WO2023048099A1 - 樹脂組成物、圧力検知用部材、及び入力インターフェース - Google Patents

樹脂組成物、圧力検知用部材、及び入力インターフェース Download PDF

Info

Publication number
WO2023048099A1
WO2023048099A1 PCT/JP2022/034829 JP2022034829W WO2023048099A1 WO 2023048099 A1 WO2023048099 A1 WO 2023048099A1 JP 2022034829 W JP2022034829 W JP 2022034829W WO 2023048099 A1 WO2023048099 A1 WO 2023048099A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
strain
composition according
specific direction
Prior art date
Application number
PCT/JP2022/034829
Other languages
English (en)
French (fr)
Inventor
航士 坂本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023048099A1 publication Critical patent/WO2023048099A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber

Definitions

  • the present invention relates to resin compositions, pressure sensing members, and input interfaces.
  • Patent Literature 1 discloses a method for manufacturing an inclined porous resin molding.
  • the manufacturing method comprises a dispersing step, a sedimentation step, a curing step, and a particle dissolving step.
  • a fluid prepolymer and at least two types of water-soluble particles having different sedimentation velocities in the prepolymer are mixed, and the water-soluble particles are dispersed in the prepolymer.
  • the sedimentation process the water-soluble particles dispersed in the prepolymer are sedimented by gravity or centrifugal force.
  • the prepolymer is cured.
  • the particle dissolving step water dissolves and removes the water-soluble particles in the cured prepolymer.
  • Patent Literature 1 describes that this graded porous resin molding can be used as a material for stress sensors or strain sensors.
  • Patent Document 2 describes an inclined foamed plastic sheet in which the average diameter of cells changes in the direction of the thickness of the sheet.
  • a gas that is in a gaseous state at normal temperature and pressure is dissolved in the plastic at high temperature and high pressure. After that, the plastic is exposed to a pressure atmosphere lower than the pressure during gas dissolution. After that, both sides of the sheet are exposed to atmospheres with different temperatures.
  • Patent Document 3 describes a polypropylene-based resin foam.
  • This polypropylene-based resin foam is produced by mixing a predetermined polypropylene-based resin composition with a foaming agent containing at least carbon dioxide in a supercritical state and extruding and foaming the mixture.
  • This polypropylene-based resin foam consists of a surface skin layer and an internal foam layer.
  • the expansion ratio of the internal foam layer is 10 times or more.
  • the thickness of the surface skin layer, the thickness of the internal foam layer, and the expansion ratio of the internal foam layer satisfy a predetermined relationship.
  • the value of the resin composition can be further increased.
  • it is difficult to perform highly accurate sensing using a resin composition and optical methods are often used for highly accurate sensing.
  • highly accurate sensing can be achieved with a resin composition, it is thought that the configuration for highly accurate sensing can be simplified.
  • the techniques described in Patent Documents 1 to 3 improve the linearity of the relationship between stress and strain over a wide range of strain when the resin composition is compressed and deformed in a specific direction. There is room for reexamination from the point of view, and it is difficult to apply it to applications such as high-precision sensing.
  • the present invention provides a resin composition that is advantageous for applications such as high-precision sensing.
  • the present invention A resin composition, having a linearity of 1.5 or less, The linearity is determined by the following formula (1) based on the relationship between stress and strain obtained when the resin composition is compressed in a specific direction so as to generate a strain of 0 to 50%.
  • a resin composition is provided.
  • Linearity [ ⁇ 1/(n-2) ⁇ ( yi - y'i ) 2 ⁇ ] 0.5
  • y i is the non-dimensionalized stress corresponding to i% strain in the range of 0 to 50% strain in the above relationship
  • y' i is the estimate of the dimensionless stress corresponding to i% strain on the regression line obtained from the above relationship
  • n is the number of data for obtaining the regression line, and is an integer of 3 or more.
  • the present invention provides a pressure sensing member comprising the above resin composition.
  • the present invention provides an input interface equipped with the above pressure sensing member.
  • the above resin composition is advantageous for applications such as high-precision sensing.
  • the above resin composition is advantageous in applications such as input interfaces, robotics, soft robotics, display members, game machine controllers, switches, and motion analysis devices.
  • FIG. 1 is a perspective view showing an example of the resin composition according to the present invention.
  • FIG. 2 is a graph showing the relationship between dimensionless stress and strain when the resin composition shown in FIG. 1 is compressed.
  • FIG. 3 is a graph showing the relationship between load and strain when the resin composition shown in FIG. 1 undergoes compression and strain relief.
  • FIG. 4 is a schematic cross-sectional view of the resin composition taken along plane IV in FIG.
  • FIG. 5 is a schematic cross-sectional view showing another example of the resin composition according to the present invention.
  • FIG. 6 is a schematic cross-sectional view showing still another example of the resin composition according to the present invention.
  • 7A is an FE-SEM image of a cross section of the resin composition according to Example 1.
  • FIG. 7B is an FE-SEM image of a cross section of the resin composition according to Example 1.
  • FIG. 7C is an FE-SEM image of a cross section of the resin composition according to Example 1.
  • FIG. 8A is an FE-SEM image of a cross section of the resin composition according to Example 1.
  • FIG. 8B is an FE-SEM image of a cross section of the resin composition according to Example 1.
  • FIG. 8C is an FE-SEM image of a cross section of the resin composition according to Example 1.
  • the resin composition 1a shown in FIG. 1 has a linearity of 1.5 or less.
  • the resin composition 1a is compressed so that a strain of 0 to 50% is generated in a specific direction (z-axis direction).
  • FIG. 2 is a graph showing the relationship between dimensionless stress and strain in the resin composition 1a in this case.
  • the dimensionless stress can be determined, for example, by dividing the stress value generated corresponding to any strain in the range of 0 to 50% in the resin composition 1a by the stress value at 50% strain.
  • the solid line graph is based on the measured values
  • the broken straight line graph is the regression line determined based on the measured values. This regression line is determined, for example, by the method of least squares.
  • the degree of linearity of the resin composition 1a is determined by the following formula (1) based on the relationship between stress and strain shown in FIG.
  • y i is the dimensionless stress corresponding to i% strain in the strain range of 0 to 50% in the relationship between dimensionless stress and strain based on actual measurements.
  • y' i is the non-dimensionalized stress estimate corresponding to i % strain on the regression line.
  • Linearity [ ⁇ 1/(n-2) ⁇ ( yi - y'i ) 2 ⁇ ] 0.5 Formula (1)
  • the linearity is an index that quantitatively evaluates the deviation from the dimensionless stress in the regression line of the dimensionless stress based on the actual measurement in the strain range of 0 to 50%. be. It is understood that the smaller the degree of linearity, the higher the linearity of the relationship between stress and strain in the strain range of 0 to 50%.
  • the resin composition 1a has a linearity of 1.5 or less. Therefore, when the resin composition 1a is compressed and deformed in a specific direction, the relationship between stress and strain is highly linear in a wide range of strain from 0 to 50%.
  • the resin composition 1a is advantageous, for example, in application to high-precision sensing applications. Applications of the resin composition 1a are not limited to high-precision sensing, but can be applications that can effectively utilize the high linearity of the relationship between stress and strain over a wide range of strain from 0 to 50%.
  • the present inventor evaluated the linearity of the resin composition produced with reference to the descriptions of Patent Documents 1 to 3.
  • the resin composition according to Comparative Example 1 is a resin composition prepared with reference to the description of Patent Document 2.
  • the resin composition according to Comparative Example 2 is a resin composition prepared with reference to the description of Patent Document 1.
  • the resin composition according to Comparative Example 3 is a resin composition prepared with reference to the description of Patent Document 3. According to the evaluation results of these resin compositions, the degree of linearity when these resin compositions are compressed in a specific direction is large, and these resin compositions exhibit stress and strain in a wide range of strain from 0 to 50%. It was difficult to say that the linearity of the relationship between
  • the present inventor conducted a great deal of trial and error to develop a new resin composition that has a highly linear relationship between stress and strain over a wide range of strain when compressed in a specific direction. As a result, a resin composition having a linearity of 1.5 or less was finally realized. For example, it is easy to realize highly accurate sensing using the resin composition 1a.
  • the linearity of the resin composition 1a may be 1.45 or less, 1.4 or less, 1.3 or less, or 1.2 or less. .1 or less.
  • the linearity of the resin composition 1a is, for example, 0.1 or more.
  • the shape of the resin composition 1a is not limited to a specific shape as long as the resin composition 1a has a linearity of 1.5 or less.
  • the resin composition 1a has, for example, a pair of parallel outer surfaces.
  • the specific direction may be a direction perpendicular to the pair of outer surfaces.
  • the shape of the resin composition 1a is, for example, a rectangular parallelepiped.
  • the shape of the resin composition 1a may be sheet-like or plate-like.
  • the specific direction may be the thickness direction of the resin composition 1a.
  • the hysteresis loss of resin composition 1a is not limited to a specific value.
  • Hysteresis loss is the load and strain obtained when compressing the resin composition 1a from 0% strain to 50% strain in a specific direction (z-axis direction) and releasing the strain from 50% strain to 0% strain. determined based on the relationship between FIG. 3 is a graph showing the relationship between the load and the strain when the resin composition 1a is compressed and the strain is released.
  • curve a between O and point b is a graph showing the relationship between load and strain when compressing resin composition 1a from 0% strain to 50% strain in a specific direction.
  • Point b is a coordinate indicating a 50% strain and a load value corresponding to 50% strain.
  • curve c between point b and point d is a graph showing the relationship between load and strain when strain is eliminated.
  • Point d is the intersection of curve c and the horizontal axis.
  • point e is the intersection of a straight line parallel to the vertical axis and perpendicular to the horizontal axis and passing through point b.
  • the hysteresis loss is the area S enclosed by origin O, curve a, point b, curve c, point d, and origin O relative to the area S T enclosed by origin O, curve a, point b, point e, and origin O. is the ratio S L /S T of L.
  • the resin composition 1a has, for example, a hysteresis loss of 60% or less. In this case, for example, it is easy to realize sensing with less detection error using the resin composition 1a. Furthermore, the resin composition 1a has good mechanical properties.
  • the hysteresis loss of the resin composition 1a may be, for example, 58% or less, 56% or less, 54% or less, 50% or less, or 45% or less. or 40% or less.
  • the hysteresis loss of the resin composition 1a is, for example, 5% or more, and may be 10% or more.
  • the structure of the resin composition 1a is not limited to a specific mode as long as the resin composition 1a has a linearity of 1.5 or less.
  • the resin composition 1a has voids 2 formed in at least part of its interior. Since the voids 2 are present in a predetermined state in at least a part of the interior of the resin composition 1a, when the resin composition 1a is compressed and deformed in a specific direction, a wide range of strain of 0 to 50%. The linearity of the relationship between stress and strain tends to be high.
  • the thickness of the resin composition 1a is not limited to a specific value as long as the resin composition 1a has a linearity of 1.5 or less.
  • the thickness of the resin composition 1a is, for example, 1.0 to 20 mm. According to such a configuration, the resin composition 1a tends to have flexibility suitable for sensor members, for example.
  • the voids 2 include, for example, pores.
  • the pore size of the pores is not limited to a specific value.
  • the pore diameter of the pores is, for example, 20 to 2500 ⁇ m. According to such a configuration, when the resin composition 1a is compressed and deformed in a specific direction, the linearity of the relationship between stress and strain tends to be high in a wide range of strain from 0 to 50%.
  • the pore size of the pores in the resin composition 1a can be determined, for example, based on an X-ray CT scan image of the resin composition 1a.
  • the resin composition 1a has, for example, a porous structure.
  • the resin composition 1a may have a structure other than the porous structure as long as it has a linearity of 1.5 or less.
  • it may have a structure including voids continuously formed in the plane of the resin composition 1a.
  • the compression modulus E C10% of the resin composition 1a at a strain of 0 to 10% is not limited to a specific value as long as the resin composition 1a has a linearity of 1.5 or less. Its compression modulus E C10% is, for example, 5 to 5000 kPa. In this case, for example, the resin composition 1a can be easily used for sensing.
  • the compression modulus E C10% may be 10 kPa or more, 20 kPa or more, 30 kPa or more, or 50 kPa or more.
  • the compression modulus E C10% may be, for example, 4800 kPa or less, 4600 kPa or less, 4500 kPa or 4000 kPa or less.
  • the resin composition 1a includes, for example, a first portion 5a, a second portion 5b, and a third portion 5c.
  • the first portion 5a is a portion arranged at a specific position in a specific direction of the resin composition 1a.
  • the second part 5b is a part arranged apart from the first part 5a in a specific direction of the resin composition 1a.
  • the third portion 5c is a portion arranged between the first portion 5a and the second portion 5b in the specific direction of the resin composition 1a.
  • the compressive elastic modulus in the first portion 5a is, for example, different from the compressive elastic modulus in the second portion 5b.
  • the compressive elastic modulus in the second portion 5b is higher than the compressive elastic modulus in the first portion 5a.
  • the compression modulus in the third portion 5c has a magnitude between the compression modulus in the first portion 5a and the compression modulus in the second portion 5b.
  • the compressive elastic modulus of the third portion 5c is higher than the compressive elastic modulus of the first portion 5a and lower than the compressive elastic modulus of the second portion 5b.
  • the compression elastic moduli in the first portion 5a, the second portion 5b, and the third portion 5c can be determined, for example, based on the porosity of each portion.
  • the porosity of each part can be determined based on the X-ray CT scan image of the resin composition 1a.
  • Compressive elastic modulus is measured using a plurality of layered samples made of the same kind of material as the resin composition 1a and having different porosities. Thereby, a calibration curve that associates the compressive modulus with the porosity is created.
  • the compression elastic modulus of each part of the resin composition 1a is determined, for example, based on this calibration curve.
  • the compression modulus of each part of the resin composition 1a may be determined by measuring the compression modulus of a sample prepared by cutting each part from the resin composition 1a.
  • the compressive elastic modulus of each part is, for example, a compressive elastic modulus E C10% at a strain of 0 to 10%.
  • Each of the first part 5a, the second part 5b, and the third part 5c is, for example, a layered part.
  • the first portion 5a is, for example, in contact with one end of the third portion 5c in the specific direction of the resin composition 1a.
  • the second portion 5a is, for example, in contact with the other end of the third portion 5c in the specific direction of the resin composition 1a.
  • the resin composition 1a may have a predetermined conductivity. In this case, for example, predetermined sensing can be performed using a change in electrical conductivity that accompanies compressive deformation.
  • the resin composition 1a may contain a conductive material.
  • the conductive material may be a metal material or a carbon material.
  • the relationship between the electrical conductivity of each part in the resin composition 1a is not limited to a specific mode.
  • the conductivity at the first portion 5a is, for example, different from the conductivity at the second portion 5b.
  • the conductivity at the second portion 5b is higher than the conductivity at the first portion 5a.
  • the conductivity in the third portion 5c has a magnitude between the conductivity in the first portion 5a and the conductivity in the second portion 5b.
  • the conductivity at the third portion 5c is higher than the conductivity at the first portion 5a and lower than the conductivity at the second portion 5b.
  • the conductivity in the first portion 5a, the second portion 5b, and the third portion 5c can be determined, for example, based on the porosity of each portion.
  • Conductivity is measured using a plurality of layered samples made of the same material as the resin composition 1a and having different porosities. Thereby, a calibration curve that associates conductivity and porosity is created.
  • the conductivity of each portion of the resin composition 1a is determined, for example, based on this calibration curve.
  • the conductivity of each portion of the resin composition 1a may be determined by measuring the conductivity of a sample prepared by cutting each portion from the resin composition 1a.
  • the conductivity of each part is, for example, the conductivity in the in-plane direction of the resin composition 1a.
  • the resin composition 1a may have a predetermined surface resistivity.
  • the surface resistivity of the resin composition 1a is not limited to a specific value.
  • the resin composition 1a has a surface resistivity of, for example, 1.0 ⁇ 10 0 to 1.0 ⁇ 10 6 ⁇ /sq.
  • the surface resistivity of the resin composition 1a may be 2.0 ⁇ 10 0 ⁇ /sq. or more, 5.0 ⁇ 10 0 ⁇ /sq. or more, or 1.0 ⁇ 10 1 . ⁇ /sq. or more, or 2.0 ⁇ 10 1 ⁇ /sq. or more.
  • the surface resistivity of the resin composition 1a may be 8.0 ⁇ 10 5 ⁇ /sq. or less, 6.0 ⁇ 10 5 ⁇ /sq. ⁇ /sq. or less, or 4.0 ⁇ 10 5 ⁇ /sq.
  • the surface resistivity of the resin composition 1a may be 8.0 ⁇ 10 4 ⁇ /sq. or less, 6.0 ⁇ 10 4 ⁇ /sq. ⁇ /sq. or less, or 4.0 ⁇ 10 4 ⁇ /sq.
  • the relationship of the surface resistivity of each part in the resin composition 1a is not limited to a specific aspect.
  • the surface resistivity at the first portion 5a is, for example, different from the surface resistivity at the second portion 5b.
  • the surface resistivity at the second portion 5b is lower than the surface resistivity at the first portion 5a.
  • the surface resistivity at the third portion 5c has a magnitude between the surface resistivity at the first portion 5a and the surface resistivity at the second portion 5b.
  • the compressive elastic modulus at the third portion 5c is lower than the surface resistivity at the first portion 5a and higher than the surface resistivity at the second portion 5b.
  • the surface resistivity of each portion of the resin composition 1a can be determined by measuring the surface resistivity of a sample prepared by cutting each portion from the resin composition 1a.
  • Each part in the resin composition 1a has, for example, a porous structure.
  • the relationship between the pore diameters of the pores at each site in the resin composition 1a is not limited to a specific mode.
  • the average pore diameter of the pores in the first portion 5a differs from, for example, the average pore diameter of the pores in the second portion 5b.
  • the average pore diameter of the pores in the second portion 5b is smaller than the average pore diameter of the pores in the first portion 5a.
  • the average diameter of the pores in the third portion 5c is between the average diameter of the pores in the first portion 5a and the average diameter of the pores in the second portion 5b.
  • the average pore diameter of the pores in the third portion 5c is smaller than the average pore diameter of the pores in the first portion 5a and larger than the average pore diameter of the pores in the second portion 5b.
  • the porosity of each part can be determined based on the X-ray CT scan image of the resin composition 1a.
  • the resin composition 1a has, for example, a porous structure continuously formed from one main surface toward the other main surface in the specific direction.
  • the resin contained in the resin composition 1a is not limited to a specific resin.
  • the resin contained in the resin composition 1a may be a thermosetting resin, a thermosetting elastomer, a thermoplastic resin, or a thermoplastic elastomer. .
  • the resin composition 1a may contain a mixture of a thermoplastic resin and a thermoplastic elastomer.
  • the thermoplastic resin is, for example, a foam molded article of a polyolefin resin composition. Examples of polyolefin-based resins constituting the polyolefin-based resin composition are polyethylene-based resins and polypropylene-based resins.
  • polypropylene-based resins are polypropylene and propylene- ⁇ -olefin copolymers containing 50% by mass or more of propylene. These may be used alone, or two or more polypropylene-based resins may be used in combination.
  • ⁇ -olefins that make up propylene- ⁇ -olefin copolymers are ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, and 1-octene.
  • the polypropylene-based resin may contain a polypropylene-based resin obtained using a metallocene compound containing a tetravalent transition metal as a polymerization catalyst.
  • a polypropylene resin obtained by using a metallocene compound containing a tetravalent transition metal as a polymerization catalyst may be referred to as a "metallocene polymerized polypropylene resin".
  • a known metallocene-polymerized polypropylene resin can be used.
  • thermosets and thermoset elastomers are thermoset polyurethanes, silicone elastomers, and epoxies.
  • the thermoplastic resin is, for example, polyolefin such as polypropylene.
  • the thermoplastic elastomer may be, for example, a single copolymer such as a thermoplastic polyamide elastomer, a thermoplastic polyester elastomer, a thermoplastic polyurethane elastomer, a thermoplastic polyolefin elastomer, or an EPDM, or a mixture thereof.
  • the degree of swelling of the resin forming the cured product in the resin composition 1a is not limited to a specific value.
  • the degree of swelling is the mass M b of the swollen resin after immersion in ethyl acetate with respect to the mass M a of the resin before immersion in ethyl acetate when 3 g of resin is immersed in 30 g of ethyl acetate at room temperature for 1 day. and the mass M a of the resin before immersion in ethyl acetate (M b ⁇ M a )/M a .
  • the resin composition 1a contains, for example, a resin having a swelling degree of 60% to 90%.
  • the resin composition 1a when the resin composition 1a is produced by foaming the thermosetting resin, the foaming of the thermosetting resin tends to progress in a desired state.
  • the resin contained in the resin composition 1a tends to have desired mechanical properties.
  • normal temperature is 20°C ⁇ 15°C according to Japanese Industrial Standard JIS Z 8703.
  • the degree of swelling of the resin contained in the resin composition 1a may be 62% or more, 65% or more, or 70% or more.
  • the degree of swelling of the resin contained in the resin composition 1a may be 88% or less, 86% or less, or 85% or less.
  • the method for producing the resin composition 1a is not limited to a specific method.
  • the resin composition 1a can be produced, for example, by a method using resin beads with different particle sizes.
  • Resin beads are, for example, expanded polystyrene beads. Resin beads are stacked from bottom to top in ascending order of particle size.
  • a composition containing a thermosetting resin is poured between the resin beads.
  • the thermosetting resin is cured to obtain a cured product.
  • the cured product is immersed in a predetermined organic solvent to remove the resin beads.
  • the resin composition 1a can be produced.
  • the resin composition 1a may be produced by a method using a physical foaming agent, a chemical foaming agent, or a thermal expansion capsule. For example, a mixture of thermosetting resin and chemical blowing agent is prepared. The mixture is spread into a sheet and heated to cure the thermosetting resin to obtain a cured product. Next, the cured product is heated under predetermined conditions to promote foaming of the cured product by the chemical foaming agent. Thus, the resin composition 1a can be produced. After preparing the cured product, resins containing different foaming agents or different blending amounts of the foaming agent are laminated to prepare a laminate of the cured product, and the cured product of the laminate is foamed to produce the resin composition 1a.
  • Examples of chemical foaming agents are chemical foaming agents such as organic foaming agents and inorganic foaming agents having a decomposition temperature of about 160°C to 270°C.
  • organic blowing agents include (i) azodicarbonamide, azodicarboxylic acid metal salts such as barium azodicarboxylate, and azo compounds such as azobisisobutyronitrile, (ii) N,N'-dinitrosopenta (iii) hydrazine derivatives such as hydrazodicarbonamide, 4,4'-oxybis(benzenesulfonyl hydrazide), and toluenesulfonyl hydrazide; and (iv) semicarbazide compounds such as toluenesulfonyl semicarbazide.
  • inorganic foaming agents include ammonium carbonate, sodium carbonate, ammonium hydrogencarbonate, sodium hydrogencarbonate, ammonium nitrite, sodium borohydride, and anhydrous monosoda citric acid.
  • the foaming agent is preferably an azo compound or a nitroso compound from the viewpoints of fine bubble formation, economy and safety.
  • the blowing agent is more preferably azodicarbonamide, azobisisobutyronitrile, or N,N'-dinitrosopentamethylenetetramine.
  • the blowing agent is particularly preferably azodicarbonamide.
  • the physical foaming agent impregnated in the thermoplastic resin is desirably a high-pressure inert gas from the viewpoint of forming cells with a predetermined average cell diameter.
  • the inert gas is not limited to a specific gas as long as it is inert to the thermoplastic resin and can be impregnated.
  • inert gases are carbon dioxide, nitrogen gas, and air. These gases may be mixed and used. Among these gases, carbon dioxide is desirable. This is because carbon dioxide impregnates a large amount of carbon dioxide into the resin used to form the foam and has a high impregnation speed. Carbon dioxide is also desirable from the viewpoint of obtaining a clean resin foam with few impurities.
  • the inert gas when impregnating the resin is desirably in a supercritical or subcritical state.
  • the solubility of the gas in the resin increases and high concentration mixing is possible.
  • the pressure drops rapidly after impregnation a large number of bubble nuclei are generated because the gas is present in the resin at a high concentration. For this reason, the density of the bubbles formed by the growth of the bubble nuclei is increased, so fine bubbles are likely to be formed with respect to a predetermined porosity.
  • the “supercritical state” of carbon dioxide is, for example, a state of carbon dioxide having a critical pressure or higher and a carbon dioxide critical temperature or higher. Desirably, the temperature is adjusted to 40-50° C.
  • the “subcritical state” of carbon dioxide is, for example, a liquid state in which the critical pressure of carbon dioxide is 7.38 MPa or more and the critical temperature of carbon dioxide is less than 31.1°C.
  • the "subcritical state” of carbon dioxide may be a liquid state where the pressure is below the critical pressure of carbon dioxide and the temperature is above the critical temperature.
  • the “subcritical state” of carbon dioxide may be at a pressure and temperature below the critical point of carbon dioxide, but at a temperature and pressure near the critical point.
  • the “subcritical state” of carbon dioxide can be a state of temperature between 20° C. and 31° C. and pressure of 5 MPa or higher.
  • the resin composition 1a may contain a conductive filler.
  • the shape of the conductive filler is not limited to a particular shape, and can be, for example, spherical, flaky, dendritic, or fibrous.
  • conductive fillers are metal fillers, metal-coated resin fillers, carbon nanotubes, graphite, and carbon black.
  • graphite shapes are, for example, scale-like, needle-like, fibrous, spherical, flake-like, agglomerate-like, and porous.
  • metal fillers are copper powder, silver powder, nickel powder, silver-coated copper powder, gold-coated copper powder, silver-coated nickel powder, and gold-coated nickel powder.
  • the metal filler is desirably silver powder, silver-coated copper powder, or copper powder.
  • the conductive filler is a carbon material
  • the conductive filler desirably contains two or more carbon materials.
  • the resin composition 1a desirably contains a carbon material as a conductive filler, which is advantageous from the viewpoint of increasing the conductivity of the resin composition 1a.
  • the carbon material is preferably carbon nanotubes. Carbon nanotubes are not limited to specific carbon nanotubes. Examples of carbon nanotubes are single-wall carbon nanotubes, double-wall carbon nanotubes, and multi-wall carbon nanotubes.
  • the fiber length and fiber diameter of carbon nanotubes are not limited to specific values.
  • the fiber length of carbon nanotubes is, for example, 100 nm or more and 100 ⁇ m or less. Carbon nanotubes having a fiber length of 100 ⁇ m or less are advantageous from the viewpoint of dispersibility in resin components and flexibility of resin moldings. In addition, the carbon nanotube having a fiber length of 100 nm or more is advantageous from the viewpoint of ensuring electrical conductivity.
  • the fiber length of the carbon nanotube is desirably 1 ⁇ m or more and 10 ⁇ m or less.
  • the fiber diameter of the carbon nanotube is, for example, 1 nm or more and 1 ⁇ m or less. When the fiber diameter is 1 nm or more, conductivity is easily ensured.
  • the fiber diameter of the carbon nanotube is desirably 1 nm or more and 200 nm or less.
  • the content of the conductive filler in the solid content of the resin composition 1a is not limited to a specific value.
  • the content is, for example, 0.1% by mass or more. In this case, the resin composition 1a tends to have desired conductivity. Its content is desirably 1% by mass or more.
  • the content of the conductive filler in the solid content of the resin composition 1a is, for example, 95% by mass or less. In this case, the resin composition 1a tends to have desired flexibility.
  • the content is desirably 90% by mass or less, more desirably 85% by mass or less, and even more desirably 75% by mass or less.
  • the resin composition 1a may be manufactured by 3D printing.
  • a pressure sensing member comprising the resin composition 1a.
  • the pressure can be sensed using the pressure sensing member.
  • an input interface with this pressure sensing member can be provided. In this case, when the pressure applied to the pressure detection member changes with the operator's movement, a predetermined input is made through the input interface.
  • the resin composition 1a can be changed from various points of view.
  • the resin composition 1a may be changed, for example, into a resin composition 1b shown in FIG. 5 and a resin composition 1c shown in FIG.
  • the resin composition 1b and the resin composition 1c are configured in the same manner as the resin composition 1a except for the parts that are particularly described.
  • Components of the resin composition 1b and the resin composition 1c that are the same as or correspond to components of the resin composition 1a are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the description regarding the resin composition 1a also applies to the resin composition 1b and the resin composition 1c as long as there is no technical contradiction.
  • the resin composition 1b is configured, for example, as a laminate of a plurality of resin materials having different average pore diameters.
  • the resin composition 1b may be configured as a laminate of a plurality of resin materials having different compression elastic moduli, or may be configured as a laminate of a plurality of resin materials having different porosities.
  • three types of sheet-like resin materials are laminated.
  • a bonding layer 6 is arranged between the resin materials.
  • the bonding layer 6 may be composed of an adhesive tape having a base material, or may be composed of an adhesive material without a base material.
  • the adhesive may have conductivity.
  • the joining layer 6 may be made of an adhesive material other than an adhesive material.
  • the first portion 5a, the second portion 5b, and the third portion 5c are each made of a different resin material.
  • Each resin material contained in the resin composition 1b can be produced, for example, by a method using resin beads.
  • a predetermined container is filled with resin beads having a predetermined particle size in layers, and a composition containing a thermosetting resin is poured between the resin beads.
  • the thermosetting resin is cured to obtain a cured product.
  • the cured product is immersed in a predetermined organic solvent to remove the resin beads.
  • the resin composition 1b can be manufactured by laminating a plurality of resin materials while arranging the bonding layer 6 between each resin material. For example, the resin material forming the first portion 5a in the resin composition 1b is produced using resin beads having a large particle size.
  • the resin material forming the second portion 5c in the resin composition 1b is produced using resin beads having a small particle size.
  • the resin material forming the third portion 5c in the resin composition 1b is smaller than the particle diameter of the resin beads used for producing the resin material forming the first portion 5a, and is used for producing the resin material forming the second portion 5b. It is made using resin beads having a particle size larger than that of the resin beads used.
  • the number of resin materials laminated in the resin composition 1b is not limited to a specific value as long as the resin composition 1a has a linearity of 1.5 or less.
  • the number of resin materials laminated in the resin composition 1b may be two, or may be four or more.
  • the resin composition 1c includes a plurality of porous cores 7c and shells 7s arranged adjacent to each other.
  • the shell 7s is formed around the core 7c. At least part of the shell 7s is arranged between adjacent cores 7c.
  • the average thickness of the cell walls in the cores 7c is, for example, smaller than the average thickness of the cell walls formed by the shells 7s between adjacent cores 7c. According to such a configuration, when the resin composition 1c is compressed and deformed in a specific direction, the linearity of the relationship between stress and strain tends to be high in a wide range of strain from 0 to 50%.
  • the average thickness of the cell walls in the core 7c is, for example, the arithmetic mean of the thicknesses of ten or more randomly selected cell walls in the core 7c.
  • the average thickness of the cell walls formed by the shells 7s between the adjacent cores 7c is, for example, the arithmetic mean of the thicknesses of ten or more randomly selected cell walls between the adjacent cores 7c.
  • the relationship between the average thickness of the cell walls in the cores 7c and the average thickness of the cell walls formed by the shells 7s between adjacent cores 7c is Not limited to any particular relationship.
  • the average thickness of the cell walls in the cores 7c is, for example, less than half the average thickness of the cell walls formed by the shells 7s between adjacent cores 7c. According to such a configuration, when the resin composition 1c is compressed and deformed in a specific direction, the linearity of the relationship between stress and strain tends to be higher in a wide range of strain from 0 to 50%.
  • the distance between adjacent holes in the core 7c may be, for example, one-third or less of the distance between adjacent holes in the shell 7s, or may be one-fourth or less.
  • the shell 7s may not have pores. In this case the distance between the holes is interpreted as infinite.
  • the method for producing the resin composition 1c is not limited to a specific method.
  • the resin composition 1c can be produced by, for example, foam injection molding such as physical foam injection molding. For example, predetermined resin pellets are put into an extruder and melted, a gas such as carbon dioxide gas is injected into the extruder at a predetermined pressure, and the gas is sufficiently saturated inside the extruder. After that, the temperature inside the extruder is adjusted to a temperature suitable for foaming, and the material is extruded through a multi-hole die having openings with different diameters. Thus, the resin composition 1c can be produced. For example, foams with different foam states are produced by passing through multiple dies having different diameters and lengths. The foams are then passed through a multi-hole die, bonded and formed into sheets.
  • a test piece for a compression test was produced from the resin composition according to each example and each comparative example.
  • Each test piece had a square shape with a side length of 50 mm in plan view.
  • Two pressure plates were prepared.
  • the pressure plate was a disc with a diameter of 200 mm.
  • Using an Autograph AG5000E testing machine manufactured by Shimadzu Corporation a test piece was placed between two pressure plates and pre-pressurized to 50% strain at a speed of 10 mm/sec. After that, the position of the pressure plate was returned to eliminate the strain. After 3 minutes had elapsed, the two pressure plates were brought close to each other at a speed of 10 mm/sec to generate 50% strain on the test piece.
  • FIGS. 7A, 7B, and 7C Some of the cross-sectional images used for measuring the cell wall thickness in a specific core of the resin composition according to Example 1 are shown in FIGS. 7A, 7B, and 7C. In addition, some cross-sectional images used for measuring the cell wall thickness in the shell of the resin composition according to Example 1 are shown in FIGS. 8A, 8B, and 8C.
  • thermosetting polyurethane resins used to prepare the resin compositions of Examples 3 to 8 the thermosetting silicone used to prepare the resin composition of Comparative Example 2, and the resin composition of Comparative Example 4
  • a mixture of thermosetting polyurethane resins used in Example 1 was prepared. 3 g of resin was immersed in 30 g of ethyl acetate at room temperature for 1 day.
  • the surface resistivity of the sheet forming one main surface in the resin compositions according to Examples 7 and 8 was higher than the surface resistivity of the sheet forming the other main surface in the resin compositions according to Examples 7 and 8. was low.
  • the surface resistivity of the intermediate sheet in the thickness direction of the resin compositions according to Examples 7 and 8 was the difference between the surface resistivity of the sheet forming one main surface and the surface resistivity of the sheet forming the other main surface. had a size between
  • Example 1 35 parts by mass of polypropylene (PP), 60 parts by mass of a thermoplastic elastomer composition, 5 parts by mass of a lubricant, 5 parts by mass of a nucleating agent, and 2 parts by mass of erucamide were mixed using a twin-screw kneader. The mixture was kneaded at a temperature of 200° C., the kneaded material was extruded into strands, and the kneaded material was cooled with water and then cut to obtain resin pellets. The melt flow rate (MFR) of polypropylene was 0.35 g/10 minutes.
  • MFR melt flow rate
  • the thermoplastic elastomer composition is a blend of ethylene, propylene and 5-ethylidene-2-norbornene terpolymer (EPDM) and polypropylene and is a crosslinked olefinic thermoplastic elastomer (TPV).
  • the weight ratio of EPDM to polypropylene in the thermoplastic elastomer composition is 75/25.
  • the thermoplastic elastomer composition contained 15 wt% carbon black.
  • the lubricant was a master batch of 1 part stearic monoglyceride and 10 parts polyethylene.
  • the nucleating agent was magnesium hydroxide with an average particle size of 0.8 ⁇ m.
  • the melting point of erucamide was 80-85°C.
  • the above resin pellets were put into a single-screw extruder, and carbon dioxide gas was injected at a pressure of 16 MPa while the resin pellets were melted in an atmosphere of 200°C.
  • the pressure of carbon dioxide gas after injection was 13 MPa.
  • the melt was cooled to a temperature suitable for foaming the melt of resin pellets. Thereafter, the melt was extruded through a multi-hole die having openings with different diameters to prepare a sheet-like resin composition according to Example 1.
  • the thickness of the resin composition according to Example 1 was 8.0 mm.
  • the resin composition according to Example 1 had a porous core and a shell formed around the core. The distance between adjacent pores in the core and shell was determined. Table 1 shows the results.
  • Example 2 A resin composition according to Example 2 was prepared in the same manner as in Example 1, except that the foaming conditions were adjusted so that the pore diameters of the pores became the values shown in Table 1.
  • the thickness of the resin composition according to Example 2 was 8.0 mm.
  • the resin composition according to Example 2 had a porous core and a shell formed around the core. The distance between adjacent pores in the core and shell was determined. Table 1 shows the results.
  • Expanded polystyrene beads having a particle diameter of 0.5 mm were spread inside the resin case to a thickness of 2 mm.
  • the internal space of the resin case was a rectangular parallelepiped with dimensions of 70 mm, 50 mm and 80 mm.
  • expanded polystyrene beads having a particle size of 0.5 mm were spread to a thickness of 2 mm.
  • expanded polystyrene beads having a particle size of 1.0 mm expanded polystyrene beads having a particle size of 1.5 mm were spread to a thickness of 2 mm.
  • a metal mesh was arranged on the upper part of the resin case, and the foamed polystyrene beads were fixed inside the resin case.
  • thermosetting polyurethane resin component Pandex GCB-41 and Pandex GCA-11 were mixed in amounts of 100 parts by mass and 17 parts by mass, respectively, and the mixture was stirred for 5 minutes with a planetary mixer. After that, this mixture was subjected to a vacuum defoaming treatment for 10 minutes to prepare a resin intermediate composition.
  • the intermediate resin composition was poured into the resin case covered with expanded polystyrene beads, and cured in an oven adjusted to 80° C. for 2 hours to obtain a cured product. After that, this cured product was immersed in ethyl acetate for 3 minutes to remove the expanded polystyrene beads inside the cured product.
  • a sheet-shaped resin composition according to Example 3 was produced.
  • the thickness of the resin composition according to Example 3 was 9.0 mm.
  • the resin composition according to Example 3 had a porous structure due to the expanded polystyrene beads.
  • the porosity and the compressive elastic modulus at 0 to 10% strain varied stepwise from the upper surface to the lower surface due to its porous structure.
  • Example 4 Thermosetting polyurethane resin components Pandex GCB-41 and Pandex GCA-11 from DIC were mixed in amounts of 100 parts by weight and 17 parts by weight, respectively.
  • a bead-containing mixture was obtained by adding 1 part by mass of expanded styrene beads having a particle diameter of 0.4 mm to 100 parts by mass of this mixture.
  • the bead-containing mixture was stirred for 5 minutes in a planetary mixer. After that, the bead-containing mixture was subjected to a vacuum defoaming treatment for 10 minutes to prepare a resin intermediate composition.
  • the resin intermediate composition was poured between two square silicon substrates having a side length of 50 mm in plan view, and the resin intermediate composition was placed in an oven adjusted to 80°C for 2 hours. to obtain a cured product.
  • the distance between the two substrates was 3 mm.
  • the cured product was cut into a sheet having a thickness of 2 mm. This sheet was immersed in ethyl acetate for 3 minutes to remove foamed polystyrene beads inside the cured product.
  • a porous sheet A was obtained.
  • a porous sheet B was obtained in the same manner as the porous sheet A except that expanded styrene beads having a particle size of 0.6 mm were used instead of the particle size of 0.4 mm.
  • a porous sheet C was obtained in the same manner as the porous sheet A except that expanded styrene beads having a particle size of 0.8 mm were used instead of the particle size of 0.4 mm.
  • Perforated sheet A, perforated sheet B, and perforated sheet C are laminated in this order, and an acrylic adhesive having a thickness of 0.150 mm is applied between perforated sheet A and perforated sheet B and between perforated sheet B and perforated sheet C. An agent was placed and these perforated sheets were joined.
  • a sheet-shaped resin composition according to Example 4 was produced.
  • the thickness of the resin composition according to Example 4 was 6.3 mm.
  • the porosity and the compressive elastic modulus at 0 to 10% strain varied stepwise from the upper surface to the lower surface due to its porous structure.
  • Example 5 Thermosetting polyurethane resin components Pandex GCB-41 and Pandex GCA-11 from DIC were mixed in amounts of 100 parts by weight and 16 parts by weight, respectively. To 100 parts by mass of this mixture, 3 parts by mass of the foaming agent Vinihole AC#3 manufactured by Eiwa Kasei Co., Ltd. was added to obtain a mixture containing the foaming agent. The blowing agent-containing mixture was stirred for 5 minutes in a planetary mixer. Thereafter, the foaming agent-containing mixture was subjected to vacuum defoaming treatment for 10 minutes to prepare a resin intermediate composition.
  • the resin intermediate composition is poured between two square-shaped silicon substrates having a side length of 50 mm in plan view, and the resin intermediate composition is cured in an oven adjusted to 80° C. for 2 hours. to obtain a cured product.
  • the distance between the two substrates was 3 mm.
  • the cured product was expanded for 15 minutes in an oven adjusted to 210°C.
  • the thickness of the resin composition according to Example 5 was 6.0 mm.
  • the porosity and the compressive elastic modulus at 0 to 10% strain varied stepwise from the upper surface to the lower surface due to its porous structure.
  • Example 6 A sheet-like resin composition according to Example 6 was obtained in the same manner as in Example 5, except that the expansion time of the cured product in an oven adjusted to 210° C. was changed to 10 minutes.
  • the thickness of the resin composition according to Example 6 was 4.0 mm.
  • the porosity and compressive elastic modulus at 0 to 10% strain varied stepwise from the upper surface to the lower surface due to its porous structure.
  • Example 7 Thermosetting polyurethane resin components Pandex GCB-41 and Pandex GCA-11 from DIC were mixed in amounts of 100 parts by weight and 15.5 parts by weight, respectively. To 100 parts by mass of this mixture, 3 parts by mass of the blowing agent Vinihole AC#3 manufactured by Eiwa Kasei Co., Ltd. was added, and 1 part by mass of the carbon nanotube SG-CNT HT manufactured by Nippon Zeon Co., Ltd. was added. were added to obtain a CNT-containing mixture. The CNT-containing mixture was stirred for 5 minutes in a planetary mixer. After that, the CNT-containing mixture was subjected to a vacuum defoaming treatment for 10 minutes to prepare a resin intermediate composition.
  • the resin intermediate composition is poured between two square-shaped silicon substrates having a side length of 50 mm in plan view, and the resin intermediate composition is cured in an oven adjusted to 80° C. for 2 hours. to obtain a cured product.
  • the distance between the two substrates was 3 mm.
  • the cured product was expanded for 10 minutes in an oven adjusted to 210°C.
  • the thickness of the resin composition according to Example 7 was 3.8 mm.
  • the porosity, compressive elastic modulus at 0 to 10% strain, and electrical conductivity varied stepwise from the upper surface to the lower surface due to its porous structure.
  • Example 8 A sheet-like resin composition according to Example 8 was obtained in the same manner as in Example 7, except that the expansion time of the cured product in an oven adjusted to 210° C. was changed to 20 minutes.
  • the thickness of the resin composition according to Example 8 was 5.2 mm.
  • the porosity, compressive elastic modulus at 0 to 10% strain, and electrical conductivity varied stepwise from the upper surface to the lower surface due to its porous structure.
  • a porous sheet D having a thickness of 5 mm was produced from a conductive silicone sponge sheet Si-500 manufactured by Shibata Kogyo.
  • Si-500 is a foam containing silicon rubber as a main component, and the surface resistivity of porous sheet D was 4.2 ⁇ 10 2 ⁇ /sq.
  • the porous sheet D had a square shape with one side having a length of 50 mm in plan view.
  • a porous sheet E having a thickness of 5 mm was produced from a conductive rubber sponge C-4255 manufactured by INOAC.
  • C-4255 is a foam based on chloroprene rubber.
  • the porous sheet E had a square shape with one side having a length of 50 mm in plan view.
  • the surface resistivity of the porous sheet E was 8.8 ⁇ 10 2 ⁇ /sq.
  • a porous sheet F having a thickness of 5 mm was produced from a conductive polyurethane sponge TK-2 manufactured by Sanwa Supply.
  • the surface resistivity of the porous sheet F was 1.2 ⁇ 10 5 ⁇ /sq.
  • the porous sheet F had a square shape with one side having a length of 50 mm in plan view.
  • the porous sheet D, the porous sheet E, and the porous sheet F are laminated in this order, and between the porous sheet D and the porous sheet E and between the porous sheet E and the porous sheet F, a conductive adhesive manufactured by Kaken Tech Co., Ltd.
  • Adhesive CN7120 was used to form joints by arranging dot-like patterns of perfect circles with a diameter of 2 mm at equal intervals of 5 ⁇ 5, and these porous sheets were joined.
  • a sheet-like resin composition according to Example 9 was produced.
  • the thickness of the resin composition according to Example 9 was 15.3 mm.
  • the porosity and the compressive elastic modulus at 0 to 10% strain varied stepwise from the upper surface to the lower surface due to its porous structure.
  • a porous sheet G having a thickness of 5 mm was produced from a conductive rubber sponge E-4385 manufactured by INOAC.
  • E-4385 is a foam containing ethylene propylene rubber as a main component, and the surface resistivity of the porous sheet G was 3.8 ⁇ 10 2 ⁇ /sq.
  • a porous sheet H having a thickness of 5 mm was produced from a conductive polyurethane sponge TK-2 manufactured by Sanwa Supply. The surface resistivity of the porous sheet H was 1.2 ⁇ 10 5 ⁇ /sq.
  • the porous sheet H had a square shape with one side having a length of 50 mm in plan view.
  • the perforated sheet G and the perforated sheet H are laminated in this order, and between the perforated sheet G and the perforated sheet H, a conductive adhesive CN7120 manufactured by Kaken Tech Co., Ltd. is used to form a dot consisting of a perfect circle with a diameter of 2 mm.
  • a joint portion was formed by arranging the shaped patterns at equal intervals of 5 ⁇ 5, and these porous sheets were joined.
  • a sheet-shaped resin composition according to Example 10 was produced.
  • the thickness of the resin composition according to Example 10 was 10.3 mm.
  • the porosity and compressive elastic modulus at 0 to 10% strain varied stepwise from the upper surface to the lower surface due to its porous structure.
  • thermosetting silicone resin Sylgard 184 manufactured by Dow 100 parts by mass of a thermosetting silicone resin Sylgard 184 manufactured by Dow was mixed with 6 parts by mass of a curing agent, and 100 parts by mass of the thermosetting silicone resin component was mixed with a particle diameter of 1.0 mm.
  • Sodium chloride was added in an amount of 10 parts by mass to obtain a sodium chloride-containing mixture.
  • the sodium chloride-containing mixture was stirred for 5 minutes in a planetary mixer. Thereafter, the sodium chloride-containing mixture was subjected to vacuum defoaming treatment for 10 minutes to prepare a resin intermediate composition.
  • the resin intermediate composition is poured between two square-shaped silicon substrates having a side length of 50 mm in plan view, and the resin intermediate composition is cured in an oven adjusted to 80° C.
  • a porous sheet ⁇ having a thickness of 2 mm was obtained.
  • a porous sheet ⁇ was obtained in the same manner as the porous sheet ⁇ , except that sodium chloride with a particle size of 1.5 mm was used instead of sodium chloride with a particle size of 1.0 mm.
  • the strand-shaped foam was cut to a length of 50 mm, five strand-shaped foams were packed in a resin frame, heated for 1 minute with a heat press set at 170 ° C., and a sheet-shaped Comparative Example 3 was obtained.
  • a resin composition according to A rectangular parallelepiped space having dimensions of 50 mm, 50 mm, and a thickness of 0.9 mm was formed inside the resin frame.
  • the resin composition according to Comparative Example 3 had a porous core and a shell formed around the core. The distance between adjacent pores in the core and shell was determined. Table 2 shows the results.
  • ⁇ Comparative Example 5> A conductive silicone sponge Si-500 manufactured by Shibata Kogyo Co., Ltd. was prepared as a resin composition according to Comparative Example 5. The thickness of the resin composition according to Comparative Example 5 was 5 mm.
  • the resin composition according to each example had a linearity of 1.5 or less. On the other hand, as shown in Table 2, the resin composition according to each comparative example exceeded 1.5. It was confirmed that when the resin composition according to each example was compressed and deformed in the thickness direction, the linearity of the relationship between stress and strain increased over a wide strain range of 0 to 50%.
  • the resin composition according to each example had a hysteresis loss of 60% or less. On the other hand, in the resin compositions according to Comparative Examples 1, 3, and 5, the hysteresis loss exceeded 60%.
  • the pore diameter of the pores in the resin composition according to each example was in the range of 20 to 2500 ⁇ m.
  • the ratio of the distance between adjacent pores in the shell to the distance between adjacent pores in the core is about 1/4 or less and about 1/3 or less, respectively. there were.
  • the degree of swelling of the mixture of the thermosetting polyurethane resins used to prepare the resin compositions of Examples 3 to 8 was 60% or more and 90% or less.
  • the degree of swelling of the mixture of the thermosetting silicone resin used to prepare the resin composition of Comparative Example 2 and the thermosetting polyurethane resin used to prepare the resin composition of Comparative Example 4 was less than 60%. there were.
  • a first aspect of the present invention is A resin composition, having a linearity of 1.5 or less, The linearity is determined by the following formula (1) based on the relationship between stress and strain obtained when the resin composition is compressed in a specific direction so as to generate a strain of 0 to 50%.
  • a resin composition is provided.
  • a second aspect of the present invention is The resin composition has a hysteresis loss of 60% or less, The hysteresis loss is obtained by compressing the resin composition from 0% strain to 50% strain in the specific direction and releasing the strain from 50% strain to 0% strain. determined based on A resin composition according to the first aspect is provided.
  • a third aspect of the present invention is The resin composition comprises a first part arranged at a specific position in the specific direction, a second part arranged away from the first part in the specific direction, and the first part in the specific direction. and a third portion disposed between the second portion, The compressive modulus at the first portion is different from the compressive modulus at the second portion, The compressive modulus at the third portion has a magnitude between the compressive modulus at the first portion and the compressive modulus at the second portion, A resin composition according to the first aspect or the second aspect is provided.
  • a fourth aspect of the present invention is The resin composition comprises a first part arranged at a specific position in the specific direction, a second part arranged away from the first part in the specific direction, and the first part in the specific direction. and a third portion disposed between the second portion, the conductivity at the first portion is different than the conductivity at the second portion; the conductivity at the third portion has a magnitude between the conductivity at the first portion and the conductivity at the second portion;
  • a resin composition according to any one of the first to third aspects is provided.
  • a fifth aspect of the present invention is The resin composition has a compression modulus of 5 to 5000 kPa at 0 to 10% strain.
  • a resin composition according to any one of the first to fourth aspects is provided.
  • a sixth aspect of the present invention is The resin composition comprises a first part arranged at a specific position in the specific direction, a second part arranged away from the first part in the specific direction, and the first part in the specific direction. and a third portion disposed between the second portion, the surface resistivity at the first portion is different from the surface resistivity at the second portion; the surface resistivity at the third portion has a magnitude between the surface resistivity at the first portion and the surface resistivity at the second portion;
  • a resin composition according to any one of the first to fifth aspects is provided.
  • a seventh aspect of the present invention is The resin composition has a surface resistivity of 1.0 ⁇ 10 0 to 1.0 ⁇ 10 6 ⁇ /sq.
  • a resin composition according to any one of the first to sixth aspects is provided.
  • the eighth aspect of the present invention is The resin composition has voids formed in at least part of the interior of the resin composition, A resin composition according to any one of the first to seventh aspects is provided.
  • a ninth aspect of the present invention is The voids contain pores with a pore size of 20 to 2500 ⁇ m, A resin composition according to the eighth aspect is provided.
  • a tenth aspect of the present invention is a plurality of porous cores arranged next to each other; a shell formed around the core; At least part of the shell is arranged between the adjacent cores, the average thickness of cell walls in the core is less than the average thickness of cell walls formed by the shells between adjacent cores;
  • a resin composition according to any one of the first to seventh aspects is provided.
  • the eleventh aspect of the present invention is the average thickness of the cell walls in the core is less than half the average thickness of the cell walls formed by the shells between adjacent cores; A resin composition according to the tenth aspect is provided.
  • a twelfth aspect of the present invention is The resin composition contains a cured resin having a swelling degree of 60% to 90%, When 3 g of the resin is immersed in 30 g of ethyl acetate at room temperature for 1 day, the degree of swelling is the ratio of the mass of the resin before immersion in ethyl acetate to the swollen resin after immersion in ethyl acetate. is the ratio of the difference between the mass of and the mass of the resin before immersion in the ethyl acetate, A resin composition according to any one of the first to ninth aspects is provided.
  • a thirteenth aspect of the present invention is Provided is a pressure sensing member comprising the resin composition according to any one of the first to twelfth aspects.
  • a fourteenth aspect of the present invention is An input interface comprising a pressure sensing member according to the thirteenth aspect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

樹脂組成物1aは、1.5以下の線形度を有する。樹脂組成物1aの線形度は、樹脂組成物1aを特定方向に0~50%のひずみが生じるように樹脂組成物1aを圧縮したときの応力とひずみとの関係に基づいて、下記式(1)によって決定される。式(1)において、yiは、応力とひずみとの上記の関係において、0~50%のひずみの範囲におけるi%のひずみに対応する無次元化応力である。y'iは、回帰直線におけるi%のひずみに対応する無次元化応力の推定値である。nは、回帰直線を得るためのデータの個数であり、3以上の整数である。 線形度={Σ(yi-y'i2)/(n-2)}0.5 式(1)

Description

樹脂組成物、圧力検知用部材、及び入力インターフェース
 本発明は、樹脂組成物、圧力検知用部材、及び入力インターフェースに関する。
 従来、多孔質構造を有する樹脂成形体が知られている。
 例えば、特許文献1には、傾斜多孔質樹脂成形体の製造方法が知られている。その製造方法は、分散工程と、沈降工程と、硬化工程と、粒子溶解工程とを備えている。分散工程において、流動性を有するプレポリマーと、そのプレポリマー中での沈降速度が異なる少なくとも2種類の水溶性粒子とが混合され、水溶性粒子がプレポリマー中に分散される。沈降工程において、プレポリマー中に分散した水溶性粒子が重力又は遠心力によって沈降する。硬化工程において、プレポリマーを硬化させる。粒子溶解工程において、硬化したプレポリマー中の水溶性粒子が水によって溶解除去される。特許文献1には、この傾斜多孔質樹脂成形体は、応力センサ又はひずみセンサの材料として使用可能であると記載されている。
 特許文献2には、気泡の平均径がシート厚み方向に傾斜的に変化する、傾斜発泡プラスチックシートが記載されている。この傾斜発泡プラスチックシートの製造方法では、常温及び常圧で気体状態のガスを高温及び高圧下でプラスチックに溶解させる。その後、そのプラスチックをガス溶解時の圧力より低い圧力雰囲気下に曝す。その後、シート両面がそれぞれ温度の異なる雰囲気に曝される。
 特許文献3には、ポリプロピレン系樹脂発泡体が記載されている。このポリプロピレン系樹脂発泡体は、所定のポリプロピレン系樹脂組成物に、超臨界状態の二酸化炭素を少なくとも含む発泡剤を混入して押出し発泡させて、製造されている。このポリプロピレン系樹脂発泡体は、表面スキン層と内部発泡層とからなる。内部発泡層の発泡倍率は、10倍以上である。表面スキン層の厚み、内部発泡層の厚み、及び内部発泡層の発泡倍率は、所定の関係を満たしている。
特開2018-039862号公報 特開2002-363324号公報 特開2006-204590号公報
 樹脂組成物を特定方向に圧縮変形させたときに広範囲のひずみにおいて応力とひずみとの関係の線形性を高めることができれば、樹脂組成物の価値をより高めることができる。例えば、樹脂組成物によって高精度のセンシングを実現することが考えられる。従来、樹脂組成物を用いて高精度のセンシングを行うことは困難であり、高精度のセンシングのためには光学的な方法が用いられることが多い。一方、樹脂組成物によって高精度のセンシングを実現できれば、高精度のセンシングのための構成を簡素化できると考えられる。一方、本発明者の検討によれば、特許文献1~3に記載の技術は、樹脂組成物を特定方向に圧縮変形させたときに広範囲のひずみにおいて応力とひずみとの関係の線形性を高める観点から再検討の余地があり、高精度のセンシング等の用途に適用することは困難である。
 そこで、本発明は、高精度のセンシング等の用途への適用に有利な樹脂組成物を提供する。
 本発明は、
 樹脂組成物であって、
 1.5以下の線形度を有し、
 前記線形度は、前記樹脂組成物を特定方向に0~50%のひずみが生じるように圧縮したときに得られる応力とひずみとの関係に基づいて下記式(1)によって決定される、
 樹脂組成物を提供する。
 線形度=[{1/(n-2)}{Σ(yi-y′i2}]0.5   式(1)
 前記式(1)において、
 yiは、前記関係において、0~50%のひずみの範囲におけるi%のひずみに対応する無次元化応力であり、
 y′iは、前記関係から得られる回帰直線におけるi%のひずみに対応する無次元化応力の推定値であり、
 nは、前記回帰直線を得るためのデータの個数であり、3以上の整数である。
 本発明は、上記の樹脂組成物を備えた、圧力検知用部材を提供する。
 本発明は、上記の圧力検知用部材を備えた、入力インターフェースを提供する。
 上記の樹脂組成物は、高精度のセンシング等の用途への適用に有利である。加えて、上記の樹脂組成物は、入力インターフェース、ロボティクス、ソフトロボティクス、ディスプレイ用部材、ゲーム機用コントローラー、スイッチ、及び動作解析装置等の用途への適用に有利である。
図1は、本発明に係る樹脂組成物の一例を示す斜視図である。 図2は、図1に示す樹脂組成物を圧縮したときの無次元化応力とひずみとの関係を示すグラフである。 図3は、図1に示す樹脂組成物の圧縮及びひずみの解消がなされるときの荷重とひずみとの関係を示すグラフである。 図4は、図1の平面IVを切断面とする樹脂組成物の模式的な断面図である。 図5は、本発明に係る樹脂組成物の別の一例を示す模式的な断面図である。 図6は、本発明に係る樹脂組成物のさらに別の一例を示す模式的な断面図である。 図7Aは、実施例1に係る樹脂組成物の断面のFE-SEM画像である。 図7Bは、実施例1に係る樹脂組成物の断面のFE-SEM画像である。 図7Cは、実施例1に係る樹脂組成物の断面のFE-SEM画像である。 図8Aは、実施例1に係る樹脂組成物の断面のFE-SEM画像である。 図8Bは、実施例1に係る樹脂組成物の断面のFE-SEM画像である。 図8Cは、実施例1に係る樹脂組成物の断面のFE-SEM画像である。
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、下記の説明は、本発明を例示的に説明するものであり、本発明は以下の実施形態に限定されるわけではない。
 図1に示す樹脂組成物1aは、1.5以下の線形度を有する。樹脂組成物1aを特定方向(z軸方向)に0~50%のひずみが生じるように圧縮する。図2は、この場合の、樹脂組成物1aにおける無次元化応力とひずみとの関係を示すグラフである。無次元化応力は、例えば、樹脂組成物1aにおいて、0~50%の範囲の任意のひずみに対応して生じる応力の値を50%のひずみにおける応力の値で除することによって決定できる。図2において、実線で示すグラフは実測値に基づくグラフであり、破線で示す直線のグラフは実測値に基づいて決定される回帰直線である。この回帰直線は、例えば、最小二乗法によって決定される。樹脂組成物1aの線形度は、図2に示す、応力とひずみとの関係に基づいて下記式(1)によって決定される。式(1)において、yiは、実測に基づく無次元化応力とひずみとの関係において、0~50%のひずみの範囲におけるi%のひずみに対応する無次元化応力である。y′iは、回帰直線におけるi%のひずみに対応する無次元化応力の推定値である。nは、回帰直線を得るためのデータの個数であり、3以上の整数である。nは、例えば、3≦n≦10000である。例えば、n=100の場合、応力とひずみとが対応づけられた100個のデータを用いて回帰直線が決定される。
 線形度=[{1/(n-2)}{Σ(yi-y′i2}]0.5   式(1)
 式(1)から理解される通り、線形度は、0~50%のひずみの範囲において、実測に基づく無次元化応力の回帰直線における無次元化応力とのずれを定量的に評価する指標である。線形度が小さいほど、0~50%のひずみの範囲において、応力とひずみとの関係の線形性が高いことが理解される。樹脂組成物1aは1.5以下の線形度を有する。このため、樹脂組成物1aを特定方向に圧縮変形させたときに、0~50%という広範囲のひずみにおいて応力とひずみとの関係の線形性が高い。樹脂組成物1aは、例えば、高精度のセンシングの用途への適用に有利である。樹脂組成物1aの用途は、高精度のセンシングに限定されず、0~50%という広範囲のひずみにおいて応力とひずみとの関係の線形性の高さを有効に利用できる用途でありうる。
 本発明者は、特許文献1から3の記載を参考に作製した樹脂組成物の線形度を評価した。比較例1に係る樹脂組成物は、特許文献2の記載を参考に作製した樹脂組成物である。比較例2に係る樹脂組成物は、特許文献1の記載を参考に作製した樹脂組成物である。比較例3に係る樹脂組成物は、特許文献3の記載を参考に作製した樹脂組成物である。これらの樹脂組成物の評価結果によれば、これらの樹脂組成物を特定方向に圧縮したときの線形度が大きく、これらの樹脂組成物は、0~50%という広範囲のひずみにおいて応力とひずみとの関係の線形性が高いとは言い難かった。
 そこで、本発明者は、特定方向に圧縮したときに広範囲のひずみにおいて応力とひずみとの関係の線形性が高い樹脂組成物を新たに開発すべく、多大な試行錯誤を重ねた。その結果、遂に1.5以下の線形度を有する樹脂組成物を実現した。例えば、樹脂組成物1aを用いて高精度のセンシングを実現しやすい。
 樹脂組成物1aの線形度は、1.45以下であってもよく、1.4以下であってもよく、1.3以下であってもよく、1.2以下であってもよく、1.1以下であってもよい。樹脂組成物1aの線形度は、例えば、0.1以上である。
 樹脂組成物1aの形状は、樹脂組成物1aが1.5以下の線形度を有する限り、特定の形状に限定されない。樹脂組成物1aは、例えば、一対の互いに平行な外面を有している。この場合、特定方向は、一対の外面に垂直な方向でありうる。樹脂組成物1aの形状は、例えば、直方体状である。樹脂組成物1aの形状は、シート状であってもよいし、板状であってもよい。特定方向は、樹脂組成物1aの厚み方向であってもよい。
 樹脂組成物1aのヒステリシスロスは、特定の値に限定されない。ヒステリシスロスは、樹脂組成物1aを特定方向(z軸方向)に0%ひずみから50%ひずみまで圧縮し、かつ、50%ひずみから0%ひずみまでひずみを解消させたときに得られる荷重とひずみとの関係に基づいて決定される。図3は、このような樹脂組成物1aの圧縮及びひずみの解消がなされるときの荷重とひずみとの関係を示すグラフである。図3において、Oと点bとの間の曲線aは、樹脂組成物1aを特定方向に0%ひずみから50%ひずみまで圧縮するときの荷重とひずみとの関係を示すグラフである。点bは、50%ひずみと、50%ひずみに対応する荷重の値を示す座標である。図3において、点bと点dとの間の曲線cは、ひずみを解消させるときの荷重とひずみとの関係を示すグラフである。点dは、曲線cと横軸との交点である。図3において、点eは、縦軸に平行かつ横軸に垂直な点bを通る直線と横軸との交点である。ヒステリシスロスは、原点O、曲線a、点b、点e、及び原点Oによって囲まれる面積STに対する、原点O、曲線a、点b、曲線c、点d、及び原点Oによって囲まれる面積SLの比SL/STである。
 樹脂組成物1aは、例えば、60%以下のヒステリシスロスを有する。この場合、例えば、樹脂組成物1aを用いて検知誤差の少ないセンシングを実現しやすい。さらに、樹脂組成物1aの機械物性が良い。樹脂組成物1aのヒステリシスロスは、例えば、58%以下であってもよく、56%以下であってもよく、54%以下であってもよく、50%以下であってもよく、45%以下であってもよく、40%以下であってもよい。樹脂組成物1aのヒステリシスロスは、例えば5%以上であり、10%以上であってもよい。
 樹脂組成物1aの構造は、樹脂組成物1aが1.5以下の線形度を有する限り、特定の態様に限定されない。図4に示す通り、樹脂組成物1aは、その内部の少なくとも一部に形成された空隙2を有する。樹脂組成物1aの内部の少なくとも一部に、空隙2が所定の状態で存在していることにより、樹脂組成物1aを特定方向に圧縮変形させたときに、0~50%という広範囲のひずみにおいて応力とひずみとの関係の線形性が高くなりやすい。
 樹脂組成物1aの厚さは、樹脂組成物1aが1.5以下の線形度を有する限り、特定の値に限定されない。樹脂組成物1aの厚さは、例えば、1.0~20mmである。このような構成によれば、樹脂組成物1aは、例えばセンサ用部材に適した柔軟性を有しやすい。
 樹脂組成物1aにおいて、空隙2は、例えば、空孔を含む。空孔の孔径は、特定の値に限定されない。空孔の孔径は、例えば20~2500μmである。このような構成によれば、樹脂組成物1aを特定方向に圧縮変形させたときに、0~50%という広範囲のひずみにおいて応力とひずみとの関係の線形性が高くなりやすい。樹脂組成物1aにおける空孔の孔径は、例えば、樹脂組成物1aのX線CTスキャン画像に基づいて決定できる。
 樹脂組成物1aは、例えば、多孔質構造を有する。樹脂組成物1aは、1.5以下の線形度を有する限り、多孔質構造以外の構造を有していてもよい。例えば、樹脂組成物1aの面内において連続的に形成された空隙を含む構造を有していてもよい。
 樹脂組成物1aの0~10%のひずみにおける圧縮弾性率EC10%は、樹脂組成物1aが1.5以下の線形度を有する限り、特定の値に限定されない。その圧縮弾性率EC10%は、例えば、5~5000kPaである。この場合、例えば、樹脂組成物1aをセンシングに利用しやすい。樹脂組成物1aの圧縮弾性率EC10%は、樹脂組成物1aの10%のひずみにおける応力値σ10%を用いて、EC10%=σ10%/0.1の関係に基づいて決定される。
 圧縮弾性率EC10%は、10kPa以上であってもよく、20kPa以上であってもよく、30kPa以上であってもよく、50kPa以上であってもよい。圧縮弾性率EC10%は、例えば、4800kPa以下であってもよく、4600kPa以下であってもよく、4500kPaであってもよく、4000kPa以下であってもよい。
 図4に示す通り、樹脂組成物1aは、例えば、第一部位5aと、第二部位5bと、第三部位5cとを備えている。第一部位5aは、樹脂組成物1aの特定方向の特定の位置に配置された部位である。第二部位5bは、樹脂組成物1aの特定方向において第一部位5aから離れて配置された部位である。第三部位5cは、樹脂組成物1aの特定方向において第一部位5aと第二部位5bとの間に配置された部位である。第一部位5aにおける圧縮弾性率は、例えば、第二部位5bにおける圧縮弾性率と異なっている。例えば、第二部位5bにおける圧縮弾性率は、第一部位5aにおける圧縮弾性率より高い。第三部位5cにおける圧縮弾性率は、第一部位5aにおける圧縮弾性率と第二部位5bにおける圧縮弾性率との間の大きさを有する。例えば、第三部位5cにおける圧縮弾性率は、第一部位5aにおける圧縮弾性率より高く、かつ、第二部位5bにおける圧縮弾性率より低い。第一部位5a、第二部位5b、及び第三部位5cにおける圧縮弾性率は、例えば、各部位の空隙率に基づいて決定できる。例えば、樹脂組成物1aのX線CTスキャン画像に基づいて各部位の空隙率を決定できる。樹脂組成物1aをなす材料と同一種類の材料で形成され、異なる空隙率を有する複数の層状のサンプルを用いて圧縮弾性率を測定する。これにより、圧縮弾性率と空隙率とを対応づける検量線を作成する。樹脂組成物1aの各部位の圧縮弾性率は、例えば、この検量線に基づいて決定される。樹脂組成物1aの各部位の圧縮弾性率は、樹脂組成物1aから各部位を切り取って作製された試料の圧縮弾性率を測定することによって決定されてもよい。各部位の圧縮弾性率は、例えば、0~10%のひずみにおける圧縮弾性率EC10%である。
 第一部位5a、第二部位5b、及び第三部位5cのそれぞれは、例えば、層状の部位である。第一部位5aは、例えば、樹脂組成物1aの特定方向における第三部位5cの一方の端に接している。加えて、第二部位5aは、例えば、樹脂組成物1aの特定方向における第三部位5cの他方の端に接している。
 樹脂組成物1aは所定の導電率を有していてもよい。この場合、例えば、圧縮変形に伴う導電率の変化を用いて所定のセンシングがなされうる。樹脂組成物1aは、導電性材料を含有していてもよい。導電性材料は、金属材料であってもよいし、カーボン材料であってもよい。
 樹脂組成物1aにおける各部位の導電率の関係は、特定の態様に限定されない。第一部位5aにおける導電率は、例えば、第二部位5bにおける導電率と異なっている。例えば、第二部位5bにおける導電率は、第一部位5aにおける導電率より高い。第三部位5cにおける導電率は、第一部位5aにおける導電率と第二部位5bにおける導電率との間の大きさを有する。例えば、第三部位5cにおける導電率は、第一部位5aにおける導電率より高く、かつ、第二部位5bにおける導電率より低い。第一部位5a、第二部位5b、及び第三部位5cにおける導電率は、例えば、各部位の空隙率に基づいて決定できる。樹脂組成物1aをなす材料と同一種類の材料で形成され、異なる空隙率を有する複数の層状のサンプルを用いて導電率を測定する。これにより、導電率と空隙率とを対応づける検量線を作成する。樹脂組成物1aの各部位の導電率は、例えば、この検量線に基づいて決定される。樹脂組成物1aの各部位の導電率は、樹脂組成物1aから各部位を切り取って作製した試料の導電率を測定することによって決定されてもよい。各部位の導電率は、例えば、樹脂組成物1aの面内方向における導電率である。
 樹脂組成物1aは、所定の表面抵抗率を有していてもよい。樹脂組成物1aの表面抵抗率は、特定の値に限定されない。樹脂組成物1aは、例えば、1.0×100~1.0×106Ω/sq.の表面抵抗率を有する。
 樹脂組成物1aの表面抵抗率は、2.0×100Ω/sq.以上であってもよく、5.0×100Ω/sq.以上であってもよく、1.0×101Ω/sq.以上であってもよく、2.0×101Ω/sq.以上であってもよい。樹脂組成物1aの表面抵抗率は、8.0×105Ω/sq.以下であってもよく、6.0×105Ω/sq.以下であってもよく、5.0×105Ω/sq.以下であってもよく、4.0×105Ω/sq.以下であってもよい。樹脂組成物1aの表面抵抗率は、8.0×104Ω/sq.以下であってもよく、6.0×104Ω/sq.以下であってもよく、5.0×104Ω/sq.以下であってもよく、4.0×104Ω/sq.以下であってもよい。
 樹脂組成物1aにおける各部位の表面抵抗率の関係は、特定の態様に限定されない。第一部位5aにおける表面抵抗率は、例えば、第二部位5bにおける表面抵抗率と異なっている。例えば、第二部位5bにおける表面抵抗率は、第一部位5aにおける表面抵抗率より低い。第三部位5cにおける表面抵抗率は、第一部位5aにおける表面抵抗率と第二部位5bにおける表面抵抗率との間の大きさを有する。例えば、第三部位5cにおける圧縮弾性率は、第一部位5aにおける表面抵抗率より低く、かつ、第二部位5bにおける表面抵抗率より高い。樹脂組成物1aの各部位の表面抵抗率は、樹脂組成物1aから各部位を切り取って作製した試料の表面抵抗率を測定することによって決定されうる。
 樹脂組成物1aにおける各部位は、例えば、多孔質構造を有する。この場合、樹脂組成物1aにおける各部位の空孔の孔径の関係は、特定の態様に限定されない。第一部位5aにおける空孔の孔径の平均値は、例えば、第二部位5bにおける空孔の孔径の平均値と異なっている。例えば、第二部位5bにおける空孔の孔径の平均値は、第一部位5aにおける空孔の孔径の平均値より小さい。第三部位5cにおける空孔の孔径の平均値は、第一部位5aにおける空孔の孔径の平均値と第二部位5bにおける空孔の孔径の平均値との間の大きさを有する。例えば、第三部位5cにおける空孔の孔径の平均値は、第一部位5aにおける空孔の孔径の平均値より小さく、かつ、第二部位5bにおける空孔の孔径の平均値より大きい。例えば、樹脂組成物1aのX線CTスキャン画像に基づいて各部位の空隙率を決定できる。樹脂組成物1aは、例えば、その特定方向において一方の主面から他方の主面に向かって連続的に形成された多孔質構造を有する。
 樹脂組成物1aが1.5以下の線形度を有する限り、樹脂組成物1aに含まれる樹脂は、特定の樹脂に限定されない。樹脂組成物1aに含まれる樹脂は、熱硬化性樹脂であってもよいし、熱硬化性エラストマーであってもよいし、熱可塑性樹脂であってもよいし、熱可塑性エラストマーであってもよい。樹脂組成物1aは、熱可塑性樹脂と熱可塑性エラストマーとの混合物を含んでいてもよい。熱可塑性樹脂は、例えば、ポリオレフィン系樹脂組成物の発泡成形体である。ポリオレフィン系樹脂組成物を構成するポリオレフィン系樹脂の例は、ポリエチレン系樹脂及びポリプロピレン系樹脂である。ポリプロピレン系樹脂の例は、ポリプロピレン及び50質量%以上のプロピレンを含有するプロピレン‐α‐オレフィン共重合体である。これらは単独で用いられてもよく、2種類以上のポリプロピレン系樹脂が併用されてもよい。プロピレン‐α‐オレフィン共重合体を構成するα‐オレフィンの例は、エチレン、1‐ブテン、1‐ペンテン、4‐メチル‐1‐ペンテン、1‐ヘキセン、1‐ヘプテン、及び1‐オクテンである。ポリプロピレン系樹脂は、重合触媒として四価の遷移金属を含むメタロセン化合物を用いて得られたポリプロピレン系樹脂を含有していてもよい。本明細書において、「重合触媒として四価の遷移金属を含むメタロセン化合物を用いて得られたポリプロピレン系樹脂」を「メタロセン重合ポリプロピレン系樹脂」と称する場合がある。メタロセン重合ポリプロピレン系樹脂としては、公知のものを使用できる。熱硬化性樹脂及び熱硬化性エラストマーの例は、熱硬化性ポリウレタン、シリコンエラストマー、及びエポキシ樹脂である。熱可塑性樹脂は、例えば、ポリプロピレン等のポリオレフィンである。熱可塑性エラストマーは、例えば、熱可塑性ポリアミドエラストマー、熱可塑性ポリエステルエラストマー、熱可塑ポリウレタンエラストマー、熱可塑性ポリオレフィンエラストマー、EPDM等の共重合体単体であってもよいし、混合物であってもよい。
 樹脂組成物1aにおいて硬化物をなす樹脂の膨潤度は、特定の値に限定されない。膨潤度は、30gの酢酸エチルに3gの樹脂を常温で1日間浸漬したときに、酢酸エチルに浸漬する前の樹脂の質量Maに対する、酢酸エチルに浸漬した後の膨潤した樹脂の質量Mbと酢酸エチルに浸漬する前の樹脂の質量Maとの差の比(Mb-Ma)/Maである。樹脂組成物1aは、例えば、60%~90%の膨潤度を有する樹脂を含む。このような構成によれば、例えば、熱硬化性樹脂の発泡によって樹脂組成物1aを製造するときに、熱硬化性樹脂において所望の状態で発泡が進みやすい。加えて、樹脂組成物1aに含まれる樹脂が所望の機械的特性を有しやすい。その結果、樹脂組成物1aを特定方向に圧縮したときに広範囲のひずみにおいて応力とひずみとの関係が高い線形性を有しやすい。本明細書において、常温は、日本産業規格JIS Z 8703に従い、20℃±15℃である。
 樹脂組成物1aに含まれる樹脂の膨潤度は、62%以上であってもよく、65%以上であってもよく、70%以上であってもよい。樹脂組成物1aに含まれる樹脂の膨潤度は、88%以下であってもよく、86%以下であってもよく、85%以下であってもよい。
 樹脂組成物1aが1.5以下の線形度を有する限り、樹脂組成物1aの製造方法は特定の方法に限定されない。樹脂組成物1aは、例えば、異なる粒子径の樹脂ビーズを用いた方法によって製造できる。樹脂ビーズは、例えば、発泡ポリスチレンビーズである。粒子径の昇順に樹脂ビーズを下方から上方に積層する。その後、樹脂ビーズ同士の間に熱硬化性樹脂を含む組成物を流し込む。次に、熱硬化性樹脂を硬化させて、硬化物を得る。次に、硬化物を所定の有機溶媒に浸漬させ、樹脂ビーズを除去する。このようにして、樹脂組成物1aを製造できる。
 樹脂組成物1aは、物理発泡剤、化学発泡剤、又は熱膨張カプセルを用いた方法によって製造されてもよい。例えば、熱硬化性樹脂と化学発泡剤との混合物を調製する。混合物をシート状に広げた状態で加熱して熱硬化性樹脂を硬化させ、硬化物を得る。次に、硬化物を所定の条件で加熱し、化学発泡剤による硬化物の発泡を促す。このようにして、樹脂組成物1aを製造できる。硬化物を作製した後、異なる発泡剤を含む又は発泡剤の配合量が異なる樹脂を積層して硬化物の積層体を作製し、積層体の硬化物を発泡させて樹脂組成物1aを製造してもよい。化学発泡剤の例は、分解温度が160℃から270℃程度の有機系発泡剤及び無機系発泡剤等の化学発泡剤である。有機系発泡剤の例は、(i)アゾジカルボンアミド、アゾジカルボン酸バリウム等のアゾジカルボン酸金属塩、及びアゾビスイソブチロニトリル等のアゾ化合物、(ii)N,N'-ジニトロソペンタメチレンテトラミン等のニトロソ化合物、(iii)ヒドラゾジカルボンアミド、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)、及びトルエンスルホニルヒドラジド等のヒドラジン誘導体、並びに(iv)トルエンスルホニルセミカルバジド等のセミカルバジド化合物である。無機系発泡剤の例は、炭酸アンモニウム、炭酸ナトリウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水素化ホウ素ナトリウム、及び無水クエン酸モノソーダ等である。発泡剤は、微細な気泡の形成、経済性、及び安全面の観点から、望ましくは、アゾ化合物又はニトロソ化合物である。発泡剤は、より望ましくは、アゾジカルボンアミド、アゾビスイソブチロニトリル、又はN,N'-ジニトロソペンタメチレンテトラミンである。発泡剤は、特に望ましくはアゾジカルボンアミドである。これらの発泡剤が単独で用いられてもよく、2種類以上の発泡剤が組み合わされて用いられてもよい。
 熱可塑性樹脂に含浸させる物理発泡剤は、所定の平均気泡径での気泡の形成の観点から、望ましくは高圧の不活性ガスである。不活性ガスは、熱可塑性樹脂に対して不活性であり、かつ、含浸可能である限り、特定のガスに限定されない。不活性ガスの例は、二酸化炭素、窒素ガス、及び空気である。これらのガスが混合されて用いられてもよい。これらのガスの中でも、二酸化炭素が望ましい。二酸化炭素は、発泡体の形成に用いられる樹脂への含浸量が多く、かつ、含浸速度が速いからである。また、不純物の少ないクリーンな樹脂発泡体を得る観点からも二酸化炭素が望ましい。樹脂に含浸させるときの不活性ガスは、望ましくは、超臨界状態又は亜臨界状態である。超臨界状態では、樹脂へのガスの溶解度が増大し、高濃度の混入が可能である。また、含浸後の急激な圧力降下時には、樹脂に高濃度でガスが存在するので、多くの気泡核が発生する。このため、その気泡核の成長により形成される気泡の密度が高くなるので、所定の気孔率に対して微細な気泡が形成されやすい。二酸化炭素の「超臨界状態」は、例えば、二酸化炭素の臨界圧力以上かつ二酸化炭素の臨界温度以上の状態である。二酸化炭素を超臨界状態にするために、望ましくは、温度が40~50℃に調整され、かつ、圧力が7.38~30MPaに調整される。より望ましくは、圧力は8~20MPaに調整される。二酸化炭素の「亜臨界状態」は、例えば、二酸化炭素の臨界圧力7.38MPa以上あり、かつ、二酸化炭素の臨界温度31.1℃未満である液体状態である。二酸化炭素の「亜臨界状態」は、圧力が二酸化炭素の臨界圧力未満であり、かつ、温度が臨界温度以上である液体状態であってもよい。二酸化炭素の「亜臨界状態」は、二酸化炭素の臨界点未満の圧力及び温度ではあるものの、臨界点に近い温度及び圧力の状態であってもよい。具体的には、二酸化炭素の「亜臨界状態」は、20℃~31℃の温度及び5MPa以上の圧力の状態でありうる。
 樹脂組成物1aは、導電性フィラーを含んでいてもよい。導電性フィラーの形状は、特定の形状に限定されず、例えば、球状、フレーク状、樹枝状、又は繊維状でありうる。導電性フィラーの例は、金属フィラー、金属で被覆された樹脂フィラー、カーボンナノチューブ、黒鉛、及びカーボンブラックである。黒鉛の形状の例は、例えば、鱗状、針状、繊維状、球状、フレーク状、凝集塊状、及び多孔質状である。金属フィラーの例は、銅粉、銀粉、ニッケル粉、銀コート銅粉、金コート銅粉、銀コートニッケル粉、及び金コートニッケル粉である。これら金属粉は、電解法、アトマイズ法、又は還元法等によって作製できる。金属フィラーは、望ましくは、銀粉、銀コート銅粉、又は銅粉である。導電性フィラーがカーボン材料である場合、導電性フィラーは、望ましくは2種類以上のカーボン材料を含む。樹脂組成物1aは、望ましくは、樹脂組成物1aの導電性を高める観点から有利なカーボン材料を導電性フィラーとして含んでいる。そのカーボン材料は、望ましくはカーボンナノチューブである。カーボンナノチューブは、特定のカーボンナノチューブに限定されない。カーボンナノチューブの例は、シングルウォールカーボンナノチューブ、ダブルウォールカーボンナノチューブ、及びマルチウォールカーボンナノチューブである。カーボンナノチューブの繊維長及び繊維径は特定の値に限定されない。カーボンナノチューブの繊維長は、例えば100nm以上100μm以下である。カーボンナノチューブの繊維長が100μm以下であることは、樹脂成分への分散性及び樹脂成形物の柔軟性の観点から有利である。加えて、カーボンナノチューブの繊維長が100nm以上であることは、導電性の確保の観点から有利である。カーボンナノチューブの繊維長は、望ましくは1μm以上10μm以下である。カーボンナノチューブの繊維径は、例えば1nm以上1μm以下である。繊維径が1nm以上であることにより、導電性が確保されやすい。カーボンナノチューブの繊維径は、望ましくは1nm以上200nm以下である。
 樹脂組成物1aの固形分における導電性フィラーの含有量は特定の値に限定されない。その含有量は、例えば、0.1質量%以上である。この場合、樹脂組成物1aが所望の導電性を有しやすい。その含有量は、望ましくは1質量%以上である。樹脂組成物1aの固形分における導電性フィラーの含有量は、例えば、95質量%以下である。この場合、樹脂組成物1aが所望の柔軟性を有しやすい。その含有量は、望ましくは90質量%以下であり、より望ましくは85質量%以下であり、さらに望ましくは75質量%以下である。
 樹脂組成物1aは、3Dプリンティングによって製造されてもよい。
 例えば、樹脂組成物1aを備えた圧力検知用部材を提供できる。この場合、圧力検知用部材を用いて圧力をセンシングできる。加えて、この圧力検知用部材を備えた入力インターフェースを提供することもできる。この場合、操作者の動作に伴って圧力検知用部材に加わる圧力が変化すると、入力インターフェースを介して所定の入力がなされる。
 樹脂組成物1aは、様々な観点から、変更可能である。樹脂組成物1aは、例えば、図5に示す樹脂組成物1b及び図6に示す樹脂組成物1cのように変更されてもよい。樹脂組成物1b及び樹脂組成物1cは、特に説明する部分を除き樹脂組成物1aと同様に構成されている。樹脂組成物1aの構成要素と同一又は対応する樹脂組成物1b及び樹脂組成物1cの構成要素には、同一の符号を付し詳細な説明を省略する。樹脂組成物1aに関する説明は、技術的に矛盾しない限り樹脂組成物1b及び樹脂組成物1cにもあてはまる。
 図5に示す通り、樹脂組成物1bは、例えば、空孔の孔径の平均値が異なる複数の樹脂材の積層体として構成されている。樹脂組成物1bは、圧縮弾性率が異なる複数の樹脂材の積層体として構成されていてもよいし、空隙率が異なる複数の樹脂材の積層体として構成されていてもよい。樹脂組成物1bにおいて、例えば、3種類のシート状の樹脂材が積層されている。樹脂組成物1bにおいて、樹脂材同士の間には、例えば、接合層6が配置されている。接合層6は、基材を有する粘着テープによって構成されていてもよいし、基材を有しない粘着材によって構成されていてもよい。粘着材は導電性を有していてもよい。接合層6は、粘着材以外の接着材によって構成されていてもよい。樹脂組成物1bにおいて、第一部位5a、第二部位5b、及び第三部位5cは、それぞれ、別の樹脂材によって形成されている。
 樹脂組成物1bに含まれる各樹脂材は、例えば、樹脂ビーズを用いた方法によって製造できる。所定の容器において所定の粒子径を有する樹脂ビーズを層状に充填し、樹脂ビーズ同士の間に熱硬化性樹脂を含む組成物を流し込む。次に、熱硬化性樹脂を硬化させて、硬化物を得る。次に、硬化物を所定の有機溶媒に浸漬させ、樹脂ビーズを除去する。このようにして、樹脂組成物1bに含まれる各樹脂材を作製できる。各樹脂材の間に接合層6を配置しつつ複数の樹脂材を積層することによって樹脂組成物1bを製造できる。例えば、樹脂組成物1bにおいて第一部位5aをなす樹脂材は、大きな粒子径を有する樹脂ビーズを用いて作製される。樹脂組成物1bにおいて第二部位5cをなす樹脂材は、小さな粒子径を有する樹脂ビーズを用いて作製される。樹脂組成物1bにおいて第三部位5cをなす樹脂材は、第一部位5aをなす樹脂材の作製に用いられる樹脂ビーズの粒子径より小さく、かつ、第二部位5bをなす樹脂材の作製に用いられる樹脂ビーズの粒子径より大きい粒子径を有する樹脂ビーズを用いて作製される。
 樹脂組成物1bにおいて積層される樹脂材の数は、樹脂組成物1aが1.5以下の線形度を有する限り、特定の値に限定されない。樹脂組成物1bにおいて積層される樹脂材の数は、2であってもよいし、4以上であってもよい。
 図6に示す通り、樹脂組成物1cは、互いに隣り合って配置された多孔質な複数のコア7cと、シェル7sとを備えている。シェル7sは、コア7cの周囲に形成されている。シェル7sの少なくとも一部は、隣り合うコア7c同士の間に配置されている。コア7cにおける気泡壁の平均厚みは、例えば、隣り合うコア7c同士の間においてシェル7sによって形成された気泡壁の平均厚みよりも小さい。このような構成によれば、樹脂組成物1cを特定方向に圧縮変形させたときに、0~50%という広範囲のひずみにおいて応力とひずみとの関係の線形性が高くなりやすい。コア7cにおける気泡壁の平均厚みは、例えば、コア7cにおいて無作為に選んだ10箇所以上の気泡壁の厚みの算術平均である。隣り合うコア7c同士の間においてシェル7sによって形成された気泡壁の平均厚みは、例えば、隣り合うコア7c同士の間において無作為に選んだ10箇所以上の気泡壁の厚みの算術平均である。
 樹脂組成物1cが1.5以下の線形度を有する限り、コア7cにおける気泡壁の平均厚みと、隣り合うコア7c同士の間においてシェル7sによって形成された気泡壁の平均厚みとの関係は、特定の関係に限定されない。コア7cにおける気泡壁の平均厚みは、例えば、隣り合うコア7c同士の間においてシェル7sによって形成された気泡壁の平均厚みの半分以下である。このような構成によれば、樹脂組成物1cを特定方向に圧縮変形させたときに、0~50%という広範囲のひずみにおいて応力とひずみとの関係の線形性がより高くなりやすい。
 コア7cにおいて隣り合う空孔同士の距離は、例えば、シェル7sにおいて隣り合う空孔同士の距離の3分の1以下であってもよいし、4分の1以下であってもよい。シェル7sには、空孔が存在していなくてもよい。この場合、空孔間の距離は無限大と解釈される。
 樹脂組成物1cの製造方法は、特定の方法に限定されない。樹脂組成物1cは、例えば、物理発泡射出成形等の発泡射出成形によって製造できる。例えば、所定の樹脂ペレットを押出成形機に投入して溶融させ、押出成形機に二酸化炭素ガス等のガスを所定の圧力で注入し、押出成形機の内部でガスを十分に飽和させる。その後、押出成形機の内部の温度を発泡に適した温度に調節して、開口部の直径が異なる多ホールダイから押し出す。このようにして樹脂組成物1cを製造できる。例えば、異なる直径及び長さを有する複数のダイの内部を通過させることによって発泡状態が異なる複数の発泡体が作製される。その後、それらの発泡体が多ホールダイを通過して結合され、シート状に成形される。
 以下、実施例により本発明をより詳細に説明する。ただし、本発明は、以下の実施例に限定されない。まず、実施例の評価方法について説明する。
 <線形度>
 各実施例及び各比較例に係る樹脂組成物から圧縮試験用の試験片を作製した。平面視において各試験片は1辺の長さが50mmの正方形状であった。2枚の加圧板を準備した。加圧板は、200mmの直径を有する円板であった。島津製作所社製の試験機オートグラフAG5000Eを用いて2枚の加圧板の間に試験片を置き、10mm/秒の速度で50%ひずみまで試験片を予備加圧した。その後、加圧板の位置を戻してひずみを解消させた。3分間経過後に10mm/秒の速度で2枚の加圧板を近づけ、試験片に50%のひずみを生じさせた。このときの応力とひずみの測定結果に基づき上記の式(1)に従って、各樹脂組成物の線形度を算出した。結果を表1及び表2に示す。この試験におけるサンプリング時間は1ミリ秒であり、回帰直線の決定のために使用されたデータの個数は10個以上であった。この試験は23℃の条件で行った。
 <圧縮弾性率>
 線形度を算出するための上記の試験において、0~10%ひずみにおける応力及びひずみの測定結果に基づき、各樹脂組成物の0~10%のひずみにおける圧縮弾性率EC10%を算出した。結果を表1及び表2に示す。
 <ヒステリシスロス>
 線形度を算出するための上記の試験において、50%ひずみを試験片に生じさせた後、50%ひずみが試験片に生じた状態を2分間維持した。その後、10mm/秒の速度で加圧板の位置を戻し、各試験片について図3に示すような荷重-ひずみ曲線を得た。この荷重-ひずみ曲線に基づいて、各樹脂組成物のヒステリシスロスを算出した。結果を表1及び表2に示す。
 <空孔の観察>
 Bruker社製のX線CTスキャン装置SKYSCAN 1272を用いて、各実施例及び各比較例に係る樹脂組成物の断面をX線CTスキャン測定し、アメリカ国立衛生研究所が提供している画像解析ソフトImage Jを用いて、各樹脂組成物の断面画像を再構成して空孔の孔径を確認した。断面画像における空孔に接する内接円の直径を各空孔の孔径と決定した。樹脂シートの一方の主面から樹脂シートの他方の主面に向かって樹脂シートの厚み方向に200μm離れた位置との間の断面画像における空孔に接する内接円の直径の平均値を最小孔径と決定した。一方、樹脂シートの他方の主面から一方の主面に向かって樹脂シートの厚み方向に500μm離れた位置との間の断面画像における空孔に接する内接円の直径の平均値を最大孔径と決定した。結果を表1及び2に示す。
 <気泡壁>
 Hitachi社製のFE-SEM装置SU8220用いて、加速電圧3kVの条件にて、実施例1、実施例2、及び比較例3に係る樹脂組成物の断面画像を得た。得られた断面画像において、測長機能を用いて、特定のコアにおける無作為に選択した10箇所の気泡壁の厚みを測定した。測定値の平均値を特定のコアにおける気泡壁の平均厚みと決定した。加えて、得られた断面画像において、測長機能を用いて、隣り合う特定対のコアの間において無作為に選んだ10箇所の気泡壁の厚みを測定した。測定値の平均値を特定対のコア同士の間においてシェルによって形成された気泡壁の平均厚みと決定した。結果を表1及び2に示す。
 実施例1に係る樹脂組成物の特定のコアにおける気泡壁の厚みの測定のために用いた断面画像の一部を、図7A、図7B、及び図7Cに示す。加えて、実施例1に係る樹脂組成物のシェルにおける気泡壁の厚みの測定のために用いた断面画像の一部を、図8A、図8B、及び図8Cに示す。
 <膨潤度>
 実施例3~8の樹脂組成物の作製に用いた熱硬化性ポリウレタン樹脂の混合物、比較例2に係る樹脂組成物の作製に用いた熱硬化性シリコーン、及び比較例4の樹脂組成物の作製に用いた熱硬化性ポリウレタン樹脂の混合物を準備した。酢酸エチル30gに3gの樹脂を常温で1日間浸漬した。酢酸エチルに浸漬する前の樹脂の質量Maに対する、酢酸エチルに浸漬した後の膨潤した樹脂の質量Mbと酢酸エチルに浸漬する前の樹脂の質量Maとの差の比(Mb-Ma)/Maとして、膨潤度を決定した。結果を表1及び表2に示す。
 <表面抵抗率>
 日東精工アナリテック社製の抵抗率計Loresta-GP MCP-T370を用いて、JIS K7194:1994に準拠した四探針法により、実施例7、実施例8、及び比較例5に係る樹脂組成物の表面抵抗率を測定した。樹脂組成物中央部の一方の主面及び他方の主面においてランダムに選択した5箇所について表面抵抗率を測定し、その算術平均値を各樹脂組成物の表面抵抗率と決定した。結果を表1及び表2に示す。実施例7及び8に係る樹脂組成物を厚み方向に3等分するように切削して得られた各シートについて同様に表面抵抗率を測定した。その結果、実施例7及び8に係る樹脂組成物において一方の主面をなすシートの表面抵抗率は、実施例7及び8に係る樹脂組成物において他方の主面をなすシートの表面抵抗率より低かった。また、実施例7及び8に係る樹脂組成物の厚み方向における中間のシートの表面抵抗率は、一方の主面をなすシートの表面抵抗率と他方の主面をなすシートの表面抵抗率との間の大きさを有していた。
 <実施例1>
 35質量部のポリプロピレン(PP)、60質量部の熱可塑性エラストマー組成物、5質量部の滑剤、5質量部の造核剤、及び2質量部のエルカ酸アミドを、二軸混練機を用いて200℃の温度で混練し、混練物をストランド状に押出し、混練物を水冷した後切断して樹脂ペレットを得た。ポリプロピレンのメルトフローレ一卜(MFR)は、0.35g/10分であった。熱可塑性エラストマー組成物は、エチレン、プロピレン、及び5‐エチリデン‐2‐ノルボルネン三元共重合体(EPDM)と、ポリプロピレンとのブレンドであり、架橋型オレフィン系熱可塑性樹脂エラストマー(TPV)である。熱可塑性エラストマー組成物におけるポリプロピレンに対するEPDMの質量比は、75/25である。熱可塑性エラストマー組成物は、15質量%のカーボンブラックを含有していた。滑剤は、1質量部のステアリン酸モノグリセリドに10質量部のポリエチレンを配合したマスタ一バッチであった。造核剤は、0.8μmの平均粒子径を有する水酸化マグネシウムであった。エルカ酸アミドの融点は、80~85℃であった。
 上記の樹脂ペレットを単軸押出機に投入し、200℃の雰囲気中で樹脂ペレットを溶融させた状態で16MPaの圧力で二酸化炭素ガスを注入した。注入後の二酸化炭素ガスの圧力は13MPaであった。単軸押出機において二酸化炭素ガスを十分に飽和させた後、樹脂ペレットの溶融物の発泡に適した温度まで、溶融物を冷却した。その後、異なる直径の開口部を有する多ホールダイから溶融物を押出して、シート状の実施例1に係る樹脂組成物を作製した。実施例1に係る樹脂組成物の厚みは8.0mmであった。実施例1に係る樹脂組成物は、多孔質なコアと、そのコアの周囲に形成されたシェルとを備えていた。コア及びシェルにおいて隣り合う空孔間の距離を求めた。結果を表1に示す。
 <実施例2>
 空孔の孔径が表1に示す値になるように発泡条件を調整した以外は、実施例1と同様にして実施例2に係る樹脂組成物を作製した。実施例2に係る樹脂組成物の厚みは8.0mmであった。実施例2に係る樹脂組成物は、多孔質なコアと、そのコアの周囲に形成されたシェルとを備えていた。コア及びシェルにおいて隣り合う空孔間の距離を求めた。結果を表1に示す。
 <実施例3>
 樹脂製ケースの内部に0.5mmの粒子径を有する発泡ポリスチレンビーズを2mmの厚みになるまで敷き詰めた。樹脂製ケースの内部空間は、70mm、50mm、及び80mmの寸法を有する直方体状であった。次に、0.5mmの粒子径を有する発泡ポリスチレンビーズの層の上に、1.0mmの粒子径を有する発泡ポリスチレンビーズを2mmの厚みで敷き詰めた。次に、1.0mmの粒子径を有する発泡ポリスチレンビーズの層の上に、1.5mmの粒子径を有する発泡ポリスチレンビーズを2mmの厚みで敷き詰めた。その後、樹脂ケースの上部に金属メッシュを配置し、樹脂製ケースの内部において発泡ポリスチレンビーズを固定した。
 DIC社製の熱硬化性ポリウレタン樹脂成分 パンデックスGCB‐41及びパンデックスGCA‐11をそれぞれ100質量部及び17質量部の分量で混合し、遊星ミキサーにてこの混合物を5分間撹拌した。その後この混合物に対して、10分間の真空脱泡処理を行い、樹脂中間組成物を調製した。発泡ポリスチレンビーズが敷き詰められた上記の樹脂ケースの内部に樹脂中間組成物を流し込み、80℃に調整されたオーブンで2時間かけて樹脂中間組成物を硬化させ、硬化物を得た。その後、酢酸エチルにこの硬化物を3分間浸漬し、硬化物の内部の発泡ポリスチレンビーズを除去した。このようにしてシート状の実施例3に係る樹脂組成物を作製した。実施例3に係る樹脂組成物の厚みは9.0mmであった。実施例3に係る樹脂組成物は、発泡ポリスチレンビーズに起因して多孔質構造を有していた。実施例3に係る樹脂組成物において、その多孔質構造から、空隙率及び0~10%ひずみにおける圧縮弾性率が上面から下面にかけて段階的に変化することが示唆された。
 <実施例4>
 DIC社製の熱硬化性ポリウレタン樹脂成分 パンデックスGCB‐41及びパンデックスGCA‐11をそれぞれ100質量部及び17質量部の分量で混合した。この混合物100質量部に対して0.4mmの粒子径を有する発泡スチレンビーズを1質量部の分量で添加して、ビーズ含有混合物を得た。遊星ミキサーにてこのビーズ含有混合物を5分間撹拌した。その後このビーズ含有混合物に対して、10分間の真空脱泡処理を行い、樹脂中間組成物を調製した。その後、平面視において1辺の長さが50mmである正方形状のシリコン製の2枚の基板の間に樹脂中間組成物を流し込み、80℃に調整されたオーブンで樹脂中間組成物を2時間かけて硬化させ、硬化物を得た。2枚の基板の間の距離は3mmであった。この硬化物を2mmの厚みに切削してシートを得た。このシートを酢酸エチルに3分間浸漬し、硬化物の内部の発泡ポリスチレンビーズを除去した。このようにして、多孔シートAを得た。0.4mmの粒子径の代わりに、0.6mmの粒子径を有する発泡スチレンビーズを用いた以外は、多孔シートAと同様にして、多孔シートBを得た。0.4mmの粒子径の代わりに、0.8mmの粒子径を有する発泡スチレンビーズを用いた以外は、多孔シートAと同様にして、多孔シートCを得た。多孔シートA、多孔シートB、及び多孔シートCをこの順番で積層し、多孔シートAと多孔シートBとの間及び多孔シートBと多孔シートCとの間に0.150mmの厚みのアクリル系粘着剤を配置し、これらの多孔シートを接合した。このようにして、シート状の実施例4に係る樹脂組成物を作製した。実施例4に係る樹脂組成物の厚みは6.3mmであった。実施例4に係る樹脂組成物において、その多孔質構造から、空隙率及び0~10%ひずみにおける圧縮弾性率が上面から下面にかけて段階的に変化することが示唆された。
 <実施例5>
 DIC社製の熱硬化性ポリウレタン樹脂成分 パンデックスGCB‐41及びパンデックスGCA‐11をそれぞれ100質量部及び16質量部の分量で混合した。この混合物100質量部に対して、永和化成社製の発泡剤ビニホールAC#3を3質量部の分量で添加し、発泡剤含有混合物を得た。遊星ミキサーにてこの発泡剤含有混合物を5分間撹拌した。その後この発泡剤含有混合物に対して、10分間の真空脱泡処理を行い、樹脂中間組成物を調製した。平面視において1辺の長さが50mmである正方形状のシリコン製の2枚の基板の間に樹脂中間組成物を流し込み、80℃に調整されたオーブンで2時間かけて樹脂中間組成物を硬化させ、硬化物を得た。2枚の基板の間の距離は3mmであった。その後、210℃に調整されたオーブンで15分間かけて硬化物を膨張させた。このようにして、シート状の実施例5に係る樹脂組成物を得た。実施例5に係る樹脂組成物の厚みは6.0mmであった。実施例5に係る樹脂組成物において、その多孔質構造から、空隙率及び0~10%ひずみにおける圧縮弾性率が上面から下面にかけて段階的に変化することが示唆された。
 <実施例6>
 210℃に調整されたオーブンで硬化物を膨張させる時間を10分間に変更した以外は、実施例5と同様にして、シート状の実施例6に係る樹脂組成物を得た。実施例6に係る樹脂組成物の厚みは4.0mmであった。実施例6に係る樹脂組成物において、その多孔質構造から、空隙率及び0~10%ひずみにおける圧縮弾性率が上面から下面にかけて段階的に変化することが示唆された。
 <実施例7>
 DIC社製の熱硬化性ポリウレタン樹脂成分 パンデックスGCB‐41及びパンデックスGCA‐11をそれぞれ100質量部及び15.5質量部の分量で混合した。この混合物100質量部に対して、永和化成社製の発泡剤ビニホールAC#3を3質量部の分量で添加し、かつ、日本ゼオン社製のカーボンナノチューブSG-CNT HTを1質量部の分量で添加し、CNT含有混合物を得た。遊星ミキサーにてこのCNT含有混合物を5分間撹拌した。その後このCNT含有混合物に対して、10分間の真空脱泡処理を行い、樹脂中間組成物を調製した。平面視において1辺の長さが50mmである正方形状のシリコン製の2枚の基板の間に樹脂中間組成物を流し込み、80℃に調整されたオーブンで2時間かけて樹脂中間組成物を硬化させ、硬化物を得た。2枚の基板の間の距離は3mmであった。その後、210℃に調整されたオーブンで10分間かけて硬化物を膨張させた。このようにして、シート状の実施例7に係る樹脂組成物を得た。実施例7に係る樹脂組成物の厚みは3.8mmであった。実施例7に係る樹脂組成物において、その多孔質構造から、空隙率、0~10%ひずみにおける圧縮弾性率、及び導電率が上面から下面にかけて段階的に変化することが示唆された。
 <実施例8>
 210℃に調整されたオーブンで硬化物を膨張させる時間を20分間に変更した以外は、実施例7と同様にして、シート状の実施例8に係る樹脂組成物を得た。実施例8に係る樹脂組成物の厚みは5.2mmであった。実施例8に係る樹脂組成物において、その多孔質構造から、空隙率、0~10%ひずみにおける圧縮弾性率、及び導電率が上面から下面にかけて段階的に変化することが示唆された。
 <実施例9>
 柴田工業社製の導電シリコーンスポンジシートSi‐500から5mmの厚みを有する多孔シートDを作製した。Si‐500は、シリコンゴムを主成分とした発泡体であり、多孔シートDの表面抵抗率は、4.2×102Ω/sq.であった。多孔シートDは、平面視で1辺が50mmの長さを有する正方形状であった。イノアック社製の導電性ゴムスポンジC‐4255から5mmの厚みを有する多孔シートEを作製した。C‐4255は、クロロプレンゴムを主成分とした発泡体である。多孔シートEは、平面視で1辺が50mmの長さを有する正方形状であった。多孔シートEの表面抵抗率は、8.8×102Ω/sq.であった。サンワサプライ社製の導電性ポリウレタンスポンジTK‐2から5mmの厚みを有する多孔シートFを作製した。多孔シートFの表面抵抗率は、1.2×105Ω/sq.であった。多孔シートFは、平面視で1辺が50mmの長さを有する正方形状であった。
 多孔シートD、多孔シートE、及び多孔シートFをこの順番で積層し、多孔シートDと多孔シートEとの間及び多孔シートEと多孔シートFとの間に化研テック社製の導電性粘着接着剤CN7120を用いて2mmの直径の真円からなるドット状パータンを5×5の等間隔で配列させて接合部を形成し、これらの多孔シートを接合した。このようにして、シート状の実施例9に係る樹脂組成物を作製した。実施例9に係る樹脂組成物の厚みは15.3mmであった。実施例9に係る樹脂組成物において、その多孔質構造から、空隙率及び0~10%ひずみにおける圧縮弾性率が上面から下面にかけて段階的に変化することが示唆された。
 <実施例10>
 イノアック社製の導電性ゴムスポンジE‐4385から5mmの厚みを有する多孔シートGを作製した。E‐4385は、エチレンプロピレンゴムを主成分とした発泡体であり、多孔シートGの表面抵抗率は、3.8×102Ω/sq.であった。サンワサプライ社製の導電性ポリウレタンスポンジTK‐2から5mmの厚みを有する多孔シートHを作製した。多孔シートHの表面抵抗率は、1.2×105Ω/sq.であった。多孔シートHは、平面視で1辺が50mmの長さを有する正方形状であった。多孔シートG及び多孔シートHを、この順番で積層し、多孔シートGと多孔シートHとの間に化研テック社製の導電性粘着接着剤CN7120を用いて2mmの直径の真円からなるドット状パータンを5×5の等間隔で配列させて接合部を形成し、これらの多孔シートを接合した。このようにして、シート状の実施例10に係る樹脂組成物を作製した。実施例10に係る樹脂組成物の厚みは10.3mmであった。実施例10に係る樹脂組成物において、その多孔質構造から、空隙率及び0~10%ひずみにおける圧縮弾性率が上面から下面にかけて段階的に変化することが示唆された。
 <比較例1>
 BASF社製の熱可塑性ポリウレタン樹脂Elastllanet1195A10及びポリスレンEB206をそれぞれ100質量部及び10質量部の分量でドライブレンドし、得られたブレンドを単軸押出機に投入した。単軸押出機の内部の温度を200℃に設定し、2mmのダイリップのTダイからシートを引き取りながら、下面を20℃設定した冷却ロールで巻き取り、発泡熱可塑性ポリウレタン樹脂を得た。このようにして、シート状の比較例1に係る樹脂組成物を得た。比較例1に係る樹脂組成物の厚みは2.2mmであった。
 <比較例2>
 Dow社製の熱硬化性シリコン樹脂Sylgard184 100質量部に対して、6質量部の硬化剤を分量で混合し、100質量部の熱硬化性シリコン樹脂成分に対して、1.0mmの粒子径の塩化ナトリウムを10質量部の分量で添加し、塩化ナトリウム含有混合物を得た。遊星ミキサーにて塩化ナトリウム含有混合物を5分間撹拌した。その後、この塩化ナトリウム含有混合物に対して、10分間の真空脱泡処理を行い、樹脂中間組成物を調製した。平面視において1辺の長さが50mmである正方形状のシリコン製の2枚の基板の間に樹脂中間組成物を流し込み、80℃に調整されたオーブンで2時間かけて樹脂中間組成物を硬化させ、硬化物を得た。2枚の基板の間の距離は3mmであった。硬化物を2mmの厚みに切削して得られたシートをイオン交換水に1時間浸漬し、硬化物の内部の塩化ナトリウムを除去した。このようにして、2mmの厚みを有する多孔シートαを得た。1.0mmの粒子径の塩化ナトリウムの代わりに1.5mmの粒子径の塩化ナトリウムを用いた以外は、多孔シートαと同様にして多孔シートβを得た。多孔シートα及び多孔シートβを積層し、多孔シートαと多孔シートβとの間に0.150mmの厚みのアクリル系粘着剤を配置し、これらの多孔シートを接合した。このようにして、シート状の比較例2に係る樹脂組成物を作製した。比較例2に係る樹脂組成物の厚みは4mmであった。比較例2に係る樹脂組成物において、その多孔質構造から、空隙率及び0~10%ひずみにおける圧縮弾性率が上面から下面にかけて段階的に変化することが示唆された。
 <比較例3>
 2.1gの溶融張力を有するポリプロピレン樹脂を押出機に投入し、200℃の雰囲気中で13MPaの圧力で二酸化炭素ガスを押出機の内部に注入した。二酸化炭素ガスを十分に飽和させた後、発泡に適した温度まで樹脂の溶融物を冷却した後、0.5mmの単一孔の開口部を有するダイから樹脂の溶融物を押し出して、1.0mmの直径を有するストランド状の発泡体を得た。その後、ストランド状の発泡体を50mmの長さに切断し、5本のストランド状の発泡体を樹脂枠に詰め込み、170℃に設定した熱プレス機で1分間加熱し、シート状の比較例3に係る樹脂組成物を得た。樹脂枠の内部には、50mm、50mm、及び厚み0.9mmの寸法を有する直方体状の空間が形成されていた。比較例3に係る樹脂組成物は、多孔質なコアと、そのコアの周囲に形成されたシェルとを備えていた。コア及びシェルにおいて隣り合う空孔間の距離を求めた。結果を表2に示す。
 <比較例4>
 DIC社製の熱硬化性ポリウレタン樹脂成分 パンデックスGCB‐41及びパンデックスGCA‐11をそれぞれ100質量部及び30質量部の分量で混合した。遊星ミキサーにてこのC混合物を5分間撹拌した。その後この混合物に対して、10分間の真空脱泡処理を行い、樹脂中間組成物を調製した。平面視において1辺の長さが50mmである正方形状のシリコン製の2枚の基板の間に樹脂中間組成物を流し込み、80℃に調整されたオーブンで2時間かけて樹脂中間組成物を硬化させ、硬化物を得た。2枚の基板の間の距離は3mmであった。このようにして、シート状の比較例4に係る樹脂組成物を得た。比較例4に係る樹脂組成物の厚みは2.9mmであった。
 <比較例5>
 柴田工業社製の導電シリコーンスポンジSi‐500を比較例5に係る樹脂組成物として準備した。比較例5に係る樹脂組成物の厚みは5mmであった。
 表1に示す通り、各実施例に係る樹脂組成物は1.5以下の線形度を有していた。一方、表2に示す通り、各比較例に係る樹脂組成物は、1.5を超えていた。各実施例に係る樹脂組成物を厚み方向に圧縮変形させたときに、0~50%という広範囲のひずみにおいて応力とひずみとの関係の線形性が高くなることが確認された。各実施例に係る樹脂組成物において、ヒステリシスロスは60%以下であった。一方、比較例1、3、及び5に係る樹脂組成物において、ヒステリシスロスが60%を超えていた。
 各実施例に係る樹脂組成物における空孔の孔径は、20~2500μmの範囲であった。
 実施例1及び2に係る樹脂組成物において、コアにおいて隣り合う空孔間の距離に対する、シェルにおいて隣り合う空孔間の距離の比は、それぞれ、約1/4以下及び約1/3以下であった。
 実施例3~8の樹脂組成物の作製に用いた熱硬化性ポリウレタン樹脂の混合の膨潤度は、60%以上90%以下であった。一方、比較例2に係る樹脂組成物の作製に用いた熱硬化性シリコーン樹脂及び及び比較例4の樹脂組成物の作製に用いた熱硬化性ポリウレタン樹脂の混合物の膨潤度は、60%未満であった。
 本発明の第1側面は、
 樹脂組成物であって、
 1.5以下の線形度を有し、
 前記線形度は、前記樹脂組成物を特定方向に0~50%のひずみが生じるように圧縮したときに得られる応力とひずみとの関係に基づいて下記式(1)によって決定される、
 樹脂組成物を提供する。
 線形度=[{1/(n-2)}{Σ(yi-y′i2}]0.5   式(1)
 前記式(1)において、
 yiは、前記関係において、0~50%のひずみの範囲におけるi%のひずみに対応する無次元化応力であり、
 y′iは、前記関係から得られる回帰直線におけるi%のひずみに対応する無次元化応力の推定値であり、
 nは、前記回帰直線を得るためのデータの個数であり、3以上の整数である。
 本発明の第2側面は、
 前記樹脂組成物は、60%以下のヒステリシスロスを有し、
 前記ヒステリシスロスは、前記樹脂組成物を前記特定方向に0%ひずみから50%ひずみまで圧縮し、かつ、50%ひずみから0%ひずみまでひずみを解消させたときに得られる荷重とひずみとの関係に基づいて決定される、
 第1側面に係る樹脂組成物を提供する。
 本発明の第3側面は、
 前記樹脂組成物は、前記特定方向の特定の位置に配置された第一部位と、前記特定方向において前記第一部位から離れて配置された第二部位と、前記特定方向において前記第一部位と前記第二部位との間に配置された第三部位とを、備え、
 前記第一部位における圧縮弾性率は、前記第二部位における圧縮弾性率と異なっており、
 前記第三部位における圧縮弾性率は、前記第一部位における前記圧縮弾性率と前記第二部位における前記圧縮弾性率との間の大きさを有する、
 第1側面又は第2側面に係る樹脂組成物を提供する。
 本発明の第4側面は、
 前記樹脂組成物は、前記特定方向の特定の位置に配置された第一部位と、前記特定方向において前記第一部位から離れて配置された第二部位と、前記特定方向において前記第一部位と前記第二部位との間に配置された第三部位とを、備え、
 前記第一部位における導電率は、前記第二部位における導電率と異なっており、
 前記第三部位における導電率は、前記第一部位における前記導電率と前記第二部位における前記導電率との間の大きさを有する、
 第1側面から第3側面のいずれか1つに係る樹脂組成物を提供する。
 本発明の第5側面は、
 前記樹脂組成物は、0~10%ひずみにおいて、5~5000kPaの圧縮弾性率を有する、
 第1側面から第4側面のいずれか1つに係る樹脂組成物を提供する。
 本発明の第6側面は、
 前記樹脂組成物は、前記特定方向の特定の位置に配置された第一部位と、前記特定方向において前記第一部位から離れて配置された第二部位と、前記特定方向において前記第一部位と前記第二部位との間に配置された第三部位とを、備え、
 前記第一部位における表面抵抗率は、前記第二部位における表面抵抗率と異なっており、
 前記第三部位における表面抵抗率は、前記第一部位における前記表面抵抗率と前記第二部位における前記表面抵抗率との間の大きさを有する、
 第1側面から第5側面のいずれか1つに係る樹脂組成物を提供する。
 本発明の第7側面は、
 前記樹脂組成物は、1.0×100~1.0×106Ω/sq.の表面抵抗率を有する、
 第1側面から第6側面のいずれか1つに係る樹脂組成物を提供する。
 本発明の第8側面は、
 前記樹脂組成物は、前記樹脂組成物の内部の少なくとも一部に形成された空隙を有する、
 第1側面から第7側面のいずれか1つに係る樹脂組成物を提供する。
 本発明の第9側面は、
 前記空隙は、20~2500μmの孔径の空孔を含む、
 第8側面に係る樹脂組成物を提供する。
 本発明の第10側面は、
 互いに隣り合って配置された多孔質な複数のコアと、
 前記コアの周囲に形成されたシェルと、を備え、
 前記シェルの少なくとも一部は、隣り合う前記コア同士の間に配置されており、
 前記コアにおける気泡壁の平均厚みは、隣り合う前記コア同士の間において前記シェルによって形成された気泡壁の平均厚みよりも小さい、
 第1側面から第7側面のいずれか1つに係る樹脂組成物を提供する。
 本発明の第11側面は、
 前記コアにおける気泡壁の平均厚みは、隣り合う前記コア同士の間において前記シェルによって形成された気泡壁の平均厚みの半分以下である、
 第10側面に係る樹脂組成物を提供する。
 本発明の第12側面は、
 前記樹脂組成物は、60%~90%の膨潤度を有する樹脂の硬化物を含み、
 前記膨潤度は、30gの酢酸エチルに3gの前記樹脂を常温で1日間浸漬したときに、前記酢酸エチルに浸漬する前の前記樹脂の質量に対する、前記酢酸エチルに浸漬した後の膨潤した前記樹脂の質量と前記酢酸エチルに浸漬する前の前記樹脂の質量との差の比である、
 第1側面から第9側面のいずれか1つに係る樹脂組成物を提供する。
 本発明の第13側面は、
 第1側面から第12側面のいずれか1つに係る樹脂組成物を備えた、圧力検知用部材を提供する。
 本発明の第14側面は、
 第13側面に係る圧力検知用部材を備えた、入力インターフェースを提供する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 

Claims (14)

  1.  樹脂組成物であって、
     1.5以下の線形度を有し、
     前記線形度は、前記樹脂組成物を特定方向に0~50%のひずみが生じるように圧縮したときに得られる応力とひずみとの関係に基づいて下記式(1)によって決定される、
     樹脂組成物。
     線形度=[{1/(n-2)}{Σ(yi-y′i2}]0.5   式(1)
     前記式(1)において、
     yiは、前記関係において、0~50%のひずみの範囲におけるi%のひずみに対応する無次元化応力であり、
     y′iは、前記関係から得られる回帰直線におけるi%のひずみに対応する無次元化応力の推定値であり、
    nは、前記回帰直線を得るためのデータの個数であり、3以上の整数である。
  2.  前記樹脂組成物は、60%以下のヒステリシスロスを有し、
     前記ヒステリシスロスは、前記樹脂組成物を前記特定方向に0%ひずみから50%ひずみまで圧縮し、かつ、50%ひずみから0%ひずみまでひずみを解消させたときに得られる荷重とひずみとの関係に基づいて決定される、
     請求項1に記載の樹脂組成物。
  3.  前記樹脂組成物は、前記特定方向の特定の位置に配置された第一部位と、前記特定方向において前記第一部位から離れて配置された第二部位と、前記特定方向において前記第一部位と前記第二部位との間に配置された第三部位とを、備え、
     前記第一部位における圧縮弾性率は、前記第二部位における圧縮弾性率と異なっており、
     前記第三部位における圧縮弾性率は、前記第一部位における前記圧縮弾性率と前記第二部位における前記圧縮弾性率との間の大きさを有する、
     請求項1に記載の樹脂組成物。
  4.  前記樹脂組成物は、前記特定方向の特定の位置に配置された第一部位と、前記特定方向において前記第一部位から離れて配置された第二部位と、前記特定方向において前記第一部位と前記第二部位との間に配置された第三部位とを、備え、
     前記第一部位における導電率は、前記第二部位における導電率と異なっており、
     前記第三部位における導電率は、前記第一部位における前記導電率と前記第二部位における前記導電率との間の大きさを有する、
     請求項1に記載の樹脂組成物。
  5.  前記樹脂組成物は、0~10%ひずみにおいて、5~5000kPaの圧縮弾性率を有する、
     請求項1に記載の樹脂組成物。
  6.  前記樹脂組成物は、前記特定方向の特定の位置に配置された第一部位と、前記特定方向において前記第一部位から離れて配置された第二部位と、前記特定方向において前記第一部位と前記第二部位との間に配置された第三部位とを、備え、
     前記第一部位における表面抵抗率は、前記第二部位における表面抵抗率と異なっており、
     前記第三部位における表面抵抗率は、前記第一部位における前記表面抵抗率と前記第二部位における前記表面抵抗率との間の大きさを有する、
     請求項1に記載の樹脂組成物。
  7.  前記樹脂組成物は、1.0×100~1.0×106Ω/sq.の表面抵抗率を有する、
     請求項1に記載の樹脂組成物。
  8.  前記樹脂組成物は、前記樹脂組成物の内部の少なくとも一部に形成された空隙を有する、
     請求項1に記載の樹脂組成物。
  9.  前記空隙は、20~2500μmの孔径の空孔を含む、
     請求項8に記載の樹脂組成物。
  10.  互いに隣り合って配置された多孔質な複数のコアと、
     前記コアの周囲に形成されたシェルと、を備え、
     前記シェルの少なくとも一部は、隣り合う前記コア同士の間に配置されており、
     前記コアにおける気泡壁の平均厚みは、隣り合う前記コア同士の間において前記シェルによって形成された気泡壁の平均厚みよりも小さい、
     請求項1に記載の樹脂組成物。
  11.  前記コアにおける気泡壁の平均厚みは、隣り合う前記コア同士の間において前記シェルによって形成された気泡壁の平均厚みの半分以下である、
     請求項10に記載の樹脂組成物。
  12.  前記樹脂組成物は、60%~90%の膨潤度を有する樹脂の硬化物を含み、
     前記膨潤度は、30gの酢酸エチルに3gの前記樹脂を常温で1日間浸漬したときに、前記酢酸エチルに浸漬する前の前記樹脂の質量に対する、前記酢酸エチルに浸漬した後の膨潤した前記樹脂の質量と前記酢酸エチルに浸漬する前の前記樹脂の質量との差の比である、
     請求項1に記載の樹脂組成物。
  13.  請求項1~12のいずれか1項に記載の樹脂組成物を備えた、圧力検知用部材。
  14.  請求項13に記載の圧力検知用部材を備えた、入力インターフェース。
     
PCT/JP2022/034829 2021-09-24 2022-09-16 樹脂組成物、圧力検知用部材、及び入力インターフェース WO2023048099A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-156064 2021-09-24
JP2021156064 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023048099A1 true WO2023048099A1 (ja) 2023-03-30

Family

ID=85719458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034829 WO2023048099A1 (ja) 2021-09-24 2022-09-16 樹脂組成物、圧力検知用部材、及び入力インターフェース

Country Status (1)

Country Link
WO (1) WO2023048099A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325647A (ja) * 1991-03-29 1993-12-10 Siegel:Kk シリコーンゲル多孔質導電体並びにその製造方法
JP2000095048A (ja) * 1998-07-23 2000-04-04 Bridgestone Corp 衝撃吸収パッド
JP2018039862A (ja) * 2016-09-05 2018-03-15 名古屋市 傾斜多孔質樹脂成形体の製造方法、及びそれに用いる樹脂組成物
CN111138835A (zh) * 2020-01-07 2020-05-12 中南大学 多孔抗冲击tpu复合压力传感材料,制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325647A (ja) * 1991-03-29 1993-12-10 Siegel:Kk シリコーンゲル多孔質導電体並びにその製造方法
JP2000095048A (ja) * 1998-07-23 2000-04-04 Bridgestone Corp 衝撃吸収パッド
JP2018039862A (ja) * 2016-09-05 2018-03-15 名古屋市 傾斜多孔質樹脂成形体の製造方法、及びそれに用いる樹脂組成物
CN111138835A (zh) * 2020-01-07 2020-05-12 中南大学 多孔抗冲击tpu复合压力传感材料,制备方法及应用

Similar Documents

Publication Publication Date Title
Chen et al. 3D printed multifunctional, hyperelastic silicone rubber foam
Bandarian et al. Thermal, mechanical and acoustic damping properties of flexible open‐cell polyurethane/multi‐walled carbon nanotube foams: effect of surface functionality of nanotubes
US7651767B2 (en) Pitch-based carbon fiber, web and resin molded product containing them
JP6408763B2 (ja) 電磁波遮蔽材及び電磁波遮蔽用積層体
WO2017219844A1 (zh) 一种聚合物薄片、制造方法及应用
JPH1017838A (ja) 接着剤・フィラーのフィルム状複合材料及びその製造方法
JP2014062245A (ja) ポリオレフィン系樹脂薄層発泡シートおよびその製造方法、その用途
Li et al. Ultralow-threshold and efficient EMI shielding PMMA/MWCNTs composite foams with segregated conductive network and gradient cells
KR20220106752A (ko) 수지 발포체
Yousefi Kanani et al. Additively manufactured foamed polylactic acid for lightweight structures
Zhang et al. In situ 3D printing of poly-ether-ether-ketone/poly-ether-imide hierarchical cellular foams containing electromagnetic absorbent
WO2023048099A1 (ja) 樹脂組成物、圧力検知用部材、及び入力インターフェース
CN113677746A (zh) 树脂发泡体及发泡构件
Guo et al. Piezoresistivities of vapor‐grown carbon fiber/silicone foams for tactile sensor applications
CN102015855B (zh) 多孔片材及其制造方法以及隔热片
TW202200688A (zh) 複合材料
JP6791705B2 (ja) 樹脂発泡シート、樹脂発泡シートの製造方法、及び支持体付き樹脂発泡シート
TW202005790A (zh) 積層體
JP2008239765A (ja) 低熱伝導性耐熱性発泡体及びその製造方法
JP2024018684A (ja) 熱可塑性樹脂発泡粒子及び熱可塑性樹脂発泡粒子成形体
KR20190129886A (ko) 가교 수지 발포 시트, 그 제조 방법, 및 점착 테이프
JP7358883B2 (ja) 熱伝導シート
CN105339420B (zh) 阻燃性和导电性优异的导电性聚丙烯系树脂发泡粒子以及导电性聚丙烯系树脂模内发泡成型体
EP4317277A1 (en) Composite material and method for manufacturing composite material
EP4130120A1 (en) Composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22872853

Country of ref document: EP

Kind code of ref document: A1