WO2023050047A1 - 驱动装置、射频阻抗匹配器和射频等离子体系统 - Google Patents

驱动装置、射频阻抗匹配器和射频等离子体系统 Download PDF

Info

Publication number
WO2023050047A1
WO2023050047A1 PCT/CN2021/121266 CN2021121266W WO2023050047A1 WO 2023050047 A1 WO2023050047 A1 WO 2023050047A1 CN 2021121266 W CN2021121266 W CN 2021121266W WO 2023050047 A1 WO2023050047 A1 WO 2023050047A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
capacitor
circuit
switch
radio frequency
Prior art date
Application number
PCT/CN2021/121266
Other languages
English (en)
French (fr)
Inventor
肖辅荣
郭欢
兰东东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/121266 priority Critical patent/WO2023050047A1/zh
Priority to CN202180099429.9A priority patent/CN117501535A/zh
Publication of WO2023050047A1 publication Critical patent/WO2023050047A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/15Auxiliary devices for switching or interrupting by semiconductor devices

Definitions

  • the embodiments of the present application relate to the technical field of semiconductor chip manufacturing, and more specifically, to a driving device, a radio frequency impedance matching device and a radio frequency plasma system.
  • Radio frequency plasma (RF Plasma) technology is widely used in the field of semiconductor chip manufacturing technology, for example, RF plasma etching, deposition, cleaning and other chip manufacturing processes.
  • the RF plasma system is mainly composed of RF generator, RF impedance match (RF-IPM) and plasma load.
  • the RF power output by the RF power supply is coupled to the plasma chamber through the RF impedance matching device, so that the process gas in the plasma chamber is ionized to form plasma.
  • the impedance of the plasma chamber will also change accordingly.
  • the RF impedance matcher needs to adjust the capacitance value to adapt to the impedance change of the plasma chamber in real time.
  • the RF impedance matching device realizes the adjustment of the capacitance value through a method of electronically switching and switching the capacitor, but the driving circuit loss of the RF impedance matching device based on the electronic switch switching capacitor is large and the reliable turn-off performance of the electronic switch is not enough. good.
  • the embodiment of the present application provides a driving device, a radio frequency impedance matching device and a radio frequency plasma system, which can effectively reduce the voltage amplitude requirement of the negative power supply in the driving circuit, thereby reducing the circuit loss of the driving circuit, and can enhance the first and second Reliable turn-off performance of the pole tube.
  • a driving device in a first aspect, includes: a driving circuit, the driving circuit is connected to the first diode, the driving circuit is used to turn on the first diode, and the first diode is connected to the first diode
  • the first capacitor is connected, the first diode is used to control the working state of the first capacitor
  • the drive circuit includes an active device; a self-bias circuit, the first port of the self-bias circuit is connected to the first diode
  • the anode of the tube is connected, the second port of the self-bias circuit is connected to the cathode of the first diode, and the self-bias circuit is used to provide a negative bias voltage to the anode of the first diode through a passive device .
  • the first capacitor may be a capacitor, or an equivalent capacitor composed of multiple capacitors connected in series and/or in parallel
  • the first diode may be a diode, or may be composed of An equivalent diode composed of a plurality of diodes connected in series and/or in parallel
  • the embodiment of the present application does not specifically limit the first capacitor and the first diode.
  • an active device refers to an electronic component that requires a power source to realize its specific function, including a DC power source and the like.
  • Passive components refer to electronic components that do not need a power source to achieve their specific functions, including: resistors, diodes, capacitors, etc.
  • the self-bias circuit is composed of passive devices, and the driving circuit includes active devices.
  • the first diode controls the working state of the first capacitor, which can be understood as: when the first diode is turned on, the first capacitor is connected to the matching circuit, and the first capacitor contributes all capacitance values to the matching circuit (which can be It is considered that the first capacitor is in the working state); when the first diode is turned off, the first capacitor is disconnected from the matching circuit, and the first capacitor contributes a zero capacitance value to the matching circuit (which can be regarded as the first Capacitors are not working).
  • the capacitance value of the first capacitor is 100pF
  • the first diode when the first diode is turned on, the first capacitor is connected to the matching circuit, then the first capacitor contributes a capacitance value of 100pF to the matching circuit; the first diode is turned off When , the first capacitor is disconnected from the matching circuit, and the first capacitor contributes a capacitance value of zero, for example, 0 pF, to the matching circuit.
  • the first capacitor when the first capacitor is disconnected from the matching circuit, due to the influence of parasitic parameters of the electronic switch and the driving circuit, the first capacitor will still contribute part of its capacitance value to the matching circuit.
  • this scenario should also be understood as the first capacitor contributing a zero capacitance value to the matching circuit.
  • the embodiment of the present application is described only by taking an ideal case as an example, that is, when the first capacitor is in a non-working state, it contributes a zero capacitance value to the matching circuit.
  • the self-bias circuit and the drive circuit are used to cooperate to turn off the first diode, and the self-bias circuit is used to provide a negative bias voltage for the anode of the first diode, which can be understood as:
  • the drive circuit is used to provide a negative current, and the negative current is used to extract carrier charges stored in the first diode, and at the same time, also make the first diode turn off, and
  • the first port of the self-bias circuit is connected to the anode of the first diode, and the second port of the self-bias circuit is connected to the cathode of the first diode, so that the first diode can be provided with a negative bias voltage,
  • the negative bias makes the first diode in a reliable reverse cut-off state.
  • the drive circuit is used to extract the carrier charges stored in the first diode, and the self-bias circuit is used to provide a negative bias voltage, so that the first diode The tube maintains a reliable off state, or the first diode is in a reliable reverse cut-off state.
  • the drive circuit is used to extract the carrier charges stored in the first diode, and is not responsible for providing negative bias to the first diode, but to the first and second diodes by a self-bias circuit.
  • the embodiment of the present application can effectively reduce the voltage amplitude requirement of the negative power supply of the driving circuit, thereby reducing the circuit loss of the driving circuit, and enhancing the reliable turn-off performance of the first diode.
  • the self-bias circuit includes: a second capacitor, a third capacitor, a second diode, a third diode and a first resistor, the second The first port of the capacitor is connected to the anode of the first diode, the second port of the second capacitor is connected to the first port of the first resistor and the anode of the third diode, and the anode of the second diode is connected to the anode of the third diode.
  • the anode of the first diode is connected, the cathode of the second diode is connected with the second port of the first resistor and the first port of the third capacitor, the cathode of the third diode is connected with the first port of the first diode connected to the cathode, and the second port of the third capacitor is connected to the cathode of the first diode.
  • the embodiment of the present application uses the self-bias circuit and the drive circuit to jointly control the turn-off of the first diode, thereby reducing the voltage amplitude requirement of the negative power supply in the drive circuit, thereby reducing the loss of the drive circuit , and can improve the reliable turn-off performance of the first diode.
  • the self-bias circuit includes: a fourth capacitor, a fifth capacitor, a sixth capacitor, a fourth diode, a fifth diode, and a sixth and second capacitors. pole tube, a second resistor and a third resistor, the first port of the fourth capacitor is connected to the positive pole of the first diode, the second port of the fourth capacitor is connected to the negative pole of the fifth diode, the first The anode of the six diodes is connected to the first port of the sixth capacitor; the anode of the fourth diode is connected to the anode of the first diode, and the cathode of the fourth diode is connected to the fifth diode The anode of the tube, the first port of the fifth capacitor and the second port of the sixth capacitor are connected, the fifth diode is connected in parallel with the sixth capacitor; the negative electrode of the sixth diode is connected to the third resistor connected to the first port of the second resistor; the first port of
  • the embodiment of the present application uses the self-bias circuit and the drive circuit to jointly control the turn-off of the first diode, thereby reducing the voltage amplitude requirement of the negative power supply in the drive circuit, thereby reducing the loss of the drive circuit , and can improve the reliable turn-off performance of the first diode.
  • the drive circuit includes: a first power supply and a first switch, the first power supply and the first switch are connected in series; a second power supply, a second switch, and a third switch, The second power supply, the second switch and the third switch are connected in series; an isolation circuit, the input end of the isolation circuit is connected to the output end of the first switch and the output end of the second switch, and the output end of the isolation circuit is connected to the first two The positive connection of the pole tube.
  • the first power supply is used to provide forward current when the driving circuit turns on the first diode
  • the second power supply is used to provide negative current when the driving circuit turns off the first diode, and due to the self-bias Due to the existence of the circuit, the voltage amplitude of the second power supply does not need to be very large, so that the first diode can be turned off.
  • the first switch is used to control the connection and disconnection of the first power supply
  • the second switch and the third switch are used to control the connection and disconnection of the second power supply
  • the first switch, the second switch and the third switch There is a certain time sequence between closing and turning off, and through this time sequence, the embodiment of the present application can effectively turn on and turn off the first diode.
  • the isolation circuit is used to suppress the interference of the high-voltage and high-power radio frequency signal of the radio frequency power supply to the driving circuit. It can be composed of an inductor, or a parallel connection of an inductor and a capacitor, or other forms of filter circuit structures. In this way, the embodiment of the present application can effectively reduce the high-voltage design challenge of the driving circuit while achieving low power consumption without the need for a negative power supply with a large voltage amplitude.
  • the drive circuit includes: a third power supply and a fourth switch, the third power supply and the fourth switch connected in series; the fourth power supply and the fifth switch, and the fourth power supply and the fourth switch
  • the fifth switch is connected in series; an isolation circuit, the input end of the isolation circuit is connected with the output end of the fourth switch and the output end of the fifth switch, and the output end of the isolation circuit is connected with the anode of the first diode.
  • the third power supply is used to provide forward current when the driving circuit turns on the first diode
  • the fourth power supply is used to provide negative current when the driving circuit turns off the first diode, and due to the self-bias Due to the existence of the circuit, the voltage amplitude of the fourth power supply does not need to be very large, so that the first diode can be turned off.
  • the fourth switch is used to control the connection and disconnection of the third power supply
  • the fifth switch is used to control the connection and disconnection of the fourth power supply
  • the closing and closing between the fourth switch and the fifth switch exist A certain time sequence, through which the embodiment of the present application effectively turns on and turns off the first diode.
  • the isolation circuit is used to suppress the interference of the high-voltage and high-power radio frequency signal of the radio frequency power supply on the driving circuit of the first diode. It can be composed of an inductor, or an inductor and a capacitor connected in parallel, or other forms filter circuit structure. In the case that a negative power supply with a large voltage amplitude is not required, the embodiment of the present application can effectively reduce the high-voltage design challenge of the driving circuit while achieving low power consumption.
  • the isolation circuit includes a first inductor, a seventh capacitor, and a seventh diode, and the output terminal of the first inductor is connected to the seventh capacitor and the seventh diode
  • the input end of the seventh diode is connected to the anode of the first diode, and the output end of the seventh capacitor is connected to the ground.
  • the low-pass filter composed of the first inductance and the seventh capacitor suppresses the interference of the high-voltage and high-power radio frequency signal of the radio frequency power supply on the driving circuit.
  • the turn-on and turn-off speed of the pole tube can be improved, and the device size of the first inductor can also be reduced.
  • the isolation circuit includes a second inductor.
  • the second inductance is used to realize the interference of the high-voltage and high-power radio frequency signal to the driving circuit, thereby simplifying the design of the isolation circuit of the driving circuit of the driving device.
  • the second aspect provides a radio frequency impedance matcher
  • the radio frequency impedance matcher includes the driving device described in any one of the first aspect and any possible implementation manner of the first aspect, and the radio frequency impedance matcher also It includes at least one first capacitor and at least one first diode, at least one driving device, at least one first capacitor and at least one first diode correspond one by one, and the radio frequency impedance matching device also includes a signal detection and control module.
  • the embodiment of the present application can realize coupling the output power of the radio frequency power supply to the load, and can make the radio frequency power supply operate in a reliable and efficient manner.
  • the signal detection and control module includes: a first signal detection circuit, connected to the output terminal of the radio frequency power supply, for detecting signals of the transmission line of the radio frequency power supply; A signal processing circuit, connected with the first signal detection circuit, for processing the output result of the first signal detection circuit; a second signal detection circuit, connected with the load, for detecting the signal of the transmission line of the load; the second signal The processing circuit is connected with the second signal detection circuit, and is used to process the output result of the second signal detection circuit; the microcontroller is connected with the first signal detection circuit and the second signal detection circuit, and is used for detecting the first signal The output results of the circuit and the second signal detection circuit are processed, the microcontroller is connected with at least one driving device, and is used to output at least one control signal for at least one driving device, and the control signal is used to control the conduction of the first diode with shutdown.
  • a third aspect provides a radio frequency plasma system
  • the radio frequency plasma system includes the second aspect and the radio frequency impedance matching device described in a possible implementation manner of the second aspect, the radio frequency plasma system further includes: a radio frequency power supply and load.
  • Figure 1 is a schematic block diagram of an RF plasma system.
  • Fig. 2 is a schematic block diagram of a circuit structure of a radio frequency impedance matcher based on an electronic switch switched capacitor.
  • Fig. 3 is a schematic block diagram of a circuit structure of a conventional driving device.
  • FIG. 4 is a schematic block diagram of a circuit structure of a driving device provided in the present application.
  • FIG. 5 is a schematic block diagram of a circuit structure of a self-bias circuit provided in the present application.
  • FIG. 6 is a schematic block diagram of the circuit structure of another self-bias circuit provided by the present application.
  • FIG. 7 is a schematic block diagram of a circuit structure of a driving circuit provided in the present application.
  • FIG. 8 is a schematic block diagram of the circuit structure of another driving circuit provided by the present application.
  • FIG. 9 is a schematic block diagram of a circuit structure of an isolation circuit provided in the present application.
  • Fig. 10 is a schematic block diagram of a circuit structure of a radio frequency impedance matching device provided in the present application.
  • the driving device, the radio frequency impedance matching device and the radio frequency plasma system in the embodiment of the present application will be described below with reference to the accompanying drawings.
  • FIG. 1 is a schematic block diagram of an RF plasma system.
  • the radio frequency plasma system is mainly composed of radio frequency power supply #110, radio frequency impedance matching device #120 and plasma chamber #130.
  • the radio frequency power output by the radio frequency power supply #110 is coupled into the plasma chamber #130 through the radio frequency impedance matching device #120, so that the process gas inside the plasma chamber #130 Ionization forms a plasma composed of electrons, neutral particles, free radicals, etc.
  • the RF impedance matcher #120 independently completes the impedance conversion function of the load impedance of the plasma chamber #130 to a 50 ohm load based on the instruction or impedance information provided by the RF power supply #110.
  • the working frequency of the radio frequency power supply #110 includes but not limited to: 2Mhz, 13.56Mhz, 27.12Mhz, 60Mhz and other commonly used radio frequency frequencies.
  • the types of the plasma chamber #130 include but not limited to two types: capacitive coupled plasma (CCP) and inductive coupled plasma (ICP).
  • Fig. 2 is a schematic block diagram of a circuit structure of a radio frequency impedance matcher based on an electronic switch switched capacitor.
  • the radio frequency impedance matcher includes a first capacitive switch array and a second capacitive switch array, and the combination of the first capacitive switch array and the second capacitive switch array can realize the instant adjustment of the capacitance value, and through the instant adjustment of the capacitance value , the radio frequency impedance matcher can realize the real-time transformation of the changing load impedance.
  • the embodiment of the present application only uses the first capacitive switch array as an example for illustration, but the control method is also applicable to the second capacitive switch array.
  • the first capacitor switch array shown in FIG. 2 is composed of multiple capacitor branches, and each capacitor branch is composed of an electronic switch, a capacitor and a driving device.
  • the first capacitor branch of the plurality of capacitor branches includes: an electronic switch S1 , a capacitor C1 and a driving device.
  • each capacitive branch is independently controlled, and the control circuit can be understood as an overall representation of the driving device included in the multiple capacitive branches.
  • the capacitor C1 When the electronic switch S1 of the first capacitor branch is closed, the capacitor C1 is connected to the first capacitor switch array, thereby increasing the equivalent capacitance C eq ; when the electronic switch S1 of the first capacitor branch is turned off, the capacitor C1 is disconnected. Open the connection between the first capacitive switch array, so that the equivalent capacitance C eq decreases.
  • the electronic switch S1 of the first capacitor branch controls the working state of the capacitor C1 of the first capacitor branch.
  • the electronic switch S1 is turned on, and the capacitor C1 is in the working state, contributing all the capacitance value to the first capacitive switch array; the electronic switch S1 is turned off, and the capacitor C1 is in the non-working state, and the contribution to the first capacitive switch array is zero. the capacitance value.
  • the turn-on and turn-off of the electronic switch S1 is controlled by the control circuit, and the control circuit performs turn-on and turn-off of the electronic switch S1 based on the control signal it receives.
  • this working state can also be understood as: when in the working state, the capacitor C1 is connected to the first capacitor switch array; when in the non-working state, the capacitor C1 is disconnected from the first capacitor switch array
  • the RF impedance matcher can realize real-time adjustment of its capacitance C eq , so as to adapt to the impedance change of the plasma chamber in real time.
  • the left side (RF IN) of the radio frequency impedance matcher is connected with the radio frequency power supply #110, and the right side (RF OUT) of the radio frequency impedance matcher is connected with the plasma chamber #130, thereby enabling the radio frequency
  • the output power of the power supply #110 is coupled into the plasma chamber #130.
  • the plasma chamber can also be understood as a kind of load.
  • the embodiment of the present application uses a load instead of describing the plasma chamber, which means that the driving device described in the embodiment of the present application is not only applied to the plasma chamber, but also can be applied to other loads.
  • FIG. 2 the schematic block diagram of the circuit structure shown in FIG. 2 is only understood as an example, and it also includes other circuit structures, such as signal detection circuits, signal processing circuits, microcontrollers, and other driving devices, etc. , these circuit structures are not specifically shown in FIG. 2 . It should be noted that, in the following, the embodiment of the present application uses a matching circuit as an equivalent illustration of these circuit structures not specifically shown. As a possible representation, the matching circuit can be equivalently represented as a sinusoidal voltage source V rf .
  • the types of electronic switch devices include but are not limited to: bipolar junction transistor (bipolar junction transistor, BJT), insulated gate bipolar transistor (insulated gate bipolar transistor, IGBT), metal Oxide semiconductor field effect transistor (metal-oxide-semiconductor field effect transistor, MOSFET), PIN diode (PIN diode), etc. Based on different types of electronic switching devices, there are corresponding drive control technologies.
  • the electronic switching device is a PIN diode as an example to describe the technical solution of the embodiment of the present application, but this description does not have a limiting effect.
  • the first capacitive switch array shown in FIG. 2 will be further described below in conjunction with FIG. 3 .
  • the first capacitive switch array shown in FIG. 2 includes at least one capacitive branch, and the first capacitive branch in the at least one capacitive branch includes a driving device, and the driving device can be used to control the first capacitive branch.
  • the electronic switch S1 of the circuit is turned on and off, thereby controlling the working state of the capacitor C1, and then affecting the level of the equivalent capacitance of the first capacitor switch array.
  • Fig. 3 is a schematic block diagram of a circuit structure of a conventional driving device.
  • the driving device includes: a positive low-voltage power supply, a negative high-voltage power supply, switches S1 and S2, and an isolation inductor L iso . It should be understood that the driving device can also be regarded as a driving circuit of the electronic switch D1.
  • FIG. 3 only depicts one electronic switch D1 and one capacitor C1 , but there are multiple other electronic switches and multiple capacitors. These multiple electronic switches, multiple capacitors and other circuit structures that are not specifically shown are equivalently represented by matching circuits in FIG. 3 .
  • the function of the isolation inductor is to suppress the interference of the high-voltage and high-power radio frequency signal of the radio frequency power supply to the driving circuit of the electronic switch D1.
  • the forward low-voltage power supply provides forward current to the electronic switch D1 through the isolation inductance, so that the electronic switch D1 is in a forward conduction state, thereby connecting the capacitor C1 to the matching circuit (or That is, make the capacitor C1 in the working state); when it is necessary to disconnect the connection between the electronic switch D1 and the matching circuit (or in other words, make the capacitor C1 belong to the non-working state); when the switch S1 is open and S2 is closed, the negative direction
  • the high-voltage power supply provides the reverse current used to extract the carrier charge stored in the electronic switch D1 and the reverse bias voltage to turn off the electronic switch D1 reliably through the isolation inductor, so as to turn off the electronic switch D1, thereby connecting the capacitor C1 and The matching circuit is disconnected.
  • the voltage value required to turn off the electronic switch D1 is easily affected by the capacity of the capacitor C1.
  • the turn-off performance of the RF impedance matching device has a large negative power supply voltage amplitude, which will significantly increase the circuit loss of the drive device, and will also increase the difficulty of high-voltage design of the drive device.
  • the present application provides a driving device, a radio frequency impedance matching device and a radio frequency plasma system, which can reduce the driving circuit loss of the driving device and enhance the reliable turn-off performance of the electronic switch.
  • FIG. 4 is a schematic block diagram of a circuit structure of a driving device provided in the present application.
  • the driving device includes:
  • a drive circuit the drive circuit is connected to the first diode, the drive circuit is used to turn on the first diode, the first diode is connected to the first capacitor, and the first diode is used to control the working state of the first capacitor , the drive circuit includes active devices;
  • a self-bias circuit the first port of the self-bias circuit is connected to the anode of the first diode, the second port of the self-bias circuit is connected to the cathode of the first diode, and the self-bias circuit is used to pass passive
  • the device provides a negative bias to the anode of the first diode.
  • the first capacitor may be a capacitor, or an equivalent capacitor composed of multiple capacitors connected in series and/or in parallel
  • the first diode may be a diode, or may be composed of An equivalent diode composed of a plurality of diodes connected in series and/or in parallel
  • the embodiment of the present application does not specifically limit the first capacitor and the first diode.
  • an active device refers to an electronic component that requires a power source to realize its specific function, including a DC power source and the like.
  • Passive components refer to electronic components that do not need a power source to achieve their specific functions, including: resistors, diodes, capacitors, etc.
  • the self-bias circuit is composed of passive devices, and the driving circuit includes active devices.
  • the first diode controls the working state of the first capacitor, which can be understood as: when the first diode is turned on, the first capacitor is connected to the matching circuit, and the first capacitor contributes all capacitance values to the matching circuit (which can be It is considered that the first capacitor is in the working state); when the first diode is turned off, the first capacitor is disconnected from the matching circuit, and the first capacitor contributes a zero capacitance value to the matching circuit (which can be regarded as the first Capacitors are not working).
  • the capacitance value of the first capacitor is 100pF
  • the first diode when the first diode is turned on, the first capacitor is connected to the matching circuit, then the first capacitor contributes a capacitance value of 100pF to the matching circuit; the first diode is turned off When , the first capacitor is disconnected from the matching circuit, and the first capacitor contributes a capacitance value of zero to the matching circuit.
  • the first capacitor when the first capacitor is disconnected from the matching circuit, due to the influence of parasitic parameters of the electronic switch and the driving circuit, the first capacitor will still contribute part of its capacitance value to the matching circuit.
  • this scenario should also be understood as the first capacitor contributing a zero capacitance value to the matching circuit.
  • the embodiment of the present application is described only by taking an ideal case as an example, that is, when the first capacitor is in a non-working state, it contributes a zero capacitance value to the matching circuit.
  • the self-bias circuit and the drive circuit are used to cooperate to turn off the first diode, and the self-bias circuit is used to provide a negative bias voltage for the anode of the first diode, which can be understood as:
  • the drive circuit is used to provide a negative current, and the negative current is used to extract carrier charges stored in the first diode, and at the same time, also make the first diode turn off, and
  • the first port of the self-bias circuit is connected to the anode of the first diode, and the second port of the self-bias circuit is connected to the cathode of the first diode, so that the first diode can be provided with a negative bias voltage,
  • the negative bias makes the first diode in a reliable reverse cut-off state.
  • the drive circuit is used to extract the carrier charges stored in the first diode, and the self-bias circuit is used to provide a negative bias voltage, so that the first diode The tube maintains a reliable off state, or the first diode is in a reliable reverse cut-off state.
  • the drive circuit is only used to extract the carrier charge stored in the first diode, and is not responsible for providing negative bias to the first diode, but is supplied by the self-bias circuit to the first diode.
  • the embodiment of the present application can effectively reduce the voltage amplitude of the negative power supply of the driving circuit, thereby reducing the circuit loss of the driving circuit, and enhancing the reliable turn-off performance of the first diode.
  • Fig. 5 is a structural schematic block diagram of a self-bias circuit provided by the present application, and the self-bias circuit includes:
  • the first port of the second capacitor is connected to the positive pole of the first diode, and the second port of the second capacitor is connected to the first port of the first resistor and the positive pole of the third diode; the positive pole of the second diode is connected to the positive pole of the third diode.
  • the anode of the first diode is connected, the cathode of the second diode is connected with the second port of the first resistor and the first port of the third capacitor; the cathode of the third diode is connected with the cathode of the first diode , the second port of the third capacitor is connected to the cathode of the first diode.
  • the self-bias circuit starts to work and establishes a negative voltage to maintain the first and second diodes.
  • the reverse cut-off state of the pole tube is the reverse cut-off state of the pole tube.
  • the sinusoidal voltage source V rf will be used to replace the matching circuit, and the sinusoidal voltage source V rf will be used as the excitation to briefly explain the working principle of the self-bias circuit without loss of generality:
  • the excitation voltage rises from zero, and the voltage drop of the first diode is ignored.
  • the second diode and the third diode are turned on, and the current path is: the positive electrode of the excitation - the first capacitor - the second diode - the first A resistor - the third diode - the negative pole of the excitation, then the excitation charges the first capacitor.
  • the second diode and the third diode are in the cut-off state, then the charging of the first capacitor ends, the voltage of the first capacitor is equal to the excitation voltage amplitude V amp , and the first The voltage polarity of the capacitor is up positive and down negative.
  • the current path is: the negative pole of the excitation - the third capacitor - the first resistor - the second capacitor - the first capacitor - the positive pole of the excitation,
  • the first capacitor and the excitation are connected in series to reversely charge the second capacitor and the third capacitor, and the voltage polarity of the second capacitor and the third capacitor is negative on the left and positive on the right.
  • the charging of the second capacitor and the third capacitor ends, and the sum of the voltages of the second capacitor and the third capacitor is approximately equal to twice the voltage amplitude of the excitation, that is, V sw is approximately equal to twice The voltage amplitude of the excitation, and the voltage polarity of the second capacitor and the third capacitor is negative at the top and positive at the bottom.
  • the current path is: the negative pole of the excitation - the third capacitor - the first resistor - the second capacitor - the first capacitor - the positive pole of the excitation , the second capacitor and the third capacitor are discharged, and the V sw voltage gradually decreases to zero.
  • the V sw voltage changes within the range of 0 to -2*V amp , thereby providing a negative bias voltage for the anode of the first diode.
  • the embodiment of the present application uses the self-bias circuit and the drive circuit to jointly control the turn-off of the first diode, thereby reducing the voltage amplitude requirement of the negative power supply in the drive circuit, thereby reducing the loss of the drive circuit , and can improve the reliable turn-off performance of the first diode.
  • Fig. 6 is a structural schematic block diagram of another self-bias circuit provided by the present application, and the self-bias circuit includes:
  • the first port of the fourth capacitor is connected to the anode of the first diode, the second port of the fourth capacitor is connected to the cathode of the fifth diode, the anode of the sixth diode, and the first port of the sixth capacitor;
  • the anode of the fourth diode is connected to the anode of the first diode, the cathode of the fourth diode is connected to the anode of the fifth diode, the first port of the fifth capacitor and the second port of the sixth capacitor , the fifth diode is connected in parallel with the sixth capacitor;
  • the cathode of the sixth diode is connected with the first port of the third resistor;
  • the first port of the second resistor is connected with the second port of the fifth capacitor, and the
  • the second port is connected to the cathode of the first diode, and the second port of the third resistor is connected to the cathode of the first diode.
  • the embodiment of the present application uses the self-bias circuit and the drive circuit to jointly control the turn-off of the first diode, thereby reducing the voltage amplitude requirement of the negative power supply in the drive circuit, thereby reducing the loss of the drive circuit , and can improve the reliable turn-off performance of the first diode.
  • the self-bias circuit described in the embodiment of the present application is not limited to the two self-bias circuit structures shown in FIG. 5 and FIG.
  • the embodiment of the present application does not specifically limit the structure of the self-bias circuit.
  • FIG. 7 is a schematic block diagram of a circuit structure of a driving circuit provided in the present application.
  • the drive circuit includes:
  • An isolation circuit the input end of the isolation circuit is connected with the output end of the first switch and the output end of the second switch, and the output end of the isolation circuit is connected with the anode of the first diode.
  • first switch, the second switch, and the third switch may be a single switch, or an equivalent switch composed of multiple switches connected in parallel and/or in series.
  • the specific forms of the first switch, the second switch and the third switch are not specifically limited.
  • the first power supply is used to provide forward current when the driving circuit turns on the first diode
  • the second power supply is used to provide negative current when the driving circuit turns off the first diode, and due to the self-bias Due to the existence of the circuit, the voltage amplitude of the second power supply does not need to be very large, so that the first diode can be turned off.
  • the first switch is used to control the connection and disconnection of the first power supply
  • the second switch and the third switch are used to control the connection and disconnection of the second power supply
  • the first switch, the second switch and the third switch There is a certain time sequence between closing and turning off, and through this time sequence, the embodiment of the present application can effectively turn on and turn off the first diode.
  • the isolation circuit is used to suppress the interference of the high-voltage and high-power radio frequency signal of the radio frequency power supply to the driving circuit. It can be composed of an inductor, or a parallel connection of an inductor and a capacitor, or other forms of filter circuit structures. In the case that a negative power supply with a large voltage amplitude is not required, the embodiment of the present application can effectively reduce the high-voltage design challenge of the driving circuit while achieving low power consumption.
  • the isolation circuit is used to suppress the interference of the high-voltage and high-power radio frequency signal of the radio frequency power supply to the driving circuit of the first diode. It can be composed of an inductance, or an inductance and a capacitor connected in parallel, or other forms of filtering Circuit configuration. In the case that a negative power supply with a large voltage amplitude is not required, the embodiment of the present application can effectively reduce the high-voltage design challenge of the driving circuit while achieving low power consumption.
  • the first power supply is a positive DC power supply
  • the second power supply is a negative DC power supply
  • the types of the first switch, the second switch, and the third switch include but are not limited to: IGBT devices, MOSFET devices, BJT devices and Relay devices .
  • the embodiments of the present application illustrate the working principle of the driving device by taking the first switch, the second switch and the third switch as MOSFET devices as an example.
  • the self-bias circuit is in a failure state.
  • the third switch is turned on, and after the first delay time, the first switch is turned off.
  • the current will flow through the isolation circuit, the first diode, the third switch and the second switch.
  • the reverse diode returns to the input end of the isolation circuit.
  • the self-bias circuit is still in a failure state.
  • the second switch is turned on again.
  • the forward current flowing through the isolation circuit is gradually reduced to zero under the action of the second power supply, and then the current flowing through the isolation circuit is reversely increased. Negative current, so that the carrier charge accumulated in the first diode in the conduction state is extracted by the second power supply. At this time, the two ends of the self-bias circuit begin to slowly accumulate a DC negative bias voltage to A reliable turn-off of the first diode is achieved.
  • the first switch controls the access of the first power supply, and the forward current flowing through the isolation circuit makes the first diode conduct, and then the first capacitor is connected to the matching circuit, thereby increasing the effective capacitance C eq , and the self-bias circuit is in failure state.
  • the second switch is connected, the second power supply outputs a reverse current, and the self-bias circuit is in an operating state.
  • the reverse current flows through the first diode, changing the state of the first diode, even if the first The diode is in a reverse cut-off state, and can disconnect the first capacitor from the matching circuit, thereby reducing the equivalent capacitance C eq .
  • the second power supply in the on-state releases the carrier charges accumulated when the first diode is in the on-state, and after the carrier charges are released, the self-bias circuit starts to slowly A negative voltage is provided to the first diode so that it is in a reverse cut-off state. During this process, the self-bias circuit gradually generates sufficient DC negative bias voltage at both ends of the first diode, and finally realizes reliable turn-off of the first diode.
  • the current flowing through the isolation circuit from left to right is defined as a positive current, and vice versa as a negative current.
  • This definition also applies to the positive and negative provisions for the first power supply and the second power supply.
  • FIG. 8 is a schematic structural block diagram of another driving circuit provided by the present application. The specific content is shown in Figure 8.
  • the drive circuit includes:
  • the fourth power supply and the fifth switch, the fourth power supply and the fifth switch are connected in series;
  • An isolation circuit the input end of the isolation circuit is connected to the output end of the fourth switch and the output end of the fifth switch, and the output end of the isolation circuit is connected to the anode of the first diode.
  • the fourth switch and the fifth switch may be a single switch, or an equivalent switch composed of multiple switches connected in parallel and/or in series.
  • the fourth switch and the fifth switch The specific form of the five switches is not specifically limited.
  • the third power supply is used to provide forward current when the driving circuit turns on the first diode
  • the fourth power supply is used to provide negative current when the driving circuit turns off the first diode, and due to the self-bias Due to the existence of the circuit, the voltage amplitude of the fourth power supply does not need to be very large, so that the first diode can be turned off.
  • the fourth switch is used to control the connection and disconnection of the third power supply
  • the fifth switch is used to control the connection and disconnection of the fourth power supply
  • the closing and closing between the fourth switch and the fifth switch exist A certain time sequence, through which the embodiment of the present application effectively turns on and turns off the first diode.
  • the isolation circuit is used to suppress the interference of the high-voltage and high-power radio frequency signal of the radio frequency power supply to the driving circuit of the first diode. It can be composed of an inductor, or an inductor and a capacitor connected in parallel, or other forms filter circuit structure. In the case that a negative power supply with a large voltage amplitude is not required, the embodiment of the present application can effectively reduce the high-voltage design challenge of the driving circuit while achieving low power consumption.
  • the third power supply is a positive DC power supply
  • the fourth power supply is a negative DC power supply
  • types of the fourth switch and the fifth switch include but are not limited to: IGBT devices, MOSFET devices, BJT devices and Relay devices.
  • the embodiment of the present application uses an example in which both the fourth switch and the fifth switch are MOSFET devices to illustrate the working principle of the driving device.
  • the fourth switch when the fourth switch is turned on and the fifth switch is turned off, the first diode is turned on, and the first capacitor is connected to the matching circuit, thereby increasing the equivalent capacitance C eq .
  • the self-bias circuit is in a failure state.
  • the fourth switch is turned off, and after the first delay time, the fifth switch is turned on again.
  • the fourth power supply outputs a negative current, and the negative current flows through the isolation circuit, so that the first The carrier charge accumulated in the diode in the conduction state is extracted by the fourth power supply.
  • the self-bias circuit starts to provide negative bias voltage for the first diode slowly, so that the first diode Diode turns off.
  • the fourth switch controls the conduction of the third power supply, and the forward current flowing through the isolation circuit makes the first diode conduct, and then connects the first capacitor to the matching circuit, thereby increasing the equivalent capacitance C eq , and the self-bias circuit is in failure state.
  • the fifth switch is turned on again, the fourth power supply outputs a reverse current, and the self-bias circuit is in an operating state.
  • the reverse current flows through the first diode, changing the state of the first diode, even if the second A diode is in a reverse cut-off state, so that the first capacitor is disconnected from the matching circuit, thereby reducing the equivalent capacitance C eq .
  • the fourth power supply in the conduction state can release the carrier charges accumulated when the first diode is in the conduction state, and after the carrier charges are released, the self-bias circuit starts to slowly The ground provides a reverse voltage to the first diode so that it is in a reverse cut-off state. During this process, the self-bias circuit gradually generates sufficient DC negative bias voltage at both ends of the first diode to realize reliable turn-off of the first diode.
  • the embodiment of the present application can effectively reduce the high-voltage design challenge of the driving circuit while achieving low power consumption.
  • FIG. 9 is a schematic circuit structure diagram of an isolation circuit provided by an embodiment of the present application. Specifically, the isolation circuit includes:
  • the output terminal of the first inductor is connected with the input terminal of the seventh capacitor and the input terminal of the seventh diode
  • the output terminal of the seventh diode is connected with the anode of the first diode
  • the output terminal of the seventh capacitor Connect to ground.
  • the low-pass filter composed of the first inductance and the seventh capacitor suppresses the interference of the high-voltage and high-power radio frequency signal of the radio frequency power supply on the driving circuit.
  • the turn-on and turn-off speed of the pole tube can be improved, and the device size of the first inductor can also be reduced.
  • the isolation circuit includes a second inductor.
  • the second inductance is used to realize the interference of the high-voltage and high-power radio frequency signal to the driving circuit, thereby simplifying the design of the isolation circuit of the driving circuit of the driving device.
  • the embodiment of the present application also provides a radio frequency impedance matching device, the radio frequency impedance matching device includes the aforementioned driving device, the radio frequency impedance matching device also includes at least one first capacitor and at least one first diode, and at least one driving device , one-to-one correspondence between at least one first capacitor and at least one first diode, that is, the first driving device, one first capacitor and one first diode, the radio frequency impedance matching device also includes signal detection and control module.
  • the embodiments of the present application can couple the output power of the radio frequency power supply to the load, and can also make the radio frequency power supply operate in a reliable, efficient and safe manner.
  • the signal detection and control module includes:
  • the first signal detection circuit is connected to the output terminal of the radio frequency power supply, and is used to detect the signal of the transmission line of the radio frequency power supply;
  • a first signal processing circuit connected to the first signal detection circuit, for processing the output result of the first signal detection circuit
  • the second signal detection circuit is connected to the load and is used to detect the signal of the transmission line of the load;
  • the second signal processing circuit is connected to the second signal detection circuit and is used to process the output result of the second signal detection circuit
  • the microcontroller is connected with the first signal detection circuit and the second signal detection circuit, and is used to process the output results of the first signal detection circuit and the second signal detection circuit, and the microcontroller is connected with at least one driving device for At least one control signal is output to at least one driving device, and the control signal is used to control the turn-on and turn-off of the first diode.
  • the signal detection circuit is used to detect the voltage, current, power, impedance, reflection coefficient and other information of the radio frequency power transmission line of the radio frequency power supply.
  • the signal detection circuit can be constructed by discrete devices, and can also be an integrated circuit.
  • the signal detection circuit can be configured at the input end or output end of the radio frequency impedance matching device, or at both the input end and the output end.
  • the signal processing circuit is used to perform necessary filter processing and analog-to-digital conversion on the output result of the signal detection circuit.
  • the configuration of the signal processing circuit is in one-to-one correspondence with the configuration of the signal detection circuit.
  • the microcontroller is used to comprehensively process instructions, data, and feedback information from the RF power supply, signal detection/processing circuit, and then obtain the target capacitance value of the adjustable capacitor according to the built-in impedance adjustment algorithm, and send it to at least one driving device
  • the corresponding control signal is used to adjust the capacitance value in the drive device to the target state.
  • Fig. 10 is a schematic block diagram of a circuit structure of a radio frequency impedance matching device provided in the present application.
  • the RF impedance matcher includes:
  • the first signal detection circuit is connected with the radio frequency power supply, and is used to detect the signal of the transmission line of the radio frequency power supply;
  • a first signal processing circuit connected to the first signal detection circuit, for processing the output result of the first signal detection circuit
  • the second signal detection circuit is connected to the load and is used to detect the signal of the transmission line of the load;
  • the second signal processing circuit is connected to the second signal detection circuit and is used to process the output result of the second signal detection circuit
  • the microcontroller is connected to the first signal detection circuit and the second signal detection circuit, and is used to process the output results of the first signal detection circuit and the second signal detection circuit, and the microcontroller is connected to at least one driving device for Outputting at least one control signal for at least one driving device, the at least one control signal is used to control the turn-on and turn-off of the switch;
  • the first capacitive switch array and the second capacitive switch array are used to output equivalent capacitance values.
  • An embodiment of the present application further provides a radio frequency plasma system, which includes the above radio frequency impedance matching device, a radio frequency power supply and a load.
  • the load may be the aforementioned plasma chamber, or other types of loads, for example, this embodiment of the present application does not specifically limit it.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Electronic Switches (AREA)

Abstract

本申请实施例提供一种驱动装置、射频匹配器和射频等离子体系统,该驱动装置包括:驱动电路,驱动电路与第一二极管连接,驱动电路用于导通第一二极管,第一二极管与第一电容连接,第一二极管用于控制第一电容的工作状态,该驱动电路包括有源器件;自偏压电路,自偏压电路的第一端口与第一二极管的正极连接,自偏压电路的第二端口与第一二极管的负极连接,该自偏压电路用于通过无源器件为该第一二极管的正极提供负向偏压。通过该驱动装置,本申请实施例能够有效降低驱动电路中负向电源的电压幅值需求,继而降低驱动电路的电路损耗,并能够增强对第一二极管的可靠关断性能。

Description

驱动装置、射频阻抗匹配器和射频等离子体系统 技术领域
本申请实施例涉及半导体芯片制造技术领域,更具体地,涉及一种驱动装置、射频阻抗匹配器和射频等离子体系统。
背景技术
射频等离子体(radio frequency plasma,RF Plasma)技术广泛应用于半导体芯片制造技术领域,例如,射频等离子体刻蚀、沉积、清洗等芯片制造工艺。
射频等离子体系统主要是由射频电源(RF generator)、射频阻抗匹配器(RF impedance match,RF-IPM)与等离子体室(plasma load)组成。射频电源输出的射频功率经射频阻抗匹配器耦合到等离子体室,使等离子体室的工艺气体电离,形成等离子体。
随着工艺过程中的工艺参数(压力、流量、功率、温度等)不断变化,等离子体室的阻抗也会随之改变。为了使射频电源可靠、稳定、高效地运行,射频阻抗匹配器需要通过调整电容值来实时适配等离子体室的阻抗变化。
目前,射频阻抗匹配器通过一种电子开关投切电容的方式,实现电容值的调整,但是基于该电子开关投切电容的射频阻抗匹配器的驱动电路损耗较大和电子开关的可靠关断性能不够好。
发明内容
本申请实施例提供一种驱动装置、射频阻抗匹配器和射频等离子体系统,能够有效降低驱动电路中负向电源的电压幅值需求,继而降低驱动电路的电路损耗,并能够增强对第一二极管的可靠关断性能。
第一方面,提供了一种驱动装置,该驱动装置包括:驱动电路,该驱动电路与第一二极管连接,该驱动电路用于导通第一二极管,该第一二极管与第一电容连接,该第一二极管用于控制该第一电容的工作状态,该驱动电路包括有源器件;自偏压电路,该自偏压电路的第一端口与该第一二极管的正极连接,该自偏压电路的第二端口与该第一二极管的负极连接,该自偏压电路用于通过无源器件向该第一二极管的正极提供负向偏压。
应理解,该第一电容可以是一个电容,也可以是由多个电容之间以串联和/或并联方式组成的一个等效电容,该第一二极管可以是一个二极管,也可以是由多个二极管之间以串联和/或并联方式组成的一个等效二极管,本申请实施例对第一电容与第一二极管不做具体限定。
应理解,有源器件是指需要电源来实现其特定功能的电子元件,包括直流电源等。无源器件是指不需要电源就能实现其特定功能的电子元件,包括:电阻、二极管、电容等。该自偏压电路是由无源器件组成,该驱动电路包括有源器件。
应理解,第一二极管控制第一电容的工作状态,可以理解为:第一二极管导通时,第 一电容与匹配电路连接,第一电容向匹配电路贡献全部的电容值(可以视为第一电容处于工作状态);第一二极管关断时,第一电容断开与匹配电路之间的连接,第一电容向匹配电路贡献为零的电容值(可以视为第一电容处于非工作状态)。示例性的,第一电容的电容值为100pF,第一二极管导通时,第一电容与匹配电路连接,则第一电容向匹配电路贡献100pF的电容值;第一二极管关断时,第一电容断开与匹配电路之间的连接,则第一电容向匹配电路贡献为零的电容值,例如0pF。应理解,在实际应用时,当第一电容断开与匹配电路之间的连接时,由于电子开关及驱动电路的寄生参数影响,第一电容仍会有部分的电容值贡献到匹配电路中,但这一场景也应理解为第一电容向匹配电路贡献为零的电容值。本申请实施例仅以理想情况为例进行叙述,即第一电容处于非工作状态时,向该匹配电路贡献为零的电容值。
应理解,该自偏压电路和驱动电路用于协同关断第一二极管,且自偏压电路用于为第一二极管的正极提供负向偏压,可以理解为:在关断第一二极管时,该驱动电路用于提供负向电流,该负向电流用于抽取存储于第一二极管的载流子电荷,同时,也使得第一二极管关断,且自偏压电路的第一端口与第一二极管的正极连接,自偏压电路的第二端口与第一二极管的负极连接,则能够为第一二极管提供负向偏压,该负向偏压使第一二极管处于可靠的反向截止状态。换言之,在关断第一二极管时,该驱动电路用于抽取存储于第一二极管的载流子电荷,该自偏压电路用于提供负向偏压,从而使第一二极管维持可靠关断状态,或者,使第一二极管处于可靠的反向截止状态中。
更具体地说,该驱动电路用于抽取存储于第一二极管的载流子电荷,不负责向该第一二极管提供负向偏压,而是由自偏压电路向第一二极管提供负向偏压,由此,本申请实施例能够降低该驱动电路的负向电源的电压幅值需求,且由于该驱动电路的损耗与负向电源的电压幅值和第一二极管需要释放的载流子电荷相关(见公式:P loss=U*Q,Q为关断第一二极管时,需要释放的储存于第一二极管中的载流子电荷,U为所施加的负向电源的电压幅值)。因此,在降低了该驱动电路的负向电源的电压幅值需求之后,本申请实施例能够有效降低该驱动电路的电路损耗,还能提升第一二极管的可靠关断性能。
因此,通过上述驱动装置,本申请实施例能够有效降低驱动电路的负向电源的电压幅值需求,继而降低驱动电路的电路损耗,并能够增强对第一二极管的可靠关断性能。
结合第一方面,在第一方面的某些实现方式中,该自偏压电路包括:第二电容,第三电容,第二二极管,第三二极管和第一电阻,该第二电容的第一端口与第一二极管的正极连接,该第二电容的第二端口与第一电阻的第一端口和第三二极管的正极连接,该第二二极管的正极与第一二极管的正极连接,该第二二极管的负极与第一电阻的第二端口和第三电容的第一端口连接,该第三二极管的负极与第一二极管的负极连接,该第三电容的第二端口与第一二极管的负极连接。
通过上述自偏压电路,本申请实施例使用自偏压电路与驱动电路协同控制第一二极管的关断,从而降低驱动电路中负向电源的电压幅值需求,继而降低驱动电路的损耗,并能够提升对第一二极管的可靠关断性能。
结合第一方面,在第一方面的某些实现方式中,该自偏压电路包括:第四电容,第五电容,第六电容,第四二极管,第五二极管,第六二极管,第二电阻和第三电阻,该第四电容的第一端口与该第一二极管的正极连接,该第四电容的第二端口与该第五二极管的负 极、该第六二极管的正极以及该第六电容的第一端口连接;该第四二极管的正极与该第一二极管的正极连接,该第四二极管的负极与该第五二极管的正极、该第五电容的第一端口连接以及该第六电容的第二端口连接,该第五二极管与该第六电容并联;该第六二极管的负极与该第三电阻的第一端口连接;该第二电阻的第一端口与该第五电容的第二端口连接,该第二电阻的第二端口与该第一二极管的负极连接,该第三电阻的第二端口与该第一二极管的负极连接。
通过上述自偏压电路,本申请实施例使用自偏压电路与驱动电路协同控制第一二极管的关断,从而降低驱动电路中负向电源的电压幅值需求,继而降低驱动电路的损耗,并能够提升对第一二极管的可靠关断性能。
结合第一方面,在第一方面的某些实现方式中,该驱动电路包括:第一电源与第一开关,第一电源与第一开关串联;第二电源、第二开关以及第三开关,第二电源、第二开关以及第三开关之间串联;隔离电路,该隔离电路的输入端与第一开关的输出端、第二开关的输出端连接,该隔离电路的输出端与第一二极管的正极连接。
具体地,第一电源用于为驱动电路导通第一二极管时提供正向电流,第二电源用于为驱动电路关断第一二极管时提供负向电流,且由于自偏压电路的存在,第二电源的电压幅值不需要很大,就能实现关断第一二极管。其中,第一开关用于控制第一电源的接入和断开,第二开关和第三开关用于控制第二电源的接入和断开,且第一开关、第二开关与第三开关之间的闭合和关断存在一定的时序,通过该时序,本申请实施例能够有效导通和关断第一二极管。该隔离电路用于抑制射频电源的高压大功率射频信号对驱动电路的干扰,其组成可以是由电感组成,也可以是由电感与电容并联组成,或其他形式的滤波电路结构。如此,在不需要很大电压幅值的负向电源的情况下,本申请实施例可有效降低驱动电路的高压设计挑战,同时实现低功耗。
结合第一方面,在第一方面的某些实现方式中,该驱动电路包括:第三电源与第四开关,第三电源与第四开关串联;第四电源与第五开关,第四电源与第五开关串联;隔离电路,隔离电路的输入端与第四开关的输出端、第五开关的输出端连接,隔离电路的输出端与第一二极管的正极连接。
应理解,第三电源用于为驱动电路导通第一二极管时提供正向电流,第四电源用于为驱动电路关断第一二极管时提供负向电流,且由于自偏压电路的存在,第四电源的电压幅值不需要很大,就能实现关断第一二极管。其中,第四开关用于控制第三电源的接入和断开,第五开关用于控制第四电源的接入和断开,且第四开关与第五开关之间的闭合和关断存在一定的时序,通过该时序,本申请实施例有效导通和关断第一二极管。同时,该隔离电路是用于抑制射频电源的高压大功率射频信号对第一二极管的驱动电路的干扰,其组成可以是由电感组成,也可以是由电感与电容并联组成,或其他形式的滤波电路结构。在不需要很大电压幅值的负向电源的情况下,本申请实施例可有效降低驱动电路的高压设计挑战,同时实现低功耗。
结合第一方面,在第一方面的某些实现方式中,该隔离电路包括第一电感、第七电容以及第七二极管,第一电感的输出端与第七电容以及第七二极管的输入端连接,第七二极管的输出端与第一二极管的正极连接,第七电容的输出端与地连接。
通过由第一电感和第七电容组成的低通滤波器抑制射频电源的高压大功率射频信号 对驱动电路的干扰,本申请实施例可降低第一电感的感值,这有利于提升第一二极管的导通和关断速度,同时也可以减小第一电感的器件尺寸。
结合第一方面,在第一方面的某些实现方式中,该隔离电路包括第二电感。
本申请实施例通过第二电感来实现对高压大功率射频信号对驱动电路的干扰,从而能够简化该驱动装置的驱动电路的隔离电路的设计。
第二方面,提供了一种射频阻抗匹配器,该射频阻抗匹配器包括第一方面以及第一方面的任一种可能实现方式中的任一项所述的驱动装置,该射频阻抗匹配器还包括至少一个第一电容与至少一个第一二极管,至少一个驱动装置、至少一个第一电容与至少一个第一二极管一一对应,该射频阻抗匹配器还包括信号检测与控制模块。
通过该射频阻抗匹配器,本申请实施例能够实现将射频电源的输出功率耦合到负载中,且能够使射频电源以可靠、高效的方式运行。
结合第二方面,在第二方面的某些实现方式中,该信号检测与控制模块包括:第一信号检测电路,与射频电源的输出端连接,用于检测射频电源的传输线路的信号;第一信号处理电路,与第一信号检测电路连接,用于对第一信号检测电路的输出结果进行处理;第二信号检测电路,与负载连接,用于检测负载的传输线路的信号;第二信号处理电路,与第二信号检测电路连接,用于对第二信号检测电路的输出结果进行处理;微控制器,与第一信号检测电路以及第二信号检测电路连接,用于对第一信号检测电路和第二信号检测电路的输出结果进行处理,微控制器与至少一个驱动装置连接,用于为至少一个驱动装置输出至少一个控制信号,这控制信号用于控制第一二极管的导通与关断。
第三方面,提供了一种射频等离子体系统,该射频等离子体系统包括第二方面以及第二方面的一种可能实现方式中所述的射频阻抗匹配器,该射频等离子体系统还包括:射频电源与负载。
附图说明
图1是一种射频等离子体系统的示意框图。
图2是一种基于电子开关投切电容的射频阻抗匹配器的电路结构示意框图。
图3是现有的一种驱动装置的电路结构示意框图。
图4是本申请提供的一种驱动装置的电路结构示意框图。
图5是本申请提供的一种自偏压电路的电路结构示意框图。
图6是本申请提供的另一种自偏压电路的电路结构示意框图。
图7是本申请提供的一种驱动电路的电路结构示意框图。
图8是本申请提供的另一种驱动电路的电路结构示意框图。
图9是本申请提供的一种隔离电路的电路结构示意框图。
图10是本申请提供的一种射频阻抗匹配器的电路结构示意框图。
具体实施方式
下面将结合附图,对本申请实施例中的驱动装置、射频阻抗匹配器和射频等离子体系统进行描述。
图1是一种射频等离子体系统的示意框图。该射频等离子体系统主要是由射频电源 #110、射频阻抗匹配器#120和等离子体室#130组成。
应理解,该射频等离子体系统的工作过程大致如下所述:射频电源#110输出的射频功率经射频阻抗匹配器#120耦合进入到等离子体室#130,使等离子体室#130内部的工艺气体电离,形成由电子、中性粒子、自由基等组成的等离子体。该射频阻抗匹配器#120基于射频电源#110提供的指令或阻抗信息,自主完成等离子体室#130的负载阻抗到50欧姆负载的阻抗变换功能。
应理解,在本申请实施例中,该射频电源#110的工作频率包括但不限于:2Mhz、13.56Mhz、27.12Mhz、60Mhz等常用射频频率。等离子体室#130的类型包括但不限于:容性耦合等离子体(capacitive coupled plasma,CCP)和感性耦合等离子体(inductive coupled plasma,ICP)这两种类型。
图2是一种基于电子开关投切电容的射频阻抗匹配器的电路结构示意框图。具体地,该射频阻抗匹配器包括第一电容开关阵列和第二电容开关阵列,第一电容开关阵列与第二电容开关阵列结合起来,才能实现电容值的即时调整,并通过电容值的即时调整,该射频阻抗匹配器能够实现对变化的负载阻抗的实时变换。为了简便描述,本申请实施例仅以第一电容开关阵列为例进行说明,但控制的方式亦同样适用于第二电容开关阵列。
应理解,图2所示的第一电容开关阵列是由多个电容支路组成,且每个电容支路是由一个电子开关、一个电容和驱动装置组成。示例性地,该多个电容支路的第一电容支路包括:电子开关S1、电容C1和驱动装置。其中,每个电容支路均是独立控制的,该控制电路可以理解为是多个电容支路包括的驱动装置的整体表示。
下文将以第一电容支路为例对如何调整电容值进行示例性的描述。
第一电容支路的电子开关S1闭合时,电容C1接入到第一电容开关阵列,从而使等效电容值C eq增加;当第一电容支路的电子开关S1断开时,电容C1断开与第一电容开关阵列之间的连接,从而使等效电容值C eq减小。
应理解,第一电容支路的电子开关S1控制着第一电容支路的电容C1的工作状态。电子开关S1导通,电容C1则处于工作状态,向该第一电容开关阵列贡献全部的电容值;电子开关S1关断,电容C1则处于非工作状态,向该第一电容开关阵列贡献为零的电容值。电子开关S1的导通和关断是受到控制电路的控制,控制电路基于其接收到的控制信号来执行对电子开关S1的导通和关断。
通过由电子开关S1控制电容C1的工作状态(该工作状态也可以理解为:处于工作状态时,电容C1接入第一电容开关阵列;处于非工作状态时,电容C1断开与第一电容开关阵列之间的连接),该射频阻抗匹配器能够实现对其电容值C eq的即时调整,从而实时适配等离子体室的阻抗变化。
应理解,该射频阻抗匹配器的左侧(RF IN)是与射频电源#110连接,该射频阻抗匹配器的右侧(RF OUT)是与等离子体室#130连接,由此能够实现将射频电源#110的输出功率耦合到等离子体室#130中。
需要说明的是,在本申请实施例中,等离子体室也可以理解为是负载的一种。为便于描述,本申请实施例以负载来代替描述等离子体室,该描述方式表示本申请实施例所述的驱动装置不仅应用于等离子体室,也能够应用于其他的负载。
还应理解,图2所示的电路结构示意框图仅作为一种示例性理解,其还包括其他电路 结构,例如,信号检测电路、信号处理电路、微控制器,以及其他的驱动装置,等等,这些电路结构并未在图2中得到具体的展示。需要说明的是,在后文中,本申请实施例以匹配电路作为这些未具体示出的电路结构的等效示意。作为一种可能的表述方式,该匹配电路可以以正弦电压源V rf等效示意。
应理解,对于射频阻抗匹配器而言,电子开关的器件种类包括但不限于:双极结型晶体管(bipolar junction transistor,BJT)、绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)、金属氧化物半导体场效应晶体管(metal-oxide-semiconductor field effect transistor,MOSFET)、PIN二极管(PIN diode)等等。基于不同类型的电子开关器件,则存在相应的驱动控制技术。
本申请实施例以电子开关器件是PIN二极管为例,对本申请实施例的技术方案进行描述,但是该种描述方式不具备限定作用。
下文将结合图3对图2所示的第一电容开关阵列做进一步的描述。
应理解,图2所示的第一电容开关阵列包括至少一个电容支路,该至少一个电容支路中的第一电容支路包括一个驱动装置,该驱动装置能够用于控制该第一电容支路的电子开关S1的导通与关断,从而控制电容C1的工作状态,继而影响第一电容开关阵列的等效电容值的高低。
图3是现有的一种驱动装置的电路结构示意框图。该驱动装置包括:正向低压电源、负向高压电源、开关S1和S2,以及隔离电感L iso。应理解,该驱动装置也可以视为电子开关D1的驱动电路。
应理解,图3仅描述了一个电子开关D1、一个电容C1,但是还存在其他的多个电子开关以及多个电容。这些尚未具体示出的多个电子开关、多个电容以及其他尚未具体示出的电路结构在图3中则以匹配电路作为等效示意。
应理解,在图3所示的示意框图中,该隔离电感的作用是用于抑制射频电源的高压大功率射频信号对电子开关D1的驱动电路的干扰。
具体地,当开关S1闭合、S2断开时,正向低压电源通过隔离电感给电子开关D1提供正向电流,使电子开关D1处于正向导通状态,从而将电容C1与匹配电路连接起来(或者说,使电容C1处于工作状态);当需要断开电子开关D1与匹配电路之间的连接时(或者说,使电容C1属于非工作状态);当开关S1断开、S2闭合时,负向高压电源通过隔离电感提供用于抽取储存于电子开关D1中载流子电荷的反向电流和使电子开关D1可靠关断的反向偏置电压,以关断电子开关D1,从而将电容C1与匹配电路的连接断开。
然而,关断电子开关D1所需要的电压值容易受到电容C1的容量影响,电容C1的容量越大,电子开关D1从负向高压电源上分到的负向偏压越小,为了保证电子开关的关断性能,该射频阻抗匹配器的驱动装置的负向电源的电压幅值很大,这会显著增加驱动装置的电路损耗,,同时也会增加该驱动装置的高压设计难度。
鉴于上述技术问题,本申请提供了一种驱动装置、射频阻抗匹配器和射频等离子体系统,能够降低该驱动装置的驱动电路损耗,并增强电子开关的可靠关断性能。
图4是本申请提供的一种驱动装置的电路结构示意框图。具体地,该驱动装置包括:
驱动电路,驱动电路与第一二极管连接,驱动电路用于导通第一二极管,第一二极管与第一电容连接,第一二极管用于控制第一电容的工作状态,驱动电路包括有源器件;
自偏压电路,自偏压电路的第一端口与第一二极管的正极连接,自偏压电路的第二端口与第一二极管的负极连接,自偏压电路用于通过无源器件向第一二极管的正极提供负向偏压。
应理解,该第一电容可以是一个电容,也可以是由多个电容之间以串联和/或并联方式组成的一个等效电容,该第一二极管可以是一个二极管,也可以是由多个二极管之间以串联和/或并联方式组成的一个等效二极管,本申请实施例对第一电容与第一二极管不做具体限定。
应理解,有源器件是指需要电源来实现其特定功能的电子元件,包括直流电源等。无源器件是指不需要电源就能实现其特定功能的电子元件,包括:电阻、二极管、电容等。该自偏压电路是由无源器件组成,该驱动电路包括有源器件。
应理解,第一二极管控制第一电容的工作状态,可以理解为:第一二极管导通时,第一电容与匹配电路连接,第一电容向匹配电路贡献全部的电容值(可以视为第一电容处于工作状态);第一二极管关断时,第一电容断开与匹配电路之间的连接,第一电容向匹配电路贡献为零的电容值(可以视为第一电容处于非工作状态)。示例性的,第一电容的电容值为100pF,第一二极管导通时,第一电容与匹配电路连接,则第一电容向匹配电路贡献100pF的电容值;第一二极管关断时,第一电容断开与匹配电路之间的连接,则第一电容向匹配电路贡献为零的电容值。
应理解,在实际应用时,当第一电容断开与匹配电路之间的连接时,由于电子开关及驱动电路的寄生参数影响,第一电容仍会有部分的电容值贡献到匹配电路中,但这一场景也应理解为第一电容向匹配电路贡献为零的电容值。本申请实施例仅以理想情况为例进行叙述,即第一电容处于非工作状态时,向该匹配电路贡献为零的电容值。
应理解,该自偏压电路和驱动电路用于协同关断第一二极管,且自偏压电路用于为第一二极管的正极提供负向偏压,可以理解为:在关断第一二极管时,该驱动电路用于提供负向电流,该负向电流用于抽取存储于第一二极管的载流子电荷,同时,也使得第一二极管关断,且自偏压电路的第一端口与第一二极管的正极连接,自偏压电路的第二端口与第一二极管的负极连接,则能够为第一二极管提供负向偏压,该负向偏压使第一二极管处于可靠的反向截止状态。换言之,在关断第一二极管时,该驱动电路用于抽取存储于第一二极管的载流子电荷,该自偏压电路用于提供负向偏压,从而使第一二极管维持可靠关断状态,或者,使第一二极管处于可靠的反向截止状态中。
更具体地说,该驱动电路仅用于抽取存储于第一二极管的载流子电荷,不负责向该第一二极管提供负向偏压,而是由自偏压电路向第一二极管提供负向偏压,由此,本申请实施例能够降低该驱动电路的负向电源的电压幅值,且由于该驱动电路的损耗与负向电源的电压幅值和第一二极管需要释放的载流子电荷相关(见公式:P loss=U*Q,Q为关断第一二极管时,需要释放的储存于第一二极管中的载流子电荷,U为所施加的负向电源的电压幅值)。因此,在降低了该驱动电路的负向电源的电压幅值需求之后,本申请实施例能够有效降低该驱动电路的电路损耗,还能提升第一二极管的可靠关断性能。
因此,通过上述驱动装置,本申请实施例能够有效降低驱动电路的负向电源的电压幅值,继而降低驱动电路的电路损耗,并能够增强对第一二极管的可靠关断性能。
图5是本申请提供的一种自偏压电路的结构示意框图,该自偏压电路包括:
第二电容,第三电容,第二二极管,第三二极管和第一电阻;
第二电容的第一端口与第一二极管的正极连接,第二电容的第二端口与第一电阻的第一端口和第三二极管的正极连接;第二二极管的正极与第一二极管的正极连接,第二二极管的负极与第一电阻的第二端口和第三电容的第一端口连接;第三二极管的负极与第一二极管的负极连接,第三电容的第二端口与第一二极管的负极连接。
应理解,在驱动电路将储存于第一二极管中的载流子抽取完,且第一二极管进入关断状态后,自偏压电路开始工作建立负向电压,以维持第一二极管的反向截止状态。
下文将以匹配电路用正弦电压源V rf代替示意,且以正弦电压源V rf作为激励,简要阐述自偏压电路的工作原理,不失一般性:
假设第一二极管关断时,激励的电压从零开始上升,且忽略第一二极管的压降。在激励的电压由零上升到正向电压峰值时,第二二极管和第三二极管导通,电流路径为:激励的正极——第一电容——第二二极管——第一电阻——第三二极管——激励的负极,则激励给第一电容充电。当激励的电压达到正向电压峰值时,第二二极管和第三二极管处于截止状态,则第一电容充电结束,第一电容的电压等于激励的电压幅值V amp,且第一电容的电压极性为上正下负。在激励的电压由正向电压峰值下降到负向电压峰值时,电流路径为:激励的负极——第三电容——第一电阻——第二电容——第一电容——激励的正极,第一电容和激励串联起来一起给第二电容和第三电容反向充电,第二电容和第三电容的电压极性为左负右正。当激励的电压下降到负向峰值电压时,第二电容和第三电容充电结束,第二电容和第三电容的电压之和近似等于2倍激励的电压幅值,即V sw近似等于2倍激励的电压幅值,且第二电容和第三电容的电压极性为上负下正。在激励的电压由负向电压峰值下上升到正向电压峰值时,电流路径为:激励的负极——第三电容——第一电阻——第二电容——第一电容——激励的正极,第二电容和第三电容放电,V sw电压逐渐减小至零。在重复上述若干个周期过程进入稳态后,V sw电压在0至-2*V amp范围内变化,由此实现为第一二极管的正极提供负向偏压。
通过上述自偏压电路,本申请实施例使用自偏压电路与驱动电路协同控制第一二极管的关断,从而降低驱动电路中负向电源的电压幅值需求,继而降低驱动电路的损耗,并能够提升对第一二极管的可靠关断性能。
图6是本申请提供的另一种自偏压电路的结构示意框图,该自偏压电路包括:
第四电容,第五电容,第六电容,第四二极管,第五二极管,第六二极管,第二电阻和第三电阻;
第四电容的第一端口与第一二极管的正极连接,第四电容的第二端口与第五二极管的负极、第六二极管的正极以及第六电容的第一端口连接;第四二极管的正极与第一二极管的正极连接,第四二极管的负极与第五二极管的正极、第五电容的第一端口连接以及第六电容的第二端口连接,第五二极管与第六电容并联;第六二极管的负极与第三电阻的第一端口连接;第二电阻的第一端口与第五电容的第二端口连接,第二电阻的第二端口与第一二极管的负极连接,第三电阻的第二端口与第一二极管的负极连接。
该自偏压电路的工作原理可以参考上述的描述,在此不再赘述。
通过上述自偏压电路,本申请实施例使用自偏压电路与驱动电路协同控制第一二极管的关断,从而降低驱动电路中负向电源的电压幅值需求,继而降低驱动电路的损耗,并能 够提升对第一二极管的可靠关断性能。
应理解,本申请实施例中所述的自偏压电路并不限于图5和图6所示的两种自偏压电路结构,也可采用其他具有直流偏压功能的自偏压电路结构,本申请实施例对自偏压电路的结构不做具体限定。
图7是本申请提供的一种驱动电路的电路结构示意框图。具体地,该驱动电路包括:
第一电源与第一开关,该第一电源与该第一开关串联;
第二电源、第二开关以及第三开关,该第二电源、该第二开关以及该第三开关之间串联;
隔离电路,该隔离电路的输入端与第一开关的输出端、第二开关的输出端连接,该隔离电路的输出端与第一二极管的正极连接。
应理解,该第一开关、第二开关、第三开关可以是单独的一个开关,也可以是多个开关之间以并联和/或串联方式组成的一个等效开关,本申请实施例对第一开关、第二开关以及第三开关的具体形式不做具体限定。
具体地,第一电源用于为驱动电路导通第一二极管时提供正向电流,第二电源用于为驱动电路关断第一二极管时提供负向电流,且由于自偏压电路的存在,第二电源的电压幅值不需要很大,就能实现关断第一二极管。其中,第一开关用于控制第一电源的接入和断开,第二开关和第三开关用于控制第二电源的接入和断开,且第一开关、第二开关与第三开关之间的闭合和关断存在一定的时序,通过该时序,本申请实施例能够有效导通和关断第一二极管。该隔离电路用于抑制射频电源的高压大功率射频信号对驱动电路的干扰,其组成可以是由电感组成,也可以是由电感与电容并联组成,或其他形式的滤波电路结构。在不需要很大电压幅值的负向电源的情况下,本申请实施例可有效降低驱动电路的高压设计挑战,同时实现低功耗。该隔离电路是用于抑制射频电源的高压大功率射频信号对第一二极管的驱动电路的干扰,其组成可以是由电感组成,也可以是由电感与电容并联组成,或其他形式的滤波电路结构。在不需要很大电压幅值的负向电源的情况下,本申请实施例可有效降低驱动电路的高压设计挑战,同时实现低功耗。
应理解,该第一电源是正向直流电源,第二电源是负向直流电源,第一开关与第二开关、第三开关的类型包括但不限于:IGBT器件、MOSFET器件、BJT器件和Relay器件。
为便于描述本申请实施例的技术方案,本申请实施例以第一开关、第二开关和第三开关均为MOSFET器件为例对该驱动装置的工作原理进行阐述。
具体而言,当导通第一开关,关断第二开关与第三开关时,第一二极管是导通的,第一电容接入到匹配电路中,从而增加了等效电容C eq,此时,自偏压电路是处于失效状态。隔一段时间之后,导通第三开关,经过第一时延时间之后,关断第一开关,此时,电流会流经该隔离电路、第一二极管、第三开关以及第二开关的反向二极管,再回到隔离电路的输入端,此时,自偏压电路仍处于失效状态。经过第二时延时间之后,再导通第二开关,此时流经隔离电路的正向电流,在第二电源的作用下慢慢减小至零,然后反向增加流经该隔离电路的负向电流,从而使第一二极管在导通状态时储集的载流子电荷被该第二电源抽取,此时,自偏压电路两端开始慢慢积累直流负向偏压,以实现第一二极管的可靠关断。
更具体地说,第一开关控制第一电源的接入,则流经隔离电路的正向电流使该第一二极管导通,继而,使第一电容接入该匹配电路,从而增加等效电容值C eq,且自偏压电路 是处于失效状态。之后,接入第二开关,第二电源输出反向电流,自偏压电路是处于工作状态,该反向电流流经该第一二极管,改变第一二极管的状态,即使第一二极管处于反向截止状态,并能够使第一电容断开与匹配电路的连接,从而降低等效电容值C eq
应理解,处于接入状态下的第二电源使第一二极管处在导通状态时积聚的载流子电荷释放,在将载流子电荷释放完毕之后,自偏压电路开始慢慢地为第一二极管提供负向电压,从而使其处于反向截止状态。在此过程中,自偏压电路在第一二极管的两端逐渐产生足够的直流负偏压,最终实现第一二极管的可靠关断。
需要说明的是,本申请实施例定义从左至右流经隔离电路的电流为正向电流,反之为负向电流。该定义也适用于对第一电源和第二电源的正负规定。
图8是本申请提供的另一种驱动电路的结构示意框图。具体内容如图8所示。该驱动电路包括:
第三电源与第四开关,该第三电源与该第四开关串联;
第四电源与第五开关,该第四电源与该第五开关串联;
隔离电路,该隔离电路的输入端与第四开关的输出端、第五开关的输出端连接,该隔离电路的输出端与第一二极管的正极连接。
应理解,该第四开关和第五开关可以是单独的一个开关,也可以是多个开关之间以并联和/或串联方式组成的一个等效开关,本申请实施例对第四开关和第五开关的具体形式不做具体限定。
应理解,第三电源用于为驱动电路导通第一二极管时提供正向电流,第四电源用于为驱动电路关断第一二极管时提供负向电流,且由于自偏压电路的存在,第四电源的电压幅值不需要很大,就能实现关断第一二极管。其中,第四开关用于控制第三电源的接入和断开,第五开关用于控制第四电源的接入和断开,且第四开关与第五开关之间的闭合和关断存在一定的时序,通过该时序,本申请实施例有效导通和关断第一二极管。同时,该隔离电路是用于抑制射频电源的高压大功率射频信号对第一二极管的驱动电路的干扰,其组成可以是由电感组成,也可以是由电感与电容并联组成,或其他形式的滤波电路结构。在不需要很大电压幅值的负向电源的情况下,本申请实施例可有效降低驱动电路的高压设计挑战,同时实现低功耗。
应理解,该第三电源是正向直流电源,第四电源是负向直流电源,第四开关与第五开关的类型包括但不限于:IGBT器件、MOSFET器件、BJT器件和Relay器件。
为便于描述本申请实施例的技术方案,本申请实施例以第四开关和第五开关均为MOSFET器件为例对该驱动装置的工作原理进行阐述。
具体而言,当导通第四开关,关断第五开关时,第一二极管是导通的,第一电容与匹配电路连接,从而增加了等效电容C eq。此时,自偏压电路是处于失效状态。隔一段时间之后,关断第四开关,经过第一时延时间之后,再导通第五开关,此时第四电源输出负向电流,该负向电流流经该隔离电路,从而使第一二极管在导通状态时储集的载流子电荷被该第四电源抽取,此时,自偏压电路开始慢慢地为所第一二极管提供负向偏压,以使得第一二极管关断。
更具体地说,第四开关控制第三电源的导通,则流经隔离电路的正向电流使该第一二极管导通,继而,使第一电容与匹配电路连接,从而增加等效电容值C eq,且自偏压电路 是处于失效状态。之后,再导通第五开关,第四电源输出反向电流,自偏压电路是处于工作状态,该反向电流流经该第一二极管,改变第一二极管的状态,即使第一二极管处于反向截止状态,使第一电容断开与匹配电路的连接,从而降低等效电容值C eq
应理解,处于导通状态下的第四电源能够将第一二极管处在导通状态时积聚的载流子电荷释放,在将载流子电荷释放完毕之后,自偏压电路开始慢慢地为第一二极管提供反向电压,从而使其处于反向截止状态。在此过程中,自偏压电路在第一二极管的两端逐渐产生足够的直流负偏压,实现第一二极管的可靠关断。
应理解,在不需要很大电压幅值的负向电源的情况下,本申请实施例可有效降低驱动电路的高压设计挑战,同时实现低功耗。
图9是本申请实施例提供的一种隔离电路的电路结构示意图。具体地,该隔离电路包括:
第一电感、第七电容以及第七二极管;
其中,第一电感的输出端与第七电容的输入端、第七二极管的输入端连接,第七二极管的输出端与第一二极管的正极连接,第七电容的输出端与地连接。
通过由第一电感和第七电容组成的低通滤波器抑制射频电源的高压大功率射频信号对驱动电路的干扰,本申请实施例可降低第一电感的感值,这有利于提升第一二极管的导通和关断速度,同时也可以减小第一电感的器件尺寸。
作为一种可能的实现方式,该隔离电路包括第二电感。
本申请实施例通过第二电感来实现对高压大功率射频信号对驱动电路的干扰,从而能够简化该驱动装置的驱动电路的隔离电路的设计。
本申请实施例还提供一种射频阻抗匹配器,该射频阻抗匹配器包括前述的驱动装置,该射频阻抗匹配器还包括至少一个第一电容与至少一个第一二极管,且至少一个驱动装置、至少一个第一电容与至少一个第一二极管之间一一对应,即,第一驱动装置、一个第一电容和一个第一二极管,该射频阻抗匹配器还包括信号检测与控制模块。
通过上述射频阻抗匹配器,本申请实施例能够实现将射频电源的输出功率耦合到负载中,还能够使射频电源以可靠、高效、安全的方式运行。
作为一种可能的实现方式,该信号检测与控制模块包括:
第一信号检测电路,与射频电源的输出端连接,用于检测射频电源的传输线路的信号;
第一信号处理电路,与第一信号检测电路连接,用于对第一信号检测电路的输出结果进行处理;
第二信号检测电路,与负载连接,用于检测负载的传输线路的信号;
第二信号处理电路,与第二信号检测电路连接,用于对第二信号检测电路的输出结果进行处理;
微控制器,与第一信号检测电路以及第二信号检测电路连接,用于对第一信号检测电路和第二信号检测电路的输出结果进行处理,微控制器与至少一个驱动装置连接,用于为至少一个驱动装置输出至少一个控制信号,控制信号用于控制第一二极管的导通与关断。
具体而言,信号检测电路是用于检测射频电源的射频功率传输线路的电压、电流、功率、阻抗、反射系数等信息。该信号检测电路可以由分立器件搭建,也可以为集成电路。该信号检测电路可以配置在射频阻抗匹配器的输入端,或输出端,或同时配置在输入端和 输出端。信号处理电路是用于对信号检测电路的输出结果进行必要的滤波处理,和模数转换。该信号处理电路的配置方式与信号检测电路的配置方式一一对应。微控制器是用于综合处理来自射频电源、信号检测/处理电路的指令、数据、及反馈信息,然后根据内置的阻抗调节算法得到可调电容的目标电容值,并向至少一个驱动装置下发相应的控制信号,从而将驱动装置内的电容值调整到目标状态。
图10是本申请提供的一种射频阻抗匹配器的电路结构示意框图。该射频阻抗匹配器包括:
第一信号检测电路,与射频电源连接,用于检测射频电源的传输线路的信号;
第一信号处理电路,与第一信号检测电路连接,用于对第一信号检测电路的输出结果进行处理;
第二信号检测电路,与负载连接,用于检测负载的传输线路的信号;
第二信号处理电路,与第二信号检测电路连接,用于对第二信号检测电路的输出结果进行处理;
微控制器,与第一信号检测电路以及第二信号检测电路连接,用于对第一信号检测电路和第二信号检测电路的输出结果进行处理,微控制器与至少一个驱动装置连接,用于为至少一个驱动装置输出至少一个控制信号,至少一个控制信号用于控制开关的导通与关断;
第一电容开关阵列与第二电容开关阵列,用于输出等效电容值。
应理解,关于第一电容开关阵列与第二电容开关阵列,可以参考前述的描述,在此不再赘述。
本申请实施例还提供一种射频等离子体系统,该射频等离子体系统包括上述的射频阻抗匹配器、射频电源和负载。应理解,该负载可以是前述的等离子体室,也可以是其他类型的负载,例如,本申请实施例不做具体限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种驱动装置,其特征在于,包括:
    驱动电路,所述驱动电路与第一二极管连接,所述驱动电路用于导通所述第一二极管,所述第一二极管与第一电容连接,所述第一二极管用于控制所述第一电容的工作状态,所述驱动电路包括有源器件;
    自偏压电路,所述自偏压电路的第一端口与所述第一二极管的正极连接,所述自偏压电路的第二端口与所述第一二极管的负极连接,所述自偏压电路用于通过无源器件向所述第一二极管的正极提供负向偏压。
  2. 根据权利要求1所述的驱动装置,其特征在于,所述自偏压电路包括:
    第二电容,第三电容,第二二极管,第三二极管和第一电阻,
    所述第二电容的第一端口与所述第一二极管的正极连接,所述第二电容的第二端口与所述第一电阻的第一端口和所述第三二极管的正极连接,
    所述第二二极管的正极与所述第一二极管的正极连接,所述第二二极管的负极与所述第一电阻的第二端口和所述第三电容的第一端口连接,
    所述第三二极管的负极与所述第一二极管的负极连接,所述第三电容的第二端口与所述第一二极管的负极连接。
  3. 根据权利要求1所述的驱动装置,其特征在于,所述自偏压电路包括:
    第四电容,第五电容,第六电容,第四二极管,第五二极管,第六二极管,第二电阻和第三电阻,
    所述第四电容的第一端口与所述第一二极管的正极连接,所述第四电容的第二端口与所述第五二极管的负极、所述第六二极管的正极以及所述第六电容的第一端口连接;
    所述第四二极管的正极与所述第一二极管的正极连接,所述第四二极管的负极与所述第五二极管的正极、所述第五电容的第一端口连接以及所述第六电容的第二端口连接,所述第五二极管与所述第六电容并联;
    所述第六二极管的负极与所述第三电阻的第一端口连接;
    所述第二电阻的第一端口与所述第五电容的第二端口连接,所述第二电阻的第二端口与所述第一二极管的负极连接,所述第三电阻的第二端口与所述第一二极管的负极连接。
  4. 根据权利要求1至3中任一项所述的驱动装置,其特征在于,所述驱动电路包括:
    第一电源与第一开关,所述第一电源与所述第一开关串联;
    第二电源、第二开关以及第三开关,所述第二电源、所述第二开关以及所述第三开关串联;
    隔离电路,所述隔离电路的输入端与所述第一开关的输出端、所述第二开关的输出端连接,所述隔离电路的输出端与所述第一二极管的正极连接。
  5. 根据权利要求1至3中任一项所述的驱动装置,其特征在于,所述驱动电路包括:
    第三电源与第四开关,所述第三电源与所述第四开关串联;
    第四电源与第五开关,所述第四电源与所述第五开关串联;
    隔离电路,所述隔离电路的输入端与所述第四开关的输出端、所述第五开关的输出端 连接,所述隔离电路的输出端与所述第一二极管的正极连接。
  6. 根据权利要求4或5所述的驱动装置,其特征在于,所述隔离电路包括:
    第一电感,第七电容以及第七二极管,
    所述第一电感的输入端与所述第四开关的输出端、所述第五开关的输出端连接,所述第一电感的输出端与所述第七电容的输入端、所述第七二极管的输入端连接,所述第七二极管的输出端与所述第一二极管的正极连接,所述第七电容的输出端与地连接。
  7. 根据权利要求4或5所述的驱动装置,其特征在于,所述隔离电路包括第二电感。
  8. 一种射频阻抗匹配器,其特征在于,所述射频阻抗匹配器包括至少一个权利要求1至7中任一项所述的驱动装置,
    所述射频阻抗匹配器还包括至少一个第一电容与至少一个第一二极管,所述至少一个驱动装置、所述至少一个第一电容与至少一个第一二极管一一对应,
    所述射频阻抗匹配器还包括信号检测与控制模块。
  9. 根据权利要求8所述的射频阻抗匹配器,其特征在于,所述信号检测与控制模块包括:
    第一信号检测电路,与所述射频电源的输出端连接,用于检测所述射频电源的传输线路的信号;
    第一信号处理电路,与所述第一信号检测电路连接,用于对所述第一信号检测电路的输出结果进行处理;
    第二信号检测电路,与负载连接,用于检测所述负载的传输线路的信号;
    第二信号处理电路,与所述第二信号检测电路连接,用于对所述第二信号检测电路的输出结果进行处理;
    微控制器,所述微控制器与所述第一信号检测电路和所述第二信号检测电路连接,所述微控制器用于对所述第一信号检测电路和所述第二信号检测电路的输出结果进行处理,所述微控制器与至少一个所述驱动装置连接,所述微控制器用于为所述至少一个驱动装置输出至少一个控制信号,所述控制信号用于控制所述第一二极管的导通与关断。
  10. 一种射频等离子体系统,其特征在于,所述射频等离子体系统包括权利要求8或9所述的射频阻抗匹配器,所述射频等离子体系统还包括射频电源与负载。
PCT/CN2021/121266 2021-09-28 2021-09-28 驱动装置、射频阻抗匹配器和射频等离子体系统 WO2023050047A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/121266 WO2023050047A1 (zh) 2021-09-28 2021-09-28 驱动装置、射频阻抗匹配器和射频等离子体系统
CN202180099429.9A CN117501535A (zh) 2021-09-28 2021-09-28 驱动装置、射频阻抗匹配器和射频等离子体系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121266 WO2023050047A1 (zh) 2021-09-28 2021-09-28 驱动装置、射频阻抗匹配器和射频等离子体系统

Publications (1)

Publication Number Publication Date
WO2023050047A1 true WO2023050047A1 (zh) 2023-04-06

Family

ID=85780975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121266 WO2023050047A1 (zh) 2021-09-28 2021-09-28 驱动装置、射频阻抗匹配器和射频等离子体系统

Country Status (2)

Country Link
CN (1) CN117501535A (zh)
WO (1) WO2023050047A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116539931A (zh) * 2023-06-16 2023-08-04 荣耀终端有限公司 射频器件测试连接装置和测试系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1340913A (zh) * 2000-08-17 2002-03-20 Eni技术公司 热转换等离子体调谐器的方法
CN101494946A (zh) * 2008-01-22 2009-07-29 北京北方微电子基地设备工艺研究中心有限责任公司 一种阻抗匹配器
US20200051788A1 (en) * 2015-06-29 2020-02-13 Reno Technologies, Inc. Impedance matching network and method
CN111819728A (zh) * 2018-01-11 2020-10-23 先进工程解决方案全球控股私人有限公司 低功率pin二极管驱动器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1340913A (zh) * 2000-08-17 2002-03-20 Eni技术公司 热转换等离子体调谐器的方法
CN101494946A (zh) * 2008-01-22 2009-07-29 北京北方微电子基地设备工艺研究中心有限责任公司 一种阻抗匹配器
US20200051788A1 (en) * 2015-06-29 2020-02-13 Reno Technologies, Inc. Impedance matching network and method
CN111819728A (zh) * 2018-01-11 2020-10-23 先进工程解决方案全球控股私人有限公司 低功率pin二极管驱动器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116539931A (zh) * 2023-06-16 2023-08-04 荣耀终端有限公司 射频器件测试连接装置和测试系统
CN116539931B (zh) * 2023-06-16 2023-10-20 荣耀终端有限公司 射频器件测试连接装置和测试系统

Also Published As

Publication number Publication date
CN117501535A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
US11211930B2 (en) Drive circuit and impedance matching device
JP5050062B2 (ja) インピーダンス整合特性を制御するために発生器の出力とプラズマ容器の入力との間に結合された制御されたインピーダンス・ネットワーク
US6794951B2 (en) Solid state RF power switching network
CN110266184A (zh) 零电压切换的混合开关电容器转换器
US9960681B2 (en) Multi-phase buck switching power supply
US20200212868A1 (en) Impedance Matching Device and Impedance Matching Method
CN101388302A (zh) 具有用于驱动机电开关的电源电压的电路系统
WO2023050047A1 (zh) 驱动装置、射频阻抗匹配器和射频等离子体系统
US11404247B2 (en) Ion current droop compensation
CN103812523A (zh) 切换电路及射频切换电路及其切换方法
CN108923641A (zh) 一种基于dsrd的高压快脉冲电源
Liu et al. Wideband ZVS half-bridge circuit for piezoelectric transformers with small inductance
CN103595385A (zh) 一种iii-v族mosfet器件的射频开关电路
CN109792146B (zh) 电源装置
CN101394174A (zh) 基于增强型phemt的单刀单掷开关
JP2023521233A (ja) インピーダンス整合回路およびプラズマ給電システムおよび動作させるための方法
CN110268617A (zh) 具有全桥控制的dc/dc转换器
US20200244101A1 (en) Reservoir recovery energy flux coupling cell, unit, systems, and method
KR20180121528A (ko) 전기부하를 구동하는 회로 및 방법
CN1288842C (zh) 高频信号开关
US11967484B2 (en) Ion current droop compensation
CN108880222B (zh) 一种开关元件的保护电路及推挽输出电路
CN103765517A (zh) 电源电路及极性反转保护电路
US20230308020A1 (en) Boost converter
CN105743351A (zh) 一种延长掉电保持时间的开关电源电路及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958646

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099429.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE