WO2023048209A1 - Resin composition, cured product, resin sheet, insulation layer, electric/electronic component, printed circuit board, and curing agent for epoxy resin - Google Patents

Resin composition, cured product, resin sheet, insulation layer, electric/electronic component, printed circuit board, and curing agent for epoxy resin Download PDF

Info

Publication number
WO2023048209A1
WO2023048209A1 PCT/JP2022/035310 JP2022035310W WO2023048209A1 WO 2023048209 A1 WO2023048209 A1 WO 2023048209A1 JP 2022035310 W JP2022035310 W JP 2022035310W WO 2023048209 A1 WO2023048209 A1 WO 2023048209A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
resin composition
phenol
carbon atoms
Prior art date
Application number
PCT/JP2022/035310
Other languages
French (fr)
Japanese (ja)
Inventor
陽平 青野
隆明 渡邊
紀行 木田
雅翔 西村
正志 横木
裕一 矢山
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN202280062973.0A priority Critical patent/CN117957264A/en
Publication of WO2023048209A1 publication Critical patent/WO2023048209A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a resin composition containing a phenol carbonate resin and an epoxy resin. Furthermore, a cured product of the resin composition, a resin sheet and an insulating layer obtained using the resin composition, an electric/electronic component and a printed wiring board provided with the insulating layer, and a curing for an epoxy resin containing a phenol carbonate resin Regarding agents.
  • the resin composition used for the substrate also has a well-balanced variety of properties such as heat resistance, adhesiveness, water resistance, low dielectric constant, low dielectric loss tangent, mechanical strength, film formability, low linear expansion, and flame resistance. There is a need for improved technology.
  • a resin composition containing an epoxy resin is known as a resin composition used for multilayer circuit boards.
  • the epoxy resin is generally used in combination with a curing agent, so various required properties can be achieved. Therefore, it is important to select an appropriate curing system.
  • an epoxy resin is used as a lamination material for a multilayer circuit board, it must be able to achieve a low dielectric constant and a low dielectric loss tangent.
  • Active esters are known as typical curing agents among curing agents. In the curing reaction of the epoxy resin and active esters, crosslinking can be achieved without generating polar functional groups such as secondary hydroxyl groups.
  • Non-Patent Document 1 discloses a method for synthesizing a polycarbonate by reacting an epoxy group of a bifunctional epoxy resin and a carbonate group of diphenyl carbonate. A cured product can be produced without generating a polar functional group such as a secondary hydroxyl group.
  • Patent Document 1 a carbonate resin using diphenyl carbonate, tricyclodecanedimethanol and bisphenol F is disclosed as a phenol carbonate resin that can be used as an epoxy resin curing agent and provides a cured product with a low dielectric constant and a low dielectric loss tangent.
  • a synthesized example is described. It also describes that a laminate was obtained by preparing a resin varnish containing the carbonate resin and the epoxy resin, impregnating the resin varnish into a fibrous base material, and curing the resin varnish.
  • Patent Document 2 discloses a resin composition containing an epoxy resin, a curing agent, a polycarbonate resin and an inorganic filler.
  • the curing agent is an active ester
  • one equivalent of the ester group reacts with one equivalent of the epoxy group.
  • one equivalent of the carbonate group reacts with two equivalents of the epoxy group. In principle, a cured product with a high Tg can be obtained.
  • the phenol carbonate resin described in Patent Document 1 and the polycarbonate resin described in Patent Document 2 are polymers of monomers having hydroxyl groups at both ends, and the hydroxyl group ends are high. Therefore, by cross-linking an epoxy resin with a phenol carbonate resin or a polycarbonate resin, a cured product having a relatively low dielectric constant and dielectric loss tangent can be obtained. However, since the reaction between the epoxy group and the hydroxyl group generates a secondary hydroxyl group, the dielectric constant and dielectric loss tangent of the resulting cured product may not be lowered. In addition, the cured products obtained by the techniques described in these patent documents have a problem of moisture resistance due to their high water absorption. In addition, the solvent solubility of the phenol carbonate resin and polycarbonate resin used as curing agents is not sufficiently high, and the moldability of the epoxy resin composition is also insufficient.
  • a phenol carbonate resin containing a repeating unit having a viscosity average molecular weight within a specific range and having a specific structure is used as a curing agent.
  • the above problem can be solved by blending such that the molar ratio of the epoxy group of the epoxy resin to the terminal hydroxyl group of the phenol carbonate resin (epoxy group/terminal hydroxyl group) is within a specific range. That is, the gist of the present invention resides in the following.
  • a 1 and A 2 are each independently a group represented by the following formula (2) or (3);
  • X is a direct bond, an optionally substituted carbon a divalent hydrocarbon group of numbers 1 to 15, -O-, -S-, -SO-, -SO 2 -, -CO-, -OCO- or -COO-;
  • n 1 and n 2 are Each is independently an integer from 1 to 50.
  • R is each independently an alkyl group having 1 to 12 carbon atoms, an arylalkyl group having 7 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, arylalkoxy group, aryl group having 6 to 12 carbon atoms, alkenyl group having 2 to 12 carbon atoms, arylalkenyl group having 8 to 12 carbon atoms, alkynyl group having 2 to 12 carbon atoms, arylalkynyl
  • An electric/electronic component comprising the insulating layer of [11].
  • a printed wiring board having the insulating layer according to [11].
  • An epoxy resin curing agent containing a phenol carbonate resin (A)' is an epoxy resin curing agent having a viscosity average molecular weight (Mv) of 500 to 20,000 and a terminal aromatic hydrocarbon group content of 95% by mass or more.
  • a resin composition containing a phenol carbonate resin and an epoxy resin that gives a cured product with a low dielectric constant, a low dielectric loss tangent and a high heat resistance.
  • the resin composition it is possible to provide a cured product, an electrical/electronic component, and a printed wiring board.
  • an epoxy resin curing agent containing a phenol carbonate resin it is possible to provide an epoxy resin curing agent containing a phenol carbonate resin.
  • epoxy resin includes polymers containing repeating structures and epoxy compounds with a monomolecular structure (i.e., non-polymeric compounds), both of which are expressed as “epoxy resins" and are commercially available. There is something. Also, a mixture of two or more epoxy resins may be simply referred to as an "epoxy resin". Also in this specification, the term “epoxy resin” means any of a polymer containing a repeating structure, an epoxy compound having a monomolecular structure, and a mixture of two or more epoxy resins.
  • the resin composition according to the first embodiment of the present invention is a resin composition containing a phenol carbonate resin (A) and an epoxy resin (B), wherein the epoxy resin for the terminal hydroxyl group of the phenol carbonate resin (A) It is characterized in that the epoxy group molar ratio (epoxy group/terminal hydroxyl group) of (B) is from 3.0 to 100,000.
  • the resin composition according to the present embodiment provides a cured product with a low dielectric constant, a low dielectric loss tangent and a high heat resistance is not sufficiently clear, it is presumed to be due to the following mechanism. That is, the resin composition according to the present embodiment has a molar ratio of the epoxy group of the epoxy resin to the terminal hydroxyl group of the phenol carbonate resin (epoxy group/terminal hydroxyl group) within a certain range, so that the resin composition shown in Scheme 1 below at the time of heat curing. It is believed that two equivalents of the epoxy groups of the epoxy resin react with one equivalent of the carbonate groups of the phenol carbonate resin to form a high-density crosslinked structure without generating secondary hydroxyl groups. It is believed that a cured product with a low dielectric constant, a low dielectric loss tangent and a high heat resistance can be obtained by forming more of this crosslinked structure in the cured product.
  • the molar ratio of the epoxy group of the epoxy resin (B) to the terminal hydroxyl group of the phenol carbonate resin (A) (epoxy group/terminal hydroxyl group) is 3.0 to 100,000.
  • the lower limit of the molar ratio is preferably 15 or more, more preferably 30 or more, still more preferably 60 or more, still more preferably 100 or more, particularly preferably 130 or more, particularly preferably 130 or more, in terms of reactivity between the epoxy group and the carbonate group. is preferably 140 or more, most preferably 150 or more.
  • the upper limit of the molar ratio is preferably 2,500 or less, more preferably 1,500 or less, and still more preferably 1,000 or less in terms of heat resistance of the cured product.
  • the phenol carbonate resin (A) in the resin composition according to this embodiment preferably has a viscosity average molecular weight (Mv) of 500 to 100,000.
  • the lower limit of Mv is more preferably 1,000 or more, still more preferably 1,500 or more, and particularly preferably 2,000 or more.
  • the upper limit of Mv of the phenol carbonate resin (A) is more preferably 50,000 or less, still more preferably 20,000 or less, particularly preferably 10,000 or less, and most preferably 8,000. It is below. By setting the Mv of the phenol carbonate resin (A) to the above upper limit or less, the solvent solubility tends to increase.
  • the constituent units of the phenol carbonate resin (A) are not particularly limited, but preferably contain repeating units represented by the following formula (1).
  • a 1 and A 2 are each independently a group represented by formula (2) or (3), X is a direct bond, optionally substituted, and has 1 to 15 carbon atoms a divalent hydrocarbon group of -O-, -S-, -SO-, -SO 2 -, -CO-, -OCO- or -COO-, wherein n 1 and n 2 are Each is independently an integer from 1 to 50.
  • At least one of A 1 and A 2 in formula (1) is a group represented by formula (2) from the viewpoint of improving solvent solubility, and both are groups represented by formula (2). It is even more preferable to have
  • the positions of the bonds of the benzene ring in formula (2) and the naphthalene ring in formula (3) are not particularly limited. However, 1 and 4-positions are preferable in that Tg tends to be improved.
  • 1,2, 1,3, 1,4, 1,5, 1,6, 1,7, 1,8, 2,3, 2 , 6th, 2nd, 7th, etc., but 1st, 2nd, 1,4th, 1,5th, 2,6th, 2,7th in that Tg tends to improve is preferred.
  • X in formula (1) is a direct bond, an optionally substituted divalent hydrocarbon group having 1 to 15 carbon atoms, —O—, —S—, —SO—, —SO 2 — , -CO-, -OCO- or -COO-.
  • divalent hydrocarbon groups having 1 to 15 carbon atoms include -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -CHPh-, -C(CH 3 )Ph -, -CPh 2 -, 9,9-fluorenylene group, 1,1-cyclopropylene group, 1,1-cyclobutylene group, 1,1-cyclopentylene group, 1,1-cyclohexylene group, 3,3 ,5-trimethyl-1,1-cyclohexylene group, 1,1-cyclododecylene group, 1,2-ethylene group, 1,2-cyclopropylene group, 1,2-cyclobutylene group, 1,2-cyclopentylene group, 1,2-cyclohexylene group, 1,2-phenylene group, 1,3-propylene group, 1,3-cyclobutylene group, 1,3-cyclopentylene group, 1,3-cyclohexylene group, 1 ,3-phenylene group,
  • X is preferably a direct bond, —CH 2 —, —CH(CH 3 )—, since the degree of freedom of rotation of the aromatic rings in A 1 and A 2 adjacent to X is reduced to increase chemical resistance.
  • n 1 and n 2 in formula (1) are each independently an integer of 1 to 50, but are preferably 1 to 30 in terms of solvent solubility and compatibility with other resins tending to improve. Yes, more preferably 1-10.
  • the substituents R are each independently an alkyl group having 1 to 12 carbon atoms, an arylalkyl group having 7 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a carbon arylalkoxy groups of 7 to 12 carbon atoms, aryl groups of 6 to 12 carbon atoms, alkenyl groups of 2 to 12 carbon atoms, arylalkenyl groups of 8 to 12 carbon atoms, alkynyl groups of 2 to 12 carbon atoms, and 8 to 12 carbon atoms.
  • Alkyl groups, alkoxy groups and alkenyl groups are not limited to linear groups, and may have a branched structure or a cyclic structure. Moreover, the position and number of the double bond of the alkenyl group and the triple bond of the alkynyl group are not particularly limited.
  • alkyl groups having 1 to 12 carbon atoms include the following. For example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, cyclopentyl group, n-hexyl group, isohexyl group, cyclohexyl group, n-heptyl group, cycloheptyl group, methylcyclohexyl group, n-octyl group, cyclooctyl group, n-nonyl group, 3,3,5-trimethylcyclohexyl group, n- decyl group, cyclodecyl group, n-undecyl group, n-dodecyl group, cyclodo
  • arylalkyl groups having 7 to 12 carbon atoms include the following. Examples include benzyl group, methylbenzyl group, dimethylbenzyl group, trimethylbenzyl group, naphthylmethyl group, phenethyl group, 2-phenylisopropyl group and the like.
  • alkoxy groups having 1 to 12 carbon atoms include the following. For example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, isopentoxy, neopentoxy, tert-pentoxy, cyclopentyl thoxy group, n-hexyloxy group, isohexyloxy group, cyclohexyloxy group, n-heptoxy group, cycloheptoxy group, methylcyclohexyloxy group, n-octyloxy group, cyclooctyloxy group, n-nonyloxy group, 3,3,5-trimethyl cyclohexyloxy group, n-decyloxy group, cyclodecyloxy group, n-undecyloxy group, n-dodecyloxy group, cyclododecyloxy group,
  • Examples of the arylalkyloxy group having 7 to 12 carbon atoms include the following. Examples include benzyloxy, methylbenzyloxy, dimethylbenzyloxy, trimethylbenzyloxy, naphthylmethoxy, phenethyloxy, 2-phenylisopropoxy and the like.
  • aryl groups having 6 to 12 carbon atoms include the following.
  • alkenyl groups having 2 to 12 carbon atoms include the following.
  • vinyl group 1-propenyl group, 2-propenyl group, 1-methylvinyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1,3-butandienyl group, cyclohexenyl group, cyclohexadienyl group groups, cinnamyl groups, naphthylvinyl groups, and the like.
  • arylalkenyl groups having 8 to 12 carbon atoms include the following. Examples include a styryl group, a cinnamyl group, a naphthylvinyl group, and the like.
  • alkynyl groups having 2 to 12 carbon atoms include the following. Examples include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group and the like.
  • arylalkynyl groups having 8 to 12 carbon atoms include the following. For example, phenylethynyl group, naphthylethynyl group and the like.
  • the substituent R is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, from the viewpoint of improving heat resistance due to better molecular packing. , and more preferably a methyl group.
  • p represents an integer of 0 to 4, and is preferably 0 to 2 from the viewpoint of improving solvent solubility and increasing the glass transition temperature (Tg) of the cured product.
  • Tg glass transition temperature
  • q represents an integer of 0 to 6, and is preferably 0 to 2 from the viewpoint of improving solvent solubility and increasing the glass transition temperature (Tg) of the cured product.
  • Tg glass transition temperature
  • substitution position of R with respect to the aromatic ring in formulas (2) and (3) is not particularly limited, but a group represented by the following formula tends to reduce the dielectric loss tangent and is particularly preferred.
  • the proportion of the repeating unit represented by the formula (1) is not particularly limited, but the phenol carbonate resin (A) is composed of 80 mol % or more, more preferably 90 mol % or more, still more preferably 95 mol % or more, and particularly preferably 100 mol %, of all the structural units.
  • the phenol carbonate resin (A) is a copolymer containing repeating units with a plurality of different structures, regardless of whether the repeating unit consists of repeating units with a single structure or the structure represented by formula (1). May be combined.
  • the phenol carbonate resin (A) is a copolymer
  • the phenol carbonate resin (A) is represented by the following formula having a structure different from the repeating unit represented by the formula (1) and the repeating unit represented by the formula (1) More preferably, it contains a repeating unit represented by (4).
  • a 3 and A 4 are each independently synonymous with A 1 above;
  • Y is a direct bond or an optionally substituted divalent aromatic having 6 to 15 carbon atoms a hydrocarbon group or an optionally substituted divalent heteroaromatic hydrocarbon group having 6 to 15 carbon atoms;
  • n 3 and n 4 are each independently an integer of 1 to 50 (provided that , A 3 , A 4 , n 3 and n 4 completely match the combination of A 1 , A 2 , n 1 and n 2 in formula (1)).
  • an optionally substituted divalent aromatic hydrocarbon group having 6 to 15 carbon atoms or an optionally substituted divalent heteroaromatic hydrocarbon group having 6 to 15 carbon atoms phenylene group, naphthylene group, anthracenylene group, 2,7-fluorenylene group, 9,9-fluorenylene group, pyridylene group, thienylene group, furanylene group and the like.
  • the 9,9-fluorenylene group is preferred because it tends to increase the Tg and decrease the dielectric loss tangent.
  • n 3 and n 4 are each independently an integer of 1 to 50, preferably 1 to 30, more preferably 1, in that solvent solubility and compatibility with other resins tend to be improved. ⁇ 10.
  • the carbonate equivalent of the phenol carbonate resin (A) is not particularly limited, but is preferably 100 g/eq or more, more preferably 110 g/eq or more, still more preferably 120 g/eq or more, and preferably 10,000 g/eq or less. It is preferably 5,000 g/eq or less, more preferably 1,000 g/eq or less, and particularly preferably 500 g/eq or less.
  • the carbonate equivalent of the phenol carbonate resin (A) is at least the above lower limit, curing shrinkage tends to decrease, and impact resistance and weather resistance of the cured product of the resin composition tend to improve. Further, by setting the carbonate equivalent weight of the phenol carbonate resin (A) to the above upper limit or less, the crosslink density of the cured product of the resin composition tends to increase and the Tg tends to improve.
  • the amount of terminal hydroxyl groups in the phenol carbonate resin (A) is not particularly limited, but is preferably 10 ppm or more, more preferably 50 ppm or more, still more preferably 100 ppm or more, and preferably 5,000 ppm or less, more preferably 1,000 ppm. 300 ppm or less, more preferably 300 ppm or less.
  • the amount of terminal hydroxyl groups of the phenol carbonate resin (A) is at least the above lower limit, a sufficient curing rate can be obtained, and when it is at most the above upper limit, the dielectric constant and dielectric loss tangent of the cured product can be reduced.
  • the terminal hydroxyl group content of the phenol carbonate resin (A) can be measured by the colorimetric method used in the examples described later.
  • the glass transition temperature (Tg) of the phenol carbonate resin (A) is not particularly limited, but is preferably 70°C or higher, more preferably 100°C or higher, still more preferably 120°C or higher, and usually 250°C. or less, and may be 200° C. or less or 180° C. or less.
  • a commercially available phenol carbonate resin (A) may be used. Moreover, when manufacturing, it can manufacture by the conventionally well-known polymerization method.
  • the polymerization method may be either a solution polymerization method using phosgene or a melt polymerization method in which a diester carbonate and a hydroxy compound are reacted.
  • a dihydroxy compound having a structure represented by the above formula (1) and other dihydroxy compounds used as necessary, such as a dihydroxy compound having a structure represented by formula (4) Melt polymerization methods in which the compound is reacted with a diester carbonate are preferred.
  • Carbonic acid diesters used in the melt polymerization method one kind may be used alone, or two or more kinds may be mixed and used in an arbitrary combination and ratio.
  • Carbonic acid diesters include, for example, aromatic carbonates and aliphatic carbonates.
  • aromatic carbonates include diphenyl carbonate; substituted diphenyl carbonate such as ditolyl carbonate; and the like.
  • aliphatic carbonates include dialkyl carbonates such as dimethyl carbonate, diethyl carbonate and di-t-butyl carbonate. Among these, aromatic carbonates are preferred, diphenyl carbonate or substituted diphenyl carbonate is more preferred, and diphenyl carbonate is particularly preferred.
  • the diester carbonate is preferably used in a molar ratio of 0.90 to 1.10 with respect to all dihydroxy compounds including the dihydroxy compound represented by formula (1) used in the reaction. It is more preferred to use a molar ratio of 96-1.04. If the molar ratio of the diester carbonate used in the melt polymerization method is too small, the number of terminal hydroxyl groups in the produced polycarbonate resin increases, the thermal stability of the polymer deteriorates, and there is a tendency that the desired high molecular weight product cannot be obtained. be.
  • the rate of the transesterification reaction will decrease under the same polymerization conditions, making it difficult to produce the phenol carbonate resin (A) having the desired viscosity average molecular weight. . Furthermore, the amount of carbonic acid diester remaining in the produced phenol carbonate resin (A) tends to increase, and the residual carbonic acid diester tends to cause odor during molding or molded products.
  • the phenol carbonate resin (A) used in the present embodiment it is preferable to use an aromatic carbonate such as diphenyl carbonate as the carbonic acid diester.
  • the phenol carbonate resin (A) to be produced is an aromatic hydrocarbon exemplified by the terminal group represented by the following formula (5) (hereinafter sometimes referred to as "phenyl group terminal") system terminal group (hereinafter sometimes referred to as "aromatic hydrocarbon group terminal").
  • the ratio (T1/T2) of the number of aromatic hydrocarbon group terminals (T1) to the total number of terminals (T2) of the phenol carbonate resin (A) is preferably 0.20 or more, more preferably 0.25 or more, It is more preferably 0.30 or more, and usually 1.00 or less. If the ratio (T1/T2) of the number of aromatic hydrocarbon group terminals (T1) to the total number of terminals (T2) is excessively small, coloration increases under conditions where the polymerization reaction temperature, injection molding temperature, etc. are high. There is fear.
  • the method for adjusting the ratio (T1/T2) of the number of aromatic hydrocarbon group terminals (T1) to the total number of terminals (T2) of the phenol carbonate resin within the above range is not particularly limited.
  • the ratio (T1/T2) of the number of aromatic hydrocarbon group terminals (T1) in the phenol carbonate resin to the total number of terminals (T2) was measured by an NMR spectrometer using heavy chloroform to which TMS was added as a measurement solvent. It can be calculated by measuring 1 H-NMR spectrum.
  • Alkali metal compounds and/or alkaline earth metal compounds are used as polymerization catalysts (transesterification catalysts) in melt polymerization.
  • Basic compounds such as basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds can be used together with the alkali metal compounds and/or alkaline earth metal compounds. Particular preference is given to using only alkali metal compounds and/or alkaline earth metal compounds.
  • alkali metal compounds used as polymerization catalysts include sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydrogen carbonate, cesium hydrogen carbonate, sodium carbonate, and potassium carbonate.
  • alkaline earth metal compounds include calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium hydrogen carbonate, barium hydrogen carbonate, magnesium hydrogen carbonate, strontium hydrogen carbonate, calcium carbonate, barium carbonate, and magnesium carbonate.
  • One of these alkali metal compounds and/or alkaline earth metal compounds may be used alone, or two or more thereof may be used in any combination and ratio.
  • basic boron compounds used in combination with alkali metal compounds and/or alkaline earth metal compounds include tetramethylboron, tetraethylboron, tetrapropylboron, tetrabutylboron, trimethylethylboron, trimethylbenzylboron, trimethylphenyl Sodium salts, potassium salts, lithium salts of boron, triethylmethylboron, triethylbenzylboron, triethylphenylboron, tributylbenzylboron, tributylphenylboron, tetraphenylboron, benzyltriphenylboron, methyltriphenylboron, butyltriphenylboron, etc. , calcium salts, barium salts, magnesium salts, strontium salts and the like.
  • Examples of basic phosphorus compounds include triethylphosphine, tri-n-propylphosphine, triisopropylphosphine, tri-n-butylphosphine, triphenylphosphine, tributylphosphine, and quaternary phosphonium salts.
  • Examples of basic ammonium compounds include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylphenylammonium hydroxide, triethylmethylammonium hydroxide, triethylbenzylammonium hydroxide, triethylphenylammonium hydroxide, tributylbenzylammonium hydroxide, tributylphenylammonium hydroxide, tetraphenylammonium hydroxide, benzyltriphenylammonium hydroxide, methyltriphenylammonium hydroxide, butyltriphenylammonium hydroxide and the like.
  • amine compounds include 4-aminopyridine, 2-aminopyridine, N,N-dimethyl-4-aminopyridine, 4-diethylaminopyridine, 2-hydroxypyridine, 2-methoxypyridine, 4-methoxypyridine, 2 -dimethylaminoimidazole, 2-methoxyimidazole, imidazole, 2-mercaptoimidazole, 2-methylimidazole, aminoquinoline and the like.
  • Basic compounds such as basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds may be used alone, or two or more may be used in any combination and ratio. .
  • the amount of the polymerization catalyst used is usually in the range of 0.1 to 100 ⁇ mol in terms of metal, per 1 mol of all the dihydroxy compounds used in the reaction. is preferably within the range of 0.5 to 50 ⁇ mol, more preferably within the range of 1 to 25 ⁇ mol. If the amount of the polymerization catalyst used is too small, there is a tendency that the polymerization activity required to produce a polycarbonate resin with a desired molecular weight cannot be obtained.
  • Phenolic carbonate resins tend to be difficult to manufacture.
  • the dihydroxy compound having the structure represented by the structural formula (1) may be supplied as a solid, or may be supplied in a molten state after being heated. Alternatively, it may be supplied as an aqueous solution.
  • a method of reacting a dihydroxy compound having a structure represented by formula (1), an alicyclic dihydroxy compound, and optionally other dihydroxy compounds with a diester carbonate in the presence of a polymerization catalyst is usually carried out in a multistage process of two or more stages. Specifically, the first stage reaction is carried out at a temperature of 140 to 220° C., preferably 150 to 200° C., for 0.1 to 10 hours, preferably 0.5 to 3 hours. From the second stage onwards, the pressure in the reaction system is gradually lowered from the pressure in the first stage while the reaction temperature is raised. Specifically, the polycondensation reaction is carried out at a reaction system pressure of 200 Pa or less and a temperature range of 210 to 280°C.
  • the form of the reaction may be batch type, continuous type, or a combination of batch type and continuous type.
  • Epoxy resin (B) is not particularly limited, but bixylenol type epoxy resin, bisphenol A type epoxy resin, bisphenol C type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene.
  • the epoxy resin (B) is preferably an aromatic epoxy resin, more preferably an aromatic
  • the weight ratio of the phenol carbonate resin (A) to the epoxy resin (B) is not particularly limited, but is usually 0.01 or more, preferably 0.1 or more, and more preferably 0.2 or more from the viewpoint of reactivity. , more preferably 0.4 or more.
  • the weight ratio is preferably 100 or less, more preferably 20 or less, still more preferably 10 or less, and particularly preferably 5 or less from the viewpoint of storage stability.
  • the resin composition according to this embodiment may contain a curing accelerator (C).
  • the curing accelerator (C) is not particularly limited, but includes phosphorus-based curing accelerators, amine-based curing accelerators, imidazole-based curing accelerators, guanidine-based curing accelerators, metal-based curing accelerators, and the like.
  • the curing accelerator (C) is preferably a phosphorus curing accelerator, an amine curing accelerator, an imidazole curing accelerator or a metal curing accelerator, more preferably an amine curing accelerator.
  • the curing accelerator (C) may be used singly, or two or more thereof may be used in any combination and ratio.
  • Phosphorus curing accelerators include, for example, triphenylphosphine, phosphonium borate compounds, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, (4-methylphenyl)triphenylphosphonium thiocyanate. , tetraphenylphosphonium thiocyanate, and butyltriphenylphosphonium thiocyanate, and triphenylphosphine and tetrabutylphosphonium decanoate are preferred.
  • amine curing accelerators examples include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine (DMAP), benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, 1, 8-diazabicyclo(5,4,0)-undecene and the like can be mentioned, with 4-dimethylaminopyridine and 1,8-diazabicyclo(5,4,0)-undecene being preferred, and 4-dimethylaminopyridine being more preferred.
  • DMAP 4-dimethylaminopyridine
  • benzyldimethylamine 2,4,6-tris(dimethylaminomethyl)phenol
  • 1, 8-diazabicyclo(5,4,0)-undecene and the like can be mentioned, with 4-dimethylaminopyridine and 1,8-diazabicyclo(5,4,0)-undecene being preferred, and 4-dimethylaminopyr
  • imidazole curing accelerators examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- 2-phenylimidazolium trimellitate, 2,4-d
  • Guanidine curing accelerators include, for example, dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1-(o-tolyl)guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, Tetramethylguanidine, Pentamethylguanidine, 1,5,7-triazabicyclo[4.4.0]dec-5-ene, 7-methyl-1,5,7-triazabicyclo[4.4.0] Dec-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-n-butylbiguanide, 1-n-octadecylbiguanide, 1,1-dimethylbiguanide, 1,1-diethylbiguanide, 1-cyclohexylbiguanide, 1 -allylbiguanide, 1-phenylbiguanide, 1-(o-tolyl)biguanide and
  • metal-based curing accelerators include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • organometallic complexes include organocobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate; organocopper complexes such as copper (II) acetylacetonate; zinc (II) acetylacetonate; organic zinc complexes such as iron (III) acetylacetonate; organic iron complexes such as nickel (II) acetylacetonate; organic nickel complexes such as nickel (II) acetylacetonate; organic manganese complexes such as manganese (II) acetylacetonate; Examples of organic metal salts include zinc octoate, tin octoate, zinc naphthenate
  • the content of the curing accelerator (C) is not particularly limited, it is preferably 0.001 parts by weight or more with respect to a total of 100 parts by weight of the phenol carbonate resin (A) and the epoxy resin (B). From the viewpoint of properties, it is more preferably 0.01 parts by weight or more, and still more preferably 0.1 parts by weight or more. In addition, it is preferably 5 parts by weight or less, more preferably 3 parts by weight or less, still more preferably 1 part by weight or less from the viewpoint of storage stability of the resin composition.
  • the resin composition according to the present embodiment may contain a curing agent (hereinafter referred to as "other curing agent”) other than the phenol carbonate resin (A) within a range that does not impair the effects of the present invention.
  • a curing agent hereinafter referred to as "other curing agent”
  • Other curing agents are not particularly limited, but phenolic curing agents, naphthol curing agents, amide curing agents, active ester curing agents, benzoxazine curing agents, cyanate ester curing agents, carbodiimide curing agents, and Phenol carbonate resins other than phenol carbonate resin (A), etc. are mentioned.
  • active ester curing agents active ester curing agents, phenolic curing agents, benzoxazine curing agents, cyanate ester curing agents, and carbodiimide curing agents are preferred, and active ester curing agents, phenolic curing agents and carbodiimide are more preferred.
  • system curing agent Other curing agents may be used alone, or two or more of them may be used in any combination and ratio.
  • the resin composition according to the present embodiment may be diluted by blending a solvent in order to appropriately adjust the viscosity of the resin composition during handling during coating film formation.
  • the solvent is used to ensure handleability and workability in molding the resin composition, and there is no particular limitation on the amount used.
  • solvent used to ensure handleability and workability in molding the resin composition, and there is no particular limitation on the amount used.
  • solvent and the term “solvent” are used separately according to the mode of use, but the same type or different types may be used independently.
  • Solvents that may be contained in the resin composition according to the present embodiment include, for example, acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, ketones such as cyclohexanone; esters such as ethyl acetate; glycol ethers such as ethylene glycol monomethyl ether; amides such as N,N-dimethylformamide and N,N-dimethylacetamide; alcohols such as methanol and ethanol; alkanes such as hexane and cyclohexane; aromatics such as toluene and xylene;
  • the solvents listed above may be used alone, or two or more of them may be mixed and used in any combination and ratio.
  • the resin composition according to the present embodiment contains components other than those listed above (hereinafter sometimes referred to as "other components”) for the purpose of further improving its functionality.
  • other components include thermosetting resins other than epoxy resins, photo-curing resins, curing accelerators (excluding those included in “curing agents”), UV inhibitors, antioxidants, Coupling agents, plasticizers, fluxes, flame retardants, colorants, dispersants, emulsifiers, elasticity reducing agents, diluents, antifoaming agents, ion trapping agents, inorganic fillers, organic fillers, and the like.
  • the method of curing the resin composition when curing the resin composition according to the present embodiment to obtain a cured product varies depending on the ingredients and the amount of the resin composition, but is usually 60 to 60 at 80 to 280 ° C.
  • a heating condition of 360 minutes is mentioned.
  • This heating is preferably a two-stage treatment of primary heating at 80 to 160° C. for 10 to 90 minutes and secondary heating at 120 to 200° C. for 60 to 150 minutes. It is preferable to further perform tertiary heating at 150 to 280° C. for 60 to 120 minutes in a blended system that exceeds the secondary heating temperature. Performing secondary heating and tertiary heating in this way is preferable from the viewpoint of reducing poor curing and residual solvent.
  • the resin composition according to this embodiment can form a cured product having a low dielectric constant, a low dielectric loss tangent and a high heat resistance. Therefore, the resin composition according to the present embodiment can be suitably used for electrical/electronic parts, insulating layers of printed wiring boards and the like; semiconductor sealing materials; and the like.
  • a second embodiment of the present invention is a resin sheet having a resin composition layer formed of the resin composition according to the first embodiment of the present invention.
  • the resin sheet according to the present embodiment can form an insulating layer made of a cured product of the resin composition by curing the resin composition layer. Therefore, the resin sheet according to the present embodiment can be suitably used as a resin sheet for forming insulating layers of electronic/electronic parts, printed wiring boards, and the like.
  • the thickness of the resin composition layer is not particularly limited, it is usually 50 ⁇ m or less, and from the viewpoint of thinning the printed wiring board, it is preferably 25 ⁇ m or less, more preferably 15 ⁇ m or less, still more preferably 13 ⁇ m or less, and particularly preferably 10 ⁇ m. Below, it is most preferably 8 ⁇ m or less, and usually 1.0 ⁇ m or more, and may be 1.5 ⁇ m or more or 2.0 ⁇ m or more.
  • the resin sheet according to the present embodiment may be a sheet consisting only of a resin composition layer, or may be a sheet having a resin composition layer formed on a support.
  • the support may be removed from the insulating layer by peeling after the insulating layer is formed. It may be used as part of a wiring board or the like.
  • the support examples include plastic films, metal foils, release papers, etc.
  • Plastic films and metal foils are preferred.
  • Materials constituting the plastic film include, for example, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polycarbonates; acrylic resins such as polymethyl methacrylate (PMMA); cyclic polyolefins; triacetyl cellulose (TAC); polyether sulfide; polyether ketone; polyimide; and the like, preferably polyethylene terephthalate or polyethylene naphthalate.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polycarbonates acrylic resins such as polymethyl methacrylate (PMMA); cyclic polyolefins; triacetyl cellulose (TAC); polyether sulfide; polyether ketone; polyimide; and the like, preferably polyethylene terephthalate or polyethylene naphthalate.
  • TAC triace
  • the support may be subjected to matte treatment, corona treatment, or antistatic treatment on the surface to be bonded to the resin composition layer.
  • a release layer may be formed on the surface of the support that is to be bonded to the resin composition layer.
  • the mold release agent it is possible to appropriately select and use known mold release agents such as alkyd resins, polyolefin resins, urethane resins, silicone resins, and the like.
  • the thickness of the support is not particularly limited, it is preferably 5 to 75 ⁇ m, more preferably 10 to 60 ⁇ m.
  • the thickness of the entire support including the release layer is preferably within the above range.
  • the resin sheet according to this embodiment may contain other layers as necessary.
  • Other layers include, for example, protective films.
  • the protective film is usually provided on the surface of the resin composition layer that is not in contact with the support.
  • the thickness of the protective film is not particularly limited, and is, for example, 1 to 40 ⁇ m.
  • the method for producing the resin sheet is not particularly limited.
  • a resin varnish obtained by dissolving a resin composition in an organic solvent is applied onto a support using a die coater or the like, and dried to form a resin composition layer. method.
  • organic solvents examples include ketones such as acetone, methyl ethyl ketone (MEK) and cyclohexanone; esters such as ethyl acetate, butyl acetate and propylene glycol monomethyl ether acetate; carbitols such as cellosolve and butyl carbitol; toluene and xylene. dimethylformamide (DMF), N-methylpyrrolidone (NMP) and other amide solvents; An organic solvent may be used individually by 1 type, and may mix and use 2 or more types by arbitrary combinations and ratios.
  • ketones such as acetone, methyl ethyl ketone (MEK) and cyclohexanone
  • esters such as ethyl acetate, butyl acetate and propylene glycol monomethyl ether acetate
  • carbitols such as cellosolve and butyl carbitol
  • toluene and xylene
  • Drying may be carried out by known methods such as heating and blowing hot air.
  • the drying conditions are not particularly limited, but the resin composition layer is dried so that the content of the organic solvent is 10% by mass or less, preferably 5% by mass or less.
  • the resin composition layer is formed by drying at 50 to 150° C. for 3 to 10 minutes. can do.
  • the epoxy resin curing agent according to the third embodiment of the present invention contains a phenol carbonate resin (A)'.
  • the epoxy resin curing agent according to the present embodiment can be used as a curing agent for curing the epoxy resin (B) in the first embodiment of the present invention. It can also be used as a curing agent for curing epoxy resins.
  • the epoxy resin curing agent according to the present embodiment it is possible to obtain an epoxy resin cured product having a low dielectric constant, a low dielectric loss tangent and a high heat resistance.
  • the epoxy resin curing agent according to the present embodiment includes other components, such as a curing accelerator which is an optional component of the resin composition according to the first embodiment of the present invention, as long as the effect of the present invention is not impaired.
  • a solvent or the like may be contained.
  • the phenol carbonate resin (A)' is obtained by changing the viscosity average molecular weight (Mv) and the amount of terminal aromatic hydrocarbon groups of the phenol carbonate resin (A) in the first embodiment of the present invention to specific ranges. That is, elements other than the Mv range and the terminal aromatic hydrocarbon group amount range of the phenol carbonate resin (A) '(e.g., Mv measurement method, structural unit, carbonate equivalent, terminal hydroxyl group amount, glass transition temperature, and production method, etc.) are the same as those for the phenol carbonate resin (A), including preferred embodiments thereof. Therefore, the elements other than the Mv range and the terminal aromatic hydrocarbon group amount range of the phenol carbonate resin (A)' are as described in the above item ⁇ Phenol carbonate resin (A)>, and the description of the item to invoke.
  • Mv viscosity average molecular weight
  • the amount of terminal aromatic hydrocarbon groups of the phenol carbonate resin (A) in the first embodiment of the present invention to specific ranges.
  • the phenol carbonate resin (A)' has a viscosity average molecular weight (Mv) of 500 to 20,000.
  • the lower limit of Mv is preferably 1,000 or more, more preferably 1,500 or more, and even more preferably 2,000 or more.
  • Tg glass transition temperature
  • the upper limit of Mv of the phenol carbonate resin (A)' is preferably 10,000 or less, more preferably 8,000 or less.
  • the lower limit of the amount of terminal aromatic hydrocarbon groups in the phenol carbonate resin (A)' is not particularly limited, but is 95.0% by mass, preferably 96.0% by mass. Above, more preferably 97.0% by mass or more, still more preferably 98.0% by mass or more, particularly preferably 99.0% by mass or more. Most preferably, it is 99.5% by mass or more.
  • the upper limit of the amount of terminal aromatic hydrocarbon groups in the phenol carbonate resin (A)' is not particularly limited, and is usually 100% by mass or less.
  • the amount of terminal aromatic hydrocarbon groups of phenol carbonate resin (A)' is calculated by subtracting the amount of terminal hydroxyl groups from the total amount of terminal groups of phenol carbonate resin (A)'.
  • Viscosity average molecular weight (Mv) of phenol carbonate resin The viscosity average molecular weight (Mv) of the phenol carbonate resin is measured using methylene chloride as a solvent and using an Ubbelohde viscosity tube (manufactured by Moritomo Rika Kogyo Co., Ltd.) at 20 ° C.
  • Terminal hydroxyl group content of phenol carbonate resin was measured by a colorimetric method using titanium tetrachloride/acetic acid. Specifically, it was measured by the method described below. As a result, the amount of terminal hydroxyl groups measured by the colorimetric method using titanium tetrachloride/acetic acid in the examples can be measured.
  • terminal hydroxyl group amount in the polycarbonate resin composition was calculated by dividing the product of the measured absorbance and the factor by the concentration of the measurement sample.
  • a sample obtained by mixing the corresponding starting material dihydroxy compound according to the copolymerization ratio is prepared at a minimum of three concentrations, and from the data of the three or more points, After drawing a calibration curve, the amount of terminal hydroxyl groups is measured. Also, the detection wavelength is assumed to be 546 nm.
  • Weight average molecular weight (Mw) and number average molecular weight (Mn) of epoxy resin TSK Standard Polystyrene F-128 (Mw: 1,090,000, Mn: 1,030,000), F -10 (Mw: 106,000, Mn: 103,000), F-4 (Mw: 43,000, Mn: 42,700), F-2 (Mw: 17,200, Mn: 16,900), Calibration using A-5000 (Mw: 6,400, Mn: 6,100), A-2500 (Mw: 2,800, Mn: 2,700), A-300 (Mw: 453, Mn: 387) A line was drawn and the weight average molecular weight (Mw) and number average molecular weight (Mn) were measured as polystyrene conversion values.
  • Epoxy group/terminal hydroxyl group (weight of epoxy resin/epoxy equivalent)/(weight of phenol carbonate resin ⁇ amount of terminal hydroxyl group of phenol carbonate resin/17.0)
  • C-1 N,N'-dimethylaminopyridine (DMAP), 5 wt% toluene solution
  • Leveling agent S-651 Fluorosurfactant (nonionic type) manufactured by AGC Seimi Chemical Co., Ltd.
  • the pressure inside the glass reactor was reduced to about 100 Pa (0.75 Torr), and then the pressure was restored to atmospheric pressure with nitrogen, which was repeated three times to replace the inside of the reactor with nitrogen.
  • the external temperature of the reactor was set to 220° C., and the internal temperature of the reactor was gradually increased to dissolve the raw material mixture.
  • the stirrer was then rotated at 100 rpm.
  • the pressure inside the reactor was reduced from 101.3 kPa (760 Torr) to 13.0 kPa (760 Torr) in absolute pressure over 40 minutes while distilling off the phenol that was a by-product of the oligomerization reaction of the dihydroxy compound and DPC that took place inside the reactor.
  • the pressure was reduced to 3 kPa (100 Torr).
  • the pressure in the reactor was maintained at 13.3 kPa, and transesterification was carried out for 80 minutes while further distilling off phenol. Thereafter, the internal pressure of the reactor was reduced from 13.3 kPa (100 Torr) to 399 Pa (3 Torr) in terms of absolute pressure over 40 minutes to remove distilled phenol out of the system. Furthermore, the absolute pressure in the reactor was reduced to 70 Pa (about 0.5 Torr) to carry out a polycondensation reaction. The polycondensation reaction was terminated when the stirrer of the reactor reached a predetermined stirring power.
  • the phenol carbonate resin (A-1) was extracted from the reactor into an aluminum container, and the solidified (A-1) was pulverized.
  • Table 1 shows the Mv, terminal hydroxyl group content, terminal aromatic hydrocarbon group content, carbonate equivalent weight, and Tg of the phenol carbonate resin (A-1).
  • the pressure inside the glass reactor was reduced to about 100 Pa (0.75 Torr), and then the pressure was restored to atmospheric pressure with nitrogen, which was repeated three times to replace the inside of the reactor with nitrogen.
  • the external temperature of the reactor was set to 220° C., and the internal temperature of the reactor was gradually increased to dissolve the raw material mixture.
  • the stirrer was then rotated at 100 rpm.
  • the pressure inside the reactor was reduced from 101.3 kPa (760 Torr) to 13.0 kPa (760 Torr) in absolute pressure over 40 minutes while distilling off the phenol that was a by-product of the oligomerization reaction of the dihydroxy compound and DPC that took place inside the reactor.
  • the pressure was reduced to 3 kPa (100 Torr).
  • the pressure in the reactor was maintained at 13.3 kPa, and transesterification was carried out for 80 minutes while further distilling off phenol.
  • the reactor external temperature was raised to 260° C., and the reactor internal pressure was reduced from 13.3 kPa (100 Torr) to 399 Pa (3 Torr) in absolute pressure over 40 minutes to remove the distilled phenol out of the system.
  • the absolute pressure in the reactor was reduced to 70 Pa (about 0.5 Torr) to carry out a polycondensation reaction. The polycondensation reaction was terminated when the stirrer of the reactor reached a predetermined stirring power.
  • the phenol carbonate resin (A-2) was extracted from the reactor into an aluminum container, and the solidified (A-2) was pulverized.
  • Table 1 shows the Mv, terminal hydroxyl group content, terminal aromatic hydrocarbon group content, carbonate equivalent weight, and Tg of the phenol carbonate resin (A-2).
  • Table 1 shows the Mv, terminal hydroxyl group content, terminal aromatic hydrocarbon group content, carbonate equivalent weight, and Tg of the obtained phenol carbonate resin (A-3).
  • Example 2 The method described in Example 2 was followed except that a 4% by mass aqueous solution of cesium carbonate was added so that the amount of cesium carbonate was 60 ⁇ mol per 1 mol of all dihydroxy compounds to prepare a raw material mixture.
  • Table 1 shows the Mv, terminal hydroxyl group content, terminal aromatic hydrocarbon group content, carbonate equivalent weight, and Tg of the obtained phenol carbonate resin (A-4).
  • Example 2 60.71 g (about 0.196 mol), 1,1′-bi-2-naphthol (BN) 56.00 g (about 0.196 mol), DPC 108.93 g (about 0.5085 mol), and cesium carbonate as a catalyst
  • BN 1,1′-bi-2-naphthol
  • DPC 108.93 g about 0.5085 mol
  • cesium carbonate was 64 ⁇ mol per 1 mol of all dihydroxy compounds to prepare a raw material mixture.
  • Table 1 shows the Mv, terminal hydroxyl group content, terminal aromatic hydrocarbon group content, carbonate equivalent weight, and Tg of the obtained phenol carbonate resin (A-5).
  • Example 2 60.71 g (about 0.196 mol), 1,1′-bi-2-naphthol (BN) 56.00 g (about 0.196 mol), DPC 108.93 g (about 0.5085 mol), and cesium carbonate as a catalyst
  • BN 1,1′-bi-2-naphthol
  • DPC 108.93 g about 0.5085 mol
  • cesium carbonate was 64 ⁇ mol per 1 mol of all dihydroxy compounds to prepare a raw material mixture.
  • Table 1 shows the Mv, terminal hydroxyl group content, terminal aromatic hydrocarbon group content, carbonate equivalent weight, and Tg of the obtained phenol carbonate resin (A-6).
  • the pressure inside the glass reactor was reduced to about 100 Pa (0.75 Torr), and then the pressure was restored to atmospheric pressure with nitrogen, which was repeated three times to replace the inside of the reactor with nitrogen.
  • the external temperature of the reactor was set to 220° C., and the internal temperature of the reactor was gradually increased to dissolve the raw material mixture.
  • the stirrer was then rotated at 100 rpm.
  • the pressure inside the reactor was reduced from 101.3 kPa (760 Torr) to 13.0 kPa (760 Torr) in absolute pressure over 40 minutes while distilling off the phenol that was a by-product of the oligomerization reaction of the dihydroxy compound and DPC that took place inside the reactor.
  • the pressure was reduced to 3 kPa (100 Torr).
  • the pressure in the reactor was maintained at 13.3 kPa, and transesterification was carried out for 80 minutes while further distilling off phenol.
  • the temperature outside the reactor was raised to 280° C.
  • the pressure inside the reactor was reduced from 13.3 kPa (100 Torr) to 399 Pa (3 Torr) in absolute pressure over 40 minutes, and the distilled phenol was removed from the system.
  • the absolute pressure in the reactor was reduced to 70 Pa (about 0.5 Torr) to carry out a polycondensation reaction. The polycondensation reaction was terminated when the stirrer of the reactor reached a predetermined stirring power.
  • the phenol carbonate resin (A-7) was extracted from the reactor into an aluminum container, and the solidified (A-7) was pulverized.
  • Table 1 shows the Mv, terminal hydroxyl group content, terminal aromatic hydrocarbon group content, carbonate equivalent weight, and Tg of the obtained phenol carbonate resin (A-7).

Abstract

This resin composition contains a phenol carbonate resin (A) and an epoxy resin (B), wherein the molar ratio (epoxy groups / terminal hydroxyl groups) of the epoxy groups of the epoxy resin (B) to the terminal hydroxyl groups of the phenol carbonate resin (A) is 3.0-100,000.

Description

樹脂組成物、硬化物、樹脂シート、絶縁層、電気・電子部品、プリント配線板、及びエポキシ樹脂用硬化剤Resin compositions, cured products, resin sheets, insulating layers, electrical/electronic components, printed wiring boards, and curing agents for epoxy resins
 本発明は、フェノールカーボネート樹脂及びエポキシ樹脂を含む樹脂組成物に関する。さらには、当該樹脂組成物の硬化物、当該樹脂組成物を用いて得られる樹脂シート及び絶縁層、当該絶縁層を備える電気・電子部品及びプリント配線板、並びにフェノールカーボネート樹脂を含むエポキシ樹脂用硬化剤に関する。 The present invention relates to a resin composition containing a phenol carbonate resin and an epoxy resin. Furthermore, a cured product of the resin composition, a resin sheet and an insulating layer obtained using the resin composition, an electric/electronic component and a printed wiring board provided with the insulating layer, and a curing for an epoxy resin containing a phenol carbonate resin Regarding agents.
 近年、電気・電子機器に使用される多層回路基板は、機器の小型化、軽量化及び高機能化が進んでおり、更なる多層化、高密度化、薄型化、軽量化等の成形加工性の向上と、車載等の過酷な環境下での信頼性が要求されている。加えて各種電子機器における信号の高速化、高周波数化が進んでおり、伝送損失の小さい基板が求められている。そのため基板に使用される樹脂組成物にも耐熱性、接着性、耐水性、低誘電率、低誘電正接、機械強度、製膜性、低線膨張、難燃性等の様々な特性をバランス良く向上させる技術が求められている。 In recent years, multilayer circuit boards used in electrical and electronic equipment have become smaller, lighter, and more functional. and reliability in harsh environments such as in-vehicle use. In addition, the speed and frequency of signals in various electronic devices are increasing, and there is a demand for substrates with low transmission loss. Therefore, the resin composition used for the substrate also has a well-balanced variety of properties such as heat resistance, adhesiveness, water resistance, low dielectric constant, low dielectric loss tangent, mechanical strength, film formability, low linear expansion, and flame resistance. There is a need for improved technology.
 多層回路基板に使用される樹脂組成物として、エポキシ樹脂を含む樹脂組成物が知られており、この場合、エポキシ樹脂は一般的に硬化剤と組み合わせて使用されるため、様々な要求特性を実現するためには適切な硬化系の選択が重要である。特に、エポキシ樹脂を多層回路基板の積層材料に使用する場合は、低誘電率及び低誘電正接を実現できることが必要である。硬化剤の中でも従来知られている代表的な硬化剤としては、活性エステル類がある。エポキシ樹脂と活性エステル類の硬化反応においては、2級水酸基等の極性官能基を発生させずに架橋することができる。 A resin composition containing an epoxy resin is known as a resin composition used for multilayer circuit boards. In this case, the epoxy resin is generally used in combination with a curing agent, so various required properties can be achieved. Therefore, it is important to select an appropriate curing system. In particular, when an epoxy resin is used as a lamination material for a multilayer circuit board, it must be able to achieve a low dielectric constant and a low dielectric loss tangent. Active esters are known as typical curing agents among curing agents. In the curing reaction of the epoxy resin and active esters, crosslinking can be achieved without generating polar functional groups such as secondary hydroxyl groups.
 一方、非特許文献1には、2官能エポキシ樹脂のエポキシ基とジフェニルカーボネートのカーボネート基との反応によるポリカーボネートの合成法が開示されており、この方法を用いれば、活性エステル類と同様、反応により2級水酸基等の極性官能基を発生させずに硬化物を作成することができる。 On the other hand, Non-Patent Document 1 discloses a method for synthesizing a polycarbonate by reacting an epoxy group of a bifunctional epoxy resin and a carbonate group of diphenyl carbonate. A cured product can be produced without generating a polar functional group such as a secondary hydroxyl group.
 特許文献1には、エポキシ樹脂硬化剤として使用でき、且つ低誘電率及び低誘電正接の硬化物が得られるフェノールカーボネート樹脂として、炭酸ジフェニル、トリシクロデカンジメタノール及びビスフェノールFを使用したカーボネート樹脂を合成した例が記載されている。また、当該カーボネート樹脂とエポキシ樹脂とを含有する樹脂ワニスを調製し、当該樹脂ワニスを繊維質基材に含浸して硬化することにより積層板を得たことも記載されている。 In Patent Document 1, a carbonate resin using diphenyl carbonate, tricyclodecanedimethanol and bisphenol F is disclosed as a phenol carbonate resin that can be used as an epoxy resin curing agent and provides a cured product with a low dielectric constant and a low dielectric loss tangent. A synthesized example is described. It also describes that a laminate was obtained by preparing a resin varnish containing the carbonate resin and the epoxy resin, impregnating the resin varnish into a fibrous base material, and curing the resin varnish.
 また、特許文献2には、エポキシ樹脂、硬化剤、ポリカーボネート樹脂及び無機充填材を含む樹脂組成物が開示されている。 In addition, Patent Document 2 discloses a resin composition containing an epoxy resin, a curing agent, a polycarbonate resin and an inorganic filler.
特開2019-89965号公報JP 2019-89965 A 特開2019-35056号公報JP 2019-35056 A
 近年、電気・電子回路用積層板の複雑化や小規模化が進んでおり、その電気・電子回路用積層板を長時間使用することに伴い、高温状態下での継続使用にも耐えられるように、使用する材料、すなわち、エポキシ樹脂や硬化剤を含む樹脂組成物及びそれからなる硬化物についても、従来よりも高い耐熱性が求められている。 In recent years, laminates for electrical and electronic circuits have become more complex and smaller in size. Furthermore, materials used, that is, resin compositions containing epoxy resins and curing agents and cured products thereof are also required to have higher heat resistance than ever before.
 硬化剤が、活性エステル類の場合はエステル基1当量に対しエポキシ基1当量の反応であるが、カーボネート化合物の場合はカーボネート基1当量に対しエポキシ基2当量の反応が可能なので、架橋密度が高くなり、原理的には高Tgの硬化物を得ることができる。 When the curing agent is an active ester, one equivalent of the ester group reacts with one equivalent of the epoxy group. However, in the case of a carbonate compound, one equivalent of the carbonate group reacts with two equivalents of the epoxy group. In principle, a cured product with a high Tg can be obtained.
 特許文献1に記載のフェノールカーボネート樹脂及び特許文献2に記載のポリカーボネート樹脂は、両末端が水酸基であるモノマーの重合体であり、水酸基末端が高い。そのため、エポキシ樹脂をフェノールカーボネート樹脂又はポリカーボネート樹脂で架橋することにより、ある程度誘電率及び誘電正接の低い硬化物が得られる。しかしながら、エポキシ基と水酸基との反応では、2級水酸基が発生するため、得られる硬化物の誘電率及び誘電正接が低くならないことがあった。
 また、これらの特許文献に記載の技術により得られる硬化物は、吸水率が高いため、耐湿性に問題があった。加えて、硬化剤であるフェノールカーボネート樹脂やポリカーボネート樹脂の溶剤溶解性は十分に高いとはいえず、エポキシ樹脂組成物の成形加工性も不十分であった。
The phenol carbonate resin described in Patent Document 1 and the polycarbonate resin described in Patent Document 2 are polymers of monomers having hydroxyl groups at both ends, and the hydroxyl group ends are high. Therefore, by cross-linking an epoxy resin with a phenol carbonate resin or a polycarbonate resin, a cured product having a relatively low dielectric constant and dielectric loss tangent can be obtained. However, since the reaction between the epoxy group and the hydroxyl group generates a secondary hydroxyl group, the dielectric constant and dielectric loss tangent of the resulting cured product may not be lowered.
In addition, the cured products obtained by the techniques described in these patent documents have a problem of moisture resistance due to their high water absorption. In addition, the solvent solubility of the phenol carbonate resin and polycarbonate resin used as curing agents is not sufficiently high, and the moldability of the epoxy resin composition is also insufficient.
 本発明の課題は、低誘電率、低誘電正接及び高耐熱性の硬化物を与える、フェノールカーボネート樹脂及びエポキシ樹脂を含む樹脂組成物を提供することである。また、本発明の他の課題は、該樹脂組成物の硬化物並びに該樹脂組成物を用いた電気・電子部品及びプリント配線板を提供することである。本発明のさらに他の課題は、フェノールカーボネート樹脂を含むエポキシ樹脂用硬化剤を提供することである。 An object of the present invention is to provide a resin composition containing a phenol carbonate resin and an epoxy resin that gives a cured product with a low dielectric constant, a low dielectric loss tangent and a high heat resistance. Another object of the present invention is to provide a cured product of the resin composition, and electric/electronic parts and printed wiring boards using the resin composition. Yet another object of the present invention is to provide a curing agent for epoxy resins comprising a phenolic carbonate resin.
 本発明者は上記課題を解決すべく鋭意検討した結果、エポキシ樹脂を含む樹脂組成物において、硬化剤として、粘度平均分子量が特定範囲内にあり、且つ特定構造を有する繰り返し単位を含むフェノールカーボネート樹脂を、フェノールカーボネート樹脂の末端水酸基に対するエポキシ樹脂のエポキシ基のモル比(エポキシ基/末端水酸基)が、特定範囲内となるよう配合することによって、上記課題を解決できることを見出した。即ち本発明の要旨は以下に存する。 As a result of intensive studies to solve the above problems, the inventors of the present invention have found that, in a resin composition containing an epoxy resin, a phenol carbonate resin containing a repeating unit having a viscosity average molecular weight within a specific range and having a specific structure is used as a curing agent. The above problem can be solved by blending such that the molar ratio of the epoxy group of the epoxy resin to the terminal hydroxyl group of the phenol carbonate resin (epoxy group/terminal hydroxyl group) is within a specific range. That is, the gist of the present invention resides in the following.
〔1〕
 フェノールカーボネート樹脂(A)及びエポキシ樹脂(B)を含む樹脂組成物であって、
 前記フェノールカーボネート樹脂(A)の末端水酸基に対する前記エポキシ樹脂(B)のエポキシ基のモル比(エポキシ基/末端水酸基)が、3.0~100,000である、樹脂組成物。
〔2〕
 前記フェノールカーボネート樹脂(A)が、下記式(1)で表される繰り返し単位を含む、〔1〕に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000005

(式(1)中、A及びAは、それぞれ独立に下記式(2)又は(3)で表される基であり;Xは、直接結合、置換基を有していてもよい炭素数1~15の2価の炭化水素基、-O-、-S-、-SO-、-SO-、-CO-、-OCO-又は-COO-であり;n及びnは、それぞれ独立に1~50の整数である。)
Figure JPOXMLDOC01-appb-C000006

Figure JPOXMLDOC01-appb-C000007

(式(2)及び(3)中、Rは、それぞれ独立に炭素数1~12のアルキル基、炭素数7~12のアリールアルキル基、炭素数1~12のアルコキシ基、炭素数7~12のアリールアルコキシ基、炭素数6~12のアリール基、炭素数2~12のアルケニル基、炭素数8~12のアリールアルケニル基、炭素数2~12のアルキニル基、炭素数8~12のアリールアルキニル基、ハロゲン原子、水酸基、カルボキシ基、スルホン基、アミノ基、シアノ基又はニトロ基であり;pは、0~4の整数であり;qは、0~6の整数であり;*は、結合位置である。)
〔3〕
前記フェノールカーボネート樹脂(A)の粘度平均分子量(Mv)が、500~100,000である、〔1〕又は〔2〕に記載の樹脂組成物。
〔4〕
 前記フェノールカーボネート樹脂(A)が、さらに下記式(4)で表される繰り返し単位を含む、〔2〕に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000008

(式(4)中、A及びAは、それぞれ独立に前記式(1)中のAと同義であり;Yは、直接結合、置換基を有していてもよい炭素数6~15の2価の芳香族炭化水素基又は置換基を有していてもよい炭素数6~15の2価の複素芳香族炭化水素基であり;n及びnは、それぞれ独立に1~50の整数である。)
〔5〕
 前記フェノールカーボネート樹脂(A)のカーボネート当量が、100~10,000g/eqである、〔1〕~〔4〕のいずれかに記載の樹脂組成物。
〔6〕
 前記エポキシ樹脂(B)に対する前記フェノールカーボネート樹脂(A)の重量比が、0.01以上100以下である、〔1〕~〔5〕のいずれかに記載の樹脂組成物。
〔7〕
 さらに硬化促進剤(C)を含み、前記フェノールカーボネート樹脂(A)及び前記エポキシ樹脂(B)の合計100重量部に対する前記硬化促進剤(C)の含有量が、0.001~5重量部である、〔1〕~〔6〕のいずれかに記載の樹脂組成物。
〔8〕
 前記硬化促進剤(C)が、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、及び金属系硬化促進剤からなる群より選ばれる1種以上である、〔7〕に記載の樹脂組成物。
〔9〕
 〔1〕~〔8〕のいずれかに記載の樹脂組成物で形成された樹脂組成物層を有する、樹脂シート。
〔10〕
 〔1〕~〔8〕のいずれかに記載の樹脂組成物を硬化してなる、硬化物。
〔11〕
 〔1〕~〔8〕のいずれかに記載の樹脂組成物を硬化してなる、絶縁層。
〔12〕
 〔11〕に記載の絶縁層を有する、電気・電子部品。
〔13〕
 〔11〕に記載の絶縁層を有する、プリント配線板。
〔14〕
 フェノールカーボネート樹脂(A)’を含むエポキシ樹脂用硬化剤であって、
 前記フェノールカーボネート樹脂(A)’は、粘度平均分子量(Mv)が500~20,000であり、末端芳香族炭化水素基量が95質量%以上である、エポキシ樹脂用硬化剤。
[1]
A resin composition containing a phenol carbonate resin (A) and an epoxy resin (B),
A resin composition wherein the molar ratio of the epoxy groups of the epoxy resin (B) to the terminal hydroxyl groups of the phenol carbonate resin (A) (epoxy group/terminal hydroxyl group) is 3.0 to 100,000.
[2]
The resin composition according to [1], wherein the phenol carbonate resin (A) contains a repeating unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005

(In formula (1), A 1 and A 2 are each independently a group represented by the following formula (2) or (3); X is a direct bond, an optionally substituted carbon a divalent hydrocarbon group of numbers 1 to 15, -O-, -S-, -SO-, -SO 2 -, -CO-, -OCO- or -COO-; n 1 and n 2 are Each is independently an integer from 1 to 50.)
Figure JPOXMLDOC01-appb-C000006

Figure JPOXMLDOC01-appb-C000007

(In formulas (2) and (3), R is each independently an alkyl group having 1 to 12 carbon atoms, an arylalkyl group having 7 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, arylalkoxy group, aryl group having 6 to 12 carbon atoms, alkenyl group having 2 to 12 carbon atoms, arylalkenyl group having 8 to 12 carbon atoms, alkynyl group having 2 to 12 carbon atoms, arylalkynyl group having 8 to 12 carbon atoms group, halogen atom, hydroxyl group, carboxy group, sulfone group, amino group, cyano group or nitro group; p is an integer from 0 to 4; q is an integer from 0 to 6; * is a bond position.)
[3]
The resin composition according to [1] or [2], wherein the phenol carbonate resin (A) has a viscosity average molecular weight (Mv) of 500 to 100,000.
[4]
The resin composition according to [2], wherein the phenol carbonate resin (A) further contains a repeating unit represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000008

(In Formula (4), A 3 and A 4 are each independently synonymous with A 1 in Formula (1) above; Y is a direct bond and optionally has a substituent of 6 to 15 divalent aromatic hydrocarbon groups or optionally substituted divalent heteroaromatic hydrocarbon groups having 6 to 15 carbon atoms; n 3 and n 4 are each independently 1 to is an integer of 50.)
[5]
The resin composition according to any one of [1] to [4], wherein the phenol carbonate resin (A) has a carbonate equivalent of 100 to 10,000 g/eq.
[6]
The resin composition according to any one of [1] to [5], wherein the weight ratio of the phenol carbonate resin (A) to the epoxy resin (B) is from 0.01 to 100.
[7]
Furthermore, a curing accelerator (C) is included, and the content of the curing accelerator (C) with respect to a total of 100 parts by weight of the phenol carbonate resin (A) and the epoxy resin (B) is 0.001 to 5 parts by weight. The resin composition according to any one of [1] to [6].
[8]
[7], wherein the curing accelerator (C) is at least one selected from the group consisting of phosphorus-based curing accelerators, amine-based curing accelerators, imidazole-based curing accelerators, and metal-based curing accelerators. of the resin composition.
[9]
A resin sheet having a resin composition layer formed of the resin composition according to any one of [1] to [8].
[10]
A cured product obtained by curing the resin composition according to any one of [1] to [8].
[11]
An insulating layer obtained by curing the resin composition according to any one of [1] to [8].
[12]
An electric/electronic component comprising the insulating layer of [11].
[13]
A printed wiring board having the insulating layer according to [11].
[14]
An epoxy resin curing agent containing a phenol carbonate resin (A)',
The phenol carbonate resin (A)' is an epoxy resin curing agent having a viscosity average molecular weight (Mv) of 500 to 20,000 and a terminal aromatic hydrocarbon group content of 95% by mass or more.
 本発明によれば、低誘電率、低誘電正接及び高耐熱性の硬化物を与える、フェノールカーボネート樹脂及びエポキシ樹脂を含む樹脂組成物を提供することができる。また、該樹脂組成物を用い、硬化物、電気・電子部品及びプリント配線板を提供することができる。さらに、フェノールカーボネート樹脂を含むエポキシ樹脂用硬化剤を提供することができる。 According to the present invention, it is possible to provide a resin composition containing a phenol carbonate resin and an epoxy resin that gives a cured product with a low dielectric constant, a low dielectric loss tangent and a high heat resistance. Moreover, using the resin composition, it is possible to provide a cured product, an electrical/electronic component, and a printed wiring board. Further, it is possible to provide an epoxy resin curing agent containing a phenol carbonate resin.
 以下に本発明の実施形態を詳細に説明するが、以下の説明は本発明の実施の形態の一例であり、本発明はその要旨を超えない限り、以下の記載内容に限定されるものではない。
 なお、本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いるものとする。
Embodiments of the present invention will be described in detail below, but the following description is an example of the embodiments of the present invention, and the present invention is not limited to the following description unless it exceeds the gist of the present invention. .
In addition, when the expression "~" is used in this specification, it is used as an expression including numerical values or physical property values before and after it.
 なお、本発明の技術分野において、“エポキシ樹脂”としては、繰り返し構造を含むポリマー及び単分子構造のエポキシ化合物(すなわち、非ポリマー化合物)があり、いずれも「エポキシ樹脂」と表現され、販売されることがある。また、2種以上のエポキシ樹脂の混合物を、単に「エポキシ樹脂」と呼称することもある。本明細書においても、「エポキシ樹脂」は、繰り返し構造を含むポリマー、単分子構造のエポキシ化合物及び2種以上のエポキシ樹脂の混合物のいずれをも意味するものとする。 In the technical field of the present invention, the term "epoxy resin" includes polymers containing repeating structures and epoxy compounds with a monomolecular structure (i.e., non-polymeric compounds), both of which are expressed as "epoxy resins" and are commercially available. There is something. Also, a mixture of two or more epoxy resins may be simply referred to as an "epoxy resin". Also in this specification, the term "epoxy resin" means any of a polymer containing a repeating structure, an epoxy compound having a monomolecular structure, and a mixture of two or more epoxy resins.
[樹脂組成物]
 本発明の第1の実施形態に係る樹脂組成物は、フェノールカーボネート樹脂(A)及びエポキシ樹脂(B)を含む樹脂組成物であって、該フェノールカーボネート樹脂(A)の末端水酸基に対する該エポキシ樹脂(B)のエポキシ基のモル比(エポキシ基/末端水酸基)が3.0~100,000であることを特徴とする。
[Resin composition]
The resin composition according to the first embodiment of the present invention is a resin composition containing a phenol carbonate resin (A) and an epoxy resin (B), wherein the epoxy resin for the terminal hydroxyl group of the phenol carbonate resin (A) It is characterized in that the epoxy group molar ratio (epoxy group/terminal hydroxyl group) of (B) is from 3.0 to 100,000.
 本実施形態に係る樹脂組成物が低誘電率、低誘電正接及び高耐熱性の硬化物を与える理由は、十分に明らかではないが、次のようなメカニズムに起因すると推定される。
 つまり、本実施形態に係る樹脂組成物は、フェノールカーボネート樹脂の末端水酸基に対するエポキシ樹脂のエポキシ基のモル比(エポキシ基/末端水酸基)がある一定範囲にあることによって、熱硬化時に下記Scheme1に表されるように、フェノールカーボネート樹脂のカーボネート基1当量に対してエポキシ樹脂のエポキシ基が2当量反応し、2級水酸基を発生させずに高密度の架橋構造を形成すると考えられる。そして、この架橋構造を硬化物中により多く形成させることができることによって、低誘電率、低誘電正接及び高耐熱性の硬化物が得られると考えられる。
Although the reason why the resin composition according to the present embodiment provides a cured product with a low dielectric constant, a low dielectric loss tangent and a high heat resistance is not sufficiently clear, it is presumed to be due to the following mechanism.
That is, the resin composition according to the present embodiment has a molar ratio of the epoxy group of the epoxy resin to the terminal hydroxyl group of the phenol carbonate resin (epoxy group/terminal hydroxyl group) within a certain range, so that the resin composition shown in Scheme 1 below at the time of heat curing. It is believed that two equivalents of the epoxy groups of the epoxy resin react with one equivalent of the carbonate groups of the phenol carbonate resin to form a high-density crosslinked structure without generating secondary hydroxyl groups. It is believed that a cured product with a low dielectric constant, a low dielectric loss tangent and a high heat resistance can be obtained by forming more of this crosslinked structure in the cured product.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
<フェノールカーボネート樹脂(A)>
 本実施形態に係る樹脂組成物において、フェノールカーボネート樹脂(A)の末端水酸基に対するエポキシ樹脂(B)のエポキシ基とのモル比(エポキシ基/末端水酸基)は、3.0~100,000である。当該モル比の下限は、エポキシ基とカーボネート基の反応性の点で、好ましくは15以上、より好ましくは30以上、さらに好ましくは60以上、さらにより好ましくは100以上、特に好ましくは130以上、殊更に好ましくは140以上、最も好ましくは150以上である。また、当該モル比の上限は、硬化物の耐熱性の点で、好ましくは2,500以下、より好ましくは1,500以下、さらに好ましくは1,000以下である。
<Phenol carbonate resin (A)>
In the resin composition according to the present embodiment, the molar ratio of the epoxy group of the epoxy resin (B) to the terminal hydroxyl group of the phenol carbonate resin (A) (epoxy group/terminal hydroxyl group) is 3.0 to 100,000. . The lower limit of the molar ratio is preferably 15 or more, more preferably 30 or more, still more preferably 60 or more, still more preferably 100 or more, particularly preferably 130 or more, particularly preferably 130 or more, in terms of reactivity between the epoxy group and the carbonate group. is preferably 140 or more, most preferably 150 or more. Moreover, the upper limit of the molar ratio is preferably 2,500 or less, more preferably 1,500 or less, and still more preferably 1,000 or less in terms of heat resistance of the cured product.
 本実施形態に係る樹脂組成物中のフェノールカーボネート樹脂(A)は、粘度平均分子量(Mv)が500~100,000であることが好ましい。Mvの下限は、より好ましくは、1,000以上であり、さらに好ましくは1,500以上であり、特に好ましくは2,000以上である。フェノールカーボネート樹脂(A)のMvを上記下限以上とすることにより、樹脂組成物の硬化物のガラス転移温度(Tg)が高くなり、また硬化反応時にフェノールカーボネート樹脂(A)が副反応を起こしにくくなる傾向にある。一方、フェノールカーボネート樹脂(A)のMvの上限は、より好ましくは50,000以下であり、さらに好ましくは20,000以下であり、特に好ましくは10,000以下であり、最も好ましくは8,000以下である。フェノールカーボネート樹脂(A)のMvが上記上限以下とすることにより、溶剤溶解性が高くなる傾向にある。 The phenol carbonate resin (A) in the resin composition according to this embodiment preferably has a viscosity average molecular weight (Mv) of 500 to 100,000. The lower limit of Mv is more preferably 1,000 or more, still more preferably 1,500 or more, and particularly preferably 2,000 or more. By setting the Mv of the phenol carbonate resin (A) to the above lower limit or more, the glass transition temperature (Tg) of the cured product of the resin composition is increased, and the phenol carbonate resin (A) is less likely to cause side reactions during the curing reaction. tend to become On the other hand, the upper limit of Mv of the phenol carbonate resin (A) is more preferably 50,000 or less, still more preferably 20,000 or less, particularly preferably 10,000 or less, and most preferably 8,000. It is below. By setting the Mv of the phenol carbonate resin (A) to the above upper limit or less, the solvent solubility tends to increase.
 なお、フェノールカーボネート樹脂(A)の粘度平均分子量(Mv)は、フェノールカーボネート樹脂(A)を塩化メチレンに溶解してウベローデ粘度計により20℃における固有粘度[η](単位:dL/g)を測定し、求めた固有粘度及びSchnellの粘度式(下記式)に基づいて算出される。
  [η]=1.23×10-4Mv0.83
The viscosity average molecular weight (Mv) of the phenol carbonate resin (A) is determined by dissolving the phenol carbonate resin (A) in methylene chloride and measuring the intrinsic viscosity [η] (unit: dL/g) at 20°C with an Ubbelohde viscometer. It is calculated based on the measured and obtained intrinsic viscosity and Schnell's viscosity formula (the following formula).
[η]=1.23×10 −4 Mv 0.83
 フェノールカーボネート樹脂(A)の構成単位は、特に限定されないが、下記式(1)で表される繰り返し単位を含むことが好ましい。 The constituent units of the phenol carbonate resin (A) are not particularly limited, but preferably contain repeating units represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(1)中、A及びAはそれぞれ独立に式(2)又は(3)で表される基であり、Xは直接結合、置換基を有していてもよい炭素数1~15の2価の炭化水素基、-O-、-S-、-SO-、-SO-、-CO-、-OCO-又は-COO-で表される基であり、n及びnはそれぞれ独立に1~50の整数である。 In formula (1), A 1 and A 2 are each independently a group represented by formula (2) or (3), X is a direct bond, optionally substituted, and has 1 to 15 carbon atoms a divalent hydrocarbon group of -O-, -S-, -SO-, -SO 2 -, -CO-, -OCO- or -COO-, wherein n 1 and n 2 are Each is independently an integer from 1 to 50.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(1)中のA及びAとしては、溶剤溶解性の向上という観点から、少なくとも一方が式(2)で表される基であり、双方とも式(2)で表される基であることがさらに好ましい。式(2)中のベンゼン環及び式(3)中のナフタレン環の結合手の位置は特に制限されず、式(2)の場合は1,2位、1,3位、1,4位等が挙げられるが、Tgが向上する傾向がある点で、1,4位であることが好ましい。また、式(3)の場合は1,2位、1,3位、1,4位、1,5位、1,6位、1,7位、1,8位、2,3位、2,6位、2,7位等が挙げられるが、Tgが向上する傾向がある点で、1,2位、1,4位、1,5位、2,6位、2,7位であることが好ましい。 At least one of A 1 and A 2 in formula (1) is a group represented by formula (2) from the viewpoint of improving solvent solubility, and both are groups represented by formula (2). It is even more preferable to have The positions of the bonds of the benzene ring in formula (2) and the naphthalene ring in formula (3) are not particularly limited. However, 1 and 4-positions are preferable in that Tg tends to be improved. In addition, in the case of formula (3), 1,2, 1,3, 1,4, 1,5, 1,6, 1,7, 1,8, 2,3, 2 , 6th, 2nd, 7th, etc., but 1st, 2nd, 1,4th, 1,5th, 2,6th, 2,7th in that Tg tends to improve is preferred.
 式(1)中のXは、直接結合、置換基を有していてもよい炭素数1~15の2価の炭化水素基、-O-、-S-、-SO-、-SO-、-CO-、-OCO-又は-COO-である。 X in formula (1) is a direct bond, an optionally substituted divalent hydrocarbon group having 1 to 15 carbon atoms, —O—, —S—, —SO—, —SO 2 — , -CO-, -OCO- or -COO-.
 炭素数1~15の2価の炭化水素基の例としては、-CH-、-CH(CH)-、-C(CH-、-CHPh-、-C(CH)Ph-、-CPh-、9,9-フルオレニレン基、1,1-シクロプロピレン基、1,1-シクロブチレン基、1,1-シクロペンチレン基、1,1-シクロヘキシレン基、3,3,5-トリメチル-1,1-シクロヘキシレン基、1,1-シクロドデシレン基、1,2-エチレン基、1,2-シクロプロピレン基、1,2-シクロブチレン基、1,2-シクロペンチレン基、1,2-シクロヘキシレン基、1,2-フェニレン基、1,3-プロピレン基、1,3-シクロブチレン基、1,3-シクロペンチレン基、1,3-シクロヘキシレン基、1,3-フェニレン基、1,4-ブチレン基、1,4-シクロヘキシレン基、1,4-フェニレン基等が挙げられる。なお、有していてもよい置換基としては、ハロゲン原子、水酸基、カルボキシ基、スルホン基、アミノ基、シアノ基、ニトロ基などがあり、好ましくは、フッ素原子である。 Examples of divalent hydrocarbon groups having 1 to 15 carbon atoms include -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -CHPh-, -C(CH 3 )Ph -, -CPh 2 -, 9,9-fluorenylene group, 1,1-cyclopropylene group, 1,1-cyclobutylene group, 1,1-cyclopentylene group, 1,1-cyclohexylene group, 3,3 ,5-trimethyl-1,1-cyclohexylene group, 1,1-cyclododecylene group, 1,2-ethylene group, 1,2-cyclopropylene group, 1,2-cyclobutylene group, 1,2-cyclopentylene group, 1,2-cyclohexylene group, 1,2-phenylene group, 1,3-propylene group, 1,3-cyclobutylene group, 1,3-cyclopentylene group, 1,3-cyclohexylene group, 1 ,3-phenylene group, 1,4-butylene group, 1,4-cyclohexylene group, 1,4-phenylene group and the like. Substituents which may be present include halogen atoms, hydroxyl groups, carboxy groups, sulfone groups, amino groups, cyano groups, nitro groups, etc., preferably fluorine atoms.
 Xとしては、Xに隣接するA及びA中の芳香環の回転自由度が低減されて耐薬品性が高まる点で、好ましくは直接結合、-CH-、-CH(CH)-、-C(CH-、-C(CF-、-CHPh-、-C(CH)Ph-、-CPh-、9,9-フルオレニレン基、1,1-シクロヘキシレン基、3,3,5-トリメチル-1,1-シクロヘキシレン基、1,1-シクロドデシレン基、-O-、-S-、-SO-、又は-CO-であり、より好ましくは直接結合、-CH-、-C(CH-、-C(CF-、9,9-フルオレニレン基、3,3,5-トリメチル-1,1-シクロヘキシレン基、又は1,1-シクロドデシレン基である。 X is preferably a direct bond, —CH 2 —, —CH(CH 3 )—, since the degree of freedom of rotation of the aromatic rings in A 1 and A 2 adjacent to X is reduced to increase chemical resistance. , -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, -CHPh-, -C(CH 3 )Ph-, -CPh 2 -, 9,9-fluorenylene group, 1,1-cyclohexylene 3,3,5-trimethyl-1,1-cyclohexylene group, 1,1-cyclododecylene group, —O—, —S—, —SO 2 —, or —CO—, more preferably a direct bond , —CH 2 —, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, 9,9-fluorenylene group, 3,3,5-trimethyl-1,1-cyclohexylene group, or 1, It is a 1-cyclododecylene group.
 式(1)中のn及びnは、それぞれ独立に1~50の整数であるが、溶剤溶解性及び他樹脂との相溶性が良くなる傾向がある点で、好ましくは1~30であり、より好ましくは1~10である。 n 1 and n 2 in formula (1) are each independently an integer of 1 to 50, but are preferably 1 to 30 in terms of solvent solubility and compatibility with other resins tending to improve. Yes, more preferably 1-10.
 上記式(2)及び(3)中、置換基であるRは、それぞれ独立に炭素数1~12のアルキル基、炭素数7~12のアリールアルキル基、炭素数1~12のアルコキシ基、炭素数7~12のアリールアルコキシ基、炭素数6~12のアリール基、炭素数2~12のアルケニル基、炭素数8~12のアリールアルケニル基、炭素数2~12のアルキニル基、炭素数8~12のアリールアルキニル基、ハロゲン原子、水酸基、カルボキシ基、スルホン基、アミノ基、シアノ基又はニトロ基であり;pは0~4の整数であり;qは0~6の整数である。なお、アルキル基、アルコキシ基及びアルケニル基は、直鎖状の基に限られず、分岐構造を有していてもよく、環状構造を有していてもよい。また、アルケニル基の二重結合及びアルキニル基の三重結合の位置及び数は特に限定されない。 In the above formulas (2) and (3), the substituents R are each independently an alkyl group having 1 to 12 carbon atoms, an arylalkyl group having 7 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a carbon arylalkoxy groups of 7 to 12 carbon atoms, aryl groups of 6 to 12 carbon atoms, alkenyl groups of 2 to 12 carbon atoms, arylalkenyl groups of 8 to 12 carbon atoms, alkynyl groups of 2 to 12 carbon atoms, and 8 to 12 carbon atoms. 12 arylalkynyl groups, halogen atoms, hydroxyl groups, carboxy groups, sulfone groups, amino groups, cyano groups or nitro groups; p is an integer of 0-4; q is an integer of 0-6. Alkyl groups, alkoxy groups and alkenyl groups are not limited to linear groups, and may have a branched structure or a cyclic structure. Moreover, the position and number of the double bond of the alkenyl group and the triple bond of the alkynyl group are not particularly limited.
 炭素数1~12のアルキル基としては、次のようなものが挙げられる。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基、n-ヘプチル基、シクロヘプチル基、メチルシクロヘキシル基、n-オクチル基、シクロオクチル基、n-ノニル基、3,3,5-トリメチルシクロヘキシル基、n-デシル基、シクロデシル基、n-ウンデシル基、n-ドデシル基、シクロドデシル基等である。 Examples of alkyl groups having 1 to 12 carbon atoms include the following. For example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, cyclopentyl group, n-hexyl group, isohexyl group, cyclohexyl group, n-heptyl group, cycloheptyl group, methylcyclohexyl group, n-octyl group, cyclooctyl group, n-nonyl group, 3,3,5-trimethylcyclohexyl group, n- decyl group, cyclodecyl group, n-undecyl group, n-dodecyl group, cyclododecyl group and the like.
 炭素数7~12のアリールアルキル基としては、次のようなものが挙げられる。例えば、ベンジル基、メチルベンジル基、ジメチルベンジル基、トリメチルベンジル基、ナフチルメチル基、フェネチル基、2-フェニルイソプロピル基等である。 Examples of arylalkyl groups having 7 to 12 carbon atoms include the following. Examples include benzyl group, methylbenzyl group, dimethylbenzyl group, trimethylbenzyl group, naphthylmethyl group, phenethyl group, 2-phenylisopropyl group and the like.
 炭素数1~12のアルコキシ基としては、次のようなものが挙げられる。例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペントキシ基、イソペントキシ基、ネオペントキシ基、tert-ペントキシ基、シクロペントキシ基、n-ヘキシロキシ基、イソヘキシロキシ基、シクロヘキシロキシ基、n-ヘプトキシ基、シクロヘプトキシ基、メチルシクロヘキシロキシ基、n-オクチロキシ基、シクロオクチロキシ基、n-ノニロキシ基、3,3,5-トリメチルシクロヘキシロキシ基、n-デシロキシ基、シクロデシロキシ基、n-ウンデシロキシ基、n-ドデシロキシ基、シクロドデシロキシ基等である。 Examples of alkoxy groups having 1 to 12 carbon atoms include the following. For example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, isopentoxy, neopentoxy, tert-pentoxy, cyclopentyl thoxy group, n-hexyloxy group, isohexyloxy group, cyclohexyloxy group, n-heptoxy group, cycloheptoxy group, methylcyclohexyloxy group, n-octyloxy group, cyclooctyloxy group, n-nonyloxy group, 3,3,5-trimethyl cyclohexyloxy group, n-decyloxy group, cyclodecyloxy group, n-undecyloxy group, n-dodecyloxy group, cyclododecyloxy group and the like.
 炭素数7~12のアリールアルキルオキシ基としては、次のようなものが挙げられる。例えば、ベンジロキシ基、メチルベンジロキシ基、ジメチルベンジロキシ基、トリメチルベンジロキシ基、ナフチルメトキシ基、フェネチロキシ基、2-フェニルイソプロポキシ基等である。 Examples of the arylalkyloxy group having 7 to 12 carbon atoms include the following. Examples include benzyloxy, methylbenzyloxy, dimethylbenzyloxy, trimethylbenzyloxy, naphthylmethoxy, phenethyloxy, 2-phenylisopropoxy and the like.
 炭素数6~12のアリール基としては、次のようなものが挙げられる。例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、エチルフェニル基、キシリル基、n-プロピルフェニル基、イソプロピルフェニル基、メシチル基、エチニルフェニル基、ナフチル基、ビニルナフチル基等である。 Examples of aryl groups having 6 to 12 carbon atoms include the following. For example, phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, ethylphenyl group, xylyl group, n-propylphenyl group, isopropylphenyl group, mesityl group, ethynylphenyl group, naphthyl group, vinylnaphthyl group etc.
 炭素数2~12のアルケニル基としては次のようなものが挙げられる。例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-メチルビニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1,3-ブタンジエニル基、シクロヘキセニル基、シクロヘキサジエニル基、シンナミル基、ナフチルビニル基等である。 Examples of alkenyl groups having 2 to 12 carbon atoms include the following. For example, vinyl group, 1-propenyl group, 2-propenyl group, 1-methylvinyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1,3-butandienyl group, cyclohexenyl group, cyclohexadienyl group groups, cinnamyl groups, naphthylvinyl groups, and the like.
 炭素数8~12のアリールアルケニル基としては次のようなものが挙げられる。例えば、スチリル基、シンナミル基、ナフチルビニル基等である。 Examples of arylalkenyl groups having 8 to 12 carbon atoms include the following. Examples include a styryl group, a cinnamyl group, a naphthylvinyl group, and the like.
 炭素数2~12のアルキニル基としては、次のようなものが挙げられる。例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基等である。 Examples of alkynyl groups having 2 to 12 carbon atoms include the following. Examples include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group and the like.
 炭素数8~12のアリールアルキニル基としては、次のようなものが挙げられる。例えば、フェニルエチニル基、ナフチルエチニル基等である。 Examples of arylalkynyl groups having 8 to 12 carbon atoms include the following. For example, phenylethynyl group, naphthylethynyl group and the like.
 置換基Rとしては、分子パッキングが良くなるため耐熱性が向上する傾向があるという観点から、好ましくは炭素数1~12にアルキル基であり、より好ましくは炭素数1~6のアルキル基であり、さらに好ましくはメチル基である。 The substituent R is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, from the viewpoint of improving heat resistance due to better molecular packing. , and more preferably a methyl group.
 pは、0~4の整数を表し、溶剤溶解性の向上及び硬化物のガラス転移温度(Tg)の上昇を両立できるという観点から、0~2であることが好ましい。pが1又は2のとき、誘電正接が低下する傾向があり、特に好ましい。 p represents an integer of 0 to 4, and is preferably 0 to 2 from the viewpoint of improving solvent solubility and increasing the glass transition temperature (Tg) of the cured product. When p is 1 or 2, the dielectric loss tangent tends to decrease, which is particularly preferred.
 qは、0~6の整数を表し、溶剤溶解性の向上及び硬化物のガラス転移温度(Tg)の上昇を両立できるという観点から、0~2であることが好ましい。qが1又は2のとき、誘電正接が低下する傾向があり、特に好ましい。 q represents an integer of 0 to 6, and is preferably 0 to 2 from the viewpoint of improving solvent solubility and increasing the glass transition temperature (Tg) of the cured product. When q is 1 or 2, the dielectric loss tangent tends to decrease, which is particularly preferred.
 式(2)及び式(3)中の芳香環に対するRの置換位置は、特に限定されないが、下記式で表される基であれば誘電正接が低下する傾向があり、特に好ましい。 The substitution position of R with respect to the aromatic ring in formulas (2) and (3) is not particularly limited, but a group represented by the following formula tends to reduce the dielectric loss tangent and is particularly preferred.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 フェノールカーボネート樹脂(A)が上記式(1)で表される繰り返し単位を含む場合、式(1)で表される繰り返し単位の存在割合は、特に限定されないが、フェノールカーボネート樹脂(A)を構成する全ての構成単位のうち、80mol%以上が好ましく、より好ましくは90mol%以上であり、さらに好ましくは95mol%以上であり、特に好ましくは100mol%である。
 フェノールカーボネート樹脂(A)は、その繰り返し単位が単一の構造の繰り返し単位からなるものであっても、式(1)で表される構造でも、それぞれ異なる複数の構造の繰り返し単位を含む共重合体でもよい。フェノールカーボネート樹脂(A)が共重合体の場合、フェノールカーボネート樹脂(A)は、式(1)で表される繰り返し単位及び式(1)で表される繰り返し単位とは異なる構造を有する下記式(4)で表される繰り返し単位を含むことがより好ましい。
When the phenol carbonate resin (A) contains the repeating unit represented by the above formula (1), the proportion of the repeating unit represented by the formula (1) is not particularly limited, but the phenol carbonate resin (A) is composed of 80 mol % or more, more preferably 90 mol % or more, still more preferably 95 mol % or more, and particularly preferably 100 mol %, of all the structural units.
The phenol carbonate resin (A) is a copolymer containing repeating units with a plurality of different structures, regardless of whether the repeating unit consists of repeating units with a single structure or the structure represented by formula (1). May be combined. When the phenol carbonate resin (A) is a copolymer, the phenol carbonate resin (A) is represented by the following formula having a structure different from the repeating unit represented by the formula (1) and the repeating unit represented by the formula (1) More preferably, it contains a repeating unit represented by (4).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(4)中、A及びAは、それぞれ独立に前記Aと同義であり;Yは、直接結合、置換基を有していてもよい炭素数6~15の2価の芳香族炭化水素基又は置換基を有していてもよい炭素数6~15の2価の複素芳香族炭化水素基であり;n及びnは、それぞれ独立に1~50の整数である(ただし、A、A、n及びnの組み合わせが式(1)中のA、A、n及びnの組み合わせと完全一致するものを除く)。 In formula (4), A 3 and A 4 are each independently synonymous with A 1 above; Y is a direct bond or an optionally substituted divalent aromatic having 6 to 15 carbon atoms a hydrocarbon group or an optionally substituted divalent heteroaromatic hydrocarbon group having 6 to 15 carbon atoms; n 3 and n 4 are each independently an integer of 1 to 50 (provided that , A 3 , A 4 , n 3 and n 4 completely match the combination of A 1 , A 2 , n 1 and n 2 in formula (1)).
 置換基を有していてもよい炭素数6~15の2価の芳香族炭化水素基又は置換基を有していてもよい炭素数6~15の2価の複素芳香族炭化水素基としては、フェニレン基、ナフチレン基、アントラセニレン基、2,7-フルオレニレン基、9,9-フルオレニレン基、ピリジレン基、チエニレン基、フラニレン基等が挙げられる。中でも、Tgが高くなり、誘電正接が低下する傾向がある点で、好ましくは9,9-フルオレニレン基である。 As an optionally substituted divalent aromatic hydrocarbon group having 6 to 15 carbon atoms or an optionally substituted divalent heteroaromatic hydrocarbon group having 6 to 15 carbon atoms, , phenylene group, naphthylene group, anthracenylene group, 2,7-fluorenylene group, 9,9-fluorenylene group, pyridylene group, thienylene group, furanylene group and the like. Among them, the 9,9-fluorenylene group is preferred because it tends to increase the Tg and decrease the dielectric loss tangent.
 n及びnは、それぞれ独立に1~50の整数であるが、溶剤溶解性及び他樹脂との相溶性が良くなる傾向がある点で、好ましくは1~30であり、より好ましくは1~10である。 n 3 and n 4 are each independently an integer of 1 to 50, preferably 1 to 30, more preferably 1, in that solvent solubility and compatibility with other resins tend to be improved. ~10.
 フェノールカーボネート樹脂(A)のカーボネート当量は特に限定されないが、好ましくは100g/eq以上、より好ましくは110g/eq以上、さらに好ましくは120g/eq以上、また、好ましくは10,000g/eq以下、より好ましくは5,000g/eq以下、さらに好ましくは1,000g/eq以下、特に好ましくは500g/eq以下である。フェノールカーボネート樹脂(A)のカーボネート当量を上記下限以上とすることにより、硬化収縮が小さくなる傾向があり、また、樹脂組成物の硬化物の耐衝撃性及び耐候性が向上する傾向にある。また、フェノールカーボネート樹脂(A)のカーボネート当量を上記上限以下とすることにより、樹脂組成物の硬化物の架橋密度が上がり、Tgが向上する傾向にある。 The carbonate equivalent of the phenol carbonate resin (A) is not particularly limited, but is preferably 100 g/eq or more, more preferably 110 g/eq or more, still more preferably 120 g/eq or more, and preferably 10,000 g/eq or less. It is preferably 5,000 g/eq or less, more preferably 1,000 g/eq or less, and particularly preferably 500 g/eq or less. When the carbonate equivalent of the phenol carbonate resin (A) is at least the above lower limit, curing shrinkage tends to decrease, and impact resistance and weather resistance of the cured product of the resin composition tend to improve. Further, by setting the carbonate equivalent weight of the phenol carbonate resin (A) to the above upper limit or less, the crosslink density of the cured product of the resin composition tends to increase and the Tg tends to improve.
 フェノールカーボネート樹脂(A)の末端水酸基量としては、特に限定されないが、好ましくは10ppm以上、より好ましくは50ppm以上、さらに好ましくは100ppm以上、また、好ましくは5,000ppm以下、より好ましくは1,000ppm以下、さらに好ましくは300ppm以下である。フェノールカーボネート樹脂(A)の末端水酸基量が上記下限以上であることにより、十分な硬化速度が得られ、上記上限以下であることにより、硬化物の誘電率及び誘電正接を低減することができる。フェノールカーボネート樹脂(A)の末端水酸基量は、後述する実施例で用いた比色定量法により測定することができる。 The amount of terminal hydroxyl groups in the phenol carbonate resin (A) is not particularly limited, but is preferably 10 ppm or more, more preferably 50 ppm or more, still more preferably 100 ppm or more, and preferably 5,000 ppm or less, more preferably 1,000 ppm. 300 ppm or less, more preferably 300 ppm or less. When the amount of terminal hydroxyl groups of the phenol carbonate resin (A) is at least the above lower limit, a sufficient curing rate can be obtained, and when it is at most the above upper limit, the dielectric constant and dielectric loss tangent of the cured product can be reduced. The terminal hydroxyl group content of the phenol carbonate resin (A) can be measured by the colorimetric method used in the examples described later.
 フェノールカーボネート樹脂(A)のガラス転移温度(Tg)としては、特に限定されないが、70℃以上が好ましく、より好ましくは100℃以上であり、さらに好ましくは120℃以上であり、また、通常250℃以下であり、200℃以下又は180℃以下であってもよい。フェノールカーボネート樹脂(A)のガラス転移温度が高くなるほど、硬化物のTgが向上する傾向にある。 The glass transition temperature (Tg) of the phenol carbonate resin (A) is not particularly limited, but is preferably 70°C or higher, more preferably 100°C or higher, still more preferably 120°C or higher, and usually 250°C. or less, and may be 200° C. or less or 180° C. or less. The higher the glass transition temperature of the phenol carbonate resin (A), the higher the Tg of the cured product.
 フェノールカーボネート樹脂(A)は、市販のものを用いてもよい。また製造する際は、従来公知の重合方法により製造することができる。 A commercially available phenol carbonate resin (A) may be used. Moreover, when manufacturing, it can manufacture by the conventionally well-known polymerization method.
 重合方法としては、ホスゲンを用いる溶液重合法、炭酸ジエステルとヒドロキシ化合物とを反応させる溶融重合法のいずれの方法でもよい。
 中でも、重合触媒の存在下に、前述した式(1)で表される構造を有するジヒドロキシ化合物、及び必要に応じて用いられるその他のジヒドロキシ化合物、例えば式(4)で表される構造を有するジヒドロキシ化合物を、炭酸ジエステルと反応させる溶融重合法が好ましい。
The polymerization method may be either a solution polymerization method using phosgene or a melt polymerization method in which a diester carbonate and a hydroxy compound are reacted.
Among them, in the presence of a polymerization catalyst, a dihydroxy compound having a structure represented by the above formula (1) and other dihydroxy compounds used as necessary, such as a dihydroxy compound having a structure represented by formula (4) Melt polymerization methods in which the compound is reacted with a diester carbonate are preferred.
 溶融重合法で用いられる炭酸ジエステルとしては、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。炭酸ジエステルとしては、例えば、芳香族カーボネート及び脂肪族カーボネートが挙げられる。芳香族カーボネートとしては、ジフェニルカーボネート;ジトリルカーボネート等の置換ジフェニルカーボネート;等が例示される。また、脂肪族カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ-t-ブチルカーボネート等のジアルキルカーボネート等が例示される。
 これらの中でも、芳香族カーボネートが好ましく、ジフェニルカーボネート又は置換ジフェニルカーボネートがより好ましく、ジフェニルカーボネートが特に好ましい。
As the carbonic acid diesters used in the melt polymerization method, one kind may be used alone, or two or more kinds may be mixed and used in an arbitrary combination and ratio. Carbonic acid diesters include, for example, aromatic carbonates and aliphatic carbonates. Examples of aromatic carbonates include diphenyl carbonate; substituted diphenyl carbonate such as ditolyl carbonate; and the like. Examples of aliphatic carbonates include dialkyl carbonates such as dimethyl carbonate, diethyl carbonate and di-t-butyl carbonate.
Among these, aromatic carbonates are preferred, diphenyl carbonate or substituted diphenyl carbonate is more preferred, and diphenyl carbonate is particularly preferred.
 前述した溶融重合法において、炭酸ジエステルは、反応に用いる式(1)で表されるジヒドロキシ化合物を含む全ジヒドロキシ化合物に対し、0.90~1.10のモル比で用いることが好ましく、0.96~1.04のモル比で用いることがさらに好ましい。
 溶融重合法において使用する炭酸ジエステルのモル比が過度に小さいと、製造されたポリカーボネート樹脂の末端水酸基が増加し、ポリマーの熱安定性が悪化し、また所望する高分子量体が得られない傾向がある。一方、使用する炭酸ジエステルのモル比が過度に大きいと、同一重合条件下ではエステル交換反応の速度が低下し、所望する粘度平均分子量のフェノールカーボネート樹脂(A)の製造が困難となる傾向がある。さらに、製造されたフェノールカーボネート樹脂(A)中の残存する炭酸ジエステル量が増加する傾向があり、残存炭酸ジエステルが、成形時又は成形品の臭気の原因となる傾向がある。
In the melt polymerization method described above, the diester carbonate is preferably used in a molar ratio of 0.90 to 1.10 with respect to all dihydroxy compounds including the dihydroxy compound represented by formula (1) used in the reaction. It is more preferred to use a molar ratio of 96-1.04.
If the molar ratio of the diester carbonate used in the melt polymerization method is too small, the number of terminal hydroxyl groups in the produced polycarbonate resin increases, the thermal stability of the polymer deteriorates, and there is a tendency that the desired high molecular weight product cannot be obtained. be. On the other hand, if the molar ratio of the diester carbonate used is excessively large, the rate of the transesterification reaction will decrease under the same polymerization conditions, making it difficult to produce the phenol carbonate resin (A) having the desired viscosity average molecular weight. . Furthermore, the amount of carbonic acid diester remaining in the produced phenol carbonate resin (A) tends to increase, and the residual carbonic acid diester tends to cause odor during molding or molded products.
 前述したように、本実施形態で使用するフェノールカーボネート樹脂(A)の製造方法において、炭酸ジエステルとしてジフェニルカーボネート等の芳香族カーボネートを使用することが好ましい。この場合、製造されるフェノールカーボネート樹脂(A)は、下記式(5)で表される末端基(以下、「フェニル基末端」と記すことがある。)に例示されるような芳香族炭化水素系末端基(以下、「以下、芳香族炭化水素基末端」と記すことがある。)を有する。フェノールカーボネート樹脂(A)の、芳香族炭化水素基末端の数(T1)の全末端数(T2)に対する比(T1/T2)は、好ましくは0.20以上、より好ましくは0.25以上、さらに好ましくは0.30以上であり、また、通常1.00以下である。
 芳香族炭化水素基末端数(T1)の全末端数(T2)に対する比(T1/T2)が過度に小さいと、重合反応温度や射出成形温度などが高温となる条件下において、着色が大きくなる虞がある。
As described above, in the method for producing the phenol carbonate resin (A) used in the present embodiment, it is preferable to use an aromatic carbonate such as diphenyl carbonate as the carbonic acid diester. In this case, the phenol carbonate resin (A) to be produced is an aromatic hydrocarbon exemplified by the terminal group represented by the following formula (5) (hereinafter sometimes referred to as "phenyl group terminal") system terminal group (hereinafter sometimes referred to as "aromatic hydrocarbon group terminal"). The ratio (T1/T2) of the number of aromatic hydrocarbon group terminals (T1) to the total number of terminals (T2) of the phenol carbonate resin (A) is preferably 0.20 or more, more preferably 0.25 or more, It is more preferably 0.30 or more, and usually 1.00 or less.
If the ratio (T1/T2) of the number of aromatic hydrocarbon group terminals (T1) to the total number of terminals (T2) is excessively small, coloration increases under conditions where the polymerization reaction temperature, injection molding temperature, etc. are high. There is fear.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 フェノールカーボネート樹脂の芳香族炭化水素基末端数(T1)の全末端数(T2)に対する比(T1/T2)を上述した範囲に調整する方法は、特に限定されないが、例えば、反応に用いる全ジヒドロキシ化合物に対する炭酸ジエステル量比を、所望の高分子量体が得られる範囲で調整する方法;重合反応後段で脱気により残存モノマーを反応系外に除去したり、重合反応後段での反応機の撹拌効率を上げるなどして反応速度を上げたりする方法;等が挙げられる。 The method for adjusting the ratio (T1/T2) of the number of aromatic hydrocarbon group terminals (T1) to the total number of terminals (T2) of the phenol carbonate resin within the above range is not particularly limited. A method of adjusting the carbonic acid diester amount ratio to the compound within the range in which the desired high molecular weight is obtained; and the like;
 フェノールカーボネート樹脂中の芳香族炭化水素基末端数(T1)の全末端数(T2)に対する比(T1/T2)は、NMR分光計にて、測定溶媒としてTMSを添加した重クロロホルムを使用し、H-NMRスペクトルの測定により算出することができる。 The ratio (T1/T2) of the number of aromatic hydrocarbon group terminals (T1) in the phenol carbonate resin to the total number of terminals (T2) was measured by an NMR spectrometer using heavy chloroform to which TMS was added as a measurement solvent. It can be calculated by measuring 1 H-NMR spectrum.
 溶融重合における重合触媒(エステル交換触媒)としては、アルカリ金属化合物及び/又はアルカリ土類金属化合物が使用される。アルカリ金属化合物及び/又はアルカリ土類金属化合物と共に、補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、アルカリ金属化合物及び/又はアルカリ土類金属化合物のみを使用することが特に好ましい。 Alkali metal compounds and/or alkaline earth metal compounds are used as polymerization catalysts (transesterification catalysts) in melt polymerization. Basic compounds such as basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds can be used together with the alkali metal compounds and/or alkaline earth metal compounds. Particular preference is given to using only alkali metal compounds and/or alkaline earth metal compounds.
 重合触媒として用いられるアルカリ金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、フェニル化ホウ素ナトリウム、フェニル化ホウ素カリウム、フェニル化ホウ素リチウム、フェニル化ホウ素セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩、2セシウム塩等が挙げられる。 Examples of alkali metal compounds used as polymerization catalysts include sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydrogen carbonate, cesium hydrogen carbonate, sodium carbonate, and potassium carbonate. , lithium carbonate, cesium carbonate, sodium acetate, potassium acetate, lithium acetate, cesium acetate, sodium stearate, potassium stearate, lithium stearate, cesium stearate, sodium borohydride, potassium borohydride, lithium borohydride, Cesium borohydride, sodium phenylborohydride, potassium phenylide, lithium borophenylide, cesium phenylide, sodium benzoate, potassium benzoate, lithium benzoate, cesium benzoate, disodium hydrogen phosphate, hydrogen phosphate dipotassium, dilithium hydrogen phosphate, dicesium hydrogen phosphate, disodium phenylphosphate, dipotassium phenylphosphate, dilithium phenylphosphate, dicesium phenylphosphate, alcoholates of sodium, potassium, lithium, cesium, phenolate, disodium salt, dipotassium salt, dilithium salt, dicesium salt of bisphenol A and the like.
 アルカリ土類金属化合物としては、例えば、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸ストロンチウム等が挙げられる。これらのアルカリ金属化合物及び/又はアルカリ土類金属化合物は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Examples of alkaline earth metal compounds include calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium hydrogen carbonate, barium hydrogen carbonate, magnesium hydrogen carbonate, strontium hydrogen carbonate, calcium carbonate, barium carbonate, and magnesium carbonate. , strontium carbonate, calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, strontium stearate and the like. One of these alkali metal compounds and/or alkaline earth metal compounds may be used alone, or two or more thereof may be used in any combination and ratio.
 アルカリ金属化合物及び/又はアルカリ土類金属化合物と併用される塩基性ホウ素化合物の具体例としては、テトラメチルホウ素、テトラエチルホウ素、テトラプロピルホウ素、テトラブチルホウ素、トリメチルエチルホウ素、トリメチルベンジルホウ素、トリメチルフェニルホウ素、トリエチルメチルホウ素、トリエチルベンジルホウ素、トリエチルフェニルホウ素、トリブチルベンジルホウ素、トリブチルフェニルホウ素、テトラフェニルホウ素、ベンジルトリフェニルホウ素、メチルトリフェニルホウ素、ブチルトリフェニルホウ素等のナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、バリウム塩、マグネシウム塩、ストロンチウム塩等が挙げられる。 Specific examples of basic boron compounds used in combination with alkali metal compounds and/or alkaline earth metal compounds include tetramethylboron, tetraethylboron, tetrapropylboron, tetrabutylboron, trimethylethylboron, trimethylbenzylboron, trimethylphenyl Sodium salts, potassium salts, lithium salts of boron, triethylmethylboron, triethylbenzylboron, triethylphenylboron, tributylbenzylboron, tributylphenylboron, tetraphenylboron, benzyltriphenylboron, methyltriphenylboron, butyltriphenylboron, etc. , calcium salts, barium salts, magnesium salts, strontium salts and the like.
 塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ-n-プロピルホスフィン、トリイソプロピルホスフィン、トリ-n-ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィン、四級ホスホニウム塩等が挙げられる。 Examples of basic phosphorus compounds include triethylphosphine, tri-n-propylphosphine, triisopropylphosphine, tri-n-butylphosphine, triphenylphosphine, tributylphosphine, and quaternary phosphonium salts.
 塩基性アンモニウム化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド、ブチルトリフェニルアンモニウムヒドロキシド等が挙げられる。 Examples of basic ammonium compounds include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylphenylammonium hydroxide, triethylmethylammonium hydroxide, triethylbenzylammonium hydroxide, triethylphenylammonium hydroxide, tributylbenzylammonium hydroxide, tributylphenylammonium hydroxide, tetraphenylammonium hydroxide, benzyltriphenylammonium hydroxide, methyltriphenylammonium hydroxide, butyltriphenylammonium hydroxide and the like.
 アミン系化合物としては、例えば、4-アミノピリジン、2-アミノピリジン、N,N-ジメチル-4-アミノピリジン、4-ジエチルアミノピリジン、2-ヒドロキシピリジン、2-メトキシピリジン、4-メトキシピリジン、2-ジメチルアミノイミダゾール、2-メトキシイミダゾール、イミダゾール、2-メルカプトイミダゾール、2-メチルイミダゾール、アミノキノリン等が挙げられる。 Examples of amine compounds include 4-aminopyridine, 2-aminopyridine, N,N-dimethyl-4-aminopyridine, 4-diethylaminopyridine, 2-hydroxypyridine, 2-methoxypyridine, 4-methoxypyridine, 2 -dimethylaminoimidazole, 2-methoxyimidazole, imidazole, 2-mercaptoimidazole, 2-methylimidazole, aminoquinoline and the like.
 塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物も、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Basic compounds such as basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds may be used alone, or two or more may be used in any combination and ratio. .
 上記重合触媒の使用量は、アルカリ金属化合物及び/又はアルカリ土類金属化合物を用いる場合、反応に用いる全ジヒドロキシ化合物1モルに対して、金属換算量として、通常0.1~100μモルの範囲内で用い、好ましくは0.5~50μモルの範囲内であり、さらに好ましくは1~25μモルの範囲内である。重合触媒の使用量が過度に少ないと、所望の分子量のポリカーボネート樹脂を製造するのに必要な重合活性が得られない傾向がある。一方、重合触媒の使用量が過度に多いと、得られるフェノールカーボネート樹脂の色相が悪化し、副生成物が発生したりして流動性の低下やゲルの発生が多くなり、目標とする品質のフェノールカーボネート樹脂の製造が困難になる傾向がある。 When an alkali metal compound and/or an alkaline earth metal compound is used, the amount of the polymerization catalyst used is usually in the range of 0.1 to 100 μmol in terms of metal, per 1 mol of all the dihydroxy compounds used in the reaction. is preferably within the range of 0.5 to 50 μmol, more preferably within the range of 1 to 25 μmol. If the amount of the polymerization catalyst used is too small, there is a tendency that the polymerization activity required to produce a polycarbonate resin with a desired molecular weight cannot be obtained. On the other hand, if the amount of polymerization catalyst used is excessively large, the hue of the phenol carbonate resin obtained will deteriorate, and by-products will be generated, resulting in a decrease in fluidity and a large amount of gel formation. Phenolic carbonate resins tend to be difficult to manufacture.
 本実施形態で使用するフェノールカーボネート樹脂の製造に当たり、前述した構造式(1)で表される構造を有するジヒドロキシ化合物は、固体として供給してもよいし、加熱して溶融状態として供給してもよいし、水溶液として供給してもよい。 In the production of the phenol carbonate resin used in the present embodiment, the dihydroxy compound having the structure represented by the structural formula (1) may be supplied as a solid, or may be supplied in a molten state after being heated. Alternatively, it may be supplied as an aqueous solution.
 本実施形態において、式(1)で表される構造を有するジヒドロキシ化合物と脂環式ジヒドロキシ化合物と必要に応じて用いられるその他のジヒドロキシ化合物とを、重合触媒の存在下で炭酸ジエステルと反応させる方法は、通常、2段階以上の多段工程で実施される。
 具体的には、第1段目の反応は140~220℃、好ましくは150~200℃の温度で0.1~10時間、好ましくは0.5~3時間実施される。第2段目以降は、反応系の圧力を第1段目の圧力から徐々に下げながら反応温度を上げていき、同時に発生するフェノール等の芳香族モノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力が200Pa以下で、210~280℃の温度範囲のもとで重縮合反応を行う。
 重縮合反応における減圧において、温度と反応系内の圧力のバランスを制御することが重要である。特に、温度、圧力のどちらか一方でも早く過度に変化すると、未反応のモノマーが留出し、ジヒドロキシ化合物に対する炭酸ジエステルのモル比が変化し、重合度が低下することがある。
 反応の形式は、バッチ式、連続式、あるいはバッチ式と連続式の組み合わせのいずれの方法でもよい。
In the present embodiment, a method of reacting a dihydroxy compound having a structure represented by formula (1), an alicyclic dihydroxy compound, and optionally other dihydroxy compounds with a diester carbonate in the presence of a polymerization catalyst. is usually carried out in a multistage process of two or more stages.
Specifically, the first stage reaction is carried out at a temperature of 140 to 220° C., preferably 150 to 200° C., for 0.1 to 10 hours, preferably 0.5 to 3 hours. From the second stage onwards, the pressure in the reaction system is gradually lowered from the pressure in the first stage while the reaction temperature is raised. Specifically, the polycondensation reaction is carried out at a reaction system pressure of 200 Pa or less and a temperature range of 210 to 280°C.
In reducing the pressure in the polycondensation reaction, it is important to control the balance between the temperature and the pressure in the reaction system. In particular, if either the temperature or the pressure is rapidly changed excessively, unreacted monomer may be distilled off, the molar ratio of the diester carbonate to the dihydroxy compound may be changed, and the degree of polymerization may be lowered.
The form of the reaction may be batch type, continuous type, or a combination of batch type and continuous type.
[エポキシ樹脂(B)]
 エポキシ樹脂(B)は特に限定されないが、ビキシレノール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールC型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、トリメチロール型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂等が挙げられる。これらのうち、エポキシ樹脂(B)は、芳香族系のエポキシ樹脂であることが好ましく、20℃で液状の芳香族系のエポキシ樹脂であることがより好ましい。エポキシ樹脂は1種単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
[Epoxy resin (B)]
Epoxy resin (B) is not particularly limited, but bixylenol type epoxy resin, bisphenol A type epoxy resin, bisphenol C type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene. type epoxy resin, trisphenol type epoxy resin, naphthol novolak type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin, glycidylamine type epoxy Resins, glycidyl ester type epoxy resins, cresol novolac type epoxy resins, biphenyl type epoxy resins, linear aliphatic epoxy resins, epoxy resins having a butadiene structure, alicyclic epoxy resins, heterocyclic epoxy resins, spiro ring-containing epoxy resins , cyclohexane-type epoxy resin, cyclohexanedimethanol-type epoxy resin, naphthylene ether-type epoxy resin, trimethylol-type epoxy resin, tetraphenylethane-type epoxy resin, and the like. Among these, the epoxy resin (B) is preferably an aromatic epoxy resin, more preferably an aromatic epoxy resin that is liquid at 20°C. One type of epoxy resin may be used alone, or two or more types may be used together in any combination and ratio.
 エポキシ樹脂(B)に対するフェノールカーボネート樹脂(A)の重量比は、特に限定されないが、通常0.01以上、好ましくは0.1以上であり、反応性の観点から、より好ましくは0.2以上、さらに好ましくは0.4以上である。また、当該重量比は、好ましくは100以下であり、保存安定性の観点から、より好ましくは20以下、さらに好ましくは10以下、特に好ましくは5以下である。 The weight ratio of the phenol carbonate resin (A) to the epoxy resin (B) is not particularly limited, but is usually 0.01 or more, preferably 0.1 or more, and more preferably 0.2 or more from the viewpoint of reactivity. , more preferably 0.4 or more. The weight ratio is preferably 100 or less, more preferably 20 or less, still more preferably 10 or less, and particularly preferably 5 or less from the viewpoint of storage stability.
[硬化促進剤(C)]
 本実施形態に係る樹脂組成物は、硬化促進剤(C)を含んでもよい。硬化促進剤(C)としては、特に限定されないが、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、グアニジン系硬化促進剤、金属系硬化促進剤等が挙げられる。これらのうち、硬化促進剤(C)は、好ましくはリン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤又は金属系硬化促進剤であり、より好ましくはアミン系硬化促進剤である。硬化促進剤(C)は、1種単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
[Curing accelerator (C)]
The resin composition according to this embodiment may contain a curing accelerator (C). The curing accelerator (C) is not particularly limited, but includes phosphorus-based curing accelerators, amine-based curing accelerators, imidazole-based curing accelerators, guanidine-based curing accelerators, metal-based curing accelerators, and the like. Among these, the curing accelerator (C) is preferably a phosphorus curing accelerator, an amine curing accelerator, an imidazole curing accelerator or a metal curing accelerator, more preferably an amine curing accelerator. . The curing accelerator (C) may be used singly, or two or more thereof may be used in any combination and ratio.
 リン系硬化促進剤としては、例えば、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n-ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられ、トリフェニルホスフィン、テトラブチルホスホニウムデカン酸塩が好ましい。 Phosphorus curing accelerators include, for example, triphenylphosphine, phosphonium borate compounds, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, (4-methylphenyl)triphenylphosphonium thiocyanate. , tetraphenylphosphonium thiocyanate, and butyltriphenylphosphonium thiocyanate, and triphenylphosphine and tetrabutylphosphonium decanoate are preferred.
 アミン系硬化促進剤としては、例えば、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、4-ジメチルアミノピリジン(DMAP)、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン等が挙げられ、4-ジメチルアミノピリジン、1,8-ジアザビシクロ(5,4,0)-ウンデセンが好ましく、4-ジメチルアミノピリジンがより好ましい。 Examples of amine curing accelerators include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine (DMAP), benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, 1, 8-diazabicyclo(5,4,0)-undecene and the like can be mentioned, with 4-dimethylaminopyridine and 1,8-diazabicyclo(5,4,0)-undecene being preferred, and 4-dimethylaminopyridine being more preferred.
 イミダゾール系硬化促進剤としては、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられ、2-エチル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾールが好ましい。 Examples of imidazole curing accelerators include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- 2-phenylimidazolium trimellitate, 2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-undecyl imidazolyl-(1′)]-ethyl-s-triazine, 2,4-diamino-6-[2′-ethyl-4′-methylimidazolyl-(1′)]-ethyl-s-triazine, 2,4- Diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine isocyanurate, 2-phenylimidazole isocyanurate, 2-phenyl-4,5-dihydroxymethylimidazole, 2- Phenyl-4-methyl-5-hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole, 1-dodecyl-2-methyl-3-benzylimidazolium chloride, 2-methylimidazoline , 2-phenylimidazoline and the like, and adducts of imidazole compounds and epoxy resins, with 2-ethyl-4-methylimidazole and 1-benzyl-2-phenylimidazole being preferred.
 グアニジン系硬化促進剤としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられ、ジシアンジアミド、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンが好ましい。 Guanidine curing accelerators include, for example, dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1-(o-tolyl)guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, Tetramethylguanidine, Pentamethylguanidine, 1,5,7-triazabicyclo[4.4.0]dec-5-ene, 7-methyl-1,5,7-triazabicyclo[4.4.0] Dec-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-n-butylbiguanide, 1-n-octadecylbiguanide, 1,1-dimethylbiguanide, 1,1-diethylbiguanide, 1-cyclohexylbiguanide, 1 -allylbiguanide, 1-phenylbiguanide, 1-(o-tolyl)biguanide and the like, with dicyandiamide and 1,5,7-triazabicyclo[4.4.0]dec-5-ene being preferred.
 金属系硬化促進剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体;亜鉛(II)アセチルアセトナート等の有機亜鉛錯体;鉄(III)アセチルアセトナート等の有機鉄錯体;ニッケル(II)アセチルアセトナート等の有機ニッケル錯体;マンガン(II)アセチルアセトナート等の有機マンガン錯体;等が挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。 Examples of metal-based curing accelerators include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin. Specific examples of organometallic complexes include organocobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate; organocopper complexes such as copper (II) acetylacetonate; zinc (II) acetylacetonate; organic zinc complexes such as iron (III) acetylacetonate; organic iron complexes such as nickel (II) acetylacetonate; organic nickel complexes such as nickel (II) acetylacetonate; organic manganese complexes such as manganese (II) acetylacetonate; Examples of organic metal salts include zinc octoate, tin octoate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate.
 硬化促進剤(C)の含有量は特に限定されないが、前記フェノールカーボネート樹脂(A)及び前記エポキシ樹脂(B)の合計100重量部に対して、好ましくは0.001重量部以上であり、反応性の観点から、より好ましくは0.01重量部以上、さらに好ましくは0.1重量部以上である。また、好ましくは5重量部以下であり、樹脂組成物の保存安定性の観点から、より好ましくは3重量部以下であり、さらに好ましくは1重量部以下である。 Although the content of the curing accelerator (C) is not particularly limited, it is preferably 0.001 parts by weight or more with respect to a total of 100 parts by weight of the phenol carbonate resin (A) and the epoxy resin (B). From the viewpoint of properties, it is more preferably 0.01 parts by weight or more, and still more preferably 0.1 parts by weight or more. In addition, it is preferably 5 parts by weight or less, more preferably 3 parts by weight or less, still more preferably 1 part by weight or less from the viewpoint of storage stability of the resin composition.
[硬化剤]
 本実施形態に係る樹脂組成物は、本発明の効果を阻害しない範囲で、フェノールカーボネート樹脂(A)以外の硬化剤(以下、「その他の硬化剤」と称する。)を含んでいてもよい。その他の硬化剤としては特に限定されないが、フェノール系硬化剤、ナフトール系硬化剤、アミド系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル系硬化剤、カルボジイミド系硬化剤、及びフェノールカーボネート樹脂(A)以外のフェノールカーボネート樹脂等が挙げられる。これらのうち、活性エステル系硬化剤、フェノール系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル系硬化剤、及びカルボジイミド系硬化剤が好ましく、より好ましくは活性エステル系硬化剤、フェノール系硬化剤及びカルボジイミド系硬化剤である。その他の硬化剤は1種単独で用いてもよく、又は2種以上を任意の組み合わせ及び比率で併用してもよい。
[Curing agent]
The resin composition according to the present embodiment may contain a curing agent (hereinafter referred to as "other curing agent") other than the phenol carbonate resin (A) within a range that does not impair the effects of the present invention. Other curing agents are not particularly limited, but phenolic curing agents, naphthol curing agents, amide curing agents, active ester curing agents, benzoxazine curing agents, cyanate ester curing agents, carbodiimide curing agents, and Phenol carbonate resins other than phenol carbonate resin (A), etc. are mentioned. Among these, active ester curing agents, phenolic curing agents, benzoxazine curing agents, cyanate ester curing agents, and carbodiimide curing agents are preferred, and active ester curing agents, phenolic curing agents and carbodiimide are more preferred. system curing agent. Other curing agents may be used alone, or two or more of them may be used in any combination and ratio.
[溶剤]
 本実施形態に係る樹脂組成物は、塗膜形成時の取り扱い時に、樹脂組成物の粘度を適度に調整するために溶剤を配合し、希釈してもよい。本実施形態に係る樹脂組成物において、溶剤は、樹脂組成物の成形における取り扱い性、作業性を確保するために用いられ、その使用量には特に制限がない。なお、本明細書においては、「溶剤」という語と前述の「溶媒」という語をその使用形態により区別して用いるが、それぞれ独立して同種のものを用いても異なるものを用いてもよい。
[solvent]
The resin composition according to the present embodiment may be diluted by blending a solvent in order to appropriately adjust the viscosity of the resin composition during handling during coating film formation. In the resin composition according to the present embodiment, the solvent is used to ensure handleability and workability in molding the resin composition, and there is no particular limitation on the amount used. In the present specification, the term "solvent" and the term "solvent" are used separately according to the mode of use, but the same type or different types may be used independently.
 本実施形態に係る樹脂組成物が含み得る溶剤としては、例えばアセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル等のエステル類;エチレングリコールモノメチルエーテル等のグリコールエーテル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;メタノール、エタノール等のアルコール類;ヘキサン、シクロヘキサン等のアルカン類;トルエン、キシレン等の芳香族類;等が挙げられる。以上に挙げた溶剤は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。 Solvents that may be contained in the resin composition according to the present embodiment include, for example, acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, ketones such as cyclohexanone; esters such as ethyl acetate; glycol ethers such as ethylene glycol monomethyl ether; amides such as N,N-dimethylformamide and N,N-dimethylacetamide; alcohols such as methanol and ethanol; alkanes such as hexane and cyclohexane; aromatics such as toluene and xylene; The solvents listed above may be used alone, or two or more of them may be mixed and used in any combination and ratio.
[その他の成分]
 本実施形態に係る樹脂組成物には、その機能性の更なる向上を目的として、以上で挙げたもの以外の成分(本明細書において「その他の成分」と称することがある。)を含んでいてもよい。このようなその他の成分としては、エポキシ樹脂を除く熱硬化性樹脂や光硬化性樹脂、硬化促進剤(ただし、「硬化剤」に含まれるものを除く。)、紫外線防止剤、酸化防止剤、カップリング剤、可塑剤、フラックス、難燃剤、着色剤、分散剤、乳化剤、低弾性化剤、希釈剤、消泡剤、イオントラップ剤、無機フィラー、有機フィラー等が挙げられる。
[Other ingredients]
The resin composition according to the present embodiment contains components other than those listed above (hereinafter sometimes referred to as "other components") for the purpose of further improving its functionality. You can Such other components include thermosetting resins other than epoxy resins, photo-curing resins, curing accelerators (excluding those included in "curing agents"), UV inhibitors, antioxidants, Coupling agents, plasticizers, fluxes, flame retardants, colorants, dispersants, emulsifiers, elasticity reducing agents, diluents, antifoaming agents, ion trapping agents, inorganic fillers, organic fillers, and the like.
[樹脂組成物の硬化物]
 本実施形態に係る樹脂組成物を硬化させて硬化物とする際の樹脂組成物の硬化方法は、樹脂組成物中の配合成分や配合量によっても異なるが、通常、80~280℃で60~360分の加熱条件が挙げられる。この加熱は80~160℃で10~90分の一次加熱と、120~200℃で60~150分の二次加熱との二段処理を行うことが好ましく、また、ガラス転移温度(Tg)が二次加熱の温度を超える配合系においてはさらに150~280℃で60~120分の三次加熱を行うことが好ましい。このように二次加熱、三次加熱を行うことは硬化不良や溶剤の残留を低減する観点から好ましい。
[Cured product of resin composition]
The method of curing the resin composition when curing the resin composition according to the present embodiment to obtain a cured product varies depending on the ingredients and the amount of the resin composition, but is usually 60 to 60 at 80 to 280 ° C. A heating condition of 360 minutes is mentioned. This heating is preferably a two-stage treatment of primary heating at 80 to 160° C. for 10 to 90 minutes and secondary heating at 120 to 200° C. for 60 to 150 minutes. It is preferable to further perform tertiary heating at 150 to 280° C. for 60 to 120 minutes in a blended system that exceeds the secondary heating temperature. Performing secondary heating and tertiary heating in this way is preferable from the viewpoint of reducing poor curing and residual solvent.
[樹脂組成物の用途]
 本実施形態に係る樹脂組成物は、低誘電率、低誘電正接及び高耐熱性の硬化物を形成することができる。したがって、本実施形態に係る樹脂組成物は、電気・電子部品、プリント配線板等の絶縁層;半導体封止材;等に好適に使用することができる。
[Use of resin composition]
The resin composition according to this embodiment can form a cured product having a low dielectric constant, a low dielectric loss tangent and a high heat resistance. Therefore, the resin composition according to the present embodiment can be suitably used for electrical/electronic parts, insulating layers of printed wiring boards and the like; semiconductor sealing materials; and the like.
[樹脂シート]
 本発明の第2の実施形態は、本発明の第1の実施形態に係る樹脂組成物で形成された樹脂組成物層を有する樹脂シートである。
 本実施形態に係る樹脂シートは、樹脂組成物層を硬化することで、樹脂組成物の硬化物からなる絶縁層を形成することができる。したがって、本実施形態に係る樹脂シートは、電子・電子部品、プリント配線板等の絶縁層を形成するための樹脂シートとして好適に使用することができる。
[Resin sheet]
A second embodiment of the present invention is a resin sheet having a resin composition layer formed of the resin composition according to the first embodiment of the present invention.
The resin sheet according to the present embodiment can form an insulating layer made of a cured product of the resin composition by curing the resin composition layer. Therefore, the resin sheet according to the present embodiment can be suitably used as a resin sheet for forming insulating layers of electronic/electronic parts, printed wiring boards, and the like.
 樹脂組成物層の厚さは、特に限定されないが、通常50μm以下であり、プリント配線板の薄型化観点から、好ましくは25μm以下、より好ましくは15μm以下、さらに好ましくは13μm以下、特に好ましくは10μm以下、最も好ましくは8μm以下であり、また、通常1.0μm以上であり、1.5μm以上又は2.0μm以上であってもよい。 Although the thickness of the resin composition layer is not particularly limited, it is usually 50 μm or less, and from the viewpoint of thinning the printed wiring board, it is preferably 25 μm or less, more preferably 15 μm or less, still more preferably 13 μm or less, and particularly preferably 10 μm. Below, it is most preferably 8 μm or less, and usually 1.0 μm or more, and may be 1.5 μm or more or 2.0 μm or more.
 本実施形態に係る樹脂シートは、樹脂組成物層のみからなるシートであってもよく、支持体上に樹脂組成物層が形成されたシートであってもよい。本実施形態に係る樹脂シートを用いて電子・電子部品、プリント配線板等の絶縁層を形成する場合、支持体は絶縁層形成後に剥離により絶縁層から取り外してもよく、電子・電子部品、プリント配線板等の一部として使用してもよい。 The resin sheet according to the present embodiment may be a sheet consisting only of a resin composition layer, or may be a sheet having a resin composition layer formed on a support. When the resin sheet according to the present embodiment is used to form an insulating layer for an electronic/electronic component, printed wiring board, or the like, the support may be removed from the insulating layer by peeling after the insulating layer is formed. It may be used as part of a wiring board or the like.
 支持体としては、プラスチックフィルム、金属箔、離型紙等が挙げられ、プラスチックフィルム又は金属箔であることが好ましい。
 プラスチックフィルムを構成する材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル;ポリカーボネート;ポリメチルメタクリレート(PMMA)等のアクリル樹脂;環状ポリオレフィン;トリアセチルセルロース(TAC);ポリエーテルサルファイド;ポリエーテルケトン;ポリイミド;等が挙げられ、好ましくはポリエチレンテレフタレート又はポリエチレンナフタレートである。
 金属箔としては、例えば、銅箔、アルミニウム箔、銅合金箔、アルミニウム合金箔等が挙げられ、好ましくは銅箔である。
Examples of the support include plastic films, metal foils, release papers, etc. Plastic films and metal foils are preferred.
Materials constituting the plastic film include, for example, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polycarbonates; acrylic resins such as polymethyl methacrylate (PMMA); cyclic polyolefins; triacetyl cellulose (TAC); polyether sulfide; polyether ketone; polyimide; and the like, preferably polyethylene terephthalate or polyethylene naphthalate.
Examples of the metal foil include copper foil, aluminum foil, copper alloy foil, aluminum alloy foil and the like, preferably copper foil.
 支持体は、樹脂組成物層と接合する面にマット処理、コロナ処理、帯電防止処理を施してあってもよい。また、支持体の樹脂組成物層と接合する面に離型層が形成されていてもよい。離型剤としては、公知の離型剤、例えばアルキド樹脂、ポリオレフィン樹脂、ウレタン樹脂、シリコーン樹脂等から適宜選択して用いることができる。 The support may be subjected to matte treatment, corona treatment, or antistatic treatment on the surface to be bonded to the resin composition layer. Also, a release layer may be formed on the surface of the support that is to be bonded to the resin composition layer. As the mold release agent, it is possible to appropriately select and use known mold release agents such as alkyd resins, polyolefin resins, urethane resins, silicone resins, and the like.
 支持体の厚みとしては、特に限定されないが、好ましくは5~75μmであり、より好ましくは10~60μmである。なお、支持体に離型層を設ける場合、離型層を含む支持体全体の厚さが上記範囲であることが好ましい。 Although the thickness of the support is not particularly limited, it is preferably 5 to 75 μm, more preferably 10 to 60 μm. When a release layer is provided on the support, the thickness of the entire support including the release layer is preferably within the above range.
 本実施形態に係る樹脂シートは、必要に応じて、その他の層を含んでいてもよい。その他の層としては、例えば保護フィルム等が挙げられる。保護フィルムは、通常、樹脂組成物層の支持体と接していない面に設けられる。保護フィルムの厚さは、特に限定されず、例えば1~40μmである。 The resin sheet according to this embodiment may contain other layers as necessary. Other layers include, for example, protective films. The protective film is usually provided on the surface of the resin composition layer that is not in contact with the support. The thickness of the protective film is not particularly limited, and is, for example, 1 to 40 μm.
 樹脂シートの製造方法は、特に限定されず、例えば有機溶剤に樹脂組成物を溶解した樹脂ワニスを、ダイコーター等を用いて支持体上に塗布し、乾燥することで樹脂組成物層を形成する方法が挙げられる。 The method for producing the resin sheet is not particularly limited. For example, a resin varnish obtained by dissolving a resin composition in an organic solvent is applied onto a support using a die coater or the like, and dried to form a resin composition layer. method.
 有機溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート等のエステル類;セロソルブ、ブチルカルビトール等のカルビトール類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)等のアミド系溶剤;等を挙げることができる。有機溶剤は1種単独で使用してもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。 Examples of organic solvents include ketones such as acetone, methyl ethyl ketone (MEK) and cyclohexanone; esters such as ethyl acetate, butyl acetate and propylene glycol monomethyl ether acetate; carbitols such as cellosolve and butyl carbitol; toluene and xylene. dimethylformamide (DMF), N-methylpyrrolidone (NMP) and other amide solvents; An organic solvent may be used individually by 1 type, and may mix and use 2 or more types by arbitrary combinations and ratios.
 乾燥は、加熱、熱風吹きつけ等の公知の方法により実施してよい。乾燥条件は特に限定されないが、樹脂組成物層中の有機溶剤の含有量が10質量%以下、好ましくは5質量%以下となるように乾燥させる。樹脂ワニス中の有機溶剤の沸点によっても異なるが、例えば30~60質量%の有機溶剤を含む樹脂ワニスを用いる場合、50~150℃で3~10分間乾燥させることにより、樹脂組成物層を形成することができる。 Drying may be carried out by known methods such as heating and blowing hot air. The drying conditions are not particularly limited, but the resin composition layer is dried so that the content of the organic solvent is 10% by mass or less, preferably 5% by mass or less. Depending on the boiling point of the organic solvent in the resin varnish, for example, when using a resin varnish containing 30 to 60% by mass of organic solvent, the resin composition layer is formed by drying at 50 to 150° C. for 3 to 10 minutes. can do.
[エポキシ樹脂用硬化剤]
 本発明の第3の実施形態に係るエポキシ樹脂用硬化剤は、フェノールカーボネート樹脂(A)’を含む。本実施形態に係るエポキシ樹脂用硬化剤は、本発明の第1の実施形態におけるエポキシ樹脂(B)を硬化するための硬化剤として使用することができる他、エポキシ樹脂(B)以外の種々のエポキシ樹脂を硬化するための硬化剤として使用することもできる。本実施形態に係るエポキシ樹脂用硬化剤を使用することにより、低誘電率、低誘電正接及び高耐熱性のエポキシ樹脂硬化物を得ることができる。
 なお、本実施形態に係るエポキシ樹脂硬化剤は、本発明の効果を阻害しない範囲において、他の成分、例えば本発明の第1の実施形態に係る樹脂組成物の任意成分である硬化促進剤、溶剤等を含有していてもよい。
[Curing agent for epoxy resin]
The epoxy resin curing agent according to the third embodiment of the present invention contains a phenol carbonate resin (A)'. The epoxy resin curing agent according to the present embodiment can be used as a curing agent for curing the epoxy resin (B) in the first embodiment of the present invention. It can also be used as a curing agent for curing epoxy resins. By using the epoxy resin curing agent according to the present embodiment, it is possible to obtain an epoxy resin cured product having a low dielectric constant, a low dielectric loss tangent and a high heat resistance.
In addition, the epoxy resin curing agent according to the present embodiment includes other components, such as a curing accelerator which is an optional component of the resin composition according to the first embodiment of the present invention, as long as the effect of the present invention is not impaired. A solvent or the like may be contained.
<フェノールカーボネート樹脂(A)’>
 フェノールカーボネート樹脂(A)’は、本発明の第1の実施形態におけるフェノールカーボネート樹脂(A)の粘度平均分子量(Mv)及び末端芳香族炭化水素基量を特定範囲に変更したものである。すなわち、フェノールカーボネート樹脂(A)’のMvの範囲及び末端芳香族炭化水素基量の範囲以外の要素(例えば、Mvの測定方法、構成単位、カーボネート当量、末端水酸基量、ガラス転移温度、及び製造方法等)は、その好ましい態様等も含め、フェノールカーボネート樹脂(A)と同様である。したがって、フェノールカーボネート樹脂(A)’のMvの範囲及び末端芳香族炭化水素基量の範囲以外の要素については、上記項目<フェノールカーボネート樹脂(A)>で説明した通りであり、当該項目の記載を援用する。
<Phenol carbonate resin (A)'>
The phenol carbonate resin (A)' is obtained by changing the viscosity average molecular weight (Mv) and the amount of terminal aromatic hydrocarbon groups of the phenol carbonate resin (A) in the first embodiment of the present invention to specific ranges. That is, elements other than the Mv range and the terminal aromatic hydrocarbon group amount range of the phenol carbonate resin (A) '(e.g., Mv measurement method, structural unit, carbonate equivalent, terminal hydroxyl group amount, glass transition temperature, and production method, etc.) are the same as those for the phenol carbonate resin (A), including preferred embodiments thereof. Therefore, the elements other than the Mv range and the terminal aromatic hydrocarbon group amount range of the phenol carbonate resin (A)' are as described in the above item <Phenol carbonate resin (A)>, and the description of the item to invoke.
 フェノールカーボネート樹脂(A)’は、粘度平均分子量(Mv)が500~20,000である。Mvの下限は、好ましくは、1,000以上であり、より好ましくは1,500以上であり、さらに好ましくは2,000以上である。フェノールカーボネート樹脂(A)’のMvを上記下限以上とすることにより、樹脂組成物の硬化物のガラス転移温度(Tg)が高くなり、また硬化反応時にフェノールカーボネート樹脂(A)’が副反応を起こしにくくなる傾向にある。一方、フェノールカーボネート樹脂(A)’のMvの上限は、好ましくは10,000以下であり、より好ましくは8,000以下である。フェノールカーボネート樹脂(A)’のMvが上記上限以下とすることにより、溶剤溶解性が高くなる傾向にある。 The phenol carbonate resin (A)' has a viscosity average molecular weight (Mv) of 500 to 20,000. The lower limit of Mv is preferably 1,000 or more, more preferably 1,500 or more, and even more preferably 2,000 or more. By setting the Mv of the phenol carbonate resin (A)' to the above lower limit or more, the glass transition temperature (Tg) of the cured product of the resin composition increases, and the phenol carbonate resin (A)' does not cause a side reaction during the curing reaction. It tends to be harder to wake up. On the other hand, the upper limit of Mv of the phenol carbonate resin (A)' is preferably 10,000 or less, more preferably 8,000 or less. By setting the Mv of the phenol carbonate resin (A)' to the above upper limit or less, the solvent solubility tends to increase.
 フェノールカーボネート樹脂(A)’の末端芳香族炭化水素基量、すなわち分子鎖末端の芳香族炭化水素基の量の下限は、特に限定されないが、95.0質量%、好ましくは96.0質量%以上、より好ましくは97.0質量%以上、さらに好ましくは98.0質量%以上、特に好ましくは99.0質量%以上.最も好ましくは99.5質量%以上である。フェノールカーボネート樹脂(A)’の末端芳香族炭化水素基量を上記下限以上とすることにより、樹脂組成物の硬化物の誘電正接が低くなる傾向にある。フェノールカーボネート樹脂(A)’の末端芳香族炭化水素基量の上限は、特に限定されず、通常100質量%以下である。 The lower limit of the amount of terminal aromatic hydrocarbon groups in the phenol carbonate resin (A)', that is, the amount of aromatic hydrocarbon groups at the ends of the molecular chains, is not particularly limited, but is 95.0% by mass, preferably 96.0% by mass. Above, more preferably 97.0% by mass or more, still more preferably 98.0% by mass or more, particularly preferably 99.0% by mass or more. Most preferably, it is 99.5% by mass or more. By setting the amount of the terminal aromatic hydrocarbon group of the phenol carbonate resin (A)' to the above lower limit or more, the dielectric loss tangent of the cured product of the resin composition tends to decrease. The upper limit of the amount of terminal aromatic hydrocarbon groups in the phenol carbonate resin (A)' is not particularly limited, and is usually 100% by mass or less.
 フェノールカーボネート樹脂(A)’の末端芳香族炭化水素基量は、フェノールカーボネート樹脂(A)’の全末端基量から末端水酸基量を減ずることによって算出される。 The amount of terminal aromatic hydrocarbon groups of phenol carbonate resin (A)' is calculated by subtracting the amount of terminal hydroxyl groups from the total amount of terminal groups of phenol carbonate resin (A)'.
 以下、本発明を実施例に基づいてより具体的に説明するが、本発明は以下の実施例により何ら限定されるものではない。なお、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施形態における上限又は下限の好ましい値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited by the following examples. Various production conditions and values of evaluation results in the following examples have the meaning of preferable upper or lower limits in the embodiments of the present invention. , the range defined by the values in the following examples or a combination of the values in the examples.
〔物性・特性の評価方法〕
 以下の実施例において、物性、特性の評価は以下の1)~8)に記載の方法で行った。
[Evaluation method of physical properties and characteristics]
In the following examples, physical properties and characteristics were evaluated by the methods described in 1) to 8) below.
1)フェノールカーボネート樹脂の粘度平均分子量(Mv)
 フェノールカーボネート樹脂の粘度平均分子量(Mv)は、溶媒として塩化メチレンを使用し、ウベローデ粘度管(森友理化工業社製)を用いて、20℃における固有粘度(極限粘度)[η](単位dL/g)を求め、Schnellの粘度式(下記式)から算出した。
  [η]=1.23×10-4Mv0.83
1) Viscosity average molecular weight (Mv) of phenol carbonate resin
The viscosity average molecular weight (Mv) of the phenol carbonate resin is measured using methylene chloride as a solvent and using an Ubbelohde viscosity tube (manufactured by Moritomo Rika Kogyo Co., Ltd.) at 20 ° C. The intrinsic viscosity (intrinsic viscosity) [η] (unit: dL/ g) was determined and calculated from the Schnell viscosity formula (the following formula).
[η]=1.23×10 −4 Mv 0.83
2)フェノールカーボネート樹脂の末端水酸基量
 フェノールカーボネート樹脂の末端水酸基量は、四塩化チタン/酢酸を用いた比色定量法により測定した。具体的には、以下に記載の手法により測定した。これにより実施例における四塩化チタン/酢酸を用いた比色定量法により測定される末端水酸基量を測定することができる。
2) Terminal hydroxyl group content of phenol carbonate resin The terminal hydroxyl group content of the phenol carbonate resin was measured by a colorimetric method using titanium tetrachloride/acetic acid. Specifically, it was measured by the method described below. As a result, the amount of terminal hydroxyl groups measured by the colorimetric method using titanium tetrachloride/acetic acid in the examples can be measured.
(a)5v/v%酢酸溶液の調製
 1,000mLメスフラスコに酢酸50mLを加え、塩化メチレンでメスアップし混合することで、5v/v%酢酸溶液を調製した。
(a) Preparation of 5 v/v % acetic acid solution 50 mL of acetic acid was added to a 1,000 mL volumetric flask, and the contents were made up with methylene chloride and mixed to prepare a 5 v/v % acetic acid solution.
(b)四塩化チタン溶液の調製
 300mLのフラスコに塩化メチレンをメスシリンダーで90mL入れ、5v/v%酢酸溶液をメスシリンダーで10mL添加し、攪拌子を入れてマグネチックスターラーで攪拌しながら、5mLのメスピペットで四塩化チタン溶液を2.5mL、メタノールを2.0mL、ゆっくりと添加することで、四塩化チタン溶液を調製した。
(b) Preparation of titanium tetrachloride solution Put 90 mL of methylene chloride in a 300 mL flask with a graduated cylinder, add 10 mL of a 5 v / v% acetic acid solution with a graduated cylinder, add a stirrer and stir with a magnetic stirrer to 5 mL. A titanium tetrachloride solution was prepared by slowly adding 2.5 mL of titanium tetrachloride solution and 2.0 mL of methanol with a graduated pipette.
(c)検量線試料の調製
 原料ジヒドロキシ化合物の末端水酸基量が10重量ppmになるように塩化メチレン溶液を調製し、25mLのメスフラスコにそれぞれ、0、3、5mLずつ加えた。続いて、5v/v%酢酸を5mLずつ、四塩化チタン溶液10mLずつ加えた。それぞれ、塩化メチレンでメスアップしてよく混合した。
(c) Preparation of Calibration Curve Sample A methylene chloride solution was prepared so that the terminal hydroxyl group content of the starting dihydroxy compound was 10 ppm by weight, and 0, 3, and 5 mL were added to each 25-mL volumetric flask. Subsequently, 5 mL each of 5 v/v % acetic acid and 10 mL each of titanium tetrachloride solution were added. Each was made up to volume with methylene chloride and mixed well.
(d)検量線の作成
 作成した検量試料の吸光度をそれぞれ検出波長546nmで測定した。得られた吸光度を、検量線試料の濃度に対してプロットした。この傾きの逆数をファクターとした。
(d) Preparation of calibration curve The absorbance of each prepared calibration sample was measured at a detection wavelength of 546 nm. The absorbance obtained was plotted against the concentration of the standard curve samples. The reciprocal of this slope was used as a factor.
(e)測定試料の調製と吸光度測定
 ポリカーボネート樹脂組成物0.2gと、5mLの塩化メチレンを、25mLメスフラスコに加えて溶解させた。つぎに、5v/v%酢酸溶液5mL、四塩化チタン溶液10mLを加え、塩化メチレンでメスアップし、よく混合した。このように調製した溶液の吸光度を検出波長546nmで測定した。
(e) Preparation of Measurement Sample and Absorbance Measurement 0.2 g of a polycarbonate resin composition and 5 mL of methylene chloride were added to a 25 mL volumetric flask and dissolved. Next, 5 mL of 5 v/v % acetic acid solution and 10 mL of titanium tetrachloride solution were added, and the mixture was made up with methylene chloride and mixed well. The absorbance of the solution thus prepared was measured at a detection wavelength of 546 nm.
(f)末端水酸基量の算出
 測定した吸光度とファクターの積を、測定試料の濃度で除することで、ポリカーボネート樹脂組成物中の末端水酸基量を算出した。
 なお、原料ジヒドロキシ化合物が複数の構造からなるポリカーボネート樹脂組成物においては、対応する原料ジヒドロキシ化合物を共重合比率に応じて混合したサンプルを最低3水準の濃度で用意し、該3点以上のデータから検量線を引いた上で、末端水酸基量を測定する。また、検出波長は546nmとする。
(f) Calculation of terminal hydroxyl group amount The terminal hydroxyl group amount in the polycarbonate resin composition was calculated by dividing the product of the measured absorbance and the factor by the concentration of the measurement sample.
In the case of a polycarbonate resin composition in which the starting material dihydroxy compound has a plurality of structures, a sample obtained by mixing the corresponding starting material dihydroxy compound according to the copolymerization ratio is prepared at a minimum of three concentrations, and from the data of the three or more points, After drawing a calibration curve, the amount of terminal hydroxyl groups is measured. Also, the detection wavelength is assumed to be 546 nm.
3)フェノールカーボネート樹脂の末端芳香族炭化水素基量
 フェノールカーボネート樹脂の末端芳香族炭化水素基量は、下記式に示すように、フェノールカーボネート樹脂の全末端基量から上述の方法により測定した末端水酸基量を減ずることにより算出した。
 フェノールカーボネート樹脂の末端芳香族炭化水素基量(質量%)=100-{フェノールカーボネート樹脂の末端水酸基量(質量%)}
3) Amount of terminal aromatic hydrocarbon groups of phenol carbonate resin The amount of terminal aromatic hydrocarbon groups of phenol carbonate resin is, as shown in the following formula, the amount of terminal hydroxyl groups measured by the method described above from the total amount of terminal groups of phenol carbonate resin. Calculated by subtracting the amount.
Terminal aromatic hydrocarbon group amount (mass%) of phenol carbonate resin = 100 - {terminal hydroxyl group amount (mass%) of phenol carbonate resin}
4)エポキシ樹脂の重量平均分子量(Mw)及び数平均分子量(Mn)
 東ソー(株)製「HLC-8320GPC装置」を使用し、以下の測定条件で、標準ポリスチレンとして、TSK Standard Polystyrene F-128(Mw:1,090,000、Mn:1,030,000)、F-10(Mw:106,000、Mn:103,000)、F-4(Mw:43,000、Mn:42,700)、F-2(Mw:17,200、Mn:16,900)、A-5000(Mw:6,400、Mn:6,100)、A-2500(Mw:2,800、Mn:2,700)、A-300(Mw:453、Mn:387)を使用した検量線を作成して、重量平均分子量(Mw)及び数平均分子量(Mn)をポリスチレン換算値として測定した。
4) Weight average molecular weight (Mw) and number average molecular weight (Mn) of epoxy resin
TSK Standard Polystyrene F-128 (Mw: 1,090,000, Mn: 1,030,000), F -10 (Mw: 106,000, Mn: 103,000), F-4 (Mw: 43,000, Mn: 42,700), F-2 (Mw: 17,200, Mn: 16,900), Calibration using A-5000 (Mw: 6,400, Mn: 6,100), A-2500 (Mw: 2,800, Mn: 2,700), A-300 (Mw: 453, Mn: 387) A line was drawn and the weight average molecular weight (Mw) and number average molecular weight (Mn) were measured as polystyrene conversion values.
 カラム:東ソー(株)製「TSKGEL SuperHM-H+H5000+H4000+H3000+H2000」
 溶離液:テトラヒドロフラン
 流速:0.5mL/min
 検出:UV(波長254nm)
 温度:40℃
 試料濃度:0.1重量%
 インジェクション量:10μL
Column: "TSKGEL SuperHM-H + H5000 + H4000 + H3000 + H2000" manufactured by Tosoh Corporation
Eluent: Tetrahydrofuran Flow rate: 0.5 mL/min
Detection: UV (wavelength 254 nm)
Temperature: 40°C
Sample concentration: 0.1% by weight
Injection volume: 10 μL
5)エポキシ当量
 JIS K 7236に準じて測定し、固形分換算値として表記した。
5) Epoxy equivalent Measured according to JIS K 7236 and expressed as a solid content conversion value.
6)フェノールカーボネート樹脂の末端水酸基に対するエポキシ樹脂のエポキシ基のモル比(エポキシ基/末端水酸基)
 下記式に従い算出した。
エポキシ基/末端水酸基=(エポキシ樹脂の重量/エポキシ当量)/(フェノールカーボネート樹脂の重量×フェノールカーボネート樹脂の末端水酸基量/17.0)
6) Molar ratio of epoxy group of epoxy resin to terminal hydroxyl group of phenol carbonate resin (epoxy group/terminal hydroxyl group)
It was calculated according to the following formula.
Epoxy group/terminal hydroxyl group=(weight of epoxy resin/epoxy equivalent)/(weight of phenol carbonate resin×amount of terminal hydroxyl group of phenol carbonate resin/17.0)
7)硬化物の耐熱性:ガラス転移温度(Tg)
 実施例1~7で得たエポキシ樹脂硬化物のフィルム(厚さ:約50μm)について、SIIナノテクノロジー(株)製「DSC7020」を使用し、30~250℃まで10℃/minで昇温してガラス転移温度を測定した。なお、ここでいうガラス転移温度は、JIS K 7121「プラスチックの転移温度測定法」に記載されているうち「中点ガラス転移温度:Tmg」に基づいて測定した。
7) Heat resistance of cured product: glass transition temperature (Tg)
The cured epoxy resin films (thickness: about 50 μm) obtained in Examples 1 to 7 were heated to 30 to 250° C. at a rate of 10° C./min using “DSC7020” manufactured by SII Nano Technology Co., Ltd. was used to measure the glass transition temperature. The glass transition temperature referred to here was measured based on the "middle point glass transition temperature: Tmg" described in JIS K 7121 "Method for measuring transition temperature of plastics".
8)誘電特性
 実施例1~7で得たエポキシ樹脂硬化物のフィルムを幅2mm、長さ80mmの試験片に切断し、該試験片について、ネットワークアナライザーを用いて、空洞共振摂動法により測定周波数1GHz及び10GHz、測定温度23℃にて比誘電率(εr)及び誘電正接(tanδ)を測定した。
8) Dielectric properties The cured epoxy resin films obtained in Examples 1 to 7 were cut into test pieces having a width of 2 mm and a length of 80 mm. Relative permittivity (εr) and dielectric loss tangent (tan δ) were measured at 1 GHz and 10 GHz at a measurement temperature of 23°C.
〔樹脂組成物の成分〕
 以下の実施例の樹脂組成物に用いた各種成分は、以下の通りである。
[Components of resin composition]
Various components used in the resin compositions of the following examples are as follows.
 [低分子エポキシ樹脂]
(B-1):三菱ケミカル(株)製 商品名「jER 828US」(ビスフェノールA型エポキシ樹脂、エポキシ当量185g/当量)
[Low molecular weight epoxy resin]
(B-1): Trade name “jER 828US” manufactured by Mitsubishi Chemical Corporation (bisphenol A type epoxy resin, epoxy equivalent 185 g/equivalent)
 [高分子エポキシ樹脂]
(B-2):三菱ケミカル(株)製、商品名「YL7891T30」、Mn:10,000、Mw:30,000、エポキシ当量:6,000g/当量、高分子エポキシ樹脂の30wt%トルエン溶液
[Polymer epoxy resin]
(B-2): Mitsubishi Chemical Corporation, trade name "YL7891T30", Mn: 10,000, Mw: 30,000, epoxy equivalent: 6,000 g/equivalent, 30 wt% toluene solution of high molecular weight epoxy resin
 [フェノールカーボネート樹脂(A)]
(A-1):2,2-ビス(4-ヒドロキシフェニル)プロパン型のフェノールカーボネート樹脂(n=7)
(A-2):2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン型のフェノールカーボネート樹脂(n=5)
(A-3):9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン型のフェノールカーボネート樹脂(n=4)
(A-4):9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンと2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパンの共重合型のフェノールカーボネート樹脂(n=9)
(A-5):1,1-ビ-2-ナフトールと4,4-(3,3,5-トリメチル-1,1-シクロヘキサンジイル)ビスフェノールの共重合型のフェノールカーボネート樹脂(n=2)
(A-6):1,1-ビ-2-ナフトールと4,4-(3,3,5-トリメチル-1,1-シクロヘキサンジイル)ビスフェノールの共重合型のフェノールカーボネート樹脂(n=2)
(A-7):2,2-ビス(4-ヒドロキシフェニル)プロパン型のフェノールカーボネート樹脂(n=7)
 上記(A-1)~(A-7)は、それぞれ以下の合成例1~7において合成されたものであり、以下の繰り返し単位を有する。
[Phenol carbonate resin (A)]
(A-1): 2,2-bis(4-hydroxyphenyl)propane-type phenol carbonate resin (n=7)
(A-2): 2,2-bis(4-hydroxy-3-methylphenyl)propane-type phenol carbonate resin (n=5)
(A-3): 9,9-bis(4-hydroxy-3-methylphenyl)fluorene-type phenol carbonate resin (n=4)
(A-4): Copolymerized phenol carbonate resin of 9,9-bis(4-hydroxy-3-methylphenyl)fluorene and 2,2-bis(4-hydroxy-3-methylphenyl)propane (n = 9)
(A-5): Copolymerized phenol carbonate resin of 1,1-bi-2-naphthol and 4,4-(3,3,5-trimethyl-1,1-cyclohexanediyl)bisphenol (n=2)
(A-6): Copolymerized phenol carbonate resin of 1,1-bi-2-naphthol and 4,4-(3,3,5-trimethyl-1,1-cyclohexanediyl)bisphenol (n=2)
(A-7): 2,2-bis(4-hydroxyphenyl)propane-type phenol carbonate resin (n=7)
The above (A-1) to (A-7) were synthesized in Synthesis Examples 1 to 7 below, respectively, and have the following repeating units.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 [硬化促進剤]
(C-1):N,N’-ジメチルアミノピリジン(DMAP)、5wt%トルエン溶液
[Curing accelerator]
(C-1): N,N'-dimethylaminopyridine (DMAP), 5 wt% toluene solution
 [レベリング剤]
S-651:AGCセイミケミカル(株)製 フッ素系界面活性剤(ノニオンタイプ)
[Leveling agent]
S-651: Fluorosurfactant (nonionic type) manufactured by AGC Seimi Chemical Co., Ltd.
〔フェノールカーボネート樹脂(A)の合成〕
 [合成例1:フェノールカーボネート樹脂(A-1)の合成]
 反応器攪拌機、反応器加熱装置、及び反応器圧力調整装置を付帯した内容量150mLのガラス製反応器に、2,2-ビス(4-ヒドロキシフェニル)プロパン(BPA)116.71g(約0.5112mol)、ジフェニルカーボネート(DPC)137.99g(約0.6442mol)、及び触媒として炭酸セシウム0.04質量%水溶液を、炭酸セシウムがジヒドロキシ化合物1mol当たり1μmolとなるように添加して原料混合物を調製した。
[Synthesis of phenol carbonate resin (A)]
[Synthesis Example 1: Synthesis of phenol carbonate resin (A-1)]
116.71 g of 2,2-bis(4-hydroxyphenyl)propane (BPA) (approx. 5112 mol), 137.99 g (about 0.6442 mol) of diphenyl carbonate (DPC), and a 0.04% by mass aqueous solution of cesium carbonate as a catalyst were added so that the amount of cesium carbonate was 1 μmol per 1 mol of the dihydroxy compound to prepare a raw material mixture. bottom.
 次に、ガラス製反応器内を約100Pa(0.75Torr)に減圧し、続いて、窒素で大気圧に復圧する操作を3回繰り返し、反応器の内部を窒素置換した。窒素置換後、反応器外部温度を220℃にし、反応器の内温を徐々に昇温させ、原料混合物を溶解させた。その後、100rpmで撹拌機を回転させた。そして、反応器の内部で行われるジヒドロキシ化合物とDPCのオリゴマー化反応により副生するフェノールを留去しながら、40分間かけて反応器内の圧力を絶対圧で101.3kPa(760Torr)から13.3kPa(100Torr)まで減圧した。 Next, the pressure inside the glass reactor was reduced to about 100 Pa (0.75 Torr), and then the pressure was restored to atmospheric pressure with nitrogen, which was repeated three times to replace the inside of the reactor with nitrogen. After purging with nitrogen, the external temperature of the reactor was set to 220° C., and the internal temperature of the reactor was gradually increased to dissolve the raw material mixture. The stirrer was then rotated at 100 rpm. Then, the pressure inside the reactor was reduced from 101.3 kPa (760 Torr) to 13.0 kPa (760 Torr) in absolute pressure over 40 minutes while distilling off the phenol that was a by-product of the oligomerization reaction of the dihydroxy compound and DPC that took place inside the reactor. The pressure was reduced to 3 kPa (100 Torr).
 続いて、反応器内の圧力を13.3kPaに保持し、フェノールをさらに留去させながら、80分間、エステル交換反応を行った。その後、40分間かけて反応器内圧力を絶対圧で13.3kPa(100Torr)から399Pa(3Torr)まで減圧し、留出するフェノールを系外に除去した。さらに、反応器内の絶対圧を70Pa(約0.5Torr)まで減圧し、重縮合反応を行った。反応器の攪拌機が予め定めた所定の攪拌動力となったときに、重縮合反応を終了した。 Subsequently, the pressure in the reactor was maintained at 13.3 kPa, and transesterification was carried out for 80 minutes while further distilling off phenol. Thereafter, the internal pressure of the reactor was reduced from 13.3 kPa (100 Torr) to 399 Pa (3 Torr) in terms of absolute pressure over 40 minutes to remove distilled phenol out of the system. Furthermore, the absolute pressure in the reactor was reduced to 70 Pa (about 0.5 Torr) to carry out a polycondensation reaction. The polycondensation reaction was terminated when the stirrer of the reactor reached a predetermined stirring power.
 次いで、反応器内を窒素により絶対圧で101.3kPaに復圧の上、反応器からフェノールカーボネート樹脂(A-1)をアルミ容器へ抜き出し、固化した(A-1)を粉砕した。フェノールカーボネート樹脂(A-1)のMv、末端水酸基量、末端芳香族炭化水素基量、カーボネート当量、及びTgを表1に示す。 Then, after restoring the pressure inside the reactor to 101.3 kPa in absolute pressure with nitrogen, the phenol carbonate resin (A-1) was extracted from the reactor into an aluminum container, and the solidified (A-1) was pulverized. Table 1 shows the Mv, terminal hydroxyl group content, terminal aromatic hydrocarbon group content, carbonate equivalent weight, and Tg of the phenol carbonate resin (A-1).
 [合成例2:フェノールカーボネート樹脂(A-2)の合成]
 反応器攪拌機、反応器加熱装置、及び反応器圧力調整装置を付帯した内容量150mLのガラス製反応器に、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(BPC)116.71g(約0.4553mol)、ジフェニルカーボネート(DPC)146.30g(約0.6829mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムがジヒドロキシ化合物1mol当たり3μmolとなるように添加して原料混合物を調製した。
[Synthesis Example 2: Synthesis of phenol carbonate resin (A-2)]
116.71 g of 2,2-bis(4-hydroxy-3-methylphenyl)propane (BPC) was added to a 150 mL glass reactor equipped with a reactor stirrer, reactor heating device, and reactor pressure regulator. (about 0.4553 mol), 146.30 g (about 0.6829 mol) of diphenyl carbonate (DPC), and a 0.4% by mass aqueous solution of cesium carbonate as a catalyst were added so that the cesium carbonate was 3 μmol per 1 mol of the dihydroxy compound. A raw material mixture was prepared.
 次に、ガラス製反応器内を約100Pa(0.75Torr)に減圧し、続いて、窒素で大気圧に復圧する操作を3回繰り返し、反応器の内部を窒素置換した。窒素置換後、反応器外部温度を220℃にし、反応器の内温を徐々に昇温させ、原料混合物を溶解させた。その後、100rpmで撹拌機を回転させた。そして、反応器の内部で行われるジヒドロキシ化合物とDPCのオリゴマー化反応により副生するフェノールを留去しながら、40分間かけて反応器内の圧力を絶対圧で101.3kPa(760Torr)から13.3kPa(100Torr)まで減圧した。 Next, the pressure inside the glass reactor was reduced to about 100 Pa (0.75 Torr), and then the pressure was restored to atmospheric pressure with nitrogen, which was repeated three times to replace the inside of the reactor with nitrogen. After purging with nitrogen, the external temperature of the reactor was set to 220° C., and the internal temperature of the reactor was gradually increased to dissolve the raw material mixture. The stirrer was then rotated at 100 rpm. Then, the pressure inside the reactor was reduced from 101.3 kPa (760 Torr) to 13.0 kPa (760 Torr) in absolute pressure over 40 minutes while distilling off the phenol that was a by-product of the oligomerization reaction of the dihydroxy compound and DPC that took place inside the reactor. The pressure was reduced to 3 kPa (100 Torr).
 続いて、反応器内の圧力を13.3kPaに保持し、フェノールをさらに留去させながら、80分間、エステル交換反応を行った。その後、反応器外部温度を260℃に昇温、40分間かけて反応器内圧力を絶対圧で13.3kPa(100Torr)から399Pa(3Torr)まで減圧し、留出するフェノールを系外に除去した。さらに、反応器内の絶対圧を70Pa(約0.5Torr)まで減圧し、重縮合反応を行った。反応器の攪拌機が予め定めた所定の攪拌動力となったときに、重縮合反応を終了した。 Subsequently, the pressure in the reactor was maintained at 13.3 kPa, and transesterification was carried out for 80 minutes while further distilling off phenol. After that, the reactor external temperature was raised to 260° C., and the reactor internal pressure was reduced from 13.3 kPa (100 Torr) to 399 Pa (3 Torr) in absolute pressure over 40 minutes to remove the distilled phenol out of the system. . Furthermore, the absolute pressure in the reactor was reduced to 70 Pa (about 0.5 Torr) to carry out a polycondensation reaction. The polycondensation reaction was terminated when the stirrer of the reactor reached a predetermined stirring power.
 次いで、反応器内を窒素により絶対圧で101.3kPaに復圧の上、反応器からフェノールカーボネート樹脂(A-2)をアルミ容器へ抜き出し、固化した(A-2)を粉砕した。フェノールカーボネート樹脂(A-2)のMv、末端水酸基量、末端芳香族炭化水素基量、カーボネート当量、及びTgを表1に示す。 Next, after restoring the pressure inside the reactor to 101.3 kPa in absolute pressure with nitrogen, the phenol carbonate resin (A-2) was extracted from the reactor into an aluminum container, and the solidified (A-2) was pulverized. Table 1 shows the Mv, terminal hydroxyl group content, terminal aromatic hydrocarbon group content, carbonate equivalent weight, and Tg of the phenol carbonate resin (A-2).
 [合成例3:フェノールカーボネート樹脂(A-3)の合成]
 反応器攪拌機、反応器加熱装置、及び反応器圧力調整装置を付帯した内容量150mLのガラス製反応器に、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(BCF)116.71g(約0.3083mol)、DPC 99.08g(約0.4625mol)、及び触媒として炭酸セシウム4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり100μmolとなるように添加して原料混合物を調製した以外は、合成例2に記載の手法で実施した。
[Synthesis Example 3: Synthesis of phenol carbonate resin (A-3)]
116.71 g of 9,9-bis(4-hydroxy-3-methylphenyl)fluorene (BCF) was added to a 150 mL glass reactor equipped with a reactor stirrer, reactor heating device, and reactor pressure regulator. (approximately 0.3083 mol), 99.08 g (approximately 0.4625 mol) of DPC, and a 4% by mass aqueous solution of cesium carbonate as a catalyst were added so that the amount of cesium carbonate was 100 μmol per 1 mol of all dihydroxy compounds to prepare a raw material mixture. Except for this, the method described in Synthesis Example 2 was used.
 得られたフェノールカーボネート樹脂(A-3)のMv、末端水酸基量、末端芳香族炭化水素基量、カーボネート当量、及びTgを表1に示す。 Table 1 shows the Mv, terminal hydroxyl group content, terminal aromatic hydrocarbon group content, carbonate equivalent weight, and Tg of the obtained phenol carbonate resin (A-3).
 [合成例4:フェノールカーボネート樹脂(A-4)の合成]
 反応器攪拌機、反応器加熱装置、及び反応器圧力調整装置を付帯した内容量150mLのガラス製反応器に、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(BCF)80.41g(約0.2124mol)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(BPC)36.30g(約0.1416mol)、DPC 113.77g(約0.5311mol)、及び触媒として炭酸セシウム4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり60μmolとなるように添加して原料混合物を調製した以外は、実施例2に記載の手法で実施した。
[Synthesis Example 4: Synthesis of phenol carbonate resin (A-4)]
80.41 g of 9,9-bis(4-hydroxy-3-methylphenyl)fluorene (BCF) was added to a 150 mL glass reactor equipped with a reactor stirrer, reactor heating device, and reactor pressure regulator. (about 0.2124 mol), 2,2-bis(4-hydroxy-3-methylphenyl)propane (BPC) 36.30 g (about 0.1416 mol), DPC 113.77 g (about 0.5311 mol), and as a catalyst The method described in Example 2 was followed except that a 4% by mass aqueous solution of cesium carbonate was added so that the amount of cesium carbonate was 60 μmol per 1 mol of all dihydroxy compounds to prepare a raw material mixture.
 得られたフェノールカーボネート樹脂(A-4)のMv、末端水酸基量、末端芳香族炭化水素基量、カーボネート当量、及びTgを表1に示す。 Table 1 shows the Mv, terminal hydroxyl group content, terminal aromatic hydrocarbon group content, carbonate equivalent weight, and Tg of the obtained phenol carbonate resin (A-4).
 [合成例5:フェノールカーボネート樹脂(A-5)の合成]
 反応器攪拌機、反応器加熱装置、及び反応器圧力調整装置を付帯した内容量150mLのガラス製反応器に、4,4’-(3,3、5-トリメチルシクロヘキシリデン)ビスフェノール(BP-TMC)60.71g(約0.196mol)、1,1’-ビ-2-ナフトール(BN)56.00g(約0.196mol)、DPC 108.93g(約0.5085mol)、及び触媒として炭酸セシウム4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり64μmolとなるように添加して原料混合物を調製した以外は、実施例2に記載の手法で実施した。
[Synthesis Example 5: Synthesis of phenol carbonate resin (A-5)]
4,4′-(3,3,5-trimethylcyclohexylidene)bisphenol (BP-TMC) was added to a 150 mL glass reactor equipped with a reactor agitator, a reactor heating device, and a reactor pressure regulator. ) 60.71 g (about 0.196 mol), 1,1′-bi-2-naphthol (BN) 56.00 g (about 0.196 mol), DPC 108.93 g (about 0.5085 mol), and cesium carbonate as a catalyst The method described in Example 2 was followed except that a 4% by mass aqueous solution was added so that the amount of cesium carbonate was 64 μmol per 1 mol of all dihydroxy compounds to prepare a raw material mixture.
 得られたフェノールカーボネート樹脂(A-5)のMv、末端水酸基量、末端芳香族炭化水素基量、カーボネート当量、及びTgを表1に示す。 Table 1 shows the Mv, terminal hydroxyl group content, terminal aromatic hydrocarbon group content, carbonate equivalent weight, and Tg of the obtained phenol carbonate resin (A-5).
 [合成例6:フェノールカーボネート樹脂(A-6)の合成]
 反応器攪拌機、反応器加熱装置、及び反応器圧力調整装置を付帯した内容量150mLのガラス製反応器に、4,4’-(3,3、5-トリメチルシクロヘキシリデン)ビスフェノール(BP-TMC)60.71g(約0.196mol)、1,1’-ビ-2-ナフトール(BN)56.00g(約0.196mol)、DPC 108.93g(約0.5085mol)、及び触媒として炭酸セシウム4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり64μmolとなるように添加して原料混合物を調製した以外は、実施例2に記載の手法で実施した。
[Synthesis Example 6: Synthesis of phenol carbonate resin (A-6)]
4,4′-(3,3,5-trimethylcyclohexylidene)bisphenol (BP-TMC) was added to a 150 mL glass reactor equipped with a reactor agitator, a reactor heating device, and a reactor pressure regulator. ) 60.71 g (about 0.196 mol), 1,1′-bi-2-naphthol (BN) 56.00 g (about 0.196 mol), DPC 108.93 g (about 0.5085 mol), and cesium carbonate as a catalyst The method described in Example 2 was followed except that a 4% by mass aqueous solution was added so that the amount of cesium carbonate was 64 μmol per 1 mol of all dihydroxy compounds to prepare a raw material mixture.
 得られたフェノールカーボネート樹脂(A-6)のMv、末端水酸基量、末端芳香族炭化水素基量、カーボネート当量、及びTgを表1に示す。 Table 1 shows the Mv, terminal hydroxyl group content, terminal aromatic hydrocarbon group content, carbonate equivalent weight, and Tg of the obtained phenol carbonate resin (A-6).
 [合成例7:フェノールカーボネート樹脂(A-7)の合成]
 反応器攪拌機、反応器加熱装置、及び反応器圧力調整装置を付帯した内容量150mLのガラス製反応器に、2,2-ビス(4-ヒドロキシフェニル)プロパン(BPA)116.71g(約0.5112mol)、ジフェニルカーボネート(DPC)102.95g(約0.4806mol)、及び触媒として炭酸セシウム0.04質量%水溶液を、炭酸セシウムがジヒドロキシ化合物1mol当たり0.5μmolとなるように添加して原料混合物を調製した。
[Synthesis Example 7: Synthesis of phenol carbonate resin (A-7)]
116.71 g of 2,2-bis(4-hydroxyphenyl)propane (BPA) (approx. 5112 mol), 102.95 g (about 0.4806 mol) of diphenyl carbonate (DPC), and a 0.04% by mass aqueous solution of cesium carbonate as a catalyst were added so that the amount of cesium carbonate was 0.5 μmol per 1 mol of the dihydroxy compound. was prepared.
 次に、ガラス製反応器内を約100Pa(0.75Torr)に減圧し、続いて、窒素で大気圧に復圧する操作を3回繰り返し、反応器の内部を窒素置換した。窒素置換後、反応器外部温度を220℃にし、反応器の内温を徐々に昇温させ、原料混合物を溶解させた。その後、100rpmで撹拌機を回転させた。そして、反応器の内部で行われるジヒドロキシ化合物とDPCのオリゴマー化反応により副生するフェノールを留去しながら、40分間かけて反応器内の圧力を絶対圧で101.3kPa(760Torr)から13.3kPa(100Torr)まで減圧した。 Next, the pressure inside the glass reactor was reduced to about 100 Pa (0.75 Torr), and then the pressure was restored to atmospheric pressure with nitrogen, which was repeated three times to replace the inside of the reactor with nitrogen. After purging with nitrogen, the external temperature of the reactor was set to 220° C., and the internal temperature of the reactor was gradually increased to dissolve the raw material mixture. The stirrer was then rotated at 100 rpm. Then, the pressure inside the reactor was reduced from 101.3 kPa (760 Torr) to 13.0 kPa (760 Torr) in absolute pressure over 40 minutes while distilling off the phenol that was a by-product of the oligomerization reaction of the dihydroxy compound and DPC that took place inside the reactor. The pressure was reduced to 3 kPa (100 Torr).
 続いて、反応器内の圧力を13.3kPaに保持し、フェノールをさらに留去させながら、80分間、エステル交換反応を行った。その後、反応器外部温度を280℃に昇温、40分間かけて反応器内圧力を絶対圧で13.3kPa(100Torr)から399Pa(3Torr)まで減圧し、留出するフェノールを系外に除去した。さらに、反応器内の絶対圧を70Pa(約0.5Torr)まで減圧し、重縮合反応を行った。反応器の攪拌機が予め定めた所定の攪拌動力となったときに、重縮合反応を終了した。 Subsequently, the pressure in the reactor was maintained at 13.3 kPa, and transesterification was carried out for 80 minutes while further distilling off phenol. After that, the temperature outside the reactor was raised to 280° C., the pressure inside the reactor was reduced from 13.3 kPa (100 Torr) to 399 Pa (3 Torr) in absolute pressure over 40 minutes, and the distilled phenol was removed from the system. . Furthermore, the absolute pressure in the reactor was reduced to 70 Pa (about 0.5 Torr) to carry out a polycondensation reaction. The polycondensation reaction was terminated when the stirrer of the reactor reached a predetermined stirring power.
 次いで、反応器内を窒素により絶対圧で101.3kPaに復圧の上、反応器からフェノールカーボネート樹脂(A-7)をアルミ容器へ抜き出し、固化した(A-7)を粉砕した。 Next, after restoring the pressure inside the reactor to 101.3 kPa in absolute pressure with nitrogen, the phenol carbonate resin (A-7) was extracted from the reactor into an aluminum container, and the solidified (A-7) was pulverized.
 得られたフェノールカーボネート樹脂(A-7)のMv、末端水酸基量、末端芳香族炭化水素基量、カーボネート当量、及びTgを表1に示す。 Table 1 shows the Mv, terminal hydroxyl group content, terminal aromatic hydrocarbon group content, carbonate equivalent weight, and Tg of the obtained phenol carbonate resin (A-7).
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
〔樹脂組成物/硬化物の製造と評価〕
 <実施例1~7>
 表2に示す配合でエポキシ樹脂(B-1)と、フェノールカーボネート樹脂(A-1)~(A-7)のシクロヘキサノン溶液(実施例1、実施例7は20wt%、実施例2~6は30wt%)と、硬化促進剤(C-1)と、フィルム化剤となる他のエポキシ樹脂として高分子エポキシ樹脂(B-2)と、レベリング剤とを混合して、樹脂組成物を得た。得られた樹脂組成物の溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム)にアプリケーターで塗布し、160℃で1.5時間、その後200℃で1.5時間乾燥させ、エポキシ樹脂硬化物のフィルムを得た。得られたフィルムについて、前述の手法に従って耐熱性、誘電特性を評価した。結果を表2に示す。
[Production and evaluation of resin composition / cured product]
<Examples 1 to 7>
Cyclohexanone solutions of epoxy resin (B-1) and phenol carbonate resins (A-1) to (A-7) (Examples 1 and 7 are 20 wt%, Examples 2 to 6 are 30 wt%), a curing accelerator (C-1), a polymer epoxy resin (B-2) as another epoxy resin that serves as a filming agent, and a leveling agent to obtain a resin composition. . The resulting resin composition solution was applied to a separator (polyethylene terephthalate film treated with silicone) using an applicator, dried at 160°C for 1.5 hours, and then dried at 200°C for 1.5 hours to form a cured epoxy resin film. Obtained. The obtained film was evaluated for heat resistance and dielectric properties according to the methods described above. Table 2 shows the results.
 表2の結果より、実施例1~7の樹脂組成物を用いて得られた硬化物は、耐熱性と誘電特性がバランスよく優れたものであることがわかる。 From the results in Table 2, it can be seen that the cured products obtained using the resin compositions of Examples 1 to 7 are excellent in heat resistance and dielectric properties in a well-balanced manner.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018

Claims (14)

  1.  フェノールカーボネート樹脂(A)及びエポキシ樹脂(B)を含む樹脂組成物であって、
     前記フェノールカーボネート樹脂(A)の末端水酸基に対する前記エポキシ樹脂(B)のエポキシ基のモル比(エポキシ基/末端水酸基)が、3.0~100,000である、樹脂組成物。
    A resin composition containing a phenol carbonate resin (A) and an epoxy resin (B),
    A resin composition wherein the molar ratio of the epoxy groups of the epoxy resin (B) to the terminal hydroxyl groups of the phenol carbonate resin (A) (epoxy group/terminal hydroxyl group) is 3.0 to 100,000.
  2.  前記フェノールカーボネート樹脂(A)が、下記式(1)で表される繰り返し単位を含む、請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、A及びAは、それぞれ独立に下記式(2)又は(3)で表される基であり;Xは、直接結合、置換基を有していてもよい炭素数1~15の2価の炭化水素基、-O-、-S-、-SO-、-SO-、-CO-、-OCO-又は-COO-であり;n及びnは、それぞれ独立に1~50の整数である。)
    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    (式(2)及び(3)中、Rは、それぞれ独立に炭素数1~12のアルキル基、炭素数7~12のアリールアルキル基、炭素数1~12のアルコキシ基、炭素数7~12のアリールアルコキシ基、炭素数6~12のアリール基、炭素数2~12のアルケニル基、炭素数8~12のアリールアルケニル基、炭素数2~12のアルキニル基、炭素数8~12のアリールアルキニル基、ハロゲン原子、水酸基、カルボキシ基、スルホン基、アミノ基、シアノ基又はニトロ基であり;pは、0~4の整数であり;qは、0~6の整数であり;*は、結合位置である。)
    The resin composition according to claim 1, wherein the phenol carbonate resin (A) contains a repeating unit represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (In formula (1), A 1 and A 2 are each independently a group represented by the following formula (2) or (3); X is a direct bond, an optionally substituted carbon a divalent hydrocarbon group of numbers 1 to 15, -O-, -S-, -SO-, -SO 2 -, -CO-, -OCO- or -COO-; n 1 and n 2 are Each is independently an integer from 1 to 50.)
    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    (In formulas (2) and (3), R is each independently an alkyl group having 1 to 12 carbon atoms, an arylalkyl group having 7 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, arylalkoxy group, aryl group having 6 to 12 carbon atoms, alkenyl group having 2 to 12 carbon atoms, arylalkenyl group having 8 to 12 carbon atoms, alkynyl group having 2 to 12 carbon atoms, arylalkynyl group having 8 to 12 carbon atoms group, halogen atom, hydroxyl group, carboxy group, sulfone group, amino group, cyano group or nitro group; p is an integer from 0 to 4; q is an integer from 0 to 6; * is a bond position.)
  3.  前記フェノールカーボネート樹脂(A)の粘度平均分子量(Mv)が、500~100,000である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the phenol carbonate resin (A) has a viscosity average molecular weight (Mv) of 500 to 100,000.
  4.  前記フェノールカーボネート樹脂(A)が、さらに下記式(4)で表される繰り返し単位を含む、請求項2に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004

    (式(4)中、A及びAは、それぞれ独立に前記式(1)中のAと同義であり;Yは、直接結合、置換基を有していてもよい炭素数6~15の2価の芳香族炭化水素基又は置換基を有していてもよい炭素数6~15の2価の複素芳香族炭化水素基であり;n及びnは、それぞれ独立に1~50の整数である。)
    The resin composition according to claim 2, wherein the phenol carbonate resin (A) further contains a repeating unit represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000004

    (In Formula (4), A 3 and A 4 are each independently synonymous with A 1 in Formula (1) above; Y is a direct bond and optionally has a substituent of 6 to 15 divalent aromatic hydrocarbon groups or optionally substituted divalent heteroaromatic hydrocarbon groups having 6 to 15 carbon atoms; n 3 and n 4 are each independently 1 to is an integer of 50.)
  5.  前記フェノールカーボネート樹脂(A)のカーボネート当量が、100~10,000g/eqである、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the phenol carbonate resin (A) has a carbonate equivalent of 100 to 10,000 g/eq.
  6.  前記エポキシ樹脂(B)に対する前記フェノールカーボネート樹脂(A)の重量比が、0.01以上100以下である、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the weight ratio of said phenol carbonate resin (A) to said epoxy resin (B) is 0.01 or more and 100 or less.
  7.  さらに硬化促進剤(C)を含み、前記フェノールカーボネート樹脂(A)及び前記エポキシ樹脂(B)の合計100重量部に対する前記硬化促進剤(C)の含有量が、0.001~5重量部である、請求項1又は2に記載の樹脂組成物。 Furthermore, a curing accelerator (C) is included, and the content of the curing accelerator (C) with respect to a total of 100 parts by weight of the phenol carbonate resin (A) and the epoxy resin (B) is 0.001 to 5 parts by weight. 3. The resin composition according to claim 1 or 2.
  8.  前記硬化促進剤(C)が、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、及び金属系硬化促進剤からなる群より選ばれる1種以上である、請求項7に記載の樹脂組成物。 The curing accelerator (C) is one or more selected from the group consisting of phosphorus curing accelerators, amine curing accelerators, imidazole curing accelerators, and metal curing accelerators, according to claim 7. of the resin composition.
  9.  請求項1又は2に記載の樹脂組成物で形成された樹脂組成物層を有する、樹脂シート。 A resin sheet having a resin composition layer formed of the resin composition according to claim 1 or 2.
  10.  請求項1又は2に記載の樹脂組成物を硬化してなる、硬化物。 A cured product obtained by curing the resin composition according to claim 1 or 2.
  11.  請求項1又は2に記載の樹脂組成物を硬化してなる、絶縁層。 An insulating layer formed by curing the resin composition according to claim 1 or 2.
  12.  請求項11に記載の絶縁層を有する、電気・電子部品。 An electric/electronic component having the insulating layer according to claim 11.
  13.  請求項11に記載の絶縁層を有する、プリント配線板。 A printed wiring board having the insulating layer according to claim 11.
  14.  フェノールカーボネート樹脂(A)’を含むエポキシ樹脂用硬化剤であって、
     前記フェノールカーボネート樹脂(A)’は、粘度平均分子量(Mv)が500~20,000であり、末端芳香族炭化水素基量が95質量%以上である、エポキシ樹脂用硬化剤。
    An epoxy resin curing agent containing a phenol carbonate resin (A)',
    The phenol carbonate resin (A)' is an epoxy resin curing agent having a viscosity average molecular weight (Mv) of 500 to 20,000 and a terminal aromatic hydrocarbon group content of 95% by mass or more.
PCT/JP2022/035310 2021-09-24 2022-09-22 Resin composition, cured product, resin sheet, insulation layer, electric/electronic component, printed circuit board, and curing agent for epoxy resin WO2023048209A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280062973.0A CN117957264A (en) 2021-09-24 2022-09-22 Resin composition, cured product, resin sheet, insulating layer, electric/electronic component, printed wiring board, and curing agent for epoxy resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-155142 2021-09-24
JP2021155142 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023048209A1 true WO2023048209A1 (en) 2023-03-30

Family

ID=85720786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035310 WO2023048209A1 (en) 2021-09-24 2022-09-22 Resin composition, cured product, resin sheet, insulation layer, electric/electronic component, printed circuit board, and curing agent for epoxy resin

Country Status (3)

Country Link
CN (1) CN117957264A (en)
TW (1) TW202317700A (en)
WO (1) WO2023048209A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258949A (en) * 1987-02-25 1988-10-26 ゼネラル・エレクトリック・カンパニイ Cyclic polycarbonate-polyepoxide reaction product and production thereof
JPH03237119A (en) * 1989-09-11 1991-10-23 Dow Chem Co:The Thermoformative thermosetting epoxy/ polyester reaction product
JPH0967428A (en) * 1995-08-31 1997-03-11 Yokohama Rubber Co Ltd:The Composite material, its production and composite material for lateral rigid part in track belt
JP2003165897A (en) * 2001-11-28 2003-06-10 Shin Etsu Chem Co Ltd Epoxy resin composition for semiconductor sealing and semiconductor device using the same
JP2019035056A (en) * 2017-08-21 2019-03-07 味の素株式会社 Resin composition
WO2020075611A1 (en) * 2018-10-12 2020-04-16 本州化学工業株式会社 Epoxy resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258949A (en) * 1987-02-25 1988-10-26 ゼネラル・エレクトリック・カンパニイ Cyclic polycarbonate-polyepoxide reaction product and production thereof
JPH03237119A (en) * 1989-09-11 1991-10-23 Dow Chem Co:The Thermoformative thermosetting epoxy/ polyester reaction product
JPH0967428A (en) * 1995-08-31 1997-03-11 Yokohama Rubber Co Ltd:The Composite material, its production and composite material for lateral rigid part in track belt
JP2003165897A (en) * 2001-11-28 2003-06-10 Shin Etsu Chem Co Ltd Epoxy resin composition for semiconductor sealing and semiconductor device using the same
JP2019035056A (en) * 2017-08-21 2019-03-07 味の素株式会社 Resin composition
WO2020075611A1 (en) * 2018-10-12 2020-04-16 本州化学工業株式会社 Epoxy resin composition

Also Published As

Publication number Publication date
TW202317700A (en) 2023-05-01
CN117957264A (en) 2024-04-30

Similar Documents

Publication Publication Date Title
JP6672699B2 (en) Epoxy resin, epoxy resin composition, cured product, laminate for electric / electronic circuit, and method for producing epoxy resin
TWI571477B (en) Phosphor-containing epoxy resin,its resin composition, and cured article thereof
US9546262B1 (en) Phosphorous containing compounds and process for synthesis
JP2019052278A (en) Epoxy resin, epoxy resin composition, cured product, and laminate for electric-electronic circuit
KR20240008879A (en) Resin composition, prepreg using the same, resin-added film, resin-added metal foil, metal-clad laminate, and wiring board
CN116731471A (en) Resin composition
JP2015196720A (en) Phosphorus-containing epoxy resin, phosphorus-containing epoxy resin composition, cured article and laminate sheet electric and electronic circuit
JP6686666B2 (en) Epoxy resin, epoxy resin composition, cured product, laminate for electric / electronic circuit, and method for producing epoxy resin
JP6799376B2 (en) Oxazine resin composition and its cured product
KR20220014836A (en) Resin composition
CN114945630A (en) Resin composition
JP6119376B2 (en) Epoxy resin, epoxy resin composition and cured product
JP6497292B2 (en) Epoxy resin, epoxy resin composition, cured product, and laminate for electric / electronic circuit
JP6228799B2 (en) Epoxy resin composition and cured product thereof
WO2023048209A1 (en) Resin composition, cured product, resin sheet, insulation layer, electric/electronic component, printed circuit board, and curing agent for epoxy resin
JP6550843B2 (en) Epoxy resin, epoxy resin composition, cured product, and laminate for electric / electronic circuit
JP2015030733A (en) Hardening agent of epoxy resin, composition using the same and hardened product thereof
KR20240060610A (en) Resin compositions, cured products, resin sheets, insulating layers, electrical and electronic components, printed wiring boards, and curing agents for epoxy resins
JP2010235823A (en) Epoxy resin, epoxy resin composition and cured product of the same
JP2014088464A (en) Thermoplastic polyhydroxypolyether resin and insulation film molded therefrom
JP7414143B2 (en) resin composition
KR20190002275A (en) Phosphorus containing flame-retardant polymer and flame-retardant resin composition comprising the same
JP2023020066A (en) Allyl group-containing polycarbonate resin and curable resin composition
JP2023020067A (en) Allyl group-containing polycarbonate resin and curable resin composition
CN116769274A (en) Resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872960

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549736

Country of ref document: JP