WO2023047944A1 - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
WO2023047944A1
WO2023047944A1 PCT/JP2022/033433 JP2022033433W WO2023047944A1 WO 2023047944 A1 WO2023047944 A1 WO 2023047944A1 JP 2022033433 W JP2022033433 W JP 2022033433W WO 2023047944 A1 WO2023047944 A1 WO 2023047944A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
capacitor element
external electrodes
hours
external
Prior art date
Application number
PCT/JP2022/033433
Other languages
French (fr)
Japanese (ja)
Inventor
大矢 西島
智生 稲倉
淳史 川畑
Original Assignee
株式会社村田製作所
株式会社指月電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所, 株式会社指月電機製作所 filed Critical 株式会社村田製作所
Priority to CN202280063379.3A priority Critical patent/CN117981024A/en
Publication of WO2023047944A1 publication Critical patent/WO2023047944A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/252Terminals the terminals being coated on the capacitive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors

Definitions

  • the present invention relates to capacitors.
  • Patent Literature 1 proposes forming external electrodes from metal particles having different average particle sizes. According to Patent Document 1, this suppresses the infiltration of residual moisture in the sealing resin into the capacitor element, thereby reducing the deterioration of the insulation resistance.
  • An object of the present invention is to provide a capacitor in which deterioration of performance due to moisture is suppressed.
  • the present invention comprises a capacitor element, an external electrode arranged on an end surface of the capacitor element, and a lead terminal electrically connected to the external electrode, and the external electrode has a water permeability of 18 g/(24 hours ⁇ m 2 ) or more and 70 g/(24 hours ⁇ m 2 ) or less.
  • ESR equivalent series resistance
  • the maximum height Rz of the external electrodes is preferably 120 ⁇ m or more. This facilitates the release of moisture in the capacitor element to the outside through the external electrodes.
  • the external electrode is, for example, a metallikon electrode.
  • the moisture permeability of metallikon electrodes is easy to control.
  • the external electrode may contain an alloy of zinc and aluminum.
  • the capacitor element has an internal electrode, and the internal electrode is made of, for example, a metallized film.
  • the metallized film includes, for example, a resin film and a metal layer formed on at least one main surface of the resin film. That is, the capacitor of the present invention may be a film capacitor.
  • a capacitor is provided in which deterioration of performance due to moisture is suppressed.
  • FIG. 1 is a perspective view schematically showing a capacitor according to an embodiment of the invention.
  • the moisture permeability of the external electrode is 18 g/(24 hours ⁇ m 2 ) or more.
  • the moisture present in the capacitor element can be removed by heat treatment after forming the external electrodes.
  • the moisture permeability of the external electrodes is 70 g/(24 hours ⁇ m 2 ) or less.
  • the moisture permeability of the external electrodes is calculated as follows.
  • a sample is prepared that includes a capacitor element and external electrodes arranged on both end surfaces of the capacitor element. This sample is allowed to stand in an environment of 40° C. and 80% RH for 24 hours to absorb moisture.
  • the mass of the sample before and after moisture absorption is measured, and the difference is taken as the moisture permeation amount.
  • a value obtained by dividing the amount of water permeation by the sum of the cross-sectional areas (m 2 ) of the two external electrodes is defined as the water permeability [g/(24 hours ⁇ m 2 )]. It is desirable to thoroughly dry the sample prior to moisture absorption.
  • the cross-sectional area of the external electrode is the cross-sectional area obtained by cutting the external electrode parallel to the end face of the capacitor element.
  • the cross-sectional area of the external electrode is the area of the plan view obtained by projecting the sample from the direction in which the straight line connecting the centers of the two external electrodes extends.
  • the area of the cross section or plan view may be obtained by image processing or may be obtained by calculation.
  • a capacitor according to the present disclosure includes a capacitor element, external electrodes arranged on end faces of the capacitor element, and lead terminals electrically connected to the external electrodes.
  • the water permeability of the external electrode is 18 g/(24 hours ⁇ m 2 ) or more and 70 g/(24 hours ⁇ m 2 ) or less.
  • the capacitor according to the present disclosure can be applied to various uses.
  • the capacitor according to the present disclosure is particularly suitable for use in environments with large temperature changes. Furthermore, since high connection reliability can be expected over the long term, it is suitably used for electronic devices mounted on automobiles and industrial equipment, particularly electric compressors, pumps, and power devices. Examples of power devices include chargers, DC-DC converters, and drive inverters.
  • the size and shape of the capacitor are not particularly limited, and can be set appropriately according to the capacity, application, etc.
  • the type of capacitor is also not particularly limited.
  • Capacitors according to the present disclosure are typically film capacitors. Hereinafter, the capacitor according to the present disclosure will be described in detail by taking a film capacitor as an example. A capacitor according to the present disclosure is not limited to this.
  • a capacitor element generally includes two types of internal electrodes having different polarities (hereinafter referred to as a first internal electrode and a second internal electrode).
  • the capacitor element may be of the laminated type or of the wound type.
  • the first internal electrodes and the second internal electrodes are cut to a predetermined size and laminated alternately.
  • the first internal electrode and the second internal electrode are long bodies, which are laminated, then wound, and pressed if necessary.
  • the cross-section of the capacitor element can be elliptical (the track shape of an athletics stadium).
  • the configurations of the first internal electrode and the second internal electrode may be the same or different.
  • Each internal electrode is composed of, for example, a metallized film.
  • a metallized film includes a resin film and a metal layer formed on at least one main surface of the resin film.
  • the material of the resin film is not particularly limited, and may be a thermosetting resin or a thermoplastic resin.
  • Thermosetting resins include, for example, phenol resins, epoxy resins, melamine resins, urea resins, unsaturated polyester resins, silicone resins, urethane resins, and thermosetting polyimides.
  • thermoplastic resins include polypropylene, polyethersulfone, polyetherimide, and polyallyl arylate. These are used singly or in combination of two or more.
  • the resin film may further contain an additive such as a leveling agent.
  • the thickness of the resin film may be 5 ⁇ m or less, 3.5 ⁇ m or less, or 3.4 ⁇ m or less.
  • the thickness of the resin film may be 0.5 ⁇ m or more. In one aspect, the thickness of the resin film is 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the resin film can be measured using an optical thickness gauge.
  • the metal layer is formed on part of at least one main surface of the resin film, for example, by vapor deposition.
  • Metal species contained in the metal layer include, for example, aluminum, zinc, titanium, magnesium, copper, and nickel.
  • the thickness of the metal layer is not particularly limited. From the viewpoint of damage suppression, the thickness of the metal layer is preferably 5 nm or more. The thickness of the metal layer is preferably 40 nm or less. The thickness of the metal layer can be specified by observing a cross section obtained by cutting the metallized film in the thickness direction using an electron microscope such as a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • the external electrodes are arranged on the end faces of the capacitor element.
  • the external electrodes are generally arranged on opposite end faces of the capacitor element, respectively.
  • the external electrodes are arranged on both respective end faces in the direction of the winding axis of the capacitor element.
  • the external electrode may cover the end surface of the capacitor element.
  • the external electrodes are electrically connected to the internal electrodes and play a role in drawing out the internal electrodes to the outside.
  • One of the external electrodes (first external electrode) is electrically connected to the first internal electrode.
  • Another external electrode (second external electrode) is electrically connected to the second internal electrode.
  • the water permeability of the external electrode is 18 g/(24 hours ⁇ m 2 ) or more and 70 g/(24 hours ⁇ m 2 ) or less.
  • the water permeability of one or more external electrodes satisfies the above range. It is preferable that the water permeability of all the external electrodes satisfy the above range.
  • the moisture permeability of the external electrode is preferably 20 g/(24 hours ⁇ m 2 ) or more, more preferably 22 g/(24 hours ⁇ m 2 ) or more.
  • the moisture permeability of the external electrode is preferably 65 g/(24 hours ⁇ m 2 ) or less, more preferably 60 g/(24 hours ⁇ m 2 ) or less.
  • the maximum height Rz of the external electrodes is, for example, 120 ⁇ m or more. When the maximum surface height Rz is within the above range, sufficient voids are often formed inside the external electrodes, and the recesses on the surface of the external electrodes and the voids inside the external electrodes are easily communicated with each other. . Therefore, the moisture in the capacitor element is easily released to the outside through the external electrodes.
  • the maximum height Rz of the external electrodes may be 125 ⁇ m or more.
  • the maximum height Rz of the external electrodes is preferably 200 ⁇ m or less in that it is easy to prevent external moisture from entering the capacitor element through the external electrodes. Maximum height Rz is obtained according to JIS B 0601-2001.
  • the external electrodes are typically made of metal.
  • Metal species include, for example, zinc, aluminum, tin, and zinc-aluminum alloys.
  • the aluminum content is, for example, 20% or less, 18% or less, or 15% or less.
  • the aluminum content is, for example, 0.1% or more, 0.5% or more, or 1% or more.
  • the thickness of the external electrodes is not particularly limited.
  • the thickness of the external electrode is, for example, 0.5 mm or more and 3 mm or less.
  • the thickness of the external electrode is the length of the external electrode in the direction normal to the end face of the capacitor element.
  • the thickness of the external electrode is the average value of arbitrary multiple locations (preferably three or more locations).
  • the external electrodes are formed, for example, by spraying a metal onto each end face of the capacitor element. Such external electrodes are commonly referred to as metallikon electrodes.
  • a metallikon electrode is preferable in that the moisture permeability can be easily controlled.
  • the moisture permeability of the metallikon electrode can be controlled by adjusting the air spray pressure, the amount of metal sprayed per hour, the shape of the spray nozzle, the distance from the tip of the spray nozzle to the object, and the like. For example, by adjusting the blowing air pressure to more than 0.15 MPa and less than 0.7 MPa, the moisture permeability of the metallikon electrode can be controlled to 18 g/(24 hours ⁇ m 2 ) or more and 70 g/(24 hours ⁇ m 2 ) or less. .
  • the water permeability of the metallikon electrode is controlled to 18 g/(24 hours/m 2 ) or more and 70 g/(24 hours/m 2 ) or less by adjusting the thermal spraying of the metal per hour to more than 20 g/minute and less than 140 g/minute. can.
  • Lead terminal A part of the lead terminal is usually joined to the external electrode for electrical connection.
  • One or more lead terminals are usually joined to one external electrode.
  • the lead terminals are joined to the external electrodes by welding, for example.
  • the joint position between the lead terminal and the external electrode is not particularly limited. As will be described later, when the capacitor element and the external electrodes are resin-sealed, the lead terminals are joined to the external electrodes so that a portion of the lead terminals are exposed outside from the sealing resin. The lead terminals are joined to the external electrodes by welding, for example.
  • the material of the lead terminal is not particularly limited as long as it exhibits conductivity.
  • the lead terminal may be, for example, a steel wire or a copper wire, and these wires may be tin-plated, zinc-plated, copper-plated, nickel-plated, or the like.
  • the cross-sectional shape of the lead terminal is also not particularly limited, and may be circular, elliptical, or rectangular.
  • the capacitor element and the external electrodes may be sealed with a sealing material. This makes it easier to suppress penetration of water into the interior. In addition, water resistance, vibration resistance, etc. are likely to be improved.
  • a typical example of the sealing material is a cured product of a thermosetting resin. Examples of thermosetting resins include epoxy resins and urethane resins. In this case, the capacitor element and the external electrodes are sealed with a hardened thermosetting resin.
  • the sealing material may further contain an inorganic filler.
  • the capacitor element may be housed in a case.
  • the gap between the capacitor element and the case is filled with a sealing material.
  • This capacitor is manufactured, for example, as follows. First, a capacitor element having an external electrode is arranged, and lead terminals are led out of the case. Thereafter, a thermosetting resin is filled between the case and the capacitor element and cured.
  • FIG. 1 is a perspective view schematically showing a capacitor according to the present disclosure.
  • the capacitor 10 includes a capacitor element 1, two external electrodes (first external electrode 2A, second external electrode 2B), and two lead terminals (first lead terminal 3A, second lead terminal 3B).
  • the end face shape of capacitor element 1 is elliptical.
  • First external electrode 2A is arranged on one end surface of capacitor element 1
  • second external electrode 2B is arranged on the other end surface of capacitor element 1 .
  • the first lead terminal 3A is joined to the first external electrode 2A
  • the second lead terminal 3B is joined to the second external electrode 2B.
  • the capacitor according to the present disclosure includes, for example, a step of forming an external electrode on an end surface of a capacitor element, a step of joining lead terminals to the external electrode to electrically connect them, and a step of forming the external electrode. and heat-treating the capacitor element.
  • the moisture permeability of the formed external electrodes is 18 g/(24 hours ⁇ m 2 ) or more and 70 g/(24 hours ⁇ m 2 ) or less. Since the external electrodes have a high moisture permeability of 18 g/(24 hours ⁇ m 2 ) or more, the heat treatment process removes moisture remaining in the capacitor element. On the other hand, since the water permeability of the external electrodes is suppressed to 70 g/(24 hours ⁇ m 2 ) or less, the infiltration of water through the external electrodes is suppressed after the heat treatment process.
  • the heat treatment is performed, for example, at 125°C or higher and 150°C or lower for 4 to 24 hours.
  • a step of sealing the capacitor element and the external electrodes with a sealing material may be performed.
  • the water permeability of the external electrodes is suppressed to 70 g/(24 hours ⁇ m 2 ) or less, the encapsulant is also suppressed from entering the gaps of the external electrodes.
  • Example 1 Aluminum was vapor-deposited on a urethane resin film (thickness: 3 ⁇ m) to a thickness of 20 nm to prepare a metallized film. A capacitor element was produced by laminating two sheets of this metallized film and winding them. A zinc-aluminum alloy (6% aluminum content) was thermally sprayed on both end surfaces of the obtained capacitor element in the direction of the winding axis to form two external electrodes (thickness: 1 mm). After that, lead terminals (tinned copper wire, diameter 1.2 mm) were resistance-welded to each of the two external electrodes. A film capacitor was thus obtained.
  • Example 2-5 Comparative Example 1-5
  • a film capacitor was formed in the same manner as in Example 1, except that the air spray pressure and the shape of the spray nozzle when forming the external electrodes were changed to adjust the moisture permeability of the external electrodes to the values shown in Table 1. was made.
  • the resulting film capacitor was dried at 125° C. for 48 hours to make the capacitor element absolutely dry. After that, the film capacitor was allowed to stand in an environment of 40° C. and 80% RH until 6.5 mg of water per unit volume (1 cm 3 ) of the capacitor element was adsorbed. (Heat treatment) The moisture-adsorbed film capacitor was heated at 125° C. for 4 hours. (sealing) The dried film capacitor was placed in a case and sealed with epoxy resin.
  • ESR change rate The ESR of the absolutely dry film capacitor was taken as the initial value R0 .
  • the ESR change rate ( ⁇ ESR) was calculated.
  • ⁇ ESR (%) 100 ⁇ (RR 0 )/R 0
  • the ESR was measured using an LCR meter (ZM2371 manufactured by NF Circuit Design Block, measurement frequency 10 kHz).
  • ESR ESR change rate
  • ⁇ C rate of change in capacity
  • ⁇ C 1 rate of change in capacity after the load test
  • the ESR change rate ( ⁇ ESR), capacity change rate ( ⁇ C), and after load test of the film capacitor of Comparative Example 1-3 in which the water permeability of the external electrode is less than 18 g/(24 hours ⁇ m 2 )
  • the rate of change in capacity ( ⁇ C 1 ) is large in both cases.
  • the capacity change rate ( ⁇ C 1 ) after the load test is large, and a long life cannot be expected. This is probably because moisture was not sufficiently removed in the heat treatment after the moisture absorption treatment.
  • ESR rate of change ( ⁇ ESR), capacity rate of change ( ⁇ C), and capacity change after load test of the film capacitor of Comparative Example 4-5 in which the water permeability of the external electrode exceeds 70 g/(24 hours ⁇ m 2 )
  • Both ratios ( ⁇ C 1 ) are large.
  • the ESR change rate ( ⁇ ESR) is large. It is considered that this is because moisture suddenly entered the inside of the capacitor after the heat treatment and before the capacitor was sealed, or the sealing resin entered the gaps of the external electrodes.
  • the capacitor of the present invention can be applied to various electronic devices because it suppresses deterioration in performance due to moisture.
  • Capacitor 1 Capacitor Element 2A First External Electrode 2B Second External Electrode 3A First Lead Terminal 3B Second Lead Terminal

Abstract

Provided is a capacitor in which performance degradation due to moisture is mitigated. This capacitor comprises a capacitor element, an outer electrode disposed on an end face of the capacitor element, and a lead terminal electrically connected to the outer electrode, wherein the outer electrode has a moisture permeation of 18 g/(24 hours∙m2) or more and 70 g/(24 hours∙m2) or less.

Description

コンデンサcapacitor
 本発明は、コンデンサに関する。 The present invention relates to capacitors.
 コンデンサ内に水分が浸入すると、静電容量および絶縁抵抗値の低下が生じる。そこで、特許文献1は、外部電極を、平均粒子径の異なる金属粒子によって形成することを提案している。特許文献1によれば、これにより、封止樹脂内の残留水分がコンデンサ素子に浸入することが抑制されて、絶縁抵抗の劣化が低減される。 When moisture enters the capacitor, the capacitance and insulation resistance value decrease. Therefore, Patent Literature 1 proposes forming external electrodes from metal particles having different average particle sizes. According to Patent Document 1, this suppresses the infiltration of residual moisture in the sealing resin into the capacitor element, thereby reducing the deterioration of the insulation resistance.
特開2013-214607号公報JP 2013-214607 A
 しかしながら、特許文献1の方法では、水分による性能低下を十分に抑制することは困難である。本発明は、水分による性能低下が抑制されるコンデンサを提供することを目的とする。 However, with the method of Patent Document 1, it is difficult to sufficiently suppress performance deterioration due to moisture. SUMMARY OF THE INVENTION An object of the present invention is to provide a capacitor in which deterioration of performance due to moisture is suppressed.
 本発明は、コンデンサ素子と、前記コンデンサ素子の端面に配置された外部電極と、前記外部電極と電気的に接続するリード端子と、を備え、前記外部電極の水分透過率は、18g/(24時間・m)以上70g/(24時間・m)以下である、コンデンサに関する。これにより、水分によって引き起こされる、絶縁抵抗値の減少、等価直列抵抗値(ESR)の増加、コンデンサの膨れ等が抑制されて、コンデンサの性能が長期的に維持される。 The present invention comprises a capacitor element, an external electrode arranged on an end surface of the capacitor element, and a lead terminal electrically connected to the external electrode, and the external electrode has a water permeability of 18 g/(24 hours·m 2 ) or more and 70 g/(24 hours·m 2 ) or less. As a result, a decrease in insulation resistance, an increase in equivalent series resistance (ESR), swelling of the capacitor, and the like caused by moisture are suppressed, and the performance of the capacitor is maintained for a long period of time.
 前記外部電極の最大高さRzは、120μm以上が好ましい。これにより、コンデンサ素子内の水分が、外部電極を通して外部に放出され易くなる。 The maximum height Rz of the external electrodes is preferably 120 μm or more. This facilitates the release of moisture in the capacitor element to the outside through the external electrodes.
 前記外部電極は、例えば、メタリコン電極である。メタリコン電極の水分透過率は、制御し易い。 The external electrode is, for example, a metallikon electrode. The moisture permeability of metallikon electrodes is easy to control.
 前記外部電極は、亜鉛とアルミニウムとの合金を含んでいてよい。 The external electrode may contain an alloy of zinc and aluminum.
 前記コンデンサ素子は、内部電極を備え、前記内部電極は、例えば、金属化フィルムにより構成される。前記金属化フィルムは、例えば、樹脂フィルムと、前記樹脂フィルムの少なくとも一方の主面に形成された金属層と、を備える。つまり、本発明のコンデンサは、フィルムコンデンサであってよい。 The capacitor element has an internal electrode, and the internal electrode is made of, for example, a metallized film. The metallized film includes, for example, a resin film and a metal layer formed on at least one main surface of the resin film. That is, the capacitor of the present invention may be a film capacitor.
 本発明によれば、水分による性能低下が抑制されるコンデンサが提供される。 According to the present invention, a capacitor is provided in which deterioration of performance due to moisture is suppressed.
本発明の一実施形態に係るコンデンサを模式的に示す斜視図である。1 is a perspective view schematically showing a capacitor according to an embodiment of the invention; FIG.
 特許文献1のように、外部電極からコンデンサ素子の内部に水分が浸入し難くすると、コンデンサ素子内部の水分もまた、外部電極から外部に放出され難くなる。すなわち、外部電極が形成された後にコンデンサ素子内に存在している水分を、取り除くことは困難である。しかし、外部電極の形成工程において、コンデンサ素子に水分が浸入する場合がある。コンデンサの外部電極は、通常、大気下における金属溶射により形成されるためである。 As in Patent Document 1, when it is difficult for water to enter the inside of the capacitor element from the external electrodes, the water inside the capacitor element is also difficult to be released to the outside from the external electrodes. That is, it is difficult to remove the moisture present in the capacitor element after the external electrodes are formed. However, water may enter the capacitor element in the process of forming the external electrodes. This is because the external electrodes of the capacitor are usually formed by metal spraying in the atmosphere.
 本開示において、外部電極の水分透過率は18g/(24時間・m)以上である。これにより、外部電極を形成した後、熱処理することによって、コンデンサ素子内に存在している水分を除去することができる。 In the present disclosure, the moisture permeability of the external electrode is 18 g/(24 hours·m 2 ) or more. As a result, the moisture present in the capacitor element can be removed by heat treatment after forming the external electrodes.
 一方、外部電極の水分透過率は70g/(24時間・m)以下である。これにより、熱処理後、封止工程までの間に、コンデンサ素子内に外部から水分が一気に浸入することが抑制されて、コンデンサ素子内の水分率を低く維持することができる。加えて、封止工程の際、封止樹脂が外部電極の空隙に侵入することが抑制される。 On the other hand, the moisture permeability of the external electrodes is 70 g/(24 hours·m 2 ) or less. As a result, the infiltration of moisture into the capacitor element from the outside at once after the heat treatment and before the sealing process can be suppressed, and the moisture content in the capacitor element can be kept low. In addition, intrusion of the sealing resin into the gaps of the external electrodes is suppressed during the sealing process.
 すなわち、外部電極の水分透過率を18g/(24時間・m)以上70g/(24時間・m)以下にすることで、水分によって引き起こされる、絶縁抵抗値の減少、等価直列抵抗値(ESR)の増加、コンデンサの膨れ等が抑制されて、コンデンサの性能が長期的に維持される。 That is, by setting the moisture permeability of the external electrodes to 18 g/(24 hours·m 2 ) or more and 70 g/(24 hours·m 2 ) or less, the decrease in insulation resistance value and equivalent series resistance value ( ESR) increase, swelling of the capacitor, etc. are suppressed, and the performance of the capacitor is maintained for a long period of time.
 外部電極の水分透過率は、以下のようにして算出される。
 コンデンサ素子と、コンデンサ素子の両方の端面に配置された外部電極と、を備える試料を準備する。この試料を、40℃80%RHの環境下に24時間、静置して、吸湿させる。吸湿の前後の試料の質量を測定し、その差を水分透過量とする。水分透過量を2つの外部電極の断面積(m)の合計で除した値を、水分透過率[g/(24時間・m)]とする。吸湿の前に、試料を十分に乾燥させておくことが望ましい。
The moisture permeability of the external electrodes is calculated as follows.
A sample is prepared that includes a capacitor element and external electrodes arranged on both end surfaces of the capacitor element. This sample is allowed to stand in an environment of 40° C. and 80% RH for 24 hours to absorb moisture. The mass of the sample before and after moisture absorption is measured, and the difference is taken as the moisture permeation amount. A value obtained by dividing the amount of water permeation by the sum of the cross-sectional areas (m 2 ) of the two external electrodes is defined as the water permeability [g/(24 hours·m 2 )]. It is desirable to thoroughly dry the sample prior to moisture absorption.
 外部電極の断面積は、外部電極を、コンデンサ素子の端面と平行に切断して得られる断面の面積である。あるいは、外部電極の断面積は、試料を、2つの外部電極の中心同士を結ぶ直線が延びる方向から投影して得られる平面図の面積である。上記断面または平面図の面積は、画像処理によって求めてもよいし、計算によって求めてもよい。 The cross-sectional area of the external electrode is the cross-sectional area obtained by cutting the external electrode parallel to the end face of the capacitor element. Alternatively, the cross-sectional area of the external electrode is the area of the plan view obtained by projecting the sample from the direction in which the straight line connecting the centers of the two external electrodes extends. The area of the cross section or plan view may be obtained by image processing or may be obtained by calculation.
[コンデンサ]
 本開示に係るコンデンサは、コンデンサ素子と、コンデンサ素子の端面に配置された外部電極と、外部電極と電気的に接続するリード端子と、を備える。外部電極の水分透過率は、18g/(24時間・m)以上70g/(24時間・m)以下である。
[Capacitor]
A capacitor according to the present disclosure includes a capacitor element, external electrodes arranged on end faces of the capacitor element, and lead terminals electrically connected to the external electrodes. The water permeability of the external electrode is 18 g/(24 hours·m 2 ) or more and 70 g/(24 hours·m 2 ) or less.
 本開示に係るコンデンサは、種々の用途に適用可能である。本開示に係るコンデンサは、なかでも、温度変化の大きい環境で使用されるのに適している。さらに、長期的に高い接続信頼性が期待できるため、自動車や産業機器に搭載される電子機器、特に、電動コンプレッサー、ポンプ、パワーデバイスに好適に用いられる。パワーデバイスとしては、例えば、チャージャー、DC-DCコンバータ、駆動用インバータが挙げられる。 The capacitor according to the present disclosure can be applied to various uses. The capacitor according to the present disclosure is particularly suitable for use in environments with large temperature changes. Furthermore, since high connection reliability can be expected over the long term, it is suitably used for electronic devices mounted on automobiles and industrial equipment, particularly electric compressors, pumps, and power devices. Examples of power devices include chargers, DC-DC converters, and drive inverters.
 コンデンサの大きさや形状は特に限定されず、容量、用途等に応じて適宜設定すればよい。コンデンサの種類も特に限定されない。本開示に係るコンデンサは、典型的には、フィルムコンデンサである。以下、フィルムコンデンサを例に挙げて、本開示に係るコンデンサを詳細に説明する。本開示に係るコンデンサは、これに限定されない。 The size and shape of the capacitor are not particularly limited, and can be set appropriately according to the capacity, application, etc. The type of capacitor is also not particularly limited. Capacitors according to the present disclosure are typically film capacitors. Hereinafter, the capacitor according to the present disclosure will be described in detail by taking a film capacitor as an example. A capacitor according to the present disclosure is not limited to this.
(コンデンサ素子)
 コンデンサ素子は、通常、極性の異なる2種の内部電極(以下、第1内部電極および第2内部電極と称する。)を備える。コンデンサ素子は、積層型であってよく、巻回型であってよい。積層型のコンデンサ素子において、第1内部電極と第2内部電極とは、所定の大きさに裁断されており、交互に複数積層されている。巻回型のコンデンサ素子において、第1内部電極と第2内部電極とは長尺体であって、積層された後、巻回され、必要に応じてプレスされている。この場合、コンデンサ素子の断面は楕円形(陸上競技場のトラック形)になり得る。第1内部電極および第2内部電極の構成は、同じであってよく、異なっていてよい。
(capacitor element)
A capacitor element generally includes two types of internal electrodes having different polarities (hereinafter referred to as a first internal electrode and a second internal electrode). The capacitor element may be of the laminated type or of the wound type. In the multilayer capacitor element, the first internal electrodes and the second internal electrodes are cut to a predetermined size and laminated alternately. In the wound-type capacitor element, the first internal electrode and the second internal electrode are long bodies, which are laminated, then wound, and pressed if necessary. In this case, the cross-section of the capacitor element can be elliptical (the track shape of an athletics stadium). The configurations of the first internal electrode and the second internal electrode may be the same or different.
 各内部電極は、例えば、金属化フィルムにより構成される。金属化フィルムは、樹脂フィルムと、樹脂フィルムの少なくとも一方の主面に形成された金属層と、を備える。 Each internal electrode is composed of, for example, a metallized film. A metallized film includes a resin film and a metal layer formed on at least one main surface of the resin film.
 樹脂フィルムの材質は、特に限定されず、熱硬化性樹脂であってよく、熱可塑性樹脂であってよい。熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、ウレタン樹脂、熱硬化性ポリイミドが挙げられる。熱可塑性樹脂としては、例えば、ポリプロピレン、ポリエーテルスルホン、ポリエーテルイミド、ポリアリルアリレートが挙げられる。これらは、1種を単独で、あるいは、2種以上を組み合わせて用いられる。樹脂フィルムは、さらに、レベリング剤等の添加剤を含んでいてよい。 The material of the resin film is not particularly limited, and may be a thermosetting resin or a thermoplastic resin. Thermosetting resins include, for example, phenol resins, epoxy resins, melamine resins, urea resins, unsaturated polyester resins, silicone resins, urethane resins, and thermosetting polyimides. Examples of thermoplastic resins include polypropylene, polyethersulfone, polyetherimide, and polyallyl arylate. These are used singly or in combination of two or more. The resin film may further contain an additive such as a leveling agent.
 樹脂フィルムの厚みは、5μm以下であってよく、3.5μm以下であってよく、3.4μm以下であってよい。樹脂フィルムの厚みは、0.5μm以上であってよい。一態様において、樹脂フィルムの厚みは、0.5μm以上5μm以下である。樹脂フィルムの厚みは、光学式膜厚計を用いて測定することができる。 The thickness of the resin film may be 5 μm or less, 3.5 μm or less, or 3.4 μm or less. The thickness of the resin film may be 0.5 μm or more. In one aspect, the thickness of the resin film is 0.5 μm or more and 5 μm or less. The thickness of the resin film can be measured using an optical thickness gauge.
 金属層は、樹脂フィルムの少なくとも一方の主面の一部に、例えば蒸着法により形成される。金属層に含まれる金属種としては、例えば、アルミニウム、亜鉛、チタン、マグネシウム、銅、ニッケルが挙げられる。 The metal layer is formed on part of at least one main surface of the resin film, for example, by vapor deposition. Metal species contained in the metal layer include, for example, aluminum, zinc, titanium, magnesium, copper, and nickel.
 金属層の厚みは特に限定されない。損傷抑制の観点から、金属層の厚みは、5nm以上が好ましい。金属層の厚みは、40nm以下が好ましい。金属層の厚みは、金属化フィルムを厚み方向に切断した断面を、電界放出型走査電子顕微鏡(FE-SEM)等の電子顕微鏡を用いて観察することにより特定することができる。 The thickness of the metal layer is not particularly limited. From the viewpoint of damage suppression, the thickness of the metal layer is preferably 5 nm or more. The thickness of the metal layer is preferably 40 nm or less. The thickness of the metal layer can be specified by observing a cross section obtained by cutting the metallized film in the thickness direction using an electron microscope such as a field emission scanning electron microscope (FE-SEM).
(外部電極)
 外部電極は、コンデンサ素子の端面に配置される。外部電極は、通常、コンデンサ素子の対向する両端面に、それぞれ配置されている。例えば巻回型のコンデンサ素子の場合、外部電極は、コンデンサ素子の巻回軸方向にある両方のそれぞれの端面に配置される。外部電極は、コンデンサ素子の端面を覆っていてもよい。
(external electrode)
The external electrodes are arranged on the end faces of the capacitor element. The external electrodes are generally arranged on opposite end faces of the capacitor element, respectively. For example, in the case of a wound-type capacitor element, the external electrodes are arranged on both respective end faces in the direction of the winding axis of the capacitor element. The external electrode may cover the end surface of the capacitor element.
 外部電極は、内部電極と電気的に接続しており、内部電極を外部に引き出す役割を果たす。外部電極の1つ(第1外部電極)は、第1内部電極と電気的に接続されている。他の外部電極(第2外部電極)は、第2内部電極と電気的に接続されている。 The external electrodes are electrically connected to the internal electrodes and play a role in drawing out the internal electrodes to the outside. One of the external electrodes (first external electrode) is electrically connected to the first internal electrode. Another external electrode (second external electrode) is electrically connected to the second internal electrode.
 外部電極の水分透過率は、18g/(24時間・m)以上70g/(24時間・m)以下である。1以上の外部電極の水分透過率が、上記範囲を満たす。すべての外部電極の水分透過率が、上記範囲を満たすことが好ましい。外部電極の水分透過率は、20g/(24時間・m)以上が好ましく、22g/(24時間・m)以上がより好ましい。外部電極の水分透過率は、65g/(24時間・m)以下が好ましく、60g/(24時間・m)以下がより好ましい。 The water permeability of the external electrode is 18 g/(24 hours·m 2 ) or more and 70 g/(24 hours·m 2 ) or less. The water permeability of one or more external electrodes satisfies the above range. It is preferable that the water permeability of all the external electrodes satisfy the above range. The moisture permeability of the external electrode is preferably 20 g/(24 hours·m 2 ) or more, more preferably 22 g/(24 hours·m 2 ) or more. The moisture permeability of the external electrode is preferably 65 g/(24 hours·m 2 ) or less, more preferably 60 g/(24 hours·m 2 ) or less.
 外部電極の最大高さRzは、例えば、120μm以上である。表面の最大高さRzが上記範囲であると、外部電極の内部に十分な空隙が形成されている場合が多く、外部電極の表面の凹部と、外部電極の内部の空隙とが連通し易くなる。そのため、コンデンサ素子内の水分が、外部電極を通して外部に放出され易くなる。外部電極の最大高さRzは、125μm以上であってよい。外部の水分が、外部電極を通してコンデンサ素子内に浸入することが抑制され易い点で、外部電極の最大高さRzは、200μm以下が好ましい。最大高さRzは、JIS B 0601-2001に従って求められる。 The maximum height Rz of the external electrodes is, for example, 120 μm or more. When the maximum surface height Rz is within the above range, sufficient voids are often formed inside the external electrodes, and the recesses on the surface of the external electrodes and the voids inside the external electrodes are easily communicated with each other. . Therefore, the moisture in the capacitor element is easily released to the outside through the external electrodes. The maximum height Rz of the external electrodes may be 125 μm or more. The maximum height Rz of the external electrodes is preferably 200 μm or less in that it is easy to prevent external moisture from entering the capacitor element through the external electrodes. Maximum height Rz is obtained according to JIS B 0601-2001.
 外部電極は、典型的には、金属により形成される。金属種としては、例えば、亜鉛、アルミニウム、スズ、亜鉛-アルミニウム合金が挙げられる。亜鉛-アルミニウム合金において、アルミニウムの含有率は、例えば、20%以下であり、18%以下であり、15%以下である。亜鉛-アルミニウム合金において、アルミニウムの含有率は、例えば、0.1%以上であり、0.5%以上であり、1%以上である。 The external electrodes are typically made of metal. Metal species include, for example, zinc, aluminum, tin, and zinc-aluminum alloys. In the zinc-aluminum alloy, the aluminum content is, for example, 20% or less, 18% or less, or 15% or less. In the zinc-aluminum alloy, the aluminum content is, for example, 0.1% or more, 0.5% or more, or 1% or more.
 外部電極の厚みは特に限定されない。外部電極の厚みは、例えば、0.5mm以上3mm以下である。外部電極の厚みは、コンデンサ素子の端面の法線方向における、外部電極の長さである。外部電極の厚みは、任意の複数カ所(望ましくは3カ所以上)の平均値である。 The thickness of the external electrodes is not particularly limited. The thickness of the external electrode is, for example, 0.5 mm or more and 3 mm or less. The thickness of the external electrode is the length of the external electrode in the direction normal to the end face of the capacitor element. The thickness of the external electrode is the average value of arbitrary multiple locations (preferably three or more locations).
 外部電極は、例えば、コンデンサ素子の各端面上に、金属を溶射することによって形成される。このような外部電極は、通常、メタリコン電極と言われる。メタリコン電極は、水分透過率が制御し易い点で好ましい。メタリコン電極の水分透過率は、エアーの吹付け圧力、金属の時間当たりの溶射量、吹付ノズルの形状、吹付ノズルの先端から対象物までの距離等を調整することにより、制御することができる。例えば、吹付エアー圧力を0.15MPa超0.7MPa未満に調整することにより、メタリコン電極の水分透過率を18g/(24時間・m)以上70g/(24時間・m)以下に制御できる。金属の時間当たりの溶射を20g/分超140g/分未満に調整することにより、メタリコン電極の水分透過率を18g/(24時間・m)以上70g/(24時間・m)以下に制御できる。 The external electrodes are formed, for example, by spraying a metal onto each end face of the capacitor element. Such external electrodes are commonly referred to as metallikon electrodes. A metallikon electrode is preferable in that the moisture permeability can be easily controlled. The moisture permeability of the metallikon electrode can be controlled by adjusting the air spray pressure, the amount of metal sprayed per hour, the shape of the spray nozzle, the distance from the tip of the spray nozzle to the object, and the like. For example, by adjusting the blowing air pressure to more than 0.15 MPa and less than 0.7 MPa, the moisture permeability of the metallikon electrode can be controlled to 18 g/(24 hours·m 2 ) or more and 70 g/(24 hours·m 2 ) or less. . The water permeability of the metallikon electrode is controlled to 18 g/(24 hours/m 2 ) or more and 70 g/(24 hours/m 2 ) or less by adjusting the thermal spraying of the metal per hour to more than 20 g/minute and less than 140 g/minute. can.
(リード端子)
 リード端子の一部は、通常、外部電極に接合され、電気的に接続している。リード端子は、通常、1つの外部電極に1以上接合される。リード端子は、例えば、溶接により外部電極と接合される。
(Lead terminal)
A part of the lead terminal is usually joined to the external electrode for electrical connection. One or more lead terminals are usually joined to one external electrode. The lead terminals are joined to the external electrodes by welding, for example.
 リード端子と外部電極との接合位置は特に限定されない。後述するように、コンデンサ素子および外部電極が樹脂封止される場合、リード端子は、その一部が封止樹脂から外部に露出するように、外部電極に接合される。リード端子は、例えば、溶接により外部電極と接合される。 The joint position between the lead terminal and the external electrode is not particularly limited. As will be described later, when the capacitor element and the external electrodes are resin-sealed, the lead terminals are joined to the external electrodes so that a portion of the lead terminals are exposed outside from the sealing resin. The lead terminals are joined to the external electrodes by welding, for example.
 リード端子の材質は、導電性を示す限り特に限定されない。リード端子は、例えば、鋼線、銅線であってよく、これらの線材に、錫メッキ、亜鉛メッキ、銅メッキ、ニッケルメッキ等が施されたものであってよい。リード端子の断面形状も特に限定されず、円形、楕円形、矩形であってよい。 The material of the lead terminal is not particularly limited as long as it exhibits conductivity. The lead terminal may be, for example, a steel wire or a copper wire, and these wires may be tin-plated, zinc-plated, copper-plated, nickel-plated, or the like. The cross-sectional shape of the lead terminal is also not particularly limited, and may be circular, elliptical, or rectangular.
(封止材)
 コンデンサ素子および外部電極は、封止材により封止されていてもよい。これにより、水分の内部への浸入が抑制され易い。加えて、耐水性および耐振動性等が向上し易い。封止材としては、代表的には、熱硬化性樹脂の硬化物が挙げられる。熱硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂が挙げられる。この場合、コンデンサ素子および外部電極は、硬化した熱硬化性樹脂により封止されている。封止材は、さらに無機フィラーを含んでいてよい。
(sealant)
The capacitor element and the external electrodes may be sealed with a sealing material. This makes it easier to suppress penetration of water into the interior. In addition, water resistance, vibration resistance, etc. are likely to be improved. A typical example of the sealing material is a cured product of a thermosetting resin. Examples of thermosetting resins include epoxy resins and urethane resins. In this case, the capacitor element and the external electrodes are sealed with a hardened thermosetting resin. The sealing material may further contain an inorganic filler.
(コンデンサケース)
 コンデンサ素子は、ケースに収容されていてもよい。この場合、コンデンサ素子とケースとの隙間には、封止材が充填されている。このコンデンサは、例えば、以下のようにして作製される。まず、外部電極を備えるコンデンサ素子を配置し、リード端子をケースの外部へと引き出す。その後、ケースとコンデンサ素子との間に熱硬化性樹脂を充填し、硬化させる。
(capacitor case)
The capacitor element may be housed in a case. In this case, the gap between the capacitor element and the case is filled with a sealing material. This capacitor is manufactured, for example, as follows. First, a capacitor element having an external electrode is arranged, and lead terminals are led out of the case. Thereafter, a thermosetting resin is filled between the case and the capacitor element and cured.
 図1は、本開示に係るコンデンサを模式的に示す斜視図である。コンデンサ10は、コンデンサ素子1と、2つの外部電極(第1外部電極2A、第2外部電極2B)と、2つのリード端子(第1リード端子3A、第2リード端子3B)と、を備える。コンデンサ素子1の端面形状は、楕円形である。第1外部電極2Aは、コンデンサ素子1の一方の端面に配置されており、第2外部電極2Bは、コンデンサ素子1の他方の端面に配置されている。第1リード端子3Aは、第1外部電極2Aに接合されており、第2リード端子3Bは、第2外部電極2Bに接合されている。 FIG. 1 is a perspective view schematically showing a capacitor according to the present disclosure. The capacitor 10 includes a capacitor element 1, two external electrodes (first external electrode 2A, second external electrode 2B), and two lead terminals (first lead terminal 3A, second lead terminal 3B). The end face shape of capacitor element 1 is elliptical. First external electrode 2A is arranged on one end surface of capacitor element 1 , and second external electrode 2B is arranged on the other end surface of capacitor element 1 . The first lead terminal 3A is joined to the first external electrode 2A, and the second lead terminal 3B is joined to the second external electrode 2B.
(コンデンサの製造方法)
 本開示に係るコンデンサは、例えば、コンデンサ素子の端面に、外部電極を形成する工程と、リード端子を外部電極に接合して、両者を電気的に接続する工程と、外部電極の形成工程の後、コンデンサ素子を熱処理する工程と、を備える方法により製造される。
(Manufacturing method of capacitor)
The capacitor according to the present disclosure includes, for example, a step of forming an external electrode on an end surface of a capacitor element, a step of joining lead terminals to the external electrode to electrically connect them, and a step of forming the external electrode. and heat-treating the capacitor element.
 形成される外部電極の水分透過率は、18g/(24時間・m)以上70g/(24時間・m)以下である。外部電極が18g/(24時間・m)以上の高い水分透過率を有するため、熱処理工程によって、コンデンサ素子に残存している水分が除去される。一方、外部電極の水分透過率は70g/(24時間・m)以下に抑えられているため、熱処理工程後に、水分が外部電極を通して浸入することが抑制される。 The moisture permeability of the formed external electrodes is 18 g/(24 hours·m 2 ) or more and 70 g/(24 hours·m 2 ) or less. Since the external electrodes have a high moisture permeability of 18 g/(24 hours·m 2 ) or more, the heat treatment process removes moisture remaining in the capacitor element. On the other hand, since the water permeability of the external electrodes is suppressed to 70 g/(24 hours·m 2 ) or less, the infiltration of water through the external electrodes is suppressed after the heat treatment process.
 熱処理は、例えば、125℃以上150℃以下で、4時間から24時間行われる。 The heat treatment is performed, for example, at 125°C or higher and 150°C or lower for 4 to 24 hours.
 リード端子の接合工程および熱処理工程の後、コンデンサ素子および外部電極を封止材によって封止する工程が行われてもよい。上記の通り、外部電極の水分透過率は70g/(24時間・m)以下に抑えられているため、封止材が外部電極の空隙に侵入することも抑制される。 After the step of joining the lead terminals and the heat treatment step, a step of sealing the capacitor element and the external electrodes with a sealing material may be performed. As described above, since the water permeability of the external electrodes is suppressed to 70 g/(24 hours·m 2 ) or less, the encapsulant is also suppressed from entering the gaps of the external electrodes.
 以下の実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されない。実施例中、「部」および「%」は、ことわりのない限り、質量基準による。 The present invention will be described more specifically with the following examples, but the present invention is not limited to these. In the examples, "parts" and "%" are based on mass unless otherwise specified.
[実施例1]
 ウレタン樹脂製の樹脂フィルム(厚さ3μm)に、アルミニウムを厚さ20nmになるように蒸着し、金属化フィルムを作製した。この金属化フィルムを2枚積層して、巻回することにより、コンデンサ素子を作製した。得られたコンデンサ素子の巻回軸方向の両端面に、亜鉛-アルミニウム合金(アルミニウム含有率6%)を溶射して、外部電極(厚さ1mm)を2つ形成した。その後、2つの外部電極にそれぞれ、リード端子(錫メッキ銅線、直径1.2mm)を抵抗溶接した。これにより、フィルムコンデンサを得た。
[Example 1]
Aluminum was vapor-deposited on a urethane resin film (thickness: 3 μm) to a thickness of 20 nm to prepare a metallized film. A capacitor element was produced by laminating two sheets of this metallized film and winding them. A zinc-aluminum alloy (6% aluminum content) was thermally sprayed on both end surfaces of the obtained capacitor element in the direction of the winding axis to form two external electrodes (thickness: 1 mm). After that, lead terminals (tinned copper wire, diameter 1.2 mm) were resistance-welded to each of the two external electrodes. A film capacitor was thus obtained.
 このフィルムコンデンサの水分透過率を、上記の通りに算出したところ、18.5g/(24時間・m)であった。外部電極の断面積は、計算によって求めた。2つの外部電極の最大高さRzの平均値は、125μmであった。最大高さRzは、レーザー顕微鏡(キーエンス社製、VK-8700)を用いて測定した。 When the water permeability of this film capacitor was calculated as described above, it was 18.5 g/(24 hours·m 2 ). The cross-sectional area of the external electrode was obtained by calculation. The average value of the maximum heights Rz of the two external electrodes was 125 μm. The maximum height Rz was measured using a laser microscope (Keyence VK-8700).
[実施例2-5、比較例1-5]
 外部電極を形成する際のエアーの吹付け圧力や吹付ノズルの形状を変えて、外部電極の水分透過率を表1に示される値に調整したこと以外、実施例1と同様にして、フィルムコンデンサを作製した。
[Example 2-5, Comparative Example 1-5]
A film capacitor was formed in the same manner as in Example 1, except that the air spray pressure and the shape of the spray nozzle when forming the external electrodes were changed to adjust the moisture permeability of the external electrodes to the values shown in Table 1. was made.
[評価]
 作製されたフィルムコンデンサに吸湿処理および熱処理を行って、その後、熱硬化性樹脂で封止した。封止されたフィルムコンデンサに対して、以下の評価を行った。結果を表1に示す。
[evaluation]
The produced film capacitor was subjected to moisture absorption treatment and heat treatment, and then sealed with a thermosetting resin. The sealed film capacitors were evaluated as follows. Table 1 shows the results.
(吸湿処理)
 得られたフィルムコンデンサを125℃で48時間乾燥させて、コンデンサ素子を絶乾状態にした。その後、コンデンサ素子の単位体積(1cm)当たり6.5mgの水分が吸着されるまで、40℃80%RHの環境下にフィルムコンデンサを静置した。
(熱処理)
 水分を吸着したフィルムコンデンサを、125℃で4時間加熱した。
(封止)
 乾燥させたフィルムコンデンサを、ケースにいれて、エポキシ樹脂により封止した。
(moisture absorption treatment)
The resulting film capacitor was dried at 125° C. for 48 hours to make the capacitor element absolutely dry. After that, the film capacitor was allowed to stand in an environment of 40° C. and 80% RH until 6.5 mg of water per unit volume (1 cm 3 ) of the capacitor element was adsorbed.
(Heat treatment)
The moisture-adsorbed film capacitor was heated at 125° C. for 4 hours.
(sealing)
The dried film capacitor was placed in a case and sealed with epoxy resin.
(1)ESR変化率
 絶乾状態のフィルムコンデンサのESRを初期値Rとした。封止されたフィルムコンデンサのESR(R)と初期値Rとの差(R-R)を、初期値Rで除して、100を乗じた。このようにして、ESR変化率(△ESR)を算出した。
   △ESR(%)=100×(R-R)/R
 ESRは、LCRメーター(エヌエフ回路設計ブロック社製、ZM2371、測定周波数10kHz)を用いて測定した。
(1) ESR change rate The ESR of the absolutely dry film capacitor was taken as the initial value R0 . The difference (RR 0 ) between the ESR (R) of the sealed film capacitor and the initial value R 0 was divided by the initial value R 0 and multiplied by 100. Thus, the ESR change rate (ΔESR) was calculated.
ΔESR (%) = 100 × (RR 0 )/R 0
The ESR was measured using an LCR meter (ZM2371 manufactured by NF Circuit Design Block, measurement frequency 10 kHz).
(2)容量変化率-1
 絶乾状態のフィルムコンデンサの容量を初期値Cとした。封止されたフィルムコンデンサの容量Cと初期値Cとの差(C-C)を、初期値Cで除して、100を乗じた。このようにして、容量変化率(△C)を算出した。
   △C(%)=100×(C-C)/C
 容量は、LCRメーター(エヌエフ回路設計ブロック社製、ZM2371、測定周波数1kHz)を用いて測定した。
(2) Capacity change rate -1
The initial value C0 was taken as the capacity of the film capacitor in an absolutely dry state. The difference (CC 0 ) between the capacitance C of the sealed film capacitor and the initial value C 0 was divided by the initial value C 0 and multiplied by 100. Thus, the capacity change rate (ΔC) was calculated.
ΔC (%) = 100 × (C−C 0 )/C 0
The capacity was measured using an LCR meter (ZM2371 manufactured by NF Circuit Design Block, measurement frequency 1 kHz).
(3)容量変化率-2(高温高圧負荷試験後)
 封止されたフィルムコンデンサに、125℃の雰囲気中で500Vの電圧を2,000時間印加した。この試験後のフィルムコンデンサの容量Cと、試験前のフィルムコンデンサの容量Cとの差(C-C)を、容量Cで除して、100を乗じた。このようにして、負荷試験前後の容量変化率(△C)を算出した。△Cが5%以内である場合、長寿命であると判断できる。
   △C(%)=100×(C-C)/C
 容量は、上記と同様、LCRメーター(エヌエフ回路設計ブロック社製、ZM2371、測定周波数1kHz)を用いて測定した。
(3) Capacity change rate -2 (after high temperature and high pressure load test)
A voltage of 500 V was applied to the sealed film capacitor in an atmosphere of 125° C. for 2,000 hours. The difference (C 1 −C) between the capacitance C 1 of the film capacitor after the test and the capacitance C of the film capacitor before the test was divided by the capacitance C and multiplied by 100. Thus, the rate of change in capacity (ΔC 1 ) before and after the load test was calculated. If ΔC1 is within 5%, it can be determined that the life is long.
ΔC 1 (%) = 100 × (C 1 -C)/C
The capacitance was measured using an LCR meter (ZM2371 manufactured by NF Circuit Design Block, measurement frequency 1 kHz) in the same manner as described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、外部電極の水分透過率が18g/(24時間・m)以上70g/(24時間・m)以下の実施例1-5のフィルムコンデンサの、ESR変化率(△ESR)、容量変化率(△C)および負荷試験後の容量変化率(△C)は、いずれも小さい。 As shown in Table 1 , the ESR change rate ( ΔESR), the rate of change in capacity (ΔC), and the rate of change in capacity after the load test (ΔC 1 ) are all small.
 一方、外部電極の水分透過率が18g/(24時間・m)より小さい比較例1-3のフィルムコンデンサの、ESR変化率(△ESR)、容量変化率(△C)および負荷試験後の容量変化率(△C)は、いずれも大きい。特に、負荷試験後の容量変化率(△C)が大きく、長寿命が期待できない。これは、吸湿処理後の熱処理において、水分が十分に除去されなかったためと考えられる。 On the other hand, the ESR change rate (ΔESR), capacity change rate (ΔC), and after load test of the film capacitor of Comparative Example 1-3, in which the water permeability of the external electrode is less than 18 g/(24 hours·m 2 ) The rate of change in capacity (ΔC 1 ) is large in both cases. In particular, the capacity change rate (ΔC 1 ) after the load test is large, and a long life cannot be expected. This is probably because moisture was not sufficiently removed in the heat treatment after the moisture absorption treatment.
 外部電極の水分透過率が70g/(24時間・m)を超える比較例4-5のフィルムコンデンサの、ESR変化率(△ESR)、容量変化率(△C)および負荷試験後の容量変化率(△C)は、いずれも大きい。特に、ESR変化率(△ESR)が大きい。これは、熱処理後、封止されるまでの間に、コンデンサ内部に一気に水分が浸入したか、あるいは、封止樹脂が外部電極の空隙に侵入したためと考えられる。 ESR rate of change (ΔESR), capacity rate of change (ΔC), and capacity change after load test of the film capacitor of Comparative Example 4-5 in which the water permeability of the external electrode exceeds 70 g/(24 hours·m 2 ) Both ratios (ΔC 1 ) are large. In particular, the ESR change rate (ΔESR) is large. It is considered that this is because moisture suddenly entered the inside of the capacitor after the heat treatment and before the capacitor was sealed, or the sealing resin entered the gaps of the external electrodes.
 本発明のコンデンサは、水分による性能低下が抑制されるため、種々の電子機器に適用可能である。 The capacitor of the present invention can be applied to various electronic devices because it suppresses deterioration in performance due to moisture.
 本願は、2021年9月27日付けで日本国にて出願された特願2021-156871に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2021-156871 filed in Japan on September 27, 2021, the entire contents of which are incorporated herein by reference.
  10 コンデンサ
   1 コンデンサ素子
  2A 第1外部電極
  2B 第2外部電極
  3A 第1リード端子
  3B 第2リード端子
10 Capacitor 1 Capacitor Element 2A First External Electrode 2B Second External Electrode 3A First Lead Terminal 3B Second Lead Terminal

Claims (5)

  1.  コンデンサ素子と、
     前記コンデンサ素子の端面に配置された外部電極と、
     前記外部電極と電気的に接続するリード端子と、を備え、
     前記外部電極の水分透過率は、18g/(24時間・m)以上70g/(24時間・m)以下である、コンデンサ。
    a capacitor element;
    an external electrode disposed on an end surface of the capacitor element;
    a lead terminal electrically connected to the external electrode,
    The capacitor, wherein the moisture permeability of the external electrode is 18 g/(24 hours·m 2 ) or more and 70 g/(24 hours·m 2 ) or less.
  2.  前記外部電極の最大高さRzは、120μm以上である、請求項1に記載のコンデンサ。 The capacitor according to claim 1, wherein the maximum height Rz of the external electrodes is 120 µm or more.
  3.  前記外部電極は、メタリコン電極である、請求項1または2に記載のコンデンサ。 The capacitor according to claim 1 or 2, wherein the external electrodes are metallikon electrodes.
  4.  前記外部電極は、亜鉛とアルミニウムとの合金を含む、請求項1~3のいずれか一項に記載のコンデンサ。 The capacitor according to any one of claims 1 to 3, wherein the external electrodes contain an alloy of zinc and aluminum.
  5.  前記コンデンサ素子は、内部電極を備え、
     前記内部電極は、金属化フィルムにより構成されており、
     前記金属化フィルムは、樹脂フィルムと、前記樹脂フィルムの少なくとも一方の主面に形成された金属層と、を備える、請求項1~4のいずれか一項に記載のコンデンサ。
    The capacitor element includes an internal electrode,
    The internal electrode is composed of a metallized film,
    5. The capacitor according to claim 1, wherein said metallized film comprises a resin film and a metal layer formed on at least one main surface of said resin film.
PCT/JP2022/033433 2021-09-27 2022-09-06 Capacitor WO2023047944A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280063379.3A CN117981024A (en) 2021-09-27 2022-09-06 Capacitor with a capacitor body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-156871 2021-09-27
JP2021156871 2021-09-27

Publications (1)

Publication Number Publication Date
WO2023047944A1 true WO2023047944A1 (en) 2023-03-30

Family

ID=85720601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033433 WO2023047944A1 (en) 2021-09-27 2022-09-06 Capacitor

Country Status (2)

Country Link
CN (1) CN117981024A (en)
WO (1) WO2023047944A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234919A (en) * 2011-04-28 2012-11-29 Toyota Motor Corp Metalization film capacitor
WO2019097753A1 (en) * 2017-11-15 2019-05-23 株式会社村田製作所 Film capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234919A (en) * 2011-04-28 2012-11-29 Toyota Motor Corp Metalization film capacitor
WO2019097753A1 (en) * 2017-11-15 2019-05-23 株式会社村田製作所 Film capacitor

Also Published As

Publication number Publication date
CN117981024A (en) 2024-05-03

Similar Documents

Publication Publication Date Title
JP7300616B2 (en) Electrolytic capacitor and manufacturing method thereof
JP6439141B2 (en) Metallized film capacitors
TWI821403B (en) Electrode body, electrolytic capacitor provided with electrode body, and method of manufacturing electrode body
JPWO2009136660A1 (en) Electrochemical device and its mounting structure
JPH0793236B2 (en) Film capacitor and manufacturing method thereof
JP6634990B2 (en) Ceramic electronic component and its mounting structure
JP4915947B2 (en) Metallized film capacitors
WO2023047944A1 (en) Capacitor
US9754729B2 (en) Solid-state electrolytic capacitor with improved metallic anode and method for manufacturing the same
KR102653211B1 (en) Film capacitor
JP5407031B2 (en) Metallized film capacitors
JPWO2018101260A1 (en) Film capacitor, inverter and electric vehicle
JP2019197787A (en) Organic polymer capacitor
WO2019156120A1 (en) Electrolytic capacitor
JP2011035084A (en) Solid electrolytic capacitor
JP2015103700A (en) Film capacitor
KR20160073051A (en) Composite electronic component and Manufacturing method of the same
JP3791457B2 (en) Capacitor and its manufacturing method
WO2023047943A1 (en) Capacitor
JP3858626B2 (en) Double-sided metallized film capacitor
WO2023047945A1 (en) Capacitor
JP6339344B2 (en) Film capacitor
JP2002008940A (en) Dry metallized film capacitor
JP2013026586A (en) Metalized film capacitor
WO2019058535A1 (en) Solid electrolytic capacitor and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872700

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549456

Country of ref document: JP