WO2023048502A1 - 심전도를 기초로 갑상선 기능 장애를 진단하는 방법, 프로그램 및 장치 - Google Patents

심전도를 기초로 갑상선 기능 장애를 진단하는 방법, 프로그램 및 장치 Download PDF

Info

Publication number
WO2023048502A1
WO2023048502A1 PCT/KR2022/014258 KR2022014258W WO2023048502A1 WO 2023048502 A1 WO2023048502 A1 WO 2023048502A1 KR 2022014258 W KR2022014258 W KR 2022014258W WO 2023048502 A1 WO2023048502 A1 WO 2023048502A1
Authority
WO
WIPO (PCT)
Prior art keywords
neural network
network model
electrocardiogram
thyroid
electrocardiogram data
Prior art date
Application number
PCT/KR2022/014258
Other languages
English (en)
French (fr)
Inventor
권준명
Original Assignee
주식회사 메디컬에이아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220118440A external-priority patent/KR20230044125A/ko
Application filed by 주식회사 메디컬에이아이 filed Critical 주식회사 메디컬에이아이
Priority to CN202280062075.5A priority Critical patent/CN117940060A/zh
Publication of WO2023048502A1 publication Critical patent/WO2023048502A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present disclosure relates to a method for diagnosing thyroid dysfunction, and more specifically, to a method for diagnosing thyroid dysfunction using a neural network model based on an electrocardiogram.
  • An electrocardiogram is a signal that can determine the presence or absence of a disease by measuring electrical signals generated from the heart to check for abnormalities in the conduction system from the heart to electrodes.
  • the heartbeat which is the cause of the electrocardiogram, starts at the sinus node located in the right atrium. activate the ventricles
  • the septum is fastest and the thin-walled right ventricle activates before the thick-walled left ventricle.
  • the depolarization wave transmitted to the Purkinje fiber spreads from the endocardium to the epicardium like a wavefront in the myocardium, causing ventricular contraction.
  • electrical impulses are conducted through the heart, causing the heart to contract about 60 to 100 times per minute. Each contraction is expressed as one heart rate.
  • Such an electrocardiogram can be detected through a bipolar lead that records the potential difference between two parts and a unipolar lead that records the potential of the site where the electrode is attached.
  • a bipolar lead that records the potential difference between two parts
  • a unipolar lead that records the potential of the site where the electrode is attached.
  • the electrical activity phase of the heart is largely divided into atrial depolarization, ventricular depolarization, and ventricular repolarization phases, and each of these phases is reflected in the form of several waves called P, Q, R, S, and T waves, as shown in FIG.
  • electrocardiograms are measured with expensive measuring equipment and used as an auxiliary tool for measuring the patient's health condition.
  • electrocardiogram measuring equipment displays only the measurement results, and the diagnosis is completely left to the doctor.
  • the present disclosure has been made in response to the above-described background art, and a method for diagnosing thyroid dysfunction according to an embodiment of the present disclosure uses a neural network model to measure thyroid dysfunction for a target of electrocardiogram data based on electrocardiogram data. It is an object to provide a method for estimating the probability of occurrence.
  • Diagnosis of thyroid dysfunction based on electrocardiogram performed by a computing device including at least one processor, according to an embodiment of the present disclosure for realizing the above object.
  • a method comprising: obtaining electrocardiogram data; and estimating, based on the electrocardiogram data, an onset probability of thyroid dysfunction for a target of measuring the electrocardiogram data, using a pretrained neural network model, wherein the neural network model includes changes in thyroid function and electrocardiogram characteristics. It is possible to provide a method that is learned based on the correlation between the
  • the neural network model may include a first sub-neural network model learned based on electrocardiogram data measured with 12 multi-leads.
  • the neural network model may further include a second sub-neural network model learned based on at least one of six limb leads or six anterior chest leads.
  • the neural network model may further include a third sub-neural network model learned based on electrocardiogram data measured with a single lead.
  • the neural network model includes a neural network composed of a plurality of residual blocks, and the neural network composed of the residual blocks receives the electrocardiogram data and develops overt hyperthyroidism.
  • a method for outputting probabilities can be provided.
  • the overt hyperthyroidism may provide a method in which the level of urithyroxine is higher than a predetermined reference range or the thyroid stimulating hormone level is lower than the reference range.
  • the neural network model includes a neural network corresponding to each of a plurality of leads of electrocardiogram data, and outputs of the neural networks are concatenated into one to derive the onset probability of thyroid dysfunction.
  • the correlation between thyroid function and changes in electrocardiographic characteristics comprises at least one of: the frequency of tachycardia, the length of the QT interval, the direction of deviation of the P, R, and T waves, or the QRS duration.
  • a method based on electrocardiogram characteristics may be provided.
  • a method may be provided in which the probability of developing the thyroid dysfunction increases as the frequency of the tachycardia increases.
  • a method may be provided in which the probability of developing thyroid dysfunction increases as the length of the QT interval increases.
  • a method may be provided in which the occurrence probability of the thyroid dysfunction increases as the deviation directions of the P, R, and T waves go to the right.
  • a method may be provided in which the occurrence probability of the thyroid dysfunction increases as the QRS duration becomes shorter.
  • the step of estimating the onset probability of thyroid dysfunction for a subject to measure the electrocardiogram data based on the electrocardiogram data using a pretrained neural network model, the age and the electrocardiogram data together with the neural network model It is possible to provide a method that includes; inputting biological data including at least one of the sexes and estimating a probability of developing thyroid dysfunction for a target subject to measure the electrocardiogram data.
  • a computer program stored on a computer readable storage medium when the computer program is executed on one or more processors, performs operations for diagnosing thyroid dysfunction based on an electrocardiogram. and the operations include obtaining electrocardiogram data; and estimating, based on the electrocardiogram data, an onset probability of thyroid dysfunction for a subject to measure the electrocardiogram data, using a pretrained neural network model, wherein the neural network model determines the relationship between thyroid function and changes in electrocardiogram characteristics. It is possible to provide a computer program, which is learned based on the correlation.
  • a computing device for diagnosing thyroid dysfunction based on an electrocardiogram comprising: a processor including at least one core; and a memory including program codes executable by the processor, wherein the processor acquires electrocardiogram data according to execution of the program code, and uses a pre-trained neural network model, Based on the electrocardiogram data, a probability of occurrence of thyroid dysfunction is estimated for a target subject to measure the electrocardiogram data, and the neural network model is learned based on a correlation between changes in thyroid function and electrocardiogram characteristics.
  • a method for diagnosing thyroid dysfunction may provide a method of estimating the onset probability of thyroid dysfunction for a target of electrocardiogram measurement based on electrocardiogram data using a neural network model.
  • FIG. 1 is a diagram showing an electrocardiogram signal according to the present disclosure.
  • FIG. 2 is a block diagram of a computing device according to one embodiment of the present disclosure.
  • FIG. 3 is a flowchart illustrating a method of diagnosing thyroid dysfunction based on an electrocardiogram according to an embodiment of the present disclosure.
  • FIG. 4 it is a diagram showing the structure of a neural network model according to an embodiment of the present disclosure.
  • FIG. 5 is a diagram showing a verification research process of a neural network model according to an embodiment of the present disclosure.
  • FIG. 6 is a diagram showing performance test results of a neural network model according to an embodiment of the present disclosure.
  • FIG. 7 is a diagram showing electrocardiogram analysis results of subgroups classified by gender and age according to an embodiment of the present disclosure.
  • x employs a or b should be understood to mean one of the natural inclusive substitutions.
  • x employs a or b means that x employs a, x employs b, or x employs a and a. It can be interpreted as any one of the cases in which both of b are used.
  • nth (n is a natural number) used in the present disclosure can be understood as an expression used to distinguish the components of the present disclosure from each other according to a predetermined criterion such as a functional point of view, a structural point of view, or explanatory convenience. there is.
  • components performing different functional roles in the present disclosure may be classified as first components or second components.
  • components that are substantially the same within the technical spirit of the present disclosure but should be distinguished for convenience of description may also be classified as first components or second components.
  • acquisition used in the present disclosure is understood to mean not only receiving data through a wired/wireless communication network with an external device or system, but also generating data in an on-device form. It can be.
  • module refers to a computer-related entity, firmware, software or part thereof, hardware or part thereof , It can be understood as a term referring to an independent functional unit that processes computing resources, such as a combination of software and hardware.
  • a “module” or “unit” may be a unit composed of a single element or a unit expressed as a combination or set of a plurality of elements.
  • a “module” or “unit” is a hardware element or set thereof of a computing device, an application program that performs a specific function of software, a process implemented through software execution, or a program. It may refer to a set of instructions for execution.
  • a “module” or “unit” may refer to a computing device constituting a system or an application executed in the computing device.
  • the concept of “module” or “unit” may be defined in various ways within a range understandable by those skilled in the art based on the content of the present disclosure.
  • model used in this disclosure refers to a system implemented using mathematical concepts and language to solve a specific problem, a set of software units to solve a specific problem, or a process to solve a specific problem. It can be understood as an abstract model for a process.
  • a neural network “model” may refer to an overall system implemented as a neural network having problem-solving capabilities through learning. At this time, the neural network may have problem solving ability by optimizing parameters connecting nodes or neurons through learning.
  • a neural network "model” may include a single neural network or may include a neural network set in which a plurality of neural networks are combined.
  • Data used in the present disclosure may include “image”, signals, and the like.
  • image used in this disclosure may refer to multidimensional data composed of discrete image elements.
  • image can be understood as a term referring to a digital representation of an object that is visible to the human eye.
  • image may refer to multidimensional data composed of elements corresponding to pixels in a 2D image.
  • Image may refer to multidimensional data composed of elements corresponding to voxels in a 3D image.
  • block used in the present disclosure may be understood as a set of components classified based on various criteria such as type and function. Accordingly, a configuration classified as one “block” may be variously changed according to a criterion.
  • a neural network “block” may be understood as a neural network set comprising at least one neural network. In this case, it may be assumed that the neural networks included in the neural network "block” perform the same specific operation. Explanations of the foregoing terms are intended to facilitate understanding of the present disclosure. Therefore, it should be noted that, when the above terms are not explicitly described as matters limiting the content of the present disclosure, the content of the present disclosure is not used in the sense of limiting the technical idea.
  • FIG. 2 is a block diagram of a computing device according to an embodiment of the present disclosure.
  • the computing device 100 may be a hardware device or part of a hardware device that performs comprehensive processing and calculation of data, or may be a software-based computing environment connected through a communication network.
  • the computing device 100 may be a server that performs intensive data processing functions and shares resources, or may be a client that shares resources through interaction with the server.
  • the computing device 100 may be a cloud system in which a plurality of servers and clients interact to comprehensively process data. Since the above description is only one example related to the type of the computing device 100, the type of the computing device 100 may be configured in various ways within a range understandable by those skilled in the art based on the contents of the present disclosure.
  • a computing device 100 may include a processor 110, a memory 120, and a network unit 130. there is.
  • the computing device 100 may include other configurations for implementing a computing environment. Also, only some of the components disclosed above may be included in the computing device 100 .
  • the processor 110 may be understood as a structural unit including hardware and/or software for performing computing operations.
  • the processor 110 may read a computer program and perform data processing for machine learning.
  • the processor 110 may process input data processing for machine learning, feature extraction for machine learning, calculation of an error based on backpropagation, and the like.
  • the processor 110 for performing such data processing includes a central processing unit (CPU), a general purpose graphics processing unit (GPGPU), a tensor processing unit (TPU), and on-demand It may include a semiconductor (application specific integrated circuit (ASICc)) or a field programmable gate array (FPGA). Since the above-described type of processor 110 is just one example, the type of processor 110 may be variously configured within a range understandable by those skilled in the art based on the content of the present disclosure.
  • the processor 110 may train a neural network model for diagnosing thyroid dysfunction based on medical data.
  • the processor 110 may train a neural network model to estimate the onset of hyperthyroidism, the degree of progression, and the like, based on electrocardiogram data and biological data including gender, age, and the like.
  • the processor 110 may input electrocardiogram data and various kinds of biological data to the neural network model and train the neural network model so that the neural network model detects changes in the electrocardiogram according to the onset of hyperthyroidism.
  • the neural network model may perform learning based on the correlation between thyroid function and electrocardiogram change. Correlation between thyroid function and electrocardiogram changes can be understood as information on the relationship between changes in thyroid function and morphological changes in electrocardiogram signals.
  • the processor 110 may perform an operation representing at least one neural network block included in the neural network model during the learning process of the neural network model.
  • the processor 110 may estimate whether thyroid dysfunction has occurred based on medical data using the neural network model generated through the above-described learning process.
  • the processor 110 inputs electrocardiogram data and biological data including age and sex information into the neural network model learned through the above process to generate inference data representing the result of estimating the probability of developing thyroid dysfunction in humans.
  • the processor 110 may input electrocardiogram data into a neural network model that has been trained, and may predict whether hyperthyroidism occurs or not, the degree of progression, and the like.
  • the processor 110 can accurately predict the onset of thyroid dysfunction by effectively identifying subtle electrocardiogram changes that are difficult for humans to interpret through a neural network model for diagnosing thyroid dysfunction.
  • the type of medical data and the output of the neural network model may be configured in various ways within a range understandable by those skilled in the art based on the contents of the present disclosure.
  • the memory 120 may be understood as a unit including hardware and/or software for storing and managing data processed by the computing device 100 . That is, the memory 120 may store any type of data generated or determined by the processor 110 and any type of data received by the network unit 130 .
  • the memory 120 may include a flash memory type, a hard disk type, a multimedia card micro type, a card type memory, and random access memory (RAM). ), SRAM (static random access memory), ROM (read-only memory), EEPROM (electrically erasable programmable read-only memory), PROM (programmable read-only memory), magnetic memory , a magnetic disk, and an optical disk may include at least one type of storage medium.
  • the memory 120 may include a database system that controls and manages data in a predetermined system. Since the above-described type of memory 120 is just one example, the type of memory 120 may be configured in various ways within a range understandable by those skilled in the art based on the contents of the present disclosure.
  • the memory 120 may organize and manage data necessary for the processor 110 to perform calculations, data combinations, program codes executable by the processor 110, and the like.
  • the memory 120 may store medical data received through the network unit 130 to be described later.
  • the memory 120 includes program codes for operating the neural network model to perform learning by receiving medical data, program codes for operating the neural network model to perform inference according to the purpose of use of the computing device 100 by receiving medical data, and Processing data generated as the program code is executed may be stored.
  • the network unit 130 may be understood as a unit that transmits and receives data through any type of known wired/wireless communication system.
  • the network unit 130 may include a local area network (LAN), wideband code division multiple access (WCDMA), long term evolution (LTE), and wireless broadband internet), 5th generation mobile communication (5g), ultra wide-band, zigbee, radio frequency (RF) communication, wireless LAN, wireless fidelity ), near field communication (NFC), or data transmission/reception may be performed using a wired/wireless communication system such as Bluetooth. Since the above-described communication systems are only examples, a wired/wireless communication system for data transmission and reception of the network unit 130 may be applied in various ways other than the above-described examples.
  • the network unit 130 may receive data necessary for the processor 110 to perform an operation through wired/wireless communication with an arbitrary system or an arbitrary client.
  • the network unit 130 may transmit data generated through the operation of the processor 110 through wired/wireless communication with an arbitrary system or an arbitrary client.
  • the network unit 130 may receive medical data through communication with a database in a hospital environment, a cloud server that performs tasks such as standardization of medical data, or a computing device.
  • the network unit 130 may transmit output data of the neural network model, intermediate data derived from the calculation process of the processor 110, and processed data through communication with the aforementioned database, server, or computing device.
  • FIG. 3 is a flowchart illustrating a method of diagnosing thyroid dysfunction based on an electrocardiogram according to an embodiment of the present disclosure.
  • a method of diagnosing thyroid dysfunction based on an electrocardiogram includes obtaining electrocardiogram data (S100). can be performed
  • ECG data measured through an ECG measuring device may be directly acquired or acquired through network communication from the ECG measuring device.
  • a step of estimating the onset probability of thyroid dysfunction for a target subject to measure the ECG data based on the ECG data using the pretrained neural network model (Ss110) may be performed.
  • the estimating step (S110) may include the step of estimating the probability of developing thyroid dysfunction for the target of measurement of the electrocardiogram data by inputting the biological data including at least one of age and gender together with the electrocardiogram data into the neural network model.
  • the neural network model may be learned based on a correlation between changes in thyroid function and electrocardiogram characteristics.
  • the neural network model may be learned based on a correlation between changes in characteristics such as thyroid function and electrocardiogram, gender, and age.
  • the neural network model may be learned based on the correlation between the onset and progress of hyperthyroidism and changes in electrocardiogram and other characteristics. Neural network models can be used to diagnose not only hyperthyroidism but also hypothyroidism and various thyroid dysfunctions.
  • the neural network model may be learned based on an electrocardiogram measured with 12 leads obtained from electrodes of an electrocardiogram measuring device connected to the human body. For example, an electrocardiogram may be measured with 12 leads of 10 seconds in length and stored as 500 points per second.
  • the neural network model may be learned based on partial information extracted from only 6 limb lead ECGs and a single lead I ECG among 12 lead ECGs.
  • FIG. 4 it is a diagram showing the structure of a neural network model according to an embodiment of the present disclosure.
  • a neural network model may include a neural network composed of a plurality of residual blocks.
  • a neural network composed of residual blocks may be used to output an onset probability of overt hyperthyroidism by receiving electrocardiogram data.
  • overt hyperthyroidism may be diagnosed as occurring when the level of vitreous thyroxine is higher than a predetermined reference range or the thyroid stimulating hormone level is lower than the reference range.
  • the neural network model may have a structure of a resnet neural network using 6 residual blocks.
  • Each residual block may include a convolutional neural network (CNN), batch normalization, a rectified linear unit (hereinafter, ReLU) function, and a dropout layer.
  • the convolutional neural network is 1-dimensional and the size of the filter can be set to 21.
  • the input length may be halved whenever three residual blocks are passed among a total of six residual blocks.
  • Different neural networks may be applied to each lead of the ECG.
  • average pooling may be applied in units of channels.
  • the output of the neural networks can be concatenated to derive the probability of developing thyroid dysfunction.
  • the neural network model may include a neural network corresponding to each of a plurality of leads of electrocardiogram data. That is, the neural network model may include individual neural networks into which electrocardiograms measured by individual leads are respectively input.
  • the neural network model may include a first sub-neural network model learned based on electrocardiogram data measured with 12 multi-leads.
  • the neural network model may further include a second sub-neural network model learned based on at least one of six limb leads or six anterior chest leads.
  • the neural network model may further include a third sub-neural network model learned based on electrocardiogram data measured with a single lead.
  • the neural network model may selectively use at least one of a first sub neural network model, a second sub neural network model, and a third sub neural network model according to the number of leads. Therefore, the neural network model can effectively predict the onset of thyroid dysfunction regardless of the number of leads.
  • the neural network model uses all of the first sub-neural network model, the second sub-neural network model, and the third sub-neural network model and combines the outputs of each sub-model to determine the onset probability of thyroid dysfunction. can also be output. Through this combination, neural network models can increase the accuracy of predicting the onset of thyroid dysfunction.
  • the performance of the neural network model was verified by comparing the probability calculated by the model with the presence or absence of hyperthyroidism in the internal/external verification data set. Verification was performed with reference to the area under the receiver operating characteristic curve (hereinafter, AUC). The cutoff point was identified using the youden j statistic in the training data set. Cutoff points were applied to calculate sensitivity, specificity, positive predictive value, and negative predictive value in the internal/external validation data set. The 95% confidence interval of AUC was calculated using sun&su's optimization of the de-long method.
  • a sensitivity analysis was conducted by making subgroups according to age and gender. Gender was classified as male and female, and age was classified into less than 40 years old, 40 to less than 50 years of age, 50 to less than 60 years of age, 60 to less than 70 years of age, and 70 years of age or older.
  • the external validation data set was extracted from patients who received a normal diagnosis in the first thyroid function test (TFT) and underwent subsequent thyroid function tests.
  • the time interval between the first thyroid function test and the subsequent thyroid function test is 4 weeks or more.
  • the cutoff point was determined using the Juden J statistic on the training data set. We used the Kaplan-Meier method to analyze the results over 36 months.
  • FIG. 5 is a diagram showing a verification research process of a neural network model according to an embodiment of the present disclosure.
  • the subjects of the verification study of the neural network model are 113,215 hospital A patients and 33,485 hospital B patients. 21 hospital A patients and 7 hospital B patients with missing clinical information or ECG data were excluded. A total of 2164 patients with hyperthyroidism were included.
  • 139,521 ECG data measured from 90,554 patients in Hospital A were used.
  • Internal validation used 34,810 ECG data from 518 patients in Hospital A.
  • External verification 48,684 ECG data from 33,478 patients in Hospital B.
  • the alternative hypothesis for p marked with ⁇ in Table 1 is that there is a difference between hyperthyroidism and overt hyperthyroidism.
  • The alternative hypothesis for the indicated p values is that there is a difference between hospital A (model development and internal validation data group) and hospital B (external validation group) for each variable. Gender, age, and incidence of hyperthyroidism showed statistically significant differences between hospitals. Patients with hyperthyroidism had more tachycardia and longer QT interval. Patients with hyperthyroidism showed deflection of the P-wave, R-wave, and T-wave axes to the right, and the QRS duration was short.
  • the above-described correlation between changes in thyroid function and electrocardiogram characteristics includes at least one of the frequency of tachycardia, the length of the QT interval, the direction of deviation of the P, R, and T waves, or the QRS duration. It can be based on the characteristics of the electrocardiogram.
  • the probability of developing thyroid dysfunction estimated by the neural network model may increase as the frequency of tachycardia increases.
  • the probability of developing thyroid dysfunction may increase as the length of the QT interval increases.
  • the probability of occurrence of thyroid dysfunction estimated by the neural network model may increase as the deviation directions of the P, R, and T waves move toward the right.
  • the probability of developing thyroid dysfunction estimated by the neural network model may increase as the QRS duration is shortened.
  • FIG. 6 is a diagram showing performance test results of a neural network model according to an embodiment of the present disclosure.
  • AUC is the area under the receiver operating characteristic curve of the neural network model
  • DLM is the neural network model
  • ECG is the electrocardiogram
  • NPV is the negative predictive value
  • PPV is the positive predictive value
  • SEN stands for sensitivity
  • SPE stands for specificity.
  • the AUCs of the neural network model using 12-lead ECG were 0.918 (0.909-0.927) and 0.897 (0.879-0.916), respectively.
  • Sensitivity analysis confirmed the robustness of the neural network model according to gender and age. Those identified by the neural network model as high-risk patients showed a significant change in the incidence of hyperthyroidism (p ⁇ 0.01) compared to those identified as low-risk patients.
  • the performance of the neural network model using 6-lead ECG and single-lead ECG can also be seen. Referring to [Table 2], the performance of all models in the sensitivity analysis for gender and age showed AUC values of 0.830 or higher.
  • FIG. 7 is a diagram showing electrocardiogram analysis results of subgroups classified by gender and age according to an embodiment of the present disclosure.
  • subgroup analysis is performed on 6,762 patients who were found to be normal in a thyroid function test after follow-up. The analysis was performed using the thyroid function test results. Of these, 24 patients developed hyperthyroidism. Subjects for subgroup analysis were divided into 4,749 high-risk and 2,013 low-risk groups according to the probability of developing hyperthyroidism output by the neural network model. It was confirmed that the high-risk group had a significantly higher risk of hyperthyroidism than the low-risk group (0.48% vs. 0.05%, p ⁇ 0.01).
  • thyroid function is closely related to the cardiovascular system and can affect cardiac function, vascular resistance, cardiovascular autonomic control function, as well as the cardiovascular system.
  • ventricular contraction (inotropy) and heart rate (chronotropy) with enhanced relaxation function due to thyroid hormone-mediated changes can affect the improvement of cardiac function. Signs and symptoms of thyroid dysfunction can be judged as a result of thyroid hormones affecting the heart and cardiovascular system.
  • Thyroid dysfunction can be associated with increased cardiovascular disease morbidity and mortality.
  • untreated hyperthyroidism was associated with a higher risk of cardiovascular disease than treated patients. Cardiovascular events increased with the duration of decreased thyroid-stimulating hormone levels in both treated and untreated cases of hyperthyroidism.
  • the method for diagnosing thyroid dysfunction uses a neural network model, based on the electrocardiogram data, to measure the thyroid function of the target of electrocardiogram data. It was possible to estimate the probability of occurrence of the disorder.
  • the method for diagnosing thyroid dysfunction has an effect of diagnosing hyperthyroidism using a neural network model based on information such as electrocardiogram, gender, and age.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

본 개시의 일 실시예에 따라 컴퓨팅 장치에 의해 수행되는, 적어도 하나의 프로세서를 포함하는 컴퓨팅 장치에 의해 수행되는, 심전도를 기초로 갑상선 기능 장애(dysfunction)를 진단하는 방법으로서, 심전도 데이터를 획득하는 단계; 및 사전 학습된 신경망 모델을 사용하여, 상기 심전도 데이터를 기초로 상기 심전도 데이터의 측정 대상에 대한 갑상선 기능 장애의 발병 확률을 추정하는 단계를 포함하고, 상기 신경망 모델은, 갑상선 기능과 심전도 특성의 변화 간의 상관관계를 기초로 학습된 것인, 방법을 제공할 수 있다.

Description

심전도를 기초로 갑상선 기능 장애를 진단하는 방법, 프로그램 및 장치
본 개시의 내용은 갑상선 기능 장애의 진단 방법에 관한 것으로, 구체적으로 심전도를 기초로 신경망 모델을 이용하여 갑상선 기능 장애를 진단하는 방법에 관한 것이다.
심전도(ECG: electrocardiogram)는 심장에서 발생하는 전기적인 신호를 측정하여 심장에서부터 전극까지의 전도계통의 이상 유무를 확인하여 질환유무를 판별할 수 있게 하는 신호이다.
심전도의 발생 원인인 심장박동은 우심방(right atrium)에 자리잡은 동방결절(sinus node)에서 시작된 임펄스가 먼저 우심방과 좌심방(left atrium)을 탈분극(deploarization)시키며 방실결절 (atrioventricular node)에서 잠시 지체된 후 심실을 활성화시킨다.
중격(septum)이 가장 빠르고 벽이 얇은 우심실은 벽이 두꺼운 좌심실보다 먼저 활성화된다. 푸르키녜 섬유(purkinje fiber)까지 전달된 탈분극 파는 심근에서 파도(wavefront)와 같이 심장내막에서 외심막으로 퍼져나가면서 심실수축을 일으키게 된다. 정상적으로 전기적 자극이 심장을 통하여 전도되기 때문에 심장은 분당 약 60~100회 수축된다. 각 수축은 1회 심박동수로 나타낸다.
이와 같은 심전도는 두 부위 간의 전위차를 기록하는 양극 유도(bipolar lead)와 전극을 부착시킨 부위의 전위를 기록하는 단극 유도(unipolar lead)를 통해 검출할 수 있으며, 심전도를 측정하는 방법에는 양극 유도인 표준 유도(standard limb lead), 단극 유도인 사지 유도(unipolar limb lead), 단극 유도인 흉부 유도(precordial lead) 등이 있다.
심장의 전기적 활성단계는 크게 심방 탈분극, 심실 탈분극, 심실 재분극 시기로 나뉘며, 이러한 각 단계는 도 1에 나타난 바와 같이 P, Q, R, S, T파라고 불리는 몇 개의 파의 형태로 반영된다.
이러한 파들은 표준 형태를 갖추어야 심장의 전기적 활성이 정상이라고 볼 수 있다. 표준 형태인지 아닌지를 파악하기 위해서는 각 파가 유지되는 시간, 각 파끼리의 간격(interval), 각 파의 진폭, 첨도 등의 특징들이 정상 범위에 속하는지를 검사하여야 한다.
이러한 심전도는 고가의 측정 장비로 측정되어 환자의 건강상태를 측정하기 위한 보조 도구로 사용되며, 일반적으로 심전도 측정 장비는 측정결과만을 표시해주며 진단은 온전히 의사의 몫이었다.
현재, 의사의 의존도를 낮추기 위해 심전도를 기초로 인공지능을 이용하여 신속 정확하게 질환을 진단하는 연구가 계속되고 있다. 또한, 웨어러블, 라이프스타일 심전도 측정 기기의 발달과 함께 심전도를 기초로 심장 질환뿐만 아닌 다른 여러 질환을 진단 및 모니터링할 수 있는 가능성이 대두되고 있다.
특히 갑상선 기능 관련 질환의 경우 일상적으로 검진이 이뤄지지 않고, 증상도 뚜렷하지 않아서 조기 발견이 어려운데, 심전도의 미세 변화를 감지하여 갑상선 기능 장애를 조기 진단하는 가능성이 대두되고 있다.
본 개시는 전술한 배경기술에 대응하여 안출된 것으로, 본 개시의 일 실시예에 따른 갑상선 기능 장애 진단 방법은 신경망 모델을 사용하여, 심전도 데이터를 기초로 심전도 데이터의 측정 대상에 대한 갑상선 기능 장애의 발병 확률을 추정하는 방법을 제공하는 것을 목적으로 한다.
다만, 본 개시에서 해결하고자 하는 과제는 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재를 근거로 명확하게 이해될 수 있을 것이다.
전술한 바와 같은 과제를 실현하기 위한 본 개시의 일 실시예에 따라 컴퓨팅 장치에 의해 수행되는, 적어도 하나의 프로세서를 포함하는 컴퓨팅 장치에 의해 수행되는, 심전도를 기초로 갑상선 기능 장애(dysfunction)를 진단하는 방법으로서, 심전도 데이터를 획득하는 단계; 및 사전 학습된 신경망 모델을 사용하여, 상기 심전도 데이터를 기초로 상기 심전도 데이터의 측정 대상에 대한 갑상선 기능 장애의 발병 확률을 추정하는 단계를 포함하고, 상기 신경망 모델은, 갑상선 기능과 심전도 특성의 변화 간의 상관관계를 기초로 학습된 것인, 방법을 제공할 수 있다.
대안적으로, 상기 신경망 모델은, 12개의 다중 리드(lead)로 측정되는 심전도 데이터를 기초로 학습된 제1 서브 신경망 모델을 포함하는, 방법을 제공할 수 있다.
대안적으로, 상기 신경망 모델은, 6개의 림브(limb) 리드, 혹은 6개의 전흉부 리드 중 적어도 하나를 기초로 학습된 제2 서브 신경망 모델을 더 포함하는, 방법을 제공할 수 있다.
대안적으로, 상기 신경망 모델은, 단일 리드로 측정되는 심전도 데이터를 기초로 학습된 제3 서브 신경망 모델을 더 포함하는, 방법을 제공할 수 있다.
대안적으로, 상기 신경망 모델은, 복수의 레지듀얼 블록들(residual blocks)로 구성되는 신경망을 포함하고, 상기 레지듀얼 블록들로 구성되는 신경망은, 상기 심전도 데이터를 입력 받아 현성 갑상선 기능 항진증의 발병 확률을 출력하는, 방법을 제공할 수 있다.
대안적으로, 상기 현성 갑상선 기능 항진증은, 유리티록신 수치가 사전 결정된 기준 범위보다 높거나, 갑상선 자극 호르몬 수치가 기준 범위보다 낮은 경우인, 방법을 제공할 수 있다.
대안적으로, 상기 신경망 모델은, 심전도 데이터의 복수의 리드들 각각에 대응되는 신경망을 포함하고, 상기 신경망들의 출력은, 갑상선 기능 장애의 발병 확률을 도출하기 위해 하나로 연결(concatenation)되는, 방법을 제공할 수 있다.
대안적으로, 갑상선 기능과 심전도 특성의 변화 간의 상관관계는, 빈맥의 빈도, QT 간격(interval)의 길이, P파, R파 및 T파의 편위 방향, 또는 QRS 지속시간 중 적어도 하나를 포함하는 심전도 특성에 기반하는, 방법을 제공할 수 있다.
대안적으로, 상기 갑상선 기능 장애의 발병 확률은, 상기 빈맥의 빈도가 많을수록 높아지는, 방법을 제공할 수 있다.
대안적으로, 상기 갑상선 기능 장애의 발병 확률은, 상기 QT 간격의 길이가 길수록 높아지는, 방법을 제공할 수 있다.
대안적으로, 상기 갑상선 기능 장애의 발병 확률은, 상기 P파, R파 및 T파의 편위 방향이 우측을 향할수록 높아지는, 방법을 제공할 수 있다.
대안적으로, 상기 갑상선 기능 장애의 발병 확률은, 상기 QRS 지속시간이 짧을수록 높아지는, 방법을 제공할 수 있다.
대안적으로, 사전 학습된 신경망 모델을 사용하여, 상기 심전도 데이터를 기초로 상기 심전도 데이터의 측정 대상에 대한 갑상선 기능 장애의 발병 확률을 추정하는 단계는, 상기 신경망 모델로 상기 심전도 데이터와 함께 나이 및 성별 중 적어도 하나를 포함하는 생물학적 데이터를 입력하여, 상기 심전도 데이터의 측정 대상에 대한 갑상선 기능 장애의 발병 확률을 추정하는 단계;를 포함하는, 방법을 제공할 수 있다.
본 개시의 다른 실시예에 따른 컴퓨터 판독가능 저장 매체 저장된 컴퓨터 프로그램(program)으로서, 상기 컴퓨터 프로그램은 하나 이상의 프로세서(processor)에서 실행되는 경우, 심전도를 기초로 하는 갑상선 기능 장애 진단을 위한 동작들을 수행하도록 하며, 상기 동작들은, 심전도 데이터를 획득하는 동작; 및 사전 학습된 신경망 모델을 사용하여, 상기 심전도 데이터를 기초로 상기 심전도 데이터의 측정 대상에 대한 갑상선 기능 장애의 발병 확률을 추정하는 동작을 포함하고, 상기 신경망 모델은 갑상선 기능과 심전도 특성의 변화 간의 상관관계를 기초로 학습된 것인, 컴퓨터 프로그램을 제공할 수 있다.
본 개시의 또 다른 실시예에 따른 심전도를 기초로 하는 갑상선 기능 장애 진단을 위한 컴퓨팅 장치로서, 적어도 하나의 코어(core)를 포함하는 프로세서(processor); 및 상기 프로세서에서 실행 가능한 프로그램 코드(code)들을 포함하는 메모리(memory);를 포함하고, 상기 프로세서는, 상기 프로그램 코드의 실행에 따라, 심전도 데이터를 획득하고, 사전 학습된 신경망 모델을 사용하여, 상기 심전도 데이터를 기초로 상기 심전도 데이터의 측정 대상에 대한 갑상선 기능 장애의 발병 확률을 추정하며, 상기 신경망 모델은 갑상선 기능과 심전도 특성의 변화 간의 상관관계를 기초로 학습된 것인, 장치를 제공할 수 있다.
본 개시의 일 실시예에 따른 갑상선 기능 장애 진단 방법은 신경망 모델을 사용하여, 심전도 데이터를 기초로 심전도 데이터의 측정 대상에 대한 갑상선 기능 장애의 발병 확률을 추정하는 방법을 제공할 수 있다.
도 1은 본 개시에 따른 심전도 신호를 보여주는 도면이다.
도 2는 본 개시의 일 실시예에 따른 컴퓨팅 장치의 블록도이다.
도 3은 본 개시의 일 실시예에 따라 심전도를 기초로 갑상선 기능 장애를 진단하는 방법을 보여주는 순서도이다.
도 4을 참조하면 본 개시의 일 실시예에 따른 신경망 모델의 구조를 보여주는 도면이다.
도 5는 본 개시의 일 실시예에 따른 신경망 모델의 검증 연구 과정을 보여주는 도면이다.
도 6은 본 개시의 일 실시예에 따른 신경망 모델의 성능 테스트 결과를 보여주는 도면이다.
도 7은 본 개시의 일 실시예에 따른 성별과 나이에 의해 분류된 하위 그룹 심전도 분석 결과를 보여주는 도면이다.
아래에서는 첨부한 도면을 참조하여 본 개시의 기술 분야에서 통상의 지식을 가진 자(이하, 당업자)가 용이하게 실시할 수 있도록 본 개시의 실시예가 상세히 설명된다. 본 개시에서 제시된 실시예들은 당업자가 본 개시의 내용을 이용하거나 또는 실시할 수 있도록 제공된다. 따라서, 본 개시의 실시예들에 대한 다양한 변형들은 당업자에게 명백할 것이다. 즉, 본 개시는 여러 가지 상이한 형태로 구현될 수 있으며, 이하의 실시예에 한정되지 않는다.
본 개시의 명세서 전체에 걸쳐 동일하거나 유사한 도면 부호는 동일하거나 유사한 구성요소를 지칭한다. 또한, 본 개시를 명확하게 설명하기 위해서, 도면에서 본 개시에 대한 설명과 관계없는 부분의 도면 부호는 생략될 수 있다.
본 개시에서 사용되는 "또는" 이라는 용어는 배타적 "또는" 이 아니라 내포적 "또는" 을 의미하는 것으로 의도된다. 즉, 본 개시에서 달리 특정되지 않거나 문맥상 그 의미가 명확하지 않은 경우, "x는 a 또는 b를 이용한다"는 자연적인 내포적 치환 중 하나를 의미하는 것으로 이해되어야 한다. 예를 들어, 본 개시에서 달리 특정되지 않거나 문맥상 그 의미가 명확하지 않은 경우, "x는 a 또는 b를 이용한다" 는 x가 a를 이용하거나, x가 b를 이용하거나, 혹은 x가 a 및 b 모두를 이용하는 경우 중 어느 하나로 해석될 수 있다.
본 개시에서 사용되는 "및/또는" 이라는 용어는 열거된 관련 개념들 중 하나 이상의 개념의 가능한 모든 조합을 지칭하고 포함하는 것으로 이해되어야 한다.
본 개시에서 사용되는 "포함한다" 및/또는 "포함하는" 이라는 용어는, 특정 특징 및/또는 구성요소가 존재함을 의미하는 것으로 이해되어야 한다. 다만, "포함한다" 및/또는 "포함하는" 이라는 용어는, 하나 이상의 다른 특징, 다른 구성요소 및/또는 이들에 대한 조합의 존재 또는 추가를 배제하지 않는 것으로 이해되어야 한다.
본 개시에서 달리 특정되지 않거나 단수 형태를 지시하는 것으로 문맥상 명확하지 않은 경우에, 단수는 일반적으로 "하나 또는 그 이상" 을 포함할 수 있는 것으로 해석되어야 한다.
본 개시에서 사용되는 "제 n(n은 자연수)" 이라는 용어는 본 개시의 구성요소들을 기능적 관점, 구조적 관점, 혹은 설명의 편의 등 소정의 기준에 따라 상호 구별하기 위해 사용되는 표현으로 이해될 수 있다. 예를 들어, 본 개시에서 서로 다른 기능적 역할을 수행하는 구성요소들은 제 1 구성요소 혹은 제 2 구성요소로 구별될 수 있다. 다만, 본 개시의 기술적 사상 내에서 실질적으로 동일하나 설명의 편의를 위해 구분되어야 하는 구성요소들도 제 1 구성요소 혹은 제 2 구성요소로 구별될 수도 있다.
본 개시에서 사용되는 "획득" 이라는 용어는, 외부 장치 혹은 시스템과의 유무선 통신 네트워크를 통해 데이터를 수신하는 것 뿐만 아니라, 온-디바이스(on-device) 형태로 데이터를 생성하는 것을 의미하는 것으로 이해될 수 있다.
한편, 본 개시에서 사용되는 용어 "모듈(module)", 또는 "부(unit)" 는 컴퓨터 관련 엔티티(entity), 펌웨어(firmware), 소프트웨어(software) 혹은 그 일부, 하드웨어(hardware) 혹은 그 일부, 소프트웨어와 하드웨어의 조합 등과 같이 컴퓨팅 자원을 처리하는 독립적인 기능 단위를 지칭하는 용어로 이해될 수 있다. 이때, "모듈", 또는 "부"는 단일 요소로 구성된 단위일 수도 있고, 복수의 요소들의 조합 혹은 집합으로 표현되는 단위일 수도 있다. 예를 들어, 협의의 개념으로서 "모듈", 또는 "부"는 컴퓨팅 장치의 하드웨어 요소 또는 그 집합, 소프트웨어의 특정 기능을 수행하는 응용 프로그램, 소프트웨어 실행을 통해 구현되는 처리 과정(procedure), 또는 프로그램 실행을 위한 명령어 집합 등을 지칭할 수 있다. 또한, 광의의 개념으로서 "모듈", 또는 "부"는 시스템을 구성하는 컴퓨팅 장치 그 자체, 또는 컴퓨팅 장치에서 실행되는 애플리케이션 등을 지칭할 수 있다. 다만, 상술한 개념은 하나의 예시일 뿐이므로, "모듈", 또는 "부"의 개념은 본 개시의 내용을 기초로 당업자가 이해 가능한 범주에서 다양하게 정의될 수 있다.
본 개시에서 사용되는 "모델(model)" 이라는 용어는 특정 문제를 해결하기 위해 수학적 개념과 언어를 사용하여 구현되는 시스템, 특정 문제를 해결하기 위한 소프트웨어 단위의 집합, 혹은 특정 문제를 해결하기 위한 처리 과정에 관한 추상화 모형으로 이해될 수 있다. 예를 들어, 신경망(neural network) "모델" 은 학습을 통해 문제 해결 능력을 갖는 신경망으로 구현되는 시스템 전반을 지칭할 수 있다. 이때, 신경망은 노드(node) 혹은 뉴런(neuron)을 연결하는 파라미터(parameter)를 학습을 통해 최적화하여 문제 해결 능력을 가질 수 있다. 신경망 "모델" 은 단일 신경망을 포함할 수도 있고, 복수의 신경망들이 조합된 신경망 집합을 포함할 수도 있다.
본 개시에서 사용되는 "데이터"는 "영상", 신호 등을 포함할 수 있다. 본 개시에서 사용되는 "영상" 이라는 용어는 이산적 이미지 요소들로 구성된 다차원 데이터를 지칭할 수 있다. 다시 말해, "영상"은 사람의 눈으로 볼 수 있는 대상의 디지털 표현물을 지칭하는 용어로 이해될 수 있다. 예를 들어, "영상"은 2차원 이미지에서 픽셀에 해당하는 요소들로 구성된 다차원 데이터를 지칭할 수 있다. "영상"은 3차원 이미지에서 복셀에 해당하는 요소들로 구성된 다차원 데이터를 지칭할 수 있다.
본 개시에서 사용되는 "블록(block)" 이라는 용어는 종류, 기능 등과 같은 다양한 기준을 기초로 구분된 구성의 집합으로 이해될 수 있다. 따라서, 하나의 "블록"으로 분류되는 구성은 기준에 따라 다양하게 변경될 수 있다. 예를 들어, 신경망 "블록"은 적어도 하나의 신경망을 포함하는 신경망 집합으로 이해될 수 있다. 이때, 신경망 "블록"에 포함된 신경망을 특정 연산을 동일하게 수행하는 것으로 가정할 수 있다. 전술한 용어의 설명은 본 개시의 이해를 돕기 위한 것이다. 따라서, 전술한 용어를 본 개시의 내용을 한정하는 사항으로 명시적으로 기재하지 않은 경우, 본 개시의 내용을 기술적 사상을 한정하는 의미로 사용하는 것이 아님을 주의해야 한다.
도 2는 본 개시의 일 실시예에 따른 컴퓨팅 장치의 블록 구성도이다.
본 개시의 일 실시예에 따른 컴퓨팅 장치(100)는 데이터의 종합적인 처리 및 연산을 수행하는 하드웨어 장치 혹은 하드웨어 장치의 일부일 수도 있고, 통신 네트워크로 연결되는 소프트웨어 기반의 컴퓨팅 환경일 수도 있다. 예를 들어, 컴퓨팅 장치(100)는 집약적 데이터 처리 기능을 수행하고 자원을 공유하는 주체인 서버일 수도 있고, 서버와의 상호 작용을 통해 자원을 공유하는 클라이언트(client)일 수도 있다. 또한, 컴퓨팅 장치(100)는 복수의 서버들 및 클라이언트들이 상호 작용하여 데이터를 종합적으로 처리하는 클라우드 시스템(cloud system)일 수도 있다. 상술한 기재는 컴퓨팅 장치(100)의 종류와 관련된 하나의 예시일 뿐이므로, 컴퓨팅 장치(100)의 종류는 본 개시의 내용을 기초로 당업자가 이해 가능한 범주에서 다양하게 구성될 수 있다.
도 2를 참조하면, 본 개시의 일 실시예에 따른 컴퓨팅 장치(100)는 프로세서(processor)(110), 메모리(memory)(120), 및 네트워크부(network unit)(130)를 포함할 수 있다. 다만, 도 2는 하나의 예시일 뿐이므로, 컴퓨팅 장치(100)는 컴퓨팅 환경을 구현하기 위한 다른 구성들을 포함할 수 있다. 또한, 상기 개시된 구성들 중 일부만이 컴퓨팅 장치(100)에 포함될 수도 있다.
본 개시의 일 실시예에 따른 프로세서(110)는 컴퓨팅 연산을 수행하기 위한 하드웨어 및/또는 소프트웨어를 포함하는 구성 단위로 이해될 수 있다. 예를 들어, 프로세서(110)는 컴퓨터 프로그램을 판독하여 기계 학습을 위한 데이터 처리를 수행할 수 있다. 프로세서(110)는 기계 학습을 위한 입력 데이터의 처리, 기계 학습을 위한 특징 추출, 역전파(backpropagation)에 기반한 오차 계산 등과 같은 연산 과정을 처리할 수 있다. 이와 같은 데이터 처리를 수행하기 위한 프로세서(110)는 중앙 처리 장치(CPU: central processing unit), 범용 그래픽 처리 장치(GPGPU: general purpose graphics processing unit), 텐서 처리 장치(TPU: tensor processing unit), 주문형 반도체(ASICc: application specific integrated circuit), 혹은 필드 프로그래머블 게이트 어레이(FPGA: field programmable gate array) 등을 포함할 수 있다. 상술한 프로세서(110)의 종류는 하나의 예시일 뿐이므로, 프로세서(110)의 종류는 본 개시의 내용을 기초로 당업자가 이해 가능한 범주에서 다양하게 구성될 수 있다.
프로세서(110)는 의료 데이터를 기초로 갑상선 기능 장애를 진단하는 신경망 모델을 학습시킬 수 있다. 예를 들어, 프로세서(110)는 심전도 데이터와 함께, 성별, 나이 등의 정보를 포함하는 생물학적 데이터를 기초로 갑상선 기능 항진증 발병 여부, 진행 정도 등을 추정하도록 신경망 모델을 학습시킬 수 있다. 구체적으로, 프로세서(110)는 심전도 데이터 및 각종 생물학적 데이터를 신경망 모델에 입력하여 신경망 모델이 갑상선 기능 항진증 발병에 따른 심전도의 변화를 감지하도록, 신경망 모델을 학습시킬 수 있다. 이때, 신경망 모델은 갑상선 기능과 심전도 변화의 상관관계를 토대로 학습을 수행할 수 있다. 갑상선 기능과 심전도 변화의 상관관계는, 갑상선 기능의 변화와 심전도 신호의 형태적 변화 간의 관련성에 관한 정보로 이해될 수 있다. 프로세서(110)는 신경망 모델의 학습 과정에서 신경망 모델에 포함된 적어도 하나의 신경망 블록을 표현하는 연산을 수행할 수 있다.
프로세서(110)는 상술한 학습 과정을 통해 생성된 신경망 모델을 이용하여 의료 데이터를 기초로 갑상선 기능 장애 발병 여부를 추정할 수 있다. 프로세서(110)는 상술한 과정을 통해 학습된 신경망 모델로 심전도 데이터 및, 나이, 성별 정보를 포함하는 생물학적 데이터를 입력하여 사람의 갑상선 기능 장애의 발병 확률을 추정한 결과를 나타내는 추론 데이터를 생성할 수 있다. 예를 들어, 프로세서(110)는 학습이 완료된 신경망 모델로 심전도 데이터를 입력하여, 갑상선 기능 항진증 발병 여부, 진행 정도 등을 예측할 수 있다. 프로세서(110)는 이러한 갑상선 기능 장애를 진단하는 신경망 모델을 통해 인간이 해석하기 어려운 미묘한 심전도 변화를 효과적으로 파악하여 갑상선 기능 장애의 발병 정확하게 예측할 수 있다.
상술한 예시 이외에도 의료 데이터의 종류 및 신경망 모델의 출력은 본 개시의 내용을 기초로 당업자가 이해 가능한 범주에서 다양하게 구성될 수 있다.
본 개시의 일 실시예에 따른 메모리(120)는 컴퓨팅 장치(100)에서 처리되는 데이터를 저장하고 관리하기 위한 하드웨어 및/또는 소프트웨어를 포함하는 구성 단위로 이해될 수 있다. 즉, 메모리(120)는 프로세서(110)가 생성하거나 결정한 임의의 형태의 데이터 및 네트워크부(130)가 수신한 임의의 형태의 데이터를 저장할 수 있다. 예를 들어, 메모리(120)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리, 램(ram: random access memory), 에스램(sram: static random access memory), 롬(rom: read-only memory), 이이피롬(eeprom: electrically erasable programmable read-only memory), 피롬(prom: programmable read-only memory), 자기 메모리, 자기 디스크, 광디스크 중 적어도 하나의 타입의 저장매체를 포함할 수 있다. 또한, 메모리(120)는 데이터를 소정의 체제로 통제하여 관리하는 데이터베이스(database) 시스템을 포함할 수도 있다. 상술한 메모리(120)의 종류는 하나의 예시일 뿐이므로, 메모리(120)의 종류는 본 개시의 내용을 기초로 당업자가 이해 가능한 범주에서 다양하게 구성될 수 있다.
메모리(120)는 프로세서(110)가 연산을 수행하는데 필요한 데이터, 데이터의 조합, 및 프로세서(110)에서 실행 가능한 프로그램 코드(code) 등을 구조화 및 조직화하여 관리할 수 있다. 예를 들어, 메모리(120)는 후술할 네트워크부(130)를 통해 수신된 의료 데이터를 저장할 수 있다. 메모리(120)는 신경망 모델이 의료 데이터를 입력받아 학습을 수행하도록 동작시키는 프로그램 코드, 신경망 모델이 의료 데이터를 입력받아 컴퓨팅 장치(100)의 사용 목적에 맞춰 추론을 수행하도록 동작시키는 프로그램 코드, 및 프로그램 코드가 실행됨에 따라 생성된 가공 데이터 등을 저장할 수 있다.
본 개시의 일 실시예에 따른 네트워크부(130)는 임의의 형태의 공지된 유무선 통신 시스템을 통해 데이터를 송수신하는 구성 단위로 이해될 수 있다. 예를 들어, 네트워크부(130)는 근거리 통신망(LAN: local area network), 광대역 부호 분할 다중 접속(WCDMA: wideband code division multiple access), 엘티이(LTE: long term evolution), 와이브로(WIBRO: wireless broadband internet), 5세대 이동통신(5g), 초광역대 무선통신(ultra wide-band), 지그비(zigbee), 무선주파수(RF: radio frequency) 통신, 무선랜(wireless lan), 와이파이(wireless fidelity), 근거리 무선통신(NFC: near field communication), 또는 블루투스(bluetooth) 등과 같은 유무선 통신 시스템을 사용하여 데이터 송수신을 수행할 수 있다. 상술한 통신 시스템들은 하나의 예시일 뿐이므로, 네트워크부(130)의 데이터 송수신을 위한 유무선 통신 시스템은 상술한 예시 이외에 다양하게 적용될 수 있다.
네트워크부(130)는 임의의 시스템 혹은 임의의 클라이언트 등과의 유무선 통신을 통해, 프로세서(110)가 연산을 수행하는데 필요한 데이터를 수신할 수 있다. 또한, 네트워크부(130)는 임의의 시스템 혹은 임의의 클라이언트 등과의 유무선 통신을 통해, 프로세서(110)의 연산을 통해 생성된 데이터를 송신할 수 있다. 예를 들어, 네트워크부(130)는 병원 환경 내 데이터베이스, 의료 데이터의 표준화 등의 작업을 수행하는 클라우드 서버, 혹은 컴퓨팅 장치 등과의 통신을 통해 의료 데이터를 수신할 수 있다. 네트워크부(130)는 전술한 데이터베이스, 서버, 혹은 컴퓨팅 장치 등과의 통신을 통해, 신경망 모델의 출력 데이터, 및 프로세서(110)의 연산 과정에서 도출되는 중간 데이터, 가공 데이터 등을 송신할 수 있다.
도 3은 본 개시의 일 실시예에 따라 심전도를 기초로 갑상선 기능 장애를 진단하는 방법을 보여주는 순서도이다.
도 3을 참조하면, 적어도 하나의 프로세서(110)를 포함하는 컴퓨팅 장치(100)에 의해 수행되는, 심전도를 기초로 갑상선 기능 장애를 진단하는 방법으로서, 먼저 심전도 데이터를 획득하는 단계(S100)가 수행될 수 있다.
심전도 데이터는 심전도 측정 기기를 통해 측정된 것이 직접적으로 획득되거나, 심전도 측정 기기로부터 네트워크 통신을 통해 획득될 수 있다.
그 다음으로, 사전 학습된 신경망 모델을 사용하여, 심전도 데이터를 기초로 심전도 데이터의 측정 대상에 대한 갑상선 기능 장애의 발병 확률을 추정하는 단계(Ss110)가 수행될 수 있다.
또한 상기 추정 단계(S110)는 신경망 모델로 심전도 데이터와 함께 나이 및 성별 중 적어도 하나를 포함하는 생물학적 데이터를 입력하여, 심전도 데이터의 측정 대상에 대한 갑상선 기능 장애의 발병 확률을 추정하는 단계를 포함할 수 있다.
여기서, 신경망 모델은 갑상선 기능과 심전도 특성의 변화 간의 상관관계를 기초로 학습된 것일 수 있다. 또한, 신경망 모델은, 갑상선 기능과 심전도, 성별 및 나이 등의 특성의 변화 간의 상관관계를 기초로 학습된 것일 수 있다. 구체적으로 신경망 모델은 갑상선 기능 항진증 발병 여부 및 진척도와 심전도 및 기타 특성의 변화 간의 상관관계를 기초로 학습된 것일 수 있다. 신경망 모델은 갑상선 기능 항진증 뿐만 아니라 갑상선 기능 저하증 증 다양한 갑상선 기능 장애를 진단하는 것에 활용될 수 있다.
신경망 모델은 인체에 연결된 심전도 측정 기기의 전극으로부터 획득되는 12 리드로 측정된 심전도를 기초로 학습된 것일 수 있다. 일 예로, 심전도는 10초 길이의 12 리드로 측정되고, 1초당 500개의 포인트로 저장될 수 있다. 추가로, 신경망 모델은 12 리드 심전도 중 6개의 림브 리드(limb lead) 심전도와 단일 리드(lead I) 심전도만을 추출한 부분 정보를 기초로 학습될 수 있다.
도 4을 참조하면 본 개시의 일 실시예에 따른 신경망 모델의 구조를 보여주는 도면이다.
도 4를 참조하면, 본 개시의 일 실시예에 따른 신경망 모델은 복수의 레지듀얼 블록들(residual blocks)로 구성되는 신경망을 포함할 수 있다. 레지듀얼 블록들로 구성되는 신경망은, 심전도 데이터를 입력 받아 현성 갑상선 기능 항진증의 발병 확률을 출력하기 위한 것일 수 있다.
여기서, 현성 갑상선 기능 항진증은 유리티록신 수치가 사전 결정된 기준 범위보다 높거나, 갑상선 자극 호르몬 수치가 기준 범위보다 낮은 경우에 발병된 것으로 진단될 수 있다.
구체적으로, 신경망 모델은 6개의 레지듀얼 블록을 사용한 레스넷(resnet) 신경망의 구조를 가질 수 있다. 각 레지듀얼 블록은 콘볼루션 신경망(CNN), 배치 정규화(batch normalization), 정류 선형 유닛(이하, ReLU) 함수, 드롭아웃 레이어로 구성될 수 있다. 콘볼루션 신경망은 1차원, 필터의 크기는 21로 설정될 수 있다. 총 6개의 레지듀얼 블록 중 3개의 레지듀얼 블록을 통과할 때마다 입력 길이가 절반으로 줄어들 수 있다. 심전도의 각 리드마다 서로 다른 신경망이 적용될 수 있다. 레지듀얼 블록의 마지막에서 채널 단위로 평균 풀링이 적용될 수 있다. 신경망들의 출력은, 갑상선 기능 장애의 발병 확률을 도출하기 위해 하나로 연결(concatenation)될 수 있다.
신경망 모델은 심전도 데이터의 복수의 리드들 각각에 대응되는 신경망을 포함할 수 있다. 즉, 신경망 모델은 개별 리드들로 측정된 심전도가 각각 입력되는 개별 신경망을 포함할 수 있다.
예를 들어, 신경망 모델은 12개의 다중 리드(lead)로 측정되는 심전도 데이터를 기초로 학습된 제1 서브 신경망 모델을 포함할 수 있다. 또한, 신경망 모델은 6개의 림브(limb) 리드, 혹은 6개의 전흉부 리드 중 적어도 하나를 기초로 학습된 제2 서브 신경망 모델을 더 포함할 수 있다. 또한, 신경망 모델은 단일 리드로 측정되는 심전도 데이터를 기초로 학습된 제3 서브 신경망 모델을 더 포함할 수 있다. 신경망 모델은 리드의 개수에 따라 제1 서브 신경망 모델, 제2 서브 신경망 모델 또는 제3 서브 신경망 모델 중 적어도 하나를 선택적으로 사용할 수 있다. 따라서, 신경망 모델은 리드 개수와 관계없이 갑상선 기능 장애의 발병을 효과적으로 예측할 수 있다. 또한, 12 리드의 심전도 데이터가 입력되는 경우, 신경망 모델은 제1 서브 신경망 모델, 제2 서브 신경망 모델 및 제3 서브 신경망 모델을 모두 사용하여 각 서브 모델들의 출력을 조합하여 갑상선 기능 장애의 발병 확률을 출력할 수도 있다. 신경망 모델은 이러한 조합을 통해 갑상선 기능 장애의 발병 예측 정확도를 높일 수 있다.
이하에서는, 상술한 구조의 신경망 모델의 검증을 위해 수행한 통계 분석 방법에 대해 설명하기로 한다. 기본 특성을 확인하기 위해 연속 변수(continuous variables)는 평균값과 표준 편차로 제시하였다. 검증 결과는 독립표본 t-검정(the unpaired student's t-test) 또는 만-위트니 u 검정(mann-whitney u-test)를 통해 비교하였다. 범주형 변수(categorical variables)는 백분율로 표현되며, 카이제곱 검정(χ2 test)을 사용하였다.
신경망 모델의 성능은 모델이 계산한 확률과 내/외부 검증 데이터 세트 속 갑상선 기능 항진증 여부와 비교하여 검증하였다. 수신자 조작 특성 곡선 밑 면적(이하, AUC: area under the receiver operating characteristic curve)을 참조하여 검증을 수행하였다. 학습 데이터 세트에서 유덴 J 통계(youden j statistic)를 사용해 컷오프 지점을 확인하였다. 컷오프 지점을 적용해 내/외부 검증 데이터 세트에서 민감도, 특이도, 양의 예측값, 음의 예측값을 계산하였다. AUC의 95% 신뢰 구간은 de-long 방법의 sun&su's 최적화를 이용해 산출하였다.
이하에서는 본 개시의 일 실시예에 따른 신경망 모델의 검증 연구에 대하여 설명하기로 한다.
신경망 모델의 강건성을 증명하기 위해 나이, 성별에 따른 하위 그룹을 만들어 민감도 분석을 진행하였다. 성별은 남성과 여성으로 분류하였고, 나이는 40세 미만, 40세 이상 50세 미만, 50세 이상 60세 미만, 60세 이상 70세 미만, 70세 이상으로 분류하였다.
갑상선 기능 항진증 이전 시기의 심전도에 미묘한 변화가 생길 수 있으며, 신경망 모델은 이 작은 변화를 감지해 발병을 예측할 수 있다는 가설을 세웠다. 이를 확인하기 위해 하위 그룹 분석을 실시했다. 외부 검증 데이터 세트는 첫번째 갑상선 기능 검사(TFT: thyroid function test)에서 정상 진단을 받고, 후속 갑상선 기능 검사를 받은 환자들을 대상으로 추출한 것이다. 첫번째 갑상선 기능 검사와 후속 갑상선 기능 검사의 시간 간격은 4주 이상이다. 신경망 모델이 추정한 갑상선 기능 항진증 발병 확률에 기초해 연구 대상을 고위험군과 저위험군으로 분류했다. 컷오프 지점은 학습 데이터 세트에서 유덴 J 통계를 사용해 결정했다. 36개월 동안의 결과를 분석하기 위해 카플란-마이어 방법(kaplan-meier method)을 사용했다.
도 5는 본 개시의 일 실시예에 따른 신경망 모델의 검증 연구 과정을 보여주는 도면이다.
도 5를 참조하면, 본 개시의 일 실시예에 따른 신경망 모델의 검증 연구의 대상은 병원 A 환자 113,215명과 병원 B 환자 33,485명이다. 임상 정보 혹은 심전도 데이터가 누락된 병원 A 환자 21명과 병원 B 환자 7명은 제외하였다. 총 2,164명의 갑상선 기능 항진증 환자가 포함되었다. 신경망 학습에는 병원 A의 90,554명 환자에게서 측정한 139,521개의 심전도 데이터를 사용하였다. 내부 검증은 병원 A의 518명 환자에게서 측정한 34,810개의 심전도 데이터를 사용했다. 외부 검증은 병원 B의 33,478명의 환자로부터 측정한 48,684개의 심전도 데이터를 사용했다. 신경망 모델 학습 코호트(병원 a, n=113,175)와 외부 검증 코호트(병원 b, n=33,478)의 기본 특성은 아래의 [표 1]과 같다.
내부 검증 데이터 세트
(병원 a) n=113,194
외부 검증 데이터 세트
(병원 b) n=33,478
p‡
특성 비(非) 갑상선 기능 항진증 갑상선 기능 항진증 p† 비(非) 갑상선 기능 항진증 갑상선 기능 항진증 p† p‡
연구대상, 명 (%) 111,195 (98.2) 1999 (1.8) 33,313
(99.5)
165 (0.5) <0.001
나이, 세, 평균(sd) 43.95 (13.41) 40.64 (14.38) <0.001 55.37 (15.48) 51.51 (14.93) 0.001 <0.001
남성, 명, (%) 56808 (51.1) 638 (31.9) <0.001 15960 (47.9) 56 (33.9) <0.001 <0.001
심박수, bpm (%) 66.47 (12.75) 89.37 (19.61) <0.001 70.89 (16.20) 97.59 (24.19) <0.001 <0.001
PR간격, ms, 평균 (sd) 158.46 (23.63) 145.83 (25.51) <0.001 166.97 (26.47) 151.08 (27.45) <0.001 <0.001
QRS길이, ms, 평균 (sd) 93.07 (12.00) 86.24 (11.37) <0.001 94.36 (15.02) 89.67 (13.46) <0.001 <0.001
QTC, ms, 평균 (sd) 418.46 (23.42) 427.41 (32.29) <0.001 433.44 (31.63) 442.88 (31.23) <0.001 <0.001
P파의 축, 평균(sd) 47.38 (23.68) 50.37 (24.46) <0.001 44.34 (27.65) 48.93 (31.43) 0.045 <0.001
R파의 축, 평균(sd) 49.42 (32.13) 54.86 (28.28) <0.001 40.51 (39.55) 46.27 (33.08) 0.062 0.002
T파의 축, 평균(sd) 39.83 (23.53) 46.32 (25.33) <0.001 39.38 (38.21) 47.95 (47.98) 0.004 <0.001
[표 1]에서 † 표시가 된 p에 대한 대립 가설(alternative hypothesis)은 갑상선 기능 항진증과 현성 갑상선 기능 항진증(overt hyperthyroidism) 사이에 차이가 있다는 것이다. ‡ 표시가 된 p 값에 대한 대립 가설은 각 변수에 대해 병원 A(모델 개발 및 내부 검증 데이터 그룹)와 병원 B(외부 검증 그룹) 사이에 차이가 있다는 것이다.갑상선 기능 항진증의 성별, 연령, 발병률은 통계적으로 병원마다 차이를 보였다. 갑상선 기능 항진증 환자는 빈맥이 더 많았고, QT 간격이 길었다. 갑상선 기능 항진증 환자는 P파, R파, T파 축의 오른쪽으로 쏠린 편향을 보였고 QRS 지속시간이 짧았다.
정리하면, 상술한 갑상선 기능과 심전도 특성의 변화 간의 상관관계는, 빈맥의 빈도, QT 간격(interval)의 길이, P파, R파 및 T파의 편위 방향, 또는 QRS 지속시간 중 적어도 하나를 포함하는 심전도 특성에 기반할 수 있다.
신경망 모델이 추정한 갑상선 기능 장애의 발병 확률은, 빈맥의 빈도가 많을수록 높아질 수 있다. 갑상선 기능 장애의 발병 확률은, QT 간격의 길이가 길수록 높아질 수 있다.
신경망 모델이 추정한 갑상선 기능 장애의 발병 확률은, P파, R파 및 T파의 편위 방향이 우측을 향할수록 높아질 수 있다.
신경망 모델이 추정한 갑상선 기능 장애의 발병 확률은, QRS 지속시간이 짧을수록 높아질 수 있다.
도 6은 본 개시의 일 실시예에 따른 신경망 모델의 성능 테스트 결과를 보여주는 도면이다.
도 6을 참조하면, 내부 검증과 외부 검증에서AUC는 신경망 모델의 수신자 조작 특성 곡선 밑 면적을, DLM은 신경망 모델, ECG는 심전도를, NPV는 음성 예측도를, PPV는 양성 예측도를, SEN은 민감도를, SPE는 특이도를 의미한다.
내부 및 외부 검증에서 12 리드 심전도를 사용한 신경망 모델의 AUC는 각각 0.918(0.909-0.927)과 0.897(0.879-0.916)이었다. 민감도 분석을 통해 신경망 모델의 성별과 연령에 따른 강건성(robustness)을 확인했다. 신경망 모델이 고위험 환자로 식별한 사람들은 저위험 환자로 식별한 사람들보다 갑상선 기능 항진증 발병에 상당한 변화를 보였다(p < 0.01). 6 리드 심전도와 단일 리드 심전도를 사용한 신경망 모델의 성능도 확인할 수 있다. [표 2]를 참조하면 성별 및 나이에 대한 민감도 분석에서 모든 모델의 성능은 AUC 값이 0.830 이상이었다.
남성 여성
나이 AUC SEN SPE PPV NPV AUC SEN SPE PPV NPV
-39 0.919 (0.899-0.940) 0.839 (0.793-0.884) 0.883 (0.877-0.890) 0.169 (0.148-0.190) 0.995 (0.993-0.996) 0.932 (0.913-0.951) 0.841 (0.794-0.889) 0.897 (0.891-0.903) 0.173 (0.151-0.196) 0.995 (0.994-0.997)
40-49 0.893 (0.868-0.917) 0.790 (0.736-0.844) 0.872 (0.865-0.879) 0.131 (0.113-0.149) 0.994 (0.992-0.996) 0.911 (0.887-0.934) 0.809 (0.759-0.859) 0.915 (0.910-0.920) 0.166 (0.144-0.187) 0.996 (0.994-0.997)
50-59 0.880 (0.853-0.907) 0.823 (0.768-0.877) 0.803 (0.795-0.810) 0.072 (0.061-0.083) 0.996 (0.994-0.997) 0.904 (0.877-0.931) 0.812 (0.755-0.870) 0.855 (0.848-0.862) 0.099 (0.083-0.114) 0.996 (0.994-0.997)
60-69 0.830 (0.787-0.874) 0.682 (0.595-0.769) 0.876 (0.868-0.883) 0.079 (0.061-0.096) 0.994 (0.993-0.996) 0.868 (0.829-0.908) 0.754 (0.675-0.833) 0.840 (0.831-0.850) 0.084 (0.067-0.101) 0.994 (0.992-0.996)
70- 0.873 (0.827-0.919) 0.836 (0.751-0.921) 0.825 (0.814-0.835) 0.064 (0.049-0.080) 0.997 (0.996-0.999) 0.852 (0.804-0.900) 0.957 (0.900-1.015) 0.674 (0.663-0.685) 0.019 (0.014-0.025) 1.000 (0.999-1.000)
도 7은 본 개시의 일 실시예에 따른 성별과 나이에 의해 분류된 하위 그룹 심전도 분석 결과를 보여주는 도면이다.도 7을 참조하면, 하위 그룹 분석은 갑상선 기능 검사에서 정상으로 판별된 환자 6,762명의 후속 갑상선 기능 검사 결과를 사용하여 분석을 진행하였다. 이들 중 갑상선 기능 항진증이 발병한 환자는 24명이었다. 하위 그룹 분석 대상을 신경망 모델이 출력하는 갑상선 항진증 발병 확률에 따라 고위험군 4,749명과 저위험군 2,013명으로 구분했다. 고위험군은 저위험군보다 갑상선 기능 항진증 발병 위험이 유의미하게 높은 것을 확인(0.48% 대 0.05%, p < 0.01)할 수 있었다.
한편, 갑상선 기능은 심혈관과 밀접하게 연관되어 있으며 심장기능, 혈관저항(vascular resistance), 심혈관 자율 제어 기능에 영향을 미치는 것은 물론, 심장혈관계통(cardiovascular system)에도 영향을 줄 수 있다. 특히 갑상선 호르몬 매개 변화로 이완 기능이 강화된 심실 수축(inotropy)과 심박동수(chronotropy)로 심장기능 향상에 영향을 줄 수 있다. 갑상선 기능 장애로 나타나는 징후와 증상은 갑상선 호르몬이 심장과 심혈관계에 영향을 준 결과로 판단될 수 있다. 갑상선 기능 장애는 심혈관 질환 발병률과 및 사망률의 증가와 관련될 수 있다. 더욱이 갑상선 기능 항진증을 치료하지 않았을 경우 그 병을 치료한 경우보다 심혈관 질환의 위험이 높았다. 갑상선 기능 항진증을 치료했거나, 치료하지 않았거나 두가지 케이스 모두에서 갑상선 자극 호르몬 수치가 줄어든 기간에 따라 심혈관 발병률이 증가하였다.
따라서, 이러한 위험성이 있는 갑상선 기능 장애의 조기 발견 및 예측을 위하여 본 개시의 일 실시예에 따른 갑상선 기능 장애 진단 방법은 신경망 모델을 사용하여, 심전도 데이터를 기초로 심전도 데이터의 측정 대상에 대한 갑상선 기능 장애의 발병 확률을 추정할 수 있도록 하였다.
나아가, 본 개시의 일 실시예에 따른 갑상선 기능 장애 진단 방법은 심전도, 성별, 나이 등의 정보를 기초로 신경망 모델을 이용하여 갑상선 기능 항진증을 진단할 수 있는 효과가 있다.
앞서 설명된 본 개시의 다양한 실시예는 추가 실시예와 결합될 수 있고, 상술한 상세한 설명에 비추어 당업자가 이해 가능한 범주에서 변경될 수 있다. 본 개시의 실시예들은 모든 면에서 예시적인 것이며, 한정적이 아닌 것으로 이해되어야 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성요소들도 결합된 형태로 실시될 수 있다. 따라서, 본 개시의 특허청구범위의 의미, 범위 및 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 개시의 범위에 포함되는 것으로 해석되어야 한다.

Claims (15)

  1. 적어도 하나의 프로세서를 포함하는 컴퓨팅 장치에 의해 수행되는, 심전도를 기초로 갑상선 기능 장애(dysfunction)를 진단하는 방법으로서,
    심전도 데이터를 획득하는 단계; 및
    사전 학습된 신경망 모델을 사용하여, 상기 심전도 데이터를 기초로 상기 심전도 데이터의 측정 대상에 대한 갑상선 기능 장애의 발병 확률을 추정하는 단계를 포함하고,
    상기 신경망 모델은,
    갑상선 기능과 심전도 특성의 변화 간의 상관관계를 기초로 학습된 것인,
    방법.
  2. 제1항에 있어서,
    상기 신경망 모델은,
    12개의 다중 리드(lead)로 측정되는 심전도 데이터를 기초로 학습된 제1 서브 신경망 모델을 포함하는,
    방법.
  3. 제1항에 있어서,
    상기 신경망 모델은,
    6개의 림브(Limb) 리드, 혹은 6개의 전흉부 리드 중 적어도 하나를 기초로 학습된 제2 서브 신경망 모델을 포함하는,
    방법.
  4. 제1항에 있어서,
    상기 신경망 모델은,
    단일 리드로 측정되는 심전도 데이터를 기초로 학습된 제3 서브 신경망 모델을 포함하는,
    방법.
  5. 제1항에 있어서,
    상기 신경망 모델은,
    복수의 레지듀얼 블록들(Residual blocks)로 구성되는 신경망을 포함하고,
    상기 레지듀얼 블록들로 구성되는 신경망은,
    상기 심전도 데이터를 입력 받아 현성 갑상선 기능 항진증의 발병 확률을 출력하는,
    방법.
  6. 제5항에 있어서,
    상기 현성 갑상선 기능 항진증은,
    유리티록신 수치가 사전 결정된 기준 범위보다 높거나, 갑상선 자극 호르몬 수치가 기준 범위보다 낮은 경우인,
    방법.
  7. 제1항에 있어서,
    상기 신경망 모델은,
    심전도 데이터의 복수의 리드들 각각에 대응되는 신경망을 포함하고,
    상기 신경망들의 출력은,
    갑상선 기능 장애의 발병 확률을 도출하기 위해 하나로 연결(concatenation)되는,
    방법.
  8. 제1항에 있어서,
    갑상선 기능과 심전도 특성의 변화 간의 상관관계는,
    빈맥의 빈도, QT 간격(interval)의 길이, P파, R파 및 T파의 편위 방향, 또는 QRS 지속시간 중 적어도 하나를 포함하는 심전도 특성에 기반하는,
    방법.
  9. 제8항에 있어서,
    상기 갑상선 기능 장애의 발병 확률은,
    상기 빈맥의 빈도가 많을수록 높아지는,
    방법.
  10. 제8항에 있어서,
    상기 갑상선 기능 장애의 발병 확률은,
    상기 QT 간격의 길이가 길수록 높아지는,
    방법.
  11. 제8항에 있어서,
    상기 갑상선 기능 장애의 발병 확률은,
    상기 P파, R파 및 T파의 편위 방향이 우측을 향할수록 높아지는,
    방법.
  12. 제8항에 있어서,
    상기 갑상선 기능 장애의 발병 확률은,
    상기 QRS 지속시간이 짧을수록 높아지는,
    방법.
  13. 제1항에 있어서,
    사전 학습된 신경망 모델을 사용하여, 상기 심전도 데이터를 기초로 상기 심전도 데이터의 측정 대상에 대한 갑상선 기능 장애의 발병 확률을 추정하는 단계는,
    상기 신경망 모델로 상기 심전도 데이터와 함께 나이 및 성별 중 적어도 하나를 포함하는 생물학적 데이터를 입력하여, 상기 심전도 데이터의 측정 대상에 대한 갑상선 기능 장애의 발병 확률을 추정하는 단계; 를 포함하는,
    방법.
  14. 컴퓨터 판독가능 저장 매체 저장된 컴퓨터 프로그램(program)으로서, 상기 컴퓨터 프로그램은 하나 이상의 프로세서(processor)에서 실행되는 경우, 심전도를 기초로 하는 갑상선 기능 장애 진단을 위한 동작들을 수행하도록 하며,
    상기 동작들은, 심전도 데이터를 획득하는 동작; 및
    사전 학습된 신경망 모델을 사용하여, 상기 심전도 데이터를 기초로 상기 심전도 데이터의 측정 대상에 대한 갑상선 기능 장애의 발병 확률을 추정하는 동작을 포함하고,
    상기 신경망 모델은 갑상선 기능과 심전도 특성의 변화 간의 상관관계를 기초로 학습된 것인,
    컴퓨터 프로그램.
  15. 심전도를 기초로 하는 갑상선 기능 장애 진단을 위한 컴퓨팅 장치로서, 적어도 하나의 코어(core)를 포함하는 프로세서(processor); 및 상기 프로세서에서 실행 가능한 프로그램 코드(code)들을 포함하는 메모리(memory);
    를 포함하고,
    상기 프로세서는, 상기 프로그램 코드의 실행에 따라,
    심전도 데이터를 획득하고, 사전 학습된 신경망 모델을 사용하여, 상기 심전도 데이터를 기초로 상기 심전도 데이터의 측정 대상에 대한 갑상선 기능 장애의 발병 확률을 추정하며,
    상기 신경망 모델은 갑상선 기능과 심전도 특성의 변화 간의 상관관계를 기초로 학습된 것인, 장치.
PCT/KR2022/014258 2021-09-25 2022-09-23 심전도를 기초로 갑상선 기능 장애를 진단하는 방법, 프로그램 및 장치 WO2023048502A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280062075.5A CN117940060A (zh) 2021-09-25 2022-09-23 以心电图为基础诊断甲状腺功能障碍的方法、程序及装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0126785 2021-09-25
KR20210126785 2021-09-25
KR1020220118440A KR20230044125A (ko) 2021-09-25 2022-09-20 심전도를 기초로 갑상선 기능 장애를 진단하는 방법, 프로그램 및 장치
KR10-2022-0118440 2022-09-20

Publications (1)

Publication Number Publication Date
WO2023048502A1 true WO2023048502A1 (ko) 2023-03-30

Family

ID=85720941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014258 WO2023048502A1 (ko) 2021-09-25 2022-09-23 심전도를 기초로 갑상선 기능 장애를 진단하는 방법, 프로그램 및 장치

Country Status (1)

Country Link
WO (1) WO2023048502A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060117546A (ko) * 2005-05-11 2006-11-17 인하대학교 산학협력단 신경망을 이용한 심전도 기반의 심장질환 진단장치 및방법
KR20110011911A (ko) * 2009-07-29 2011-02-09 한국과학기술원 생체신호 추정을 통한 질병검진 장치 및 방법
JP2020074940A (ja) * 2018-11-08 2020-05-21 兆奇 胡 脈拍測定による健康状態評価システムとその作動方法
KR20210058274A (ko) * 2019-11-14 2021-05-24 권준명 머신러닝을 기반으로 생성된 심전도표준데이터를 이용하여 사용자의 신체상태를 판단하는 심전도 측정 시스템 및 그 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060117546A (ko) * 2005-05-11 2006-11-17 인하대학교 산학협력단 신경망을 이용한 심전도 기반의 심장질환 진단장치 및방법
KR20110011911A (ko) * 2009-07-29 2011-02-09 한국과학기술원 생체신호 추정을 통한 질병검진 장치 및 방법
JP2020074940A (ja) * 2018-11-08 2020-05-21 兆奇 胡 脈拍測定による健康状態評価システムとその作動方法
KR20210058274A (ko) * 2019-11-14 2021-05-24 권준명 머신러닝을 기반으로 생성된 심전도표준데이터를 이용하여 사용자의 신체상태를 판단하는 심전도 측정 시스템 및 그 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DEEPIKA M., KALAISELVI K.: "A Contemplative Analysis of Thyroid Disorders based on ECG Signal and Thyroid Test Measure", EAI ENDORSED TRANSACTIONS ON ENERGY WEB, vol. 8, no. 32, XP093053517, DOI: 10.4108/eai.1-7-2020.166006 *

Similar Documents

Publication Publication Date Title
Murugesan et al. Ecgnet: Deep network for arrhythmia classification
US20200335217A1 (en) Methods and systems using mathematical analysis and machine learning to diagnose disease
US11617528B2 (en) Systems and methods for reduced lead electrocardiogram diagnosis using deep neural networks and rule-based systems
CN109846474B (zh) 心电图的处理方法及装置、心电图的远程处理方法及系统
WO2022119155A1 (ko) 설명 가능한 다중 심전도 부정맥 진단 장치 및 방법
WO2023103156A1 (zh) 一种基于心跳节律信号的房颤发生风险预测系统及其应用
Hong et al. Cardiolearn: a cloud deep learning service for cardiac disease detection from electrocardiogram
TWI688371B (zh) 心房顫動信號型態擷取及輔助診斷智能裝置
CN114343585A (zh) 认知和行为障碍的预警方法、装置、设备及存储介质
WO2023048502A1 (ko) 심전도를 기초로 갑상선 기능 장애를 진단하는 방법, 프로그램 및 장치
Rahman et al. A real-time tunable ECG noise-aware system for IoT-enabled devices
WO2023063619A1 (ko) 심전도를 기초로 좌심실 수축기 장애를 진단하는 방법, 프로그램 및 장치
KR20230044125A (ko) 심전도를 기초로 갑상선 기능 장애를 진단하는 방법, 프로그램 및 장치
WO2024019584A1 (ko) 심전도를 이용한 심근경색 진단 방법, 프로그램 및 장치
CN117940060A (zh) 以心电图为基础诊断甲状腺功能障碍的方法、程序及装置
Saadi et al. Low-cost ecg monitoring system with classification using deep learning
Laudato et al. Combining rhythmic and morphological ECG features for automatic detection of atrial fibrillation: local and global prediction models
Rakhmatullov et al. Technologies for optimization and digitalization of cardiological care
WO2023048486A1 (ko) 심전도 신호의 오류 복원 방법, 프로그램 및 장치
WO2024101759A1 (ko) 심전도 데이터의 분석 방법, 프로그램 및 장치
WO2024019575A1 (ko) 심전도를 이용한 건강 상태의 예측 방법, 프로그램 및 장치
WO2024014838A1 (ko) 심전도 판독에 기반한 시각화 콘텐츠를 제공하는 방법, 프로그램 및 장치
WO2024014844A1 (ko) 심전도에 기반하여 체성분을 측정하는 방법 및 그 장치
WO2024019523A1 (ko) 심전도를 이용한 건강 상태의 예측 방법, 프로그램 및 장치
WO2024049193A1 (ko) 심전도 데이터의 거래 서비스를 제공하는 방법, 프로그램 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22873206

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280062075.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022873206

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022873206

Country of ref document: EP

Effective date: 20240425