electrically connected to the excitation signal source to obtain the excitation signal provided by the excitation signal source. By applying the excitation signal on the shielding layer Sh, it helps to improve the signal-to-noise ratio of the output signal and improve the fingerprint collection accuracy.
  • the fingerprint detection circuit includes a first switching transistor TFT1 , a second switching transistor TFT2 and an output circuit. Both the first switching transistor TFT1 and the second switching transistor TFT2 include a control pole, a first pole and a second pole.
  • the control electrode of the first switching tube TFT1 is connected to the charging control signal source to obtain the charging control signal gt
  • the first electrode of the first switching tube TFT1 is connected to the charging signal source to obtain the charging signal Drv, that is, the above-mentioned driving voltage Vtx
  • the first The first pole of the switching tube TFT1 can also be understood as the input terminal Tx of the fingerprint detection circuit, and the second pole of the first switching tube TFT1 is electrically connected to the detection electrode Cap.
  • the control pole of the second switch tube TFT2 is electrically connected to the discharge detection control signal source to obtain the discharge detection control signal gr
  • the first pole of the second switch tube TFT2 is electrically connected to the detection electrode Cap
  • the second pole of the second switch tube TFT2 is connected to the discharge detection control signal source.
  • the output circuit is electrically connected, and the second pole of the second switching tube TFT2 can also be understood as the output terminal Rx of the fingerprint detection circuit.
  • the output circuit is used to output the collected fingerprint signal.
  • the output circuit includes an amplifier and a feedback capacitor CF1; here, the amplifier may be a differential amplifier, and the differential amplifier and the feedback capacitor CF1 together form an integrating amplifier.
  • the amplifier includes a positive pole, a negative pole and an output pole, the negative pole of the amplifier is connected to the second pole of the second switching tube TFT2, the positive pole of the amplifier is connected to the reference signal source to obtain the reference signal Vref, and the output pole of the amplifier is connected to the output signal terminal to output the collection received fingerprint signal.
  • the first end of the feedback capacitor CF1 is connected to the negative pole of the amplifier, and the second end of the feedback capacitor CF1 is connected to the output pole of the amplifier. In this way, the fingerprint signal output by the fingerprint detection circuit can be amplified and output by the output circuit.
  • the output circuit further includes a reset subcircuit, the two ends of the reset subcircuit are respectively connected to the negative pole and the output pole of the amplifier, and the reset subcircuit is used to make the connection between the negative pole and the output pole of the amplifier under the control of the reset signal Rst connected or disconnected.
  • the first switching tube TFT1 transmits the charging signal Drv to the detection electrode Cap under the control of the charging control signal gt.
  • the charging signal Drv can also be understood as the driving voltage Vtx of the detection electrode Cap.
  • the detection electrode Cap The detected fingerprint signal is transmitted to the output circuit through the second switching tube TFT2 under the control of the discharge detection control signal gr, and the fingerprint signal is amplified by the output circuit and output.
  • the detection electrode Cap is electrically connected to the first switching transistor TFT1 and the second switching transistor TFT2 through a via hole penetrating the shielding layer Sh; the orthographic projection of the shielding layer Sh on the substrate covers the semiconductor of the first switching transistor TFT1 The orthographic projection of the layer on the substrate, the orthographic projection of the shielding layer Sh on the substrate covers the orthographic projection of the semiconductor layer of the second switching transistor TFT2 on the substrate.
  • the fingerprint identification substrate includes a substrate 901 , and the substrate 901 can be made of transparent polyimide (PI) or ultra-thin glass (UTG).
  • a driving circuit layer is further formed on the substrate 901.
  • the driving circuit layer mainly includes a buffer layer 902, a semiconductor layer 903, a first gate layer 904, a second gate layer 905, and a stacked structure 906.
  • the stacked structure 906 may specifically include Gate insulating layer and interlayer dielectric layer, etc.
  • the first gate layer 904 includes a plurality of first gate patterns and first signal line patterns
  • the second gate layer 905 includes a plurality of second gate patterns
  • the first gate patterns and the second gate patterns form
  • the gate of the switch tube for example, for a switch tube with a double-gate structure, its gate can be formed with a first grid pattern and a second gate pattern, and for a switch tube with a conventional single-gate structure, it can be The gate is formed by using the first gate pattern or the second gate pattern.
  • the first signal line pattern is used to form one or more of the following:
  • the first signal line is used to transmit the charging control signal provided by the charging control signal source
  • the second signal line is used to transmit the discharge detection control signal provided by the discharge detection control signal source.
  • the gate insulating layer may include a first gate insulating sublayer and a second gate insulating sublayer
  • the driving circuit layer may further include a first source-drain metal layer 907 and a first organic planar layer 908 .
  • the first source-drain metal layer 907 includes a source-drain pattern and a second signal line pattern.
  • the source-drain pattern forms the source and drain of the switch tube.
  • the driving circuit layer can be used to form the first switch tube TFT1 and the second switch tube. Tube TFT2 and other structures.
  • the second signal line pattern is used to form one or more of the following:
  • the third signal line is used to transmit the charging signal provided by the charging signal source
  • the fourth signal line is used to output the signal detected by the detection electrode.
  • a second source-drain metal layer is also formed on the substrate 901, the second source-drain metal layer includes a third signal line pattern and a shielding layer pattern, and the shielding layer pattern of the second source-drain metal layer is used to form the shielding layer 909-1( That is, the above-mentioned shielding layer Cp), the second organic planar layer 910 , the detection electrodes 911 - 1 and 911 - 2 (that is, the above-mentioned detection electrode Cap), an encapsulation protection layer 912 and other structures are formed on the substrate 901 .
  • the shielding layer pattern includes a dividing line 909 - 11 , and the dividing line 909 - 11 extends from the via hole to the edge of the shielding layer pattern.
  • the dividing line runs through the pattern of the shielding layer. It can be understood that via holes need to be opened on the shielding layer pattern. In this way, each shielding layer pattern is roughly ring-shaped. By setting the dividing line, it can assist in releasing stress and avoid deformation of the shielding layer pattern. At the same time, the shielding layer pattern is formed at the first On an organic planar layer 908, in this way, the formed via hole also needs to be used as the exhaust hole of the first organic planar layer 908 in the high-temperature process that may be involved. By setting the dividing line, it can be used as an auxiliary exhaust hole The gas area helps to improve the exhaust effect and reduce the possible impact on the via hole, which has reasons to improve the reliability of the connection at the via hole.
  • the first electrode layer includes a plurality of first electrode patterns, and the first electrode patterns form detection electrodes 911-1, 911-2.
  • the detection electrode 911-1 and the detection electrode 911-2 can be understood as the detection electrodes of different detection units, please refer to Figure 11 and Figure 12 at the same time, the structure shown in Figure 11 can be understood as a fingerprint detection unit, and the fingerprint recognition shown in Figure 12
  • the substrate includes a plurality of detection units, and each fingerprint detection unit is used to detect the fingerprint information of a point, which is specifically a valley or a ridge, and the information detected by multiple fingerprint detection units can be combined to obtain relatively complete fingerprint information.
  • the fingerprint recognition substrate includes a plurality of signal lines, here, the signal line may be the signal line 909-2 shown in FIG. 10 , and the multiple signal lines are provided in the same layer and material as the shielding layer Sh.
  • the third signal line pattern is used to form the data line 909-2 of the driving circuit to transmit the driving signal.
  • the driving circuit can be a GOA (Gate on Array, array substrate driving circuit, when it is located in the array In the row direction of the substrate, it is also referred to as an array substrate row driving circuit).
  • an embodiment of the present disclosure provides an electronic device, including the fingerprint recognition substrate described in any one of the above.
  • the electronic device further includes one or more of an excitation signal source, a charge control signal source, a charge signal source, a discharge detection control signal source, and a discharge detection control signal source to provide corresponding signals.
  • the fingerprint identification substrate includes an identification area and a peripheral area
  • the shielding layer Sh and the detection electrode Cap are located in the identification area
  • the signal source and the discharge detection control signal source are arranged in the peripheral area.
  • the electronic device in this embodiment may be a display device, and the fingerprint recognition substrate may be integrated with the display substrate of the display device.
  • the fingerprint recognition function may be implemented in a specific area of the display substrate. Since the technical solution of this embodiment includes all the technical solutions of the above-mentioned fingerprint recognition substrate embodiment, at least all the above-mentioned technical effects can be achieved, and will not be repeated here.
  • an embodiment of the present disclosure provides a fingerprint identification method, which is applied to the above-mentioned electronic device, and the method includes the following steps:
  • an excitation signal is input to the shielding layer, and the excitation signal is used to adjust the level difference between the detection electrode and the shielding layer to keep it as consistent as possible, so that the detection electrode and the shielding layer can
  • the potentials of both ends of the equivalent capacitance formed between the layers are equal to suppress the charging and discharging of the equivalent capacitance, thereby helping to improve the accuracy of fingerprint recognition.
  • the fingerprint identification substrate includes the above-mentioned output circuit and reset circuit, and the excitation signal is input to the shielding layer through the excitation signal source, and the fingerprint signal is obtained through the detection electrode, including:
  • a discharge detection control signal inputting a reset signal to the reset sub-circuit, and receiving a fingerprint signal output by the output circuit;
  • the rising edge of the excitation signal corresponds to the falling edge of the reset signal, and the rising edge of the excitation signal corresponds to the rising edge of the charging control signal;
  • the rising edge of the reset signal corresponds to the falling edge of the charging control signal, and the rising edge of the reset signal corresponds to the falling edge of the charging signal;
  • the falling edge of the excitation signal is located after the rising of the reset signal, and the falling edge of the initial reset signal is located between the rising of the reset signal and the falling edge of the excitation signal;
  • the rising edge of the discharge detection control signal corresponds to the falling edge of the excitation signal, and the rising edge of the discharge detection control signal corresponds to the falling edge of the charging signal;
  • the rising edge of the charging signal is located after the falling edge of the excitation signal, and the rising edge of the charging signal corresponds to the falling edge of the discharge detection control signal;
  • the rising edge of the initial reset signal is located after the falling edge of the discharge detection control signal
  • the beginning of the fingerprint signal corresponds to the rise of the discharge detection control signal, and the end of the fingerprint signal corresponds to the falling edge of the initial reset signal.
  • the first row represents the excitation signal Vcp
  • the second row represents the reset signal rst
  • the third row represents the charging signal Drv
  • the fourth row represents the charging control signal gt
  • the fifth row represents the fingerprint
  • the sixth row represents the discharge detection control signal gr
  • the seventh row represents the fingerprint signal Vout output after being amplified by the amplifier circuit.
  • FIG. 13 shows the fingerprint image restored according to the output fingerprint signal after the simulated fingerprint is used for detection. It can be seen that the restored fingerprint image has a high definition.
  • the fingerprint image shown in Figure 13 is a randomly generated simulated fingerprint, which does not involve any personal privacy information.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Image Input (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本公开提供一种指纹识别基板、电子设备和指纹识别方法。指纹识别基板包括,衬底、位于所述衬底上的驱动电路层、位于所述驱动电路层远离所述衬底一侧的屏蔽层以及位于所述屏蔽层远离所述衬底一侧的检测电极,所述检测电极与位于所述驱动电路层的指纹检测电路电连接;所述屏蔽层与所述检测电极绝缘设置,且所述屏蔽层在所述衬底上的正投影与所述检测电极在所述衬底上的正投影至少部分交叠。本公开能够提高对于指纹的识别精度。

Description

一种指纹识别基板、电子设备和指纹识别方法 技术领域
本公开涉及指纹识别领域,尤其涉及一种指纹识别基板、电子设备和指纹识别方法。
背景技术
随着技术的发展,许多电子设备支持指纹识别功能,自容式电容指纹是一种实现指纹识别的方法。一般来说,自容式电容指纹识别结构依赖于检测指纹的谷和脊与传感单元的极板之间的形成电容,检测两者电容的相对差值区别出指纹的谷、脊,形成图像从而实现指纹检测识别。
发明内容
在一些方面,本公开实施例提供了一种指纹识别基板,包括,衬底、位于所述衬底上的驱动电路层、位于所述驱动电路层远离所述衬底一侧的屏蔽层以及位于所述屏蔽层远离所述衬底一侧的检测电极,所述检测电极与位于所述驱动电路层的指纹检测电路电连接;
所述屏蔽层与所述检测电极绝缘设置,且所述屏蔽层在所述衬底上的正投影与所述检测电极在所述衬底上的正投影至少部分交叠。
在其中一些实施例中,所述屏蔽层与地线连接。
在其中一些实施例中,所述屏蔽层与激励信号源电连接以获取所述激励信号源提供的激励信号。
在其中一些实施例中,所述指纹检测电路包括第一开关管、第二开关管和输出电路;
所述第一开关管和所述第二开关管均包括控制极、第一极和第二极;
所述第一开关管的控制极与充电控制信号源连接,所述第一开关管的第一极与充电信号源连接,所述第一开关管的第二极与所述检测电极电连接;
所述第二开关管的控制极与放电检测控制信号源电连接,所述第二开关管的第一极与所述检测电极电连接,所述第二开关管的第二极与所述输出电 路电连接;
所述输出电路用于输出采集到的指纹信号。
在其中一些实施例中,所述输出电路包括放大器和反馈电容;
所述放大器包括正极、负极和输出极,所述放大器的负极与所述第二开关管的第二极连接,所述放大器的正极与参考信号源相连,所述放大器的输出极与输出信号端相连以输出采集到的指纹信号;
所述反馈电容的第一端与所述放大器的负极连接,所述反馈电容的第二端与所述放大器的输出极连接。
在其中一些实施例中,所述输出电路还包括复位子电路,所述复位子电路的两端分别与所述放大器的负极和输出极连接,所述复位子电路用于在复位信号的控制下使所述放大器的负极和输出极之间连接或断开。
在其中一些实施例中,所述检测电极通过贯穿所述屏蔽层的过孔与所述第一开关管和所述第二开关管电连接;
所述屏蔽层在所述衬底上的正投影覆盖所述第一开关管的半导体层在所述衬底上的正投影,所述屏蔽层在所述衬底上的正投影覆盖所述第二开关管的半导体层在所述衬底上的正投影。
在其中一些实施例中,沿远离所述衬底的方向上,所述指纹识别基板包括第一栅极层、第二栅极层、第一源漏金属层、第二源漏金属层和第一电极层,所述第一栅极层包括多个第一栅极图形和第一信号线图形,所述第二栅极层包括多个第二栅极图形,所述第一栅极图形和所述第二栅极图形形成开关管的栅极,所述第一源漏金属层包括源漏极图形和第二信号线图形,所述第二源漏金属层包括屏蔽层图形,所述源漏极图形形成开关管的源极和漏极,所述屏蔽层图形形成所述屏蔽层,所述第一电极层包括多个第一电极图形,所述第一电极图形形成所述检测电极。
在其中一些实施例中,所述屏蔽层图形包括分割线,所述分割线由所述过孔延伸至所述屏蔽层图形的边缘。
所述第一信号线图形用于形成以下一项或多项:
第一信号线,用于传输充电控制信号源提供的充电控制信号;
第二信号线,用于传输放电检测控制信号源提供的放电检测控制信号。
在其中一些实施例中,所述第二信号线图形用于形成以下一项或多项:
第三信号线,用于传输充电信号源提供的充电信号;
第四信号线,用于输出所述检测电极检测到的信号。
第二方面,本公开实施例提供了一种电子设备,包括第一方面中任一项所述的指纹识别基板。
在其中一些实施例中,所述指纹识别基板包括识别区和周边区,所述屏蔽层和所述检测电极均位于所述识别区,所述周边区设置有激励信号源、充电控制信号源、充电信号源、放电检测控制信号源和放电检测控制信号源中的一项或多项。
第三方面,本公开实施例提供了一种指纹识别方法,应用于第二方面所述的电子设备,所述方法包括以下步骤:
通过激励信号源向屏蔽层输入激励信号,并通过检测电极获取指纹信号;
根据所述指纹检测信号生成指纹信息。
在其中一些实施例中,通过激励信号源向屏蔽层输入激励信号,并通过检测电极获取指纹信号,包括:
向所述屏蔽层输入激励信号,向所述第一开关管的控制极输入充电控制信号,向所述第一开关管的第一极输入充电信号,向所述第二开关管的控制极输入放电检测控制信号,向所述复位子电路输入复位信号,并接受所述输出电路输出的指纹信号;
其中,激励信号的上升沿对应复位信号的下降沿,且所述激励信号的上升沿对应充电控制信号的上升沿;
所述复位信号的上升沿对应所述充电控制信号的下降沿,且所述复位信号的上升沿对应充电信号的下降沿;
所述激励信号的下降沿位于所述复位信号的上升之后,初始复位信号的下降位于复位信号的上升和所述激励信号的下降沿之间;
放电检测控制信号的上升沿对应激励信号的下降沿,所述放电检测控制信号的上升对应所述充电信号的下降沿;
所述充电信号的上升沿位于所述激励信号的下降沿之后,所述充电信号的上升对应所述放电检测控制信号的下降沿;
所述初始复位信号的上升沿位于所述放电检测控制信号的下降沿之后;
指纹信号的开始对应所述放电检测控制信号的上升,所述指纹信号的结束对应所述初始复位信号的下降沿。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获取其他的附图。
图1是本公开一实施例指纹识别的场景示意图;
图2是本公开一实施例的指纹识别基板的电路图;
图3是一种指纹识别基板的指纹检测电压信号示意图;
图4是图3的局部放大示意图;
图5是本公开一实施例的指纹识别基板的电路图;
图6是本公开一实施例提供的指纹识别基板的指纹检测电压信号示意图;
图7是图6的局部放大示意图;
图8是本公开一实施例指纹识别基板的结构示意图;
图9是本公开一实施例的指纹识别电路的电路图;
图10是本公开一实施例的指纹识别基板的结构示意图;
图12是本公开一实施例的指纹识别基板的又一结构示意图;
图12是本公开一实施例的指纹识别基板的又一结构示意图;
图13是本公开一实施例中虚拟指纹的检测示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。不冲突的情况下,下述实施例及实施例中的特征可以相互组合。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前 提下所获取的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了一种指纹识别基板。
如图1所示,在一个实施例中,该指纹识别基板包括,衬底、位于衬底上的驱动电路层、位于驱动电路层远离衬底一侧的屏蔽层Sh以及位于屏蔽层Sh远离衬底一侧的检测电极Cap,检测电极Cap与位于驱动电路层的指纹检测电路电连接。
本实施例的技术方案应用于自容式电容指纹识别结构,如图1所示,指纹主要包括谷和脊两种结构,当指纹按压于指纹识别基板上时,谷和脊分别会与检测电极Cap之间形成等效电容,谷和脊与指纹识别基板之间距离是不同的,这样,所形成的电容之间会有一定差异,通过检测并识别这种差异,能够确定指纹的谷和脊对应的位置,根据识别结果形成图像,从而能够获得指纹的图形,实现指纹检测识别。
指纹识别基板可能会与其他结构集成,示例性的,可以与显示基板集成,在显示装置的显示区域的某一部分实现指纹识别功能。指纹识别基板也可以单独设置,并实现指纹识别功能。
应当理解的是,为实现指纹识别功能,通常需要设置相应的驱动电路,当指纹识别基板与其他结构集成时,也会设置一些驱动电路,示例性的,驱动电路可能是驱动显示面板中像素单元的薄膜晶体管(TFT)、金氧半场效晶体管(MOS管)、导电走线等。
为了避检测电极Cap与这些驱动电路之间串扰,本实施例中进一步设置了位于驱动电路层和检测电极Cap之间的屏蔽层Sh,屏蔽层Sh与检测电极Cap绝缘设置,且屏蔽层Sh在衬底上的正投影与检测电极Cap在衬底上的正投影至少部分交叠,这样,能够降低噪声干扰,有助于提高指纹采集精度以及避免影响驱动电路层中驱动电路的信号。
如图2所示,在一些实施例中,屏蔽层Sh接地,具体的,可以是与地线连接,能够保持屏蔽层Sh的电平稳定,从而降低噪声干扰,有助于提高指纹采集精度以及避免影响驱动电路层中驱动电路的信号。
请继续参阅图1,指纹和检测电极Cap之间的等效电容为Cf,具体的,Cf包括指纹的脊与指纹识别基板之间形成的等效电容为CR,还包括指纹的 谷与指纹时候别基板之间的等效电容为CV;检测电极Cap和屏蔽层Sh之间形成等效电容Cp。
理想情况下,仅考虑指纹与检测电极Cap之间形成的电容Cf,则依据电荷积分放大器的工作原理可以得到公式(1):
Cf*(Vtx-Vref)=Cf1*(Vref-Vout)……(1);
其中,Cf指为纹和检测电极Cap之间的等效电容,Vtx为检测电极Cap的驱动电压,Vref为参考电压,Cf1为电荷积分放大器的反馈电容,Vout为电荷积分放大器的输出电压。
根据公式(1)可以得到公式(2):
Figure PCTCN2021121740-appb-000001
而实际情况下,由于检测电极Cap和屏蔽层Sh之间形成寄生电容Cp,则上述公式(1)需要调整成公式(3):
(Cf+Cp)*(Vtx-Vref)=Cf1*(Vref-Vout)……(3);
根据公式(3)能够得到公式(4):
Figure PCTCN2021121740-appb-000002
这样,能够实现对于指纹的检测,成本相对较低,相对于现有技术。能够提高信号信噪比,从而实现提高采集的信号精度。
然而本公开发明人经过进一步研究发现,触控的手指可以理解为虚地连接,在对检测电极Cap进行激励充电时,Cf和Cp会被同时充电或放电,这导致后续进一步对采集的数据进行积分放大时,示例性的,可以通过积分放大器对采集的数据进行积分放大,同时对Cfinger和Cp这两个电容进行积分放大。但是,对于CR和CV来说,Cp是一个共模的相同的分量,并未增加谷和脊对应的电容差异,反而使得谷脊的电容的相对差异变小。该性质可以通过以下公式(5)表示:
(CR-CV)/CV>{(CR+Cp)-(CCp)}/(CCp)……(5)。
可以理解为,在上述公式(4)中,一般来说,Cp大于或远大于Cf,这导致Vout输出信号被拉低,对于积分放大器来说,正常工作输出范围一般在AVSSI至Vref+0.5V,这里,AVSSI指的是SSI接口标准电压,本实施例中, Vout范围在2.5~4.5V。
如图3和图4所示,图3为屏蔽层Sh接地时的电压波形图,其中,最后一行信号为指纹输出信号的波形图,图4为指纹输出信号的波形图的局部放大图,图4中上方波形代表指纹谷的输出电压信号,约为2.71伏,下方波形代表指纹脊的输出电压信号,约为2.56伏,指纹谷脊对应的输出信号量小,只有0.15V。指纹谷、脊对应的输出电压信号被拉低,只占用了AFE(Active Front End,整流/回馈单元)输出量程的一小部分,导致一部分输出电压信号被浪费,压缩了AFE电荷积分放大器的工作放大倍数。
在一些实施例中,如图5所示,屏蔽层Sh与激励信号源电连接以获取激励信号源提供的激励信号,激励信号用于调整检测电极Cap和屏蔽层Sh的电平差异,使其尽可能的保持一致,从而能够使得检测电极Cap和屏蔽层Sh之间形成的等效电容Cp的两端的电位相等,以抑制等效电容Cp的充放电。
如图6和图7所示,图6中最后一行信号为向屏蔽层Sh提供激励信号时的电压波形图,其中,最后一行信号为指纹输出信号的波形图,图7为指纹输出信号的波形图的局部放大图。通过向屏蔽层Sh提供激励信号,能够使得施加至检测电极Cap的驱动电压Vtx全部作用在指纹与检测电极Cap之间形成的等效电容Cf上,这样,指纹识别基板的有效电容由Cf+Cp降低为Cf,使得输出电压Vout提高。这样,当提高驱动电压Vtx时,能够使得指纹的谷和脊对应的电压信号的差值更大,从而有助于提高信号的信噪比。如图7所示,在一个实施例中,上方波形代表指纹谷的输出电压信号,约为3.93伏,下方一行波形代表指纹脊的输出电压信号,约为3.07伏,使得指纹谷脊对应的输出信号量增加,约为0.86V。
本公开实施例提供的一种指纹识别基板,通过设置屏蔽层Sh,能够避免指纹识别基板与驱动电路层中的驱动电路发生串扰,有助于提高指纹识别基板的可靠性,进一步的,屏蔽层Sh与激励信号源电连接以获取激励信号源提供的激励信号,通过在屏蔽层Sh上施加激励信号,有助于提高输出信号的信噪比,提高指纹采集精度。
如图8和图9所示,在一些实施例中,指纹检测电路包括第一开关管TFT1、第二开关管TFT2和输出电路。第一开关管TFT1和第二开关管TFT2 均包括控制极、第一极和第二极。
第一开关管TFT1的控制极与充电控制信号源连接以获取充电控制信号gt,第一开关管TFT1的第一极与充电信号源连接以获取充电信号Drv,也就是上述驱动电压Vtx,第一开关管TFT1的第一极也可以理解为指纹检测电路的输入端Tx,第一开关管TFT1的第二极与检测电极Cap电连接。第二开关管TFT2的控制极与放电检测控制信号源电连接以获取放电检测控制信号gr,第二开关管TFT2的第一极与检测电极Cap电连接,第二开关管TFT2的第二极与输出电路电连接,第二开关管TFT2的第二极也可以理解为指纹检测电路的输出端Rx。输出电路用于输出采集到的指纹信号。
在一些实施例中,输出电路包括放大器和反馈电容CF1;这里,放大器可以是差分放大器,差分放大器和反馈电容CF1共同构成积分放大器。
放大器包括正极、负极和输出极,放大器的负极与第二开关管TFT2的第二极连接,放大器的正极与参考信号源相连以获取参考信号Vref,放大器的输出极与输出信号端相连以输出采集到的指纹信号。反馈电容CF1的第一端与放大器的负极连接,反馈电容CF1的第二端与放大器的输出极连接。这样,通过输出电路能够将指纹检测电路输出的指纹信号放大后输出。
在一些实施例中,输出电路还包括复位子电路,复位子电路的两端分别与放大器的负极和输出极连接,复位子电路用于在复位信号Rst的控制下使放大器的负极和输出极之间连接或断开。
工作过程中,第一开关管TFT1在充电控制信号gt的控制下,将充电信号Drv传送至检测电极Cap,该充电信号Drv也可以理解为检测电极Cap的驱动电压Vtx,进一步的,检测电极Cap检测到的指纹信号在放电检测控制信号gr的控制下,通过第二开关管TFT2传送至输出电路,指纹信号通过输出电路放大后输出。
在一些实施例中,检测电极Cap通过贯穿屏蔽层Sh的过孔与第一开关管TFT1和第二开关管TFT2电连接;屏蔽层Sh在衬底上的正投影覆盖第一开关管TFT1的半导体层在衬底上的正投影,屏蔽层Sh在衬底上的正投影覆盖第二开关管TFT2的半导体层在衬底上的正投影。
如图10至图12所示,在一个实施例中,该指纹识别基板包括衬底901, 衬底901可以选择透明的聚酰亚胺(PI)或超薄玻璃(UTG)制作。衬底901上进一步形成驱动电路层,驱动电路层主要包括缓冲层902、半导体层903、第一栅极层904、第二栅极层905、叠层结构906,该叠层结构906具体可以包括栅极绝缘层以及层间介质层等。
其中,第一栅极层904包括多个第一栅极图形和第一信号线图形,第二栅极层905包括多个第二栅极图形,第一栅极图形和第二栅极图形形成开关管的栅极,示例性的,对于双栅结构的开关管,可以分别以第一栅极图形和第二栅极图形形成其栅极,二对于常规的单栅结构的开关管,则可以利用第一栅极图形或第二栅极图形形成其栅极。
第一信号线图形用于形成以下一项或多项:
第一信号线,用于传输充电控制信号源提供的充电控制信号;
第二信号线,用于传输放电检测控制信号源提供的放电检测控制信号。
栅极绝缘层具体可以包括第一栅极绝缘子层和第二栅极绝缘子层,驱动电路层还包括第一源漏金属层907、第一有机平坦层908。第一源漏金属层907包括源漏极图形和第二信号线图形,源漏极图形形成开关管的源极和漏极,驱动电路层可以用于形成上述第一开关管TFT1、第二开关管TFT2等结构。
第二信号线图形用于形成以下一项或多项:
第三信号线,用于传输充电信号源提供的充电信号;
第四信号线,用于输出所述检测电极检测到的信号。
衬底901上还形成有第二源漏金属层,第二源漏金属层包括第三信号线图形和屏蔽层图形,第二源漏金属层的屏蔽层图形用于形成屏蔽层909-1(即上述屏蔽层Cp),衬底901上还形成有第二有机平坦层910、检测电极911-1、911-2(即上述检测电极Cap)、封装保护层912等结构。
在一些实施例中,如图11所示,屏蔽层图形包括分割线909-11,分割线909-11由过孔延伸至屏蔽层图形的边缘。
在其中一些实施例中,该分割线贯穿屏蔽层图形。可以理解,屏蔽层图形上需要开设过孔,这样,每一屏蔽层图形大致呈环形,通过设置该分割线,能够辅助释放应力,避免屏蔽层图形处发生形变,同时,屏蔽层图形形成于 第一有机平坦层908上,这样,所形成的过孔还需要作为可能涉及到的高温工艺中,第一有机平坦层908的排气孔,通过设置该分割线,能够作为排气孔的辅助排气区域,有助于提高排气效果,降低对过孔处可能产生的影响,有理由提高过孔处连接的可靠性。
第一电极层包括多个第一电极图形,第一电极图形形成检测电极911-1、911-2。检测电极911-1和检测电极911-2可以理解为不同的检测单元的检测电极,请同时参阅图11和图12,图11所示结构可以理解为一个指纹检测单元,图12所示纹识别基板包括多个检测单元,每一指纹检测单元用于检测一个点的指纹信息具体为谷或脊,综合多个指纹检测单元检测到的信息,能够获得较为完整的指纹信息。
在一些实施例中,指纹识别基板包括多条信号线,这里,信号线可以值得是图10中所示信号线909-2,多条信号线与屏蔽层Sh同层同材料设置。
如图10所示,第三信号线图形则用于形成驱动电路的数据线909-2,以传递驱动信号,这里,驱动电路可以是GOA(Gate on Array,阵列基板驱动电路,当其位于阵列基板的行方向上时,也称作阵列基板行驱动电路)。
在一些方面,本公开实施例提供了一种电子设备,包括以上任一项所述的指纹识别基板。
在一些实施例中,该电子设备还包括激励信号源、充电控制信号源、充电信号源、放电检测控制信号源和放电检测控制信号源中的一项或多项,以提供相应的信号。
如图10所示,在一些实施例中,指纹识别基板包括识别区和周边区,屏蔽层Sh和检测电极Cap均位于识别区,激励信号源、充电控制信号源、充电信号源、放电检测控制信号源和放电检测控制信号源设置于周边区。
本实施例的电子设备可以是显示装置,该指纹识别基板可以与显示装置的显示基板相集成,示例性的,在显示基板的特定区域实现指纹识别功能。由于本实施例的技术方案包括上述指纹识别基板实施例的全部技术方案,因此至少能够实现上述全部技术效果,此处不再赘述。
需要注意的是,在不矛盾的情况下,上述各实施例中的技术方案均可以应用于其他实施例,并实现相同或相似的技术效果,此处不再赘述。
在一些方面,本公开实施例提供了一种指纹识别方法,应用于以上述的电子设备,所述方法包括以下步骤:
通过激励信号源向屏蔽层输入激励信号,并通过检测电极获取指纹信号;
根据所述指纹检测信号生成指纹信息。
本实施例的技术方案中,在工作过程中,向屏蔽层输入激励信号,激励信号用于调整检测电极和屏蔽层的电平差异,使其尽可能的保持一致,从而能够使得检测电极和屏蔽层之间形成的等效电容的两端的电位相等,以抑制等效电容的充放电,从而有助于提高指纹识别精度。
在一些实施例中,指纹识别基板包括上述输出电路及复位电路,通过激励信号源向屏蔽层输入激励信号,并通过检测电极获取指纹信号,包括:
向所述屏蔽层输入激励信号,向所述第一开关管的控制极输入充电控制信号,向所述第一开关管的第一极输入充电信号,向所述第二开关管的控制极输入放电检测控制信号,向所述复位子电路输入复位信号,并接受所述输出电路输出的指纹信号;
其中,激励信号的上升沿对应复位信号的下降沿,且所述激励信号的上升沿对应充电控制信号的上升沿;
所述复位信号的上升沿对应所述充电控制信号的下降沿,且所述复位信号的上升沿对应充电信号的下降沿;
所述激励信号的下降沿位于所述复位信号的上升之后,初始复位信号的下降位于复位信号的上升和所述激励信号的下降沿之间;
放电检测控制信号的上升沿对应激励信号的下降沿,所述放电检测控制信号的上升对应所述充电信号的下降沿;
所述充电信号的上升沿位于所述激励信号的下降沿之后,所述充电信号的上升对应所述放电检测控制信号的下降沿;
所述初始复位信号的上升沿位于所述放电检测控制信号的下降沿之后;
指纹信号的开始对应所述放电检测控制信号的上升,所述指纹信号的结束对应所述初始复位信号的下降沿。
请参考图6所示时序图,图6中,第一行代表激励信号Vcp,第二行代表复位信号rst、第三行代表充电信号Drv、第四行代表充电控制信号gt、第 五行代表指纹识别基板的输入信号Vin、第六行代表放电检测控制信号gr,第七行代表经过放大电路放大后输出的指纹信号Vout。
基于本公开实施例的指纹识别方法,能够提高指纹识别精度。如图11所示,图13为利用模拟的指纹进行检测后,根据输出的指纹信号还原的指纹图像,可见,所还原的指纹图像具有较高的清晰度。
需要注意的是,图13所示指纹图像为随机生成的模拟指纹,不涉及任何个人的隐私信息。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种指纹识别基板,包括,衬底、位于所述衬底上的驱动电路层、位于所述驱动电路层远离所述衬底一侧的屏蔽层以及位于所述屏蔽层远离所述衬底一侧的检测电极,所述检测电极与位于所述驱动电路层的指纹检测电路电连接;
    所述屏蔽层与所述检测电极绝缘设置,且所述屏蔽层在所述衬底上的正投影与所述检测电极在所述衬底上的正投影至少部分交叠。
  2. 根据权利要求1所述的指纹识别基板,其中,所述屏蔽层与地线连接。
  3. 根据权利要求1所述的指纹识别基板,其中,所述屏蔽层与激励信号源电连接以获取所述激励信号源提供的激励信号。
  4. 根据权利要求1至3中任一项所述的指纹识别基板,其中,所述指纹检测电路包括第一开关管、第二开关管和输出电路;
    所述第一开关管和所述第二开关管均包括控制极、第一极和第二极;
    所述第一开关管的控制极与充电控制信号源连接,所述第一开关管的第一极与充电信号源连接,所述第一开关管的第二极与所述检测电极电连接;
    所述第二开关管的控制极与放电检测控制信号源电连接,所述第二开关管的第一极与所述检测电极电连接,所述第二开关管的第二极与所述输出电路电连接;
    所述输出电路用于输出采集到的指纹信号。
  5. 根据权利要求4所述的指纹识别基板,其中,所述输出电路包括放大器和反馈电容;
    所述放大器包括正极、负极和输出极,所述放大器的负极与所述第二开关管的第二极连接,所述放大器的正极与参考信号源相连,所述放大器的输出极与输出信号端相连以输出采集到的指纹信号;
    所述反馈电容的第一端与所述放大器的负极连接,所述反馈电容的第二端与所述放大器的输出极连接。
  6. 根据权利要求5所述的指纹识别基板,其中,所述输出电路还包括复位子电路,所述复位子电路的两端分别与所述放大器的负极和输出极连接, 所述复位子电路用于在复位信号的控制下使所述放大器的负极和输出极之间连接或断开。
  7. 根据权利要求4所述的指纹识别基板,其中,所述检测电极通过贯穿所述屏蔽层的过孔与所述第一开关管和所述第二开关管电连接;
    所述屏蔽层在所述衬底上的正投影覆盖所述第一开关管的半导体层在所述衬底上的正投影,所述屏蔽层在所述衬底上的正投影覆盖所述第二开关管的半导体层在所述衬底上的正投影。
  8. 根据权利要求7所述的指纹识别基板,其中,沿远离所述衬底的方向上,所述指纹识别基板包括第一栅极层、第二栅极层、第一源漏金属层、第二源漏金属层和第一电极层,所述第一栅极层包括多个第一栅极图形和第一信号线图形,所述第二栅极层包括多个第二栅极图形,所述第一栅极图形和所述第二栅极图形形成开关管的栅极,所述第一源漏金属层包括源漏极图形和第二信号线图形,所述第二源漏金属层包括屏蔽层图形,所述源漏极图形形成开关管的源极和漏极,所述屏蔽层图形形成所述屏蔽层,所述第一电极层包括多个第一电极图形,所述第一电极图形形成所述检测电极。
  9. 根据权利要求8所述的指纹识别基板,其中,所述屏蔽层图形包括分割线,所述分割线由所述过孔延伸至所述屏蔽层图形的边缘。
  10. 根据权利要求8所述的指纹识别基板,其中,所述第一信号线图形用于形成以下一项或多项:
    第一信号线,用于传输充电控制信号源提供的充电控制信号;
    第二信号线,用于传输放电检测控制信号源提供的放电检测控制信号。
  11. 根据权利要求8所述的指纹识别基板,其中,所述第二信号线图形用于形成以下一项或多项:
    第三信号线,用于传输充电信号源提供的充电信号;
    第四信号线,用于输出所述检测电极检测到的信号。
  12. 一种电子设备,包括权利要求1至11中任一项所述的指纹识别基板。
  13. 根据权利要求12所述的电子设备,其中,所述指纹识别基板包括识别区和周边区,所述屏蔽层和所述检测电极均位于所述识别区,所述周边区设置有激励信号源、充电控制信号源、充电信号源、放电检测控制信号源和 放电检测控制信号源中的一项或多项。
  14. 一种指纹识别方法,应用于权利要求12或13所述的电子设备,所述方法包括以下步骤:
    通过激励信号源向屏蔽层输入激励信号,并通过检测电极获取指纹信号;
    根据所述指纹检测信号生成指纹信息。
  15. 根据权利要求14所述的指纹识别方法,其中,所述电子设备包括权利要求6所述的指纹识别基板,通过激励信号源向屏蔽层输入激励信号,并通过检测电极获取指纹信号,包括:
    向所述屏蔽层输入激励信号,向所述第一开关管的控制极输入充电控制信号,向所述第一开关管的第一极输入充电信号,向所述第二开关管的控制极输入放电检测控制信号,向所述复位子电路输入复位信号,并接受所述输出电路输出的指纹信号;
    其中,激励信号的上升沿对应复位信号的下降沿,且所述激励信号的上升沿对应充电控制信号的上升沿;
    所述复位信号的上升沿对应所述充电控制信号的下降沿,且所述复位信号的上升沿对应充电信号的下降沿;
    所述激励信号的下降沿位于所述复位信号的上升之后,初始复位信号的下降位于复位信号的上升和所述激励信号的下降沿之间;
    放电检测控制信号的上升沿对应激励信号的下降沿,所述放电检测控制信号的上升对应所述充电信号的下降沿;
    所述充电信号的上升沿位于所述激励信号的下降沿之后,所述充电信号的上升对应所述放电检测控制信号的下降沿;
    所述初始复位信号的上升沿位于所述放电检测控制信号的下降沿之后;
    指纹信号的开始对应所述放电检测控制信号的上升,所述指纹信号的结束对应所述初始复位信号的下降沿。
PCT/CN2021/121740 2021-09-29 2021-09-29 一种指纹识别基板、电子设备和指纹识别方法 WO2023050163A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180002788.8A CN116210034A (zh) 2021-09-29 2021-09-29 一种指纹识别基板、电子设备和指纹识别方法
PCT/CN2021/121740 WO2023050163A1 (zh) 2021-09-29 2021-09-29 一种指纹识别基板、电子设备和指纹识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121740 WO2023050163A1 (zh) 2021-09-29 2021-09-29 一种指纹识别基板、电子设备和指纹识别方法

Publications (1)

Publication Number Publication Date
WO2023050163A1 true WO2023050163A1 (zh) 2023-04-06

Family

ID=85781052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121740 WO2023050163A1 (zh) 2021-09-29 2021-09-29 一种指纹识别基板、电子设备和指纹识别方法

Country Status (2)

Country Link
CN (1) CN116210034A (zh)
WO (1) WO2023050163A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104035615A (zh) * 2014-05-20 2014-09-10 京东方科技集团股份有限公司 一种触摸显示面板和显示装置
KR101502911B1 (ko) * 2013-11-01 2015-03-16 크루셜텍 (주) 지문 검출 장치 및 이의 구동 방법
CN106096595A (zh) * 2016-08-08 2016-11-09 京东方科技集团股份有限公司 一种指纹识别模组、其制作方法及指纹识别显示装置
KR101855648B1 (ko) * 2017-03-28 2018-05-09 주식회사 센소니아 향상된 지문 인식 센서 및 이에 포함되는 전하 누적 감지 회로
CN112379542A (zh) * 2020-11-13 2021-02-19 京东方科技集团股份有限公司 显示基板以及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502911B1 (ko) * 2013-11-01 2015-03-16 크루셜텍 (주) 지문 검출 장치 및 이의 구동 방법
CN104035615A (zh) * 2014-05-20 2014-09-10 京东方科技集团股份有限公司 一种触摸显示面板和显示装置
CN106096595A (zh) * 2016-08-08 2016-11-09 京东方科技集团股份有限公司 一种指纹识别模组、其制作方法及指纹识别显示装置
KR101855648B1 (ko) * 2017-03-28 2018-05-09 주식회사 센소니아 향상된 지문 인식 센서 및 이에 포함되는 전하 누적 감지 회로
CN112379542A (zh) * 2020-11-13 2021-02-19 京东方科技集团股份有限公司 显示基板以及显示装置

Also Published As

Publication number Publication date
CN116210034A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
US9881200B2 (en) Self-capacitive fingerprint recognition touch screen, manufacturing method thereof, and display device
US20160292487A1 (en) Array substrate, color film substrate and touch display device
US20220157860A1 (en) Array substrate, display panel and display apparatus
US11604527B2 (en) Touch sensor and display device including touch sensor
US8669843B2 (en) Fingerprint detection device and method and associated touch control device with fingerprint detection
US10394404B2 (en) Touch display panel
US10019091B2 (en) Display device integrated with touch screen
CN109521615A (zh) 像素阵列基板
US10713460B2 (en) Display panel, method for manufacturing the same, and display device
CN104375706B (zh) 一种触控显示屏和电子设备
EP3506147A1 (en) Capacitance interpretation circuit and fingerprint recognition system
CN106295495A (zh) 电容式影像传感器及操作该电容式影像传感器的方法
EP3929711B1 (en) Electronic device
US20190157356A1 (en) Oled display device, control method and manufacturing method thereof
US20200310571A1 (en) Fingerprint recognizing sensor and touch screen device including the same
CN115981506A (zh) 一种电容检测电路以及电子设备
US10162995B2 (en) Capacitive image sensor with noise reduction feature and method operating the same
WO2023050163A1 (zh) 一种指纹识别基板、电子设备和指纹识别方法
CN104808877B (zh) 电容式触控面板的主动阵列及相关的电容式触控面板
CN109147660A (zh) 一种显示面板及显示装置
CN111582103B (zh) 一种指纹识别结构、装置、显示面板以及显示装置
US11741890B2 (en) Power supplier circuit and display device including the same
CN111814632A (zh) 电容屏和电子设备
US20200064967A1 (en) Display device
US20200310574A1 (en) Touch display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17907939

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE