WO2022070909A1 - Film deposition method and film deposition device - Google Patents

Film deposition method and film deposition device Download PDF

Info

Publication number
WO2022070909A1
WO2022070909A1 PCT/JP2021/033864 JP2021033864W WO2022070909A1 WO 2022070909 A1 WO2022070909 A1 WO 2022070909A1 JP 2021033864 W JP2021033864 W JP 2021033864W WO 2022070909 A1 WO2022070909 A1 WO 2022070909A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas
substrate
region
target
Prior art date
Application number
PCT/JP2021/033864
Other languages
French (fr)
Japanese (ja)
Inventor
有美子 河野
進一 池
秀司 東雲
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2022070909A1 publication Critical patent/WO2022070909A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • This disclosure relates to a film forming method and a film forming apparatus.
  • Patent Documents 1 and 2 a self-assembled monolayer (SELf-Assembled Monolayer: SAM) is used to form a target film on the rest of the substrate surface while inhibiting the formation of the target film on a part of the substrate surface.
  • SAM self-assembled monolayer
  • Non-Patent Document 1 describes atomic layer etching (ALE) in which hydrofluoric acid and TMA (trimethylaluminum) are alternately supplied to the surface of an aluminum oxide film to etch the surface of the aluminum oxide film. Have been described.
  • ALE atomic layer etching
  • One aspect of the present disclosure provides a technique for inhibiting the formation of a target membrane using SAM and then selectively removing an unnecessary portion of the target membrane.
  • the film forming method of one aspect of the present disclosure includes the following (A) to (D).
  • a substrate having a first region on which the first film is exposed and a second region on which the second film formed of a material different from the first film is exposed is prepared.
  • An organic compound containing fluorine, which is a raw material for a self-assembled monolayer, is supplied to the surface of the substrate, and the second region is selectively selected among the first region and the second region. To form the self-assembled monolayer.
  • C Using the self-assembled monolayer, the target membrane is formed in the first region while inhibiting the formation of the target membrane in the second region.
  • a gas containing H2O is supplied to the surface of the substrate, and the end portion of the target film protruding from the first region is etched.
  • unnecessary parts of the target membrane can be selectively removed.
  • FIG. 1 is a flowchart showing a film forming method according to an embodiment.
  • FIG. 2A is a diagram showing step S1 of the substrate according to the embodiment.
  • FIG. 2B is a diagram showing step S5 of the substrate according to the embodiment.
  • FIG. 2C is a diagram showing step S6 of the substrate according to the embodiment.
  • FIG. 2D is a diagram showing an example of step S7 of the substrate according to the embodiment.
  • FIG. 3 is a flowchart showing an example of the subroutine in step S6.
  • FIG. 4 is a flowchart showing an example of the subroutine in step S7.
  • FIG. 5A is a diagram showing step S1 of the substrate according to the first modification.
  • FIG. 5B is a diagram showing step S5 of the substrate according to the first modification.
  • FIG. 5A is a diagram showing step S1 of the substrate according to the first modification.
  • FIG. 5B is a diagram showing step S5 of the substrate according to the first modification.
  • FIG. 5C is a diagram showing step S6 of the substrate according to the first modification.
  • FIG. 5D is a diagram showing an example of step S7 of the substrate according to the first modification.
  • FIG. 6A is a diagram showing step S1 of the substrate according to the second modification.
  • FIG. 6B is a diagram showing step S5 of the substrate according to the second modification.
  • FIG. 6C is a diagram showing step S6 of the substrate according to the second modification.
  • FIG. 6D is a diagram showing an example of step S7 of the substrate according to the second modification.
  • FIG. 7 is a plan view showing a film forming apparatus according to an embodiment.
  • FIG. 8 is a cross-sectional view showing an example of the first processing unit of FIG. 7.
  • FIG. 9 is an SEM photograph of a cross section of the substrate obtained in Example 5.
  • the film forming method includes, for example, steps S1 to S8 shown in FIG.
  • the film forming method may include at least steps S1 and S5 to S8, and may not include, for example, steps S2 to S4. Further, the film forming method may include steps other than steps S1 to S8 shown in FIG.
  • the substrate 1 is prepared as shown in FIG. 2A.
  • Preparing the substrate 1 includes, for example, carrying the carrier C into the film forming apparatus 100 shown in FIG. 7.
  • the carrier C accommodates a plurality of substrates 1.
  • the substrate 1 has a base substrate 10 such as a silicon wafer or a compound semiconductor wafer.
  • the compound semiconductor wafer is not particularly limited, and is, for example, a GaAs wafer, a SiC wafer, a GaN wafer, or an InP wafer.
  • the substrate 1 has an insulating film 11 formed on the base substrate 10.
  • a conductive film or the like may be formed between the insulating film 11 and the base substrate 10.
  • the insulating film 11 is, for example, an interlayer insulating film.
  • the interlayer insulating film is preferably a low dielectric constant (Low-k) film.
  • the insulating film 11 is not particularly limited, but is, for example, a SiO film, a SiN film, a SiOC film, a SiON film, or a SiOCN film.
  • the SiO film means a film containing silicon (Si) and oxygen (O).
  • the atomic ratio of Si to O in the SiO film is not limited to 1: 1. The same applies to the SiN film, the SiOC film, the SiON film, and the SiOCN film.
  • the insulating film 11 has a recess on the surface 1a of the substrate 1.
  • the recess is a trench, contact hole or via hole.
  • the substrate 1 has a metal film 12 that is filled inside the recess.
  • the metal film 12 is not particularly limited, but is, for example, a Cu film, a Co film, a Ru film, or a W film.
  • the substrate 1 further has a barrier membrane 13 formed along the recesses.
  • the barrier film 13 suppresses metal diffusion from the metal film 12 to the insulating film 11.
  • the barrier film 13 is not particularly limited, but is, for example, a TaN film or a TiN film.
  • the TaN film means a film containing tantalum (Ta) and nitrogen (N).
  • the atomic ratio of Ta to N in the TaN film is not limited to 1: 1. The same applies to the TiN film.
  • Table 1 summarizes specific examples of the insulating film 11, the metal film 12, and the barrier film 13.
  • the combination of the insulating film 11, the metal film 12, and the barrier film 13 is not particularly limited.
  • the substrate 1 has a first region A1 in which the insulating film 11 is exposed and a second region A2 in which the metal film 12 is exposed on the surface 1a thereof. Further, the substrate 1 may further have a third region A3 on the surface 1a on which the barrier membrane 13 is exposed. The third region A3 is formed between the first region A1 and the second region A2.
  • the structure of the substrate 1 is not limited to the structure shown in FIG. 2A, as will be described later.
  • step S2 of FIG. 1 the surface 1a of the substrate 1 is cleaned.
  • a reducing gas such as H 2 gas is supplied to the surface 1a of the substrate 1 to remove the natural oxide film formed on the surface 1a of the substrate 1.
  • the natural oxide film is formed on the surface of the metal film 12, for example.
  • the reducing gas may be plasmatized. Further, the reducing gas may be used by mixing with a rare gas such as Ar gas.
  • step S2 An example of the processing conditions in step S2 is shown below.
  • H2 gas flow rate 500 sccm - 2000 sccm
  • Ar gas flow rate 300 sccm-6000 sccm
  • Ratio of H 2 gas to the mixed gas of H 2 gas and Ar gas 30% by volume to 90% by volume
  • Power frequency for plasma generation 40MHz
  • Power for plasma generation 200W
  • Processing time 10 sec to 30 sec
  • Processing temperature (board temperature) 120 ° C
  • Processing pressure 266 Pa.
  • step S3 of FIG. 1 the surface 1a of the substrate 1 is oxidized.
  • a gas containing oxygen such as O 2 gas is supplied to the surface 1a of the substrate 1 to appropriately oxidize the surface of the metal film 12. Since the natural oxide film has been removed in advance, the density of oxygen atoms becomes the desired density.
  • step S5 described later a dense self-assembled monolayer (SAM) can be formed on the surface of the metal film 12.
  • step S3 An example of the processing conditions in step S3 is shown below.
  • O 2 gas flow rate 100 sccm-2000 sccm Processing time: 300 sec to 900 sec (preferably 600 sec) Processing temperature: 120 ° C Processing pressure: 200 Pa to 1200 Pa.
  • step S4 of FIG. 1 IPA (isopropanol Alcohol) gas is supplied to the surface 1a of the substrate 1.
  • IPA gas flow rate 10 sccm-200 sccm
  • Processing time 0 sec to 900 sec
  • Processing temperature 150 ° C
  • Processing pressure 300Pa-400Pa
  • the processing time may be 0 sec, that is, step S4 may be omitted.
  • an organic compound containing fluorine which is a raw material of SAM 17 is supplied to the surface 1a of the substrate 1, and as shown in FIG. 2B, in the first region A1 and the second region A2. Then, SAM17 is selectively formed in the second region A2.
  • the raw material of SAM17 is not particularly limited, but is, for example, a thiol-based compound.
  • the thiol-based compound has hydrogenated sulfur in the head group and is represented by the general formula "R-SH".
  • R is, for example, a hydrocarbon group in which at least a part of hydrogen is replaced with fluorine.
  • Specific examples of thiol compounds include CF 3 (CF 2 ) 5 CH 2 CH 2 SH (1H, 1H, 2H, 2H-perfluorooctane thiol: PFOT), and CF 3 (CF 2 ) 7 CH 2 CH 2 SH. (1H, 1H, 2H, 2H-perfluorodecanethiol: PFDT) can be mentioned.
  • Thiol compounds are more easily chemisorbed on the conductive film than the insulating film.
  • the SAM 17 is selectively formed in the second region A2 in the first region A1 and the second region A2. Will be done.
  • Examples of the conductive film that chemically adsorbs a thiol compound include a nitride film such as a TaN film in addition to a metal film. Therefore, the SAM 17 is formed not only in the second region A2 but also in the third region A3. However, the thiol compound is more easily chemically adsorbed to the metal film than the nitride film. Therefore, the SAM 17 is more likely to be formed in the second region A2 than in the third region A3.
  • the raw material of SAM17 is not limited to thiol compounds.
  • the raw material of SAM17 may be a phosphonic acid-based compound.
  • R is, for example, a hydrocarbon group in which at least a part of hydrogen is replaced with fluorine.
  • step S5 An example of the processing conditions in step S5 is shown below.
  • PFOT gas flow rate 80 sccm-200 sccm
  • Processing time 90 sec to 900 sec (preferably 300 sec)
  • Processing temperature 150 ° C
  • Processing pressure 200Pa-4000Pa.
  • the target film 18 is formed in the first region A1 while inhibiting the formation of the target film 18 in the second region A2 using SAM17.
  • the target film 18 is, for example, an insulating film, and is formed on the insulating film 11.
  • the SAM 17 is formed not only in the second region A2 but also in the third region A3.
  • the target film 18 is formed in the first region A1 while inhibiting the formation of the target film 18 in the second region A2 and the third region A3 using the SAM 17.
  • the target film 18 is not particularly limited, but is, for example, an AlO film, a SiO film, a SiN film, a ZrO film, an HfO film, or the like.
  • the AlO film means a film containing aluminum (Al) and oxygen (O).
  • the atomic ratio of Al to O in the AlO film is not limited to 1: 1.
  • the target film 18 is formed by a CVD (Chemical Vapor Deposition) method or an ALD (Atomic Layer Deposition) method.
  • an Al-containing gas such as TMA (trimethylaluminum) gas and an oxidizing gas such as water vapor ( H2O gas) are alternately supplied to the surface 1a of the substrate 1. ..
  • the method for forming an AlO film includes, for example, steps S61 to S65 shown in FIG.
  • step S61 the Al-containing gas is supplied to the surface 1a of the substrate 1.
  • step S62 an inert gas such as Ar gas is supplied to the surface 1a of the substrate 1 to purge the excess Al-containing gas that has not been chemically adsorbed on the surface 1a of the substrate 1.
  • step S63 the oxidation gas is supplied to the surface 1a of the substrate 1.
  • step S64 an inert gas such as Ar gas is supplied to the surface 1a of the substrate 1 to purge the excess oxidizing gas that has not been chemically adsorbed on the surface 1a of the substrate 1.
  • the order of steps S61 and S63 may be reversed.
  • step S65 it is checked whether or not steps S61 to S64 have been executed a set number of times. If the number of executions has not reached the set number of times (steps S65, NO), steps S61 to S64 are executed again. On the other hand, when the number of times of implementation has reached the set number of times (step S65, YES), the film thickness of the AlO film has reached the target film thickness, so the current process is terminated.
  • the number of times of setting in step S65 is set according to the target film thickness of the AlO film, and is, for example, 20 to 80 times.
  • step S6 An example of the processing conditions in step S6 is shown below.
  • TMA gas flow rate 50 sccm Processing time: 0.1 sec to 2 sec -Step S62 Ar gas flow rate: 1000 sccm-8000 sccm Processing time: 0.5 sec to 2 sec -Step S63 H2 O gas flow rate: 50 sccm- 200 sccm Processing time: 0.5 sec to 2 sec -Step S64 Ar gas flow rate: 1000 sccm-8000 sccm Processing time: 0.5 sec to 5 sec -Processing conditions common to steps S61 to S64 Processing temperature: 100 ° C to 250 ° C Processing pressure: 133 Pa to 1200 Pa.
  • the SAM 17 inhibits the formation of the target film 18, but the blocking performance of the SAM 17 is not perfect, and the target film 18 protrudes laterally from the first region A1.
  • the width W of the protruding portion, that is, the unnecessary portion is, for example, about 2 nm to 10 nm.
  • step S7 a gas containing H2O is supplied to the surface 1a of the substrate 1.
  • Hydrofluoric acid is produced by the reaction between the gas containing H2O and SAM17.
  • the target film 18 can be etched with the generated hydrofluoric acid.
  • the product produced by etching is volatile, vaporized and exhausted.
  • the target film 18 is, for example, an AlO film, a SiO film, a SiN film, a ZrO film, an HfO film, or the like. All of these films can be etched with hydrofluoric acid.
  • hydrofluoric acid is produced by the reaction of a gas containing H2O with SAM17. Therefore, hydrofluoric acid is generated only in the vicinity of SAM17. Therefore, the unnecessary portion protruding from the first region A1 of the target film 18 is etched, whereas the necessary portion formed in the first region A1 of the target film 18 is not etched. Therefore, unnecessary portions of the target film 18 can be selectively removed.
  • Non-Patent Document 1 describes atomic layer etching (ALE) in which hydrofluoric acid and TMA are alternately supplied to the surface of an ALO film to etch the surface of the ALO film.
  • ALE atomic layer etching
  • the processing temperature is high (for example, 300 ° C. or higher, preferably 350 ° C. or higher), and the substrate 1 may be damaged. Specific examples of damage include fluorination or alloying of the metal film 12. The alloying occurs by the reaction between the metal contained in the raw material gas (for example, TMA) of the target film 18 and the metal film 12.
  • the unnecessary portion protruding from the first region A1 of the target film 18 is etched, whereas the necessary portion formed in the first region A1 of the target film 18 is Not etched. Therefore, unnecessary portions of the target film 18 can be selectively removed. As a result, the wiring resistance of the substrate 1 can be reduced. Further, in step S7 of the present embodiment, the processing temperature is, for example, 200 ° C. or lower. Therefore, it is possible to suppress the occurrence of damage to the substrate 1.
  • Step S7 in FIG. 1 includes, for example, steps S71 to S73 shown in FIG.
  • a gas containing H 2 O (a gas containing H 2 O) is supplied to the surface 1a of the substrate 1.
  • the H 2 O-containing gas may contain only the H 2 O gas, or may contain the H 2 O gas and the carrier gas. Further, the H 2 O-containing gas may contain an organic acid gas such as a carboxylic acid in addition to the H 2 O gas.
  • a plasmatized gas (plasmaized gas) is supplied to the surface 1a of the substrate 1.
  • the plasmatized gas comprises at least one selected from, for example, H 2 gas, Ar gas, N 2 gas, and NH 3 gas.
  • the supply of plasmatized gas can decompose SAM17 and promote the production of hydrofluoric acid. Since hydrofluoric acid is acidic, the plasmatized gas is preferably a reducing gas or an inert gas so that the hydrofluoric acid is not neutralized.
  • the order of steps S71 and S72 may be reversed.
  • step S73 it is checked whether or not steps S71 to S72 have been executed a set number of times. If the number of executions has not reached the set number of times (steps S73, NO), steps S71 to S72 are executed again. On the other hand, when the number of executions has reached the set number of times (step S73, YES), the current process is terminated.
  • the H2O -containing gas and the plasmatized gas are supplied in order and are not supplied at the same time, but may be supplied at the same time.
  • the supply of plasmatized gas can decompose SAM17 and promote the production of hydrofluoric acid.
  • the H 2 O-containing gas and the plasmatized gas are supplied in order, the H 2 O-containing gas can be prevented from being plasmatized, the generation of oxygen plasma can be prevented, and the oxidation of the surface 1a of the substrate 1 can be prevented.
  • the number of times of setting in step S73 may be once, but is preferably a plurality of times.
  • the decomposition of SAM 17 can be gradually promoted, hydrofluoric acid can be generated over a long period of time, and the width W of an unnecessary portion can be narrowed.
  • the number of times of setting in step S73 is, for example, 5 to 50.
  • step S7 An example of the processing conditions in step S7 is shown below.
  • -Step S71 H2 O gas flow rate 50 sccm- 200 sccm Processing time: 1 sec to 30 sec -Step S72
  • Flow rate of H2 gas 200 sccm-3000 sccm
  • Ar gas flow rate 100 sccm-6000 sccm Ratio of H 2 gas to the mixed gas of H 2 gas and Ar gas: 20% by volume to 90% by volume
  • Power frequency for plasma generation 40MHz
  • Power for plasma generation 100-600W
  • Processing time 10 sec to 30 sec -Processing conditions common to steps S71 to S72 Processing temperature: 120 ° C. Processing pressure: 266 Pa.
  • step S7 as shown in FIG. 2D, most of the SAM 17 may be decomposed and removed. After step S7, the SAM 17 does not have to remain on the surface 1a of the substrate 1.
  • step S7 may include forming and replenishing SAM17 in the first region A1 on the way.
  • SAM17 hydrofluoric acid can be generated over a long period of time, the width W of an unnecessary portion can be narrowed, and the wiring resistance of the substrate 1 can be reduced. In that case, if O 2 gas or H 2 O gas is supplied before the formation of SAM 17, more SAM 17 can be formed.
  • step S8 of FIG. 1 it is checked whether or not steps S3 to S7 have been executed a set number of times. If the number of executions has not reached the set number of times (steps S8, NO), steps S3 to S7 are executed again. On the other hand, when the number of times of execution has reached the set number of times (step S8, YES), the film thickness of the AlO film has reached the final target film thickness, so the current process is terminated.
  • the number of times of setting in step S8 is set according to the final target film thickness of the AlO film.
  • the number of times of setting in step S8 may be once, but is preferably a plurality of times. If the formation of the AlO film is carried out in a plurality of times, the width W of the unnecessary portion of the target film 18 can be narrowed in each step S6 as compared with the case where the formation of the AlO film is carried out once. The narrower the width W, the easier it is to remove unnecessary parts. Therefore, if the formation of the AlO film is carried out in a plurality of times, the width W of the unnecessary portion of the target film 18 finally obtained can be narrowed as compared with the case where the formation is carried out once, and the wiring resistance of the substrate 1 can be narrowed. Can be reduced.
  • step S3 may be performed after the n (n is a natural number of 1 or more) th step S7 and before the n + 1th step S5.
  • the re-execution of step S3 is effective when the plasmalized H2 gas in step S7 is supplied to the surface 1a of the substrate 1.
  • the surface of the metal film 12 is reduced as in step S2.
  • step S3 is carried out after step S7, the surface of the metal film 12 can be appropriately oxidized. As a result, in the subsequent step S5, a dense SAM 17 can be formed on the surface of the metal film 12.
  • the substrate 1 of this modification further has a fourth region A4 on the surface 1a on which the liner film 14 is exposed.
  • the fourth region A4 is formed between the second region A2 and the third region A3.
  • the liner film 14 is formed on the barrier film 13 and supports the formation of the metal film 12.
  • the metal film 12 is formed on the liner film 14.
  • the liner film 14 is not particularly limited, but is, for example, a Co film or a Ru film.
  • Table 2 summarizes specific examples of the insulating film 11, the metal film 12, the barrier film 13, and the liner film 14.
  • the combination of the insulating film 11, the metal film 12, the barrier film 13, and the liner film 14 is not particularly limited.
  • the raw material of SAM 17 is more easily chemically adsorbed to the liner film 14 than the insulating film 11.
  • step S5 of this modification as shown in FIG. 5B, in the first region A1, the second region A2, the third region A3, and the fourth region A4, the second region A2 and the third region A3 And, the organic compound is selectively chemically adsorbed to the fourth region A4 to form SAM17. SAM17 is not formed in the first region A1.
  • step S6 of this modification as shown in FIG. 5C, SAM17 is used to inhibit the formation of the target film 18 in the second region A2, the third region A3, and the fourth region A4, and the first region A1 is formed.
  • the target film 18 is formed.
  • the SAM 17 inhibits the formation of the target film 18, but the blocking performance of the SAM 17 is not perfect, and the target film 18 protrudes laterally from the first region A1.
  • step S7 of this modification as shown in FIG. 5D, a gas containing H 2 O is supplied to the surface 1a of the substrate 1, and an unnecessary portion protruding from the first region A1 of the target film 18 is removed. Etch. Therefore, unnecessary portions of the target film 18 can be selectively removed.
  • the metal film 12 of the substrate 1 of this modification is a cap film.
  • a second metal film 15 made of a metal different from the metal film 12 is embedded in the recess of the insulating film 11.
  • a metal film 12 is formed on the second metal film 15, and the metal film 12 covers the second metal film 15.
  • Table 3 summarizes specific examples of the insulating film 11, the metal film (cap film) 12, the barrier film 13, the liner film 14, and the second metal film 15.
  • the combination of the insulating film 11, the metal film 12, the barrier film 13, the liner film 14, and the second metal film 15 is not particularly limited.
  • step S5 of this modification as shown in FIG. 6B, in the first region A1, the second region A2, the third region A3, and the fourth region A4, the second region A2, the third region A3, and the fourth region A4.
  • the organic compound is selectively chemically adsorbed on the region A4 to form SAM17.
  • SAM17 is not formed in the first region A1.
  • step S6 of this modification as shown in FIG. 6C, SAM17 is used to inhibit the formation of the target film 18 in the second region A2, the third region A3, and the fourth region A4, and the first region A1 is formed.
  • the target film 18 is formed.
  • the SAM 17 inhibits the formation of the target film 18, but the blocking performance of the SAM 17 is not perfect, and the target film 18 protrudes laterally from the first region A1.
  • step S7 of this modification as shown in FIG. 6D, a gas containing H 2 O is supplied to the surface 1a of the substrate 1, and an unnecessary portion protruding from the first region A1 of the target film 18 is removed. Etch. Therefore, unnecessary portions of the target film 18 can be selectively removed.
  • the insulating film 11 corresponds to the first film and the metal film 12 corresponds to the second film, but the first film and the second film.
  • the combination of is not particularly limited.
  • Table 4 shows candidates for combinations of the first film, the second film, and the target film 18 when the raw material of SAM 17 is a thiol-based compound.
  • Table 5 shows candidates for combinations of the first film, the second film, and the target film 18 when the raw material of SAM 17 is a phosphonic acid compound.
  • the first film is an insulating film
  • the second film is a conductive film
  • the target film 18 formed on the first film is an insulating film.
  • the film forming apparatus 100 includes a first processing unit 200A, a second processing unit 200B, a third processing unit 200C, a transport unit 400, and a control unit 500.
  • the first processing unit 200A carries out steps S2 to S3 of FIG.
  • the second processing unit 200B carries out steps S4 to S5 of FIG.
  • the third processing unit 200C carries out steps S6 to S7 of FIG.
  • the first processing unit 200A, the second processing unit 200B, and the third processing unit 200C have similar structures. Therefore, it is possible to carry out all of steps S2 to S7 in FIG. 1 only by the first processing unit 200A.
  • the transport unit 400 transports the substrate 1 to the first processing unit 200A, the second processing unit 200B, and the third processing unit 200C.
  • the control unit 500 controls the first processing unit 200A, the second processing unit 200B, the third processing unit 200C, and the transport unit 400.
  • the transport unit 400 has a first transport chamber 401 and a first transport mechanism 402.
  • the internal atmosphere of the first transport chamber 401 is an atmospheric atmosphere.
  • a first transport mechanism 402 is provided inside the first transport chamber 401.
  • the first transport mechanism 402 includes an arm 403 that holds the substrate 1 and travels along the rail 404.
  • the rail 404 extends in the arrangement direction of the carriers C.
  • the transport unit 400 has a second transport chamber 411 and a second transport mechanism 412.
  • the internal atmosphere of the second transport chamber 411 is a vacuum atmosphere.
  • a second transport mechanism 412 is provided inside the second transport chamber 411.
  • the second transfer mechanism 412 includes an arm 413 that holds the substrate 1, and the arm 413 is arranged so as to be movable in the vertical direction and the horizontal direction and rotatably around the vertical axis.
  • the first processing unit 200A, the second processing unit 200B, and the third processing unit 200C are connected to the second transfer chamber 411 via different gate valves G.
  • the transport unit 400 has a load lock chamber 421 between the first transport chamber 401 and the second transport chamber 411.
  • the internal atmosphere of the load lock chamber 421 is switched between a vacuum atmosphere and an atmospheric atmosphere by a pressure regulating mechanism (not shown).
  • a pressure regulating mechanism not shown
  • a gate valve G is provided between the first transport chamber 401 and the load lock chamber 421, and between the second transport chamber 411 and the load lock chamber 421.
  • the control unit 500 is, for example, a computer, and has a CPU (Central Processing Unit) 501 and a storage medium 502 such as a memory.
  • the storage medium 502 stores programs that control various processes executed by the film forming apparatus 100.
  • the control unit 500 controls the operation of the film forming apparatus 100 by causing the CPU 501 to execute the program stored in the storage medium 502.
  • the control unit 500 controls the first processing unit 200A, the second processing unit 200B, the third processing unit 200C, and the transport unit 400, and implements the above film forming method.
  • the first transport mechanism 402 takes out the substrate 1 from the carrier C, conveys the taken out substrate 1 to the load lock chamber 421, and exits from the load lock chamber 421.
  • the internal atmosphere of the load lock chamber 421 is switched from the atmospheric atmosphere to the vacuum atmosphere.
  • the second transfer mechanism 412 takes out the substrate 1 from the load lock chamber 421 and conveys the taken out substrate 1 to the first processing unit 200A.
  • the first processing unit 200A carries out steps S2 to S3.
  • the second transfer mechanism 412 takes out the substrate 1 from the first processing unit 200A and conveys the taken out substrate 1 to the second processing unit 200B.
  • the surrounding atmosphere of the substrate 1 can be maintained in a vacuum atmosphere, and oxidation of the substrate 1 can be suppressed.
  • the second processing unit 200B carries out steps S4 to S5.
  • the second transfer mechanism 412 takes out the substrate 1 from the second processing unit 200B, and conveys the taken out substrate 1 to the third processing unit 200C.
  • the surrounding atmosphere of the substrate 1 can be maintained in a vacuum atmosphere, and deterioration of the block performance of the SAM 17 can be suppressed.
  • the third processing unit 200C carries out steps S6 to S7. Subsequently, the control unit 500 checks whether or not steps S3 to S7 have been executed a set number of times. When the number of implementations has not reached the set number of times, the second transfer mechanism 412 takes out the substrate 1 from the third processing unit 200C and conveys the taken out substrate 1 to the first processing unit 200A. After that, the control unit 500 controls the first processing unit 200A, the second processing unit 200B, the third processing unit 200C, and the transport unit 400, and carries out steps S3 to S7.
  • the second transfer mechanism 412 takes out the substrate 1 from the third processing unit 200C, conveys the taken out substrate 1 to the load lock chamber 421, and exits from the load lock chamber 421. do. Subsequently, the internal atmosphere of the load lock chamber 421 is switched from the vacuum atmosphere to the atmospheric atmosphere. After that, the first transfer mechanism 402 takes out the substrate 1 from the load lock chamber 421 and accommodates the taken out substrate 1 in the carrier C. Then, the processing of the substrate 1 is completed.
  • the first processing unit 200A will be described with reference to FIG. Since the second processing unit 200B and the third processing unit 200C are configured in the same manner as the first processing unit 200A, illustration and description thereof will be omitted.
  • the first processing unit 200A includes a substantially cylindrical airtight processing container 210.
  • An exhaust chamber 211 is provided in the center of the bottom wall of the processing container 210.
  • the exhaust chamber 211 has, for example, a substantially cylindrical shape that projects downward.
  • An exhaust pipe 212 is connected to the exhaust chamber 211, for example, on the side surface of the exhaust chamber 211.
  • the exhaust source 272 is connected to the exhaust pipe 212 via the pressure controller 271.
  • the pressure controller 271 includes a pressure adjusting valve such as a butterfly valve.
  • the exhaust pipe 212 is configured so that the inside of the processing container 210 can be depressurized by the exhaust source 272.
  • the pressure controller 271 and the exhaust source 272 form a gas discharge mechanism 270 that discharges the gas in the processing container 210.
  • a transport port 215 is provided on the side surface of the processing container 210.
  • the transport port 215 is opened and closed by the gate valve G.
  • the loading and unloading of the substrate 1 between the inside of the processing container 210 and the second transport chamber 411 (see FIG. 7) is performed via the transport port 215.
  • a stage 220 which is a holding portion for holding the substrate 1, is provided in the processing container 210.
  • the stage 220 holds the substrate 1 horizontally with the surface 1a of the substrate 1 facing up.
  • the stage 220 is formed in a substantially circular shape in a plan view, and is supported by the support member 221.
  • On the surface of the stage 220 for example, a substantially circular recess 222 for mounting the substrate 1 having a diameter of 300 mm is formed.
  • the recess 222 has an inner diameter slightly larger than the diameter of the substrate 1.
  • the depth of the recess 222 is configured to be substantially the same as, for example, the thickness of the substrate 1.
  • the stage 220 is made of a ceramic material such as aluminum nitride (AlN). Further, the stage 220 may be formed of a metal material such as nickel (Ni).
  • a guide ring for guiding the substrate 1 may be provided on the peripheral edge of the surface of the stage 220.
  • a grounded lower electrode 223 is embedded in the stage 220.
  • a heating mechanism 224 is embedded below the lower electrode 223.
  • the heating mechanism 224 heats the substrate 1 mounted on the stage 220 to a set temperature by supplying power from a power supply unit (not shown) based on a control signal from the control unit 500 (see FIG. 7).
  • the entire stage 220 is made of metal, the entire stage 220 functions as a lower electrode, so that the lower electrode 223 does not have to be embedded in the stage 220.
  • the stage 220 is provided with a plurality of (for example, three) elevating pins 231 for holding and elevating the substrate 1 mounted on the stage 220.
  • the material of the elevating pin 231 may be, for example, ceramics such as alumina (Al 2 O 3 ), quartz, or the like.
  • the lower end of the elevating pin 231 is attached to the support plate 232.
  • the support plate 232 is connected to an elevating mechanism 234 provided outside the processing container 210 via an elevating shaft 233.
  • the elevating mechanism 234 is installed at the lower part of the exhaust chamber 211, for example.
  • the bellows 235 is provided between the opening 219 for the elevating shaft 233 formed on the lower surface of the exhaust chamber 211 and the elevating mechanism 234.
  • the shape of the support plate 232 may be a shape that can be raised and lowered without interfering with the support member 221 of the stage 220.
  • the elevating pin 231 is vertically configured by the elevating mechanism 234 between above the surface of the stage 220 and below the surface of the stage 220.
  • the top wall 217 of the processing container 210 is provided with a gas supply unit 240 via an insulating member 218.
  • the gas supply unit 240 forms an upper electrode and faces the lower electrode 223.
  • a high frequency power supply 252 is connected to the gas supply unit 240 via a matching unit 251.
  • the plasma generation unit 250 that generates plasma includes a matching unit 251 and a high frequency power supply 252.
  • the plasma generation unit 250 is not limited to capacitively coupled plasma, and may generate other plasma such as inductively coupled plasma.
  • the gas supply unit 240 includes a hollow gas supply chamber 241. On the lower surface of the gas supply chamber 241, for example, a large number of holes 242 for dispersing and supplying the processing gas into the processing container 210 are evenly arranged.
  • a heating mechanism 243 is embedded above, for example, the gas supply chamber 241 in the gas supply unit 240. The heating mechanism 243 is heated to a set temperature by supplying power from a power supply unit (not shown) based on a control signal from the control unit 500.
  • a gas supply mechanism 260 is connected to the gas supply chamber 241 via a gas supply path 261.
  • the gas supply mechanism 260 supplies the gas used in at least one of steps S2 to S7 of FIG. 1 to the gas supply chamber 241 via the gas supply path 261.
  • the gas supply mechanism 260 includes individual pipes, an on-off valve provided in the middle of the individual pipes, and a flow rate controller provided in the middle of the individual pipes for each type of gas, although not shown.
  • the on-off valve opens the individual pipe, gas is supplied from the supply source to the gas supply path 261.
  • the supply amount is controlled by the flow rate controller.
  • the on-off valve closes the individual pipe, the supply of gas from the supply source to the gas supply path 261 is stopped.
  • Example 1 the substrate 1 shown in FIG. 2A was prepared.
  • the base substrate 10 was a silicon wafer
  • the insulating film 11 was a SiOC film
  • the metal film 12 was a Cu film
  • the barrier film 13 was a TaN film.
  • the width of the trench was 20 nm and the pitch of the trench was 40 nm.
  • the film forming method shown in FIG. 1 was carried out under the following conditions.
  • the raw material of SAM 17 was PFOT
  • the target film 18 was an AlO film having a film thickness of 5.6 nm.
  • Step S8 in FIG. 1 was set once, and steps S3 to S7 were performed only once.
  • step S2 The processing conditions in step S2 were as follows. H2 gas flow rate: 1000 sccm Ar gas flow rate: 750 sccm Ratio of H 2 gas to the mixed gas of H 2 gas and Ar gas: 57% by volume Power frequency for plasma generation: 40MHz Power for plasma generation: 200W Processing time: 30 sec Processing temperature: 120 ° C Processing pressure: 266 Pa.
  • step S3 The processing conditions in step S3 were as follows. O 2 gas flow rate: 1000 sccm Processing time: 900 sec Processing temperature: 120 ° C Processing pressure: 266 Pa.
  • step S4 The processing conditions in step S4 were as follows. IPA gas flow rate: 100 sccm Processing time: 900 sec Processing temperature: 150 ° C Processing pressure: 360 Pa.
  • step S5 The processing conditions in step S5 were as follows. PFOT gas flow rate: 100 sccm Processing time: 600 sec Processing temperature: 150 ° C Processing pressure: 620 Pa.
  • step S6 The processing conditions in step S6 were as follows. -Step S61 TMA gas flow rate: 50 sccm Processing time: 0.1 sec -Step S62 Ar gas flow rate: 6000 sccm Processing time: 1 sec -Step S63 H2 O gas flow rate: 100 sccm Processing time: 1 sec -Step S64 Ar gas flow rate: 6000 sccm Processing time: 2 sec -Processing conditions common to steps S61 to S64 Processing temperature: 120 ° C. Processing pressure: 400Pa The number of times of setting step S65 in FIG. 3 was 68 times, and steps S61 to S64 were repeated 68 times.
  • step S7 The processing conditions in step S7 were as follows. -Step S71 H2 O gas flow rate: 100 sccm Processing time: 2 sec -Step S72 H 2 gas flow rate: 2000 sccm Ar gas flow rate: 3000 sccm Ratio of H 2 gas to the mixed gas of H 2 gas and Ar gas: 40% by volume Power frequency for plasma generation: 40MHz Power for plasma generation: 200W Processing time: 10 sec -Processing conditions common to steps S71 to S72 Processing temperature: 120 ° C. Processing pressure: 266Pa The number of times of setting step S73 in FIG. 4 was 30 times, and steps S71 to S72 were repeated 30 times.
  • the film thickness of the AlO film, which is the target film 18, was 5.6 nm, and the width W of the unnecessary portion (see FIG. 2C) was 6.2 nm.
  • the film thickness and width W were measured using an SEM photograph of the cross section of the substrate.
  • the width W of the unnecessary portion was 4.7 nm. Therefore, it was found that the width W of the unnecessary portion was narrowed by 1.5 nm by step S7.
  • Example 2 the same substrate 1 as in Example 1 was prepared, and the film forming method shown in FIG. 1 was carried out under the following conditions.
  • the main differences between Example 2 and Example 1 are (1) the number of times step S8 in FIG. 1 is set to 2 times, and (2) the number of times step S65 in FIG. 3 is set to 45 times. That is, (3) the number of times of setting in step S73 in FIG. 4 is set to 10 times. In Example 2, step S4 was not performed.
  • step S2 The processing conditions in step S2 were as follows. H 2 gas flow rate: 2000 sccm Ar gas flow rate: 3000 sccm Ratio of H 2 gas to the mixed gas of H 2 gas and Ar gas: 40% by volume Power frequency for plasma generation: 40MHz Power for plasma generation: 200W Processing time: 10 sec Processing temperature: 120 ° C Processing pressure: 266 Pa.
  • step S3 The processing conditions in step S3 were as follows. O 2 gas flow rate: 1000 sccm Processing time: 600 sec Processing temperature: 120 ° C Processing pressure: 266 Pa.
  • step S5 The processing conditions in step S5 were as follows. PFOT gas flow rate: 100 sccm Processing time: 300 sec Processing temperature: 150 ° C Processing pressure: 620 Pa.
  • step S6 The processing conditions in step S6 were as follows. -Step S61 TMA gas flow rate: 50 sccm Processing time: 0.1 sec -Step S62 Ar gas flow rate: 6000 sccm Processing time: 1 sec -Step S63 H2 O gas flow rate: 100 sccm Processing time: 1 sec -Step S64 Ar gas flow rate: 6000 sccm Processing time: 2 sec -Processing conditions common to steps S61 to S64 Processing temperature: 120 ° C. Processing pressure: 400Pa The number of times of setting step S65 in FIG. 3 was 45 times, and steps S61 to S64 were repeated 45 times.
  • step S7 The processing conditions in step S7 were as follows. -Step S71 H2 O gas flow rate: 100 sccm Processing time: 2 sec -Step S72 H 2 gas flow rate: 2000 sccm Ar gas flow rate: 3000 sccm Ratio of H 2 gas to the mixed gas of H 2 gas and Ar gas: 40% by volume Power frequency for plasma generation: 40MHz Power for plasma generation: 200W Processing time: 20 sec -Processing conditions common to steps S71 to S72 Processing temperature: 120 ° C. Processing pressure: 266Pa The number of times of setting step S73 in FIG. 4 was 10, and steps S71 to S72 were repeated 10 times.
  • the main differences between the second embodiment and the first embodiment are that (1) the number of times the step S8 in FIG. 1 is set is set to two, and (2) the number of times the step S65 in FIG. 3 is set is 45. It was set to 10 times, and (3) the number of times of setting in step S73 in FIG. 4 was set to 10 times.
  • Example 2 after the completion of all the treatments, the film thickness of the AlO film, which is the target film 18, was 6.0 nm, and the width W of the unnecessary portion was 1.0 nm.
  • Example 2 when the final target film thickness of the AlO film is about the same, the set number of steps S8 in FIG. 1 is set to a plurality of times, and the formation of the AlO film is carried out in a plurality of times. Then, it can be seen that the width W of the unnecessary portion can be narrowed as compared with the case where the implementation is performed once.
  • Example 3 In Example 3, the same as in Example 2, except that the processing time of step S72 in FIG. 4 is set to 30 sec and the number of times of setting step S73 in FIG. 4 is set to 3, it is shown in FIG. The film forming method was carried out.
  • Example 3 after the completion of all the treatments, the film thickness of the AlO film, which is the target film 18, was 6.0 nm, and the width W of the unnecessary portion was 0.9 nm. Therefore, in Example 3, the same result as in Example 2 was obtained.
  • Example 4 the film forming method shown in FIG. 1 was carried out in the same manner as in Example 2, except that the processing time of step S3 in FIG. 1 was set to 300 sec. In Example 2, as described above, the processing time of step S3 in FIG. 1 was 600 sec.
  • Example 4 after the completion of all the treatments, the film thickness of the AlO film, which is the target film 18, was 6.2 nm, and the width W of the unnecessary portion was 3.9 nm.
  • Example 2 as described above, after the completion of all the treatments, the film thickness of the AlO film, which is the target film 18, was 6.0 nm, and the width W of the unnecessary portion was 1.0 nm.
  • step S3 From Example 4 and Example 2, it can be seen that if the processing time of step S3 is extended from 300 sec to 600 sec, the width W of the unnecessary portion becomes narrower after the completion of all the processing. It is presumed that if the treatment time in step S3 is long to some extent and the surface of the Cu film is oxidized to some extent, a dense SAM can be obtained and hydrofluoric acid is produced over a long period of time in step S7.
  • Example 5 the substrate 1 was treated under the same conditions as in Example 2 except that the width of the trench on the surface of the SiOC film was changed to 50 nm and the pitch of the trench was changed to 100 nm.
  • Example 5 after the completion of all the treatments, the film thickness of the AlO film, which is the target film 18, was 6.4 nm, and the width W of the unnecessary portion was 0.0 nm.
  • FIG. 9 shows an SEM photograph of a cross section of the substrate obtained in Example 5. As is clear from FIG. 9, no protrusion of the AlO film was observed.
  • Substrate 1a Surface 11 Insulation film (first film) 12 Metal film (second film) 17 SAM (Self-assembled monolayer) 18 Target film A1 1st region A2 2nd region

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

This film deposition method includes (A)-(D) below. (A) Preparing a substrate having, on a surface thereof, a first region on which a first film is exposed and a second region on which a second film formed from a material different from that for the first film is exposed. (B) Supplying a fluorine-containing organic compound, which is a source material for a self-assembled monolayer film, onto the surface of the substrate to selectively form the self-assembled monolayer film on the second region among the first region and the second region. (C) Forming a desired film on the first region using the self-assembled monolayer film while inhibiting the formation of the desired film on the second region. (D) Supplying a gas containing H2O to the surface of the substrate to etch an edge portion that protrudes from the first region in the desired film.

Description

成膜方法及び成膜装置Film formation method and film formation equipment
 本開示は、成膜方法及び成膜装置に関する。 This disclosure relates to a film forming method and a film forming apparatus.
 特許文献1、2には、自己組織化単分子膜(Self-Assembled Monolayer:SAM)を用いて基板表面の一部における対象膜の形成を阻害しつつ、基板表面の残部に対象膜を形成する技術が記載されている。 In Patent Documents 1 and 2, a self-assembled monolayer (SELf-Assembled Monolayer: SAM) is used to form a target film on the rest of the substrate surface while inhibiting the formation of the target film on a part of the substrate surface. The technology is described.
 非特許文献1には、酸化アルミニウム膜の表面に対してフッ酸とTMA(トリメチルアルミニウム)とを交互に供給し、酸化アルミニウム膜の表面をエッチングする、原子層エッチング(Atomic Layer Etching:ALE)が記載されている。 Non-Patent Document 1 describes atomic layer etching (ALE) in which hydrofluoric acid and TMA (trimethylaluminum) are alternately supplied to the surface of an aluminum oxide film to etch the surface of the aluminum oxide film. Have been described.
日本国特表2010-540773号公報Japan Special Table 2010-540773 Gazette 日本国特表2013-520028号公報Japan Special Table 2013-520028 Gazette
 本開示の一態様は、SAMを用いて対象膜の形成を阻害した後、対象膜の不要な部位を選択的に除去する、技術を提供する。 One aspect of the present disclosure provides a technique for inhibiting the formation of a target membrane using SAM and then selectively removing an unnecessary portion of the target membrane.
 本開示の一態様の成膜方法は、下記(A)~(D)を含む。(A)第1膜が露出する第1領域と、前記第1膜とは異なる材料で形成される第2膜が露出する第2領域とを表面に有する基板を準備する。(B)前記基板の前記表面に対して自己組織化単分子膜の原料であるフッ素を含む有機化合物を供給し、前記第1領域及び前記第2領域の中で、前記第2領域に選択的に、前記自己組織化単分子膜を形成する。(C)前記自己組織化単分子膜を用い前記第2領域における対象膜の形成を阻害ししつつ、前記第1領域に前記対象膜を形成する。(D)前記基板の前記表面に対してHOを含むガスを供給し、前記対象膜の前記第1領域からはみ出した端部をエッチングする。 The film forming method of one aspect of the present disclosure includes the following (A) to (D). (A) A substrate having a first region on which the first film is exposed and a second region on which the second film formed of a material different from the first film is exposed is prepared. (B) An organic compound containing fluorine, which is a raw material for a self-assembled monolayer, is supplied to the surface of the substrate, and the second region is selectively selected among the first region and the second region. To form the self-assembled monolayer. (C) Using the self-assembled monolayer, the target membrane is formed in the first region while inhibiting the formation of the target membrane in the second region. (D) A gas containing H2O is supplied to the surface of the substrate, and the end portion of the target film protruding from the first region is etched.
 本開示の一態様によれば、SAMを用いて対象膜の形成を阻害した後、対象膜の不要な部位を選択的に除去できる。 According to one aspect of the present disclosure, after inhibiting the formation of the target membrane using SAM, unnecessary parts of the target membrane can be selectively removed.
図1は、一実施形態に係る成膜方法を示すフローチャートである。FIG. 1 is a flowchart showing a film forming method according to an embodiment. 図2Aは、一実施形態に係る基板のステップS1を示す図である。FIG. 2A is a diagram showing step S1 of the substrate according to the embodiment. 図2Bは、一実施形態に係る基板のステップS5を示す図である。FIG. 2B is a diagram showing step S5 of the substrate according to the embodiment. 図2Cは、一実施形態に係る基板のステップS6を示す図である。FIG. 2C is a diagram showing step S6 of the substrate according to the embodiment. 図2Dは、一実施形態に係る基板のステップS7の一例を示す図である。FIG. 2D is a diagram showing an example of step S7 of the substrate according to the embodiment. 図3は、ステップS6のサブルーチンの一例を示すフローチャートである。FIG. 3 is a flowchart showing an example of the subroutine in step S6. 図4は、ステップS7のサブルーチンの一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of the subroutine in step S7. 図5Aは、第1変形例に係る基板のステップS1を示す図である。FIG. 5A is a diagram showing step S1 of the substrate according to the first modification. 図5Bは、第1変形例に係る基板のステップS5を示す図である。FIG. 5B is a diagram showing step S5 of the substrate according to the first modification. 図5Cは、第1変形例に係る基板のステップS6を示す図である。FIG. 5C is a diagram showing step S6 of the substrate according to the first modification. 図5Dは、第1変形例に係る基板のステップS7の一例を示す図である。FIG. 5D is a diagram showing an example of step S7 of the substrate according to the first modification. 図6Aは、第2変形例に係る基板のステップS1を示す図である。FIG. 6A is a diagram showing step S1 of the substrate according to the second modification. 図6Bは、第2変形例に係る基板のステップS5を示す図である。FIG. 6B is a diagram showing step S5 of the substrate according to the second modification. 図6Cは、第2変形例に係る基板のステップS6を示す図である。FIG. 6C is a diagram showing step S6 of the substrate according to the second modification. 図6Dは、第2変形例に係る基板のステップS7の一例を示す図である。FIG. 6D is a diagram showing an example of step S7 of the substrate according to the second modification. 図7は、一実施形態に係る成膜装置を示す平面図である。FIG. 7 is a plan view showing a film forming apparatus according to an embodiment. 図8は、図7の第1処理部の一例を示す断面図である。FIG. 8 is a cross-sectional view showing an example of the first processing unit of FIG. 7. 図9は、実施例5で得られた基板の断面のSEM写真である。FIG. 9 is an SEM photograph of a cross section of the substrate obtained in Example 5.
 以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In each drawing, the same or corresponding configurations may be designated by the same reference numerals and description thereof may be omitted.
 先ず、図1及び図2A~図2Dを参照して、本実施形態に係る成膜方法について説明する。成膜方法は、例えば図1に示すステップS1~S8を含む。なお、成膜方法は、少なくともステップS1、S5~S8を含めばよく、例えばステップS2~S4を含まなくてもよい。また、成膜方法は、図1に示すステップS1~S8以外のステップを含んでもよい。 First, the film forming method according to the present embodiment will be described with reference to FIGS. 1 and 2A to 2D. The film forming method includes, for example, steps S1 to S8 shown in FIG. The film forming method may include at least steps S1 and S5 to S8, and may not include, for example, steps S2 to S4. Further, the film forming method may include steps other than steps S1 to S8 shown in FIG.
 先ず、図1のステップS1では、図2Aに示すように、基板1を準備する。基板1を準備することは、例えば、図7に示す成膜装置100にキャリアCを搬入することを含む。キャリアCは、複数の基板1を収容する。 First, in step S1 of FIG. 1, the substrate 1 is prepared as shown in FIG. 2A. Preparing the substrate 1 includes, for example, carrying the carrier C into the film forming apparatus 100 shown in FIG. 7. The carrier C accommodates a plurality of substrates 1.
 基板1は、シリコンウェハ又は化合物半導体ウェハ等の下地基板10を有する。化合物半導体ウェハは、特に限定されないが、例えばGaAsウェハ、SiCウェハ、GaNウェハ、又はInPウェハである。 The substrate 1 has a base substrate 10 such as a silicon wafer or a compound semiconductor wafer. The compound semiconductor wafer is not particularly limited, and is, for example, a GaAs wafer, a SiC wafer, a GaN wafer, or an InP wafer.
 基板1は、下地基板10の上に形成される絶縁膜11を有する。絶縁膜11と下地基板10の間に、導電膜等が形成されてもよい。絶縁膜11は、例えば層間絶縁膜である。層間絶縁膜は、好ましくは低誘電率(Low-k)膜である。 The substrate 1 has an insulating film 11 formed on the base substrate 10. A conductive film or the like may be formed between the insulating film 11 and the base substrate 10. The insulating film 11 is, for example, an interlayer insulating film. The interlayer insulating film is preferably a low dielectric constant (Low-k) film.
 絶縁膜11は、特に限定されないが、例えばSiO膜、SiN膜、SiOC膜、SiON膜、又はSiOCN膜である。ここで、SiO膜とは、シリコン(Si)と酸素(O)を含む膜という意味である。SiO膜におけるSiとOの原子比は1:1には限定されない。SiN膜、SiOC膜、SiON膜、及びSiOCN膜について同様である。絶縁膜11は、基板1の表面1aに、凹部を有する。凹部は、トレンチ、コンタクトホール又はビアホールである。 The insulating film 11 is not particularly limited, but is, for example, a SiO film, a SiN film, a SiOC film, a SiON film, or a SiOCN film. Here, the SiO film means a film containing silicon (Si) and oxygen (O). The atomic ratio of Si to O in the SiO film is not limited to 1: 1. The same applies to the SiN film, the SiOC film, the SiON film, and the SiOCN film. The insulating film 11 has a recess on the surface 1a of the substrate 1. The recess is a trench, contact hole or via hole.
 基板1は、凹部の内部に充填される金属膜12を有する。金属膜12は特に限定されないが、例えば、Cu膜、Co膜、Ru膜、又はW膜である。 The substrate 1 has a metal film 12 that is filled inside the recess. The metal film 12 is not particularly limited, but is, for example, a Cu film, a Co film, a Ru film, or a W film.
 基板1は、凹部に沿って形成されるバリア膜13を更に有する。バリア膜13は、金属膜12から絶縁膜11への金属拡散を抑制する。バリア膜13は、特に限定されないが、例えば、TaN膜、又はTiN膜である。ここで、TaN膜とは、タンタル(Ta)と窒素(N)を含む膜という意味である。TaN膜におけるTaとNの原子比は1:1には限定されない。TiN膜について同様である。 The substrate 1 further has a barrier membrane 13 formed along the recesses. The barrier film 13 suppresses metal diffusion from the metal film 12 to the insulating film 11. The barrier film 13 is not particularly limited, but is, for example, a TaN film or a TiN film. Here, the TaN film means a film containing tantalum (Ta) and nitrogen (N). The atomic ratio of Ta to N in the TaN film is not limited to 1: 1. The same applies to the TiN film.
 表1に、絶縁膜11と、金属膜12と、バリア膜13との具体例をまとめて示す。 Table 1 summarizes specific examples of the insulating film 11, the metal film 12, and the barrier film 13.
Figure JPOXMLDOC01-appb-T000001
 なお、絶縁膜11と、金属膜12と、バリア膜13との組み合わせは、特に限定されない。
Figure JPOXMLDOC01-appb-T000001
The combination of the insulating film 11, the metal film 12, and the barrier film 13 is not particularly limited.
 図2Aに示すように、基板1は、その表面1aに、絶縁膜11が露出する第1領域A1と、金属膜12が露出する第2領域A2とを有する。また、基板1は、その表面1aに、バリア膜13が露出する第3領域A3を更に有してもよい。第3領域A3は、第1領域A1と第2領域A2の間に形成される。なお、基板1の構造は、後述するように、図2Aに示す構造には限定されない。 As shown in FIG. 2A, the substrate 1 has a first region A1 in which the insulating film 11 is exposed and a second region A2 in which the metal film 12 is exposed on the surface 1a thereof. Further, the substrate 1 may further have a third region A3 on the surface 1a on which the barrier membrane 13 is exposed. The third region A3 is formed between the first region A1 and the second region A2. The structure of the substrate 1 is not limited to the structure shown in FIG. 2A, as will be described later.
 次に、図1のステップS2では、基板1の表面1aをクリーニングする。例えば、ステップS2では、基板1の表面1aに対してHガス等の還元性ガスを供給し、基板1の表面1aに形成される自然酸化膜を除去する。自然酸化膜は、例えば金属膜12の表面に形成されたものである。還元性ガスは、プラズマ化されてもよい。また、還元性ガスは、Arガス等の希ガスと混合して用いられてもよい。 Next, in step S2 of FIG. 1, the surface 1a of the substrate 1 is cleaned. For example, in step S2, a reducing gas such as H 2 gas is supplied to the surface 1a of the substrate 1 to remove the natural oxide film formed on the surface 1a of the substrate 1. The natural oxide film is formed on the surface of the metal film 12, for example. The reducing gas may be plasmatized. Further, the reducing gas may be used by mixing with a rare gas such as Ar gas.
 ステップS2の処理条件の一例を下記に示す。
ガスの流量:500sccm~2000sccm
Arガスの流量:300sccm~6000sccm
ガスとArガスの混合ガスに占めるHガスの割合:30体積%~90体積%
プラズマ生成用の電源周波数:40MHz
プラズマ生成用の電力:200W
処理時間:10sec~30sec
処理温度(基板温度):120℃
処理圧力:266Pa。
An example of the processing conditions in step S2 is shown below.
H2 gas flow rate: 500 sccm - 2000 sccm
Ar gas flow rate: 300 sccm-6000 sccm
Ratio of H 2 gas to the mixed gas of H 2 gas and Ar gas: 30% by volume to 90% by volume
Power frequency for plasma generation: 40MHz
Power for plasma generation: 200W
Processing time: 10 sec to 30 sec
Processing temperature (board temperature): 120 ° C
Processing pressure: 266 Pa.
 次に、図1のステップS3では、基板1の表面1aを酸化する。例えば、ステップS3では、基板1の表面1aに対してOガス等の酸素を含むガスを供給し、金属膜12の表面を適度に酸化する。事前に自然酸化膜が除去済みであるので、酸素原子の密度が所望の密度になる。その結果、後述のステップS5において、金属膜12の表面に緻密な自己素子化単分子膜(SAM)を形成できる。 Next, in step S3 of FIG. 1, the surface 1a of the substrate 1 is oxidized. For example, in step S3, a gas containing oxygen such as O 2 gas is supplied to the surface 1a of the substrate 1 to appropriately oxidize the surface of the metal film 12. Since the natural oxide film has been removed in advance, the density of oxygen atoms becomes the desired density. As a result, in step S5 described later, a dense self-assembled monolayer (SAM) can be formed on the surface of the metal film 12.
 ステップS3の処理条件の一例を下記に示す。
ガスの流量:100sccm~2000sccm
処理時間:300sec~900sec(好ましくは600sec)
処理温度:120℃
処理圧力:200Pa~1200Pa。
An example of the processing conditions in step S3 is shown below.
O 2 gas flow rate: 100 sccm-2000 sccm
Processing time: 300 sec to 900 sec (preferably 600 sec)
Processing temperature: 120 ° C
Processing pressure: 200 Pa to 1200 Pa.
 次に、図1のステップS4では、基板1の表面1aに対してIPA(Isopropyl Alcohol)ガスを供給する。ステップS4の処理条件の一例を下記に示す。
IPAガスの流量:10sccm~200sccm
処理時間:0sec~900sec
処理温度:150℃
処理圧力:300Pa~400Pa
処理時間は0secであってもよく、つまり、ステップS4は省略されてもよい。
Next, in step S4 of FIG. 1, IPA (isopropanol Alcohol) gas is supplied to the surface 1a of the substrate 1. An example of the processing conditions in step S4 is shown below.
IPA gas flow rate: 10 sccm-200 sccm
Processing time: 0 sec to 900 sec
Processing temperature: 150 ° C
Processing pressure: 300Pa-400Pa
The processing time may be 0 sec, that is, step S4 may be omitted.
 次に、図1のステップS5では、基板1の表面1aに対してSAM17の原料であるフッ素を含む有機化合物を供給し、図2Bに示すように、第1領域A1及び第2領域A2の中で、第2領域A2に選択的に、SAM17を形成する。SAM17の原料は、特に限定されないが、例えばチオール系化合物である。 Next, in step S5 of FIG. 1, an organic compound containing fluorine, which is a raw material of SAM 17, is supplied to the surface 1a of the substrate 1, and as shown in FIG. 2B, in the first region A1 and the second region A2. Then, SAM17 is selectively formed in the second region A2. The raw material of SAM17 is not particularly limited, but is, for example, a thiol-based compound.
 チオール系化合物は、水素化された硫黄を頭部基に有し、一般式「R-SH」で表される。Rは、例えば、炭化水素基の水素の少なくとも一部をフッ素に置換したものである。チオール系化合物の具体例として、CF(CFCHCHSH(1H,1H,2H,2H-パーフルオロオクタンチオール:PFOT)、及びCF(CFCHCHSH(1H,1H,2H,2H-パーフルオロデカンチオール:PFDT)が挙げられる。 The thiol-based compound has hydrogenated sulfur in the head group and is represented by the general formula "R-SH". R is, for example, a hydrocarbon group in which at least a part of hydrogen is replaced with fluorine. Specific examples of thiol compounds include CF 3 (CF 2 ) 5 CH 2 CH 2 SH (1H, 1H, 2H, 2H-perfluorooctane thiol: PFOT), and CF 3 (CF 2 ) 7 CH 2 CH 2 SH. (1H, 1H, 2H, 2H-perfluorodecanethiol: PFDT) can be mentioned.
 チオール系化合物は、絶縁膜に比べて導電膜に化学吸着しやすい。第1領域A1に絶縁膜11が露出し、第2領域A2に金属膜12が露出する場合、第1領域A1及び第2領域A2の中で、第2領域A2に選択的に、SAM17が形成される。 Thiol compounds are more easily chemisorbed on the conductive film than the insulating film. When the insulating film 11 is exposed in the first region A1 and the metal film 12 is exposed in the second region A2, the SAM 17 is selectively formed in the second region A2 in the first region A1 and the second region A2. Will be done.
 チオール系化合物の化学吸着する導電膜としては、金属膜の他に、TaN膜等の窒化膜も挙げられる。従って、SAM17は、第2領域A2の他に、第3領域A3にも形成される。但し、チオール系化合物は、窒化膜よりも金属膜に化学吸着しやすい。従って、SAM17は、第3領域A3よりも第2領域A2に形成されやすい。 Examples of the conductive film that chemically adsorbs a thiol compound include a nitride film such as a TaN film in addition to a metal film. Therefore, the SAM 17 is formed not only in the second region A2 but also in the third region A3. However, the thiol compound is more easily chemically adsorbed to the metal film than the nitride film. Therefore, the SAM 17 is more likely to be formed in the second region A2 than in the third region A3.
 なお、SAM17の原料は、チオール系化合物には限定されない。例えば、SAM17の原料は、ホスホン酸系化合物であってもよい。ホスホン酸系化合物は、一般式「R-P(=O)(OH)」で表される。Rは、例えば、炭化水素基の水素の少なくとも一部をフッ素に置換したものである。 The raw material of SAM17 is not limited to thiol compounds. For example, the raw material of SAM17 may be a phosphonic acid-based compound. The phosphonic acid compound is represented by the general formula "RP (= O) (OH) 2 ". R is, for example, a hydrocarbon group in which at least a part of hydrogen is replaced with fluorine.
 ステップS5の処理条件の一例を下記に示す。
PFOTガスの流量:80sccm~200sccm
処理時間:90sec~900sec(好ましくは300sec)
処理温度:150℃
処理圧力:200Pa~4000Pa。
An example of the processing conditions in step S5 is shown below.
PFOT gas flow rate: 80 sccm-200 sccm
Processing time: 90 sec to 900 sec (preferably 300 sec)
Processing temperature: 150 ° C
Processing pressure: 200Pa-4000Pa.
 次に、図1のステップS6では、図2Cに示すように、SAM17を用い第2領域A2における対象膜18の形成を阻害しつつ、第1領域A1に対象膜18を形成する。対象膜18は、例えば絶縁膜であり、絶縁膜11の上に形成される。 Next, in step S6 of FIG. 1, as shown in FIG. 2C, the target film 18 is formed in the first region A1 while inhibiting the formation of the target film 18 in the second region A2 using SAM17. The target film 18 is, for example, an insulating film, and is formed on the insulating film 11.
 SAM17は、上記の通り、第2領域A2だけではなく、第3領域A3にも形成される。この場合、ステップS6では、SAM17を用い第2領域A2及び第3領域A3における対象膜18の形成を阻害しつつ、第1領域A1に対象膜18を形成する。 As described above, the SAM 17 is formed not only in the second region A2 but also in the third region A3. In this case, in step S6, the target film 18 is formed in the first region A1 while inhibiting the formation of the target film 18 in the second region A2 and the third region A3 using the SAM 17.
 対象膜18は、特に限定されないが、例えばAlO膜、SiO膜、SiN膜、ZrO膜、又はHfO膜等である。ここで、AlO膜とは、アルミニウム(Al)と酸素(O)を含む膜という意味である。AlO膜におけるAlとOの原子比は1:1には限定されない。SiO膜、SiN膜、ZrO膜、及びHfO膜について同様である。対象膜18は、CVD(Chemical Vapor Deposition)法、又はALD(Atomoic Layer Deposition)法で形成される。 The target film 18 is not particularly limited, but is, for example, an AlO film, a SiO film, a SiN film, a ZrO film, an HfO film, or the like. Here, the AlO film means a film containing aluminum (Al) and oxygen (O). The atomic ratio of Al to O in the AlO film is not limited to 1: 1. The same applies to the SiO film, SiN film, ZrO film, and HfO film. The target film 18 is formed by a CVD (Chemical Vapor Deposition) method or an ALD (Atomic Layer Deposition) method.
 AlO膜をALD法で形成する場合、TMA(トリメチルアルミニウム)ガスなどのAl含有ガスと、水蒸気(HOガス)などの酸化ガスとが、基板1の表面1aに対して交互に供給される。AlO膜の成膜方法は、例えば図3に示すステップS61~S65を含む。 When the AlO film is formed by the ALD method, an Al-containing gas such as TMA (trimethylaluminum) gas and an oxidizing gas such as water vapor ( H2O gas) are alternately supplied to the surface 1a of the substrate 1. .. The method for forming an AlO film includes, for example, steps S61 to S65 shown in FIG.
 先ず、ステップS61では、基板1の表面1aに対してAl含有ガスを供給する。次に、ステップS62では、基板1の表面1aに対してArガス等の不活性ガスを供給し、基板1の表面1aに化学吸着しなかった余剰のAl含有ガスをパージする。次に、ステップS63では、基板1の表面1aに対して酸化ガスを供給する。次に、ステップS64では、基板1の表面1aに対してArガス等の不活性ガスを供給し、基板1の表面1aに化学吸着しなかった余剰の酸化ガスをパージする。なお、ステップS61とステップS63の順番は逆でもよい。 First, in step S61, the Al-containing gas is supplied to the surface 1a of the substrate 1. Next, in step S62, an inert gas such as Ar gas is supplied to the surface 1a of the substrate 1 to purge the excess Al-containing gas that has not been chemically adsorbed on the surface 1a of the substrate 1. Next, in step S63, the oxidation gas is supplied to the surface 1a of the substrate 1. Next, in step S64, an inert gas such as Ar gas is supplied to the surface 1a of the substrate 1 to purge the excess oxidizing gas that has not been chemically adsorbed on the surface 1a of the substrate 1. The order of steps S61 and S63 may be reversed.
 次に、ステップS65では、ステップS61~S64を設定回数実施したか否かをチェックする。実施回数が設定回数に達していない場合(ステップS65、NO)、ステップS61~S64を再度実施する。一方、実施回数が設定回数に達している場合(ステップS65、YES)、AlO膜の膜厚が目標膜厚に達しているので、今回の処理を終了する。ステップS65の設定回数は、AlO膜の目標膜厚に応じて設定されるが、例えば20回~80回である。 Next, in step S65, it is checked whether or not steps S61 to S64 have been executed a set number of times. If the number of executions has not reached the set number of times (steps S65, NO), steps S61 to S64 are executed again. On the other hand, when the number of times of implementation has reached the set number of times (step S65, YES), the film thickness of the AlO film has reached the target film thickness, so the current process is terminated. The number of times of setting in step S65 is set according to the target film thickness of the AlO film, and is, for example, 20 to 80 times.
 ステップS6の処理条件の一例を下記に示す。
・ステップS61
TMAガスの流量:50sccm
処理時間:0.1sec~2sec
・ステップS62
Arガスの流量:1000sccm~8000sccm
処理時間:0.5sec~2sec
・ステップS63
Oガスの流量:50sccm~200sccm
処理時間:0.5sec~2sec
・ステップS64
Arガスの流量:1000sccm~8000sccm
処理時間:0.5sec~5sec
・ステップS61~S64に共通の処理条件
処理温度:100℃~250℃
処理圧力:133Pa~1200Pa。
An example of the processing conditions in step S6 is shown below.
-Step S61
TMA gas flow rate: 50 sccm
Processing time: 0.1 sec to 2 sec
-Step S62
Ar gas flow rate: 1000 sccm-8000 sccm
Processing time: 0.5 sec to 2 sec
-Step S63
H2 O gas flow rate: 50 sccm- 200 sccm
Processing time: 0.5 sec to 2 sec
-Step S64
Ar gas flow rate: 1000 sccm-8000 sccm
Processing time: 0.5 sec to 5 sec
-Processing conditions common to steps S61 to S64 Processing temperature: 100 ° C to 250 ° C
Processing pressure: 133 Pa to 1200 Pa.
 ところで、図2Cに示すように、SAM17は対象膜18の形成を阻害するが、SAM17のブロック性能は完全ではなく、対象膜18は第1領域A1から横にはみ出してしまう。そのはみ出した部位、つまり、不要な部位の幅Wは、例えば2nm~10nm程度である。 By the way, as shown in FIG. 2C, the SAM 17 inhibits the formation of the target film 18, but the blocking performance of the SAM 17 is not perfect, and the target film 18 protrudes laterally from the first region A1. The width W of the protruding portion, that is, the unnecessary portion is, for example, about 2 nm to 10 nm.
 そこで、ステップS7では、基板1の表面1aに対してHOを含むガスを供給する。HOを含むガスと、SAM17との反応によって、フッ酸が生成する。生成したフッ酸によって、図2Dに示すように、対象膜18をエッチングすることができる。エッチングにより生じる生成物は、揮発性であり、気化し、排気される。対象膜18は、上記の通り、例えばAlO膜、SiO膜、SiN膜、ZrO膜、又はHfO膜等である。これらの膜は、いずれも、フッ酸によってエッチング可能である。 Therefore, in step S7, a gas containing H2O is supplied to the surface 1a of the substrate 1. Hydrofluoric acid is produced by the reaction between the gas containing H2O and SAM17. As shown in FIG. 2D, the target film 18 can be etched with the generated hydrofluoric acid. The product produced by etching is volatile, vaporized and exhausted. As described above, the target film 18 is, for example, an AlO film, a SiO film, a SiN film, a ZrO film, an HfO film, or the like. All of these films can be etched with hydrofluoric acid.
 フッ酸は、上記の通り、HOを含むガスと、SAM17との反応によって生成する。従って、SAM17の近傍のみにフッ酸が生成する。それゆえ、対象膜18の第1領域A1からはみ出した不要な部位はエッチングされるのに対し、対象膜18の第1領域A1に形成された必要な部位はエッチングされない。従って、対象膜18の不要な部位を選択的に除去できる。 As described above, hydrofluoric acid is produced by the reaction of a gas containing H2O with SAM17. Therefore, hydrofluoric acid is generated only in the vicinity of SAM17. Therefore, the unnecessary portion protruding from the first region A1 of the target film 18 is etched, whereas the necessary portion formed in the first region A1 of the target film 18 is not etched. Therefore, unnecessary portions of the target film 18 can be selectively removed.
 ここで、本開示の技術と、非特許文献1の技術とを比較する。非特許文献1には、AlO膜の表面に対してフッ酸とTMAとを交互に供給し、AlO膜の表面をエッチングする、原子層エッチング(ALE)が記載されている。しかし、非特許文献1に記載のALEでは、AlO膜の表面全体がエッチングされてしまい、必要な部分までエッチングされてしまう。また、非特許文献1に記載の方法では、処理温度が高く(例えば300℃以上、好ましくは350℃以上)、基板1にダメージが生じる恐れがある。ダメージの具体例としては、例えば金属膜12のフッ化又は合金化が挙げられる。合金化は、対象膜18の原料ガス(例えばTMA)に含まれる金属と、金属膜12との反応によって生じる。 Here, the technique of the present disclosure is compared with the technique of Non-Patent Document 1. Non-Patent Document 1 describes atomic layer etching (ALE) in which hydrofluoric acid and TMA are alternately supplied to the surface of an ALO film to etch the surface of the ALO film. However, in the ALE described in Non-Patent Document 1, the entire surface of the AlO film is etched, and even a necessary portion is etched. Further, in the method described in Non-Patent Document 1, the processing temperature is high (for example, 300 ° C. or higher, preferably 350 ° C. or higher), and the substrate 1 may be damaged. Specific examples of damage include fluorination or alloying of the metal film 12. The alloying occurs by the reaction between the metal contained in the raw material gas (for example, TMA) of the target film 18 and the metal film 12.
 本開示の技術によれば、上記の通り、対象膜18の第1領域A1からはみ出した不要な部位はエッチングされるのに対し、対象膜18の第1領域A1に形成された必要な部位はエッチングされない。従って、対象膜18の不要な部位を選択的に除去できる。その結果、基板1の配線抵抗を低減できる。また、本実施形態のステップS7では、処理温度が例えば200℃以下である。それゆえ、基板1のダメージの発生を抑制できる。 According to the technique of the present disclosure, as described above, the unnecessary portion protruding from the first region A1 of the target film 18 is etched, whereas the necessary portion formed in the first region A1 of the target film 18 is Not etched. Therefore, unnecessary portions of the target film 18 can be selectively removed. As a result, the wiring resistance of the substrate 1 can be reduced. Further, in step S7 of the present embodiment, the processing temperature is, for example, 200 ° C. or lower. Therefore, it is possible to suppress the occurrence of damage to the substrate 1.
 図1のステップS7は、例えば図4に示すステップS71~S73を含む。先ず、ステップS71では、基板1の表面1aに対してHOを含むガス(HO含有ガス)を供給する。HO含有ガスは、HOガスのみを含んでもよいし、HOガスとキャリアガスを含んでもよい。また、HO含有ガスは、HOガスの他に、カルボン酸等の有機酸のガスを含んでもよい。 Step S7 in FIG. 1 includes, for example, steps S71 to S73 shown in FIG. First, in step S71, a gas containing H 2 O (a gas containing H 2 O) is supplied to the surface 1a of the substrate 1. The H 2 O-containing gas may contain only the H 2 O gas, or may contain the H 2 O gas and the carrier gas. Further, the H 2 O-containing gas may contain an organic acid gas such as a carboxylic acid in addition to the H 2 O gas.
 次に、ステップS72では、基板1の表面1aに対してプラズマ化されたガス(プラズマ化ガス)を供給する。プラズマ化ガスは、例えばHガス、Arガス、Nガス、及びNHガスから選ばれる少なくとも1つを含む。プラズマ化ガスの供給によってSAM17を分解でき、フッ酸の生成を促進できる。フッ酸は酸性であるので、フッ酸が中和されないように、プラズマ化ガスは還元性ガス又は不活性ガスであることが好ましい。なお、ステップS71とステップS72の順番は逆でもよい。 Next, in step S72, a plasmatized gas (plasmaized gas) is supplied to the surface 1a of the substrate 1. The plasmatized gas comprises at least one selected from, for example, H 2 gas, Ar gas, N 2 gas, and NH 3 gas. The supply of plasmatized gas can decompose SAM17 and promote the production of hydrofluoric acid. Since hydrofluoric acid is acidic, the plasmatized gas is preferably a reducing gas or an inert gas so that the hydrofluoric acid is not neutralized. The order of steps S71 and S72 may be reversed.
 次に、ステップS73では、ステップS71~S72を設定回数実施したか否かをチェックする。実施回数が設定回数に達していない場合(ステップS73、NO)、ステップS71~S72を再度実施する。一方、実施回数が設定回数に達している場合(ステップS73、YES)、今回の処理を終了する。 Next, in step S73, it is checked whether or not steps S71 to S72 have been executed a set number of times. If the number of executions has not reached the set number of times (steps S73, NO), steps S71 to S72 are executed again. On the other hand, when the number of executions has reached the set number of times (step S73, YES), the current process is terminated.
 図4では、HO含有ガスと、プラズマ化ガスとを順番に供給し、同時に供給しないが、同時に供給してもよい。いずれにしろ、プラズマ化ガスの供給によってSAM17を分解でき、フッ酸の生成を促進できる。但し、HO含有ガスとプラズマ化ガスを順番に供給すれば、HO含有ガスのプラズマ化を防止でき、酸素プラズマの発生を防止でき、基板1の表面1aの酸化を防止できる。 In FIG. 4, the H2O -containing gas and the plasmatized gas are supplied in order and are not supplied at the same time, but may be supplied at the same time. In any case, the supply of plasmatized gas can decompose SAM17 and promote the production of hydrofluoric acid. However, if the H 2 O-containing gas and the plasmatized gas are supplied in order, the H 2 O-containing gas can be prevented from being plasmatized, the generation of oxygen plasma can be prevented, and the oxidation of the surface 1a of the substrate 1 can be prevented.
 また、ステップS73の設定回数は、1回でもよいが、複数回であることが好ましい。プラズマ化ガスの供給を複数回に分けることにより、SAM17の分解を徐々に進めることができ、フッ酸を長時間に亘って生成でき、不要な部位の幅Wを狭めることができる。その結果、基板1の配線抵抗を低減できる。ステップS73の設定回数は、例えば5~50である。 Further, the number of times of setting in step S73 may be once, but is preferably a plurality of times. By dividing the supply of the plasmatized gas into a plurality of times, the decomposition of SAM 17 can be gradually promoted, hydrofluoric acid can be generated over a long period of time, and the width W of an unnecessary portion can be narrowed. As a result, the wiring resistance of the substrate 1 can be reduced. The number of times of setting in step S73 is, for example, 5 to 50.
 ステップS7の処理条件の一例を下記に示す。
・ステップS71
Oガスの流量:50sccm~200sccm
処理時間:1sec~30sec
・ステップS72
ガスの流量:200sccm~3000sccm
Arガスの流量:100sccm~6000sccm
ガスとArガスの混合ガスに占めるHガスの割合:20体積%~90体積%
プラズマ生成用の電源周波数:40MHz
プラズマ生成用の電力:100~600W
処理時間:10sec~30sec
・ステップS71~S72に共通の処理条件
処理温度:120℃
処理圧力:266Pa。
An example of the processing conditions in step S7 is shown below.
-Step S71
H2 O gas flow rate: 50 sccm- 200 sccm
Processing time: 1 sec to 30 sec
-Step S72
Flow rate of H2 gas: 200 sccm-3000 sccm
Ar gas flow rate: 100 sccm-6000 sccm
Ratio of H 2 gas to the mixed gas of H 2 gas and Ar gas: 20% by volume to 90% by volume
Power frequency for plasma generation: 40MHz
Power for plasma generation: 100-600W
Processing time: 10 sec to 30 sec
-Processing conditions common to steps S71 to S72 Processing temperature: 120 ° C.
Processing pressure: 266 Pa.
 ステップS7では、図2Dに示すように、ほとんどのSAM17が、分解除去されてもよい。ステップS7の後には、SAM17が、基板1の表面1aに残らなくてもよい。 In step S7, as shown in FIG. 2D, most of the SAM 17 may be decomposed and removed. After step S7, the SAM 17 does not have to remain on the surface 1a of the substrate 1.
 なお、図示しないが、ステップS7は、途中で、第1領域A1にSAM17を形成し、補給することを含んでもよい。SAM17の補給によって、フッ酸を長時間に亘って生成でき、不要な部位の幅Wを狭めることができ、基板1の配線抵抗を低減できる。その場合、SAM17形成前にOガスあるいはHOガスを供給すると、より多くのSAM17を形成できる。 Although not shown, step S7 may include forming and replenishing SAM17 in the first region A1 on the way. By replenishing the SAM 17, hydrofluoric acid can be generated over a long period of time, the width W of an unnecessary portion can be narrowed, and the wiring resistance of the substrate 1 can be reduced. In that case, if O 2 gas or H 2 O gas is supplied before the formation of SAM 17, more SAM 17 can be formed.
 次に、図1のステップS8では、ステップS3~S7を設定回数実施したか否かをチェックする。実施回数が設定回数に達していない場合(ステップS8、NO)、ステップS3~S7を再度実施する。一方、実施回数が設定回数に達している場合(ステップS8、YES)、AlO膜の膜厚が最終目標の膜厚に達しているので、今回の処理を終了する。ステップS8の設定回数は、AlO膜の最終目標の膜厚に応じて設定される。 Next, in step S8 of FIG. 1, it is checked whether or not steps S3 to S7 have been executed a set number of times. If the number of executions has not reached the set number of times (steps S8, NO), steps S3 to S7 are executed again. On the other hand, when the number of times of execution has reached the set number of times (step S8, YES), the film thickness of the AlO film has reached the final target film thickness, so the current process is terminated. The number of times of setting in step S8 is set according to the final target film thickness of the AlO film.
 ステップS8の設定回数は、1回でもよいが、複数回であることが好ましい。AlO膜の形成を複数回に分けて実施すれば、1回で実施する場合に比べて、各回のステップS6において対象膜18の不要な部位の幅Wを狭くできる。その幅Wが狭いほど、不要な部位の除去が容易である。従って、AlO膜の形成を複数回に分けて実施すれば、1回で実施する場合に比べて、最終的に得られる対象膜18の不要な部位の幅Wを狭くでき、基板1の配線抵抗を低減できる。 The number of times of setting in step S8 may be once, but is preferably a plurality of times. If the formation of the AlO film is carried out in a plurality of times, the width W of the unnecessary portion of the target film 18 can be narrowed in each step S6 as compared with the case where the formation of the AlO film is carried out once. The narrower the width W, the easier it is to remove unnecessary parts. Therefore, if the formation of the AlO film is carried out in a plurality of times, the width W of the unnecessary portion of the target film 18 finally obtained can be narrowed as compared with the case where the formation is carried out once, and the wiring resistance of the substrate 1 can be narrowed. Can be reduced.
 図1に示すように、n(nは1以上の自然数)回目のステップS7の後であって、n+1回目のステップS5の前に、ステップS3が実施されてもよい。ステップS3の再実施は、ステップS7においてプラズマ化されたHガスを基板1の表面1aに供給する場合に有効である。この場合、ステップS7において、ステップS2と同様に、金属膜12の表面が還元されるからである。ステップS7の後にステップS3を実施すれば、金属膜12の表面を適度に酸化できる。その結果、その後に実施されるステップS5において、金属膜12の表面に緻密なSAM17を形成できる。 As shown in FIG. 1, step S3 may be performed after the n (n is a natural number of 1 or more) th step S7 and before the n + 1th step S5. The re-execution of step S3 is effective when the plasmalized H2 gas in step S7 is supplied to the surface 1a of the substrate 1. In this case, in step S7, the surface of the metal film 12 is reduced as in step S2. If step S3 is carried out after step S7, the surface of the metal film 12 can be appropriately oxidized. As a result, in the subsequent step S5, a dense SAM 17 can be formed on the surface of the metal film 12.
 次に、図5A~図5Dを参照して、第1変形例に係る基板1の処理について説明する。本変形例の基板1は、図5Aに示すように、その表面1aに、ライナー膜14が露出する第4領域A4を更に有する。第4領域A4は、第2領域A2と第3領域A3の間に形成される。ライナー膜14は、バリア膜13の上に形成され、金属膜12の形成を支援する。金属膜12は、ライナー膜14の上に形成される。ライナー膜14は、特に限定されないが、例えば、Co膜、又はRu膜である。 Next, the processing of the substrate 1 according to the first modification will be described with reference to FIGS. 5A to 5D. As shown in FIG. 5A, the substrate 1 of this modification further has a fourth region A4 on the surface 1a on which the liner film 14 is exposed. The fourth region A4 is formed between the second region A2 and the third region A3. The liner film 14 is formed on the barrier film 13 and supports the formation of the metal film 12. The metal film 12 is formed on the liner film 14. The liner film 14 is not particularly limited, but is, for example, a Co film or a Ru film.
 表2に、絶縁膜11と、金属膜12と、バリア膜13と、ライナー膜14との具体例をまとめて示す。 Table 2 summarizes specific examples of the insulating film 11, the metal film 12, the barrier film 13, and the liner film 14.
Figure JPOXMLDOC01-appb-T000002
 なお、絶縁膜11と、金属膜12と、バリア膜13と、ライナー膜14との組み合わせは、特に限定されない。
Figure JPOXMLDOC01-appb-T000002
The combination of the insulating film 11, the metal film 12, the barrier film 13, and the liner film 14 is not particularly limited.
 ところで、SAM17の原料は、絶縁膜11に比べてライナー膜14にも化学吸着しやすい。 By the way, the raw material of SAM 17 is more easily chemically adsorbed to the liner film 14 than the insulating film 11.
 それゆえ、本変形例のステップS5では、図5Bに示すように、第1領域A1、第2領域A2、第3領域A3及び第4領域A4の中で、第2領域A2、第3領域A3及び第4領域A4に選択的に、有機化合物を化学吸着し、SAM17を形成する。SAM17は、第1領域A1には形成されない。 Therefore, in step S5 of this modification, as shown in FIG. 5B, in the first region A1, the second region A2, the third region A3, and the fourth region A4, the second region A2 and the third region A3 And, the organic compound is selectively chemically adsorbed to the fourth region A4 to form SAM17. SAM17 is not formed in the first region A1.
 また、本変形例のステップS6では、図5Cに示すように、SAM17を用い第2領域A2、第3領域A3及び第4領域A4における対象膜18の形成を阻害しつつ、第1領域A1に対象膜18を形成する。SAM17は対象膜18の形成を阻害するが、SAM17のブロック性能は完全ではなく、対象膜18は第1領域A1から横にはみ出してしまう。 Further, in step S6 of this modification, as shown in FIG. 5C, SAM17 is used to inhibit the formation of the target film 18 in the second region A2, the third region A3, and the fourth region A4, and the first region A1 is formed. The target film 18 is formed. The SAM 17 inhibits the formation of the target film 18, but the blocking performance of the SAM 17 is not perfect, and the target film 18 protrudes laterally from the first region A1.
 そこで、本変形例のステップS7では、図5Dに示すように、基板1の表面1aに対してHOを含むガスを供給し、対象膜18の第1領域A1からはみ出した不要な部位をエッチングする。従って、対象膜18の不要な部位を選択的に除去できる。 Therefore, in step S7 of this modification, as shown in FIG. 5D, a gas containing H 2 O is supplied to the surface 1a of the substrate 1, and an unnecessary portion protruding from the first region A1 of the target film 18 is removed. Etch. Therefore, unnecessary portions of the target film 18 can be selectively removed.
 次に、図6A~図6Dを参照して、第2変形例に係る基板1の処理について説明する。本変形例の基板1は、図6Aに示すように、金属膜12がキャップ膜である。絶縁膜11の凹部には、金属膜12とは異なる金属で形成される第2金属膜15が埋め込まれる。第2金属膜15の上に金属膜12が形成され、金属膜12は第2金属膜15を覆う。 Next, the processing of the substrate 1 according to the second modification will be described with reference to FIGS. 6A to 6D. As shown in FIG. 6A, the metal film 12 of the substrate 1 of this modification is a cap film. A second metal film 15 made of a metal different from the metal film 12 is embedded in the recess of the insulating film 11. A metal film 12 is formed on the second metal film 15, and the metal film 12 covers the second metal film 15.
 表3に、絶縁膜11と、金属膜(キャップ膜)12と、バリア膜13と、ライナー膜14と、第2金属膜15との具体例をまとめて示す。 Table 3 summarizes specific examples of the insulating film 11, the metal film (cap film) 12, the barrier film 13, the liner film 14, and the second metal film 15.
Figure JPOXMLDOC01-appb-T000003
 なお、絶縁膜11と、金属膜12と、バリア膜13と、ライナー膜14と、第2金属膜15との組み合わせは、特に限定されない。
Figure JPOXMLDOC01-appb-T000003
The combination of the insulating film 11, the metal film 12, the barrier film 13, the liner film 14, and the second metal film 15 is not particularly limited.
 本変形例のステップS5では、図6Bに示すように、第1領域A1、第2領域A2、第3領域A3及び第4領域A4の中で、第2領域A2、第3領域A3及び第4領域A4に選択的に、有機化合物を化学吸着し、SAM17を形成する。SAM17は、第1領域A1には形成されない。 In step S5 of this modification, as shown in FIG. 6B, in the first region A1, the second region A2, the third region A3, and the fourth region A4, the second region A2, the third region A3, and the fourth region A4. The organic compound is selectively chemically adsorbed on the region A4 to form SAM17. SAM17 is not formed in the first region A1.
 また、本変形例のステップS6では、図6Cに示すように、SAM17を用い第2領域A2、第3領域A3及び第4領域A4における対象膜18の形成を阻害しつつ、第1領域A1に対象膜18を形成する。SAM17は対象膜18の形成を阻害するが、SAM17のブロック性能は完全ではなく、対象膜18は第1領域A1から横にはみ出してしまう。 Further, in step S6 of this modification, as shown in FIG. 6C, SAM17 is used to inhibit the formation of the target film 18 in the second region A2, the third region A3, and the fourth region A4, and the first region A1 is formed. The target film 18 is formed. The SAM 17 inhibits the formation of the target film 18, but the blocking performance of the SAM 17 is not perfect, and the target film 18 protrudes laterally from the first region A1.
 そこで、本変形例のステップS7では、図6Dに示すように、基板1の表面1aに対してHOを含むガスを供給し、対象膜18の第1領域A1からはみ出した不要な部位をエッチングする。従って、対象膜18の不要な部位を選択的に除去できる。 Therefore, in step S7 of this modification, as shown in FIG. 6D, a gas containing H 2 O is supplied to the surface 1a of the substrate 1, and an unnecessary portion protruding from the first region A1 of the target film 18 is removed. Etch. Therefore, unnecessary portions of the target film 18 can be selectively removed.
 なお、上記実施形態、上記第1変形例、及び上記第2変形例では、絶縁膜11が第1膜に相当し、金属膜12が第2膜に相当するが、第1膜と第2膜の組み合わせは特に限定されない。 In the above-described embodiment, the above-mentioned first modification, and the above-mentioned second modification, the insulating film 11 corresponds to the first film and the metal film 12 corresponds to the second film, but the first film and the second film. The combination of is not particularly limited.
 表4に、SAM17の原料がチオール系化合物である場合の、第1膜と第2膜と対象膜18の組み合わせの候補を示す。 Table 4 shows candidates for combinations of the first film, the second film, and the target film 18 when the raw material of SAM 17 is a thiol-based compound.
Figure JPOXMLDOC01-appb-T000004
表4に記載の候補は、任意の組み合わせで用いられる。
Figure JPOXMLDOC01-appb-T000004
The candidates shown in Table 4 are used in any combination.
 また、表5に、SAM17の原料がホスホン酸系化合物である場合の、第1膜と第2膜と対象膜18の組み合わせの候補を示す。 Table 5 shows candidates for combinations of the first film, the second film, and the target film 18 when the raw material of SAM 17 is a phosphonic acid compound.
Figure JPOXMLDOC01-appb-T000005
表5に記載の候補は、任意の組み合わせで用いられる。
Figure JPOXMLDOC01-appb-T000005
The candidates shown in Table 5 are used in any combination.
 第1膜は絶縁膜であり、第2膜は導電膜であり、第1膜の上に形成される対象膜18は絶縁膜であることが好ましい。 It is preferable that the first film is an insulating film, the second film is a conductive film, and the target film 18 formed on the first film is an insulating film.
 次に、図7を参照して、上記の成膜方法を実施する成膜装置100について説明する。図7に示すように、成膜装置100は、第1処理部200Aと、第2処理部200Bと、第3処理部200Cと、搬送部400と、制御部500とを有する。第1処理部200Aは、図1のステップS2~S3を実施する。第2処理部200Bは、図1のステップS4~S5を実施する。第3処理部200Cは、図1のステップS6~S7を実施する。第1処理部200Aと、第2処理部200Bと、第3処理部200Cとは、同様の構造を有する。従って、第1処理部200Aのみで、図1のステップS2~S7の全てを実施することも可能である。搬送部400は、第1処理部200A、第2処理部200B、及び第3処理部200Cに対して、基板1を搬送する。制御部500は、第1処理部200A、第2処理部200B、第3処理部200C、及び搬送部400を制御する。 Next, the film forming apparatus 100 that implements the above film forming method will be described with reference to FIG. 7. As shown in FIG. 7, the film forming apparatus 100 includes a first processing unit 200A, a second processing unit 200B, a third processing unit 200C, a transport unit 400, and a control unit 500. The first processing unit 200A carries out steps S2 to S3 of FIG. The second processing unit 200B carries out steps S4 to S5 of FIG. The third processing unit 200C carries out steps S6 to S7 of FIG. The first processing unit 200A, the second processing unit 200B, and the third processing unit 200C have similar structures. Therefore, it is possible to carry out all of steps S2 to S7 in FIG. 1 only by the first processing unit 200A. The transport unit 400 transports the substrate 1 to the first processing unit 200A, the second processing unit 200B, and the third processing unit 200C. The control unit 500 controls the first processing unit 200A, the second processing unit 200B, the third processing unit 200C, and the transport unit 400.
 搬送部400は、第1搬送室401と、第1搬送機構402とを有する。第1搬送室401の内部雰囲気は、大気雰囲気である。第1搬送室401の内部に、第1搬送機構402が設けられる。第1搬送機構402は、基板1を保持するアーム403を含み、レール404に沿って走行する。レール404は、キャリアCの配列方向に延びている。 The transport unit 400 has a first transport chamber 401 and a first transport mechanism 402. The internal atmosphere of the first transport chamber 401 is an atmospheric atmosphere. A first transport mechanism 402 is provided inside the first transport chamber 401. The first transport mechanism 402 includes an arm 403 that holds the substrate 1 and travels along the rail 404. The rail 404 extends in the arrangement direction of the carriers C.
 また、搬送部400は、第2搬送室411と、第2搬送機構412とを有する。第2搬送室411の内部雰囲気は、真空雰囲気である。第2搬送室411の内部に、第2搬送機構412が設けられる。第2搬送機構412は、基板1を保持するアーム413を含み、アーム413は、鉛直方向及び水平方向に移動可能に、且つ鉛直軸周りに回転可能に配置される。第2搬送室411には、異なるゲートバルブGを介して第1処理部200Aと第2処理部200Bと第3処理部200Cとが接続される。 Further, the transport unit 400 has a second transport chamber 411 and a second transport mechanism 412. The internal atmosphere of the second transport chamber 411 is a vacuum atmosphere. A second transport mechanism 412 is provided inside the second transport chamber 411. The second transfer mechanism 412 includes an arm 413 that holds the substrate 1, and the arm 413 is arranged so as to be movable in the vertical direction and the horizontal direction and rotatably around the vertical axis. The first processing unit 200A, the second processing unit 200B, and the third processing unit 200C are connected to the second transfer chamber 411 via different gate valves G.
 更に、搬送部400は、第1搬送室401と第2搬送室411の間に、ロードロック室421を有する。ロードロック室421の内部雰囲気は、図示しない調圧機構により真空雰囲気と大気雰囲気との間で切り換えられる。これにより、第2搬送室411の内部を常に真空雰囲気に維持できる。また、第1搬送室401から第2搬送室411にガスが流れ込むのを抑制できる。第1搬送室401とロードロック室421の間、及び第2搬送室411とロードロック室421の間には、ゲートバルブGが設けられる。 Further, the transport unit 400 has a load lock chamber 421 between the first transport chamber 401 and the second transport chamber 411. The internal atmosphere of the load lock chamber 421 is switched between a vacuum atmosphere and an atmospheric atmosphere by a pressure regulating mechanism (not shown). As a result, the inside of the second transport chamber 411 can always be maintained in a vacuum atmosphere. Further, it is possible to suppress the inflow of gas from the first transport chamber 401 to the second transport chamber 411. A gate valve G is provided between the first transport chamber 401 and the load lock chamber 421, and between the second transport chamber 411 and the load lock chamber 421.
 制御部500は、例えばコンピュータであり、CPU(Central Processing Unit)501と、メモリ等の記憶媒体502とを有する。記憶媒体502には、成膜装置100において実行される各種の処理を制御するプログラムが格納される。制御部500は、記憶媒体502に記憶されたプログラムをCPU501に実行させることにより、成膜装置100の動作を制御する。制御部500は、第1処理部200Aと第2処理部200Bと第3処理部200Cと搬送部400とを制御し、上記の成膜方法を実施する。 The control unit 500 is, for example, a computer, and has a CPU (Central Processing Unit) 501 and a storage medium 502 such as a memory. The storage medium 502 stores programs that control various processes executed by the film forming apparatus 100. The control unit 500 controls the operation of the film forming apparatus 100 by causing the CPU 501 to execute the program stored in the storage medium 502. The control unit 500 controls the first processing unit 200A, the second processing unit 200B, the third processing unit 200C, and the transport unit 400, and implements the above film forming method.
 次に、成膜装置100の動作について説明する。先ず、第1搬送機構402が、キャリアCから基板1を取り出し、取り出した基板1をロードロック室421に搬送し、ロードロック室421から退出する。次に、ロードロック室421の内部雰囲気が大気雰囲気から真空雰囲気に切り換えられる。その後、第2搬送機構412が、ロードロック室421から基板1を取り出し、取り出した基板1を第1処理部200Aに搬送する。 Next, the operation of the film forming apparatus 100 will be described. First, the first transport mechanism 402 takes out the substrate 1 from the carrier C, conveys the taken out substrate 1 to the load lock chamber 421, and exits from the load lock chamber 421. Next, the internal atmosphere of the load lock chamber 421 is switched from the atmospheric atmosphere to the vacuum atmosphere. After that, the second transfer mechanism 412 takes out the substrate 1 from the load lock chamber 421 and conveys the taken out substrate 1 to the first processing unit 200A.
 次に、第1処理部200Aが、ステップS2~S3を実施する。その後、第2搬送機構412が、第1処理部200Aから基板1を取り出し、取り出した基板1を第2処理部200Bに搬送する。この間、基板1の周辺雰囲気を真空雰囲気に維持でき、基板1の酸化を抑制できる。 Next, the first processing unit 200A carries out steps S2 to S3. After that, the second transfer mechanism 412 takes out the substrate 1 from the first processing unit 200A and conveys the taken out substrate 1 to the second processing unit 200B. During this time, the surrounding atmosphere of the substrate 1 can be maintained in a vacuum atmosphere, and oxidation of the substrate 1 can be suppressed.
 次に、第2処理部200Bが、ステップS4~S5を実施する。その後、第2搬送機構412が、第2処理部200Bから基板1を取り出し、取り出した基板1を第3処理部200Cに搬送する。この間、基板1の周辺雰囲気を真空雰囲気に維持でき、SAM17のブロック性能の低下を抑制できる。 Next, the second processing unit 200B carries out steps S4 to S5. After that, the second transfer mechanism 412 takes out the substrate 1 from the second processing unit 200B, and conveys the taken out substrate 1 to the third processing unit 200C. During this time, the surrounding atmosphere of the substrate 1 can be maintained in a vacuum atmosphere, and deterioration of the block performance of the SAM 17 can be suppressed.
 次に、第3処理部200Cが、ステップS6~S7を実施する。続いて、制御部500は、ステップS3~S7を設定回数実施したか否かをチェックする。実施回数が設定回数に達していない場合、第2搬送機構412は、第3処理部200Cから基板1を取り出し、取り出した基板1を第1処理部200Aに搬送する。その後、制御部500は、第1処理部200Aと第2処理部200Bと第3処理部200Cと搬送部400とを制御し、ステップS3~S7を実施する。 Next, the third processing unit 200C carries out steps S6 to S7. Subsequently, the control unit 500 checks whether or not steps S3 to S7 have been executed a set number of times. When the number of implementations has not reached the set number of times, the second transfer mechanism 412 takes out the substrate 1 from the third processing unit 200C and conveys the taken out substrate 1 to the first processing unit 200A. After that, the control unit 500 controls the first processing unit 200A, the second processing unit 200B, the third processing unit 200C, and the transport unit 400, and carries out steps S3 to S7.
 一方、実施回数が設定回数に達している場合、第2搬送機構412が、第3処理部200Cから基板1を取り出し、取り出した基板1をロードロック室421に搬送し、ロードロック室421から退出する。続いて、ロードロック室421の内部雰囲気が真空雰囲気から大気雰囲気に切り換えられる。その後、第1搬送機構402が、ロードロック室421から基板1を取り出し、取り出した基板1をキャリアCに収容する。そして、基板1の処理が終了する。 On the other hand, when the number of executions has reached the set number of times, the second transfer mechanism 412 takes out the substrate 1 from the third processing unit 200C, conveys the taken out substrate 1 to the load lock chamber 421, and exits from the load lock chamber 421. do. Subsequently, the internal atmosphere of the load lock chamber 421 is switched from the vacuum atmosphere to the atmospheric atmosphere. After that, the first transfer mechanism 402 takes out the substrate 1 from the load lock chamber 421 and accommodates the taken out substrate 1 in the carrier C. Then, the processing of the substrate 1 is completed.
 次に、図8を参照して、第1処理部200Aについて説明する。なお、第2処理部200B及び第3処理部200Cは、第1処理部200Aと同様に構成されるので、図示及び説明を省略する。 Next, the first processing unit 200A will be described with reference to FIG. Since the second processing unit 200B and the third processing unit 200C are configured in the same manner as the first processing unit 200A, illustration and description thereof will be omitted.
 第1処理部200Aは、略円筒状の気密な処理容器210を備える。処理容器210の底壁の中央部には、排気室211が設けられている。排気室211は、下方に向けて突出する例えば略円筒状の形状を備える。排気室211には、例えば排気室211の側面において、排気配管212が接続されている。 The first processing unit 200A includes a substantially cylindrical airtight processing container 210. An exhaust chamber 211 is provided in the center of the bottom wall of the processing container 210. The exhaust chamber 211 has, for example, a substantially cylindrical shape that projects downward. An exhaust pipe 212 is connected to the exhaust chamber 211, for example, on the side surface of the exhaust chamber 211.
 排気配管212には、圧力制御器271を介して排気源272が接続されている。圧力制御器271は、例えばバタフライバルブ等の圧力調整バルブを備える。排気配管212は、排気源272によって処理容器210内を減圧できるように構成されている。圧力制御器271と、排気源272とで、処理容器210内のガスを排出するガス排出機構270が構成される。 The exhaust source 272 is connected to the exhaust pipe 212 via the pressure controller 271. The pressure controller 271 includes a pressure adjusting valve such as a butterfly valve. The exhaust pipe 212 is configured so that the inside of the processing container 210 can be depressurized by the exhaust source 272. The pressure controller 271 and the exhaust source 272 form a gas discharge mechanism 270 that discharges the gas in the processing container 210.
 処理容器210の側面には、搬送口215が設けられている。搬送口215は、ゲートバルブGによって開閉される。処理容器210内と第2搬送室411(図7参照)との間における基板1の搬入出は、搬送口215を介して行われる。 A transport port 215 is provided on the side surface of the processing container 210. The transport port 215 is opened and closed by the gate valve G. The loading and unloading of the substrate 1 between the inside of the processing container 210 and the second transport chamber 411 (see FIG. 7) is performed via the transport port 215.
 処理容器210内には、基板1を保持する保持部であるステージ220が設けられている。ステージ220は、基板1の表面1aを上に向けて、基板1を水平に保持する。ステージ220は、平面視で略円形状に形成されており、支持部材221によって支持されている。ステージ220の表面には、例えば直径が300mmの基板1を載置するための略円形状の凹部222が形成されている。凹部222は、基板1の直径よりも僅かに大きい内径を有する。凹部222の深さは、例えば基板1の厚さと略同一に構成される。ステージ220は、例えば窒化アルミニウム(AlN)等のセラミックス材料により形成されている。また、ステージ220は、ニッケル(Ni)等の金属材料により形成されていてもよい。なお、凹部222の代わりにステージ220の表面の周縁部に基板1をガイドするガイドリングを設けてもよい。 A stage 220, which is a holding portion for holding the substrate 1, is provided in the processing container 210. The stage 220 holds the substrate 1 horizontally with the surface 1a of the substrate 1 facing up. The stage 220 is formed in a substantially circular shape in a plan view, and is supported by the support member 221. On the surface of the stage 220, for example, a substantially circular recess 222 for mounting the substrate 1 having a diameter of 300 mm is formed. The recess 222 has an inner diameter slightly larger than the diameter of the substrate 1. The depth of the recess 222 is configured to be substantially the same as, for example, the thickness of the substrate 1. The stage 220 is made of a ceramic material such as aluminum nitride (AlN). Further, the stage 220 may be formed of a metal material such as nickel (Ni). Instead of the recess 222, a guide ring for guiding the substrate 1 may be provided on the peripheral edge of the surface of the stage 220.
 ステージ220には、例えば接地された下部電極223が埋設される。下部電極223の下方には、加熱機構224が埋設される。加熱機構224は、制御部500(図7参照)からの制御信号に基づいて電源部(図示せず)から給電されることによって、ステージ220に載置された基板1を設定温度に加熱する。ステージ220の全体が金属によって構成されている場合には、ステージ220の全体が下部電極として機能するので、下部電極223をステージ220に埋設しなくてよい。ステージ220には、ステージ220に載置された基板1を保持して昇降するための複数本(例えば3本)の昇降ピン231が設けられている。昇降ピン231の材料は、例えばアルミナ(Al)等のセラミックスや石英等であってよい。昇降ピン231の下端は、支持板232に取り付けられている。支持板232は、昇降軸233を介して処理容器210の外部に設けられた昇降機構234に接続されている。 For example, a grounded lower electrode 223 is embedded in the stage 220. A heating mechanism 224 is embedded below the lower electrode 223. The heating mechanism 224 heats the substrate 1 mounted on the stage 220 to a set temperature by supplying power from a power supply unit (not shown) based on a control signal from the control unit 500 (see FIG. 7). When the entire stage 220 is made of metal, the entire stage 220 functions as a lower electrode, so that the lower electrode 223 does not have to be embedded in the stage 220. The stage 220 is provided with a plurality of (for example, three) elevating pins 231 for holding and elevating the substrate 1 mounted on the stage 220. The material of the elevating pin 231 may be, for example, ceramics such as alumina (Al 2 O 3 ), quartz, or the like. The lower end of the elevating pin 231 is attached to the support plate 232. The support plate 232 is connected to an elevating mechanism 234 provided outside the processing container 210 via an elevating shaft 233.
 昇降機構234は、例えば排気室211の下部に設置されている。ベローズ235は、排気室211の下面に形成された昇降軸233用の開口部219と昇降機構234との間に設けられている。支持板232の形状は、ステージ220の支持部材221と干渉せずに昇降できる形状であってもよい。昇降ピン231は、昇降機構234によって、ステージ220の表面の上方と、ステージ220の表面の下方との間で、昇降自在に構成される。 The elevating mechanism 234 is installed at the lower part of the exhaust chamber 211, for example. The bellows 235 is provided between the opening 219 for the elevating shaft 233 formed on the lower surface of the exhaust chamber 211 and the elevating mechanism 234. The shape of the support plate 232 may be a shape that can be raised and lowered without interfering with the support member 221 of the stage 220. The elevating pin 231 is vertically configured by the elevating mechanism 234 between above the surface of the stage 220 and below the surface of the stage 220.
 処理容器210の天壁217には、絶縁部材218を介してガス供給部240が設けられている。ガス供給部240は、上部電極を成しており、下部電極223に対向している。ガス供給部240には、整合器251を介して高周波電源252が接続されている。高周波電源252から上部電極(ガス供給部240)に450kHz~100MHzの高周波電力を供給することによって、上部電極(ガス供給部240)と下部電極223との間に高周波電界が生成され、容量結合プラズマが生成する。プラズマを生成するプラズマ生成部250は、整合器251と、高周波電源252と、を含む。なお、プラズマ生成部250は、容量結合プラズマに限らず、誘導結合プラズマなど他のプラズマを生成するものであってもよい。 The top wall 217 of the processing container 210 is provided with a gas supply unit 240 via an insulating member 218. The gas supply unit 240 forms an upper electrode and faces the lower electrode 223. A high frequency power supply 252 is connected to the gas supply unit 240 via a matching unit 251. By supplying high frequency power of 450 kHz to 100 MHz from the high frequency power supply 252 to the upper electrode (gas supply unit 240), a high frequency electric field is generated between the upper electrode (gas supply unit 240) and the lower electrode 223, and capacitively coupled plasma is generated. Is generated. The plasma generation unit 250 that generates plasma includes a matching unit 251 and a high frequency power supply 252. The plasma generation unit 250 is not limited to capacitively coupled plasma, and may generate other plasma such as inductively coupled plasma.
 ガス供給部240は、中空状のガス供給室241を備える。ガス供給室241の下面には、処理容器210内へ処理ガスを分散供給するための多数の孔242が例えば均等に配置されている。ガス供給部240における例えばガス供給室241の上方には、加熱機構243が埋設されている。加熱機構243は、制御部500からの制御信号に基づいて電源部(図示せず)から給電されることによって、設定温度に加熱される。 The gas supply unit 240 includes a hollow gas supply chamber 241. On the lower surface of the gas supply chamber 241, for example, a large number of holes 242 for dispersing and supplying the processing gas into the processing container 210 are evenly arranged. A heating mechanism 243 is embedded above, for example, the gas supply chamber 241 in the gas supply unit 240. The heating mechanism 243 is heated to a set temperature by supplying power from a power supply unit (not shown) based on a control signal from the control unit 500.
 ガス供給室241には、ガス供給路261を介して、ガス供給機構260が接続される。ガス供給機構260は、ガス供給路261を介してガス供給室241に、図1のステップS2~S7の少なくとも1つで用いられるガスを供給する。ガス供給機構260は、図示しないが、ガスの種類毎に、個別配管と、個別配管の途中に設けられる開閉バルブと、個別配管の途中に設けられる流量制御器とを含む。開閉バルブが個別配管を開くと、供給源からガス供給路261にガスが供給される。その供給量は流量制御器によって制御される。一方、開閉バルブが個別配管を閉じると、供給源からガス供給路261へのガスの供給が停止される。 A gas supply mechanism 260 is connected to the gas supply chamber 241 via a gas supply path 261. The gas supply mechanism 260 supplies the gas used in at least one of steps S2 to S7 of FIG. 1 to the gas supply chamber 241 via the gas supply path 261. Although not shown, the gas supply mechanism 260 includes individual pipes, an on-off valve provided in the middle of the individual pipes, and a flow rate controller provided in the middle of the individual pipes for each type of gas, although not shown. When the on-off valve opens the individual pipe, gas is supplied from the supply source to the gas supply path 261. The supply amount is controlled by the flow rate controller. On the other hand, when the on-off valve closes the individual pipe, the supply of gas from the supply source to the gas supply path 261 is stopped.
 [実施例]
 次に、実施例について説明する。
[Example]
Next, an embodiment will be described.
 <実施例1>
 実施例1では、図2Aに示す基板1を準備した。下地基板10はシリコンウェハであり、絶縁膜11はSiOC膜であり、金属膜12はCu膜であり、バリア膜13はTaN膜であった。SiOC膜の表面において、トレンチの幅は20nmであり、トレンチのピッチは40nmであった。図1に示す成膜方法を下記の条件で実施した。SAM17の原料はPFOTであり、対象膜18は膜厚5.6nmのAlO膜であった。図1のステップS8の設定回数は1回であり、ステップS3~S7は1回のみ実施した。
<Example 1>
In Example 1, the substrate 1 shown in FIG. 2A was prepared. The base substrate 10 was a silicon wafer, the insulating film 11 was a SiOC film, the metal film 12 was a Cu film, and the barrier film 13 was a TaN film. On the surface of the SiOC film, the width of the trench was 20 nm and the pitch of the trench was 40 nm. The film forming method shown in FIG. 1 was carried out under the following conditions. The raw material of SAM 17 was PFOT, and the target film 18 was an AlO film having a film thickness of 5.6 nm. Step S8 in FIG. 1 was set once, and steps S3 to S7 were performed only once.
 ステップS2の処理条件は下記の通りであった。
ガスの流量:1000sccm
Arガスの流量:750sccm
ガスとArガスの混合ガスに占めるHガスの割合:57体積%
プラズマ生成用の電源周波数:40MHz
プラズマ生成用の電力:200W
処理時間:30sec
処理温度:120℃
処理圧力:266Pa。
The processing conditions in step S2 were as follows.
H2 gas flow rate: 1000 sccm
Ar gas flow rate: 750 sccm
Ratio of H 2 gas to the mixed gas of H 2 gas and Ar gas: 57% by volume
Power frequency for plasma generation: 40MHz
Power for plasma generation: 200W
Processing time: 30 sec
Processing temperature: 120 ° C
Processing pressure: 266 Pa.
 ステップS3の処理条件は下記の通りであった。
ガスの流量:1000sccm
処理時間:900sec
処理温度:120℃
処理圧力:266Pa。
The processing conditions in step S3 were as follows.
O 2 gas flow rate: 1000 sccm
Processing time: 900 sec
Processing temperature: 120 ° C
Processing pressure: 266 Pa.
 ステップS4の処理条件は下記の通りであった。
IPAガスの流量:100sccm
処理時間:900sec
処理温度:150℃
処理圧力:360Pa。
The processing conditions in step S4 were as follows.
IPA gas flow rate: 100 sccm
Processing time: 900 sec
Processing temperature: 150 ° C
Processing pressure: 360 Pa.
 ステップS5の処理条件は下記の通りであった。
PFOTガスの流量:100sccm
処理時間:600sec
処理温度:150℃
処理圧力:620Pa。
The processing conditions in step S5 were as follows.
PFOT gas flow rate: 100 sccm
Processing time: 600 sec
Processing temperature: 150 ° C
Processing pressure: 620 Pa.
 ステップS6の処理条件は下記の通りであった。
・ステップS61
TMAガスの流量:50sccm
処理時間:0.1sec
・ステップS62
Arガスの流量:6000sccm
処理時間:1sec
・ステップS63
Oガスの流量:100sccm
処理時間:1sec
・ステップS64
Arガスの流量:6000sccm
処理時間:2sec
・ステップS61~S64に共通の処理条件
処理温度:120℃
処理圧力:400Pa
図3のステップS65の設定回数は68回であり、ステップS61~S64は68回繰り返し実施した。
The processing conditions in step S6 were as follows.
-Step S61
TMA gas flow rate: 50 sccm
Processing time: 0.1 sec
-Step S62
Ar gas flow rate: 6000 sccm
Processing time: 1 sec
-Step S63
H2 O gas flow rate: 100 sccm
Processing time: 1 sec
-Step S64
Ar gas flow rate: 6000 sccm
Processing time: 2 sec
-Processing conditions common to steps S61 to S64 Processing temperature: 120 ° C.
Processing pressure: 400Pa
The number of times of setting step S65 in FIG. 3 was 68 times, and steps S61 to S64 were repeated 68 times.
 ステップS7の処理条件は、下記の通りであった。
・ステップS71
Oガスの流量:100sccm
処理時間:2sec
・ステップS72
ガスの流量:2000sccm
Arガスの流量:3000sccm
ガスとArガスの混合ガスに占めるHガスの割合:40体積%
プラズマ生成用の電源周波数:40MHz
プラズマ生成用の電力:200W
処理時間:10sec
・ステップS71~S72に共通の処理条件
処理温度:120℃
処理圧力:266Pa
図4のステップS73の設定回数は30回であり、ステップS71~S72は30回繰り返し実施した。
The processing conditions in step S7 were as follows.
-Step S71
H2 O gas flow rate: 100 sccm
Processing time: 2 sec
-Step S72
H 2 gas flow rate: 2000 sccm
Ar gas flow rate: 3000 sccm
Ratio of H 2 gas to the mixed gas of H 2 gas and Ar gas: 40% by volume
Power frequency for plasma generation: 40MHz
Power for plasma generation: 200W
Processing time: 10 sec
-Processing conditions common to steps S71 to S72 Processing temperature: 120 ° C.
Processing pressure: 266Pa
The number of times of setting step S73 in FIG. 4 was 30 times, and steps S71 to S72 were repeated 30 times.
 ステップS6の後であってステップS7の前に、対象膜18であるAlO膜の膜厚は5.6nmであり、不要な部位の幅W(図2C参照)は6.2nmであった。膜厚及び幅Wは、基板断面のSEM写真を用いて測定した。一方、ステップS7の後に、不要な部位の幅Wは4.7nmであった。従って、ステップS7によって、不要な部位の幅Wを1.5nm狭められたことが分かった。 After step S6 and before step S7, the film thickness of the AlO film, which is the target film 18, was 5.6 nm, and the width W of the unnecessary portion (see FIG. 2C) was 6.2 nm. The film thickness and width W were measured using an SEM photograph of the cross section of the substrate. On the other hand, after step S7, the width W of the unnecessary portion was 4.7 nm. Therefore, it was found that the width W of the unnecessary portion was narrowed by 1.5 nm by step S7.
 <実施例2>
 実施例2では、実施例1と同じ基板1を準備し、図1に示す成膜方法を下記の条件で実施した。実施例2と実施例1の主な相違点は、(1)図1のステップS8の設定回数を2回に設定したこと、(2)図3のステップS65の設定回数を45回に設定したこと、(3)図4のステップS73の設定回数を10回に設定したことである。なお、実施例2では、ステップS4は実施しなかった。
<Example 2>
In Example 2, the same substrate 1 as in Example 1 was prepared, and the film forming method shown in FIG. 1 was carried out under the following conditions. The main differences between Example 2 and Example 1 are (1) the number of times step S8 in FIG. 1 is set to 2 times, and (2) the number of times step S65 in FIG. 3 is set to 45 times. That is, (3) the number of times of setting in step S73 in FIG. 4 is set to 10 times. In Example 2, step S4 was not performed.
 ステップS2の処理条件は下記の通りであった。
ガスの流量:2000sccm
Arガスの流量:3000sccm
ガスとArガスの混合ガスに占めるHガスの割合:40体積%
プラズマ生成用の電源周波数:40MHz
プラズマ生成用の電力:200W
処理時間:10sec
処理温度:120℃
処理圧力:266Pa。
The processing conditions in step S2 were as follows.
H 2 gas flow rate: 2000 sccm
Ar gas flow rate: 3000 sccm
Ratio of H 2 gas to the mixed gas of H 2 gas and Ar gas: 40% by volume
Power frequency for plasma generation: 40MHz
Power for plasma generation: 200W
Processing time: 10 sec
Processing temperature: 120 ° C
Processing pressure: 266 Pa.
 ステップS3の処理条件は下記の通りであった。
ガスの流量:1000sccm
処理時間:600sec
処理温度:120℃
処理圧力:266Pa。
The processing conditions in step S3 were as follows.
O 2 gas flow rate: 1000 sccm
Processing time: 600 sec
Processing temperature: 120 ° C
Processing pressure: 266 Pa.
 ステップS5の処理条件は下記の通りであった。
PFOTガスの流量:100sccm
処理時間:300sec
処理温度:150℃
処理圧力:620Pa。
The processing conditions in step S5 were as follows.
PFOT gas flow rate: 100 sccm
Processing time: 300 sec
Processing temperature: 150 ° C
Processing pressure: 620 Pa.
 ステップS6の処理条件は下記の通りであった。
・ステップS61
TMAガスの流量:50sccm
処理時間:0.1sec
・ステップS62
Arガスの流量:6000sccm
処理時間:1sec
・ステップS63
Oガスの流量:100sccm
処理時間:1sec
・ステップS64
Arガスの流量:6000sccm
処理時間:2sec
・ステップS61~S64に共通の処理条件
処理温度:120℃
処理圧力:400Pa
図3のステップS65の設定回数は45回であり、ステップS61~S64は45回繰り返し実施した。
The processing conditions in step S6 were as follows.
-Step S61
TMA gas flow rate: 50 sccm
Processing time: 0.1 sec
-Step S62
Ar gas flow rate: 6000 sccm
Processing time: 1 sec
-Step S63
H2 O gas flow rate: 100 sccm
Processing time: 1 sec
-Step S64
Ar gas flow rate: 6000 sccm
Processing time: 2 sec
-Processing conditions common to steps S61 to S64 Processing temperature: 120 ° C.
Processing pressure: 400Pa
The number of times of setting step S65 in FIG. 3 was 45 times, and steps S61 to S64 were repeated 45 times.
 ステップS7の処理条件は、下記の通りであった。
・ステップS71
Oガスの流量:100sccm
処理時間:2sec
・ステップS72
ガスの流量:2000sccm
Arガスの流量:3000sccm
ガスとArガスの混合ガスに占めるHガスの割合:40体積%
プラズマ生成用の電源周波数:40MHz
プラズマ生成用の電力:200W
処理時間:20sec
・ステップS71~S72に共通の処理条件
処理温度:120℃
処理圧力:266Pa
図4のステップS73の設定回数は10回であり、ステップS71~S72は10回繰り返し実施した。
The processing conditions in step S7 were as follows.
-Step S71
H2 O gas flow rate: 100 sccm
Processing time: 2 sec
-Step S72
H 2 gas flow rate: 2000 sccm
Ar gas flow rate: 3000 sccm
Ratio of H 2 gas to the mixed gas of H 2 gas and Ar gas: 40% by volume
Power frequency for plasma generation: 40MHz
Power for plasma generation: 200W
Processing time: 20 sec
-Processing conditions common to steps S71 to S72 Processing temperature: 120 ° C.
Processing pressure: 266Pa
The number of times of setting step S73 in FIG. 4 was 10, and steps S71 to S72 were repeated 10 times.
 実施例2と実施例1の主な相違点は、上記の通り、(1)図1のステップS8の設定回数を2回に設定したこと、(2)図3のステップS65の設定回数を45回に設定したこと、(3)図4のステップS73の設定回数を10回に設定したことである。 As described above, the main differences between the second embodiment and the first embodiment are that (1) the number of times the step S8 in FIG. 1 is set is set to two, and (2) the number of times the step S65 in FIG. 3 is set is 45. It was set to 10 times, and (3) the number of times of setting in step S73 in FIG. 4 was set to 10 times.
 実施例2では、全ての処理の終了後に、対象膜18であるAlO膜の膜厚は6.0nmであり、不要な部位の幅Wは1.0nmであった。 In Example 2, after the completion of all the treatments, the film thickness of the AlO film, which is the target film 18, was 6.0 nm, and the width W of the unnecessary portion was 1.0 nm.
 実施例2と実施例1から、AlO膜の最終目標の膜厚が同程度である場合、図1のステップS8の設定回数を複数回に設定し、AlO膜の形成を複数回に分けて実施すれば、1回で実施する場合に比べて、不要な部位の幅Wを狭くできることが分かる。 From Example 2 and Example 1, when the final target film thickness of the AlO film is about the same, the set number of steps S8 in FIG. 1 is set to a plurality of times, and the formation of the AlO film is carried out in a plurality of times. Then, it can be seen that the width W of the unnecessary portion can be narrowed as compared with the case where the implementation is performed once.
 <実施例3>
 実施例3では、図4のステップS72の処理時間を30secに設定したこと、及び図4のステップS73の設定回数を3回に設定したことを除き、実施例2と同様に、図1に示す成膜方法を実施した。
<Example 3>
In Example 3, the same as in Example 2, except that the processing time of step S72 in FIG. 4 is set to 30 sec and the number of times of setting step S73 in FIG. 4 is set to 3, it is shown in FIG. The film forming method was carried out.
 実施例3では、全ての処理の終了後に、対象膜18であるAlO膜の膜厚は6.0nmであり、不要な部位の幅Wは0.9nmであった。従って、実施例3では、実施例2と同様の結果が得られた。 In Example 3, after the completion of all the treatments, the film thickness of the AlO film, which is the target film 18, was 6.0 nm, and the width W of the unnecessary portion was 0.9 nm. Therefore, in Example 3, the same result as in Example 2 was obtained.
 <実施例4>
 実施例4では、図1のステップS3の処理時間を300secに設定したことを除き、実施例2と同様に、図1に示す成膜方法を実施した。なお、実施例2では、上記の通り、図1のステップS3の処理時間は600secであった。
<Example 4>
In Example 4, the film forming method shown in FIG. 1 was carried out in the same manner as in Example 2, except that the processing time of step S3 in FIG. 1 was set to 300 sec. In Example 2, as described above, the processing time of step S3 in FIG. 1 was 600 sec.
 実施例4では、全ての処理の終了後に、対象膜18であるAlO膜の膜厚は6.2nmであり、不要な部位の幅Wは3.9nmであった。なお、実施例2では、上記の通り、全ての処理の終了後に、対象膜18であるAlO膜の膜厚は6.0nmであり、不要な部位の幅Wは1.0nmであった。 In Example 4, after the completion of all the treatments, the film thickness of the AlO film, which is the target film 18, was 6.2 nm, and the width W of the unnecessary portion was 3.9 nm. In Example 2, as described above, after the completion of all the treatments, the film thickness of the AlO film, which is the target film 18, was 6.0 nm, and the width W of the unnecessary portion was 1.0 nm.
 実施例4と実施例2とから、ステップS3の処理時間を300secから600secに延長すれば、全ての処理の終了後に、不要な部位の幅Wが狭くなることが分かる。ステップS3の処理時間がある程度長く、Cu膜の表面がある程度酸化された方が、緻密なSAMが得られ、ステップS7において長時間亘ってフッ酸が生成されるためと推定される。 From Example 4 and Example 2, it can be seen that if the processing time of step S3 is extended from 300 sec to 600 sec, the width W of the unnecessary portion becomes narrower after the completion of all the processing. It is presumed that if the treatment time in step S3 is long to some extent and the surface of the Cu film is oxidized to some extent, a dense SAM can be obtained and hydrofluoric acid is produced over a long period of time in step S7.
 <実施例5>
 実施例5では、SiOC膜の表面におけるトレンチの幅を50nmに変更し、且つトレンチのピッチを100nmに変更したことを除き、実施例2と同じ条件で基板1の処理を実施した。
<Example 5>
In Example 5, the substrate 1 was treated under the same conditions as in Example 2 except that the width of the trench on the surface of the SiOC film was changed to 50 nm and the pitch of the trench was changed to 100 nm.
 実施例5では、全ての処理の終了後に、対象膜18であるAlO膜の膜厚は6.4nmであり、不要な部位の幅Wは0.0nmであった。実施例5で得られた基板の断面のSEM写真を図9に示す。図9から明らかなように、AlO膜のはみ出しは認められなかった。 In Example 5, after the completion of all the treatments, the film thickness of the AlO film, which is the target film 18, was 6.4 nm, and the width W of the unnecessary portion was 0.0 nm. FIG. 9 shows an SEM photograph of a cross section of the substrate obtained in Example 5. As is clear from FIG. 9, no protrusion of the AlO film was observed.
 以上、本開示に係る成膜方法及び成膜装置の実施形態について説明したが、本開示は上記実施形態などに限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 Although the film forming method and the embodiment of the film forming apparatus according to the present disclosure have been described above, the present disclosure is not limited to the above-described embodiment and the like. Various changes, modifications, replacements, additions, deletions, and combinations are possible within the scope of the claims. Of course, they also belong to the technical scope of the present disclosure.
 本出願は、2020年9月29日に日本国特許庁に出願した特願2020-162902号に基づく優先権を主張するものであり、特願2020-162902号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2020-16202 filed with the Japan Patent Office on September 29, 2020, and the entire contents of Japanese Patent Application No. 2020-162902 are incorporated into this application. ..
1  基板
1a 表面
11 絶縁膜(第1膜)
12 金属膜(第2膜)
17 SAM(自己組織化単分子膜)
18 対象膜
A1 第1領域
A2 第2領域
1 Substrate 1a Surface 11 Insulation film (first film)
12 Metal film (second film)
17 SAM (Self-assembled monolayer)
18 Target film A1 1st region A2 2nd region

Claims (10)

  1.  第1膜が露出する第1領域と、前記第1膜とは異なる材料で形成される第2膜が露出する第2領域とを表面に有する基板を準備することと、
     前記基板の前記表面に対して自己組織化単分子膜の原料であるフッ素を含む有機化合物を供給し、前記第1領域及び前記第2領域の中で、前記第2領域に選択的に、前記自己組織化単分子膜を形成することと、
     前記自己組織化単分子膜を用い前記第2領域における対象膜の形成を阻害ししつつ、前記第1領域に前記対象膜を形成することと、
     前記基板の前記表面に対してHOを含むガスを供給し、前記対象膜の前記第1領域からはみ出した端部をエッチングすることと、
     を含む、成膜方法。
    To prepare a substrate having a first region on which the first film is exposed and a second region on which the second film is exposed, which is made of a material different from the first film, is prepared.
    An organic compound containing fluorine, which is a raw material for a self-assembled monolayer, is supplied to the surface of the substrate, and the second region is selectively selected in the first region and the second region. Forming a self-assembled monolayer and
    Using the self-assembled monolayer to form the target film in the first region while inhibiting the formation of the target membrane in the second region.
    A gas containing H2O is supplied to the surface of the substrate to etch the end portion of the target film protruding from the first region.
    A film forming method including.
  2.  前記対象膜の前記端部をエッチングすることは、HOを含むガスと、プラズマ化されたガスとを、前記基板の前記表面に対して供給することを含む、請求項1に記載の成膜方法。 The achievement according to claim 1, wherein etching the end portion of the target film comprises supplying a gas containing H2O and a plasmatized gas to the surface of the substrate. Membrane method.
  3.  前記対象膜の前記端部をエッチングすることは、HOを含むガスと、プラズマ化されたガスとを、順番に、前記基板の前記表面に対して供給することを含む、請求項2に記載の成膜方法。 The second aspect of the present invention includes etching the end portion of the target film by sequentially supplying a gas containing H2O and a plasmatized gas to the surface of the substrate. The film forming method described.
  4.  前記対象膜の前記端部をエッチングすることは、HOを含むガスと、プラズマ化されたガスとを、順番に、前記基板の前記表面に対して供給することを、複数回繰り返し含む、請求項3に記載の成膜方法。 Etching the end portion of the target film comprises repeatedly supplying the gas containing H2O and the plasmatized gas to the surface of the substrate a plurality of times. The film forming method according to claim 3.
  5.  前記プラズマ化されたガスは、Hガス、Arガス、Nガス、及びNHガスから選ばれる少なくとも1つを含む、請求項2~4のいずれか1項に記載の成膜方法。 The film forming method according to any one of claims 2 to 4, wherein the plasmatized gas contains at least one selected from H 2 gas, Ar gas, N 2 gas, and NH 3 gas.
  6.  前記対象膜の前記端部をエッチングすることは、途中で、前記第2領域に前記自己組織化単分子膜を形成し、補給することを含む、請求項1~5のいずれか1項に記載の成膜方法。 The invention according to any one of claims 1 to 5, wherein etching the end portion of the target film includes forming and replenishing the self-assembled monolayer in the second region on the way. Film formation method.
  7.  前記自己組織化単分子膜を形成することと、前記対象膜を形成することと、前記対象膜の前記端部をエッチングすることとをこの順番で複数回繰り返し含む、請求項1~6のいずれか1項に記載に成膜方法。 Any of claims 1 to 6, wherein forming the self-assembled monolayer, forming the target film, and etching the end portion of the target film are repeated a plurality of times in this order. The film forming method described in item 1.
  8.  n(nは1以上の自然数)回目の前記対象膜の前記端部をエッチングすることの後であって、n+1回目の前記自己組織化単分子膜を形成することの前に、酸素を含むガスを前記基板の前記表面に対して供給することを含む、請求項7に記載に成膜方法。 A gas containing oxygen after the n (n is a natural number of 1 or more) times of etching the end of the target film and before the n + 1th time of forming the self-assembled monolayer. The film forming method according to claim 7, wherein the film is supplied to the surface of the substrate.
  9.  前記第1膜は、絶縁膜であり、
     前記第2膜は、導電膜であり、
     前記第1膜の上に形成される前記対象膜は、絶縁膜である、請求項1~8のいずれか1項に記載の成膜方法。
    The first film is an insulating film and is an insulating film.
    The second film is a conductive film and is
    The film forming method according to any one of claims 1 to 8, wherein the target film formed on the first film is an insulating film.
  10.  処理容器と、
     前記処理容器の内部で前記基板を保持する保持部と、
     前記処理容器の内部にガスを供給するガス供給機構と、
     前記処理容器の内部からガスを排出するガス排出機構と、
     前記処理容器に対して前記基板を搬入出する搬送機構と、
     前記ガス供給機構、前記ガス排出機構及び前記搬送機構を制御し、請求項1~9のいずれか1項に記載の成膜方法を実施する制御部と、
     を備える、成膜装置。
    With the processing container
    A holding portion that holds the substrate inside the processing container,
    A gas supply mechanism that supplies gas to the inside of the processing container,
    A gas discharge mechanism that discharges gas from the inside of the processing container,
    A transport mechanism for loading and unloading the substrate to and from the processing container,
    A control unit that controls the gas supply mechanism, the gas discharge mechanism, and the transport mechanism to carry out the film forming method according to any one of claims 1 to 9.
    A film forming apparatus.
PCT/JP2021/033864 2020-09-29 2021-09-15 Film deposition method and film deposition device WO2022070909A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-162902 2020-09-29
JP2020162902A JP2022055462A (en) 2020-09-29 2020-09-29 Film deposition method and film deposition apparatus

Publications (1)

Publication Number Publication Date
WO2022070909A1 true WO2022070909A1 (en) 2022-04-07

Family

ID=80951443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033864 WO2022070909A1 (en) 2020-09-29 2021-09-15 Film deposition method and film deposition device

Country Status (2)

Country Link
JP (1) JP2022055462A (en)
WO (1) WO2022070909A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024047875A (en) * 2022-09-27 2024-04-08 東京エレクトロン株式会社 Film forming method and film forming apparatus
JP2024064500A (en) * 2022-10-28 2024-05-14 東京エレクトロン株式会社 Film forming method and film forming apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046279A (en) * 2016-09-13 2018-03-22 東京エレクトロン株式会社 Selective metal oxide deposition using self-assembled monolayer surface pretreatment
JP2020147788A (en) * 2019-03-13 2020-09-17 東京エレクトロン株式会社 Film deposition method
WO2020189288A1 (en) * 2019-03-15 2020-09-24 東京エレクトロン株式会社 Film formation method and film formation apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046279A (en) * 2016-09-13 2018-03-22 東京エレクトロン株式会社 Selective metal oxide deposition using self-assembled monolayer surface pretreatment
JP2020147788A (en) * 2019-03-13 2020-09-17 東京エレクトロン株式会社 Film deposition method
WO2020189288A1 (en) * 2019-03-15 2020-09-24 東京エレクトロン株式会社 Film formation method and film formation apparatus

Also Published As

Publication number Publication date
JP2022055462A (en) 2022-04-08

Similar Documents

Publication Publication Date Title
TW201936970A (en) Treatment methods for silicon nitride thin films
US20220336205A1 (en) Film formation method
WO2022070909A1 (en) Film deposition method and film deposition device
WO2021132163A1 (en) Film formation method and film formation device
JP2021125607A (en) Deposition method
WO2021060111A1 (en) Film-forming method
WO2022059538A1 (en) Film formation method and film formation device
WO2022138281A1 (en) Film formation method, film formation apparatus, and starting material for self-assembled monolayer
US20230009551A1 (en) Film formation method and film formation apparatus
WO2024070696A1 (en) Film formation method and film formation device
WO2023176535A1 (en) Film forming method and film forming apparatus
WO2023153284A1 (en) Film formation method and film formation device
WO2023132245A1 (en) Film forming method and film forming apparatus
WO2023182039A1 (en) Film formation method and film formation device
WO2024090275A1 (en) Film forming method and film forming apparatus
WO2023182080A1 (en) Film formation method and film formation device
WO2024090273A1 (en) Film formation method and film formation device
WO2024090268A1 (en) Film formation method and film formation device
WO2023276795A1 (en) Film formation method and film formation device
WO2024122331A1 (en) Film formation method and film formation device
WO2023022039A1 (en) Film forming method and film forming apparatus
JP2024065012A (en) Film forming method and film forming apparatus
WO2023243406A1 (en) Film formation method and film formation device
US20230148162A1 (en) Film-forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875211

Country of ref document: EP

Kind code of ref document: A1