WO2023048019A1 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2023048019A1
WO2023048019A1 PCT/JP2022/034221 JP2022034221W WO2023048019A1 WO 2023048019 A1 WO2023048019 A1 WO 2023048019A1 JP 2022034221 W JP2022034221 W JP 2022034221W WO 2023048019 A1 WO2023048019 A1 WO 2023048019A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas
atoms
gas containing
etching
Prior art date
Application number
PCT/JP2022/034221
Other languages
French (fr)
Japanese (ja)
Inventor
晃司 下村
敏夫 長谷川
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023048019A1 publication Critical patent/WO2023048019A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present disclosure relates to a method of manufacturing a semiconductor device.
  • Patent Document 1 describes forming an aluminum oxide film as an etching stop layer.
  • the present disclosure provides a semiconductor device manufacturing method that improves the shape accuracy of a concave shape formed by etching.
  • a step of forming an AlO film into which Si is introduced as an etching stop layer, and forming a layer to be etched (SiOC) on the etching stop layer dry etching the film to be etched; and wet etching the etching stop film.
  • FIG. 1 is an example of a cross-sectional view of a semiconductor device formed over a substrate;
  • FIG. 1 is an example of a cross-sectional view of a semiconductor device formed over a substrate;
  • FIG. 1 is an example of a cross-sectional view of a semiconductor device formed over a substrate;
  • FIG. 1 is an example of a cross-sectional view of a semiconductor device formed over a substrate;
  • FIG. 1 is an example of a cross-sectional view of a semiconductor device formed over a substrate;
  • FIG. 1 is an example of a cross-sectional view of a semiconductor device formed over a substrate;
  • FIG. 1 is an example of a cross-sectional view of a semiconductor device formed over a substrate;
  • FIG. 1 is an example of a cross-sectional view of a semiconductor device formed over a substrate;
  • FIG. 1 is an example of a cross-sectional view of a semiconductor device formed over a substrate;
  • FIG. 1 is an example of a cross-
  • FIG. 1 is an example of a cross-sectional view of a semiconductor device formed over a substrate;
  • FIG. It is a schematic sectional drawing which shows an example of a substrate processing apparatus.
  • 6 is an example of a flow chart for explaining a film formation method when forming an AlSiO film as an etching stop film.
  • 6 is an example of a flow chart for explaining a film formation method when forming an AlXSiO film as an etching stop film. It is an example of the graph explaining the order of gas supply in an ALD sequence, and the amount of Si in a film
  • FIG. 1 is an example of a flowchart for explaining the method of manufacturing a semiconductor device according to this embodiment.
  • 2A to 2G are examples of cross-sectional views of a semiconductor device formed on a substrate.
  • a substrate is prepared in step S101.
  • a base 100 is formed on the substrate.
  • the base 100 has, for example, an insulating layer 101 and a conductive layer 102 .
  • An etching stop film 110 is formed on the base 100 in step S102.
  • the etching stop film 110 is used as an etching stop film when etching the insulating film 120 by dry etching (see S109), which will be described later.
  • the etching stop film 110 according to this embodiment is an insulating film containing Si (for example, an AlSiO film obtained by introducing Si into an AlO film).
  • the etching stop film 110 may be an insulating film containing metal atoms X and Si forming a low dielectric constant oxide film (for example, an AlXSiO film in which metal atoms X and Si are introduced into an AlO film).
  • the metal atom X can be Mg, Mn, Zn, or the like, for example. The formation of the etching stop film 110 will be described later with reference to FIG. 4 and the like.
  • the insulating film 120 is formed on the etching stop film 110. As shown in FIG.
  • the insulating film 120 is used as a wet etching stop film when etching the etching stop film 130, which will be described later.
  • the insulating film 120 is, for example, an SiOC film.
  • an etching stop film 130 is formed on the insulating film 120.
  • the etching stop film 130 is used as an etching stop film when etching the low dielectric film 140 which will be described later.
  • the etching stop film 130 is an insulating film (for example, an AlO film).
  • the etching stop film 130 may be an insulating film (for example, an AlXO film) containing metal atoms X forming a low dielectric constant oxide film.
  • the etching stop film 130 may be an insulating film containing Si (for example, an AlSiO film), or an insulating film containing metal atoms X and Si (for example, an AlXSiO film), similar to the etching stop film 110 . may
  • step S105 a low dielectric film (Low-k film) 140 is formed on the etching stop film .
  • FIG. 2A shows an example of a cross-sectional view of the semiconductor device after the low dielectric film 140 is formed.
  • step S106 recesses 170 are formed in the low dielectric film 140 by a series of pattern formations such as formation of the hard mask 160 and etching.
  • FIG. 2B shows an example of a cross-sectional view of the semiconductor device after forming a series of patterns.
  • step S107 the low dielectric film 140 is etched by dry etching.
  • recesses 150 such as trenches and vias are formed in the low dielectric film 140 .
  • the recess 150 communicates with the etching stop film 130 .
  • FIG. 2C shows an example of a cross-sectional view of the semiconductor device after the dry etching shown in step S107.
  • the bottom surface of the recess 150 (the upper surface of the etching stop film 130 exposed in the recess 150) has a damaged portion 131 that is damaged by dry etching.
  • the part of the etching stop film 130 covered with the low dielectric film 140 (the part that becomes the side wall 132s of the etching stop film 130 (see FIG. 2D described later) after dry etching) 132 is not damaged by the dry etching. , or is less affected by damage than the upper surface of the etching stop film 130 .
  • step S108 the etching stop film 130 is etched by wet etching. Thereby, a recess 150 is formed over the low dielectric film 140 and the etching stop film 130 . Also, the recess 150 communicates with the insulating film 120 . In addition, side walls 132 s are formed in the etching stop film 130 by forming the recess 150 . Also, the hard mask 160 is removed by wet etching. Moreover, the bevel of the opening of the low dielectric film 140 is etched by wet etching.
  • FIG. 2D shows an example of a cross-sectional view of the semiconductor device after wet etching shown in step S108.
  • step S109 the insulating film 120 is etched by dry etching.
  • recesses 150 are formed over the low dielectric film 140 , the etching stop film 130 and the insulating film 120 .
  • the recess 150 communicates with the etching stop film 110 .
  • FIG. 2E shows an example of a cross-sectional view of the semiconductor device after the dry etching shown in step S109.
  • the bottom surface of the recess 150 (the upper surface of the etching stop film 110 exposed in the recess 150) has a damaged portion 111 that has been damaged by dry etching.
  • the side walls 132 s of the etching stop film 130 exposed in the recess 150 are not damaged by dry etching, or are less affected by the damage than the upper surface of the etching stop film 110 .
  • the portion of the etching stop film 110 covered with the insulating film 120 (the portion that becomes the side wall 112s of the etching stop film 110 (see FIG. 2F described later) after dry etching) 112 is not damaged by the dry etching, or , the influence of damage is less than the upper surface of the etching stop film 110 .
  • step S110 the etching stop film 110 is etched by wet etching. Thereby, a recess 150 is formed over the low dielectric film 140 , the etching stop film 130 , the insulating film 120 and the etching stop film 110 . Also, the recess 150 communicates with the conductive layer 102 . Further, by forming the concave portion 150, the sidewall 112s is formed in the etching stop film 110. As shown in FIG. Here, FIG. 2F shows an example of a cross-sectional view of the semiconductor device after wet etching shown in step S110. After that, the concave portion 150 is subjected to, for example, an embedding process of a metal film.
  • the etching stop film 130 is also etched in the sidewall direction and the etching stop film 110 in the sidewall direction. Therefore, as shown in FIG. 2G, the side walls of the etching stop film 130 and the side walls of the etching stop film 110 may be etched, and unevenness may be formed on the side walls of the recess 150 . Due to the irregularities formed on the side walls of the recess 150 , there is a risk that the metal film will not be preferably embedded in the recess 150 .
  • the ratio of the etching rate of the portion (portion 112, side wall 132s) not damaged by dry etching to the portion (damaged portion 111) damaged by dry etching is sufficiently small.
  • FIG. 3 is a schematic cross-sectional view showing an example of the substrate processing apparatus 1.
  • a substrate processing apparatus 1 is an apparatus for forming a film on a substrate W such as a wafer by the ALD method in a processing vessel 2 in a decompressed state.
  • the substrate processing apparatus 1 includes a substantially cylindrical airtight processing container 2 .
  • An exhaust chamber 21 is provided in the central portion of the bottom wall of the processing container 2 .
  • the exhaust chamber 21 has, for example, a substantially cylindrical shape protruding downward.
  • An exhaust passage 22 is connected to the exhaust chamber 21 , for example, on the side surface of the exhaust chamber 21 .
  • An exhaust section 24 is connected to the exhaust flow path 22 via a pressure adjustment section 23 .
  • the pressure adjustment unit 23 includes, for example, a pressure adjustment valve such as a butterfly valve.
  • the exhaust passage 22 is configured such that the inside of the processing chamber 2 can be decompressed by the exhaust section 24 .
  • a transfer port 25 is provided on the side surface of the processing container 2 .
  • the transfer port 25 is configured to be openable and closable by a gate valve 26 .
  • Substrates W are carried in and out between the processing container 2 and a transfer chamber (not shown) through a transfer port 25 .
  • a mounting table 3 for holding the substrate W substantially horizontally is provided in the processing container 2 .
  • the mounting table 3 has a substantially circular shape in plan view and is supported by a support member 31 .
  • the surface of the mounting table 3 is formed with a substantially circular concave portion 32 for mounting a substrate W having a diameter of 300 mm, for example.
  • the recess 32 has an inner diameter slightly larger than the diameter of the substrate W (for example, about 1 mm to 4 mm).
  • the depth of the concave portion 32 is substantially the same as the thickness of the substrate W, for example.
  • the mounting table 3 is made of a ceramic material such as aluminum nitride (AlN).
  • the mounting table 3 may be made of a metal material such as nickel (Ni).
  • a guide ring that guides the substrate W may be provided on the peripheral edge portion of the surface of the mounting table 3 instead of the concave portion 32 .
  • a lower electrode 33 is embedded in the mounting table 3 .
  • a temperature control mechanism 34 is embedded under the lower electrode 33 .
  • the temperature control mechanism 34 adjusts the substrate W mounted on the mounting table 3 to a set temperature based on the control signal from the controller 9 .
  • the entire mounting table 3 is made of metal, the entire mounting table 3 functions as a lower electrode, so the lower electrode 33 need not be embedded in the mounting table 3 .
  • An RF power supply 35 is connected to the lower electrode 33 via a matching device 351 .
  • the RF power supply 35 applies low frequency power (LF) having a frequency lower than that of the RF power supply 51 to be described later to the lower electrode 33 .
  • the high-frequency power generated by the RF power supply 35 is used as high-frequency power for bias for attracting ions to the substrate W.
  • FIG. The frequency of RF power supply 35 is, for example, 40.68 MHz.
  • the mounting table 3 is provided with a plurality of (for example, three) lifting pins 41 for holding and lifting the substrate W placed on the mounting table 3 .
  • the material of the lifting pins 41 may be, for example, ceramics such as alumina (Al2O3), quartz, or the like.
  • a lower end of the lifting pin 41 is attached to a support plate 42 .
  • the support plate 42 is connected to an elevating mechanism 44 provided outside the processing container 2 via an elevating shaft 43 .
  • the elevating mechanism 44 is installed, for example, in the lower part of the exhaust chamber 21.
  • the bellows 45 is provided between the lifting mechanism 44 and an opening 211 for the lifting shaft 43 formed on the lower surface of the exhaust chamber 21 .
  • the shape of the support plate 42 may be such that it can move up and down without interfering with the support member 31 of the mounting table 3 .
  • the elevating pin 41 is configured to be vertically movable between the upper side of the surface of the mounting table 3 and the lower side of the surface of the mounting table 3 by an elevating mechanism 44 . In other words, the lifting pins 41 are configured to protrude from the upper surface of the mounting table 3 .
  • the lower end of the support member 31 passes through the opening 212 of the exhaust chamber 21 and is supported by the lifting mechanism 46 via the lifting plate 47 arranged below the processing container 2 .
  • a bellows 48 is provided between the bottom of the exhaust chamber 21 and the elevating plate 47 , and the airtightness inside the processing container 2 is maintained even when the elevating plate 47 moves up and down.
  • the mounting table 3 can be moved up and down by the lifting mechanism 46 lifting and lowering the lifting plate 47 . Thereby, the gap between the mounting table 3 and the gas supply unit 5 can be adjusted.
  • a gas supply unit 5 is provided on the ceiling wall 27 of the processing container 2 via an insulating member 28 .
  • the gas supply unit 5 forms an upper electrode and faces the lower electrode 33 .
  • An RF power supply 51 is connected to the gas supply unit 5 via a matching device 511 .
  • the RF power supply 51 applies high-frequency power having a frequency higher than that of the RF power supply 35 to the upper electrode (gas supply unit 5).
  • the high-frequency power generated by the RF power supply 51 is used as high-frequency power for plasma generation required for film formation on the substrate W.
  • the frequency of the RF power supply 51 is, for example, from 27 MHz to 50 MHz in the HF band (High Frequency) to the VHF band (Very High Frequency).
  • the gas supply unit 5 includes a hollow gas diffusion chamber 52 .
  • a large number of holes 53 for dispersing and supplying the processing gas into the processing container 2 are arranged, for example, evenly on the lower surface of the gas diffusion chamber 52 .
  • a heating mechanism 54 is embedded above, for example, the gas diffusion chamber 52 in the gas supply section 5 . The heating mechanism 54 is heated to a set temperature by being supplied with power from a power supply (not shown) based on a control signal from the controller 9 .
  • a gas supply path 6 is provided in the gas diffusion chamber 52 .
  • the gas supply path 6 communicates with the gas diffusion chamber 52 .
  • a gas source 61 is connected to the upstream side of the gas supply path 6 via a gas line 62 .
  • the gas source 61 includes, for example, various processing gas sources, mass flow controllers, and valves (none of which are shown).
  • Various processing gases include deposition gases containing carbon atoms (eg, CH 4 , C 2 H 2 , C 3 H 6 , C 2 H 4 ) used in the above-described method for forming a carbon-based film.
  • Various process gases may also include carrier gases (eg, H 2 , Ar, He, O 2 , N 2 ).
  • Various process gases are introduced into gas diffusion chamber 52 from gas source 61 via gas line 62 .
  • the substrate processing apparatus 1 includes a control section 9 .
  • the control unit 9 is, for example, a computer, and includes a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), auxiliary storage device, and the like.
  • the CPU operates based on programs stored in the ROM or auxiliary storage device, and controls the operation of the substrate processing apparatus 1 .
  • the control unit 9 may be provided inside the substrate processing apparatus 1 or may be provided outside. When the control unit 9 is provided outside the substrate processing apparatus 1, the control unit 9 can control the substrate processing apparatus 1 by wired or wireless communication means.
  • FIG. 4 is an example of a flow chart for explaining a film formation method when forming an AlSiO film as the etching stop film 110 .
  • the etching stop film 110 is deposited by an ALD sequence.
  • the substrate W is processed at a temperature of 200.degree. C. to 450.degree. C. and a processing chamber pressure of 2000 Pa or less.
  • step S201 the substrate W is prepared.
  • the substrate W on which the base 100 (see FIG. 2) is formed is mounted on the mounting table 3 .
  • step S ⁇ b>202 the control unit 9 supplies gas containing Al atoms from the gas source 61 into the processing container 2 .
  • TMA trimethylaluminum
  • the control unit 9 supplies gas containing Al atoms from the gas source 61 into the processing container 2 .
  • TMA trimethylaluminum
  • step S ⁇ b>203 the control unit 9 supplies oxidizing gas from the gas source 61 into the processing container 2 .
  • H 2 O gas is supplied into the processing container 2 as the oxidizing gas.
  • the TMA adsorbed on the surface of the substrate W is oxidized to form an AlO film.
  • step S204 it is determined whether or not the processes of steps S202 and S203 have been repeated a predetermined number of times X. If the process has not been repeated a predetermined number of times X (S204, No), the process returns to step S202. If the process has been repeated a predetermined number of times X (S204, Yes), the process proceeds to step S205.
  • step S ⁇ b>205 the controller 9 supplies gas containing Si atoms from the gas source 61 into the processing chamber 2 .
  • Si 2 H 6 gas is supplied into the processing chamber 2 as the gas containing Si atoms.
  • Si 2 H 6 is adsorbed on the surface of the substrate W. As shown in FIG.
  • step S ⁇ b>206 the control unit 9 supplies oxidizing gas from the gas source 61 into the processing container 2 .
  • H 2 O gas is supplied into the processing container 2 as the oxidizing gas.
  • Si 2 H 6 adsorbed on the surface of the substrate W is oxidized.
  • step S207 it is determined whether or not the processing from step S202 to step S206 has been repeated a predetermined number of times N. If the process has not been repeated a predetermined number of times N (S207, No), the process returns to step S202. If the film formation process has been repeated up to the predetermined number of times N (S207, Yes), the film formation process ends.
  • an AlSiO film can be formed.
  • Si can be introduced into the AlO film.
  • the concentration of Si contained in the film can be controlled.
  • a gas inert to the film formation reaction is supplied into the processing container 2 to process the excess gas.
  • the configuration may be such that a purge process for purging from inside the container 2 is performed.
  • step S206 the step of supplying the oxidizing gas shown in step S206 may be omitted.
  • FIG. 5 is an example of a flow chart for explaining a film formation method when forming an AlXSiO film as the etching stop film 110 .
  • the etching stop film 110 is deposited by an ALD sequence.
  • the substrate W is processed at a temperature of 200.degree. C. to 450.degree. C. and a processing chamber pressure of 2000 Pa or less.
  • step S301 the substrate W is prepared.
  • the substrate W on which the base 100 (see FIG. 2) is formed is mounted on the mounting table 3 .
  • step S ⁇ b>302 the control unit 9 supplies gas containing Al atoms from the gas source 61 into the processing container 2 .
  • TMA trimethylaluminum
  • the control unit 9 supplies gas containing Al atoms from the gas source 61 into the processing container 2 .
  • TMA trimethylaluminum
  • step S ⁇ b>303 the control unit 9 supplies oxidizing gas from the gas source 61 into the processing container 2 .
  • H 2 O gas is supplied into the processing container 2 as the oxidizing gas.
  • the TMA adsorbed on the surface of the substrate W is oxidized to form an AlO film.
  • step S304 it is determined whether or not the processes in steps S302 and S303 have been repeated a predetermined number of times X. If the process has not been repeated a predetermined number of times X (S304, No), the process returns to step S302. If the process has been repeated a predetermined number of times X (S304, Yes), the process proceeds to step S305.
  • step S ⁇ b>305 the controller 9 supplies gas containing Si atoms from the gas source 61 into the processing chamber 2 .
  • Si 2 H 6 gas is supplied into the processing chamber 2 as the gas containing Si atoms.
  • Si 2 H 6 is adsorbed on the surface of the substrate W. As shown in FIG.
  • step S ⁇ b>306 the controller 9 supplies oxidizing gas from the gas source 61 into the processing chamber 2 .
  • H 2 O gas is supplied into the processing container 2 as the oxidizing gas.
  • Si 2 H 6 adsorbed on the surface of the substrate W is oxidized.
  • step S307 it is determined whether or not the processing from step S302 to step S306 has been repeated a predetermined number of times Y. If the process has not been repeated a predetermined number of times Y (S307, No), the process returns to step S302. If the process has been repeated a predetermined number of times Y (S307, Yes), the process proceeds to step S308.
  • step S ⁇ b>308 the control unit 9 supplies gas containing metal atoms X from the gas source 61 into the processing container 2 .
  • the gas containing the metal atom X an organometallic compound (XR) gas containing the metal atom X is supplied into the processing container 2 .
  • the surface of the substrate W is adsorbed with the XR.
  • step S ⁇ b>309 the control unit 9 supplies oxidizing gas from the gas source 61 into the processing container 2 .
  • H 2 O gas is supplied into the processing container 2 as the oxidizing gas.
  • the TMA adsorbed on the surface of the substrate W is oxidized to form an AlO film.
  • step S310 it is determined whether or not the processes in steps S308 and S309 have been repeated a predetermined number of times Z. If the process has not been repeated a predetermined number of times Z (S310, No), the process returns to step S308. If the process has been repeated a predetermined number of times Z (S310, Yes), the process proceeds to step S311.
  • step S ⁇ b>311 the controller 9 supplies gas containing Si atoms from the gas source 61 into the processing chamber 2 .
  • Si 2 H 6 gas is supplied into the processing chamber 2 as the gas containing Si atoms.
  • Si 2 H 6 is adsorbed on the surface of the substrate W. As shown in FIG.
  • step S ⁇ b>312 the control unit 9 supplies oxidizing gas from the gas source 61 into the processing container 2 .
  • H 2 O gas is supplied into the processing container 2 as the oxidizing gas.
  • Si 2 H 6 adsorbed on the surface of the substrate W is oxidized.
  • step S313 it is determined whether or not the processing from step S308 to step S312 has been repeated a predetermined number of times W. If the process has not been repeated a predetermined number of times W (S313, No), the process returns to step S308. If the process has been repeated a predetermined number of times W (S313, Yes), the process proceeds to step S314.
  • step 314 it is determined whether or not the processing from step S302 to step S313 has been repeated a predetermined number of times N. If the process has not been repeated a predetermined number of times N (S207, No), the process returns to step S202. If the film formation process has been repeated up to the predetermined number of times N (S207, Yes), the film formation process ends.
  • an AlXSiO film can be formed.
  • metal atoms X and Si can be introduced into the AlO film.
  • the concentrations of the metal atoms X and Si contained in the film can be controlled.
  • a gas inert to the film formation reaction is supplied into the processing container 2 to process the excess gas.
  • the configuration may be such that a purge process for purging from inside the container 2 is performed.
  • steps S306 and S312 may be omitted.
  • FIG. 6 is an example of a graph explaining the order of gas supply and the amount of Si in the film in the ALD sequence.
  • the vertical axis represents the content ratio of Si to the total of Al, metal atoms X, and Si (Si/(Al+X+Si) [atomic %]).
  • an AlXO film was formed by repeating gas supply in the order of a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing metal atoms X, and an oxidizing gas (H 2 O).
  • (b) is a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing metal atoms X, an oxidizing gas (H 2 O), a gas containing Si atoms (Si 2 H 6 gas), An example in which an AlXSiO film is formed by repeatedly supplying gases in the order of oxidizing gas (H 2 O) is shown.
  • (c) is a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing metal atoms X, an oxidizing gas (H 2 O), and a gas containing Si atoms (Si 2 H 6 gas).
  • TMA titanium atoms
  • H 2 O oxidizing gas
  • H 2 O oxidizing gas
  • Si 2 H 6 gas gas containing Si atoms
  • (d) is a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing metal atoms X, a gas containing Si atoms (Si 2 H 6 gas), and an oxidizing gas (H 2 O).
  • TMA titanium atoms
  • H 2 O oxidizing gas
  • metal atoms X a gas containing metal atoms X
  • Si 2 H 6 gas a gas containing Si atoms
  • H 2 O oxidizing gas
  • (e) is a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing Si atoms (Si 2 H 6 gas), an oxidizing gas (H 2 O), a gas containing metal atoms X;
  • TMA titanium atoms
  • H 2 O oxidizing gas
  • Si 2 H 6 gas oxidizing gas
  • H 2 O oxidizing gas
  • metal atoms X metal atoms X
  • (f) is a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing Si atoms (Si 2 H 6 gas), a gas containing metal atoms X, and an oxidizing gas (H 2 O).
  • TMA titanium atoms
  • H 2 O oxidizing gas
  • Si 2 H 6 gas gas containing Si atoms
  • metal atoms X metal atoms X
  • H 2 O oxidizing gas
  • g is a gas containing Al atoms (TMA), a gas containing Si atoms (Si 2 H 6 gas), an oxidizing gas (H 2 O), a gas containing metal atoms X, and an oxidizing gas (H 2 O).
  • TMA titanium atoms
  • Si 2 H 6 gas a gas containing Si atoms
  • H 2 O oxidizing gas
  • H 2 O a gas containing metal atoms X
  • H 2 O oxidizing gas
  • (h) is a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing Si atoms (Si 2 H 6 gas), an oxidizing gas (H 2 O), a gas containing metal atoms X;
  • TMA titanium atoms
  • H 2 O oxidizing gas
  • Si 2 H 6 gas gas containing Si atoms
  • H 2 O oxidizing gas
  • X metal atoms X
  • An example in which an AlXSiO film is formed by repeatedly supplying an oxidizing gas (H 2 O), a gas containing Si atoms (Si 2 H 6 gas), and an oxidizing gas (H 2 O) in this order is shown.
  • (i) is a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing Si atoms (Si 2 H 6 gas), a gas containing metal atoms X, an oxidizing gas (H 2 O),
  • TMA titanium atoms
  • H 2 O oxidizing gas
  • Si 2 H 6 gas gas containing Si atoms
  • metal atoms X metal atoms X
  • H 2 O oxidizing gas
  • (j) is a gas containing Al atoms (TMA), a gas containing Si atoms (Si 2 H 6 gas), an oxidizing gas (H 2 O), a gas containing metal atoms X, a gas containing Si atoms (Si 2
  • TMA gas containing Al atoms
  • Si 2 H 6 gas gas containing Si atoms
  • H 2 O oxidizing gas
  • metal atoms X gas containing Si atoms
  • Si 2 An example of forming an AlXSiO film by repeating gas supply in the order of H 6 gas) and oxidizing gas (H 2 O) is shown.
  • an AlXO film was formed by repeating gas supply in the order of a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing metal atoms X, and an oxidizing gas (H 2 O).
  • a gas containing Al atoms TMA
  • H 2 O oxidizing gas
  • H 2 O oxidizing gas
  • An example of forming an AlXSiO film by repeating gas supply in the order of gas containing Si atoms (Si 2 H 6 gas) and oxidizing gas (H 2 O) will be described later.
  • the ratio of the number of cycles for supplying the gas containing Al atoms (TMA), the gas containing metal atoms X, and the gas containing Si atoms (Si 2 H 6 gas) was 6: 1:1. Further, in (h) to (j), the ratio of the number of cycles for supplying the gas containing Al atoms (TMA), the gas containing metal atoms X, and the gas containing Si atoms (Si 2 H 6 gas) was 6: 1:7.
  • the concentration of Si in the film did not increase even when the gas containing Si atoms was supplied after the AlXO film was formed by the ALD cycle.
  • Si was incorporated into the film by supplying a gas containing Si atoms during the ALD cycle (see b, c, e, f, h, i).
  • Si by interposing the supply of the oxidizing gas between the supply of the gas containing Al atoms and the supply of the gas containing Si atoms, Si was taken in. That is, Si was incorporated into the film by supplying the gas containing Al atoms, then supplying the oxidizing gas, and then supplying the gas containing Si atoms.
  • Si by interposing the supply of the oxidizing gas between the supply of the gas containing the metal atom X and the supply of the gas containing the Si atom, Si was incorporated. That is, Si was incorporated into the film by supplying the gas containing the metal atoms X, then supplying the oxidizing gas, and then supplying the gas containing the Si atoms.
  • a gas containing Al atoms and a gas containing metal atoms X and a gas containing Si atoms are supplied.
  • the concentration of Si in the film can be adjusted.
  • FIG. 7 is a graph explaining the etching selectivity.
  • the horizontal axis indicates the Si content ratio (Si/(Al+X+Si) [atomic %]), and the vertical axis indicates the wet etching rate for a film damaged by dry etching/the wet etching rate for a film not damaged by dry etching. is the etching rate ratio of
  • the etching rate ratio can be increased by increasing the concentration of Si in the film.
  • the upper surface of the etching stop film 110 is damaged as a damaged portion 111 due to the attraction of ions or radicals during the dry etching shown in step S109.
  • the portion 112 of the etching stop film 110 and the sidewall 132s of the etching stop film 130 are not damaged.
  • the speed of etching the etching stop film 110 in the depth direction can be faster than the speed of etching the side walls 132s of the etching stop film 130.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

Provided is a method for manufacturing a semiconductor device, whereby it becomes possible to improve the shape accuracy of a concave shape formed by etching. The method for manufacturing a semiconductor device comprises: a step for forming an Si-introduced AlO film as an etching stop film; a step for forming a film of interest (i.e., a film to be etched) on the etching stop film; a step for dry-etching the film of interest; and a step for wet-etching the etching stop film.

Description

半導体装置の製造方法Semiconductor device manufacturing method
 本開示は、半導体装置の製造方法に関する。 The present disclosure relates to a method of manufacturing a semiconductor device.
 特許文献1には、エッチング停止層として酸化アルミニウム膜を形成することが記載されている。 Patent Document 1 describes forming an aluminum oxide film as an etching stop layer.
特開2018-085502号公報JP 2018-085502 A
 一の側面では、本開示は、エッチングによって形成される凹形状の形状精度を向上させる半導体装置の製造方法を提供する。 In one aspect, the present disclosure provides a semiconductor device manufacturing method that improves the shape accuracy of a concave shape formed by etching.
 上記課題を解決するために、一の態様によれば、エッチングストップ層としてのSiを導入したAlO膜を成膜する工程と、前記エッチングストップ層の上に被エッチング層(SiOC)を成膜する工程と、前記被エッチング膜をドライエッチングする工程と、前記エッチングストップ膜をウェットエッチングする工程と、を有する、半導体装置の製造方法が提供される。 In order to solve the above problems, according to one aspect, a step of forming an AlO film into which Si is introduced as an etching stop layer, and forming a layer to be etched (SiOC) on the etching stop layer. dry etching the film to be etched; and wet etching the etching stop film.
 一の側面によれば、エッチングによって形成される凹形状の形状精度を向上させる半導体装置の製造方法を提供することができる。 According to one aspect, it is possible to provide a method of manufacturing a semiconductor device that improves the shape accuracy of a concave shape formed by etching.
本実施形態に係る半導体装置の製造方法を説明するフローチャートの一例である。It is an example of the flowchart explaining the manufacturing method of the semiconductor device which concerns on this embodiment. 基板に形成される半導体装置の断面図の一例である。1 is an example of a cross-sectional view of a semiconductor device formed over a substrate; FIG. 基板に形成される半導体装置の断面図の一例である。1 is an example of a cross-sectional view of a semiconductor device formed over a substrate; FIG. 基板に形成される半導体装置の断面図の一例である。1 is an example of a cross-sectional view of a semiconductor device formed over a substrate; FIG. 基板に形成される半導体装置の断面図の一例である。1 is an example of a cross-sectional view of a semiconductor device formed over a substrate; FIG. 基板に形成される半導体装置の断面図の一例である。1 is an example of a cross-sectional view of a semiconductor device formed over a substrate; FIG. 基板に形成される半導体装置の断面図の一例である。1 is an example of a cross-sectional view of a semiconductor device formed over a substrate; FIG. 基板に形成される半導体装置の断面図の一例である。1 is an example of a cross-sectional view of a semiconductor device formed over a substrate; FIG. 基板処理装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a substrate processing apparatus. エッチングストップ膜としてAlSiO膜を成膜する際の成膜方法を説明するフローチャートの一例である。6 is an example of a flow chart for explaining a film formation method when forming an AlSiO film as an etching stop film. エッチングストップ膜としてAlXSiO膜を成膜する際の成膜方法を説明するフローチャートの一例である。6 is an example of a flow chart for explaining a film formation method when forming an AlXSiO film as an etching stop film. ALDシーケンスにおけるガス供給の順序と膜中のSiの量を説明するグラフの一例である。It is an example of the graph explaining the order of gas supply in an ALD sequence, and the amount of Si in a film|membrane. エッチング選択比を説明するグラフの一例である。It is an example of a graph explaining an etching selectivity.
 以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Embodiments for carrying out the present disclosure will be described below with reference to the drawings. In each drawing, the same components are denoted by the same reference numerals, and redundant description may be omitted.
 まず、図1及び図2A~図2Gを用いて、本実施形態に係る半導体装置の製造方法について説明する。図1は、本実施形態に係る半導体装置の製造方法を説明するフローチャートの一例である。図2A~図2Gは、基板に形成される半導体装置の断面図の一例である。 First, a method for manufacturing a semiconductor device according to this embodiment will be described with reference to FIGS. 1 and 2A to 2G. FIG. 1 is an example of a flowchart for explaining the method of manufacturing a semiconductor device according to this embodiment. 2A to 2G are examples of cross-sectional views of a semiconductor device formed on a substrate.
 ステップS101において、基板を準備する。基板には、ベース100が形成されている。ベース100は、例えば、絶縁層101と、導電層102と、を有する。 A substrate is prepared in step S101. A base 100 is formed on the substrate. The base 100 has, for example, an insulating layer 101 and a conductive layer 102 .
 ステップS102において、ベース100の上にエッチングストップ膜110を成膜する。エッチングストップ膜110は、後述するドライエッチング(S109参照)により絶縁膜120をエッチングする際のエッチングストップ膜として用いられる。ここで、本実施形態に係るエッチングストップ膜110は、Siを含む絶縁膜(例えば、AlO膜にSiを導入したAlSiO膜)である。また、エッチングストップ膜110は、低誘電率酸化膜を形成する金属原子X及びSiを含む絶縁膜(例えば、AlO膜に金属原子X及びSiを導入しAlXSiO膜)であってもよい。ここで、金属原子Xは、例えば、Mg、Mn、Zn等を用いることができる。なお、エッチングストップ膜110の成膜については、図4等を用いて後述する。 An etching stop film 110 is formed on the base 100 in step S102. The etching stop film 110 is used as an etching stop film when etching the insulating film 120 by dry etching (see S109), which will be described later. Here, the etching stop film 110 according to this embodiment is an insulating film containing Si (for example, an AlSiO film obtained by introducing Si into an AlO film). Also, the etching stop film 110 may be an insulating film containing metal atoms X and Si forming a low dielectric constant oxide film (for example, an AlXSiO film in which metal atoms X and Si are introduced into an AlO film). Here, the metal atom X can be Mg, Mn, Zn, or the like, for example. The formation of the etching stop film 110 will be described later with reference to FIG. 4 and the like.
 ステップS103において、エッチングストップ膜110の上に絶縁膜120を成膜する。絶縁膜120は、後述するエッチングストップ膜130をエッチングする際のウェットエッチングストップ膜として用いられる。ここで、絶縁膜120は、例えば、SiOC膜である。 In step S103, the insulating film 120 is formed on the etching stop film 110. As shown in FIG. The insulating film 120 is used as a wet etching stop film when etching the etching stop film 130, which will be described later. Here, the insulating film 120 is, for example, an SiOC film.
 ステップS104において、絶縁膜120の上にエッチングストップ膜130を成膜する。エッチングストップ膜130は、後述する低誘電体膜140をエッチングする際のエッチングストップ膜として用いられる。ここで、エッチングストップ膜130は、絶縁膜(例えば、AlO膜)である。また、エッチングストップ膜130は、低誘電率酸化膜を形成する金属原子Xを含む絶縁膜(例えば、AlXO膜)であってもよい。また、エッチングストップ膜130は、エッチングストップ膜110と同様に、Siを含む絶縁膜(例えば、AlSiO膜)であってもよく、金属原子X及びSiを含む絶縁膜(例えば、AlXSiO膜)であってもよい。 In step S104, an etching stop film 130 is formed on the insulating film 120. As shown in FIG. The etching stop film 130 is used as an etching stop film when etching the low dielectric film 140 which will be described later. Here, the etching stop film 130 is an insulating film (for example, an AlO film). Also, the etching stop film 130 may be an insulating film (for example, an AlXO film) containing metal atoms X forming a low dielectric constant oxide film. The etching stop film 130 may be an insulating film containing Si (for example, an AlSiO film), or an insulating film containing metal atoms X and Si (for example, an AlXSiO film), similar to the etching stop film 110 . may
 ステップS105において、エッチングストップ膜130の上に低誘電体膜(Low-k膜)140を成膜する。ここで、図2Aは、低誘電体膜140を成膜した後の半導体装置の断面図の一例を示す。 In step S105, a low dielectric film (Low-k film) 140 is formed on the etching stop film . Here, FIG. 2A shows an example of a cross-sectional view of the semiconductor device after the low dielectric film 140 is formed.
 ステップS106において、ハードマスク160の形成、エッチング等の一連のパターン形成により、低誘電体膜140に凹部170が形成される。ここで、図2Bは、一連のパターン形成後の半導体装置の断面図の一例を示す。 In step S106, recesses 170 are formed in the low dielectric film 140 by a series of pattern formations such as formation of the hard mask 160 and etching. Here, FIG. 2B shows an example of a cross-sectional view of the semiconductor device after forming a series of patterns.
 ステップS107において、ドライエッチングにより、低誘電体膜140をエッチングする。これにより、低誘電体膜140にトレンチ、ビア等の凹部150が形成される。また、凹部150は、エッチングストップ膜130まで連通する。ここで、図2Cは、ステップS107に示すドライエッチング後の半導体装置の断面図の一例を示す。 In step S107, the low dielectric film 140 is etched by dry etching. As a result, recesses 150 such as trenches and vias are formed in the low dielectric film 140 . Also, the recess 150 communicates with the etching stop film 130 . Here, FIG. 2C shows an example of a cross-sectional view of the semiconductor device after the dry etching shown in step S107.
 ここで、ドライエッチングにおいて、エッチングガスの活性種(イオン、ラジカル)を電位差によって基板に引き込むことにより、エッチングを行う。このため、凹部150の底面(凹部150に露出するエッチングストップ膜130の上面)には、ドライエッチングによって、ダメージを受けたダメージ部131を有する。一方、エッチングストップ膜130のうち低誘電体膜140で覆われる部分(ドライエッチング後にエッチングストップ膜130の側壁132s(後述する図2D参照)となる部分)132は、ドライエッチングによるダメージを受けていない、または、エッチングストップ膜130の上面よりもダメージの影響は少ない。 Here, in dry etching, etching is performed by drawing active species (ions, radicals) of the etching gas into the substrate due to the potential difference. Therefore, the bottom surface of the recess 150 (the upper surface of the etching stop film 130 exposed in the recess 150) has a damaged portion 131 that is damaged by dry etching. On the other hand, the part of the etching stop film 130 covered with the low dielectric film 140 (the part that becomes the side wall 132s of the etching stop film 130 (see FIG. 2D described later) after dry etching) 132 is not damaged by the dry etching. , or is less affected by damage than the upper surface of the etching stop film 130 .
 ステップS108において、ウェットエッチングにより、エッチングストップ膜130をエッチングする。これにより、低誘電体膜140及びエッチングストップ膜130に亘って凹部150が形成される。また、凹部150は、絶縁膜120まで連通する。また、凹部150が形成されることにより、エッチングストップ膜130には側壁132sが形成される。また、ウェットエッチングにより、ハードマスク160が除去される。また、ウェットエッチングにより、低誘電体膜140の開口部のベベルがエッチングされる。ここで、図2Dは、ステップS108に示すウェットエッチング後の半導体装置の断面図の一例を示す。 In step S108, the etching stop film 130 is etched by wet etching. Thereby, a recess 150 is formed over the low dielectric film 140 and the etching stop film 130 . Also, the recess 150 communicates with the insulating film 120 . In addition, side walls 132 s are formed in the etching stop film 130 by forming the recess 150 . Also, the hard mask 160 is removed by wet etching. Moreover, the bevel of the opening of the low dielectric film 140 is etched by wet etching. Here, FIG. 2D shows an example of a cross-sectional view of the semiconductor device after wet etching shown in step S108.
 ステップS109において、ドライエッチングにより、絶縁膜120をエッチングする。これにより、低誘電体膜140、エッチングストップ膜130及び絶縁膜120に亘って凹部150が形成される。また、凹部150は、エッチングストップ膜110まで連通する。ここで、図2Eは、ステップS109に示すドライエッチング後の半導体装置の断面図の一例を示す。 In step S109, the insulating film 120 is etched by dry etching. As a result, recesses 150 are formed over the low dielectric film 140 , the etching stop film 130 and the insulating film 120 . Also, the recess 150 communicates with the etching stop film 110 . Here, FIG. 2E shows an example of a cross-sectional view of the semiconductor device after the dry etching shown in step S109.
 ここで、ドライエッチングにおいて、エッチングガスの活性種(イオン、ラジカル)を電位差によって基板に引き込むことにより、エッチングを行う。このため、凹部150の底面(凹部150に露出するエッチングストップ膜110の上面)には、ドライエッチングによって、ダメージを受けたダメージ部111を有する。一方、凹部150に露出するエッチングストップ膜130の側壁132sは、ドライエッチングによるダメージを受けていない、または、エッチングストップ膜110の上面よりもダメージの影響は少ない。また、エッチングストップ膜110のうち絶縁膜120で覆われる部分(ドライエッチング後にエッチングストップ膜110の側壁112s(後述する図2F参照)となる部分)112は、ドライエッチングによるダメージを受けていない、または、エッチングストップ膜110の上面よりもダメージの影響は少ない。 Here, in dry etching, etching is performed by drawing active species (ions, radicals) of the etching gas into the substrate due to the potential difference. Therefore, the bottom surface of the recess 150 (the upper surface of the etching stop film 110 exposed in the recess 150) has a damaged portion 111 that has been damaged by dry etching. On the other hand, the side walls 132 s of the etching stop film 130 exposed in the recess 150 are not damaged by dry etching, or are less affected by the damage than the upper surface of the etching stop film 110 . In addition, the portion of the etching stop film 110 covered with the insulating film 120 (the portion that becomes the side wall 112s of the etching stop film 110 (see FIG. 2F described later) after dry etching) 112 is not damaged by the dry etching, or , the influence of damage is less than the upper surface of the etching stop film 110 .
 ステップS110において、ウェットエッチングにより、エッチングストップ膜110をエッチングする。これにより、低誘電体膜140、エッチングストップ膜130、絶縁膜120及びエッチングストップ膜110に亘って凹部150が形成される。また、凹部150は、導電層102まで連通する。また、凹部150が形成されることにより、エッチングストップ膜110には側壁112sが形成される。ここで、図2Fは、ステップS110に示すウェットエッチング後の半導体装置の断面図の一例を示す。この後、凹部150には、例えば金属膜の埋め込み処理が施される。 In step S110, the etching stop film 110 is etched by wet etching. Thereby, a recess 150 is formed over the low dielectric film 140 , the etching stop film 130 , the insulating film 120 and the etching stop film 110 . Also, the recess 150 communicates with the conductive layer 102 . Further, by forming the concave portion 150, the sidewall 112s is formed in the etching stop film 110. As shown in FIG. Here, FIG. 2F shows an example of a cross-sectional view of the semiconductor device after wet etching shown in step S110. After that, the concave portion 150 is subjected to, for example, an embedding process of a metal film.
 ここで、ウェットエッチングによりエッチングストップ膜110を深さ方向にエッチングする際、エッチングストップ膜130の側壁方向及びエッチングストップ膜110の側壁方向にもエッチングされる。このため、図2Gに示すように、エッチングストップ膜130の側壁及びエッチングストップ膜110の側壁がエッチングされ、凹部150の側壁に凹凸が形成されるおそれがある。凹部150の側壁に凹凸が形成されることで、凹部150への金属膜の埋め込みが好適に行われないおそれがある。 Here, when the etching stop film 110 is etched in the depth direction by wet etching, the etching stop film 130 is also etched in the sidewall direction and the etching stop film 110 in the sidewall direction. Therefore, as shown in FIG. 2G, the side walls of the etching stop film 130 and the side walls of the etching stop film 110 may be etched, and unevenness may be formed on the side walls of the recess 150 . Due to the irregularities formed on the side walls of the recess 150 , there is a risk that the metal film will not be preferably embedded in the recess 150 .
 このため、ドライエッチングによりダメージを受けた部分(ダメージ部111)に対し、ドライエッチングによるダメージを受けていない部分(部分112、側壁132s)のエッチングレートの比が十分に小さいことが求められる。 Therefore, it is required that the ratio of the etching rate of the portion (portion 112, side wall 132s) not damaged by dry etching to the portion (damaged portion 111) damaged by dry etching is sufficiently small.
 次に、ステップS102におけるエッチングストップ膜110を成膜する成膜方法について、図3から図5を用いて説明する。 Next, a method for forming the etching stop film 110 in step S102 will be described with reference to FIGS. 3 to 5. FIG.
 エッチングストップ膜110を成膜する基板処理装置1について、図3を用いて説明する。図3は、基板処理装置1の一例を示す概略断面図である。基板処理装置1は、減圧状態の処理容器2内でALD法によりウエハ等の基板Wに膜を成膜する装置である。 The substrate processing apparatus 1 for forming the etching stop film 110 will be described with reference to FIG. FIG. 3 is a schematic cross-sectional view showing an example of the substrate processing apparatus 1. As shown in FIG. A substrate processing apparatus 1 is an apparatus for forming a film on a substrate W such as a wafer by the ALD method in a processing vessel 2 in a decompressed state.
 基板処理装置1は、略円筒状の気密な処理容器2を備える。処理容器2の底壁の中央部分には、排気室21が設けられている。 The substrate processing apparatus 1 includes a substantially cylindrical airtight processing container 2 . An exhaust chamber 21 is provided in the central portion of the bottom wall of the processing container 2 .
 排気室21は、下方に向けて突出する例えば略円筒状の形状を備える。排気室21には、例えば排気室21の側面において、排気流路22が接続されている。排気流路22には、圧力調整部23を介して排気部24が接続されている。圧力調整部23は、例えばバタフライバルブ等の圧力調整バルブを備える。排気流路22は、排気部24によって処理容器2内を減圧できるように構成されている。処理容器2の側面には、搬送口25が設けられている。搬送口25は、ゲートバルブ26によって開閉自在に構成されている。処理容器2内と搬送室(図示せず)との間における基板Wの搬入出は、搬送口25を介して行われる。 The exhaust chamber 21 has, for example, a substantially cylindrical shape protruding downward. An exhaust passage 22 is connected to the exhaust chamber 21 , for example, on the side surface of the exhaust chamber 21 . An exhaust section 24 is connected to the exhaust flow path 22 via a pressure adjustment section 23 . The pressure adjustment unit 23 includes, for example, a pressure adjustment valve such as a butterfly valve. The exhaust passage 22 is configured such that the inside of the processing chamber 2 can be decompressed by the exhaust section 24 . A transfer port 25 is provided on the side surface of the processing container 2 . The transfer port 25 is configured to be openable and closable by a gate valve 26 . Substrates W are carried in and out between the processing container 2 and a transfer chamber (not shown) through a transfer port 25 .
 処理容器2内には、基板Wを略水平に保持するための載置台3が設けられている。載置台3は、平面視で略円形状に形成されており、支持部材31によって支持されている。載置台3の表面には、例えば直径が300mmの基板Wを載置するための略円形状の凹部32が形成されている。凹部32は、基板Wの直径よりも僅かに(例えば1mm~4mm程度)大きい内径を有する。凹部32の深さは、例えば基板Wの厚さと略同一に構成される。載置台3は、例えば窒化アルミニウム(AlN)等のセラミックス材料により形成されている。また、載置台3は、ニッケル(Ni)等の金属材料により形成されていてもよい。なお、凹部32の代わりに載置台3の表面の周縁部に基板Wをガイドするガイドリングを設けてもよい。 A mounting table 3 for holding the substrate W substantially horizontally is provided in the processing container 2 . The mounting table 3 has a substantially circular shape in plan view and is supported by a support member 31 . The surface of the mounting table 3 is formed with a substantially circular concave portion 32 for mounting a substrate W having a diameter of 300 mm, for example. The recess 32 has an inner diameter slightly larger than the diameter of the substrate W (for example, about 1 mm to 4 mm). The depth of the concave portion 32 is substantially the same as the thickness of the substrate W, for example. The mounting table 3 is made of a ceramic material such as aluminum nitride (AlN). Moreover, the mounting table 3 may be made of a metal material such as nickel (Ni). A guide ring that guides the substrate W may be provided on the peripheral edge portion of the surface of the mounting table 3 instead of the concave portion 32 .
 載置台3には、下部電極33が埋設される。下部電極33の下方には、温調機構34が埋設される。温調機構34は、制御部9からの制御信号に基づいて、載置台3に載置された基板Wを設定温度に調整する。載置台3の全体が金属によって構成されている場合には、載置台3の全体が下部電極として機能するので、下部電極33を載置台3に埋設しなくてよい。 A lower electrode 33 is embedded in the mounting table 3 . A temperature control mechanism 34 is embedded under the lower electrode 33 . The temperature control mechanism 34 adjusts the substrate W mounted on the mounting table 3 to a set temperature based on the control signal from the controller 9 . When the entire mounting table 3 is made of metal, the entire mounting table 3 functions as a lower electrode, so the lower electrode 33 need not be embedded in the mounting table 3 .
 下部電極33には、整合器351を介してRF電源35が接続されている。RF電源35は、後述するRF電源51の周波数よりも低い周波数の低周波電力(LF;Low Frequency)を下部電極33に印加する。RF電源35が発生する高周波電力は、基板Wにイオンを引き込むためのバイアス用の高周波電力として用いられる。RF電源35の周波数は、例えば、40.68MHzである。 An RF power supply 35 is connected to the lower electrode 33 via a matching device 351 . The RF power supply 35 applies low frequency power (LF) having a frequency lower than that of the RF power supply 51 to be described later to the lower electrode 33 . The high-frequency power generated by the RF power supply 35 is used as high-frequency power for bias for attracting ions to the substrate W. FIG. The frequency of RF power supply 35 is, for example, 40.68 MHz.
 載置台3には、載置台3に載置された基板Wを保持して昇降するための複数本(例えば3本)の昇降ピン41が設けられている。昇降ピン41の材料は、例えばアルミナ(Al2O3)等のセラミックスや石英等であってよい。昇降ピン41の下端は、支持板42に取り付けられている。支持板42は、昇降軸43を介して処理容器2の外部に設けられた昇降機構44に接続されている。 The mounting table 3 is provided with a plurality of (for example, three) lifting pins 41 for holding and lifting the substrate W placed on the mounting table 3 . The material of the lifting pins 41 may be, for example, ceramics such as alumina (Al2O3), quartz, or the like. A lower end of the lifting pin 41 is attached to a support plate 42 . The support plate 42 is connected to an elevating mechanism 44 provided outside the processing container 2 via an elevating shaft 43 .
 昇降機構44は、例えば排気室21の下部に設置されている。ベローズ45は、排気室21の下面に形成された昇降軸43用の開口部211と昇降機構44との間に設けられている。支持板42の形状は、載置台3の支持部材31と干渉せずに昇降できる形状であってもよい。昇降ピン41は、昇降機構44によって、載置台3の表面の上方の側と、載置台3の表面の下方の側との間で、昇降自在に構成される。言い換えると、昇降ピン41は、載置台3の上面から突出可能に構成される。 The elevating mechanism 44 is installed, for example, in the lower part of the exhaust chamber 21. The bellows 45 is provided between the lifting mechanism 44 and an opening 211 for the lifting shaft 43 formed on the lower surface of the exhaust chamber 21 . The shape of the support plate 42 may be such that it can move up and down without interfering with the support member 31 of the mounting table 3 . The elevating pin 41 is configured to be vertically movable between the upper side of the surface of the mounting table 3 and the lower side of the surface of the mounting table 3 by an elevating mechanism 44 . In other words, the lifting pins 41 are configured to protrude from the upper surface of the mounting table 3 .
 また、支持部材31の下端部は、排気室21の開口部212を貫通し、処理容器2の下方に配置された昇降板47を介して、昇降機構46に支持される。排気室21の底部と昇降板47との間には、ベローズ48が設けられており、昇降板47の上下動によっても処理容器2内の気密性は保たれる。 The lower end of the support member 31 passes through the opening 212 of the exhaust chamber 21 and is supported by the lifting mechanism 46 via the lifting plate 47 arranged below the processing container 2 . A bellows 48 is provided between the bottom of the exhaust chamber 21 and the elevating plate 47 , and the airtightness inside the processing container 2 is maintained even when the elevating plate 47 moves up and down.
 昇降機構46が昇降板47を昇降させることにより、載置台3を昇降することができる。これにより、載置台3とガス供給部5とのギャップを調整することができる。 The mounting table 3 can be moved up and down by the lifting mechanism 46 lifting and lowering the lifting plate 47 . Thereby, the gap between the mounting table 3 and the gas supply unit 5 can be adjusted.
 処理容器2の天壁27には、絶縁部材28を介してガス供給部5が設けられている。ガス供給部5は、上部電極を成しており、下部電極33に対向している。ガス供給部5には、整合器511を介してRF電源51が接続されている。RF電源51は、RF電源35の周波数よりも高い周波数の高周波電力を上部電極(ガス供給部5)に印加する。RF電源51が発生する高周波電力は、基板Wの成膜に必要なプラズマ生成用の高周波電力として用いられる。RF電源51の周波数は、例えば、27MHz~50MHzのHF帯(High Frequency)からVHF帯(Very High Frequency)である。RF電源51から上部電極(ガス供給部5)にRF電力を供給することによって、上部電極(ガス供給部5)と下部電極33との間にRF電界が生じるように構成されている。ガス供給部5は、中空状のガス拡散室52を備える。ガス拡散室52の下面には、処理容器2内へ処理ガスを分散供給するための多数の孔53が例えば均等に配置されている。ガス供給部5における例えばガス拡散室52の上方には、加熱機構54が埋設されている。加熱機構54は、制御部9からの制御信号に基づいて図示しない電源部から給電されることによって、設定温度に加熱される。 A gas supply unit 5 is provided on the ceiling wall 27 of the processing container 2 via an insulating member 28 . The gas supply unit 5 forms an upper electrode and faces the lower electrode 33 . An RF power supply 51 is connected to the gas supply unit 5 via a matching device 511 . The RF power supply 51 applies high-frequency power having a frequency higher than that of the RF power supply 35 to the upper electrode (gas supply unit 5). The high-frequency power generated by the RF power supply 51 is used as high-frequency power for plasma generation required for film formation on the substrate W. FIG. The frequency of the RF power supply 51 is, for example, from 27 MHz to 50 MHz in the HF band (High Frequency) to the VHF band (Very High Frequency). An RF electric field is generated between the upper electrode (gas supply section 5) and the lower electrode 33 by supplying RF power from the RF power supply 51 to the upper electrode (gas supply section 5). The gas supply unit 5 includes a hollow gas diffusion chamber 52 . A large number of holes 53 for dispersing and supplying the processing gas into the processing container 2 are arranged, for example, evenly on the lower surface of the gas diffusion chamber 52 . A heating mechanism 54 is embedded above, for example, the gas diffusion chamber 52 in the gas supply section 5 . The heating mechanism 54 is heated to a set temperature by being supplied with power from a power supply (not shown) based on a control signal from the controller 9 .
 ガス拡散室52には、ガス供給路6が設けられている。ガス供給路6は、ガス拡散室52に連通している。ガス供給路6の上流側には、ガスライン62を介してガス源61が接続されている。ガス源61は、例えば各種の処理ガスの供給源、マスフローコントローラ、バルブ(いずれも図示せず)を含む。各種の処理ガスは、前述のカーボン系膜の形成方法において用いられる炭素原子を含む成膜ガス(例えば、CH、C、C、C)を含む。また、各種の処理ガスは、キャリアガス(例えば、H、Ar、He、O、N)を含んでいてもよい。各種の処理ガスは、ガス源61からガスライン62を介してガス拡散室52に導入される。 A gas supply path 6 is provided in the gas diffusion chamber 52 . The gas supply path 6 communicates with the gas diffusion chamber 52 . A gas source 61 is connected to the upstream side of the gas supply path 6 via a gas line 62 . The gas source 61 includes, for example, various processing gas sources, mass flow controllers, and valves (none of which are shown). Various processing gases include deposition gases containing carbon atoms (eg, CH 4 , C 2 H 2 , C 3 H 6 , C 2 H 4 ) used in the above-described method for forming a carbon-based film. Various process gases may also include carrier gases (eg, H 2 , Ar, He, O 2 , N 2 ). Various process gases are introduced into gas diffusion chamber 52 from gas source 61 via gas line 62 .
 基板処理装置1は、制御部9を備える。制御部9は、例えばコンピュータであり、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、補助記憶装置等を備える。CPUは、ROM又は補助記憶装置に格納されたプログラムに基づいて動作し、基板処理装置1の動作を制御する。制御部9は、基板処理装置1の内部に設けられていてもよく、外部に設けられていてもよい。制御部9が基板処理装置1の外部に設けられている場合、制御部9は、有線又は無線等の通信手段によって、基板処理装置1を制御できる。 The substrate processing apparatus 1 includes a control section 9 . The control unit 9 is, for example, a computer, and includes a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), auxiliary storage device, and the like. The CPU operates based on programs stored in the ROM or auxiliary storage device, and controls the operation of the substrate processing apparatus 1 . The control unit 9 may be provided inside the substrate processing apparatus 1 or may be provided outside. When the control unit 9 is provided outside the substrate processing apparatus 1, the control unit 9 can control the substrate processing apparatus 1 by wired or wireless communication means.
 次に、ステップS102におけるエッチングストップ膜110を成膜する成膜方法について、図4及び図5を用いて説明する。 Next, a method for forming the etching stop film 110 in step S102 will be described with reference to FIGS. 4 and 5. FIG.
 図4は、エッチングストップ膜110としてAlSiO膜を成膜する際の成膜方法を説明するフローチャートの一例である。エッチングストップ膜110は、ALDシーケンスによって成膜される。ここでは、基板Wの温度を200℃~450℃、処理室内圧力2000Pa以下で、処理される。 FIG. 4 is an example of a flow chart for explaining a film formation method when forming an AlSiO film as the etching stop film 110 . The etching stop film 110 is deposited by an ALD sequence. Here, the substrate W is processed at a temperature of 200.degree. C. to 450.degree. C. and a processing chamber pressure of 2000 Pa or less.
 ステップS201において、基板Wを準備する。ここでは、ベース100(図2参照)が形成された基板Wを載置台3に載置する。 In step S201, the substrate W is prepared. Here, the substrate W on which the base 100 (see FIG. 2) is formed is mounted on the mounting table 3 .
 ステップS202において、制御部9は、ガス源61から処理容器2内にAl原子を含むガスを供給する。ここでは、Al原子を含むガスとして、TMA(トリメチルアルミニウム)ガスを処理容器2内に供給する。これにより、基板Wの表面にTMAが吸着される。 In step S<b>202 , the control unit 9 supplies gas containing Al atoms from the gas source 61 into the processing container 2 . Here, TMA (trimethylaluminum) gas is supplied into the processing container 2 as the gas containing Al atoms. As a result, TMA is adsorbed on the surface of the substrate W. As shown in FIG.
 ステップS203において、制御部9は、ガス源61から処理容器2内に酸化ガスを供給する。ここでは、酸化ガスとしてHOガスを処理容器2内に供給する。これにより、基板Wの表面に吸着されたTMAを酸化して、AlO膜を形成する。 In step S<b>203 , the control unit 9 supplies oxidizing gas from the gas source 61 into the processing container 2 . Here, H 2 O gas is supplied into the processing container 2 as the oxidizing gas. As a result, the TMA adsorbed on the surface of the substrate W is oxidized to form an AlO film.
 ステップS204において、ステップS202及びステップS203の処理が所定の繰り返し回数Xまで繰り返されたか否かを判定する。所定の繰り返し回数Xまで繰り返されていない場合(S204・No)、ステップS202に戻る。所定の繰り返し回数Xまで繰り返された場合(S204・Yes)、ステップS205に進む。 In step S204, it is determined whether or not the processes of steps S202 and S203 have been repeated a predetermined number of times X. If the process has not been repeated a predetermined number of times X (S204, No), the process returns to step S202. If the process has been repeated a predetermined number of times X (S204, Yes), the process proceeds to step S205.
 ステップS205において、制御部9は、ガス源61から処理容器2内にSi原子を含むガスを供給する。ここでは、Si原子を含むガスとしてSiガスを処理容器2内に供給する。これにより、基板Wの表面にSiが吸着される。 In step S<b>205 , the controller 9 supplies gas containing Si atoms from the gas source 61 into the processing chamber 2 . Here, Si 2 H 6 gas is supplied into the processing chamber 2 as the gas containing Si atoms. As a result, Si 2 H 6 is adsorbed on the surface of the substrate W. As shown in FIG.
 ステップS206において、制御部9は、ガス源61から処理容器2内に酸化ガスを供給する。ここでは、酸化ガスとしてHOガスを処理容器2内に供給する。これにより、基板Wの表面に吸着されたSiを酸化する。 In step S<b>206 , the control unit 9 supplies oxidizing gas from the gas source 61 into the processing container 2 . Here, H 2 O gas is supplied into the processing container 2 as the oxidizing gas. Thereby, the Si 2 H 6 adsorbed on the surface of the substrate W is oxidized.
 ステップS207において、ステップS202からステップS206の処理が所定の繰り返し回数Nまで繰り返されたか否かを判定する。所定の繰り返し回数Nまで繰り返されていない場合(S207・No)、ステップS202に戻る。所定の繰り返し回数Nまで繰り返された場合(S207・Yes)、成膜処理を終了する。 In step S207, it is determined whether or not the processing from step S202 to step S206 has been repeated a predetermined number of times N. If the process has not been repeated a predetermined number of times N (S207, No), the process returns to step S202. If the film formation process has been repeated up to the predetermined number of times N (S207, Yes), the film formation process ends.
 図4のフローチャートに示す成膜方法によれば、AlSiO膜を成膜することができる。換言すれば、AlO膜にSiを導入することができる。また、繰り返し回数X,Nを制御することにより、膜中に含まれるSiの濃度を制御することができる。 According to the film forming method shown in the flowchart of FIG. 4, an AlSiO film can be formed. In other words, Si can be introduced into the AlO film. Also, by controlling the repetition times X and N, the concentration of Si contained in the film can be controlled.
 なお、各シーケンス間に余分な吸着を除くため、および、混合による気相反応を抑制するため、処理容器2内に成膜反応に対して不活性なガスを供給して、余剰なガスを処理容器2内からパージするためのパージ工程を行う構成であってもよい。 In addition, in order to remove excess adsorption between each sequence and to suppress the gas phase reaction due to mixing, a gas inert to the film formation reaction is supplied into the processing container 2 to process the excess gas. The configuration may be such that a purge process for purging from inside the container 2 is performed.
 また、ステップS206に示す酸化ガスを供給する工程を省略する構成であってもよい。 Alternatively, the step of supplying the oxidizing gas shown in step S206 may be omitted.
 図5は、エッチングストップ膜110としてAlXSiO膜を成膜する際の成膜方法を説明するフローチャートの一例である。エッチングストップ膜110は、ALDシーケンスによって成膜される。ここでは、基板Wの温度を200℃~450℃、処理室内圧力2000Pa以下で、処理される。 FIG. 5 is an example of a flow chart for explaining a film formation method when forming an AlXSiO film as the etching stop film 110 . The etching stop film 110 is deposited by an ALD sequence. Here, the substrate W is processed at a temperature of 200.degree. C. to 450.degree. C. and a processing chamber pressure of 2000 Pa or less.
 ステップS301において、基板Wを準備する。ここでは、ベース100(図2参照)が形成された基板Wを載置台3に載置する。 In step S301, the substrate W is prepared. Here, the substrate W on which the base 100 (see FIG. 2) is formed is mounted on the mounting table 3 .
 ステップS302において、制御部9は、ガス源61から処理容器2内にAl原子を含むガスを供給する。ここでは、Al原子を含むガスとして、TMA(トリメチルアルミニウム)ガスを処理容器2内に供給する。これにより、基板Wの表面にTMAが吸着される。 In step S<b>302 , the control unit 9 supplies gas containing Al atoms from the gas source 61 into the processing container 2 . Here, TMA (trimethylaluminum) gas is supplied into the processing container 2 as the gas containing Al atoms. As a result, TMA is adsorbed on the surface of the substrate W. As shown in FIG.
 ステップS303において、制御部9は、ガス源61から処理容器2内に酸化ガスを供給する。ここでは、酸化ガスとしてHOガスを処理容器2内に供給する。これにより、基板Wの表面に吸着されたTMAを酸化して、AlO膜を形成する。 In step S<b>303 , the control unit 9 supplies oxidizing gas from the gas source 61 into the processing container 2 . Here, H 2 O gas is supplied into the processing container 2 as the oxidizing gas. As a result, the TMA adsorbed on the surface of the substrate W is oxidized to form an AlO film.
 ステップS304において、ステップS302及びステップS303の処理が所定の繰り返し回数Xまで繰り返されたか否かを判定する。所定の繰り返し回数Xまで繰り返されていない場合(S304・No)、ステップS302に戻る。所定の繰り返し回数Xまで繰り返された場合(S304・Yes)、ステップS305に進む。 In step S304, it is determined whether or not the processes in steps S302 and S303 have been repeated a predetermined number of times X. If the process has not been repeated a predetermined number of times X (S304, No), the process returns to step S302. If the process has been repeated a predetermined number of times X (S304, Yes), the process proceeds to step S305.
 ステップS305において、制御部9は、ガス源61から処理容器2内にSi原子を含むガスを供給する。ここでは、Si原子を含むガスとしてSiガスを処理容器2内に供給する。これにより、基板Wの表面にSiが吸着される。 In step S<b>305 , the controller 9 supplies gas containing Si atoms from the gas source 61 into the processing chamber 2 . Here, Si 2 H 6 gas is supplied into the processing chamber 2 as the gas containing Si atoms. As a result, Si 2 H 6 is adsorbed on the surface of the substrate W. As shown in FIG.
 ステップS306において、制御部9は、ガス源61から処理容器2内に酸化ガスを供給する。ここでは、酸化ガスとしてHOガスを処理容器2内に供給する。これにより、基板Wの表面に吸着されたSiを酸化する。 In step S<b>306 , the controller 9 supplies oxidizing gas from the gas source 61 into the processing chamber 2 . Here, H 2 O gas is supplied into the processing container 2 as the oxidizing gas. Thereby, the Si 2 H 6 adsorbed on the surface of the substrate W is oxidized.
 ステップS307において、ステップS302からステップS306の処理が所定の繰り返し回数Yまで繰り返されたか否かを判定する。所定の繰り返し回数Yまで繰り返されていない場合(S307・No)、ステップS302に戻る。所定の繰り返し回数Yまで繰り返された場合(S307・Yes)、ステップS308に進む。 In step S307, it is determined whether or not the processing from step S302 to step S306 has been repeated a predetermined number of times Y. If the process has not been repeated a predetermined number of times Y (S307, No), the process returns to step S302. If the process has been repeated a predetermined number of times Y (S307, Yes), the process proceeds to step S308.
 ステップS308において、制御部9は、ガス源61から処理容器2内に金属原子Xを含むガスを供給する。ここでは、金属原子Xを含むガスとして、金属原子Xを含む有機金属化合物(XR)ガスを処理容器2内に供給する。これにより、基板Wの表面にXRが吸着される。 In step S<b>308 , the control unit 9 supplies gas containing metal atoms X from the gas source 61 into the processing container 2 . Here, as the gas containing the metal atom X, an organometallic compound (XR) gas containing the metal atom X is supplied into the processing container 2 . As a result, the surface of the substrate W is adsorbed with the XR.
 ステップS309において、制御部9は、ガス源61から処理容器2内に酸化ガスを供給する。ここでは、酸化ガスとしてHOガスを処理容器2内に供給する。これにより、基板Wの表面に吸着されたTMAを酸化して、AlO膜を形成する。 In step S<b>309 , the control unit 9 supplies oxidizing gas from the gas source 61 into the processing container 2 . Here, H 2 O gas is supplied into the processing container 2 as the oxidizing gas. As a result, the TMA adsorbed on the surface of the substrate W is oxidized to form an AlO film.
 ステップS310において、ステップS308及びステップS309の処理が所定の繰り返し回数Zまで繰り返されたか否かを判定する。所定の繰り返し回数Zまで繰り返されていない場合(S310・No)、ステップS308に戻る。所定の繰り返し回数Zまで繰り返された場合(S310・Yes)、ステップS311に進む。 In step S310, it is determined whether or not the processes in steps S308 and S309 have been repeated a predetermined number of times Z. If the process has not been repeated a predetermined number of times Z (S310, No), the process returns to step S308. If the process has been repeated a predetermined number of times Z (S310, Yes), the process proceeds to step S311.
 ステップS311において、制御部9は、ガス源61から処理容器2内にSi原子を含むガスを供給する。ここでは、Si原子を含むガスとしてSiガスを処理容器2内に供給する。これにより、基板Wの表面にSiが吸着される。 In step S<b>311 , the controller 9 supplies gas containing Si atoms from the gas source 61 into the processing chamber 2 . Here, Si 2 H 6 gas is supplied into the processing chamber 2 as the gas containing Si atoms. As a result, Si 2 H 6 is adsorbed on the surface of the substrate W. As shown in FIG.
 ステップS312において、制御部9は、ガス源61から処理容器2内に酸化ガスを供給する。ここでは、酸化ガスとしてHOガスを処理容器2内に供給する。これにより、基板Wの表面に吸着されたSiを酸化する。 In step S<b>312 , the control unit 9 supplies oxidizing gas from the gas source 61 into the processing container 2 . Here, H 2 O gas is supplied into the processing container 2 as the oxidizing gas. Thereby, the Si 2 H 6 adsorbed on the surface of the substrate W is oxidized.
 ステップS313において、ステップS308からステップS312の処理が所定の繰り返し回数Wまで繰り返されたか否かを判定する。所定の繰り返し回数Wまで繰り返されていない場合(S313・No)、ステップS308に戻る。所定の繰り返し回数Wまで繰り返された場合(S313・Yes)、ステップS314に進む。 In step S313, it is determined whether or not the processing from step S308 to step S312 has been repeated a predetermined number of times W. If the process has not been repeated a predetermined number of times W (S313, No), the process returns to step S308. If the process has been repeated a predetermined number of times W (S313, Yes), the process proceeds to step S314.
 ステップ314において、ステップS302からステップS313の処理が所定の繰り返し回数Nまで繰り返されたか否かを判定する。所定の繰り返し回数Nまで繰り返されていない場合(S207・No)、ステップS202に戻る。所定の繰り返し回数Nまで繰り返された場合(S207・Yes)、成膜処理を終了する。 At step 314, it is determined whether or not the processing from step S302 to step S313 has been repeated a predetermined number of times N. If the process has not been repeated a predetermined number of times N (S207, No), the process returns to step S202. If the film formation process has been repeated up to the predetermined number of times N (S207, Yes), the film formation process ends.
 図5のフローチャートに示す成膜方法によれば、AlXSiO膜を成膜することができる。換言すれば、AlO膜に金属原子X及びSiを導入することができる。また、繰り返し回数X,Y,Z,W,Nを制御することにより、膜中に含まれる金属原子X及びSiの濃度を制御することができる。 According to the film formation method shown in the flowchart of FIG. 5, an AlXSiO film can be formed. In other words, metal atoms X and Si can be introduced into the AlO film. Also, by controlling the number of repetitions X, Y, Z, W, N, the concentrations of the metal atoms X and Si contained in the film can be controlled.
 なお、各シーケンス間に余分な吸着を除くため、および、混合による気相反応を抑制するため、処理容器2内に成膜反応に対して不活性なガスを供給して、余剰なガスを処理容器2内からパージするためのパージ工程を行う構成であってもよい。 In addition, in order to remove excess adsorption between each sequence and to suppress the gas phase reaction due to mixing, a gas inert to the film formation reaction is supplied into the processing container 2 to process the excess gas. The configuration may be such that a purge process for purging from inside the container 2 is performed.
 また、ステップS306及びステップS312に示す酸化ガスを供給する工程を省略する構成であってもよい。 Further, the step of supplying the oxidizing gas shown in steps S306 and S312 may be omitted.
 図6は、ALDシーケンスにおけるガス供給の順序と膜中のSiの量を説明するグラフの一例である。縦軸は、Al、金属原子X、Siの合計に対するSiの含有割合(Si/(Al+X+Si)[atomic%])を示す。 FIG. 6 is an example of a graph explaining the order of gas supply and the amount of Si in the film in the ALD sequence. The vertical axis represents the content ratio of Si to the total of Al, metal atoms X, and Si (Si/(Al+X+Si) [atomic %]).
 (a)は、Al原子を含むガス(TMA)、酸化ガス(HO)、金属原子Xを含むガス、酸化ガス(HO)の順番でガス供給を繰り返してAlXO膜を成膜した例を示す。 In (a), an AlXO film was formed by repeating gas supply in the order of a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing metal atoms X, and an oxidizing gas (H 2 O). Give an example.
 (b)は、Al原子を含むガス(TMA)、酸化ガス(HO)、金属原子Xを含むガス、酸化ガス(HO)、Si原子を含むガス(Siガス)、酸化ガス(HO)の順番でガス供給を繰り返してAlXSiO膜を成膜した例を示す。 (b) is a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing metal atoms X, an oxidizing gas (H 2 O), a gas containing Si atoms (Si 2 H 6 gas), An example in which an AlXSiO film is formed by repeatedly supplying gases in the order of oxidizing gas (H 2 O) is shown.
 (c)は、Al原子を含むガス(TMA)、酸化ガス(HO)、金属原子Xを含むガス、酸化ガス(HO)、Si原子を含むガス(Siガス)の順番でガス供給を繰り返してAlXSiO膜を成膜した例を示す。 (c) is a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing metal atoms X, an oxidizing gas (H 2 O), and a gas containing Si atoms (Si 2 H 6 gas). An example in which an AlXSiO film is formed by repeating gas supply in order is shown.
 (d)は、Al原子を含むガス(TMA)、酸化ガス(HO)、金属原子Xを含むガス、Si原子を含むガス(Siガス)、酸化ガス(HO)の順番でガス供給を繰り返してAlXSiO膜を成膜した例を示す。 (d) is a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing metal atoms X, a gas containing Si atoms (Si 2 H 6 gas), and an oxidizing gas (H 2 O). An example in which an AlXSiO film is formed by repeating gas supply in order is shown.
 (e)は、Al原子を含むガス(TMA)、酸化ガス(HO)、Si原子を含むガス(Siガス)、酸化ガス(HO)、金属原子Xを含むガス、酸化ガス(HO)の順番でガス供給を繰り返してAlXSiO膜を成膜した例を示す。 (e) is a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing Si atoms (Si 2 H 6 gas), an oxidizing gas (H 2 O), a gas containing metal atoms X; An example in which an AlXSiO film is formed by repeatedly supplying gases in the order of oxidizing gas (H 2 O) is shown.
 (f)は、Al原子を含むガス(TMA)、酸化ガス(HO)、Si原子を含むガス(Siガス)、金属原子Xを含むガス、酸化ガス(HO)の順番でガス供給を繰り返してAlXSiO膜を成膜した例を示す。 (f) is a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing Si atoms (Si 2 H 6 gas), a gas containing metal atoms X, and an oxidizing gas (H 2 O). An example in which an AlXSiO film is formed by repeating gas supply in order is shown.
 (g)は、Al原子を含むガス(TMA)、Si原子を含むガス(Siガス)、酸化ガス(HO)、金属原子Xを含むガス、酸化ガス(HO)の順番でガス供給を繰り返してAlXSiO膜を成膜した例を示す。 (g) is a gas containing Al atoms (TMA), a gas containing Si atoms (Si 2 H 6 gas), an oxidizing gas (H 2 O), a gas containing metal atoms X, and an oxidizing gas (H 2 O). An example in which an AlXSiO film is formed by repeating gas supply in order is shown.
 (h)は、Al原子を含むガス(TMA)、酸化ガス(HO)、Si原子を含むガス(Siガス)、酸化ガス(HO)、金属原子Xを含むガス、酸化ガス(HO)、Si原子を含むガス(Siガス)、酸化ガス(HO)の順番でガス供給を繰り返してAlXSiO膜を成膜した例を示す。 (h) is a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing Si atoms (Si 2 H 6 gas), an oxidizing gas (H 2 O), a gas containing metal atoms X; An example in which an AlXSiO film is formed by repeatedly supplying an oxidizing gas (H 2 O), a gas containing Si atoms (Si 2 H 6 gas), and an oxidizing gas (H 2 O) in this order is shown.
 (i)は、Al原子を含むガス(TMA)、酸化ガス(HO)、Si原子を含むガス(Siガス)、金属原子Xを含むガス、酸化ガス(HO)、Si原子を含むガス(Siガス)の順番でガス供給を繰り返してAlXSiO膜を成膜した例を示す。 (i) is a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing Si atoms (Si 2 H 6 gas), a gas containing metal atoms X, an oxidizing gas (H 2 O), An example of forming an AlXSiO film by repeating gas supply in the order of gas containing Si atoms (Si 2 H 6 gas) is shown.
 (j)は、Al原子を含むガス(TMA)、Si原子を含むガス(Siガス)、酸化ガス(HO)、金属原子Xを含むガス、Si原子を含むガス(Siガス)、酸化ガス(HO)の順番でガス供給を繰り返してAlXSiO膜を成膜した例を示す。 (j) is a gas containing Al atoms (TMA), a gas containing Si atoms (Si 2 H 6 gas), an oxidizing gas (H 2 O), a gas containing metal atoms X, a gas containing Si atoms (Si 2 An example of forming an AlXSiO film by repeating gas supply in the order of H 6 gas) and oxidizing gas (H 2 O) is shown.
 (k)は、Al原子を含むガス(TMA)、酸化ガス(HO)、金属原子Xを含むガス、酸化ガス(HO)の順番でガス供給を繰り返してAlXO膜を成膜した後に、Si原子を含むガス(Siガス)、酸化ガス(HO)の順番でガス供給を繰り返してAlXSiO膜を成膜した例を示す。 In (k), an AlXO film was formed by repeating gas supply in the order of a gas containing Al atoms (TMA), an oxidizing gas (H 2 O), a gas containing metal atoms X, and an oxidizing gas (H 2 O). An example of forming an AlXSiO film by repeating gas supply in the order of gas containing Si atoms (Si 2 H 6 gas) and oxidizing gas (H 2 O) will be described later.
 また、(b)から(g)において、Al原子を含むガス(TMA)、金属原子Xを含むガス、Si原子を含むガス(Siガス)を供給するサイクル数の比を、6:1:1とする。また、(h)から(j)において、Al原子を含むガス(TMA)、金属原子Xを含むガス、Si原子を含むガス(Siガス)を供給するサイクル数の比を、6:1:7とする。 Further, in (b) to (g), the ratio of the number of cycles for supplying the gas containing Al atoms (TMA), the gas containing metal atoms X, and the gas containing Si atoms (Si 2 H 6 gas) was 6: 1:1. Further, in (h) to (j), the ratio of the number of cycles for supplying the gas containing Al atoms (TMA), the gas containing metal atoms X, and the gas containing Si atoms (Si 2 H 6 gas) was 6: 1:7.
 グラフの(k)に示すように、ALDサイクルでAlXO膜を成膜した後に、Si原子を含むガスを供給しても膜中のSiの濃度は増加しなかった。ALDサイクル中にSi原子を含むガスを供給することで、膜中にSiが取り込まれた(b,c,e,f,h,i参照)。 As shown in (k) of the graph, the concentration of Si in the film did not increase even when the gas containing Si atoms was supplied after the AlXO film was formed by the ALD cycle. Si was incorporated into the film by supplying a gas containing Si atoms during the ALD cycle (see b, c, e, f, h, i).
 また、グラフの(g)に示すように、Al原子を含むガスの後にSi原子を含むガスを供給した構成においては、膜中のSiの濃度は増加しなかった。グラフの(d)に示すように、金属原子Xを含むガスの後にSi原子を含むガスを供給した構成においては、膜中のSiの濃度は増加しなかった。 Also, as shown in graph (g), in the configuration in which the gas containing Si atoms was supplied after the gas containing Al atoms, the concentration of Si in the film did not increase. As shown in graph (d), in the configuration in which the gas containing Si atoms was supplied after the gas containing metal atoms X, the concentration of Si in the film did not increase.
 また、グラフの(j)に示すように、Al原子を含むガスの後にSi原子を含むガスを供給し、金属原子Xを含むガスの後にSi原子を含むガスを供給する構成においては、成膜レートが低く十分な膜厚が得られなかった。 Further, as shown in (j) of the graph, in the configuration in which the gas containing Si atoms is supplied after the gas containing Al atoms, and the gas containing Si atoms is supplied after the gas containing metal atoms X, the film formation The rate was low and a sufficient film thickness could not be obtained.
 これに対し、(e)(f)(h)(i)に示すように、Al原子を含むガスの供給とSi原子を含むガスの供給の間に酸化ガスの供給を挟むことにより、膜中にSiが取り込まれた。即ち、Al原子を含むガスを供給した後に、酸化ガスを供給し、その後にSi原子を含むガスを供給することにより、膜中にSiが取り込まれた。また、(b)(c)(h)(i)に示すように、金属原子Xを含むガスの供給とSi原子を含むガスの供給の間に酸化ガスの供給を挟むことにより、膜中にSiが取り込まれた。即ち、金属原子Xを含むガスを供給した後に、酸化ガスを供給し、その後にSi原子を含むガスを供給することにより、膜中にSiが取り込まれた。 On the other hand, as shown in (e), (f), (h), and (i), by interposing the supply of the oxidizing gas between the supply of the gas containing Al atoms and the supply of the gas containing Si atoms, Si was taken in. That is, Si was incorporated into the film by supplying the gas containing Al atoms, then supplying the oxidizing gas, and then supplying the gas containing Si atoms. In addition, as shown in (b), (c), (h), and (i), by interposing the supply of the oxidizing gas between the supply of the gas containing the metal atom X and the supply of the gas containing the Si atom, Si was incorporated. That is, Si was incorporated into the film by supplying the gas containing the metal atoms X, then supplying the oxidizing gas, and then supplying the gas containing the Si atoms.
 また、(b)(c)(e)(f)と(h)(i)とを対比して示すように、Al原子を含むガス金属原子Xを含むガス、Si原子を含むガスを供給するサイクル数の比を調整することにより、膜中のSiの濃度を調整することができる。 Also, as shown in (b), (c), (e), (f) and (h) (i) in comparison, a gas containing Al atoms and a gas containing metal atoms X and a gas containing Si atoms are supplied. By adjusting the cycle number ratio, the concentration of Si in the film can be adjusted.
 図7は、エッチング選択比を説明するグラフである。横軸は、Siの含有割合(Si/(Al+X+Si)[atomic%])を示し、縦軸は、ドライエッチングによるダメージを受けた膜に対するウェットエッチングレート/ドライエッチングによるダメージなしの膜に対するウェットエッチングレートのエッチングレート比である。 FIG. 7 is a graph explaining the etching selectivity. The horizontal axis indicates the Si content ratio (Si/(Al+X+Si) [atomic %]), and the vertical axis indicates the wet etching rate for a film damaged by dry etching/the wet etching rate for a film not damaged by dry etching. is the etching rate ratio of
 図7に示すように、膜中のSiの濃度を増加させることで、エッチングレート比を大きくすることができる。 As shown in FIG. 7, the etching rate ratio can be increased by increasing the concentration of Si in the film.
 即ち、図2Fに示すように、ステップS109に示すドライエッチングの際、イオンまたはラジカルが引き込まれることにより、エッチングストップ膜110の上面は、ダメージ部111として、ダメージが生じている。一方、エッチングストップ膜110の部分112及びエッチングストップ膜130の側壁132sはダメージを受けていない。 That is, as shown in FIG. 2F, the upper surface of the etching stop film 110 is damaged as a damaged portion 111 due to the attraction of ions or radicals during the dry etching shown in step S109. On the other hand, the portion 112 of the etching stop film 110 and the sidewall 132s of the etching stop film 130 are not damaged.
 このため、ステップS110のウェットエッチングにおいて、エッチングストップ膜110を深さ方向にエッチングする速度は、エッチングストップ膜130の側壁132sをエッチングする速度よりも早くすることができる。 Therefore, in the wet etching of step S110, the speed of etching the etching stop film 110 in the depth direction can be faster than the speed of etching the side walls 132s of the etching stop film 130.
 これにより、凹部150の側壁に凹凸が形成されることを抑制することができる。また、凹部150に金属膜を埋め込む際の埋め込み性を向上させることができる。 Thereby, it is possible to suppress the formation of unevenness on the side wall of the recess 150 . In addition, it is possible to improve the burying property when burying the metal film in the concave portion 150 .
 本開示の実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。また、上記の実施形態は、添付の特許請求の範囲、及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments of the present disclosure should be considered illustrative and not restrictive in all respects. Also, the above-described embodiments may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the appended claims.
 尚、本願は、2021年9月22日に出願した日本国特許出願2021-154453号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2021-154453 filed on September 22, 2021, and the entire contents of these Japanese Patent Applications are incorporated herein by reference.
W   基板
100 ベース
101 絶縁層
102 導電層
110 エッチングストップ膜
120 絶縁膜
130 エッチングストップ膜
140 低誘電体膜
W substrate 100 base 101 insulating layer 102 conductive layer 110 etching stop film 120 insulating film 130 etching stop film 140 low dielectric film

Claims (3)

  1.  エッチングストップ膜としてSiを導入したAlO膜を成膜する工程と、
     前記エッチングストップ膜の上に被エッチング膜を成膜する工程と、
     前記被エッチング膜をドライエッチングする工程と、
     前記エッチングストップ膜をウェットエッチングする工程と、を有する、
    半導体装置の製造方法。
    forming an AlO film into which Si is introduced as an etching stop film;
    forming a film to be etched on the etching stop film;
    dry etching the film to be etched;
    and wet etching the etching stop film.
    A method of manufacturing a semiconductor device.
  2.  前記Siを導入したAlO膜を成膜する工程は、
     Alを含むガスを供給して基板にAlを吸着させる工程と、
     Oを含むガスを供給して前記基板に吸着した前記Alを酸化させる工程と、
     Siを含むガスを供給して前記基板にSiを吸着させる工程と、
     前記工程を繰り返して酸化膜を成膜する工程と、を含み、
     前記Siを吸着させる工程は、前記酸化させる工程の後に行われる、
    請求項1に記載の半導体装置の製造方法。
    The step of forming the Si-introduced AlO film comprises:
    a step of supplying a gas containing Al to cause the substrate to adsorb Al;
    a step of supplying a gas containing O to oxidize the Al adsorbed on the substrate;
    a step of supplying a gas containing Si to cause the substrate to adsorb Si;
    a step of forming an oxide film by repeating the above steps,
    The step of adsorbing Si is performed after the step of oxidizing,
    2. The method of manufacturing a semiconductor device according to claim 1.
  3.  前記Siを導入したAlO膜を成膜する工程は、
     低誘電率の金属原子を含むガスを供給して前記基板に金属原子を吸着させる工程を更に含み、
     前記Siを吸着させる工程は、前記酸化させる工程の後に行われる、
    請求項2に記載の半導体装置の製造方法。
    The step of forming the Si-introduced AlO film comprises:
    further comprising supplying a gas containing metal atoms with a low dielectric constant to adsorb the metal atoms on the substrate;
    The step of adsorbing Si is performed after the step of oxidizing,
    3. The method of manufacturing a semiconductor device according to claim 2.
PCT/JP2022/034221 2021-09-22 2022-09-13 Method for manufacturing semiconductor device WO2023048019A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021154453 2021-09-22
JP2021-154453 2021-09-22

Publications (1)

Publication Number Publication Date
WO2023048019A1 true WO2023048019A1 (en) 2023-03-30

Family

ID=85720675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034221 WO2023048019A1 (en) 2021-09-22 2022-09-13 Method for manufacturing semiconductor device

Country Status (1)

Country Link
WO (1) WO2023048019A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318174A (en) * 2002-04-19 2003-11-07 Sony Corp Thin film forming method using atomic layer evaporation method
US20060125102A1 (en) * 2004-12-15 2006-06-15 Zhen-Cheng Wu Back end of line integration scheme
US20130171810A1 (en) * 2011-12-30 2013-07-04 Snu R&Db Foundation Methods of fabricating semiconductor device using high-k layer for spacer etch stop and related devices
US20180096886A1 (en) * 2016-09-30 2018-04-05 Lam Research Corporation Composite dielectric interface layers for interconnect structures
JP2018085502A (en) * 2016-11-14 2018-05-31 ラム リサーチ コーポレーションLam Research Corporation Deposition of aluminum oxide etch stop layers
US20200006083A1 (en) * 2018-06-29 2020-01-02 Taiwan Semiconductor Manufacturing Co., Ltd. Selective Removal of an Etching Stop Layer for Improving Overlay Shift Tolerance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318174A (en) * 2002-04-19 2003-11-07 Sony Corp Thin film forming method using atomic layer evaporation method
US20060125102A1 (en) * 2004-12-15 2006-06-15 Zhen-Cheng Wu Back end of line integration scheme
US20130171810A1 (en) * 2011-12-30 2013-07-04 Snu R&Db Foundation Methods of fabricating semiconductor device using high-k layer for spacer etch stop and related devices
US20180096886A1 (en) * 2016-09-30 2018-04-05 Lam Research Corporation Composite dielectric interface layers for interconnect structures
JP2018085502A (en) * 2016-11-14 2018-05-31 ラム リサーチ コーポレーションLam Research Corporation Deposition of aluminum oxide etch stop layers
US20200006083A1 (en) * 2018-06-29 2020-01-02 Taiwan Semiconductor Manufacturing Co., Ltd. Selective Removal of an Etching Stop Layer for Improving Overlay Shift Tolerance

Similar Documents

Publication Publication Date Title
US9171734B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
US7915179B2 (en) Insulating film forming method and substrate processing method
JP6750534B2 (en) Film deposition equipment
US20090029564A1 (en) Plasma treatment apparatus and plasma treatment method
US9865454B2 (en) Substrate processing apparatus and substrate processing method
US11145518B2 (en) Method and apparatus for etching target object
JP2012216631A (en) Plasma nitriding method
KR102036462B1 (en) Film forming apparatus
US11996296B2 (en) Substrate processing method and substrate processing system
WO2012115043A1 (en) Pattern-forming method and method for manufacturing semiconductor device
US20210025060A1 (en) Apparatus for processing substrate
JP2008235611A (en) Plasma processing equipment and method for processing plasma
WO2022070909A1 (en) Film deposition method and film deposition device
WO2023048019A1 (en) Method for manufacturing semiconductor device
KR20220058636A (en) film formation method
US11081360B2 (en) Method for processing workpiece
WO2022059538A1 (en) Film formation method and film formation device
KR20180124754A (en) Etching method
CN112740376A (en) Method for manufacturing semiconductor device, substrate processing apparatus, and program
WO2023286673A1 (en) Film forming method and plasma processing apparatus
WO2024090273A1 (en) Film formation method and film formation device
WO2024122331A1 (en) Film formation method and film formation device
WO2024070696A1 (en) Film formation method and film formation device
WO2023176535A1 (en) Film forming method and film forming apparatus
WO2022176815A1 (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE