WO2023048141A1 - Cap - Google Patents

Cap Download PDF

Info

Publication number
WO2023048141A1
WO2023048141A1 PCT/JP2022/034989 JP2022034989W WO2023048141A1 WO 2023048141 A1 WO2023048141 A1 WO 2023048141A1 JP 2022034989 W JP2022034989 W JP 2022034989W WO 2023048141 A1 WO2023048141 A1 WO 2023048141A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
cap
boss
nozzle
container
Prior art date
Application number
PCT/JP2022/034989
Other languages
French (fr)
Japanese (ja)
Inventor
元 佐々木
庄治 植平
悟 市川
Original Assignee
東京ライト工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京ライト工業株式会社 filed Critical 東京ライト工業株式会社
Publication of WO2023048141A1 publication Critical patent/WO2023048141A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D47/00Closures with filling and discharging, or with discharging, devices
    • B65D47/04Closures with discharging devices other than pumps
    • B65D47/06Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages
    • B65D47/08Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages having articulated or hinged closures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D47/00Closures with filling and discharging, or with discharging, devices
    • B65D47/04Closures with discharging devices other than pumps
    • B65D47/20Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge

Definitions

  • the present invention relates to a cap attached to the mouth of a container containing contents.
  • Patent Document 1 discloses a container configured to discharge an appropriate amount of contents from a nozzle of a cap by pressurizing and deforming the container body.
  • the cap 11 (hereinafter referred to as the “conventional cap”) described in Patent Document 1 has a check valve 53 and a base 81 formed by the bottom wall 64 of the base portion 51 of the cap main body 41 and the cylindrical portion 73 of the discharge nozzle 52. It is clamped and fixed to the valve chamber 54 . That is, the cap body 41, the discharge nozzle 52, and the check valve 53 are separately configured in the cap 11. As shown in FIG. As described above, the conventional cap is composed of at least three parts, which increases the number of parts and increases the manufacturing cost. In addition, productivity decreases due to an increase in the number of assembly man-hours.
  • the check valve 53 divides the valve chamber 54 into the bottom wall 64 side (upstream chamber) and the nozzle 72 side (downstream chamber).
  • the nozzle 72 side (downstream chamber) of the valve chamber 54 When air remaining on the nozzle 72 side (downstream chamber) of the valve chamber 54 is involved in the contents, air bubbles are generated in the contents flowing out from the nozzle 72 . The generation of such air bubbles hinders the smooth outflow of the content (liquid) when a small amount of content (liquid) is to be poured out, and there is also a concern that the air bubbles may pop and stain the surroundings.
  • An object of the present invention is to reduce the manufacturing cost of a cap provided with a check valve and to suppress the generation of air bubbles in the contents flowing out from a nozzle.
  • the invention described in claim 1 comprises a cap body attached to the mouth of a container, and an annular valve body of a check valve that allows contents to flow from the inside of the container to the outside of the container.
  • a nozzle having a discharge passage opening between the boss and the seal holding portion and protruding upward from the ceiling portion;
  • the valve body includes an outer edge portion held liquid-tight by the seal holding portion provided outside the lower end opening of the nozzle, and the boss slidably inserted therein.
  • the cap according to claim 1 is composed of two parts, the cap main body and the valve body of the check valve, the number of constituent parts is small, and the manufacturing cost can be reduced. Also, since the number of assembling man-hours is reduced, productivity can be improved.
  • the invention recited in claim 2 is characterized in that the flow path extends from a certain height from the valve seat to the proximal end of the boss.
  • the content corresponding to the increase in the volume of the downstream chamber from the time when the communication between the upstream chamber and the downstream chamber is cut off until the valve portion of the valve body is seated on the valve seat.
  • annular groove extending in the circumferential direction via an annular step is provided on the outer periphery of the base end of the boss, and one end of the nozzle opens at the bottom of the annular groove. It is characterized by In the cap according to claim 3, the content that has passed through the flow path from the upstream chamber and is jetted to the downstream chamber collides with the annular stepped portion and is not directly introduced into the nozzle. It is possible to prevent the ink from being discharged well.
  • the nozzle outflow path is opened at a position deviated from the center of the cap body on the lower surface of the ceiling portion, and the outflow path is opened with respect to the center of the cap body.
  • a concave portion for an air reservoir is provided on the side opposite to the opening.
  • the invention recited in claim 5 is the cap according to claim 4, wherein a first communication passage that communicates between the upstream chamber and the downstream chamber is provided at the center of the lower surface of the ceiling portion, A second communication path communicating between the first communication path and the outflow path is provided on the lower surface of the ceiling portion.
  • a first communication passage that communicates between the upstream chamber and the downstream chamber is provided at the center of the lower surface of the ceiling portion
  • a second communication path communicating between the first communication path and the outflow path is provided on the lower surface of the ceiling portion.
  • the present invention it is possible to reduce the manufacturing cost and suppress the generation of air bubbles in the contents flowing out from the nozzle in the cap provided with the check valve.
  • FIG. 4 is an explanatory view of the first embodiment, and is a cross-sectional view of the cap attached to the mouth of the container, taken along an axial plane;
  • FIG. 2 is an explanatory diagram of the first embodiment and a plan view of the valve body;
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG. 2;
  • FIG. 2 is an enlarged view of the main part in FIG. 1 and is a view for explaining the operation of the check valve;
  • 2 is an enlarged cross-sectional view taken along the line AA in FIG. 1;
  • FIG. It is a figure explaining the effect
  • FIG. 4B is a view for explaining the operation of the first embodiment, and shows a state when the valve portion of the valve body of the check valve is positioned at the top dead center H2 and the check valve is opened.
  • FIG. 8 is a diagram for explaining the operation of the first embodiment, and shows a state in which the valve portion of the valve element of the check valve is returned to the valve open position H1 from the state shown in FIG. 7;
  • FIG. 9 is a diagram for explaining the operation of the first embodiment, showing a state in which the valve body of the check valve is seated on the valve seat from the state shown in FIG. 8 and the contents in the nozzle are sucked toward the downstream chamber; It is a figure which shows.
  • FIG. 8 is a diagram for explaining the operation of the first embodiment, and shows a state in which the valve portion of the valve element of the check valve is returned to the valve open position H1 from the state shown in FIG. 7
  • FIG. 9 is a diagram for explaining the operation of the first embodiment, showing a state in which the valve
  • FIG. 4 is a diagram showing a state in which the check valve is opened with the valve portion of the valve body of the check valve positioned at the top dead center H2; 15 is a diagram showing a state in which the valve portion of the valve body of the check valve is returned to the valve open position H1 from the state shown in FIG. 14;
  • FIG. 16 is a diagram showing a state in which the valve portion of the valve element of the check valve is seated on the valve seat and the contents in the nozzle are sucked toward the downstream chamber from the state shown in FIG. 15; FIG.
  • the cap 1 is attached to a mouth portion 11 of a squeeze container 10 (hereinafter referred to as "container 10") made of polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), or the like.
  • the cap 1 is composed of a cap main body 21 and a valve body 81 of a check valve 71 which will be described later.
  • a synthetic resin such as polypropylene (PP) is used for the cap 1, for example.
  • the cap body 21 includes a disk-shaped ceiling portion 31 that closes the upper end opening of the mouth portion 11 (hereinafter referred to as “mouth portion 11”) of the container 10, and is provided on the outer peripheral edge of the ceiling portion 31. It has an outer cylindrical portion 41 fitted to the outside, and an inner cylindrical portion 45 provided on the lower surface 32 of the ceiling portion 31 and fitted to the inside of the mouth portion 11 .
  • the annular protrusion 12 that protrudes radially outward from the mouth portion 11 abuts against the inner peripheral surface 42 of the outer cylindrical portion 41 .
  • the annular recessed portion 13 that is recessed radially inward of the mouth portion 11 abuts against the outer peripheral surface 47 of the inner cylinder portion 45 .
  • the annular projection 13 is provided in the vicinity of the opening of the mouth portion 11, and the annular projection 12 is provided at an intermediate position in the axial direction ("vertical direction" in FIG. 1) of the mouth portion 11.
  • An inner peripheral surface 42 of the outer cylindrical portion 41 is provided with an annular protrusion 43 that engages with the annular projection 12 of the mouth portion 11 and prevents movement of the cap main body 21 in the removal direction from the mouth portion 11 .
  • a cylindrical boss 51 with an open tip protrudes from the center (center) of the lower surface 32 of the ceiling portion 31 .
  • the lower end of the discharge passage 62 formed in the nozzle 61 opens to the lower surface 32 of the ceiling portion 31 .
  • the nozzle 61 has a cylindrical portion 63 that protrudes axially upward from the top surface of the ceiling portion 31 and a discharge port 64 that expands axially upward from the upper end of the cylindrical portion 63 .
  • the opening 65 of the nozzle 61 is drilled outside the boss 51 of the ceiling portion 31 .
  • the boss 51 is arranged coaxially with the outer cylinder portion 41 and the inner cylinder portion 45 .
  • An annular step portion 35 having a step with respect to the lower surface 32 of the ceiling portion 31 is provided on the outer edge portion of the boss 51 on the base end side.
  • the cap body 21 has a lid body 22 that covers the upper surface 33 of the ceiling portion 31 .
  • the lid body 22 is connected to the outer cylindrical portion 41 via hinges 23 .
  • the hinge 23 is provided on the opposite side of the nozzle 61 with respect to the boss 51 (at the farthest position from the nozzle 61).
  • An annular projection 24 is provided on the inner edge of the opening of the lid 22 to engage with an annular claw 34 provided on the outer edge of the upper end of the ceiling portion 31 .
  • the lid body 22 has an inner cylindrical portion 25 positioned coaxially with the cap body 21 in a closed state. The lower end of the inner cylindrical portion 25 abuts on the upper surface 33 of the ceiling portion 31 near the inside of the claw portion 34 .
  • the lid 22 has a plug 26 provided inside the inner cylindrical portion 25 . The plug 26 closes the outlet 64 of the nozzle 61 when the lid 22 is closed.
  • the cap 1 has a check valve 71 that allows the content 2 (see FIG. 6) to flow from inside the container 10 to the nozzle 61 (outside the container 10).
  • the check valve 71 is composed of an annular valve body 81 and an annular valve seat 72 on which a valve portion 91 of the valve body 81 is removably seated.
  • the valve seat 72 is formed on the upper side (the surface on the ceiling portion 31 side) of the annular lip portion 52 provided on the outer edge of the opening of the boss 51 .
  • the valve seat 72 is formed into a concave curved surface. The upper end of the valve seat 72 smoothly continues to the outer peripheral surface 53 of the boss 51 .
  • the outer peripheral surface 53 of the boss 51 is provided with a plurality of grooves 54 ("eight grooves" in the first embodiment, see FIG. 5) that form flow passages 73 to be described later.
  • the plurality of grooves 54 extend in the axial direction (“vertical direction” in FIG. 4) at equal intervals in the circumferential direction of the boss 51 and at a constant depth.
  • Each groove 54 extends from the annular surface 36 of the annular stepped portion 35 to a position at a constant height H1 (hereinafter "valve opening point H1", see FIG. 4) from the valve seat 72.
  • the lower end of each groove 54 is formed into a gently curved surface 55 and gradually reaches the outer peripheral surface 53 of the boss 51 .
  • the valve body 81 is formed in a substantially disc shape having a through hole 95 in the center into which the boss 51 is inserted, and the through hole 95 is formed in the edge on the inner peripheral side. It is composed of an annular valve portion 91 , an annular seal portion 82 having a substantially rectangular vertical cross section, and an annular partition wall portion 85 formed between the valve portion 91 and the seal portion 82 .
  • the seal portion 82 is liquid-tightly held by an annular seal holding groove 83 formed between the inner tubular portion 45 and the annular rib 37 provided inside the inner tubular portion 45 .
  • the valve portion 91 has a substantially trapezoidal vertical cross section, and an inner peripheral surface 94 is formed between the inner edge of the upper surface 92 and the inner edge of the lower surface 93 .
  • An inner peripheral surface 94 of the valve portion 91 is formed as an inclined surface whose diameter is reduced from the upper surface 92 to the lower surface 93 .
  • a through hole 95 is formed in the ridge between the lower surface 93 and the inner peripheral surface 94 of the valve portion 91 .
  • the through hole 95 is axially movable with respect to the outer peripheral surface 53 of the boss 51 while maintaining liquid tightness with the outer peripheral surface 53 .
  • the partition wall portion 85 has a spring portion 86 that generates a pressing force that urges the valve portion 91 downward toward the valve seat 72 .
  • the partition wall portion 85 communicates the inside of the inner cylindrical portion 45 (the inside of the mouth portion 11 of the container 10 ) with the upstream chamber 3 on the side of the container body 15 (“lower side” in FIG. 1 ) and the discharge path 62 of the nozzle 61 on the downstream side. It is partitioned into a room 4.
  • a check valve 71 composed of a valve body 81 and a valve seat 72 is configured such that when the valve portion 91 of the valve body 81 is positioned at the bottom dead center H0, that is, the valve portion 91 is positioned at the valve seat. 72 (when the sealing surface is in close contact with the seating surface of the valve seat 72), communication between the upstream chamber 3 on the container body 15 side and the downstream chamber 4 on the nozzle 61 side is cut off. While the through hole 95 (seal surface) of the valve portion 91 moves (sliding) on the outer peripheral surface 53 of the boss 51 from the bottom dead center H0 to the valve opening point H1 while maintaining liquid tightness, the valve portion 91 and the upstream chamber 3 are separated. Communication with the downstream chamber 4 remains blocked.
  • the through hole 95 (seal surface) of the valve portion 91 faces the groove 54 of the boss 51.
  • a plurality of flow paths 73 are formed between the valve portion 91 and the boss 51, thereby allowing the upstream chamber 3 and the downstream chamber 4 to communicate with each other.
  • the discharge amount of the contents 2 discharged from the nozzle 61 can be adjusted.
  • the position of the top dead center H2 of the valve portion 91 is determined by a plurality of protrusions 96 (only “two" are shown in FIG. 1) provided on the annular surface 36 of the annular stepped portion 35. Determined by abutment.
  • the plurality of protrusions 96 are arranged at regular intervals on a circle coaxial with the boss 51 .
  • annular groove 5 that is coaxial with the boss 51 is provided on the lower surface 32 side of the ceiling portion 31 .
  • Annular groove 5 is formed between annular step 35 and rib 37 .
  • a plurality of protrusions 7 are arranged at regular intervals on a circle coaxial with the boss 51 .
  • the radius of the circle on which the protrusions 7 are arranged is larger than the radius of the concentric circle on which the protrusions 96 are arranged.
  • the opening 65 of the nozzle 61 is provided in the bottom surface 6 of the annular groove 5 and is arranged near the outer edge of the bottom surface 6 .
  • the seal portion 82 of the valve body 81 is inserted (press-fitted) into the seal holding groove 83 formed in the cap main body 21 .
  • An annular protrusion 84 is provided on the inner peripheral surface 46 of the inner cylindrical portion 45 to prevent the seal portion 82 from slipping out of the seal holding groove 83 .
  • the diameter of the through hole 95 of the valve body 81 is increased so that the tip of the boss 51 is passed through the through hole 95 .
  • the tip of the boss 51 is formed into a semicircular curved surface in longitudinal section, the tip of the boss 51 can be passed through the through hole 95 without damaging the sealing surface of the valve part 91. - ⁇ This completes the attachment of the valve body 81 to the cap main body 21 . Either the step of inserting the seal portion 82 into the seal holding groove 83 or the step of penetrating the boss 51 into the through hole 95 may be performed first.
  • the downstream chamber 4 is defined as the space from the bottom surface 6 of the annular groove 5 formed in the ceiling portion 31 of the cap body 21 to the valve body 81 , in other words, the space where the discharge passage 62 of the nozzle 61 opens.
  • the container 10 accommodates a liquid content 2 such as a liquid seasoning or skin lotion.
  • the user When discharging the contents 2 contained in the container 10 from the nozzle 61 of the cap 1, first, the user opens the lid 22 of the cap body 11 to reveal the nozzle 61. The container 10 is then tilted as shown in FIG. 6 in order to dispense the contents 2 . In this state, the valve portion 91 of the valve body 81 of the check valve 71 is seated on the valve seat 72 by the biasing force of the partition wall portion 85, so that the upstream chamber 3 on the container body 15 side and the downstream chamber 4 on the nozzle 61 side Communication with is cut off.
  • the pressure in the upstream chamber 3 increases, and the valve element 81 receives the pressure in the upstream chamber 3 , so that the valve portion 91 is separated from the valve seat 72 against the biasing force of the partition wall portion 85 .
  • the valve portion 91 moves the through hole 95 (seal surface) from the bottom dead center H0 (see FIG. 4) to the valve opening point H1 (see FIG. 4) while maintaining the liquid tightness of the outer peripheral surface 53 of the boss 51 . , the communication between the upstream chamber 3 and the downstream chamber 4 is still blocked.
  • valve portion 91 passes through the valve opening point H1 and further reaches the top dead center H2 (see FIG. 4) to open the check valve 71 (see FIG. 7).
  • flow paths 73 formed between the valve body 81 (valve portion 91) and the boss 51. Then, the content 2 in the container 10 (upstream chamber 3 ) is discharged out of the container 10 from the discharge port 64 of the nozzle 61 via the channel 73 , the downstream chamber 4 , the opening 65 and the discharge passage 62 .
  • the content 2 that has passed through the flow path 73 collides with the annular surface 36 of the annular stepped portion 35 and changes its direction radially outward ("leftward” in FIG. 7), and further flows through the discharge path 62. It passes through and is discharged from the discharge port 64 of the nozzle 61 .
  • the content 2 ejected from the flow path 73 is received by the annular surface 36 of the annular stepped portion 35, so that the content 2 is vigorously ejected from the ejection port 64 of the nozzle 61. is suppressed.
  • the biasing force (returning force) of the partition wall portion 85 causes the valve portion 91 to move the through hole 95 (seal surface) to the outer peripheral surface 53 of the boss 51. It moves from the top dead center H2 toward the valve seat 72 while maintaining liquid tightness.
  • the valve portion 91 passes through the valve opening point H1 (the lower end of the groove 54 formed in the boss 51) (see FIG. 8), communication between the upstream chamber 3 and the downstream chamber 4 is cut off.
  • the cap 1 according to the first embodiment has the following effects.
  • the cap main body, the nozzle, and the check valve are separately configured, which increases the number of parts and increases the manufacturing cost.
  • an increase in the number of assembly man-hours leads to a decrease in productivity.
  • the boss 51 on which the valve seat 72 of the check valve 71 is formed and the nozzle 61 are offset in the radial direction of the boss 51. is arranged outside the boss 51 provided in the center of the ceiling portion 31, it is possible to integrally mold elements other than the check valve 71, and the cap 1 is combined with the cap main body 21 and the valve of the check valve 71. It can be composed of two parts including the body 81 . As a result, the number of parts constituting the cap 1 is smaller than that of the conventional cap, and the manufacturing cost of the cap 1 can be reduced. Moreover, since the number of assembling man-hours is reduced, the productivity of the cap 1 can be improved.
  • the discharge passage 62 (opening 65) is formed at a position displaced from the center of the ceiling portion 31, so that the annular stepped portion 35 can be formed on the outer circumference of the boss 51.
  • the content 2 jetted from the upstream chamber 3 through the flow path 73 to the downstream chamber 4 collides with the annular surface 36 of the annular stepped portion 35 formed on the base end side of the boss 51. Since the direction of flow is changed by pressing, it is possible to prevent the content 2 from being vigorously discharged from the nozzle 61 .
  • This has a simple structure and is easy to implement as compared with the conventional cap in which a baffle plate is installed at the opening (introduction port) of the nozzle.
  • the cap 1 according to the first embodiment by changing the flow area of the plurality of flow paths 73, in other words, by changing the number and shape of the grooves 54 formed in the boss 51, the liquid is discharged from the nozzle 61. The discharge amount of the contents 2 can be easily adjusted.
  • FIG. 10 (Second embodiment) Next, a second embodiment will be described with reference to FIGS. 10 to 16.
  • FIG. Note that the same designations and reference numerals are used for common parts with the first embodiment, and redundant explanations are omitted.
  • a groove-shaped air reservoir 101 extending along the inner circumference of the rib 37 in an arc shape with a constant width and a constant depth is provided on the lower surface 38 of the central portion of the ceiling portion 31 . recesses) are formed.
  • the air reservoir 101 is provided on the opposite side of the central lower surface 38 of the ceiling 31 from the opening 65 of the outflow passage 62 and at a certain distance from the boss 51 .
  • R0 the radius extending through the center of the opening 65 in the opposite direction to the radius of the circular central lower surface 38
  • one end wall 105 of the air reservoir 101 extends from the radius R0 in FIG. 90 degrees in the clockwise direction
  • the other end wall 106 of the air reservoir 101 forms 90 degrees in the counterclockwise direction in FIG. 11 from the radius R0.
  • the central angle of the air reservoir 101 is 180 degrees.
  • the central angle of the air reservoir 101 is not limited to 180 degrees, and can be set to 120 degrees, for example.
  • one end wall 105 of the air reservoir 101 forms an angle of 60 degrees clockwise in FIG. 60 degrees in the direction of rotation.
  • the air reservoir 101 (the outer peripheral wall 102 and the inner peripheral wall 103) is formed in an arc shape (see FIG. 11), but as shown in FIG. 106 (see FIG. 11) may be provided on the same plane to form the air reservoir 101 .
  • a groove-shaped communication passage 39 extending with a constant width and a constant depth from the base end of the boss 51 to the opening 65 of the outflow passage 62 is provided on the lower surface 38 of the central portion of the ceiling portion 31 .
  • (Second communication path) is formed.
  • the depth of the communication path 39 is the same as the depth of the air reservoir 101 .
  • the flow path 73 formed between the boss 51 and the groove 54A is referred to as flow path 73A for convenience.
  • the groove shape (flow path shape) of the communication path 39 can be semicircular, rectangular, or the like in a cross-sectional view taken along line DD in FIG.
  • a plurality of (“8" in the second embodiment) protrusions 7 are provided on the lower surface 38 of the central portion of the ceiling portion 31 to restrict the movement of the partition wall portion 85 of the valve body 81 toward the downstream chamber 4 side. .
  • a plurality of protrusions 7 are arranged at regular intervals on a circle coaxial with the boss 51 .
  • four protrusions 7 on the side opposite to the opening 65 of the nozzle 61 (“right side” in FIG. 11 ) protrude from the bottom portion 104 of the air reservoir portion 101 .
  • the radius of the circle on which the protrusions 7 are arranged is larger than the radius of the concentric circle on which the protrusions 96 are arranged.
  • the container 10 accommodates a liquid content 2 such as a liquid seasoning or skin lotion.
  • a liquid content 2 such as a liquid seasoning or skin lotion.
  • the user opens the lid 22 of the cap body 11 to reveal the nozzle 61.
  • the container 10 is then tilted as shown in FIG. 13 to allow the contents 2 to flow out.
  • the valve portion 91 of the valve body 81 of the check valve 71 is seated on the valve seat 72 by the biasing force of the partition wall portion 85, so that the upstream chamber 3 on the container body 20 side and the downstream chamber 4 on the nozzle 61 side Communication with is cut off.
  • the pressure in the upstream chamber 3 increases, and the valve element 81 receives the pressure in the upstream chamber 3 , so that the valve portion 91 is separated from the valve seat 72 against the biasing force of the partition wall portion 85 .
  • the valve portion 91 moves the through hole 95 (seal surface) from the bottom dead center H0 (see FIG. 4) to the valve opening point H1 (see FIG. 4) while maintaining the liquid tightness of the outer peripheral surface 53 of the boss 51 . , the communication between the upstream chamber 3 and the downstream chamber 4 is still blocked.
  • valve portion 91 passes through the valve opening point H1 and further reaches the top dead center H2 (see FIG. 4) to open the check valve 71 (see FIG. 14).
  • the upstream chamber 3 and the downstream chamber 4 are communicated with each other through a plurality of flow paths 73 (first communication paths) formed between the valve body 81 (valve portion 91) and the boss 51.
  • Contents 2 in (upstream chamber 3 ) flow out of container 10 from outlet 64 of nozzle 61 via multiple flow paths 73 , downstream chamber 4 , opening 65 , and outflow path 62 .
  • the content 2 that has passed through the plurality of flow paths 73 collides with the base end outer edge of the boss 51 on the lower surface 38 of the central portion of the ceiling portion 31, and changes direction radially outward. , and further flows out from the outlet 64 of the nozzle 61 through the outlet passage 62 .
  • the content 2 jetted from the plurality of flow paths 73 is received by the lower surface 38 of the central portion of the ceiling portion 31, so that the flow direction of the content 2 is changed from the axial direction to the radial direction. , the content 2 is restrained from being vigorously discharged from the outlet 64 of the nozzle 61.
  • the air reservoir 101 (recess) is formed on the side opposite to the opening 65 of the outflow passage 62 on the lower surface 38 of the central portion of the ceiling 31. Therefore, as shown in FIG.
  • the air remaining in the downstream chamber 4 accumulates in the air reservoir 101 located at the top (high position) of the downstream chamber 4 when the container 10 is tilted.
  • the communication path 39 (second communication path) that communicates between the flow path 73A (see FIG. 11) and the outflow path 62 is provided in the lower surface 38 of the central portion of the ceiling portion 31. is tilted, the contents 2 ejected from the flow path 73A positioned at the lower portion (lower position) of the downstream chamber 4 can be preferentially guided to the outflow path 62. As a result, it is possible to further suppress the entrainment of the air remaining in the downstream chamber 4 into the contents 2, and the generation of air bubbles in the contents 2 flowing out from the outlet 64 of the nozzle 61 can be more effectively prevented. can be effectively prevented.
  • the urging force (returning force) of the partition wall portion 85 causes the valve portion 91 to move the through hole 95 (seal surface) to the outer peripheral surface 53 of the boss 51. It moves from the top dead center H2 toward the valve seat 72 while maintaining liquid tightness.
  • the valve portion 91 passes through the valve opening point H1 (the lower end of the groove 54 formed in the boss 51) (see FIG. 15), communication between the upstream chamber 3 and the downstream chamber 4 is cut off.
  • the cap 1 according to the second embodiment has the following effects.
  • air remaining in the downstream chamber inside the cap may be involved in the contents, and bubbles may be generated in the contents discharged from the nozzle.
  • the cap 1 according to the second embodiment is provided with an outflow passage 62 having an opening 65 at a position deviated from the center of the central lower surface 38 of the ceiling portion 31.
  • An air reservoir 101 (recess) is provided on the opposite side of the outlet 62 from the opening 65 .
  • the communication path 39 (second communication path) that communicates the flow path 73A and the outflow path 62 is provided in the lower surface 38 of the central portion of the ceiling portion 31, when the container 10 is tilted, the downstream The content 2 ejected from the flow path 73A positioned at the lower portion (lower position) of the chamber 4 is preferentially guided to the outflow path 62 .
  • the cap 1 is applied to a tube container (container 10), but the embodiment is not limited to this.
  • the cap 1 is attached to a so-called double container (see Patent Document 1), which is composed of a container and a bag-like inner container that is integrally provided in the outer container and the majority of which is separable from the outer container. can be applied.

Abstract

A boss (51) on which a valve seat (72) for a check valve (71) is formed and a nozzle (61) are arranged by being offset in the radial direction of the boss (51). The boss (51) is provided on a lower surface (32) of a ceiling part (31) of a cap body (21), and the nozzle (61) is provided on an upper surface (33) of the ceiling part (31). Therefore, the elements excluding the check valve (71) can be integrally molded, and a cap (1) can be configured by the two components of the cap body (21) and a valve body (81) of the check valve (71). In this way, the manufacturing cost of the cap (1) can be reduced.

Description

キャップcap
 本発明は、内容物を収容した容器の口部に取り付けられるキャップに関する。 The present invention relates to a cap attached to the mouth of a container containing contents.
 特許文献1には、容器本体を加圧して変形させることにより、キャップのノズルから適量の内容物が吐出されるように構成された容器が開示されている。 Patent Document 1 discloses a container configured to discharge an appropriate amount of contents from a nozzle of a cap by pressurizing and deforming the container body.
特開2020-200077号公報Japanese Patent Application Laid-Open No. 2020-200077
 特許文献1に記載されたキャップ11(以下「従来のキャップ」と称する)は、逆止弁53が、ベース81がキャップ本体41の基部51の底壁64と吐出ノズル52の筒部73とにより挟持されて弁室54に固定されている。即ち、キャップ11は、キャップ本体41と吐出ノズル52と逆止弁53とが別個に構成されている。このように、従来のキャップは、少なくとも3つの部品により構成されており、部品点数が多く製造コストが増加する要因になっている。また、組立工数が増えることから生産性が低下する。 The cap 11 (hereinafter referred to as the “conventional cap”) described in Patent Document 1 has a check valve 53 and a base 81 formed by the bottom wall 64 of the base portion 51 of the cap main body 41 and the cylindrical portion 73 of the discharge nozzle 52. It is clamped and fixed to the valve chamber 54 . That is, the cap body 41, the discharge nozzle 52, and the check valve 53 are separately configured in the cap 11. As shown in FIG. As described above, the conventional cap is composed of at least three parts, which increases the number of parts and increases the manufacturing cost. In addition, productivity decreases due to an increase in the number of assembly man-hours.
 また、従来のキャップは、逆止弁53により、弁室54が底壁64側(上流室)とノズル72側(下流室)とに区画されているので、ノズル72から内容物を流出させるとき、弁室54のノズル72側(下流室)に残存する空気が内容物に巻き込まれると、ノズル72から流出される内容物に気泡が発生する。このような気泡の発生は、少量の内容物(液体)を流出させるとき、内容物のスムーズな流出を妨げると共に、時には気泡が弾けて周辺を汚す懸念がある。 In the conventional cap, the check valve 53 divides the valve chamber 54 into the bottom wall 64 side (upstream chamber) and the nozzle 72 side (downstream chamber). When air remaining on the nozzle 72 side (downstream chamber) of the valve chamber 54 is involved in the contents, air bubbles are generated in the contents flowing out from the nozzle 72 . The generation of such air bubbles hinders the smooth outflow of the content (liquid) when a small amount of content (liquid) is to be poured out, and there is also a concern that the air bubbles may pop and stain the surroundings.
 本発明は、逆止弁を備えるキャップにおいて、製造コストを削減すること、及びノズルから流出される内容物に気泡が発生するのを抑制することを課題とする。 An object of the present invention is to reduce the manufacturing cost of a cap provided with a check valve and to suppress the generation of air bubbles in the contents flowing out from a nozzle.
 請求項1に記載された発明は、容器口部に装着されるキャップ本体と、内容物の容器内側から容器外側への流れを許容する逆止弁の環状の弁体とからなり、前記キャップ本体は、前記容器口部の開口を閉塞する天井部と、前記天井部の下面中央に突設されたボスと、前記天井部の下面外周部に設けられたシール保持部と、前記天井部の下面の、前記ボスと前記シール保持部との間に開口する吐出路を有し、前記天井部から上方へ突設されるノズルと、を備え、前記ボスの先端外縁部には、前記逆止弁の環状の弁座が設けられ、前記弁体は、前記ノズルの下端開口よりも外側に設けられた前記シール保持部により液密に保持される外縁部と、前記ボスが摺動可能に挿入され、前記弁座に離着座可能に着座される環状の弁部と、前記弁部と前記外縁部と一体に形成され、前記容器口部内を容器本体側の上流室と前記ノズル側の下流室とに区画し、かつ前記弁部を閉弁方向へ付勢する隔壁と、を有し、前記逆止弁の開弁により、前記上流室と前記下流室とが前記ボスと前記弁体との間に設けられた流路により連通されることを特徴とする。
 請求項1に係るキャップでは、キャップ本体と逆止弁の弁体との2つの部品から構成されるので、構成部品の点数が少なく、製造コストを削減することができる。また、組立工数が削減されるので、生産性を向上させることができる。
The invention described in claim 1 comprises a cap body attached to the mouth of a container, and an annular valve body of a check valve that allows contents to flow from the inside of the container to the outside of the container. includes a ceiling portion that closes the opening of the container opening, a boss that protrudes from the center of the lower surface of the ceiling portion, a seal holding portion that is provided on the outer periphery of the lower surface of the ceiling portion, and a lower surface of the ceiling portion. a nozzle having a discharge passage opening between the boss and the seal holding portion and protruding upward from the ceiling portion; The valve body includes an outer edge portion held liquid-tight by the seal holding portion provided outside the lower end opening of the nozzle, and the boss slidably inserted therein. an annular valve portion that is removably seated on the valve seat; an annular valve portion formed integrally with the valve portion and the outer edge portion; and a partition wall for urging the valve portion in the valve closing direction, wherein opening of the check valve causes the upstream chamber and the downstream chamber to move between the boss and the valve body. characterized in that it is communicated by a flow path provided in the.
Since the cap according to claim 1 is composed of two parts, the cap main body and the valve body of the check valve, the number of constituent parts is small, and the manufacturing cost can be reduced. Also, since the number of assembling man-hours is reduced, productivity can be improved.
 請求項2に記載された発明は、前記流路は、前記弁座から一定の高さから、前記ボスの基端まで延びることを特徴とする。
 請求項2に係るキャップでは、上流室と下流室との連通が遮断された時点から、弁体の弁部が弁座に着座されるまでに増加した下流室の体積の増分に相当する内容物が、ノズル内から下流室へ吸引されるので、使用後にノズル内に内容物が残存することがなく、液だれや内容物がノズルの周囲に付着することを防止することができる。
The invention recited in claim 2 is characterized in that the flow path extends from a certain height from the valve seat to the proximal end of the boss.
In the cap according to claim 2, the content corresponding to the increase in the volume of the downstream chamber from the time when the communication between the upstream chamber and the downstream chamber is cut off until the valve portion of the valve body is seated on the valve seat However, since the contents are sucked from the inside of the nozzle into the downstream chamber, the contents do not remain in the nozzle after use, and it is possible to prevent dripping and adhesion of the contents around the nozzle.
 請求項3に記載された発明は、前記ボスの基端外周には、環状段部を介して周方向へ延びる環状溝が設けられ、前記環状溝の底部には、前記ノズルの一端が開口することを特徴とする。
 請求項3に係るキャップでは、上流室から流路を通過して下流室へ噴射された内容物が環状段部に衝突するため直接ノズルへ導入されることがないので、内容物がノズルから勢いよく吐出されることを防止することができる。
In the invention recited in claim 3, an annular groove extending in the circumferential direction via an annular step is provided on the outer periphery of the base end of the boss, and one end of the nozzle opens at the bottom of the annular groove. It is characterized by
In the cap according to claim 3, the content that has passed through the flow path from the upstream chamber and is jetted to the downstream chamber collides with the annular stepped portion and is not directly introduced into the nozzle. It is possible to prevent the ink from being discharged well.
 請求項4に記載された発明は、前記天井部の下面には、前記キャップ本体の中心から偏倚した位置に前記ノズルの流出路が開口すると共に、前記キャップ本体の中心に対して前記流出路の開口とは反対側に空気溜用の凹部が設けられることを特徴とする。
 請求項4に係るキャップでは、ノズルを下側にして容器を傾けると、下流室に残存する空気が下流室上部の凹部に溜まるので、下流室に残存する空気がノズルから流出される内容物に巻き込まれることを抑制することができる。これにより、ノズルから流出される内容物に気泡が発生することを防ぐことができる。
In the invention described in claim 4, the nozzle outflow path is opened at a position deviated from the center of the cap body on the lower surface of the ceiling portion, and the outflow path is opened with respect to the center of the cap body. A concave portion for an air reservoir is provided on the side opposite to the opening.
In the cap according to claim 4, when the container is tilted with the nozzle facing downward, the air remaining in the downstream chamber accumulates in the concave portion at the top of the downstream chamber. It is possible to suppress being caught. As a result, it is possible to prevent bubbles from being generated in the content flowing out from the nozzle.
 請求項5に記載された発明は、請求項4に記載のキャップであって、前記天井部の下面側中央には、前記上流室と前記下流室とを連通する第1連通路が設けられ、前記天井部の下面には、前記第1連通路と前記流出路とを連通する第2連通路が設けられることを特徴とする。
 請求項5に係るキャップでは、容器を傾けると、天井部の下面側中央の第1連通路を流れる内容物が第2連通路を介して優先的に流出路へ誘導されるので、下流室に残存した空気の、内容物への巻き込みをより抑制することができる。これにより、ノズルの流出口から流出される内容物に気泡が発生することをより効果的に防ぐことができる。
The invention recited in claim 5 is the cap according to claim 4, wherein a first communication passage that communicates between the upstream chamber and the downstream chamber is provided at the center of the lower surface of the ceiling portion, A second communication path communicating between the first communication path and the outflow path is provided on the lower surface of the ceiling portion.
In the cap according to claim 5, when the container is tilted, the contents flowing through the first communication passage at the center of the lower surface of the ceiling are preferentially guided to the outflow passage via the second communication passage, so that the content flows into the downstream chamber. Entrainment of remaining air into the contents can be further suppressed. Thereby, it is possible to more effectively prevent the generation of air bubbles in the content flowing out from the outlet of the nozzle.
 本発明によれば、逆止弁を備えるキャップにおいて、製造コストを削減すること、及びノズルから流出される内容物に気泡が発生するのを抑制することができる。 According to the present invention, it is possible to reduce the manufacturing cost and suppress the generation of air bubbles in the contents flowing out from the nozzle in the cap provided with the check valve.
第1実施形態の説明図であって、容器の口部に装着されたキャップの軸平面による断面図である。FIG. 4 is an explanatory view of the first embodiment, and is a cross-sectional view of the cap attached to the mouth of the container, taken along an axial plane; 第1実施形態の説明図であって、弁体の平面図である。FIG. 2 is an explanatory diagram of the first embodiment and a plan view of the valve body; FIG. 図2におけるB-B断面図である。FIG. 3 is a cross-sectional view taken along the line BB in FIG. 2; 図1における要部を拡大して示す図であり、逆止弁の作用を説明する図である。FIG. 2 is an enlarged view of the main part in FIG. 1 and is a view for explaining the operation of the check valve; 図1における拡大A-A断面図である。2 is an enlarged cross-sectional view taken along the line AA in FIG. 1; FIG. 第1実施形態の作用を説明する図であり、容器を傾けた状態を示す図である。It is a figure explaining the effect|action of 1st Embodiment, and is a figure which shows the state which inclined the container. 第1実施形態の作用を説明する図であり、逆止弁の弁体の弁部が上死点H2に位置して逆止弁が開弁されたときの状態を示す図である。FIG. 4B is a view for explaining the operation of the first embodiment, and shows a state when the valve portion of the valve body of the check valve is positioned at the top dead center H2 and the check valve is opened. 第1実施形態の作用を説明する図であり、図7に示される状態から逆止弁の弁体の弁部が開弁位置H1まで戻された状態を示す図である。FIG. 8 is a diagram for explaining the operation of the first embodiment, and shows a state in which the valve portion of the valve element of the check valve is returned to the valve open position H1 from the state shown in FIG. 7; 第1実施形態の作用を説明する図であり、図8に示される状態から逆止弁の弁体の弁部が弁座に着座してノズル内の内容物が下流室側へ吸引された状態を示す図である。FIG. 9 is a diagram for explaining the operation of the first embodiment, showing a state in which the valve body of the check valve is seated on the valve seat from the state shown in FIG. 8 and the contents in the nozzle are sucked toward the downstream chamber; It is a figure which shows. 第2実施形態の説明図であって、容器の口部に装着されたキャップの軸平面による断面図である。FIG. 10 is an explanatory view of the second embodiment, and is a cross-sectional view of the cap attached to the mouth of the container taken along the axial plane; 図10における拡大C-C断面図である。11 is an enlarged CC cross-sectional view in FIG. 10; FIG. 図11に対応する空気溜部の他の形態を示す図である。FIG. 12 is a diagram showing another form of the air reservoir corresponding to FIG. 11; 第2実施形態の作用を説明する図であり、容器を傾けた状態を示す図である。It is a figure explaining the effect|action of 2nd Embodiment, and is a figure which shows the state which inclined the container. 逆止弁の弁体の弁部が上死点H2に位置して逆止弁が開弁されたときの状態を示す図である。FIG. 4 is a diagram showing a state in which the check valve is opened with the valve portion of the valve body of the check valve positioned at the top dead center H2; 図14に示される状態から逆止弁の弁体の弁部が開弁位置H1まで戻された状態を示す図である。15 is a diagram showing a state in which the valve portion of the valve body of the check valve is returned to the valve open position H1 from the state shown in FIG. 14; FIG. 図15に示される状態から逆止弁の弁体の弁部が弁座に着座してノズル内の内容物が下流室側へ吸引された状態を示す図である。16 is a diagram showing a state in which the valve portion of the valve element of the check valve is seated on the valve seat and the contents in the nozzle are sucked toward the downstream chamber from the state shown in FIG. 15; FIG.
 本発明の第1実施形態を添付した図を参照して説明する。
 図1に示されるように、キャップ1は、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)等のスクイズ容器10(以下「容器10」と称する)の口部11に取り付けられる。キャップ1は、キャップ本体21と、後述する逆止弁71の弁体81とから構成される。なお、キャップ1には、例えばポリプロピレン(PP)等の合成樹脂が用いられる。
A first embodiment of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, the cap 1 is attached to a mouth portion 11 of a squeeze container 10 (hereinafter referred to as "container 10") made of polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), or the like. The cap 1 is composed of a cap main body 21 and a valve body 81 of a check valve 71 which will be described later. A synthetic resin such as polypropylene (PP) is used for the cap 1, for example.
 キャップ本体21は、容器10の口部11(以下「口部11」と称する)の上端開口を塞ぐ円板状の天井部31と、天井部31の外周縁部に設けられ、口部11の外側に嵌合される外筒部41と、天井部31の下面32に設けられ、口部11の内側に嵌合される内筒部45とを有する。キャップ本体21が容器10の口部11に嵌合された状態において、外筒部41の内周面42には、口部11の径方向外側へ突出する環状凸部12が当接される。他方、内筒部45の外周面47には、口部11の径方向内側へ凹む環状凹部13が当接する。 The cap body 21 includes a disk-shaped ceiling portion 31 that closes the upper end opening of the mouth portion 11 (hereinafter referred to as “mouth portion 11”) of the container 10, and is provided on the outer peripheral edge of the ceiling portion 31. It has an outer cylindrical portion 41 fitted to the outside, and an inner cylindrical portion 45 provided on the lower surface 32 of the ceiling portion 31 and fitted to the inside of the mouth portion 11 . When the cap body 21 is fitted to the mouth portion 11 of the container 10 , the annular protrusion 12 that protrudes radially outward from the mouth portion 11 abuts against the inner peripheral surface 42 of the outer cylindrical portion 41 . On the other hand, the annular recessed portion 13 that is recessed radially inward of the mouth portion 11 abuts against the outer peripheral surface 47 of the inner cylinder portion 45 .
 なお、環状凸部13は口部11の開口近傍に設けられ、環状凸部12は、口部11の軸方向(図1における「上下方向」)中間位置に設けられる。また、外筒部41の内周面42には、口部11の環状凸部12に係止され、キャップ本体21の口部11に対する抜け方向の移動を阻止する環状突起43が設けられる。 The annular projection 13 is provided in the vicinity of the opening of the mouth portion 11, and the annular projection 12 is provided at an intermediate position in the axial direction ("vertical direction" in FIG. 1) of the mouth portion 11. An inner peripheral surface 42 of the outer cylindrical portion 41 is provided with an annular protrusion 43 that engages with the annular projection 12 of the mouth portion 11 and prevents movement of the cap main body 21 in the removal direction from the mouth portion 11 .
 天井部31の下面32の中央(中心)には、先端が開口する円筒状のボス51が突設される。また、天井部31の下面32には、ノズル61内に形成された吐出路62の下端が開口する。ノズル61は、天井部31の上面から軸方向上方へ突出する筒部63と、筒部63の上端から軸方向上方へ拡径された吐出口64と、を有する。ノズル61の開口65は、天井部31の、ボス51の外側に穿設される。なお、ボス51は、外筒部41及び内筒部45に対して同軸に配置される。また、ボス51の基端側の外縁部には、天井部31の下面32に対して段差を有する環状段部35が設けられる。 A cylindrical boss 51 with an open tip protrudes from the center (center) of the lower surface 32 of the ceiling portion 31 . Also, the lower end of the discharge passage 62 formed in the nozzle 61 opens to the lower surface 32 of the ceiling portion 31 . The nozzle 61 has a cylindrical portion 63 that protrudes axially upward from the top surface of the ceiling portion 31 and a discharge port 64 that expands axially upward from the upper end of the cylindrical portion 63 . The opening 65 of the nozzle 61 is drilled outside the boss 51 of the ceiling portion 31 . The boss 51 is arranged coaxially with the outer cylinder portion 41 and the inner cylinder portion 45 . An annular step portion 35 having a step with respect to the lower surface 32 of the ceiling portion 31 is provided on the outer edge portion of the boss 51 on the base end side.
 キャップ本体21は、天井部31の上面33を覆う蓋体22を有する。蓋体22は、ヒンジ23を介して外筒部41に連結される。ヒンジ23は、ボス51に関してノズル61の反対側(ノズル61から最も離れた位置)に設けられる。蓋体22の開口内縁部には、天井部31の上端外縁部に設けられた環状の爪部34に係止される環状突起24が設けられる。蓋体22は、閉じられた状態でキャップ本体21と同軸に位置する内筒部25を有する。内筒部25の下端は、天井部31の上面33の、爪部34の内側近傍に当接される。蓋体22は、内筒部25の内側に設けられた栓26を有する。栓26は、蓋体22が閉じられた状態で、ノズル61の吐出口64を閉塞する。 The cap body 21 has a lid body 22 that covers the upper surface 33 of the ceiling portion 31 . The lid body 22 is connected to the outer cylindrical portion 41 via hinges 23 . The hinge 23 is provided on the opposite side of the nozzle 61 with respect to the boss 51 (at the farthest position from the nozzle 61). An annular projection 24 is provided on the inner edge of the opening of the lid 22 to engage with an annular claw 34 provided on the outer edge of the upper end of the ceiling portion 31 . The lid body 22 has an inner cylindrical portion 25 positioned coaxially with the cap body 21 in a closed state. The lower end of the inner cylindrical portion 25 abuts on the upper surface 33 of the ceiling portion 31 near the inside of the claw portion 34 . The lid 22 has a plug 26 provided inside the inner cylindrical portion 25 . The plug 26 closes the outlet 64 of the nozzle 61 when the lid 22 is closed.
 キャップ1は、容器10内からノズル61(容器10の外側)への内容物2(図6参照)の流れを許容する逆止弁71を備える。逆止弁71は、環状の弁体81と、弁体81の弁部91が離着座可能に着座する環状の弁座72とから構成される。図4に示されるように、弁座72は、ボス51の開口外縁部に設けられた環状のリップ部52の上側(天井部31側の面)に形成される。弁座72は、凹状の曲面に形成される。弁座72の上端は、ボス51の外周面53に円滑に連続する。 The cap 1 has a check valve 71 that allows the content 2 (see FIG. 6) to flow from inside the container 10 to the nozzle 61 (outside the container 10). The check valve 71 is composed of an annular valve body 81 and an annular valve seat 72 on which a valve portion 91 of the valve body 81 is removably seated. As shown in FIG. 4 , the valve seat 72 is formed on the upper side (the surface on the ceiling portion 31 side) of the annular lip portion 52 provided on the outer edge of the opening of the boss 51 . The valve seat 72 is formed into a concave curved surface. The upper end of the valve seat 72 smoothly continues to the outer peripheral surface 53 of the boss 51 .
 ボス51の外周面53には、後述する流路73を形成する複数本(第1実施形態では「8本」、図5参照)の溝54が設けられる。複数本の溝54は、ボス51の周方向へ等間隔に、かつ一定の深さで軸方向(図4における「上下方向」)へ延びる。各溝54は、環状段部35の環状面36から、弁座72から一定の高さH1(以下「開弁点H1」、図4参照)の位置まで延びる。各溝54の下端部は、なだらかな曲面55に形成され、徐々にボス51の外周面53に達する。 The outer peripheral surface 53 of the boss 51 is provided with a plurality of grooves 54 ("eight grooves" in the first embodiment, see FIG. 5) that form flow passages 73 to be described later. The plurality of grooves 54 extend in the axial direction (“vertical direction” in FIG. 4) at equal intervals in the circumferential direction of the boss 51 and at a constant depth. Each groove 54 extends from the annular surface 36 of the annular stepped portion 35 to a position at a constant height H1 (hereinafter "valve opening point H1", see FIG. 4) from the valve seat 72. As shown in FIG. The lower end of each groove 54 is formed into a gently curved surface 55 and gradually reaches the outer peripheral surface 53 of the boss 51 .
 図2、図3を参照すると、弁体81は、中心にボス51が挿入される貫通孔95を有する概略円盤状に形成されており、内周側の縁端に貫通孔95が形成された環状の弁部91と、縦断面が略長方形の環状のシール部82と、弁部91とシール部82との間に形成された環状の隔壁部85と、から構成される。シール部82は、内筒部45と内筒部45の内側に設けられた環状のリブ37との間に形成された環状のシール保持溝83により液密に保持される。弁部91は、縦断面が略台形に形成され、上面92の内縁端と下面93の内縁端との間に内周面94が形成される。なお、弁部91の内周面94は、上面92から下面93へ縮径される傾斜面に形成される。 2 and 3, the valve body 81 is formed in a substantially disc shape having a through hole 95 in the center into which the boss 51 is inserted, and the through hole 95 is formed in the edge on the inner peripheral side. It is composed of an annular valve portion 91 , an annular seal portion 82 having a substantially rectangular vertical cross section, and an annular partition wall portion 85 formed between the valve portion 91 and the seal portion 82 . The seal portion 82 is liquid-tightly held by an annular seal holding groove 83 formed between the inner tubular portion 45 and the annular rib 37 provided inside the inner tubular portion 45 . The valve portion 91 has a substantially trapezoidal vertical cross section, and an inner peripheral surface 94 is formed between the inner edge of the upper surface 92 and the inner edge of the lower surface 93 . An inner peripheral surface 94 of the valve portion 91 is formed as an inclined surface whose diameter is reduced from the upper surface 92 to the lower surface 93 .
 弁部91の下面93と内周面94との稜部には、貫通孔95(シール面)が形成される。貫通孔95(シール面)は、ボス51の外周面53との間の液密を維持しながら、当該外周面53に対して軸方向へ移動可能である。隔壁部85は、弁部91を弁座72に向かって下方へ付勢する押圧力を発生するばね部86を有する。隔壁部85は、内筒部45内(容器10の口部11内)を、容器本体15側(図1における「下側」)の上流室3と、ノズル61の吐出路62に連通する下流室4とに区画する。 A through hole 95 (seal surface) is formed in the ridge between the lower surface 93 and the inner peripheral surface 94 of the valve portion 91 . The through hole 95 (seal surface) is axially movable with respect to the outer peripheral surface 53 of the boss 51 while maintaining liquid tightness with the outer peripheral surface 53 . The partition wall portion 85 has a spring portion 86 that generates a pressing force that urges the valve portion 91 downward toward the valve seat 72 . The partition wall portion 85 communicates the inside of the inner cylindrical portion 45 (the inside of the mouth portion 11 of the container 10 ) with the upstream chamber 3 on the side of the container body 15 (“lower side” in FIG. 1 ) and the discharge path 62 of the nozzle 61 on the downstream side. It is partitioned into a room 4.
 図4を参照すると、弁体81と弁座72から構成される逆止弁71は、弁体81の弁部91が下死点H0に位置しているとき、即ち、弁部91が弁座72に着座されているとき(シール面が弁座72の座面に密着されているとき)、容器本体15側の上流室3とノズル61側の下流室4との連通を遮断する。弁部91が、貫通孔95(シール面)が、ボス51の外周面53を、液密を維持しながら下死点H0から開弁点H1まで移動(摺動)する間、上流室3と下流室4との連通は遮断されたままである。 Referring to FIG. 4, a check valve 71 composed of a valve body 81 and a valve seat 72 is configured such that when the valve portion 91 of the valve body 81 is positioned at the bottom dead center H0, that is, the valve portion 91 is positioned at the valve seat. 72 (when the sealing surface is in close contact with the seating surface of the valve seat 72), communication between the upstream chamber 3 on the container body 15 side and the downstream chamber 4 on the nozzle 61 side is cut off. While the through hole 95 (seal surface) of the valve portion 91 moves (sliding) on the outer peripheral surface 53 of the boss 51 from the bottom dead center H0 to the valve opening point H1 while maintaining liquid tightness, the valve portion 91 and the upstream chamber 3 are separated. Communication with the downstream chamber 4 remains blocked.
 そして、弁部91が開弁点H1に達してから上死点H2に達するまでの間、換言すれば、弁部91の貫通孔95(シール面)がボス51の溝54に面している間、弁部91とボス51との間に複数本の流路73(図5参照)が形成され、これにより、上流室3と下流室4とが連通される。なお、複数本の流路73の流路面積を変えることで、ノズル61から吐出される内容物2の吐出量を調節することができる。また、弁部91の上死点H2の位置は、弁部91の上面92が環状段部35の環状面36に設けられた複数個(図1に「2個」のみ表示)の突起96に当接することで定められる。さらに、複数個の突起96は、ボス51と同軸の円上に等間隔で配置される。 During the period from when the valve portion 91 reaches the valve opening point H1 until it reaches the top dead center H2, in other words, the through hole 95 (seal surface) of the valve portion 91 faces the groove 54 of the boss 51. Meanwhile, a plurality of flow paths 73 (see FIG. 5) are formed between the valve portion 91 and the boss 51, thereby allowing the upstream chamber 3 and the downstream chamber 4 to communicate with each other. By changing the flow area of the plurality of flow paths 73, the discharge amount of the contents 2 discharged from the nozzle 61 can be adjusted. Further, the position of the top dead center H2 of the valve portion 91 is determined by a plurality of protrusions 96 (only "two" are shown in FIG. 1) provided on the annular surface 36 of the annular stepped portion 35. Determined by abutment. Furthermore, the plurality of protrusions 96 are arranged at regular intervals on a circle coaxial with the boss 51 .
 図1に示されるように、天井部31の下面32側には、ボス51と同軸の環状溝5が設けられる。環状溝5は、環状段部35とリブ37との間に形成される。天井部31の下面32上に位置する環状溝5の底面6には、弁体81の隔壁部85の下流室4側への移動を規制する複数個(図1に「1個」のみ表示)の突起7が設けられる。複数個の突起7は、ボス51と同軸の円上に等間隔で配置される。なお、突起7が配置される円の半径は、突起96が配置される同心円の半径よりも大きい。また、ノズル61の開口65は、環状溝5の底面6に設けられ、底面6の外縁端近傍に配置される。 As shown in FIG. 1 , an annular groove 5 that is coaxial with the boss 51 is provided on the lower surface 32 side of the ceiling portion 31 . Annular groove 5 is formed between annular step 35 and rib 37 . On the bottom surface 6 of the annular groove 5 located on the lower surface 32 of the ceiling portion 31, there are a plurality of grooves (only "one" is shown in FIG. 1) that restrict the movement of the partition wall portion 85 of the valve body 81 toward the downstream chamber 4 side. is provided. A plurality of protrusions 7 are arranged at regular intervals on a circle coaxial with the boss 51 . The radius of the circle on which the protrusions 7 are arranged is larger than the radius of the concentric circle on which the protrusions 96 are arranged. Also, the opening 65 of the nozzle 61 is provided in the bottom surface 6 of the annular groove 5 and is arranged near the outer edge of the bottom surface 6 .
 次に、前述したキャップ1の組立方法を説明する。
 まず、弁体81のシール部82をキャップ本体21に形成されたシール保持溝83に挿入(圧入)する。なお、内筒部45の内周面46には、シール部82がシール保持溝83から抜けることを防止する環状突起84が設けられる。次に、弁体81の貫通孔95を拡径させるようにして、貫通孔95にボス51の先端部を貫通させる。このとき、ボス51の先端は縦断面が半円形の曲面に形成されているので、弁部91のシール面を傷つけることなく、ボス51の先端部を貫通孔95に貫通させることができる。これにより、弁体81のキャップ本体21への取り付けが完了する。なお、シール部82をシール保持溝83に挿入する工程と、貫通孔95にボス51を貫通させる工程とは、どちらが先であってもよい。
Next, a method for assembling the cap 1 described above will be described.
First, the seal portion 82 of the valve body 81 is inserted (press-fitted) into the seal holding groove 83 formed in the cap main body 21 . An annular protrusion 84 is provided on the inner peripheral surface 46 of the inner cylindrical portion 45 to prevent the seal portion 82 from slipping out of the seal holding groove 83 . Next, the diameter of the through hole 95 of the valve body 81 is increased so that the tip of the boss 51 is passed through the through hole 95 . At this time, since the tip of the boss 51 is formed into a semicircular curved surface in longitudinal section, the tip of the boss 51 can be passed through the through hole 95 without damaging the sealing surface of the valve part 91. - 特許庁This completes the attachment of the valve body 81 to the cap main body 21 . Either the step of inserting the seal portion 82 into the seal holding groove 83 or the step of penetrating the boss 51 into the through hole 95 may be performed first.
 次に、第1実施形態に係るキャップ1の作用を説明する。
 便宜上、キャップ本体21の天井部31に形成された環状溝5の底面6から弁体81までの空間、換言すれば、ノズル61の吐出路62が開口する空間を下流室4と定める。なお、容器10には、液体調味料、化粧水等の液状の内容物2が収容される。
Next, operation of the cap 1 according to the first embodiment will be described.
For convenience, the downstream chamber 4 is defined as the space from the bottom surface 6 of the annular groove 5 formed in the ceiling portion 31 of the cap body 21 to the valve body 81 , in other words, the space where the discharge passage 62 of the nozzle 61 opens. Note that the container 10 accommodates a liquid content 2 such as a liquid seasoning or skin lotion.
 容器10に収容された内容物2をキャップ1のノズル61から吐出させるとき、まず、使用者は、キャップ本体11の蓋体22を開けてノズル61を現出させる。次に、内容物2を吐出させるため、図6に示されるように、容器10を傾ける。この状態では、逆止弁71の弁体81の弁部91が隔壁部85の付勢力により弁座72に着座されているので、容器本体15側の上流室3とノズル61側の下流室4との連通は遮断されている。 When discharging the contents 2 contained in the container 10 from the nozzle 61 of the cap 1, first, the user opens the lid 22 of the cap body 11 to reveal the nozzle 61. The container 10 is then tilted as shown in FIG. 6 in order to dispense the contents 2 . In this state, the valve portion 91 of the valve body 81 of the check valve 71 is seated on the valve seat 72 by the biasing force of the partition wall portion 85, so that the upstream chamber 3 on the container body 15 side and the downstream chamber 4 on the nozzle 61 side Communication with is cut off.
 次に、使用者は、容器本体15を加圧して容器本体15を凹ませる。これにより、上流室3の圧力が上昇し、弁体81が上流室3の圧力を受けることで、弁部91が隔壁部85の付勢力に抗して弁座72から離座される。ここで、弁部91が、貫通孔95(シール面)が、ボス51の外周面53を、液密を維持しながら下死点H0(図4参照)から開弁点H1(図4参照)まで移動する間、依然として上流室3と下流室4との連通は遮断されたままである。 Next, the user presses the container body 15 to dent the container body 15 . As a result, the pressure in the upstream chamber 3 increases, and the valve element 81 receives the pressure in the upstream chamber 3 , so that the valve portion 91 is separated from the valve seat 72 against the biasing force of the partition wall portion 85 . Here, the valve portion 91 moves the through hole 95 (seal surface) from the bottom dead center H0 (see FIG. 4) to the valve opening point H1 (see FIG. 4) while maintaining the liquid tightness of the outer peripheral surface 53 of the boss 51 . , the communication between the upstream chamber 3 and the downstream chamber 4 is still blocked.
 さらに容器本体15を加圧すると、弁部91が開弁点H1を通過し、さらに上死点H2(図4参照)に達して逆止弁71が開弁する(図7参照)。これにより、弁体81(弁部91)とボス51との間に形成された複数本の流路73(以下「流路73」と称する)を介して上流室3と下流室4とが連通され、容器10(上流室3)内の内容物2が、流路73、下流室4、開口65、及び吐出路62を経由してノズル61の吐出口64から容器10外へ吐出される。 When the container body 15 is further pressurized, the valve portion 91 passes through the valve opening point H1 and further reaches the top dead center H2 (see FIG. 4) to open the check valve 71 (see FIG. 7). As a result, the upstream chamber 3 and the downstream chamber 4 communicate with each other through a plurality of flow paths 73 (hereinafter referred to as "flow paths 73") formed between the valve body 81 (valve portion 91) and the boss 51. Then, the content 2 in the container 10 (upstream chamber 3 ) is discharged out of the container 10 from the discharge port 64 of the nozzle 61 via the channel 73 , the downstream chamber 4 , the opening 65 and the discharge passage 62 .
 ここで、流路73を通過した内容物2は、環状段部35の環状面36に衝突して向きを半径方向外方(図7における「左方向」)に転換し、さらに吐出路62を通ってノズル61の吐出口64から吐出される。このように、第1実施形態では、流路73から噴射された内容物2を環状段部35の環状面36で受けるので、内容物2がノズル61の吐出口64から勢いよく吐出されることが抑止される。 Here, the content 2 that has passed through the flow path 73 collides with the annular surface 36 of the annular stepped portion 35 and changes its direction radially outward ("leftward" in FIG. 7), and further flows through the discharge path 62. It passes through and is discharged from the discharge port 64 of the nozzle 61 . As described above, in the first embodiment, the content 2 ejected from the flow path 73 is received by the annular surface 36 of the annular stepped portion 35, so that the content 2 is vigorously ejected from the ejection port 64 of the nozzle 61. is suppressed.
 次に、使用者が容器本体15の加圧力を解放すると、隔壁部85の付勢力(復帰力)により、弁部91は、貫通孔95(シール面)が、ボス51の外周面53を、液密を維持しながら、上死点H2から弁座72へ向かって移動する。そして、弁部91が開弁点H1(ボス51に形成された溝54の下端)を通過すると(図8参照)、上流室3と下流室4との連通が遮断される。 Next, when the user releases the pressure applied to the container main body 15, the biasing force (returning force) of the partition wall portion 85 causes the valve portion 91 to move the through hole 95 (seal surface) to the outer peripheral surface 53 of the boss 51. It moves from the top dead center H2 toward the valve seat 72 while maintaining liquid tightness. When the valve portion 91 passes through the valve opening point H1 (the lower end of the groove 54 formed in the boss 51) (see FIG. 8), communication between the upstream chamber 3 and the downstream chamber 4 is cut off.
 そして、図8に示す上流室3と下流室4との連通が遮断された時点から、図9に示す弁体81の弁部91が弁座72に着座されるまでに増加した下流室4の体積の増分に相当する内容物2が、吐出路62内から下流室4へ流れる(吸引される)。 8 until the valve portion 91 of the valve body 81 is seated on the valve seat 72 shown in FIG. The content 2 corresponding to the volume increment flows (is sucked) from the discharge passage 62 to the downstream chamber 4 .
 第1実施形態に係るキャップ1は、以下のような作用効果を奏する。
 従来のキャップでは、キャップ本体と、ノズルと、逆止弁とが別個に構成されていたので、部品点数が多く製造コストが増加する要因になっていた。また、組立工数が増えることから生産性の低下を招いていた。
The cap 1 according to the first embodiment has the following effects.
In the conventional cap, the cap main body, the nozzle, and the check valve are separately configured, which increases the number of parts and increases the manufacturing cost. In addition, an increase in the number of assembly man-hours leads to a decrease in productivity.
 これに対し、第1実施形態に係るキャップ1では、逆止弁71の弁座72が形成されるボス51とノズル61とをボス51の径方向にオフセットさせて配置、換言すれば、ノズル61を天井部31の中央に設けられたボス51の外側に配置したので、逆止弁71を除く要素を一体成形することが可能であり、当該キャップ1をキャップ本体21と逆止弁71の弁体81との2部品により構成することができる。これにより、従来のキャップに対してキャップ1を構成する部品の点数が少なく、キャップ1の製造コストを削減することができる。また、組立工数が削減されるので、キャップ1の生産性を向上させることができる。
 また、第1実施形態に係るキャップ1では、容器本体15の加圧を解放したときに、ノズル61(吐出路62)内の内容物2が下流室4側(容器10側)へ吸引されるので、使用後にノズル61内に内容物2が残存することがなく、液だれや内容物2がノズル61の周囲に付着することを防止することができる。
 また、第1実施形態に係るキャップ1では、吐出路62(開口65)を天井部31の中心から変位させた位置に穿設したので、ボス51の外周に環状段部35を形成することが可能となり、これにより、上流室3から流路73を通過して下流室4へ噴射された内容物2が、ボス51の基端側に形成された環状段部35の環状面36に衝突して流れの方向を変えるので、内容物2がノズル61から勢いよく吐出されることを防止することができる。これは、ノズルの開口(導入口)に邪魔板を設置する従来のキャップと比較して簡易な構造であり、実施が容易である。
 また、第1実施形態に係るキャップ1では、複数本の流路73の流路面積、換言すれば、ボス51に形成される溝54の本数及び形状を変えることにより、ノズル61から吐出される内容物2の吐出量を容易に調節することができる。
On the other hand, in the cap 1 according to the first embodiment, the boss 51 on which the valve seat 72 of the check valve 71 is formed and the nozzle 61 are offset in the radial direction of the boss 51. is arranged outside the boss 51 provided in the center of the ceiling portion 31, it is possible to integrally mold elements other than the check valve 71, and the cap 1 is combined with the cap main body 21 and the valve of the check valve 71. It can be composed of two parts including the body 81 . As a result, the number of parts constituting the cap 1 is smaller than that of the conventional cap, and the manufacturing cost of the cap 1 can be reduced. Moreover, since the number of assembling man-hours is reduced, the productivity of the cap 1 can be improved.
Further, in the cap 1 according to the first embodiment, when the pressurization of the container body 15 is released, the content 2 in the nozzle 61 (discharge path 62) is sucked toward the downstream chamber 4 (container 10 side). Therefore, the content 2 does not remain in the nozzle 61 after use, and it is possible to prevent dripping and adhesion of the content 2 around the nozzle 61 .
Further, in the cap 1 according to the first embodiment, the discharge passage 62 (opening 65) is formed at a position displaced from the center of the ceiling portion 31, so that the annular stepped portion 35 can be formed on the outer circumference of the boss 51. As a result, the content 2 jetted from the upstream chamber 3 through the flow path 73 to the downstream chamber 4 collides with the annular surface 36 of the annular stepped portion 35 formed on the base end side of the boss 51. Since the direction of flow is changed by pressing, it is possible to prevent the content 2 from being vigorously discharged from the nozzle 61 . This has a simple structure and is easy to implement as compared with the conventional cap in which a baffle plate is installed at the opening (introduction port) of the nozzle.
In addition, in the cap 1 according to the first embodiment, by changing the flow area of the plurality of flow paths 73, in other words, by changing the number and shape of the grooves 54 formed in the boss 51, the liquid is discharged from the nozzle 61. The discharge amount of the contents 2 can be easily adjusted.
(第2実施形態)
 次に、図10乃至図16を参照して第2実施形態を説明する。
 なお、第1実施形態との共通部分については、同一の称呼及び符号を用い、重複する説明を省略する。
(Second embodiment)
Next, a second embodiment will be described with reference to FIGS. 10 to 16. FIG.
Note that the same designations and reference numerals are used for common parts with the first embodiment, and redundant explanations are omitted.
 図10、図11に示されるように、天井部31の中央部下面38には、リブ37の内周に沿って円弧状に、一定幅かつ一定深さで延びる溝状の空気溜部101(凹部)が形成される。空気溜部101は、流出路62の開口65とは天井部31の中央部下面38の中心に対して反対側、かつボス51から一定距離だけ離れた部位に設けられる。図11において、開口65の中心を通る、円形の中央部下面38の半径とは反対側へ延びる半径を半径R0とすると、空気溜部101の一方の端壁105は、半径R0から図11における時計回り方向へ90度をなし、空気溜部101の他方の端壁106は、半径R0から図11における反時計回り方向へ90度をなす。換言すれば、空気溜部101の中心角は180度である。 As shown in FIGS. 10 and 11 , a groove-shaped air reservoir 101 extending along the inner circumference of the rib 37 in an arc shape with a constant width and a constant depth is provided on the lower surface 38 of the central portion of the ceiling portion 31 . recesses) are formed. The air reservoir 101 is provided on the opposite side of the central lower surface 38 of the ceiling 31 from the opening 65 of the outflow passage 62 and at a certain distance from the boss 51 . In FIG. 11, assuming that the radius extending through the center of the opening 65 in the opposite direction to the radius of the circular central lower surface 38 is R0, one end wall 105 of the air reservoir 101 extends from the radius R0 in FIG. 90 degrees in the clockwise direction, and the other end wall 106 of the air reservoir 101 forms 90 degrees in the counterclockwise direction in FIG. 11 from the radius R0. In other words, the central angle of the air reservoir 101 is 180 degrees.
 しかし、空気溜部101の中心角は、180度に限定されるものではなく、例えば、120度とすることができる。この場合、空気溜部101の一方の端壁105は、半径R0から図11における時計回り方向へ60度をなし、空気溜部101の他方の端壁106は、半径R0から図11における反時計回り方向へ60度をなす。また、第2実施形態では、空気溜部101(外周壁102及び内周壁103)を円弧状(図11参照)に形成したが、図12に示されるように、内周壁102と端壁105,106(図11参照)とを同一平面上に設けて空気溜部101を形成してもよい。 However, the central angle of the air reservoir 101 is not limited to 180 degrees, and can be set to 120 degrees, for example. In this case, one end wall 105 of the air reservoir 101 forms an angle of 60 degrees clockwise in FIG. 60 degrees in the direction of rotation. Further, in the second embodiment, the air reservoir 101 (the outer peripheral wall 102 and the inner peripheral wall 103) is formed in an arc shape (see FIG. 11), but as shown in FIG. 106 (see FIG. 11) may be provided on the same plane to form the air reservoir 101 .
 図10、図11に示されるように、天井部31の中央部下面38には、ボス51の基端から流出路62の開口65まで、一定幅かつ一定深さで延びる溝状の連通路39(第2連通路)が形成される。第2実施形態では、連通路39の深さは、空気溜部101の深さと同じである。複数本の流路73(第1連通路)のうち、ボス51と溝54Aとの間に形成される流路73を、便宜上、流路73Aとすると、連通路39は、流路73Aと流出路62とを連通する。なお、連通路39の溝形状(流路形状)は、図10におけるD-D断面視で、半円形、長方形等とすることができる。 As shown in FIGS. 10 and 11, a groove-shaped communication passage 39 extending with a constant width and a constant depth from the base end of the boss 51 to the opening 65 of the outflow passage 62 is provided on the lower surface 38 of the central portion of the ceiling portion 31 . (Second communication path) is formed. In the second embodiment, the depth of the communication path 39 is the same as the depth of the air reservoir 101 . Of the plurality of flow paths 73 (first communication paths), the flow path 73 formed between the boss 51 and the groove 54A is referred to as flow path 73A for convenience. Communicates with road 62 . The groove shape (flow path shape) of the communication path 39 can be semicircular, rectangular, or the like in a cross-sectional view taken along line DD in FIG.
 また、天井部31の中央部下面38には、弁体81の隔壁部85の下流室4側への移動を規制する複数個(第2実施形態では「8個」)の突起7が設けられる。複数個の突起7は、ボス51と同軸の円上に等間隔で配置される。なお、複数個の突起7のうち、ノズル61の開口65とは反対側(図11における「右側」)の4個の突起7は、空気溜部101の底部104に突設される。また、突起7が配置される円の半径は、突起96が配置される同心円の半径よりも大きい。 In addition, a plurality of ("8" in the second embodiment) protrusions 7 are provided on the lower surface 38 of the central portion of the ceiling portion 31 to restrict the movement of the partition wall portion 85 of the valve body 81 toward the downstream chamber 4 side. . A plurality of protrusions 7 are arranged at regular intervals on a circle coaxial with the boss 51 . Among the plurality of protrusions 7 , four protrusions 7 on the side opposite to the opening 65 of the nozzle 61 (“right side” in FIG. 11 ) protrude from the bottom portion 104 of the air reservoir portion 101 . Also, the radius of the circle on which the protrusions 7 are arranged is larger than the radius of the concentric circle on which the protrusions 96 are arranged.
 次に、第2実施形態に係るキャップ1の作用を説明する。
 なお、容器10には、液体調味料、化粧水等の液状の内容物2が収容される。容器10に収容された内容物2をキャップ1のノズル61から流出させるとき、まず、使用者は、キャップ本体11の蓋体22を開けてノズル61を現出させる。次に、内容物2を流出させるため、図13に示されるように、容器10を傾ける。この状態では、逆止弁71の弁体81の弁部91が隔壁部85の付勢力により弁座72に着座されているので、容器本体20側の上流室3とノズル61側の下流室4との連通は遮断されている。
Next, the action of the cap 1 according to the second embodiment will be described.
Note that the container 10 accommodates a liquid content 2 such as a liquid seasoning or skin lotion. When the content 2 contained in the container 10 is to flow out from the nozzle 61 of the cap 1, first, the user opens the lid 22 of the cap body 11 to reveal the nozzle 61. As shown in FIG. The container 10 is then tilted as shown in FIG. 13 to allow the contents 2 to flow out. In this state, the valve portion 91 of the valve body 81 of the check valve 71 is seated on the valve seat 72 by the biasing force of the partition wall portion 85, so that the upstream chamber 3 on the container body 20 side and the downstream chamber 4 on the nozzle 61 side Communication with is cut off.
 次に、使用者は、容器本体20を加圧して容器本体20を凹ませる。これにより、上流室3の圧力が上昇し、弁体81が上流室3の圧力を受けることで、弁部91が隔壁部85の付勢力に抗して弁座72から離座される。ここで、弁部91が、貫通孔95(シール面)が、ボス51の外周面53を、液密を維持しながら下死点H0(図4参照)から開弁点H1(図4参照)まで移動する間、依然として上流室3と下流室4との連通は遮断されたままである。 Next, the user presses the container body 20 to dent the container body 20 . As a result, the pressure in the upstream chamber 3 increases, and the valve element 81 receives the pressure in the upstream chamber 3 , so that the valve portion 91 is separated from the valve seat 72 against the biasing force of the partition wall portion 85 . Here, the valve portion 91 moves the through hole 95 (seal surface) from the bottom dead center H0 (see FIG. 4) to the valve opening point H1 (see FIG. 4) while maintaining the liquid tightness of the outer peripheral surface 53 of the boss 51 . , the communication between the upstream chamber 3 and the downstream chamber 4 is still blocked.
 さらに容器本体20を加圧すると、弁部91が開弁点H1を通過し、さらに上死点H2(図4参照)に達して逆止弁71が開弁する(図14参照)。これにより、弁体81(弁部91)とボス51との間に形成された複数本の流路73(第1連通路)を介して上流室3と下流室4とが連通され、容器10(上流室3)内の内容物2が、複数本の流路73、下流室4、開口65、及び流出路62を経由してノズル61の流出口64から容器10外へ流出される。 When the container body 20 is further pressurized, the valve portion 91 passes through the valve opening point H1 and further reaches the top dead center H2 (see FIG. 4) to open the check valve 71 (see FIG. 14). As a result, the upstream chamber 3 and the downstream chamber 4 are communicated with each other through a plurality of flow paths 73 (first communication paths) formed between the valve body 81 (valve portion 91) and the boss 51. Contents 2 in (upstream chamber 3 ) flow out of container 10 from outlet 64 of nozzle 61 via multiple flow paths 73 , downstream chamber 4 , opening 65 , and outflow path 62 .
 ここで、複数本の流路73を通過した内容物2は、天井部31の中央部下面38の、ボス51の基端外縁部に衝突して、向きを半径方向外方へ放射状に転換し、さらに流出路62を通ってノズル61の流出口64から流出される。このように、第2実施形態では、複数本の流路73から噴射された内容物2を天井部31の中央部下面38で受けることで、内容物2の流れの方向を軸方向から径方向へ転換するので、内容物2がノズル61の流出口64から勢いよく流出されることが抑止される。 Here, the content 2 that has passed through the plurality of flow paths 73 collides with the base end outer edge of the boss 51 on the lower surface 38 of the central portion of the ceiling portion 31, and changes direction radially outward. , and further flows out from the outlet 64 of the nozzle 61 through the outlet passage 62 . As described above, in the second embodiment, the content 2 jetted from the plurality of flow paths 73 is received by the lower surface 38 of the central portion of the ceiling portion 31, so that the flow direction of the content 2 is changed from the axial direction to the radial direction. , the content 2 is restrained from being vigorously discharged from the outlet 64 of the nozzle 61.例文帳に追加
 また、第2実施形態では、天井部31の中央部下面38の、流出路62の開口65とは反対側に空気溜部101(凹部)を形成したので、図14に示されるように、容器10を傾けると、下流室4に残存した空気が、容器10を傾けたときに下流室4の上部(高い位置)に位置する空気溜部101に溜まる。これにより、下流室4に残存した空気が、複数本の流路73を通過して流出路62を流れる内容物2に巻き込まれることを抑制することが可能であり、ノズル61の流出口64から流出される内容物2に気泡が発生することを防ぐことができる。 In addition, in the second embodiment, the air reservoir 101 (recess) is formed on the side opposite to the opening 65 of the outflow passage 62 on the lower surface 38 of the central portion of the ceiling 31. Therefore, as shown in FIG. When the container 10 is tilted, the air remaining in the downstream chamber 4 accumulates in the air reservoir 101 located at the top (high position) of the downstream chamber 4 when the container 10 is tilted. As a result, it is possible to suppress the air remaining in the downstream chamber 4 from being caught in the contents 2 flowing through the plurality of flow paths 73 and flowing through the outflow path 62 . It is possible to prevent air bubbles from being generated in the outflowing contents 2 .
 さらに、第2実施形態では、天井部31の中央部下面38に、流路73A(図11参照)と流出路62とを連通する連通路39(第2連通路)を設けたので、容器10を傾けたときに下流室4の下部(低い位置)に位置する流路73Aから噴射された内容物2を優先的に流出路62へ誘導することができる。これにより、下流室4に残存した空気の、内容物2への巻き込みをより抑制することが可能であり、ノズル61の流出口64から流出される内容物2に気泡が発生することをより効果的に防ぐことができる。 Furthermore, in the second embodiment, the communication path 39 (second communication path) that communicates between the flow path 73A (see FIG. 11) and the outflow path 62 is provided in the lower surface 38 of the central portion of the ceiling portion 31. is tilted, the contents 2 ejected from the flow path 73A positioned at the lower portion (lower position) of the downstream chamber 4 can be preferentially guided to the outflow path 62. As a result, it is possible to further suppress the entrainment of the air remaining in the downstream chamber 4 into the contents 2, and the generation of air bubbles in the contents 2 flowing out from the outlet 64 of the nozzle 61 can be more effectively prevented. can be effectively prevented.
 次に、使用者が容器本体20の加圧力を解放すると、隔壁部85の付勢力(復帰力)により、弁部91は、貫通孔95(シール面)が、ボス51の外周面53を、液密を維持しながら、上死点H2から弁座72へ向かって移動する。そして、弁部91が開弁点H1(ボス51に形成された溝54の下端)を通過すると(図15参照)、上流室3と下流室4との連通が遮断される。 Next, when the user releases the pressurizing force of the container body 20, the urging force (returning force) of the partition wall portion 85 causes the valve portion 91 to move the through hole 95 (seal surface) to the outer peripheral surface 53 of the boss 51. It moves from the top dead center H2 toward the valve seat 72 while maintaining liquid tightness. When the valve portion 91 passes through the valve opening point H1 (the lower end of the groove 54 formed in the boss 51) (see FIG. 15), communication between the upstream chamber 3 and the downstream chamber 4 is cut off.
 そして、図15に示す上流室3と下流室4との連通が遮断された時点から、図16に示す弁体81の弁部91が弁座72に着座されるまでに増加した下流室4の体積の増分に相当する内容物2が、流出路62内から下流室4へ流れる(吸引される)。 15 until the valve portion 91 of the valve body 81 is seated on the valve seat 72 shown in FIG. Contents 2 corresponding to the volume increment flow (suck) from within outflow channel 62 to downstream chamber 4 .
 第2実施形態に係るキャップ1は、以下のような作用効果を奏する。
 従来のキャップでは、ノズルから内容物を流出させるとき、キャップ内部の下流室に残存する空気が内容物に巻き込まれ、ノズルから流出される内容物に気泡が発生する虞がある。
The cap 1 according to the second embodiment has the following effects.
In the conventional cap, when the contents are discharged from the nozzle, air remaining in the downstream chamber inside the cap may be involved in the contents, and bubbles may be generated in the contents discharged from the nozzle.
 これに対し、第2実施形態に係るキャップ1は、天井部31の中央部下面38の、中心から偏倚した位置に開口65を有する流出路62を設け、天井部31の中央部下面38の、流出路62の開口65とは反対側に空気溜部101(凹部)を設けた。これにより、容器10を傾けると、下流室4に残存した空気が、容器10を傾けたときに下流室4の上部(高い位置)に位置する空気溜部101に溜まるので、下流室4に残存した空気が、複数本の流路73(第1連通路)を通過して流出路62を流れる内容物2に巻き込まれることを抑制することが可能であり、ノズル61の流出口64から流出される内容物2に気泡が発生することを防ぐことができる。 On the other hand, the cap 1 according to the second embodiment is provided with an outflow passage 62 having an opening 65 at a position deviated from the center of the central lower surface 38 of the ceiling portion 31. An air reservoir 101 (recess) is provided on the opposite side of the outlet 62 from the opening 65 . As a result, when the container 10 is tilted, the air remaining in the downstream chamber 4 accumulates in the air reservoir 101 located at the top (high position) of the downstream chamber 4 when the container 10 is tilted. It is possible to suppress the air from being caught in the contents 2 flowing through the outflow channel 62 through the plurality of flow paths 73 (first communication channel), and is discharged from the outflow port 64 of the nozzle 61. It is possible to prevent air bubbles from being generated in the content 2 that is placed inside the container.
 また、第2実施形態では、天井部31の中央部下面38に、流路73Aと流出路62とを連通する連通路39(第2連通路)を設けたので、容器10を傾けると、下流室4の下部(低い位置)に位置する流路73Aから噴射された内容物2が優先的に流出路62へ誘導される。これにより、下流室4に残存した空気の、内容物2への巻き込みをより抑制することが可能であり、ノズル61の流出口64から流出される内容物2に気泡が発生することをより効果的に防ぐことができる。 In addition, in the second embodiment, since the communication path 39 (second communication path) that communicates the flow path 73A and the outflow path 62 is provided in the lower surface 38 of the central portion of the ceiling portion 31, when the container 10 is tilted, the downstream The content 2 ejected from the flow path 73A positioned at the lower portion (lower position) of the chamber 4 is preferentially guided to the outflow path 62 . As a result, it is possible to further suppress the entrainment of the air remaining in the downstream chamber 4 into the contents 2, and the generation of air bubbles in the contents 2 flowing out from the outlet 64 of the nozzle 61 can be more effectively prevented. can be effectively prevented.
 前述した実施形態では、キャップ1をチューブ容器(容器10)に適用した場合を例示したが、実施形態は、これに限定されるものではなく、例えば、容器本体15が、有底筒状の外容器と、該外容器内に一体に設けられ、その大部分が外容器に対して剥離可能な袋状の内容器とからなる、所謂二重容器(特許文献1参照)に、当該キャップ1を適用することができる。 In the above-described embodiment, the cap 1 is applied to a tube container (container 10), but the embodiment is not limited to this. The cap 1 is attached to a so-called double container (see Patent Document 1), which is composed of a container and a bag-like inner container that is integrally provided in the outer container and the majority of which is separable from the outer container. can be applied.
1 キャップ、2 内容物、3 上流室、4 下流室、10 容器、11 口部、15 容器本体、21 キャップ本体、31 天井部、51 ボス、61 ノズル、65 開口、71 逆止弁、72 弁座、73 流路、81 弁体、82 シール部(外縁部)、83 シール保持溝(保持部)、85 隔壁、91 弁部 1 Cap, 2 Contents, 3 Upstream Chamber, 4 Downstream Chamber, 10 Container, 11 Mouth, 15 Container Body, 21 Cap Body, 31 Ceiling, 51 Boss, 61 Nozzle, 65 Opening, 71 Check Valve, 72 Valve seat, 73 flow path, 81 valve body, 82 seal portion (outer edge portion), 83 seal holding groove (holding portion), 85 partition wall, 91 valve portion

Claims (5)

  1.  容器口部に装着されるキャップ本体と、内容物の容器内側から容器外側への流れを許容する逆止弁の環状の弁体とからなり、
     前記キャップ本体は、前記容器口部の開口を閉塞する天井部と、前記天井部の下面中央に突設されたボスと、前記天井部の下面外周部に設けられたシール保持部と、前記天井部の下面の、前記ボスと前記シール保持部との間に開口する吐出路を有し、前記天井部から上方へ突設されるノズルと、を備え、
     前記ボスの先端外縁部には、前記逆止弁の環状の弁座が設けられ、
     前記弁体は、前記ノズルの下端開口よりも外側に設けられた前記シール保持部により液密に保持される外縁部と、前記ボスが摺動可能に挿入され、前記弁座に離着座可能に着座される環状の弁部と、前記弁部と前記外縁部と一体に形成され、前記容器口部内を容器本体側の上流室と前記ノズル側の下流室とに区画し、かつ前記弁部を閉弁方向へ付勢する隔壁と、を有し、
     前記逆止弁の開弁により、前記上流室と前記下流室とが前記ボスと前記弁体との間に設けられた流路により連通されることを特徴とするキャップ。
    Consists of a cap body attached to the mouth of the container and an annular valve body of a check valve that allows the contents to flow from the inside of the container to the outside of the container,
    The cap main body includes a ceiling portion that closes the opening of the container opening, a boss that protrudes from the center of the lower surface of the ceiling portion, a seal holding portion that is provided on the outer periphery of the lower surface of the ceiling portion, and the ceiling. a nozzle projecting upward from the ceiling, having a discharge passage opening between the boss and the seal holding portion on the lower surface of the portion;
    An annular valve seat of the check valve is provided on the outer edge of the tip of the boss,
    The valve body has an outer edge portion which is liquid-tightly held by the seal holding portion provided outside the lower end opening of the nozzle, and the boss is slidably inserted into the valve seat so that it can be seated and removed from the valve seat. a seated annular valve portion formed integrally with the valve portion and the outer edge portion to divide the inside of the container mouth portion into an upstream chamber on the container body side and a downstream chamber on the nozzle side; a partition that biases in the valve closing direction,
    A cap, wherein opening of the check valve allows the upstream chamber and the downstream chamber to communicate with each other through a channel provided between the boss and the valve body.
  2.  請求項1に記載のキャップであって、
     前記流路は、前記弁座から一定の高さから、前記ボスの基端まで延びることを特徴とするキャップ。
    A cap according to claim 1,
    A cap, wherein the flow path extends from a certain height from the valve seat to a proximal end of the boss.
  3.  請求項1又は2に記載のキャップであって、
     前記ボスの基端外周には、環状段部を介して周方向へ延びる環状溝が設けられ、
     前記環状溝の底部には、前記ノズルの一端が開口することを特徴とするキャップ。
    The cap according to claim 1 or 2,
    An annular groove extending in the circumferential direction via an annular stepped portion is provided on the outer periphery of the proximal end of the boss,
    A cap, wherein one end of the nozzle is open at the bottom of the annular groove.
  4.  請求項1に記載のキャップであって、
     前記天井部の下面には、前記キャップ本体の中心から偏倚した位置に前記ノズルの流出路が開口すると共に、前記キャップ本体の中心に対して前記流出路の開口とは反対側に空気溜用の凹部が設けられることを特徴とするキャップ。
    A cap according to claim 1,
    On the lower surface of the ceiling portion, an outflow passage for the nozzle is opened at a position deviated from the center of the cap body, and an air reservoir is provided on the opposite side of the opening of the outflow passage with respect to the center of the cap body. A cap, characterized in that it is provided with a recess.
  5.  請求項4に記載のキャップであって、
     前記天井部の下面側中央には、前記上流室と前記下流室とを連通する第1連通路が設けられ、
     前記天井部の下面には、前記第1連通路と前記流出路とを連通する第2連通路が設けられることを特徴とするキャップ。
    A cap according to claim 4,
    A first communication passage that communicates between the upstream chamber and the downstream chamber is provided at the center of the lower surface of the ceiling,
    A cap according to claim 1, wherein a second communication passage is provided on the lower surface of the ceiling portion to communicate the first communication passage and the outflow passage.
PCT/JP2022/034989 2021-09-22 2022-09-20 Cap WO2023048141A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-154437 2021-09-22
JP2021154437 2021-09-22
JP2021-166792 2021-10-11
JP2021166792 2021-10-11

Publications (1)

Publication Number Publication Date
WO2023048141A1 true WO2023048141A1 (en) 2023-03-30

Family

ID=85719471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034989 WO2023048141A1 (en) 2021-09-22 2022-09-20 Cap

Country Status (1)

Country Link
WO (1) WO2023048141A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59501258A (en) * 1982-06-29 1984-07-19 ジヨセフ・ヴイシエラス・ゲ−・エム・ベ−・ハ− アンド コンパニ− カ−・ゲ− Dispenser for paste products
JP2018154356A (en) * 2017-03-16 2018-10-04 日本クロージャー株式会社 Discharging cap
JP2019142566A (en) * 2018-02-22 2019-08-29 東京ライト工業株式会社 Cap and discharge container
WO2021210620A1 (en) * 2020-04-14 2021-10-21 東京ライト工業株式会社 Cap

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59501258A (en) * 1982-06-29 1984-07-19 ジヨセフ・ヴイシエラス・ゲ−・エム・ベ−・ハ− アンド コンパニ− カ−・ゲ− Dispenser for paste products
JP2018154356A (en) * 2017-03-16 2018-10-04 日本クロージャー株式会社 Discharging cap
JP2019142566A (en) * 2018-02-22 2019-08-29 東京ライト工業株式会社 Cap and discharge container
WO2021210620A1 (en) * 2020-04-14 2021-10-21 東京ライト工業株式会社 Cap

Similar Documents

Publication Publication Date Title
US7654419B2 (en) Dispenser having elastomer discharge valve
KR101590865B1 (en) A Dispenser Vessel
WO1999008800A1 (en) Manual liquid sprayer
EP2700588B1 (en) Dispensing closure having a vent valve
JP4919273B2 (en) Pressing head
US10583450B2 (en) Dosing dispenser
CA3001164C (en) Dispenser, in particular, for liquid to pasty substances
WO2023048141A1 (en) Cap
JP7116970B2 (en) cap
JP5000200B2 (en) Discharge container
JP6899582B2 (en) cap
JPH09118352A (en) Container with foam ejecting pump
JP6560906B2 (en) Discharge container
JP6906862B2 (en) Pump container
JP6735168B2 (en) Bubble squirt container
TW202035239A (en) Dispenser
JP6816974B2 (en) Flow path switching adapter and upside-down liquid ejection pump
JP4573119B2 (en) Small discharge container
JP2020007011A (en) Application type container
JP5840440B2 (en) Air mixing jet
JP3657378B2 (en) Liquid jet pump
JP7433726B2 (en) Foam jetting pump container and foam jetting pump
JP7254341B2 (en) cap and container
JP4511856B2 (en) Ejection device and ejector
JP3667523B2 (en) dispenser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872893

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549699

Country of ref document: JP