WO2023047792A1 - Heater control system - Google Patents

Heater control system Download PDF

Info

Publication number
WO2023047792A1
WO2023047792A1 PCT/JP2022/028870 JP2022028870W WO2023047792A1 WO 2023047792 A1 WO2023047792 A1 WO 2023047792A1 JP 2022028870 W JP2022028870 W JP 2022028870W WO 2023047792 A1 WO2023047792 A1 WO 2023047792A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
control system
resistance
boost converter
power supply
Prior art date
Application number
PCT/JP2022/028870
Other languages
French (fr)
Japanese (ja)
Inventor
啓史 礒野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022069319A external-priority patent/JP2023048090A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023047792A1 publication Critical patent/WO2023047792A1/en
Priority to US18/612,754 priority Critical patent/US20240237148A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0236Industrial applications for vehicles
    • H05B1/0238For seats
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/62Accessories for chairs
    • A47C7/72Adaptations for incorporating lamps, radio sets, bars, telephones, ventilation, heating or cooling arrangements or the like
    • A47C7/74Adaptations for incorporating lamps, radio sets, bars, telephones, ventilation, heating or cooling arrangements or the like for ventilation, heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/56Heating or ventilating devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating

Definitions

  • the present disclosure relates to a heater control system that includes a heater that heats a seat or the like installed in a vehicle or the like, for example.
  • Patent Document 1 discloses a vehicle power supply device.
  • This vehicle power supply device includes PWM (Pulse Width Modulation) means and detection means.
  • the PWM means PWM-controls the electric power supplied from the vehicle-mounted power supply to an electric load such as a seat heater.
  • the detection means samples and detects the voltage value of the vehicle-mounted power source in time series at a predetermined cycle. In this vehicle power supply device, the duty ratio of PWM control is determined based on the voltage value detected by the detecting means.
  • the present disclosure provides a heater control system that facilitates weight reduction while reducing costs.
  • a heater control system includes a resistance heater and a boost converter electrically connected to the resistance heater.
  • the boost converter outputs a boosted voltage higher than a power supply voltage of a power supply electrically connected to the boost converter to the resistance heater.
  • the heater control system of the present disclosure has the advantage that it is easy to achieve weight reduction while reducing costs.
  • FIG. 1 is a perspective view of a seat equipped with a heater control system according to an embodiment
  • FIG. 2 is a diagram showing an outline of a heater control system according to the embodiment.
  • FIG. 3 is a circuit diagram showing an example of a boost converter of the heater control system according to the embodiment.
  • FIG. 4 is a flow chart showing an operation example of the heater control system in the embodiment.
  • FIG. 5 is a diagram showing an outline of a heater control system of a comparative example.
  • a heater control system includes a resistance heater and a boost converter electrically connected to the resistance heater.
  • the boost converter outputs a boosted voltage higher than a power supply voltage of a power supply electrically connected to the boost converter to the resistance heater.
  • the boosted voltage is twice or more the power supply voltage.
  • the resistance value of the resistance heater can be made relatively large, even if the boost converter does not operate normally (for example, the boost converter has a short-circuit failure), the power supply voltage is applied to the resistance heater. , the current flowing through the resistance heater is greatly suppressed. Therefore, it is possible to reduce the possibility that the heater will overheat without providing a safety device such as a breaker, and there is the advantage that it is easy to achieve further cost reduction and weight reduction.
  • a heater control system further includes a temperature detection unit that detects the temperature of the resistance heater.
  • the boost converter controls the boost voltage based on the temperature detected by the temperature detector.
  • the boost converter stops outputting the boosted voltage to the resistance heater when the temperature detected by the temperature detection unit exceeds a first threshold temperature. .
  • the boost converter starts outputting the boosted voltage to the resistance heater when the temperature detected by the temperature detection unit falls below a second threshold temperature lower than the first threshold temperature.
  • the temperature at the location where the resistance heater is installed can be controlled simply by alternately repeating driving and stopping of the boost converter with the boost voltage set to a constant voltage, for example, compared to the case where the boost voltage is variably controlled. , there is an advantage that a separate voltage detection circuit is not required, and a simple configuration and control are sufficient.
  • the boost converter includes an inductance element, a first switching element, a second switching element, and a controller.
  • the inductance element is electrically connected to the positive terminal of the power supply.
  • the first switching element is electrically connected between the inductance element and the negative electrode of the power supply.
  • the second switching element is electrically connected between the inductance element and the resistive heater.
  • the controller controls on/off of the first switching element and the second switching element.
  • the control unit controls to keep both the first switching element and the second switching element off, thereby stopping the operation of outputting the boosted voltage to the resistance heater.
  • the temperature detection section operates based on the power supply voltage.
  • a first wiring that connects the temperature detection unit and the boost converter and a second wiring that connects the boost converter and the resistance heater are different systems.
  • the resistance heater is constructed by sewing a heater wire composed of a plurality of stranded wires.
  • the resistance heater is configured such that the resistance value increases as the boost ratio, which is the ratio of the boosted voltage to the power supply voltage, increases.
  • the resistive heater is of a single type regardless of the heat generating power specification, and the boosted voltage is adjusted based on the heat generating power specification of the resistive heater. .
  • the same resistance heater can be easily adapted to various heat generation power specifications, so there is an advantage that it is not necessary to design a resistance heater according to the specifications.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Moreover, in each figure, the same code
  • FIG. 1 is a perspective view of a seat equipped with a heater control system according to an embodiment
  • FIG. FIG. 2 is a diagram showing an overview of the heater control system 100 according to the embodiment.
  • the heater control system is installed in the seat 1000 of the mobile body shown in FIG.
  • the system consists of a cushion heater 11 arranged on a seat surface 1001 and a back heater 12 arranged on a backrest 1002.) heats at least a part of the user's body.
  • the moving body is, for example, an automobile, but may be another moving body such as an airplane or a ship.
  • the heater control system 100 includes two resistance heaters 1 , a boost converter 2 and a temperature detector 4 .
  • the heater control system 100 includes the temperature detection unit 4 as a component in the embodiment, it does not have to include the temperature detection unit 4 as a component.
  • Each of the two resistance heaters 1 is a linear heater, and has a base material, a heater wire 10, and a sewing thread.
  • the base material is made of a foaming resin such as cloth-like urethane formed in a sheet from a material having elasticity, flexibility and ductility.
  • a nonwoven fabric may be sufficient as a base material.
  • the heater wire 10 is a conductive wire that is electrically connected to the boost converter 2 via the connector 5 and the lead wire 6 (harness) and is capable of generating heat when a current flows from the boost converter 2 .
  • the heater wire 10 is sewn to one surface of the base material so as to return from the lead wire 6 for supplying power to the heater wire 10 through each part of the base material to the lead wire 6 .
  • the heater wire 10 is a metal wire of copper or the like, and is composed of a plurality of twisted wires, and is sewn onto one surface of the substrate using, for example, polyester fiber thread as a sewing thread.
  • the sewing thread is a thread for sewing the heater wire 10 to the substrate along the extending direction of the heater wire 10 in order to fix the heater wire 10 to the substrate. That is, in the embodiment, the resistance heater 1 is constructed by sewing a heater wire 10 composed of a plurality of stranded wires. Note that the heater wire 10 may be fixed to the base material by means other than the sewing thread, such as adhesion.
  • One resistance heater 1 of the two resistance heaters 1 is a cushion heater 11 installed on a seat cushion, which is a seat portion of the seat that supports the buttocks and thighs of the user sitting on the seat.
  • the cushion heater 11 is installed in the seat cushion between a pad corresponding to a cushion material and a cover covering the pad.
  • the cushion heater 11 generates heat when power is supplied from the boost converter 2, and warms the user via the seat cushion.
  • the other resistance heater 1 of the two resistance heaters 1 is the back heater 12 installed in the seat back, which is the backrest supporting the back of the user sitting on the seat.
  • the back heater 12 is installed in the seat back between a pad corresponding to a cushion material and a cover covering the pad.
  • the back heater 12 generates heat when power is supplied from the boost converter 2, and warms the user through the seat back.
  • the boost converter 2 is electrically connected to each of the two resistance heaters 1 via the connector 5 and lead wire 6 .
  • two resistive heaters 1 are connected in parallel to the boost converter 2 .
  • one end of each of the two resistance heaters 1 is electrically connected to the lead wire 6 and the other end is electrically connected to the ground 72 .
  • the ground 72 is, for example, a chassis ground, but may be a common ground with the ground 71 on the power supply 3 side.
  • the boost converter 2 is a DC/DC converter, and has an input end electrically connected to the power supply 3 and an output end electrically connected to each resistance heater 1 via a connector 5 and a lead wire 6 .
  • the boost converter 2 boosts the DC voltage input from the power supply 3 and outputs the boosted voltage to each resistance heater 1 via the connector 5 and the lead wire 6 . That is, the boost converter 2 outputs to each resistance heater 1 a boosted voltage V2 higher than the power supply voltage V1 of the power supply 3 electrically connected to the boost converter 2 .
  • the power supply 3 is, for example, an in-vehicle battery, and supplies electric power to electric devices such as the boost converter 2 and the like mounted on the moving object.
  • the power supply voltage V1 is ten and several volts, for example.
  • the boosted voltage V2 is several tens of volts, for example. That is, in the embodiment, the boosted voltage V2 is at least twice the power supply voltage V1.
  • the upper limit of boosted voltage V2 is determined based on the power that boost converter 2 can output, for example. In the embodiment, the upper limit of the boosted voltage V2 is 48V as an example.
  • FIG. 3 is a circuit diagram showing an example of the boost converter 2 of the heater control system 100 according to the embodiment.
  • the boost converter 2 includes an inductance element L1, a first switching element SW1, a second switching element SW2, a capacitive element C1, and a control section 21.
  • the inductance element L1 has one end electrically connected to the positive electrode 31 of the power supply 3 and the other end electrically connected to the first switching element SW1 and the second switching element SW2.
  • the first switching element SW1 and the second switching element SW2 are semiconductor switching elements such as FETs (Field Effect Transistors), for example, and are controlled by the control section 21 to switch on/off.
  • FETs Field Effect Transistors
  • the first switching element SW1 has one end electrically connected to the inductance element L1 and the other end electrically connected to the negative electrode 32 of the power supply 3 and the low voltage side terminal 52 of the connector 5 . That is, the first switching element SW1 is electrically connected between the inductance element L1 and the negative electrode 32 of the power supply 3. A negative electrode 32 of the power supply 3 is electrically connected to the ground 71 .
  • the second switching element SW2 has one end electrically connected to the inductance element L1 and the other end electrically connected to the capacitive element C1 and the high-voltage side terminal 51 of the connector 5 . That is, the second switching element SW2 is electrically connected between the inductance element L1 and the resistance heater 1.
  • the capacitive element C1 is electrically connected between the high-voltage side terminal 51 and the low-voltage side terminal 52 of the connector 5. A voltage across the capacitive element C1 is output to each resistance heater 1 via the connector 5 and the lead wire 6 as a boosted voltage V2.
  • the control unit 21 is an ECU (Electronic Control Unit) for controlling the two resistance heaters 1, for example.
  • the control unit 21 controls ON/OFF of the first switching element SW1 and the second switching element SW2 by giving drive signals to the first switching element SW1 and the second switching element SW2, respectively.
  • the control unit 21 can perform two operations: the boosting operation of the boost converter 2 and the stopping operation of the boost converter 2 .
  • the control unit 21 performs PWM control to alternately turn on/off the first switching element SW1 and the second switching element SW2. That is, the control unit 21 turns off the second switching element SW2 when the first switching element SW1 is on, and turns on the second switching element SW2 when the first switching element SW1 is off.
  • the first switching element SW1 and the second switching element SW2 are PWM-controlled.
  • the boost converter 2 outputs a boosted voltage V2 obtained by boosting the power supply voltage V1 to each resistance heater 1 while the boosting operation is being performed.
  • the boost ratio in the boost operation is determined based on the duty ratio in the PWM control of the first switching element SW1 and the second switching element SW2.
  • control unit 21 controls to keep both the first switching element SW1 and the second switching element SW2 off, thereby stopping the output operation of the boosted voltage V2 to each resistance heater 1. .
  • Which of the boosting operation of boosting converter 2 and the stopping operation of boosting converter 2 to be performed by control unit 21 is determined based on the temperature detected by temperature detecting unit 4, which will be described later. That is, in the embodiment, boost converter 2 controls boost voltage V2 based on the temperature detected by temperature detection unit 4 .
  • Controlling the boosted voltage V2 here also includes controlling the boosted voltage V2 to be zero, that is, controlling the boost converter 2 to stop. Further, the boosted voltage V2 during the boosting operation of boost converter 2 is a constant voltage.
  • the temperature detection unit 4 is installed in the resistance heater 1 and detects the temperature of the installation location, that is, the temperature of the resistance heater 1 .
  • the temperature detection section 4 is installed in the cushion heater 11 of the two resistance heaters 1 .
  • the temperature detection unit 4 may be installed in the back heater 12 instead of the cushion heater 11 .
  • the temperature detection unit 4 is a thermistor, one end of which is electrically connected to the control unit 21 of the boost converter 2 and the other end of which is electrically connected to the ground 71 . Since the control unit 21 operates by receiving power supply from the power supply 3 , the temperature detection unit 4 also operates by receiving power supply from the power supply 3 in the same manner as the control unit 21 . In other words, the temperature detector 4 operates based on the power supply voltage V1.
  • the first wiring 81 connecting the temperature detection unit 4 and the boost converter 2 is supplied with the power supply voltage V1, and is supplied with a relatively low voltage.
  • the second wiring 82 connecting the boost converter 2 and each resistance heater 1 is supplied with the boosted voltage V2, and is supplied with a relatively high voltage.
  • the first wiring 81 and the second wiring 82 are different systems. Therefore, even if an electric leakage occurs in one of the first wiring 81 and the second wiring 82, it is possible to reduce the possibility of electric leakage to the other wiring.
  • a boost ratio K which is the ratio of the boosted voltage V2 to the power supply voltage V1, is given by the following equation (1).
  • the power W generated when the heater wire 10 generates heat is expressed by the following equation (2) using a resistance value R obtained by combining the resistance value of the cushion heater 11 and the resistance value of the back heater 12 in the heater wire 10.
  • the resistance value R of the heater wire 10 is expressed by the following equation (3).
  • the power W is constant
  • the power supply voltage V1 is the voltage of the power supply 3 (battery)
  • the resistance value of the heater wire 10 can be obtained from the equation (3) R is proportional to K2.
  • the resistance value R can be obtained from the equation (3).
  • the step-up ratio K is greater than 1 because it is premised on step-up. Therefore, the resistance value R obtained by the equation (3) becomes larger than when the step-up ratio K is 1.
  • the resistance heater 1 is configured such that the resistance value R increases as the boost ratio K, which is the ratio of the boosted voltage V2 to the power supply voltage V1, increases.
  • FIG. 4 is a flow chart showing an operation example of the heater control system 100 according to the embodiment. Operation of the heater control system 100 is initiated, for example, when the user turns on the heater control system 100 .
  • the controller 21 repeats steps S1 to S4 while the heater control system 100 is in operation. That is, when the boost converter 2 is in the stopping operation, that is, when the boost converter 2 is off, each resistance heater 1 is in the off state, so the temperature detected by the temperature detector 4 (here, thermistor) is Decrease with the passage of time.
  • Control unit 21 maintains the stop operation of boost converter 2 until the temperature detected by temperature detection unit 4 falls below the lower limit temperature (second threshold temperature) (step S1: No).
  • step S1: Yes the control unit 21 starts the boost operation of the boost converter 2, that is, turns on the boost converter 2 (step S2). .
  • each resistance heater 1 is turned on, and the temperature detected by the temperature detector 4 rises with the lapse of time.
  • control unit 21 maintains the boosting operation of the boost converter 2 until the temperature detected by the temperature detection unit 4 exceeds the upper limit temperature (first threshold temperature) (step S3: No).
  • control unit 21 starts stopping operation of boost converter 2, that is, turns off boost converter 2 (step S4). .
  • the control unit 21 repeats the boosting operation and the stopping operation of the boost converter 2 so that the temperature detected by the temperature detection unit 4 falls between the upper limit temperature and the lower limit temperature, thereby causing each resistance heater to 1 is repeatedly turned on/off.
  • the temperature detected by the temperature detection unit 4 is maintained at a substantially constant temperature.
  • two different threshold temperatures ie, the lower limit temperature when each resistance heater 1 is in the OFF state and the upper limit temperature when each resistance heater 1 is in the ON state, the on/off of each resistance heater 1 can be controlled. It prevents chattering.
  • the temperature difference between the lower limit temperature and the upper limit temperature is, for example, 1 degree Celsius.
  • FIG. 5 is a diagram showing an outline of a heater control system 200 of a comparative example.
  • the heater control system 200 of the comparative example is different from the heater control system 100 of the embodiment in that the boost converter 2 is not provided and the heater control system 200 is provided with a control section 201 , an FET 202 and a breaker 203 .
  • the control unit 201 is, like the control unit 21, an ECU for controlling, for example, the two resistance heaters 1.
  • the FET 202 is a field effect transistor and electrically connected between the positive electrode 31 of the power supply 3 and the connector 5 .
  • the control unit 201 controls on/off of the FET 202 by giving a drive signal to the FET 202 .
  • the heater control system 200 of the comparative example when the FET 202 is on, power is supplied from the power supply 3 to each resistance heater 1 through the connector 5 and the lead wire 6, thereby turning on each resistance heater 1 .
  • the electrical circuit between the power supply 3 and the connector 5 is cut off, so that power is no longer supplied to each resistance heater 1 and each resistance heater 1 is turned off.
  • the FET 202 repeats ON/OFF, so that the temperature is detected by the temperature detection unit 4 as in the embodiment.
  • the temperature is maintained at a generally constant temperature.
  • the breaker 203 is electrically connected between the lead wire 6 and each resistance heater 1, and is configured to break the electric circuit when a current exceeding a predetermined magnitude continues to flow. This prevents excessive current from continuing to flow through each resistance heater 1 .
  • the boost converter 2 since the boost converter 2 is not provided, the power supply voltage V1 of the power supply 3 is applied to each resistance heater 1 through the connector 5 and the lead wire 6 when the FET 202 is on. will be applied. Therefore, in order to supply power corresponding to the rated power (for example, several tens of W) to each resistance heater 1, a relatively large current i2 must be applied to each resistance heater 1.
  • FIG. 1 In order to pass a relatively large current i2 to each resistance heater 1, the resistance value of each resistance heater 1 must be relatively small.
  • the current i2 referred to here is the sum of the currents flowing through the resistance heaters 1. FIG. Therefore, the current flowing through the cushion heater 11 and the current flowing through the back heater 12 are both smaller than the current i2.
  • each resistance heater As a means for reducing the resistance value of each resistance heater 1, it is conceivable to increase the number of stranded wires constituting the heater wire 10 of each resistance heater 1. There is a problem that the weight of the wire 10 is increased, and as a result, the weight of each resistance heater 1 is increased. Further, since the number of wires constituting the heater wire 10 is increased, there is a problem that the cost for manufacturing each resistance heater 1 is increased as a result.
  • the heater control system 100 includes the boost converter 2 to solve the above problem. That is, heater control system 100 includes boost converter 2 to apply boosted voltage V2 obtained by boosting power supply voltage V1 of power supply 3 to each resistance heater 1 via connector 5 and lead wire 6 . Therefore, in the heater control system 100 according to the embodiment, compared with the heater control system 200 of the comparative example, even if a small current i1 ( ⁇ i2) is applied to each resistance heater 1, each resistance heater 1 can reach the rated power. It is possible to supply corresponding power. Further, since it is sufficient to supply a relatively small current i1 to each resistance heater 1, there is a margin for increasing the resistance value of each resistance heater 1 compared to the heater control system 200 of the comparative example.
  • the current i1 referred to here is the sum of the currents flowing through the resistance heaters 1. FIG. Therefore, the current flowing through the cushion heater 11 and the current flowing through the back heater 12 are both smaller than the current i1.
  • the heater control system 100 there is no problem even if the resistance value of each resistance heater 1 increases.
  • the number can be reduced.
  • the weight of the heater wire 10 can be reduced as compared with the heater control system 200 of the comparative example, and as a result, the weight of each resistance heater 1 can be reduced. can.
  • the cost for manufacturing each resistance heater 1 can be reduced as a result.
  • the heater control system 100 according to the embodiment has the advantage that it is easy to reduce the weight while reducing the cost.
  • the following advantages can be further enjoyed. That is, when boosted voltage V2 output from boost converter 2 is 1.5 times or more, preferably 2 times or more, power supply voltage V1, the possibility of the seat being overheated can be reduced without providing breaker 203. , there is an advantage that it is easy to achieve further cost reduction and weight reduction.
  • each resistance heater 1 must be relatively small. If this continues, each resistance heater 1 may become too warm. Therefore, in the heater control system 200 of the comparative example, the breaker 203 is provided to reduce the possibility of the seat being overheated.
  • the resistance value of each resistance heater 1 can be made relatively large. Even if it continues to be applied, the current flowing through each resistance heater 1 will be even smaller than when the boosted voltage V2 is applied. From the above description, when the power supply voltage V1 becomes less than half the boosted voltage V2, the current flowing through each resistance heater 1 is greatly suppressed, so that each resistance heater 1 is prevented from overheating. Therefore, it becomes unnecessary to provide the breaker 203 .
  • each resistance heater 1 is constructed by sewing the heater wire 10 composed of a plurality of stranded wires, so that the following advantages can be further enjoyed. That is, for example, if the heater wire 10 is a single wire and is not constructed by sewing, the heater wire 10 must be made thin in order to increase the resistance value of the heater wire 10 . In this case, if each resistance heater 1 is configured by pressing the thinner heater wire 10 to the base material, for example, without sewing, the heater wire 10 may bend due to the stress applied when the user sits on the seat. It is difficult to sufficiently secure the durability of the heater wire 10 .
  • each resistance heater 1 is constructed by sewing the heater wire 10 composed of a plurality of stranded wires, the resistance value of the heater wire 10 is Even if the number of lines is reduced in order to increase the size, it is easy to ensure sufficient durability against the stress applied by the user sitting on the seat. Therefore, the heater control system 100 of the embodiment has the advantage that the resistance value of the resistance heater 1 can be easily increased while sufficiently ensuring the durability of the heater wire 10 .
  • the boost converter 2 has a characteristic that the boost voltage V2 can be adjusted. Only a single type of resistance heater 1 may be prepared.
  • the heater control system 100 may be configured to meet the required heat generation power specification by adjusting the boosted voltage V2. A specific example of this will be described below.
  • heater control system 100 in the embodiment includes resistance heater 1 and boost converter 2 electrically connected to resistance heater 1 .
  • Boost converter 2 outputs to resistance heater 1 a boosted voltage V2 higher than power supply voltage V1 of power supply 3 electrically connected to boost converter 2 .
  • the resistance heater 1 is a stranded wire, the number of wires can be reduced compared to the case where the resistance value of the resistance heater 1 is reduced, so the weight of the resistance heater 1 can be reduced and The cost of manufacturing the resistance heater 1 can also be reduced. That is, there is an advantage that it is easy to reduce the weight while reducing the cost.
  • the boosted voltage V2 is at least twice the power supply voltage V1.
  • the resistance value of the resistance heater 1 can be made relatively large. Even if the current is applied, the current flowing through the resistance heater 1 is greatly suppressed. Therefore, it is possible to reduce the possibility that the heater will overheat without providing a safety device such as the breaker 203, and there is an advantage that it is easy to achieve further cost reduction and weight reduction.
  • the heater control system 100 in the embodiment further includes a temperature detection section 4 that detects the temperature of the resistance heater 1 .
  • Boost converter 2 controls boost voltage V2 based on the temperature detected by temperature detector 4 .
  • the boost converter 2 stops outputting the boosted voltage V2 to the resistance heater 1 when the temperature detected by the temperature detector 4 exceeds the first threshold temperature.
  • the boost converter 2 starts outputting the boosted voltage V2 to the resistance heater 1 when the temperature detected by the temperature detection unit 4 falls below a second threshold temperature lower than the first threshold temperature.
  • the temperature at the location where the resistance heater 1 is installed can be controlled only by alternately repeating the driving and stopping of the boost converter 2 with the boost voltage V2 as a constant voltage.
  • a separate voltage detection circuit is not required, and a simple configuration and control are sufficient.
  • the boost converter 2 includes the inductance element L1, the first switching element SW1, the second switching element SW2, and the control section 21.
  • Inductance element L1 is electrically connected to positive electrode 31 of power supply 3 .
  • the first switching element SW1 is electrically connected between the inductance element L1 and the negative electrode 32 of the power supply 3 .
  • a second switching element SW2 is electrically connected between the inductance element L1 and the resistance heater 1 .
  • the control unit 21 controls on/off of the first switching element SW1 and the second switching element SW2.
  • the control unit 21 stops the operation of outputting the boosted voltage V2 to the resistance heater 1 by controlling to keep both the first switching element SW1 and the second switching element SW2 off.
  • the electric circuit passing through the boost converter 2 can be cut off, so that the current does not continue to flow through the resistance heater 1. , the power consumption can be reduced.
  • the temperature detection section 4 operates based on the power supply voltage V1.
  • a first wiring 81 connecting the temperature detection unit 4 and the boost converter 2 and a second wiring 82 connecting the boost converter 2 and the resistance heater 1 are different systems.
  • the resistance heater 1 is constructed by sewing the heater wire 10 composed of a plurality of stranded wires.
  • the durability of the heater wire 10 can be sufficiently ensured, so there is an advantage that the resistance value of the resistance heater 1 can be easily increased. be.
  • the resistance heater 1 is configured such that the resistance value R increases as the boost ratio K, which is the ratio of the boosted voltage V2 to the power supply voltage V1, increases.
  • the current value when heating the resistance heater 1 with the predetermined power W can be reduced. Therefore, since the resistance value R of the resistance heater 1 can be increased, the number of wires constituting the heater wire 10 can be reduced, and the materials used for the resistance heater 1 can be reduced accordingly, and the cost and weight can be reduced. , has the advantage of
  • the resistance heater 1 is of a single type regardless of the heating power specification, and the boosted voltage V2 is adjusted based on the heating power specification of the resistance heater 1.
  • the boosted voltage V2 is constant during the boosting operation of the boost converter 2, but it is not limited to this.
  • the boost voltage V2 during the boost operation of the boost converter 2 may be variable according to the rated power of the resistance heater 1 .
  • the two resistance heaters 1 are both seat heaters provided on the seat, but are not limited to this.
  • the resistance heater 1 may be installed in the armrest of the seat or in the steering wheel.
  • resistance heaters 1 are installed in the embodiment, the present invention is not limited to this. For example, three or more resistance heaters 1 may be installed, or only one may be installed.
  • the resistance heater 1 is a linear heater in the embodiment, it is not limited to this.
  • the resistance heater 1 may be a planar heater.
  • the boost converter 2 is not limited to the configuration including two switching elements, that is, the first switching element SW1 and the second switching element SW2.
  • a diode may be provided instead of the second switching element SW2.
  • a switching element such as the FET 202 may be provided between the positive electrode 31 of the power supply 3 and the boost converter 2, and the stop operation of the boost converter 2 may be realized by turning off the switching element.
  • control unit 21 controls each resistance heater 1 by executing a series of flows as shown in FIG. 4 by software, but it is not limited to this.
  • control unit 21 may implement a series of flows as shown in FIG. 4 by hardware.
  • the resistance heater 1 is configured so that the resistance value R increases as the step-up ratio K increases. It is not limited.
  • the length of the resistance heater 1 may be lengthened to increase the resistance value R and widen the heat generation range. In this case, for example, if the predetermined power W is constant and the boost ratio K is 2, the resistance value R can be quadrupled.
  • the heat generation range which used to be limited to only one, can be extended to the sides of the seat with the same power as before.
  • the present disclosure can be used, for example, to control a heater that heats a seat or the like installed in a vehicle or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

A heater control system (100) comprises: a resistance heater (1); and a step-up converter (2) that is electrically connected to the resistance heater (1). The step-up converter (2) outputs, to the resistance heater (1), a step-up voltage (V2) which is higher than the power-supply voltage (V1) of a power supply (3) that is electrically connected to the step-up converter (2).

Description

ヒータ制御システムheater control system
 本開示は、例えば車両等に装備されている座席等を温めるヒータを備えたヒータ制御システムに関する。 The present disclosure relates to a heater control system that includes a heater that heats a seat or the like installed in a vehicle or the like, for example.
 特許文献1は、車両用電源装置を開示している。この車両用電源装置は、PWM(Pulse Width Modulation)手段と、検出手段と、を備える。PWM手段は、車載電源からシートヒータ等の電気負荷へ供給する電力をPWM制御する。検出手段は、車載電源の電圧値を所定周期で時系列的にサンプリングして検出する。この車両用電源装置では、検出手段が検出した電圧値に基づいてPWM制御のデューティ比を決定する。 Patent Document 1 discloses a vehicle power supply device. This vehicle power supply device includes PWM (Pulse Width Modulation) means and detection means. The PWM means PWM-controls the electric power supplied from the vehicle-mounted power supply to an electric load such as a seat heater. The detection means samples and detects the voltage value of the vehicle-mounted power source in time series at a predetermined cycle. In this vehicle power supply device, the duty ratio of PWM control is determined based on the voltage value detected by the detecting means.
特開2010―95100号公報Japanese Unexamined Patent Application Publication No. 2010-95100
 本開示は、コストの低減を図りつつ、軽量化を図りやすいヒータ制御システムを提供する。 The present disclosure provides a heater control system that facilitates weight reduction while reducing costs.
 本開示の一態様に係るヒータ制御システムは、抵抗ヒータと、前記抵抗ヒータと電気的に接続される昇圧コンバータと、を備える。前記昇圧コンバータは、前記昇圧コンバータに電気的に接続される電源の電源電圧よりも高い昇圧電圧を前記抵抗ヒータに出力する。 A heater control system according to one aspect of the present disclosure includes a resistance heater and a boost converter electrically connected to the resistance heater. The boost converter outputs a boosted voltage higher than a power supply voltage of a power supply electrically connected to the boost converter to the resistance heater.
 本開示のヒータ制御システムでは、コストの低減を図りつつ、軽量化を図りやすい、という利点がある。 The heater control system of the present disclosure has the advantage that it is easy to achieve weight reduction while reducing costs.
図1は、実施の形態におけるヒータ制御システムを搭載した座席の斜視図である。1 is a perspective view of a seat equipped with a heater control system according to an embodiment; FIG. 図2は、実施の形態におけるヒータ制御システムの概要を示す図である。FIG. 2 is a diagram showing an outline of a heater control system according to the embodiment. 図3は、実施の形態におけるヒータ制御システムの昇圧コンバータの一例を示す回路図である。FIG. 3 is a circuit diagram showing an example of a boost converter of the heater control system according to the embodiment. 図4は、実施の形態におけるヒータ制御システムの動作例を示すフローチャートである。FIG. 4 is a flow chart showing an operation example of the heater control system in the embodiment. 図5は、比較例のヒータ制御システムの概要を示す図である。FIG. 5 is a diagram showing an outline of a heater control system of a comparative example.
 本開示の一態様に係るヒータ制御システムは、抵抗ヒータと、前記抵抗ヒータと電気的に接続される昇圧コンバータと、を備える。前記昇圧コンバータは、前記昇圧コンバータに電気的に接続される電源の電源電圧よりも高い昇圧電圧を前記抵抗ヒータに出力する。 A heater control system according to one aspect of the present disclosure includes a resistance heater and a boost converter electrically connected to the resistance heater. The boost converter outputs a boosted voltage higher than a power supply voltage of a power supply electrically connected to the boost converter to the resistance heater.
 これによれば、抵抗ヒータへ比較的小さな電流を流すだけでも、抵抗ヒータの定格電力に相当する電力を供給することが可能であるから、抵抗ヒータの抵抗値を大きくしてもよい余裕が生じる。したがって、抵抗ヒータの抵抗値を小さくする場合と比較して、抵抗ヒータがより線の場合、より線本数を少なくすることができるので、抵抗ヒータの重量を小さくすることができ、かつ、抵抗ヒータを製造するために掛かるコストも低減することが可能である。つまり、コストの低減を図りつつ、軽量化を図りやすい、という利点がある。 According to this, it is possible to supply power equivalent to the rated power of the resistance heater even if a relatively small current is passed through the resistance heater, so there is a margin for increasing the resistance value of the resistance heater. . Therefore, when the resistance heater is a stranded wire, the number of stranded wires can be reduced compared to the case where the resistance value of the resistance heater is reduced. It is also possible to reduce the cost of manufacturing the That is, there is an advantage that it is easy to reduce the weight while reducing the cost.
 本開示の他の態様に係るヒータ制御システムでは、前記昇圧電圧は、前記電源電圧の2倍以上である。 In a heater control system according to another aspect of the present disclosure, the boosted voltage is twice or more the power supply voltage.
 これによれば、抵抗ヒータの抵抗値を比較的大きくすることができるので、仮に昇圧コンバータが正常に動作せずに(例えば昇圧コンバータが短絡故障し)、電源電圧が抵抗ヒータに印加される状態になったとしても、抵抗ヒータに流れる電流が大きく抑制される。したがって、ブレーカ等の安全装置を設けずともヒータが温まりすぎる可能性を低減することができ、更なるコストの低減及び軽量化を図りやすい、という利点がある。 According to this, since the resistance value of the resistance heater can be made relatively large, even if the boost converter does not operate normally (for example, the boost converter has a short-circuit failure), the power supply voltage is applied to the resistance heater. , the current flowing through the resistance heater is greatly suppressed. Therefore, it is possible to reduce the possibility that the heater will overheat without providing a safety device such as a breaker, and there is the advantage that it is easy to achieve further cost reduction and weight reduction.
 本開示の他の態様に係るヒータ制御システムは、前記抵抗ヒータの温度を検知する温度検知部を更に備える。前記昇圧コンバータは、前記温度検知部で検知される温度に基づいて、前記昇圧電圧を制御する。 A heater control system according to another aspect of the present disclosure further includes a temperature detection unit that detects the temperature of the resistance heater. The boost converter controls the boost voltage based on the temperature detected by the temperature detector.
 これによれば、抵抗ヒータの設置箇所の温度を精度よく制御しやすい、という利点がある。 According to this, there is an advantage that it is easy to control the temperature of the installation location of the resistance heater with high accuracy.
 本開示の他の態様に係るヒータ制御システムでは、前記昇圧コンバータは、前記温度検知部で検知される温度が第1閾値温度を上回ると、前記抵抗ヒータへの前記昇圧電圧の出力動作を停止する。前記昇圧コンバータは、前記温度検知部で検知される温度が前記第1閾値温度よりも低い第2閾値温度を下回ると、前記抵抗ヒータへの前記昇圧電圧の出力動作を開始する。 In a heater control system according to another aspect of the present disclosure, the boost converter stops outputting the boosted voltage to the resistance heater when the temperature detected by the temperature detection unit exceeds a first threshold temperature. . The boost converter starts outputting the boosted voltage to the resistance heater when the temperature detected by the temperature detection unit falls below a second threshold temperature lower than the first threshold temperature.
 これによれば、例えば昇圧電圧を一定電圧として昇圧コンバータの駆動及び停止を交互に繰り返すだけで抵抗ヒータの設置箇所の温度を制御することができるので、昇圧電圧を可変制御する場合と比較して、別途の電圧検出回路が不要で、簡易な構成及び制御で済む、という利点がある。 According to this, the temperature at the location where the resistance heater is installed can be controlled simply by alternately repeating driving and stopping of the boost converter with the boost voltage set to a constant voltage, for example, compared to the case where the boost voltage is variably controlled. , there is an advantage that a separate voltage detection circuit is not required, and a simple configuration and control are sufficient.
 本開示の他の態様に係るヒータ制御システムでは、前記昇圧コンバータは、インダクタンス素子と、第1スイッチング素子と、第2スイッチング素子と、制御部と、を備える。前記インダクタンス素子は、前記電源の正極に電気的に接続される。前記第1スイッチング素子は、前記インダクタンス素子と前記電源の負極との間に電気的に接続される。前記第2スイッチング素子は、前記インダクタンス素子と前記抵抗ヒータとの間に電気的に接続される。前記制御部は、前記第1スイッチング素子及び前記第2スイッチング素子のオン/オフを制御する。前記制御部は、前記第1スイッチング素子及び前記第2スイッチング素子の両方をオフに維持するように制御することで、前記抵抗ヒータへの前記昇圧電圧の出力動作を停止する。 In a heater control system according to another aspect of the present disclosure, the boost converter includes an inductance element, a first switching element, a second switching element, and a controller. The inductance element is electrically connected to the positive terminal of the power supply. The first switching element is electrically connected between the inductance element and the negative electrode of the power supply. The second switching element is electrically connected between the inductance element and the resistive heater. The controller controls on/off of the first switching element and the second switching element. The control unit controls to keep both the first switching element and the second switching element off, thereby stopping the operation of outputting the boosted voltage to the resistance heater.
 これによれば、第1スイッチング素子及び第2スイッチング素子の両方をオフにすることで昇圧コンバータを通過する電路を遮断することができるので、抵抗ヒータに電流が流れ続けることがなく、消費電力を低減することができる、という利点がある。 According to this, by turning off both the first switching element and the second switching element, it is possible to cut off the electric path passing through the boost converter, so that the current does not continue to flow through the resistance heater, and the power consumption is reduced. It has the advantage of being able to reduce
 本開示の他の態様に係るヒータ制御システムでは、前記温度検知部は、前記電源電圧に基づいて動作する。前記温度検知部と前記昇圧コンバータとを繋ぐ第1配線と、前記昇圧コンバータと前記抵抗ヒータとを繋ぐ第2配線とは、互いに異なる系統である。 In a heater control system according to another aspect of the present disclosure, the temperature detection section operates based on the power supply voltage. A first wiring that connects the temperature detection unit and the boost converter and a second wiring that connects the boost converter and the resistance heater are different systems.
 これによれば、第1配線及び第2配線のうちの一方の配線で漏電が発生した場合でも、他方の配線へと漏電する可能性を低減しやすい、という利点がある。 According to this, even if an electric leakage occurs in one of the first wiring and the second wiring, there is an advantage that the possibility of electric leakage to the other wiring can be easily reduced.
 本開示の他の態様に係るヒータ制御システムでは、前記抵抗ヒータは、複数本のより線で構成されるヒータ線を縫製することにより構成されている。 In a heater control system according to another aspect of the present disclosure, the resistance heater is constructed by sewing a heater wire composed of a plurality of stranded wires.
 これによれば、ヒータ線を構成するより線の本数が少なくなった場合でも、ヒータ線の耐久性を十分に確保しやすいので、抵抗ヒータ1の抵抗値を大きくしやすい、という利点がある。 According to this, even if the number of wires constituting the heater wire is reduced, it is easy to sufficiently secure the durability of the heater wire, so there is an advantage that the resistance value of the resistance heater 1 can be easily increased.
 本開示の他の態様に係るヒータ制御システムでは、前記抵抗ヒータは、前記電源電圧に対する前記昇圧電圧の比である昇圧比が大きくなる程、抵抗値が大きくなるように構成されている。 In a heater control system according to another aspect of the present disclosure, the resistance heater is configured such that the resistance value increases as the boost ratio, which is the ratio of the boosted voltage to the power supply voltage, increases.
 これによれば、抵抗ヒータを所定の電力で発熱させる際の電流値を小さくできる。そのため、抵抗ヒータの抵抗値を大きくできるので、ヒータ線を構成するより線の本数を少なくでき、その分、抵抗ヒータの使用材料が減り、低コスト化、かつ低重量化が図れる、という利点がある。 According to this, it is possible to reduce the current value when heating the resistance heater with a predetermined power. Therefore, since the resistance value of the resistance heater can be increased, the number of twisted wires constituting the heater wire can be reduced. be.
 本開示の他の態様に係るヒータ制御システムでは、前記抵抗ヒータは、発熱電力仕様に関わらず単一種類であり、前記昇圧電圧は、前記抵抗ヒータの前記発熱電力仕様に基づいて調整されている。 In a heater control system according to another aspect of the present disclosure, the resistive heater is of a single type regardless of the heat generating power specification, and the boosted voltage is adjusted based on the heat generating power specification of the resistive heater. .
 これによれば、同じ抵抗ヒータに対し容易に各種発熱電力仕様に対応できるので、仕様に応じた抵抗ヒータの設計が不要になる、という利点がある。 According to this, the same resistance heater can be easily adapted to various heat generation power specifications, so there is an advantage that it is not necessary to design a resistance heater according to the specifications.
 以下、実施の形態について、図面を参照しながら具体的に説明する。 Hereinafter, embodiments will be specifically described with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の設置位置及び接続形態、ステップ、ステップの順序等は、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 It should be noted that the embodiments described below are all comprehensive or specific examples. Numerical values, shapes, materials, components, installation positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are examples, and are not intended to limit the present disclosure. Further, among the constituent elements in the following embodiments, constituent elements not described in independent claims will be described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。 In addition, each figure is a schematic diagram and is not necessarily strictly illustrated. Moreover, in each figure, the same code|symbol is attached|subjected about the same component.
 (実施の形態)
 <構成>
 図1は、実施の形態におけるヒータ制御システムを搭載した座席の斜視図である。図2は、実施の形態におけるヒータ制御システム100の概要を示す図である。ヒータ制御システムは、図1に示す移動体の座席1000に装備され、ユーザが座席1000に着座した際に、座席1000の座面1001と背もたれ1002に設置された抵抗ヒータ1(抵抗ヒータ1は、座面1001に配置されたクッションヒータ11と、背もたれ1002に配置されたバックヒータ12と、からなる。)の発熱により、ユーザの身体の少なくとも一部を温めるためのシステムである。移動体は、例えば自動車であるが、飛行機又は船舶等の他の移動体であってもよい。図2に示すように、ヒータ制御システム100は、2つの抵抗ヒータ1と、昇圧コンバータ2と、温度検知部4と、を備えている。なお、実施の形態では、ヒータ制御システム100は、温度検知部4を構成要素として備えているが、温度検知部4を構成要素として備えていなくてもよい。
(Embodiment)
<Configuration>
1 is a perspective view of a seat equipped with a heater control system according to an embodiment; FIG. FIG. 2 is a diagram showing an overview of the heater control system 100 according to the embodiment. The heater control system is installed in the seat 1000 of the mobile body shown in FIG. The system consists of a cushion heater 11 arranged on a seat surface 1001 and a back heater 12 arranged on a backrest 1002.) heats at least a part of the user's body. The moving body is, for example, an automobile, but may be another moving body such as an airplane or a ship. As shown in FIG. 2 , the heater control system 100 includes two resistance heaters 1 , a boost converter 2 and a temperature detector 4 . Although the heater control system 100 includes the temperature detection unit 4 as a component in the embodiment, it does not have to include the temperature detection unit 4 as a component.
 2つの抵抗ヒータ1は、いずれも線状に構成されたヒータであって、基材と、ヒータ線10と、縫製糸と、を有する。基材は、弾性、柔軟性及び延性を有する材質によってシート状に形成された布状のウレタン等の発泡性樹脂からなる。なお、基材は、不織布であってもよい。ヒータ線10は、コネクタ5及びリード線6(ハーネス)を介して昇圧コンバータ2と電気的に接続され、昇圧コンバータ2から電流が流されることによって、発熱することが可能な導電線である。 Each of the two resistance heaters 1 is a linear heater, and has a base material, a heater wire 10, and a sewing thread. The base material is made of a foaming resin such as cloth-like urethane formed in a sheet from a material having elasticity, flexibility and ductility. In addition, a nonwoven fabric may be sufficient as a base material. The heater wire 10 is a conductive wire that is electrically connected to the boost converter 2 via the connector 5 and the lead wire 6 (harness) and is capable of generating heat when a current flows from the boost converter 2 .
 ヒータ線10は、ヒータ線10に電力を供給するためのリード線6から基材の各部分を通ってそのリード線6に戻るように基材の一面に縫い付けられている。ヒータ線10は、銅等の金属線であって、複数本のより線で構成されており、例えばポリエステル繊維の糸を縫製糸として用いて、基材の一面に縫い付けられている。縫製糸は、ヒータ線10を基材に固定するために、ヒータ線10の延在方向に沿ってヒータ線10を基材に縫い付ける糸である。つまり、実施の形態では、抵抗ヒータ1は、複数本のより線で構成されるヒータ線10を縫製することにより構成されている。なお、ヒータ線10は、縫製糸以外の手段として、接着等の手段で基材に固定されていてもよい。 The heater wire 10 is sewn to one surface of the base material so as to return from the lead wire 6 for supplying power to the heater wire 10 through each part of the base material to the lead wire 6 . The heater wire 10 is a metal wire of copper or the like, and is composed of a plurality of twisted wires, and is sewn onto one surface of the substrate using, for example, polyester fiber thread as a sewing thread. The sewing thread is a thread for sewing the heater wire 10 to the substrate along the extending direction of the heater wire 10 in order to fix the heater wire 10 to the substrate. That is, in the embodiment, the resistance heater 1 is constructed by sewing a heater wire 10 composed of a plurality of stranded wires. Note that the heater wire 10 may be fixed to the base material by means other than the sewing thread, such as adhesion.
 2つの抵抗ヒータ1のうちの一方の抵抗ヒータ1は、座席に着座するユーザの臀部及び大腿部を支える座席の座部であるシートクッションに設置されるクッションヒータ11である。具体的には、クッションヒータ11は、シートクッションにおいて、クッション材に相当するパッドと、当該パッドを覆うカバーとの間に設置されている。クッションヒータ11は、昇圧コンバータ2によって電力が供給されることで発熱し、シートクッションを介してユーザを温める。 One resistance heater 1 of the two resistance heaters 1 is a cushion heater 11 installed on a seat cushion, which is a seat portion of the seat that supports the buttocks and thighs of the user sitting on the seat. Specifically, the cushion heater 11 is installed in the seat cushion between a pad corresponding to a cushion material and a cover covering the pad. The cushion heater 11 generates heat when power is supplied from the boost converter 2, and warms the user via the seat cushion.
 2つの抵抗ヒータ1のうちの他方の抵抗ヒータ1は、座席に着座するユーザの背部を支える背もたれ部であるシートバックに設置されるバックヒータ12である。具体的には、バックヒータ12は、シートバックにおいて、クッション材に相当するパッドと、当該パッドを覆うカバーとの間に設置されている。バックヒータ12は、昇圧コンバータ2によって電力が供給されることで発熱し、シートバックを介してユーザを温める。 The other resistance heater 1 of the two resistance heaters 1 is the back heater 12 installed in the seat back, which is the backrest supporting the back of the user sitting on the seat. Specifically, the back heater 12 is installed in the seat back between a pad corresponding to a cushion material and a cover covering the pad. The back heater 12 generates heat when power is supplied from the boost converter 2, and warms the user through the seat back.
 昇圧コンバータ2は、コネクタ5及びリード線6を介して2つの抵抗ヒータ1の各々と電気的に接続されている。実施の形態では、2つの抵抗ヒータ1は、昇圧コンバータ2に対して並列に接続されている。具体的には、2つの抵抗ヒータ1の各々の一端がリード線6に電気的に接続され、他端がグランド72に電気的に接続されている。グランド72は、例えばシャーシグランドであるが、電源3側のグランド71と共通のグランドであってもよい。 The boost converter 2 is electrically connected to each of the two resistance heaters 1 via the connector 5 and lead wire 6 . In the embodiment, two resistive heaters 1 are connected in parallel to the boost converter 2 . Specifically, one end of each of the two resistance heaters 1 is electrically connected to the lead wire 6 and the other end is electrically connected to the ground 72 . The ground 72 is, for example, a chassis ground, but may be a common ground with the ground 71 on the power supply 3 side.
 昇圧コンバータ2は、DC/DCコンバータであって、入力端に電源3が電気的に接続され、出力端にコネクタ5及びリード線6を介して各抵抗ヒータ1に電気的に接続されている。昇圧コンバータ2は、電源3から入力される直流電圧を昇圧し、昇圧した電圧をコネクタ5及びリード線6を介して各抵抗ヒータ1に出力する。つまり、昇圧コンバータ2は、昇圧コンバータ2に電気的に接続される電源3の電源電圧V1よりも高い昇圧電圧V2を各抵抗ヒータ1に出力する。 The boost converter 2 is a DC/DC converter, and has an input end electrically connected to the power supply 3 and an output end electrically connected to each resistance heater 1 via a connector 5 and a lead wire 6 . The boost converter 2 boosts the DC voltage input from the power supply 3 and outputs the boosted voltage to each resistance heater 1 via the connector 5 and the lead wire 6 . That is, the boost converter 2 outputs to each resistance heater 1 a boosted voltage V2 higher than the power supply voltage V1 of the power supply 3 electrically connected to the boost converter 2 .
 電源3は、例えば車載バッテリであって、昇圧コンバータ2等の移動体に搭載された電気機器に電力を供給する。実施の形態では、電源電圧V1は、例えば十数Vである。また、昇圧電圧V2は、例えば数十Vである。つまり、実施の形態では、昇圧電圧V2は、電源電圧V1の2倍以上である。なお、昇圧電圧V2の上限は、例えば昇圧コンバータ2の出力可能な電力に基づいて決定される。実施の形態では、昇圧電圧V2の上限は、一例として48Vである。 The power supply 3 is, for example, an in-vehicle battery, and supplies electric power to electric devices such as the boost converter 2 and the like mounted on the moving object. In the embodiment, the power supply voltage V1 is ten and several volts, for example. Also, the boosted voltage V2 is several tens of volts, for example. That is, in the embodiment, the boosted voltage V2 is at least twice the power supply voltage V1. It should be noted that the upper limit of boosted voltage V2 is determined based on the power that boost converter 2 can output, for example. In the embodiment, the upper limit of the boosted voltage V2 is 48V as an example.
 図3は、実施の形態におけるヒータ制御システム100の昇圧コンバータ2の一例を示す回路図である。図3に示すように、昇圧コンバータ2は、インダクタンス素子L1と、第1スイッチング素子SW1と、第2スイッチング素子SW2と、容量素子C1と、制御部21と、を備えている。 FIG. 3 is a circuit diagram showing an example of the boost converter 2 of the heater control system 100 according to the embodiment. As shown in FIG. 3, the boost converter 2 includes an inductance element L1, a first switching element SW1, a second switching element SW2, a capacitive element C1, and a control section 21.
 インダクタンス素子L1は、一端が電源3の正極31に電気的に接続され、他端が第1スイッチング素子SW1及び第2スイッチング素子SW2に電気的に接続されている。 The inductance element L1 has one end electrically connected to the positive electrode 31 of the power supply 3 and the other end electrically connected to the first switching element SW1 and the second switching element SW2.
 第1スイッチング素子SW1及び第2スイッチング素子SW2は、例えばFET(Field Effect Transistor)等の半導体スイッチング素子であって、それぞれ制御部21に制御されることによりオン/オフを切り替える。 The first switching element SW1 and the second switching element SW2 are semiconductor switching elements such as FETs (Field Effect Transistors), for example, and are controlled by the control section 21 to switch on/off.
 第1スイッチング素子SW1は、一端がインダクタンス素子L1に電気的に接続され、他端が電源3の負極32及びコネクタ5の低圧側端子52に電気的に接続されている。つまり、第1スイッチング素子SW1は、インダクタンス素子L1と電源3の負極32との間に電気的に接続されている。電源3の負極32は、グランド71に電気的に接続されている。 The first switching element SW1 has one end electrically connected to the inductance element L1 and the other end electrically connected to the negative electrode 32 of the power supply 3 and the low voltage side terminal 52 of the connector 5 . That is, the first switching element SW1 is electrically connected between the inductance element L1 and the negative electrode 32 of the power supply 3. A negative electrode 32 of the power supply 3 is electrically connected to the ground 71 .
 第2スイッチング素子SW2は、一端がインダクタンス素子L1に電気的に接続され、他端が容量素子C1及びコネクタ5の高圧側端子51に電気的に接続されている。つまり、第2スイッチング素子SW2は、インダクタンス素子L1と抵抗ヒータ1との間に電気的に接続されている。 The second switching element SW2 has one end electrically connected to the inductance element L1 and the other end electrically connected to the capacitive element C1 and the high-voltage side terminal 51 of the connector 5 . That is, the second switching element SW2 is electrically connected between the inductance element L1 and the resistance heater 1. FIG.
 容量素子C1は、コネクタ5の高圧側端子51と低圧側端子52との間に電気的に接続されている。容量素子C1の両端間電圧は、昇圧電圧V2として、コネクタ5及びリード線6を介して各抵抗ヒータ1に出力される。 The capacitive element C1 is electrically connected between the high-voltage side terminal 51 and the low-voltage side terminal 52 of the connector 5. A voltage across the capacitive element C1 is output to each resistance heater 1 via the connector 5 and the lead wire 6 as a boosted voltage V2.
 制御部21は、例えば2つの抵抗ヒータ1を制御するためのECU(Electronic Control Unit)である。制御部21は、第1スイッチング素子SW1及び第2スイッチング素子SW2にそれぞれ駆動信号を与えることにより、第1スイッチング素子SW1及び第2スイッチング素子SW2のオン/オフを制御する。 The control unit 21 is an ECU (Electronic Control Unit) for controlling the two resistance heaters 1, for example. The control unit 21 controls ON/OFF of the first switching element SW1 and the second switching element SW2 by giving drive signals to the first switching element SW1 and the second switching element SW2, respectively.
 実施の形態では、制御部21は、昇圧コンバータ2の昇圧動作と、昇圧コンバータ2の停止動作と、の2つの動作を実行可能である。昇圧動作においては、制御部21は、第1スイッチング素子SW1及び第2スイッチング素子SW2を交互にオン/オフするようにPWM制御する。つまり、制御部21は、第1スイッチング素子SW1がオンである場合に第2スイッチング素子SW2がオフに、第1スイッチング素子SW1がオフである場合に第2スイッチング素子SW2がオンとなるように、第1スイッチング素子SW1及び第2スイッチング素子SW2をPWM制御する。これにより、昇圧コンバータ2は、昇圧動作を実行している間においては、電源電圧V1を昇圧した昇圧電圧V2を各抵抗ヒータ1に出力する。昇圧動作における昇圧比は、第1スイッチング素子SW1及び第2スイッチング素子SW2のPWM制御におけるデューティ比に基づいて決定される。 In the embodiment, the control unit 21 can perform two operations: the boosting operation of the boost converter 2 and the stopping operation of the boost converter 2 . In the boosting operation, the control unit 21 performs PWM control to alternately turn on/off the first switching element SW1 and the second switching element SW2. That is, the control unit 21 turns off the second switching element SW2 when the first switching element SW1 is on, and turns on the second switching element SW2 when the first switching element SW1 is off. The first switching element SW1 and the second switching element SW2 are PWM-controlled. As a result, the boost converter 2 outputs a boosted voltage V2 obtained by boosting the power supply voltage V1 to each resistance heater 1 while the boosting operation is being performed. The boost ratio in the boost operation is determined based on the duty ratio in the PWM control of the first switching element SW1 and the second switching element SW2.
 停止動作においては、制御部21は、第1スイッチング素子SW1及び第2スイッチング素子SW2の両方をオフに維持するように制御することで、各抵抗ヒータ1への昇圧電圧V2の出力動作を停止する。制御部21が昇圧コンバータ2の昇圧動作、及び昇圧コンバータ2の停止動作のいずれの動作を実行するかは、後述する温度検知部4で検知された温度に基づいて決定される。つまり、実施の形態では、昇圧コンバータ2は、温度検知部4で検知される温度に基づいて、昇圧電圧V2を制御する。 In the stopping operation, the control unit 21 controls to keep both the first switching element SW1 and the second switching element SW2 off, thereby stopping the output operation of the boosted voltage V2 to each resistance heater 1. . Which of the boosting operation of boosting converter 2 and the stopping operation of boosting converter 2 to be performed by control unit 21 is determined based on the temperature detected by temperature detecting unit 4, which will be described later. That is, in the embodiment, boost converter 2 controls boost voltage V2 based on the temperature detected by temperature detection unit 4 .
 ここでいう「昇圧電圧V2を制御する」には、昇圧電圧V2が零となるように制御する、つまり昇圧コンバータ2が停止するように制御することも含まれる。また、昇圧コンバータ2の昇圧動作時における昇圧電圧V2は、一定電圧である。 "Controlling the boosted voltage V2" here also includes controlling the boosted voltage V2 to be zero, that is, controlling the boost converter 2 to stop. Further, the boosted voltage V2 during the boosting operation of boost converter 2 is a constant voltage.
 温度検知部4は、抵抗ヒータ1に設置され、設置箇所の温度、つまりは抵抗ヒータ1の温度を検知する。実施の形態では、温度検知部4は、2つの抵抗ヒータ1のうちのクッションヒータ11に設置されている。なお、温度検知部4は、クッションヒータ11ではなく、バックヒータ12に設置されてもよい。 The temperature detection unit 4 is installed in the resistance heater 1 and detects the temperature of the installation location, that is, the temperature of the resistance heater 1 . In the embodiment, the temperature detection section 4 is installed in the cushion heater 11 of the two resistance heaters 1 . Note that the temperature detection unit 4 may be installed in the back heater 12 instead of the cushion heater 11 .
 実施の形態では、温度検知部4は、サーミスタであって、一端が昇圧コンバータ2の制御部21に電気的に接続され、他端がグランド71に電気的に接続されている。制御部21は、電源3からの電力供給を受けて動作しているため、温度検知部4も、制御部21と同様に電源3からの電力供給を受けて動作する。言い換えれば、温度検知部4は、電源電圧V1に基づいて動作する。 In the embodiment, the temperature detection unit 4 is a thermistor, one end of which is electrically connected to the control unit 21 of the boost converter 2 and the other end of which is electrically connected to the ground 71 . Since the control unit 21 operates by receiving power supply from the power supply 3 , the temperature detection unit 4 also operates by receiving power supply from the power supply 3 in the same manner as the control unit 21 . In other words, the temperature detector 4 operates based on the power supply voltage V1.
 ここで、温度検知部4と昇圧コンバータ2とを繋ぐ第1配線81は、電源電圧V1が供給される配線であって、比較的低い電圧が供給される配線である。一方、昇圧コンバータ2と各抵抗ヒータ1とを繋ぐ第2配線82は、昇圧電圧V2が供給される配線であって、比較的高い電圧が供給される配線である。このように、実施の形態では、第1配線81と第2配線82とは、互いに異なる系統となっている。このため、第1配線81及び第2配線82のうちの一方の配線で漏電が発生した場合でも、他方の配線へと漏電する可能性を低減することが可能である。 Here, the first wiring 81 connecting the temperature detection unit 4 and the boost converter 2 is supplied with the power supply voltage V1, and is supplied with a relatively low voltage. On the other hand, the second wiring 82 connecting the boost converter 2 and each resistance heater 1 is supplied with the boosted voltage V2, and is supplied with a relatively high voltage. Thus, in the embodiment, the first wiring 81 and the second wiring 82 are different systems. Therefore, even if an electric leakage occurs in one of the first wiring 81 and the second wiring 82, it is possible to reduce the possibility of electric leakage to the other wiring.
 次に、ヒータ線10の抵抗値の設定例について説明する。 Next, an example of setting the resistance value of the heater wire 10 will be described.
 電源電圧V1に対する昇圧電圧V2の比である昇圧比Kは、以下の(1)式で示される。 A boost ratio K, which is the ratio of the boosted voltage V2 to the power supply voltage V1, is given by the following equation (1).
     K=V2/V1     (1)      K=V2/V1 (1)
 また、ヒータ線10が発熱する際の電力Wは、ヒータ線10におけるクッションヒータ11の抵抗値とバックヒータ12の抵抗値とを合成した抵抗値Rを用いて、以下の(2)式で示される。 The power W generated when the heater wire 10 generates heat is expressed by the following equation (2) using a resistance value R obtained by combining the resistance value of the cushion heater 11 and the resistance value of the back heater 12 in the heater wire 10. be
     W=V22/R     (2)      W=V22/R (2)
 (1)、(2)式より、ヒータ線10の抵抗値Rは以下の(3)式で表される。 From the equations (1) and (2), the resistance value R of the heater wire 10 is expressed by the following equation (3).
     R=K2・V12/W     (3)      R=K2・V12/W (3)
 ここで、必要な発熱量が決まっている時、電力Wは一定であり、電源電圧V1は電源3(バッテリ)の電圧であるので一定とすると、(3)式より、ヒータ線10の抵抗値RはK2と比例する。今、昇圧比Kを2倍に増加したとすると、抵抗値Rは22=4倍となる。 Here, when the necessary heat generation amount is determined, the power W is constant, and the power supply voltage V1 is the voltage of the power supply 3 (battery), so if it is assumed that it is constant, the resistance value of the heater wire 10 can be obtained from the equation (3) R is proportional to K2. Now, if the step-up ratio K is doubled, the resistance value R is 22=4 times.
 このように、昇圧コンバータ2の昇圧比Kに基づいて、(3)式より抵抗値Rを求めることができる。この時、昇圧比Kは昇圧を前提とするため1より大きい。したがって、(3)式で求めた抵抗値Rは、昇圧比Kが1の時よりも大きくなる。これらのことから、抵抗ヒータ1は、電源電圧V1に対する昇圧電圧V2の比である昇圧比Kが大きくなる程、抵抗値Rが大きくなるように構成されている。 Thus, based on the boost ratio K of the boost converter 2, the resistance value R can be obtained from the equation (3). At this time, the step-up ratio K is greater than 1 because it is premised on step-up. Therefore, the resistance value R obtained by the equation (3) becomes larger than when the step-up ratio K is 1. For these reasons, the resistance heater 1 is configured such that the resistance value R increases as the boost ratio K, which is the ratio of the boosted voltage V2 to the power supply voltage V1, increases.
 <動作>
 以下、実施の形態におけるヒータ制御システム100の動作について図4を参照して説明する。図4は、実施の形態におけるヒータ制御システム100の動作例を示すフローチャートである。ヒータ制御システム100の動作は、例えばユーザがヒータ制御システム100の電源をオンすると開始される。
<Action>
The operation of the heater control system 100 according to the embodiment will be described below with reference to FIG. FIG. 4 is a flow chart showing an operation example of the heater control system 100 according to the embodiment. Operation of the heater control system 100 is initiated, for example, when the user turns on the heater control system 100 .
 制御部21は、ヒータ制御システム100の動作中においては、ステップS1~S4を繰り返す。すなわち、昇圧コンバータ2が停止動作を行っている場合、つまり昇圧コンバータ2がオフの場合、各抵抗ヒータ1がオフ状態であるため、温度検知部4(ここでは、サーミスタ)で検知される温度が時間経過に伴って下降する。そして、制御部21は、温度検知部4で検知される温度が下限温度(第2閾値温度)を下回るまでの間は(ステップS1:No)、昇圧コンバータ2の停止動作を維持する。一方、制御部21は、温度検知部4で検知される温度が下限温度を下回ると(ステップS1:Yes)、昇圧コンバータ2の昇圧動作を開始する、つまり昇圧コンバータ2をオンする(ステップS2)。これにより、各抵抗ヒータ1がオン状態となり、温度検知部4で検知される温度が時間経過に伴って上昇する。 The controller 21 repeats steps S1 to S4 while the heater control system 100 is in operation. That is, when the boost converter 2 is in the stopping operation, that is, when the boost converter 2 is off, each resistance heater 1 is in the off state, so the temperature detected by the temperature detector 4 (here, thermistor) is Decrease with the passage of time. Control unit 21 maintains the stop operation of boost converter 2 until the temperature detected by temperature detection unit 4 falls below the lower limit temperature (second threshold temperature) (step S1: No). On the other hand, when the temperature detected by the temperature detection unit 4 falls below the lower limit temperature (step S1: Yes), the control unit 21 starts the boost operation of the boost converter 2, that is, turns on the boost converter 2 (step S2). . As a result, each resistance heater 1 is turned on, and the temperature detected by the temperature detector 4 rises with the lapse of time.
 そして、制御部21は、温度検知部4で検知される温度が上限温度(第1閾値温度)を上回るまでの間は(ステップS3:No)、昇圧コンバータ2の昇圧動作を維持する。一方、制御部21は、温度検知部4で検知される温度が上限温度を上回ると(ステップS3:Yes)、昇圧コンバータ2の停止動作を開始する、つまり昇圧コンバータ2をオフする(ステップS4)。 Then, the control unit 21 maintains the boosting operation of the boost converter 2 until the temperature detected by the temperature detection unit 4 exceeds the upper limit temperature (first threshold temperature) (step S3: No). On the other hand, when the temperature detected by temperature detection unit 4 exceeds the upper limit temperature (step S3: Yes), control unit 21 starts stopping operation of boost converter 2, that is, turns off boost converter 2 (step S4). .
 上述のように、制御部21は、温度検知部4で検知される温度が上限温度と下限温度との間に収まるように、昇圧コンバータ2の昇圧動作及び停止動作を繰り返すことで、各抵抗ヒータ1のオン/オフを繰り返す。これにより、温度検知部4で検知される温度が概ね一定温度に維持される。なお、各抵抗ヒータ1がオフ状態の場合の下限温度と、各抵抗ヒータ1がオン状態の場合の上限温度との互いに異なる2つの閾値温度を設けることにより、各抵抗ヒータ1のオン/オフについてチャタリングが発生するのを防止している。下限温度と上限温度との温度差は、例えば摂氏1度である。 As described above, the control unit 21 repeats the boosting operation and the stopping operation of the boost converter 2 so that the temperature detected by the temperature detection unit 4 falls between the upper limit temperature and the lower limit temperature, thereby causing each resistance heater to 1 is repeatedly turned on/off. As a result, the temperature detected by the temperature detection unit 4 is maintained at a substantially constant temperature. By setting two different threshold temperatures, ie, the lower limit temperature when each resistance heater 1 is in the OFF state and the upper limit temperature when each resistance heater 1 is in the ON state, the on/off of each resistance heater 1 can be controlled. It prevents chattering. The temperature difference between the lower limit temperature and the upper limit temperature is, for example, 1 degree Celsius.
 <比較>
 以下、実施の形態におけるヒータ制御システム100の利点について、図5に示す比較例のヒータ制御システム200との比較を交えて説明する。図5は、比較例のヒータ制御システム200の概要を示す図である。比較例のヒータ制御システム200は、昇圧コンバータ2を備えておらず、制御部201と、FET202と、ブレーカ203と、を備えている点で、実施の形態におけるヒータ制御システム100と相違する。
<Comparison>
Advantages of the heater control system 100 according to the embodiment will be described below in comparison with the heater control system 200 of the comparative example shown in FIG. FIG. 5 is a diagram showing an outline of a heater control system 200 of a comparative example. The heater control system 200 of the comparative example is different from the heater control system 100 of the embodiment in that the boost converter 2 is not provided and the heater control system 200 is provided with a control section 201 , an FET 202 and a breaker 203 .
 制御部201は、制御部21と同様に、例えば2つの抵抗ヒータ1を制御するためのECUである。FET202は、電界効果トランジスタであって、電源3の正極31とコネクタ5との間に電気的に接続されている。制御部201は、FET202に駆動信号を与えることにより、FET202のオン/オフを制御する。比較例のヒータ制御システム200では、FET202がオン状態の場合、電源3からコネクタ5及びリード線6を介して各抵抗ヒータ1へ電力が供給されることで、各抵抗ヒータ1がオンする。また、FET202がオフ状態の場合、電源3とコネクタ5との間の電路が遮断されることで、各抵抗ヒータ1へ電力が供給されなくなり、各抵抗ヒータ1がオフする。 The control unit 201 is, like the control unit 21, an ECU for controlling, for example, the two resistance heaters 1. The FET 202 is a field effect transistor and electrically connected between the positive electrode 31 of the power supply 3 and the connector 5 . The control unit 201 controls on/off of the FET 202 by giving a drive signal to the FET 202 . In the heater control system 200 of the comparative example, when the FET 202 is on, power is supplied from the power supply 3 to each resistance heater 1 through the connector 5 and the lead wire 6, thereby turning on each resistance heater 1 . When the FET 202 is off, the electrical circuit between the power supply 3 and the connector 5 is cut off, so that power is no longer supplied to each resistance heater 1 and each resistance heater 1 is turned off.
 つまり、比較例のヒータ制御システム200では、昇圧コンバータ2が昇圧動作及び停止動作を繰り返す代わりに、FET202がオン/オフを繰り返すことにより、実施の形態と同様に、温度検知部4で検知される温度が概ね一定温度に維持される。 That is, in the heater control system 200 of the comparative example, instead of the boost converter 2 repeating the boost operation and the stop operation, the FET 202 repeats ON/OFF, so that the temperature is detected by the temperature detection unit 4 as in the embodiment. The temperature is maintained at a generally constant temperature.
 ブレーカ203は、リード線6と各抵抗ヒータ1との間に電気的に接続されており、所定の大きさ以上の電流が流れ続けると電路を遮断するように構成されている。これにより、各抵抗ヒータ1に過大な電流が流れ続けるのを防止している。 The breaker 203 is electrically connected between the lead wire 6 and each resistance heater 1, and is configured to break the electric circuit when a current exceeding a predetermined magnitude continues to flow. This prevents excessive current from continuing to flow through each resistance heater 1 .
 ここで、比較例のヒータ制御システム200では、昇圧コンバータ2を備えていないことから、FET202のオン状態においては、電源3の電源電圧V1がコネクタ5及びリード線6を介して各抵抗ヒータ1へ印加されることになる。このため、各抵抗ヒータ1に定格電力(例えば、数十W)に相当する電力を供給するためには、各抵抗ヒータ1へ比較的大きな電流i2を流さなければならない。そして、各抵抗ヒータ1へ比較的大きな電流i2を流すためには、各抵抗ヒータ1の抵抗値を比較的小さくしなければならない。なお、ここでいう電流i2は、各抵抗ヒータ1へ流れる電流の合計である。したがって、クッションヒータ11に流れる電流、及びバックヒータ12に流れる電流は、いずれも電流i2よりも小さくなる。 Here, in the heater control system 200 of the comparative example, since the boost converter 2 is not provided, the power supply voltage V1 of the power supply 3 is applied to each resistance heater 1 through the connector 5 and the lead wire 6 when the FET 202 is on. will be applied. Therefore, in order to supply power corresponding to the rated power (for example, several tens of W) to each resistance heater 1, a relatively large current i2 must be applied to each resistance heater 1. FIG. In order to pass a relatively large current i2 to each resistance heater 1, the resistance value of each resistance heater 1 must be relatively small. The current i2 referred to here is the sum of the currents flowing through the resistance heaters 1. FIG. Therefore, the current flowing through the cushion heater 11 and the current flowing through the back heater 12 are both smaller than the current i2.
 各抵抗ヒータ1の抵抗値を小さくする手段としては、各抵抗ヒータ1のヒータ線10を構成するより線の本数を多くすることが考えられるが、より線の本数を多くすればする程、ヒータ線10の重量が大きくなり、結果として各抵抗ヒータ1の重量が大きくなってしまう、という課題がある。また、ヒータ線10を構成するより線の本数が多くなることから、結果として各抵抗ヒータ1を製造するために掛かるコストも増大してしまう、という課題がある。 As a means for reducing the resistance value of each resistance heater 1, it is conceivable to increase the number of stranded wires constituting the heater wire 10 of each resistance heater 1. There is a problem that the weight of the wire 10 is increased, and as a result, the weight of each resistance heater 1 is increased. Further, since the number of wires constituting the heater wire 10 is increased, there is a problem that the cost for manufacturing each resistance heater 1 is increased as a result.
 そこで、実施の形態におけるヒータ制御システム100では、昇圧コンバータ2を備えることにより、上記の課題の解決を図っている。すなわち、ヒータ制御システム100では、昇圧コンバータ2を備えることにより、電源3の電源電圧V1を昇圧した昇圧電圧V2が、コネクタ5及びリード線6を介して各抵抗ヒータ1へ印加される。このため、実施の形態におけるヒータ制御システム100では、比較例のヒータ制御システム200と比較して、各抵抗ヒータ1へ小さな電流i1(<i2)を流すだけでも、各抵抗ヒータ1に定格電力に相当する電力を供給することが可能である。そして、各抵抗ヒータ1へ比較的小さな電流i1を流せば済むことから、比較例のヒータ制御システム200と比較して、各抵抗ヒータ1の抵抗値を大きくしてもよい余裕が生じる。なお、ここでいう電流i1は、各抵抗ヒータ1へ流れる電流の合計である。したがって、クッションヒータ11に流れる電流、及びバックヒータ12に流れる電流は、いずれも電流i1よりも小さくなる。 Therefore, the heater control system 100 according to the embodiment includes the boost converter 2 to solve the above problem. That is, heater control system 100 includes boost converter 2 to apply boosted voltage V2 obtained by boosting power supply voltage V1 of power supply 3 to each resistance heater 1 via connector 5 and lead wire 6 . Therefore, in the heater control system 100 according to the embodiment, compared with the heater control system 200 of the comparative example, even if a small current i1 (<i2) is applied to each resistance heater 1, each resistance heater 1 can reach the rated power. It is possible to supply corresponding power. Further, since it is sufficient to supply a relatively small current i1 to each resistance heater 1, there is a margin for increasing the resistance value of each resistance heater 1 compared to the heater control system 200 of the comparative example. The current i1 referred to here is the sum of the currents flowing through the resistance heaters 1. FIG. Therefore, the current flowing through the cushion heater 11 and the current flowing through the back heater 12 are both smaller than the current i1.
 このため、実施の形態におけるヒータ制御システム100では、各抵抗ヒータ1の抵抗値が大きくなっても問題ないため、比較例のヒータ制御システム200と比較して、ヒータ線10を構成するより線の本数を少なくすることができる。その結果、実施の形態におけるヒータ制御システム100では、比較例のヒータ制御システム200と比較して、ヒータ線10の重量を小さくすることができ、結果として各抵抗ヒータ1の重量を小さくすることができる。また、ヒータ線10を構成するより線の本数が少なくなることから、結果として各抵抗ヒータ1を製造するために掛かるコストも低減することが可能である。このように、実施の形態におけるヒータ制御システム100では、コストの低減を図りつつ、軽量化を図りやすい、という利点がある。 Therefore, in the heater control system 100 according to the embodiment, there is no problem even if the resistance value of each resistance heater 1 increases. The number can be reduced. As a result, in the heater control system 100 of the embodiment, the weight of the heater wire 10 can be reduced as compared with the heater control system 200 of the comparative example, and as a result, the weight of each resistance heater 1 can be reduced. can. In addition, since the number of wires constituting the heater wire 10 is reduced, the cost for manufacturing each resistance heater 1 can be reduced as a result. As described above, the heater control system 100 according to the embodiment has the advantage that it is easy to reduce the weight while reducing the cost.
 また、実施の形態におけるヒータ制御システム100では、昇圧コンバータ2の昇圧比によっては、以下の利点を更に享受し得る。すなわち、昇圧コンバータ2の出力する昇圧電圧V2が、電源電圧V1の1.5倍以上、好ましくは2倍以上である場合、ブレーカ203を設けずとも座席が温まりすぎる可能性を低減することができ、更なるコストの低減及び軽量化を図りやすいという利点がある。 Further, in the heater control system 100 of the embodiment, depending on the boost ratio of the boost converter 2, the following advantages can be further enjoyed. That is, when boosted voltage V2 output from boost converter 2 is 1.5 times or more, preferably 2 times or more, power supply voltage V1, the possibility of the seat being overheated can be reduced without providing breaker 203. , there is an advantage that it is easy to achieve further cost reduction and weight reduction.
 というのも、比較例のヒータ制御システム200では、各抵抗ヒータ1の抵抗値を比較的小さくせざるを得ないことから、例えばFET202が故障する等して電源電圧V1が各抵抗ヒータ1に印加され続けると、各抵抗ヒータ1が温まり過ぎる可能性がある。このため、比較例のヒータ制御システム200では、ブレーカ203を設けることで座席が温まりすぎる可能性を低減していた。 This is because, in the heater control system 200 of the comparative example, the resistance value of each resistance heater 1 must be relatively small. If this continues, each resistance heater 1 may become too warm. Therefore, in the heater control system 200 of the comparative example, the breaker 203 is provided to reduce the possibility of the seat being overheated.
 一方、実施の形態におけるヒータ制御システム100では、各抵抗ヒータ1の抵抗値を比較的大きくすることができるので、仮に昇圧コンバータ2が正常に動作せずに電源電圧V1が各抵抗ヒータ1に印加され続けたとしても、各抵抗ヒータ1に流れる電流は、昇圧電圧V2が印加されていた場合よりも更に小さくなる。そして、上述の記載から、電源電圧V1が昇圧電圧V2の半分以下となれば、各抵抗ヒータ1に流れる電流が大きく抑制されるため、各抵抗ヒータ1が温まり過ぎることがなくなる。したがって、ブレーカ203を設ける必要がなくなる。 On the other hand, in the heater control system 100 according to the embodiment, the resistance value of each resistance heater 1 can be made relatively large. Even if it continues to be applied, the current flowing through each resistance heater 1 will be even smaller than when the boosted voltage V2 is applied. From the above description, when the power supply voltage V1 becomes less than half the boosted voltage V2, the current flowing through each resistance heater 1 is greatly suppressed, so that each resistance heater 1 is prevented from overheating. Therefore, it becomes unnecessary to provide the breaker 203 .
 また、実施の形態におけるヒータ制御システム100では、各抵抗ヒータ1が複数本のより線で構成されるヒータ線10を縫製することにより構成されているため、以下の利点を更に享受し得る。すなわち、例えばヒータ線10が単線であって、かつ、縫製することにより構成されていない場合、ヒータ線10の抵抗値を大きくするためにはヒータ線10を細くしなければならない。この場合、細くしたヒータ線10を縫製せずに例えばプレスに基材に圧着して各抵抗ヒータ1を構成すると、座席にユーザが着座することで掛かる応力によりヒータ線10が折れ曲がる等して、ヒータ線10の耐久性を十分に確保することが難しい。 In addition, in the heater control system 100 according to the embodiment, each resistance heater 1 is constructed by sewing the heater wire 10 composed of a plurality of stranded wires, so that the following advantages can be further enjoyed. That is, for example, if the heater wire 10 is a single wire and is not constructed by sewing, the heater wire 10 must be made thin in order to increase the resistance value of the heater wire 10 . In this case, if each resistance heater 1 is configured by pressing the thinner heater wire 10 to the base material, for example, without sewing, the heater wire 10 may bend due to the stress applied when the user sits on the seat. It is difficult to sufficiently secure the durability of the heater wire 10 .
 これに対して、実施の形態におけるヒータ制御システム100では、各抵抗ヒータ1が複数本のより線で構成されるヒータ線10を縫製することにより構成されているため、ヒータ線10の抵抗値を大きくするためにより線の本数を少なくした場合でも、座席にユーザが着座することで掛かる応力に対して十分な耐久性を確保しやすい。このため、実施の形態におけるヒータ制御システム100では、ヒータ線10の耐久性を十分に確保しつつ、抵抗ヒータ1の抵抗値を大きくしやすい、という利点がある。 On the other hand, in the heater control system 100 according to the embodiment, since each resistance heater 1 is constructed by sewing the heater wire 10 composed of a plurality of stranded wires, the resistance value of the heater wire 10 is Even if the number of lines is reduced in order to increase the size, it is easy to ensure sufficient durability against the stress applied by the user sitting on the seat. Therefore, the heater control system 100 of the embodiment has the advantage that the resistance value of the resistance heater 1 can be easily increased while sufficiently ensuring the durability of the heater wire 10 .
 なお、昇圧コンバータ2は昇圧電圧V2を調整することができるという特性を有しているので、この特性を活かし、ヒータ制御システム100においては、抵抗ヒータ1の要求される発熱電力仕様に関わらず、抵抗ヒータ1を単一種類のみ準備してもよい。そして、ヒータ制御システム100は、昇圧電圧V2の調整により要求される発熱電力仕様に対応する構成としてもよい。この具体例について、以下、説明する。 Note that the boost converter 2 has a characteristic that the boost voltage V2 can be adjusted. Only a single type of resistance heater 1 may be prepared. The heater control system 100 may be configured to meet the required heat generation power specification by adjusting the boosted voltage V2. A specific example of this will be described below.
 まず、(1)、(2)式より、ヒータ線10が発熱する際の電力Wは、以下の(4)式により表される。 First, from the equations (1) and (2), the electric power W when the heater wire 10 generates heat is expressed by the following equation (4).
     W=K2・V12/R     (4)      W=K2・V12/R (4)
 ここで、抵抗ヒータ1が単一種類であるので、抵抗値Rは一定となる。また、上記のように、電源電圧V1は一定であるので、(4)式のV12/Rは一定となり、電力WはK2と比例する。例えば、抵抗ヒータ1の要求される発熱電力仕様により、発熱量(=電力W)を10%増やす必要がある場合、昇圧比Kを約1.05倍(=√(1+0.1))すればよい。したがって、(1)式より、電源電圧V1は一定のため、昇圧電圧V2を現状の約1.05倍に調整すればよいことがわかる。 Here, since the resistance heater 1 is of a single type, the resistance value R is constant. Also, as described above, since the power supply voltage V1 is constant, V12/R in equation (4) is constant, and the power W is proportional to K2. For example, if it is necessary to increase the calorific value (=power W) by 10% due to the required heat generation power specification of the resistance heater 1, if the step-up ratio K is approximately 1.05 times (=√(1+0.1)), good. Therefore, from equation (1), it can be seen that since the power supply voltage V1 is constant, the boosted voltage V2 should be adjusted to about 1.05 times the current value.
 <作用効果>
 以上のように、実施の形態におけるヒータ制御システム100は、抵抗ヒータ1と、抵抗ヒータ1と電気的に接続される昇圧コンバータ2と、を備える。昇圧コンバータ2は、昇圧コンバータ2に電気的に接続される電源3の電源電圧V1よりも高い昇圧電圧V2を抵抗ヒータ1に出力する。
<Effect>
As described above, heater control system 100 in the embodiment includes resistance heater 1 and boost converter 2 electrically connected to resistance heater 1 . Boost converter 2 outputs to resistance heater 1 a boosted voltage V2 higher than power supply voltage V1 of power supply 3 electrically connected to boost converter 2 .
 これによれば、抵抗ヒータ1へ比較的小さな電流を流すだけでも、抵抗ヒータ1の定格電力に相当する電力を供給することが可能であるから、抵抗ヒータ1の抵抗値を大きくしてもよい余裕が生じる。したがって、抵抗ヒータ1の抵抗値を小さくする場合と比較して、抵抗ヒータがより線の場合、より線本数を少なくすることができるので、抵抗ヒータ1の重量を小さくすることができ、かつ、抵抗ヒータ1を製造するために掛かるコストも低減することが可能である。つまり、コストの低減を図りつつ、軽量化を図りやすい、という利点がある。 According to this, it is possible to supply electric power corresponding to the rated electric power of the resistance heater 1 only by supplying a relatively small current to the resistance heater 1, so the resistance value of the resistance heater 1 may be increased. leeway arises. Therefore, when the resistance heater 1 is a stranded wire, the number of wires can be reduced compared to the case where the resistance value of the resistance heater 1 is reduced, so the weight of the resistance heater 1 can be reduced and The cost of manufacturing the resistance heater 1 can also be reduced. That is, there is an advantage that it is easy to reduce the weight while reducing the cost.
 また、実施の形態におけるヒータ制御システム100では、昇圧電圧V2は、電源電圧V1の2倍以上である。 Also, in the heater control system 100 according to the embodiment, the boosted voltage V2 is at least twice the power supply voltage V1.
 これによれば、抵抗ヒータ1の抵抗値を比較的大きくすることができるので、仮に昇圧コンバータ2が正常に動作せずに(例えば昇圧コンバータが短絡故障し)、電源電圧V1が抵抗ヒータ1に印加される状態になったとしても、抵抗ヒータ1に流れる電流が大きく抑制される。したがって、ブレーカ203等の安全装置を設けずともヒータが温まりすぎる可能性を低減することができ、更なるコストの低減及び軽量化を図りやすい、という利点がある。 According to this, the resistance value of the resistance heater 1 can be made relatively large. Even if the current is applied, the current flowing through the resistance heater 1 is greatly suppressed. Therefore, it is possible to reduce the possibility that the heater will overheat without providing a safety device such as the breaker 203, and there is an advantage that it is easy to achieve further cost reduction and weight reduction.
 また、実施の形態におけるヒータ制御システム100は、抵抗ヒータ1の温度を検知する温度検知部4を更に備える。昇圧コンバータ2は、温度検知部4で検知される温度に基づいて、昇圧電圧V2を制御する。 Further, the heater control system 100 in the embodiment further includes a temperature detection section 4 that detects the temperature of the resistance heater 1 . Boost converter 2 controls boost voltage V2 based on the temperature detected by temperature detector 4 .
 これによれば、抵抗ヒータ1の設置箇所の温度を精度よく制御しやすい、という利点がある。 According to this, there is an advantage that the temperature at the installation location of the resistance heater 1 can be easily controlled with high accuracy.
 また、実施の形態におけるヒータ制御システム100では、昇圧コンバータ2は、温度検知部4で検知される温度が第1閾値温度を上回ると、抵抗ヒータ1への昇圧電圧V2の出力動作を停止する。昇圧コンバータ2は、温度検知部4で検知される温度が第1閾値温度よりも低い第2閾値温度を下回ると、抵抗ヒータ1への昇圧電圧V2の出力動作を開始する。 Further, in the heater control system 100 according to the embodiment, the boost converter 2 stops outputting the boosted voltage V2 to the resistance heater 1 when the temperature detected by the temperature detector 4 exceeds the first threshold temperature. The boost converter 2 starts outputting the boosted voltage V2 to the resistance heater 1 when the temperature detected by the temperature detection unit 4 falls below a second threshold temperature lower than the first threshold temperature.
 これによれば、例えば昇圧電圧V2を一定電圧として昇圧コンバータ2の駆動及び停止を交互に繰り返すだけで抵抗ヒータ1の設置箇所の温度を制御することができるので、昇圧電圧V2を可変制御する場合と比較して、別途の電圧検出回路が不要で、簡易な構成及び制御で済む、という利点がある。 According to this, the temperature at the location where the resistance heater 1 is installed can be controlled only by alternately repeating the driving and stopping of the boost converter 2 with the boost voltage V2 as a constant voltage. As compared with , there is an advantage that a separate voltage detection circuit is not required, and a simple configuration and control are sufficient.
 また、実施の形態におけるヒータ制御システム100では、昇圧コンバータ2は、インダクタンス素子L1と、第1スイッチング素子SW1と、第2スイッチング素子SW2と、制御部21と、を備える。インダクタンス素子L1は、電源3の正極31に電気的に接続される。第1スイッチング素子SW1は、インダクタンス素子L1と電源3の負極32との間に電気的に接続される。第2スイッチング素子SW2は、インダクタンス素子L1と抵抗ヒータ1との間に電気的に接続される。制御部21は、第1スイッチング素子SW1及び第2スイッチング素子SW2のオン/オフを制御する。制御部21は、第1スイッチング素子SW1及び第2スイッチング素子SW2の両方をオフに維持するように制御することで、抵抗ヒータ1への昇圧電圧V2の出力動作を停止する。 Further, in the heater control system 100 according to the embodiment, the boost converter 2 includes the inductance element L1, the first switching element SW1, the second switching element SW2, and the control section 21. Inductance element L1 is electrically connected to positive electrode 31 of power supply 3 . The first switching element SW1 is electrically connected between the inductance element L1 and the negative electrode 32 of the power supply 3 . A second switching element SW2 is electrically connected between the inductance element L1 and the resistance heater 1 . The control unit 21 controls on/off of the first switching element SW1 and the second switching element SW2. The control unit 21 stops the operation of outputting the boosted voltage V2 to the resistance heater 1 by controlling to keep both the first switching element SW1 and the second switching element SW2 off.
 これによれば、第1スイッチング素子SW1及び第2スイッチング素子SW2の両方をオフにすることで昇圧コンバータ2を通過する電路を遮断することができるので、抵抗ヒータ1に電流が流れ続けることがなく、消費電力を低減することができる、という利点がある。 According to this, by turning off both the first switching element SW1 and the second switching element SW2, the electric circuit passing through the boost converter 2 can be cut off, so that the current does not continue to flow through the resistance heater 1. , the power consumption can be reduced.
 また、実施の形態におけるヒータ制御システム100では、温度検知部4は、電源電圧V1に基づいて動作する。温度検知部4と昇圧コンバータ2とを繋ぐ第1配線81と、昇圧コンバータ2と抵抗ヒータ1とを繋ぐ第2配線と82は、互いに異なる系統である。 Further, in the heater control system 100 according to the embodiment, the temperature detection section 4 operates based on the power supply voltage V1. A first wiring 81 connecting the temperature detection unit 4 and the boost converter 2 and a second wiring 82 connecting the boost converter 2 and the resistance heater 1 are different systems.
 これによれば、第1配線81及び第2配線82のうちの一方の配線で漏電が発生した場合でも、他方の配線へと漏電する可能性を低減しやすい、という利点がある。 This has the advantage that even if an electric leak occurs in one of the first wiring 81 and the second wiring 82, the possibility of electric leakage to the other wiring is easily reduced.
 また、実施の形態におけるヒータ制御システム100では、抵抗ヒータ1は、複数本のより線で構成されるヒータ線10を縫製することにより構成されている。 Further, in the heater control system 100 according to the embodiment, the resistance heater 1 is constructed by sewing the heater wire 10 composed of a plurality of stranded wires.
 これによれば、ヒータ線10を構成するより線の本数が少なくなった場合でも、ヒータ線10の耐久性を十分に確保しやすいので、抵抗ヒータ1の抵抗値を大きくしやすい、という利点がある。 According to this, even if the number of wires constituting the heater wire 10 is reduced, the durability of the heater wire 10 can be sufficiently ensured, so there is an advantage that the resistance value of the resistance heater 1 can be easily increased. be.
 また、実施の形態におけるヒータ制御システム100では、抵抗ヒータ1は、電源電圧V1に対する昇圧電圧V2の比である昇圧比Kが大きくなる程、抵抗値Rが大きくなるように構成されている。 Further, in the heater control system 100 according to the embodiment, the resistance heater 1 is configured such that the resistance value R increases as the boost ratio K, which is the ratio of the boosted voltage V2 to the power supply voltage V1, increases.
 これによれば、抵抗ヒータ1を所定の電力Wで発熱させる際の電流値を小さくできる。そのため、抵抗ヒータ1の抵抗値Rを大きくできるので、ヒータ線10を構成するより線の本数を少なくでき、その分、抵抗ヒータ1の使用材料が減り、低コスト化、かつ低重量化が図れる、という利点がある。 According to this, the current value when heating the resistance heater 1 with the predetermined power W can be reduced. Therefore, since the resistance value R of the resistance heater 1 can be increased, the number of wires constituting the heater wire 10 can be reduced, and the materials used for the resistance heater 1 can be reduced accordingly, and the cost and weight can be reduced. , has the advantage of
 また、実施の形態におけるヒータ制御システム100では、抵抗ヒータ1は、発熱電力仕様に関わらず単一種類であり、昇圧電圧V2は、抵抗ヒータ1の発熱電力仕様に基づいて調整されている。 Further, in the heater control system 100 according to the embodiment, the resistance heater 1 is of a single type regardless of the heating power specification, and the boosted voltage V2 is adjusted based on the heating power specification of the resistance heater 1.
 これによれば、同じ抵抗ヒータ1に対し容易に各種発熱電力仕様に対応できるので、仕様に応じた抵抗ヒータ1の設計が不要になる、という利点がある。 According to this, since the same resistance heater 1 can be easily adapted to various heat generation power specifications, there is an advantage that the design of the resistance heater 1 according to the specifications becomes unnecessary.
 (変形例)
 以下、実施の形態におけるヒータ制御システム100の変形例について列挙する。
(Modification)
Modifications of the heater control system 100 according to the embodiment are listed below.
 実施の形態では、昇圧コンバータ2の昇圧動作時における昇圧電圧V2は一定であるが、これに限られない。例えば、昇圧コンバータ2の昇圧動作時における昇圧電圧V2は、抵抗ヒータ1の定格電力に応じて可変であってもよい。 In the embodiment, the boosted voltage V2 is constant during the boosting operation of the boost converter 2, but it is not limited to this. For example, the boost voltage V2 during the boost operation of the boost converter 2 may be variable according to the rated power of the resistance heater 1 .
 実施の形態では、2つの抵抗ヒータ1(クッションヒータ11及びバックヒータ12)は、いずれも座席に設けられたシートヒータであるが、これに限られない。例えば、抵抗ヒータ1は、座席のアームレストに設置されてもよいし、ステアリングに設置されてもよい。 In the embodiment, the two resistance heaters 1 (cushion heater 11 and back heater 12) are both seat heaters provided on the seat, but are not limited to this. For example, the resistance heater 1 may be installed in the armrest of the seat or in the steering wheel.
 実施の形態では、抵抗ヒータ1は2つ設置されているが、これに限られない。例えば、抵抗ヒータ1は、3つ以上設置されていてもよいし、1つのみ設置されていてもよい。 Although two resistance heaters 1 are installed in the embodiment, the present invention is not limited to this. For example, three or more resistance heaters 1 may be installed, or only one may be installed.
 実施の形態では、抵抗ヒータ1は線状に構成されたヒータであるが、これに限られない。例えば、抵抗ヒータ1は、面状に構成されたヒータであってもよい。 Although the resistance heater 1 is a linear heater in the embodiment, it is not limited to this. For example, the resistance heater 1 may be a planar heater.
 実施の形態において、昇圧コンバータ2は、第1スイッチング素子SW1及び第2スイッチング素子SW2という2つのスイッチング素子を備えた構成に限らず、例えば1つのスイッチング素子(第1スイッチング素子SW1)のみを備え、第2スイッチング素子SW2の代わりにダイオードを備えた構成であってもよい。この場合、電源3の正極31と昇圧コンバータ2との間にFET202等のスイッチング素子を設け、当該スイッチング素子をオフすることで昇圧コンバータ2の停止動作を実現すればよい。 In the embodiment, the boost converter 2 is not limited to the configuration including two switching elements, that is, the first switching element SW1 and the second switching element SW2. A diode may be provided instead of the second switching element SW2. In this case, a switching element such as the FET 202 may be provided between the positive electrode 31 of the power supply 3 and the boost converter 2, and the stop operation of the boost converter 2 may be realized by turning off the switching element.
 実施の形態では、制御部21は、図4に示すような一連のフローをソフトウェアで実行することにより、各抵抗ヒータ1を制御しているが、これに限られない。例えば、制御部21は、図4に示すような一連のフローをハードウェアで実現してもよい。 In the embodiment, the control unit 21 controls each resistance heater 1 by executing a series of flows as shown in FIG. 4 by software, but it is not limited to this. For example, the control unit 21 may implement a series of flows as shown in FIG. 4 by hardware.
 実施の形態では、抵抗ヒータ1は、昇圧比Kが大きくなる程、抵抗値Rが大きくなるように構成されているが、抵抗値Rを大きくするために抵抗ヒータ1の使用材料を減らす構成に限定されるわけではない。例えば、抵抗ヒータ1の長さを長くして抵抗値Rを大きくしつつ、発熱範囲を広げるようにしてもよい。この場合、例えば所定の電力Wが一定で昇圧比Kが2であれば、抵抗値Rを4倍にできるので、従来の昇圧が無い構成(昇圧比が1)においては座席の座面と背面のみであった発熱範囲を、従来と同じ電力で座席のサイド部にまでも拡張することができる。 In the embodiment, the resistance heater 1 is configured so that the resistance value R increases as the step-up ratio K increases. It is not limited. For example, the length of the resistance heater 1 may be lengthened to increase the resistance value R and widen the heat generation range. In this case, for example, if the predetermined power W is constant and the boost ratio K is 2, the resistance value R can be quadrupled. The heat generation range, which used to be limited to only one, can be extended to the sides of the seat with the same power as before.
 なお、上記の実施の形態に対して当業者が思い付く各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 It should be noted that the above embodiment can be realized by applying various modifications that a person skilled in the art can think of, or by arbitrarily combining the constituent elements and functions in the embodiment within the scope of the present disclosure. Forms are also included in this disclosure.
 本開示は、例えば車両等に装備されている座席等を温めるヒータの制御に利用可能である。 The present disclosure can be used, for example, to control a heater that heats a seat or the like installed in a vehicle or the like.
 1 抵抗ヒータ
 10 ヒータ線
 100 ヒータ制御システム
 1000 座席
 1001 座面
 1002 背もたれ
 11 クッションヒータ
 12 バックヒータ
 2 昇圧コンバータ
 200 比較例のヒータ制御システム
 201 制御部
 202 FET
 203 ブレーカ
 21 制御部
 3 電源
 31 正極
 32 負極
 4 温度検知部
 5 コネクタ
 51 高圧側端子
 52 低圧側端子
 6 リード線
 71,72 グランド
 81 第1配線
 82 第2配線
 C1 容量素子
 L1 インダクタンス素子
 SW1 第1スイッチング素子
 SW2 第2スイッチング素子
 V1 電源電圧
 V2 昇圧電圧
 i1,i2 電流
REFERENCE SIGNS LIST 1 resistance heater 10 heater wire 100 heater control system 1000 seat 1001 seat surface 1002 backrest 11 cushion heater 12 back heater 2 boost converter 200 heater control system of a comparative example 201 control section 202 FET
203 breaker 21 control unit 3 power supply 31 positive electrode 32 negative electrode 4 temperature detection unit 5 connector 51 high voltage side terminal 52 low voltage side terminal 6 lead wires 71, 72 ground 81 first wiring 82 second wiring C1 capacitive element L1 inductance element SW1 first switching Element SW2 Second switching element V1 Power supply voltage V2 Boost voltage i1, i2 Current

Claims (9)

  1.  抵抗ヒータと、
     前記抵抗ヒータと電気的に接続される昇圧コンバータと、を備え、
     前記昇圧コンバータは、前記昇圧コンバータに電気的に接続される電源の電源電圧よりも高い昇圧電圧を前記抵抗ヒータに出力する、
     ヒータ制御システム。
    a resistive heater;
    a boost converter electrically connected to the resistive heater,
    The boost converter outputs a boosted voltage higher than a power supply voltage of a power supply electrically connected to the boost converter to the resistance heater.
    heater control system.
  2.  前記昇圧電圧は、前記電源電圧の2倍以上である、
     請求項1に記載のヒータ制御システム。
    The boosted voltage is at least twice the power supply voltage,
    The heater control system of claim 1.
  3.  前記抵抗ヒータの温度を検知する温度検知部を更に備え、
     前記昇圧コンバータは、前記温度検知部で検知される温度に基づいて、前記昇圧電圧を制御する、
     請求項1又は2に記載のヒータ制御システム。
    Further comprising a temperature detection unit that detects the temperature of the resistance heater,
    The boost converter controls the boost voltage based on the temperature detected by the temperature detection unit.
    A heater control system according to claim 1 or 2.
  4.  前記昇圧コンバータは、
     前記温度検知部で検知される温度が第1閾値温度を上回ると、前記抵抗ヒータへの前記昇圧電圧の出力動作を停止し、
     前記温度検知部で検知される温度が前記第1閾値温度よりも低い第2閾値温度を下回ると、前記抵抗ヒータへの前記昇圧電圧の出力動作を開始する、
     請求項3に記載のヒータ制御システム。
    The boost converter is
    When the temperature detected by the temperature detection unit exceeds a first threshold temperature, the operation of outputting the boosted voltage to the resistance heater is stopped;
    when the temperature detected by the temperature detection unit falls below a second threshold temperature lower than the first threshold temperature, outputting the boosted voltage to the resistance heater is started;
    4. The heater control system of claim 3.
  5.  前記昇圧コンバータは、
     前記電源の正極に電気的に接続されるインダクタンス素子と、
     前記インダクタンス素子と前記電源の負極との間に電気的に接続される第1スイッチング素子と、
     前記インダクタンス素子と前記抵抗ヒータとの間に電気的に接続される第2スイッチング素子と、
     前記第1スイッチング素子及び前記第2スイッチング素子のオン/オフを制御する制御部と、を備え、
     前記制御部は、前記第1スイッチング素子及び前記第2スイッチング素子の両方をオフに維持するように制御することで、前記抵抗ヒータへの前記昇圧電圧の出力動作を停止する、
     請求項4に記載のヒータ制御システム。
    The boost converter is
    an inductance element electrically connected to the positive electrode of the power supply;
    a first switching element electrically connected between the inductance element and the negative electrode of the power supply;
    a second switching element electrically connected between the inductance element and the resistive heater;
    A control unit that controls on/off of the first switching element and the second switching element,
    The control unit controls to keep both the first switching element and the second switching element off, thereby stopping the operation of outputting the boosted voltage to the resistance heater.
    5. The heater control system of claim 4.
  6.  前記温度検知部は、前記電源電圧に基づいて動作し、
     前記温度検知部と前記昇圧コンバータとを繋ぐ第1配線と、前記昇圧コンバータと前記抵抗ヒータとを繋ぐ第2配線とは、互いに異なる系統である、
     請求項4に記載のヒータ制御システム。
    The temperature detection unit operates based on the power supply voltage,
    A first wiring that connects the temperature detection unit and the boost converter and a second wiring that connects the boost converter and the resistance heater are different systems,
    5. The heater control system of claim 4.
  7.  前記抵抗ヒータは、複数本のより線で構成されるヒータ線を縫製することにより構成されている、
     請求項1又は2に記載のヒータ制御システム。
    The resistance heater is constructed by sewing a heater wire composed of a plurality of stranded wires,
    A heater control system according to claim 1 or 2.
  8.  前記抵抗ヒータは、前記電源電圧に対する前記昇圧電圧の比である昇圧比が大きくなる程、抵抗値が大きくなるように構成されている、
     請求項1又は2に記載のヒータ制御システム。
    The resistance heater is configured such that the resistance value increases as the boost ratio, which is the ratio of the boosted voltage to the power supply voltage, increases.
    A heater control system according to claim 1 or 2.
  9.  前記抵抗ヒータは、発熱電力仕様に関わらず単一種類であり、
     前記昇圧電圧は、前記抵抗ヒータの前記発熱電力仕様に基づいて調整されている、
     請求項1又は2に記載のヒータ制御システム。
    The resistance heater is of a single type regardless of the heating power specification,
    wherein the boosted voltage is adjusted based on the heat generation power specification of the resistive heater;
    A heater control system according to claim 1 or 2.
PCT/JP2022/028870 2021-09-27 2022-07-27 Heater control system WO2023047792A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/612,754 US20240237148A1 (en) 2021-09-27 2024-03-21 Heater control system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-156945 2021-09-27
JP2021156945 2021-09-27
JP2022069319A JP2023048090A (en) 2021-09-27 2022-04-20 heater control system
JP2022-069319 2022-04-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/612,754 Continuation US20240237148A1 (en) 2021-09-27 2024-03-21 Heater control system

Publications (1)

Publication Number Publication Date
WO2023047792A1 true WO2023047792A1 (en) 2023-03-30

Family

ID=85720498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028870 WO2023047792A1 (en) 2021-09-27 2022-07-27 Heater control system

Country Status (2)

Country Link
US (1) US20240237148A1 (en)
WO (1) WO2023047792A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050520A (en) * 2001-08-08 2003-02-21 Ricoh Co Ltd Heater driving device, fixing device and image forming apparatus
JP2008072879A (en) * 2006-09-15 2008-03-27 Toyota Motor Corp Vehicular power supply unit
JP2010244861A (en) * 2009-04-07 2010-10-28 Panasonic Corp Seat heater
JP2015115886A (en) * 2013-12-13 2015-06-22 セイコーエプソン株式会社 Quantum interference device, atomic oscillator, electronic device, and movable body
JP2017216039A (en) * 2016-05-30 2017-12-07 東京特殊電線株式会社 Heater wire used in heater for seats and heater for seats

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050520A (en) * 2001-08-08 2003-02-21 Ricoh Co Ltd Heater driving device, fixing device and image forming apparatus
JP2008072879A (en) * 2006-09-15 2008-03-27 Toyota Motor Corp Vehicular power supply unit
JP2010244861A (en) * 2009-04-07 2010-10-28 Panasonic Corp Seat heater
JP2015115886A (en) * 2013-12-13 2015-06-22 セイコーエプソン株式会社 Quantum interference device, atomic oscillator, electronic device, and movable body
JP2017216039A (en) * 2016-05-30 2017-12-07 東京特殊電線株式会社 Heater wire used in heater for seats and heater for seats

Also Published As

Publication number Publication date
US20240237148A1 (en) 2024-07-11

Similar Documents

Publication Publication Date Title
US7974060B2 (en) Overcurrent limitation and output short-circuit protection circuit, voltage regulator using overcurrent limitation and output short-circuit protection circuit, and electronic equipment
US9145104B2 (en) Airbag Apparatus
CN102047368A (en) Relay controller
JP6848770B2 (en) In-vehicle power control system
JP5102257B2 (en) Power distribution device
KR20130130036A (en) Electrical heater, vehicle having an electrical heater and method for controlling an electrical heater
JP3473276B2 (en) Inverter device
US11654749B2 (en) Heater control device
WO2023047792A1 (en) Heater control system
JPH02202400A (en) Synchronous generator device of automobile
JP2023048090A (en) heater control system
JP2008061180A (en) Load drive control apparatus
EP2703212B1 (en) Seat heater
KR20220048465A (en) Exhaust gas after-treatment system and method of controlling exhaust gas after-treatment system of internal combustion engine
JP4105627B2 (en) DC motor control device
JP7364947B2 (en) vehicle seat
JP5140322B2 (en) Vehicle power supply
US20220186648A1 (en) Apparatus for supplying voltage
JP2014165951A (en) Current change device
JP6090054B2 (en) Load drive device
KR101046908B1 (en) Temperature controller of automotive heating wire sheet
WO2023062733A1 (en) Vehicle-mounted control device
EP0364649B1 (en) A vehicle-seat heating construction
JP2023089818A (en) Seat heater and heater unit
CN112313489A (en) Temperature detection circuit for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22872548

Country of ref document: EP

Kind code of ref document: A1