WO2023047555A1 - 放射能の放出防止を目的とした、炉心溶融事故に対応可能な原子炉 - Google Patents

放射能の放出防止を目的とした、炉心溶融事故に対応可能な原子炉 Download PDF

Info

Publication number
WO2023047555A1
WO2023047555A1 PCT/JP2021/035210 JP2021035210W WO2023047555A1 WO 2023047555 A1 WO2023047555 A1 WO 2023047555A1 JP 2021035210 W JP2021035210 W JP 2021035210W WO 2023047555 A1 WO2023047555 A1 WO 2023047555A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
reactor
water
pressure vessel
insulating material
Prior art date
Application number
PCT/JP2021/035210
Other languages
English (en)
French (fr)
Inventor
強 松岡
Original Assignee
強 松岡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 強 松岡 filed Critical 強 松岡
Priority to JP2022503423A priority Critical patent/JP7082253B1/ja
Priority to PCT/JP2021/035210 priority patent/WO2023047555A1/ja
Publication of WO2023047555A1 publication Critical patent/WO2023047555A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • G21C15/12Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices from pressure vessel; from containment vessel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention of the present application relates to a nuclear reactor capable of coping with a core meltdown accident for the purpose of preventing the release of radioactivity. Even in the event of a serious accident (severe accident) in which the core melts in a nuclear reactor used in a pressurized water reactor (PWR, hereinafter sometimes abbreviated as "PWR”), Safely converge the reactor to a stable state, and check the integrity of the reactor pressure vessel and the reactor containment vessel (hereinafter these may be abbreviated as "pressure vessel” and “containment vessel” respectively).
  • the present invention relates to a nuclear reactor capable of responding to a core meltdown accident, which is capable of protecting and preventing release of radioactivity to the outside.
  • the invention of the present application provides a new cooling method for nuclear reactors in the event of a serious accident in which the core melts (natural cooling method or water cooling method through the outer surface of the reactor pressure vessel or its heat insulating material), A novel pressure release (depressurization) means and radioactive material purification means are proposed to be provided at the pressure boundary of the containment vessel.
  • These proposals are based on the results of the analysis and evaluation by the inventor of the present application of the data from the accident at the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Station that occurred on March 11, 2011 (hereinafter referred to as "the Fukushima accident").
  • the first nuclear reactor of the present invention adopting these means is claimed in claim 1 of the scope of claims to be described later (hereinafter, sometimes abbreviated as "claim 1"). .The same applies to other claims.).
  • This first nuclear reactor is suitably used as a nuclear reactor for a boiling water reactor (BWR).
  • BWR boiling water reactor
  • the second nuclear reactor of the present invention adopting these means has the following (1) to (3) described in claim 2 of the scope of claims described later. have the means.
  • This second nuclear reactor is suitably used as a nuclear reactor for a pressurized water reactor (PWR).
  • PWR pressurized water reactor
  • the top cover of the containment vessel has a bolted structure and the pressure suppression chamber (suppression chamber) has plenty of water, so (2 ) and (3) are unnecessary.
  • a fuel transfer pipe 10' (fuel transfer device, rails are laid inside) installed horizontally in the fuel transfer penetration 12 of the containment vessel 6 corresponds to this.
  • the fuel transfer pipe 10' is submerged in water only during fuel replacement, as illustrated in FIG. It's turned on and covered. Therefore, in the event of a serious accident in which the core melts, the pressure inside the containment vessel 6 rises abnormally, and the containment vessel 6 is overpressurized, causing damage to the containment vessel 6. There was a fear that a large amount of high-level radioactivity would be released to the outside without being purified.
  • the invention of the present application solves the above-mentioned problems that conventional nuclear reactors have. , To provide a nuclear reactor capable of coping with a core meltdown accident by protecting the soundness of the reactor pressure vessel and the reactor containment vessel and preventing (minimizing) the release of radioactivity to the outside.
  • the challenge is to
  • the nuclear reactor is provided with the following means (1), and in the event of an assumed core meltdown accident, the nuclear reactor is A nuclear reactor capable of responding to a core meltdown accident for the purpose of preventing the release of radioactivity, characterized by being naturally cooled or water-cooled through the is.
  • the nuclear reactor is provided with the following means (1) to (3), and in the event of an assumed core meltdown accident, the nuclear reactor is It is naturally cooled or water-cooled through the outer surface of the heat insulating material, and is designed to prevent the release of radioactivity. It is a possible nuclear reactor.
  • water injection means for injecting water between the insulating material of the reactor pressure vessel and the shielding concrete in order to (2) A large-diameter through-hole opened in the pressure boundary of the reactor containment vessel and a rupture plate provided in the through-hole. (3) Means for submerging the through hole of (2) above during normal operation of the reactor.
  • the melting point limit management means for the heat insulating material that manages the melting point limit in the selection of materials when manufacturing the heat insulating material” (claim Item 1 (1) (b) (i)) is provided.
  • the containment vessel is a welded structure, and there is no bolted structure like the upper lid of the containment vessel of BWR. ) does not exist. Therefore, if a blackout accident such as the TEPCO Fukushima accident occurs and water is continued to be injected into the reactor core using a fire pump or the like, the containment vessel may be overpressurized and damaged. Moreover, when the core is in a state of film boiling, there is a high possibility that the zirconium-water reaction will be accelerated along with the pressurization.
  • the fuel transfer pipe 10 ′ which has been conventionally installed at the pressure boundary of the containment vessel and used during fuel replacement, is replaced with a large-diameter through hole 10 opened at the pressure boundary of the containment vessel. It was decided to use it as it is, and the lid used to block the fuel transfer pipe 10' was changed to a rupture disk and installed in the through hole 10 (claim 2). (2)).
  • FP nuclear fission products
  • radioactive gases noble gases
  • volatile FP that is easily soluble in water.
  • radioactivity decreases.
  • volatile FPs have high levels of radioactivity and need to be reduced through water. Therefore, in the invention of the present application, the periphery of the through hole including the rupture plate is submerged in water during normal operation of the reactor (Claim 2 (3)).
  • the invention according to claim 1 is a stable state of the reactor containment vessel pressure 10 to 14 hours after the occurrence of the accident, as seen in the total power loss accident of Fukushima Unit 1 (BWR). However, it is equipped with means to ensure that it is maintained.
  • This means consists of the following means (1) (a) and (b), as described above.
  • (1) (a) Assuming a core meltdown accident, after detecting the occurrence of zirconium-water reaction or film boiling in the core by core pressure, etc., core water injection cutoff means for stopping core water injection, and (b) In the case of a core meltdown accident, not only is the core decay heat removed by radiant heat emitted from the outer surface of the reactor pressure vessel after the core water injection in (a) is stopped, but also (i) in the case of a small nuclear reactor, In order to ensure that the heat insulating material can be melted and broken so that it can be removed even by the natural cooling of the outer surface of the reactor pressure vessel, the melting point limit is managed in the selection of materials when manufacturing the heat insulating material. or (ii) in the case of a large reactor, by water cooling of the outer surface of the reactor pressure vessel or the outer surface of the heat insulating material. Water injection means for injecting water between the insulation material of the reactor pressure vessel and the
  • the actions and effects of the means (1), (b) and (i) will be described.
  • the inside of the core becomes a world dominated by radiant heat from the high-temperature fuel exceeding 1000° C. due to the decay heat of the fuel.
  • the fuel and the fuel cladding made of Zircaloy are partially or mostly melted, and the stainless structural materials near the melted core are also melted, and the temperature of the reactor pressure vessel wall also begins to rise.
  • the heat insulating material of the reactor pressure vessel is made of aluminum, and its melting point is about 650°C. Therefore, when the wall surface of the pressure vessel (especially the high-temperature portion around the molten core) reaches a temperature of about 650° C., the heat insulating material around it melts and breaks. After that, the pressure vessel wall is cooled by heat radiation by itself and heat transfer by natural convection of the surrounding gas (steam and nitrogen gas, which was originally filled in the containment vessel). , the integrity of the reactor pressure vessel is presumed to have been maintained.
  • the melting point of the selected material shall be regulated and managed so that it is at a suitable temperature when manufacturing the heat insulating material. In other words, the melting point limit is controlled in the material selection at the time of manufacturing the heat insulator (Claim 1 (1), (b), and (i)).
  • the heat insulating material has a sufficient margin under the design conditions, after the core water injection is stopped in the event of a core meltdown accident, the heat resistance strength of the reactor pressure vessel is significantly reduced and its function is rapidly deteriorated. Before this occurs, the melting point can be reached, and the desired heat insulating material including the clasp and the like can be melted and destroyed without fail.
  • the reactor pressure vessel is not only cooled by its own radiant heat, but also naturally cooled by the surrounding air flow, and the zirconium-water reaction is also stopped. , is gradually cooled as the decay heat decays, converges as it is, safely moves to a stable state, and the integrity of the reactor pressure vessel can be maintained.
  • Current reactor pressure vessels are made of low-alloy steel, so the standard for their heat resistance to drop significantly is 600 to 700°C. is about 650° C., it satisfies the above melting point conditions required for heat insulating materials.
  • the heat insulating material may or may not be melted and damaged (cooling is possible), but if it is melted and damaged, the cooling rate is increased.
  • the reactor containment vessel pressure remained the same at 0.6 MPa from 23:50 (meaning "23:50"; the same shall apply hereinafter) on March 11th to 01:05 on March 12th. After that, it rapidly increased to 0.84 MPa at 02:30. This is because the wall temperature of the portion of the reactor pressure vessel 3 closest to the molten core rose to nearly 650°C, the melting point of the aluminum metal heat insulator, and the surrounding heat insulator 4 was melted and destroyed. Conceivable. As a result, although the wall surface was cooled and the temperature rise was suppressed, the dry well (hereinafter referred to as "D/W" or "D/W”) of the containment vessel 6 was cooled by the heat radiation from the wall surface. It is believed that the pressure within 14 has risen sharply.
  • the D/W upper part 14a space has a structure in which high-temperature superheated steam (T 1 °C on average) is accumulated.
  • the flow around the damaged portion 18 must be considered three-dimensionally because the inner lower end of the shielding wall 13 is closed by the reactor pressure vessel skirt portion 22. That is, inside the shielding wall 13 around the damaged portion 18, low-temperature steam becomes a downward flow so as to supplement the upward flow 19 of the high-temperature superheated steam from the damaged portion 18, and wraps around the damaged portion 18. come.
  • the low-temperature steam in the D/W lower part 14b rises outside the shield wall 13, is reversed on the lower surface of the mixing section 20 at the top of the shield wall 13, and descends toward the damaged section . In this way, a flow of cold steam is formed to supplement the rising flow 19 of hot steam.
  • the temperature region where the high temperature rising flow 19 and the low temperature steam are mixed in the mixing section 20 to reach a constant temperature T 2 ° C. is the temperature stratification (T 2 - T 0 ), it gradually descends outside the shielding wall 13 and spreads to the entire D/W lower part 14b. During that time, due to thermal expansion due to the amount of heat input (qkW) from the damaged portion 18, the pressure inside the D/W 14 continues to increase.
  • the reason why the high temperature region spreads while the temperature is stratified is that the amount of heat input q kW from the heat insulator damaged part 18 is very large compared to the amount of heat released from the outer surface of the D/W 14, and the whole is convective circulation This is because it is considered that temperature stratification by density difference is superior to temperature stratification.
  • the superheated steam in the temperature range of T2 °C covers the entire lower D/W 14b, the inside of the D/W 14 is divided into two temperature ranges, T1 ° C in the upper space 14a and T2 °C in the lower space 14b. After that, it is considered that the pressure increases in a stable mixed state (including the flow accompanying the high-temperature upward flow 19).
  • V 1 0.05
  • the period from breakage of the heat insulating material to the start of leakage (early stage) and the period from the start of leakage to the peak pressure attainment (later stage) are considered, and the elapsed time for each is t seconds.
  • the inside of the D/W 14 is divided into an upper T 1 °C area 14a and a lower 14b T 2 °C area.
  • the T 2 °C region covers the entire lower portion 14b and is a stage in which stable vaporization occurs, continuing up to a peak pressure of 0.84 MPa.
  • the amount of heat input q kW from the damaged portion 18 is assumed to be the same and constant in both stages.
  • the amount of evaporation in the D/W 14 is u kg/s, the former stage is u 1 and the latter stage is u 2 .
  • x kg/s be the discharge amount after the upper lid 6a floats. Note that u and x represent average values, and the enthalpy should be represented by the average values before and after evaporation and release, but since there is not much difference when the temperature is constant, the value after t seconds is representative.
  • T1 400°C measured at 03:21 on March 12th.
  • T 2 200° C. is selected as the temperature at which the amount of evaporation u 1 is close to zero at around 0.76 MPa.
  • the equations of conservation of mass and conservation of energy in this previous step are the following equations (1) and (2), respectively.
  • This means consists of the following means (2) and (3), as described above.
  • (2) A large-diameter through-hole opened in the pressure boundary of the reactor containment vessel and a rupture plate provided in the through-hole.
  • (3) Means for submerging the through hole of (2) above during normal operation of the reactor.
  • the action and effect are as follows.
  • the action and effect of the means (1) provided by the invention according to claim 2 have already been described in the explanation of the action and effect of the invention according to claim 1, so repeated explanations will be omitted. .
  • the reactor After shutdown, the reactor is water-cooled through the outer surface of the pressure vessel or the outer surface of the heat insulator by providing water injection means for injecting water into the inside of the shield concrete (between the heat insulator of the reactor pressure vessel and the shield concrete). Water-cooled reactors can be built.
  • FIG. 1 is a vertical cross-sectional view of an outer shell portion of a pressure vessel (including a pressure vessel wall, a heat insulator, and a gap) of a nuclear reactor (BWR, PWR) according to a first embodiment of the invention of the present application
  • FIG. FIG. 4 is a conceptual diagram of a vertical cross-section of the reactor (PWR) of the second embodiment in which the pressure boundary portion of the containment vessel is seen through from the horizontal direction, showing a large-diameter through-hole and its through-hole; is a diagram for explaining a means for submerging the .
  • FIG. 3 It is a longitudinal sectional view of the building and containment vessel portion of a conventional nuclear reactor (BWR), and is a diagram for explaining the analysis of the data shown by Fukushima Unit 1 when the insulation material of the reactor pressure vessel was damaged. 4 is a partially enlarged view of FIG. 3; FIG.
  • This first embodiment is a nuclear reactor implementing the invention recited in claim 1 of the scope of claims, and this nuclear reactor is preferably used in a boiling water reactor (BWR). Also referring to FIGS. 1 and 3, the nuclear reactor of the first embodiment has the following means (1) (a) and (b). (1) (a) Assuming a core meltdown accident, core water injection shutoff means for stopping water injection into the core 2 after detecting the occurrence of zirconium-water reaction or film boiling in the core 2 by core pressure, etc.
  • the current pressure gauge for use in the event of an accident can be used.
  • the timing of the transition to film boiling depends on the elapsed time after the loss of core cooling, the decrease in the amount of retained water, the decay heat, etc. can be predicted to some extent, so after that time, water injection into the core 2 of the reactor 1 will be stopped, and the outer surface of the reactor pressure vessel 3 will become natural due to the natural convection of the airflow flowing around the reactor pressure vessel 3. to transition to naturally cooled reactors.
  • this water injection means only injects water from the upper part of the shielding concrete 13 in the containment vessel 6 into the inside of the shielding concrete 13. It is necessary to install piping. In the case of a large reactor 1 with increased reactor output, natural cooling of the outer surface of the reactor pressure vessel 3 is insufficient, so this water injection means is used to cool the inside of the shielding concrete 13 (heat insulation of the reactor pressure vessel 3). Water is poured into the space between the material 4 and the shielding concrete 13) to cool the outer surface of the reactor pressure vessel 3 or the outer surface of the heat insulating material 4 by the heat of evaporation of the water.
  • This second embodiment is a nuclear reactor implementing the invention recited in claim 2 of the scope of claims, and this nuclear reactor is preferably used in a pressurized water reactor (PWR).
  • PWR pressurized water reactor
  • the nuclear reactor of the second embodiment is also provided with reference to FIGS. 1 and 2.
  • the following means (2) and (3) are provided.
  • the nuclear reactor of this second embodiment includes the means (2) and (3) in addition to the means (1) (a) and (b) is described in the column [Effect of the invention].
  • the nuclear reactor of this embodiment assumes a core meltdown accident, particularly in a PWR.
  • a PWR it is assumed that the pressure inside the containment vessel 6 will rise sharply regardless of whether core water injection is continued or stopped during a core meltdown accident.
  • the through-hole 10 opened at the pressure boundary of the containment vessel 6 is located at the bottom of the cavity 8 inside the containment vessel 6. It is fixedly installed in a region of depth of about 4 m from the wall of the containment vessel 6 .
  • the same water replenishment line used to fill the cavity 8 during fuel replacement is used to fill the cavity 8 with water. This is done by filling the water within the same depth area within. Therefore, the water replenishment line used for filling the cavity 8 with water is adopted as a means for obtaining water injection for cooling the outer surface of the reactor pressure vessel 3 or the heat insulator 4 thereof. be able to.
  • the water level in the cavity 8 exceeds the water level in the depth region of about 4 m from the bottom of the cavity 8, and the reactor pressure vessel upper lid 3a (hereinafter referred to as "upper lid 3a"). It may be abbreviated.) to replenish water from this water replenishment line. By doing so, the water can be naturally poured into the shielding concrete 13 .
  • the upper portion of the reactor pressure vessel 3 is the above-described reactor pressure vessel upper lid 3a. It is fixed to the main body of the container 3 with bolts, and a ring-shaped projection is welded to the lower part of the upper lid 3a. part) 16 is opened.
  • This gap 16 is covered by a manually movable ring called a cavity seal ring 17, and the gap 16 can be closed and opened by moving this cavity seal ring 17 up and down. .
  • This gap 16 is open by several centimeters during normal operation, and the air that cools the outer surface of the heat insulating material 4 flows from the lower part of the reactor pressure vessel 3 into the cavity 8 through this gap 16 of the sealing portion. .
  • the gap 16 is closed (the ring 17 is lowered) to fill the cavity 8 with water for fuel replacement so that the cavity 8 is filled with water.
  • this gap 16 remains open during normal operation, so when water is injected from the water replenishment line, the water surface in the depth region of about 4 m from the bottom of the cavity 8 rises. , the water naturally flows down to the outer surface of the heat insulating material 4 inside the shielding concrete 13 from the gap 16 of the sealing portion.
  • the fuel transfer penetrating part 12 installed at the pressure boundary of the reactor containment vessel 6 and used at the time of refueling is used.
  • the pipe 10' (with rails laid inside) is used as it is as a large-diameter through-hole 10 opened at the pressure boundary of the containment vessel 6, and is used to close this fuel transfer pipe 10'. It is possible to respond by changing the lid to a rupture disk (rupture disk) 11 designed to self-destruct under a predetermined pressure and installing it in the through hole 10. .
  • the above-described fuel transfer through portion 12 is conventionally set in a region of depth of about 4 m from the bottom of the cavity 8 in the containment vessel 6, and the fuel transfer pipe 10' is also located in this region in the containment vessel 6. It is fixedly installed so that it penetrates the wall of the Therefore, the through-hole 10 of the second embodiment is also provided in the same manner in a region of depth of about 4 m from the bottom of the cavity 8.
  • FIG. 1 As a result, the function as a route for releasing the overpressure in the containment vessel 6 and decompressing it can be exhibited, and the role played by the conventional fuel transfer pipe 10' is also performed in the same way. can be fulfilled.
  • the rupture plate 11 may also be placed in its outer end where the through hole 10 protrudes from the pressure boundary of the containment vessel 6 into the passageway 9 outside the containment vessel 6 .
  • This passage 9 is a passage leading to a spent fuel pit (not shown) installed in the building 7 .
  • the fuel assembly is also raised vertically and transferred from the passage 9 to the spent fuel pit as it is.
  • the fuel assembly is transferred from the passage 9 into the reactor pressure vessel 3 by the reverse operation. All of these transfer operations are performed on the operating floor by remote control of a crane, and all fuel assemblies are operated underwater.
  • the water is drained from the cavity 8 and the passage 9, and the fuel transfer pipe 10' is covered.
  • the through hole 10 of the second embodiment can also play the same role as the conventional fuel transfer pipe 10', in the same manner as described above.
  • the means (3) there is a difference in operation regarding water filling in the cavity 8 in the containment vessel 6 and water filling in the passage 9 communicating with the containment vessel 6 through the through hole 10. Therefore, as a mode of implementation of this means, it is only necessary to additionally install a water level gauge for constant monitoring. Therefore, the means (3) can also be implemented easily without the need for major modification of equipment or major changes in operation, etc., as compared with the conventional method.
  • a portion of the cavity 8 that is specially deepened, that is, a region of depth of about 4 m from the bottom inside the cavity 8, is filled with water after fuel replacement. Even during normal operation, water should be filled.
  • the passage 9 should be filled with water to the same depth.
  • the through-holes 10 provided in the same depth region within the cavity 8 can be easily submerged in water during normal operation of the reactor 1 .
  • the depth region of about 4 m from the bottom in the cavity 8 and the same depth region in the passage 9 are submerged during fuel replacement, and when the fuel replacement is completed and normal operation of the reactor 1 is started. , is an area that has been drained and emptied.
  • FP with a high level of radioactivity, such as volatile FP, is highly purified by water, so the above operation is extremely effective in preventing the release of radioactivity.
  • the cladding tubes of the fuel housed in the core were zirconium tubes. Any cladding tube may be used, and the invention of the present application can also be applied to a nuclear reactor having fuel coated with a cladding tube made of such material in the core.
  • Dry well (D / W) lower part (mixing part 15...Pressure suppression chamber (S/C), 16...Gap (cavity seal portion), 17...Cavity seal ring, 18...Insulator damaged portion, 19...Upward flow of superheated steam, 20...Mixing portion, 21... Temperature boundary layer (temperature stratification zone), 22... Reactor pressure vessel skirt.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

【課題】 炉心溶融事故が生じても、原子炉圧力容器と原子炉格納容器の健全性を守り、放射能の外部への放出を防止することができる、炉心溶融事故に対応可能な原子炉を提供する。 【解決手段】 原子炉1が、炉心溶融事故を想定して、炉心内でのジルコニウム・水反応又は膜沸騰の発生を炉心圧力等で検知した後は、炉心注水を中止する炉心注水遮断手段と、炉心溶融事故時で、炉心注水中止後には、炉心崩壊熱を、原子炉圧力容器3外面又はその保温材4外面の自然冷却又は水冷却によっても除去することができるようにするために、保温材4を確実に溶融破壊することができるように、保温材4の製作時の材料選定における溶融点制限を管理する溶融点制限管理手段又は保温材4と遮蔽コンクリート13との間に注水する注水手段と、を備えている。

Description

放射能の放出防止を目的とした、炉心溶融事故に対応可能な原子炉
 本願の発明は、放射能の放出防止を目的とした、炉心溶融事故に対応可能な原子炉に関し、特に沸騰水型軽水炉(BWR。以下、「BWR」と略称する場合がある。)で使用される原子炉や、加圧水型軽水炉(PWR。以下、「PWR」と略称する場合がある。)で使用される原子炉において、炉心が溶融するという重大事故(シビアアクシデント)が発生した場合においても、原子炉を、安全に、安定状態に収束させて、原子炉圧力容器と原子炉格納容器(以下、これらを、それぞれ「圧力容器」、「格納容器」と略称する場合がある。)の健全性を守るとともに、放射能の外部への放出を防止することができるようにした、炉心溶融事故に対応可能な原子炉に関する。
 この目的のために、本願の発明は、炉心が溶融するという重大事故時における原子炉の新しい冷却方式(原子炉圧力容器外面又はその保温材外面を通した自然冷却方式又は水冷却方式)と、原子炉格納容器の圧力境界に設けられる、新規な圧力解放(減圧)手段と放射性物質の浄化手段とを提案する。
 これらの提案は、2011年3月11日に発生した東京電力福島第一原子力発電所の事故(以下、「東電福島事故」という。)時のデータを、本願の発明者が分析評価した結果に基づいている。
 このような重大事故を想定して、これらの手段を採用する本願発明の第1の原子炉は、後述する特許請求の範囲の請求項1(以下、「請求項1」と略称する場合がある。他の請求項について同じ。)に記載された(1)の手段を備えている。そして、この第1の原子炉は、沸騰水型軽水炉(BWR)の原子炉として好適に使用される。
 また、このような重大事故を想定して、これらの手段を採用する本願発明の第2の原子炉は、後述する特許請求の範囲の請求項2に記載された(1)~(3)の手段を備えている。そして、この第2の原子炉は、加圧水型軽水炉(PWR)の原子炉として好適に使用される。
 なお、沸騰水型軽水炉(BWR)の原子炉では、その格納容器の上蓋がボルト止め構造になっていることと、圧力抑制室(サプレッションチャンバー)内に水が豊富にあることとにより、(2)と(3)の手段は不要である。
 請求項1及び請求項2の各(1)(a)に記載のような、炉心溶融事故等のシビアアクシデントに対応する処置としては、従来、BWRもPWRも、炉心注水の禁止事項等はなく、むしろ、積極的に注水することとなっている。
 また、同各(1)(b)(i)に記載のような、原子炉圧力容器の保温材の使用材料の溶融点制限に対しては、保温材(通常は金属保温材)の材料について、設計温度(最高使用温度)で溶融がないようにはしているが、炉心溶融事故時の炉心注水中止後に、原子炉圧力容器が高温になった個所の周りの保温材が必ず溶融破壊するようにするという規制は、従来、行われていない。
 また、同各(1)(b)(ii)に記載のような、炉心注水中止後に、原子炉圧力容器の遮蔽壁をなす遮蔽コンクリート内側(原子炉圧力容器の保温材と遮蔽コンクリートとの間)に注水し、原子炉圧力容器外面又はその保温材外面を水冷却するという方法も、従来、行われていない。
 さらに、請求項2の(2)、(3)に記載のような、原子炉格納容器の圧力境界(圧力バウンダリー)に開けられる大口径の貫通孔については、従来のPWRでは、図2に示されるように、格納容器6の燃料移送用貫通部12に横置きに設置された燃料移送管10’(燃料移送装置。内部にレールが敷設されている。)が、これに相当するが、この燃料移送管10’は、従来、図2の図中で説明されているように、燃料交換時にだけ水没させられ、燃料交換終了後は、水が抜かれて、運転中も、水が抜かれて空にされて、蓋がされている。
 したがって、炉心が溶融するという重大事故時には、格納容器6内の圧力が異常に上昇して、格納容器6が過圧されることにより、格納容器6が破損したり、その破損個所から、放射能レベルの高い放射能が、浄化されないままに大量に外部に放出されたりするという虞があった。
 本願の発明は、従来の原子炉が有する前記のような問題点を解決するととともに、特に2011年に発生した東電福島事故の原因を究明し、その教訓を生かして、炉心溶融事故が生じても、原子炉圧力容器と原子炉格納容器の健全性を守り、放射能の外部への放出を防止する(極小にする)ことができるようにした、炉心溶融事故に対応可能な原子炉を提供することを課題とする。
 前記のような課題は、本願の特許請求の範囲の各請求項に記載された次のような発明により解決される。
 すなわち、その請求項1に記載された発明は、原子炉が、次の(1)の手段を備え、想定される炉心溶融事故時には、前記原子炉が、原子炉圧力容器外面又はその保温材外面を通し、自然冷却又は水冷却されるとともに、放射能の放出が防止されるようになっていることを特徴とする、放射能の放出防止を目的とした、炉心溶融事故に対応可能な原子炉である。
(1)(a)炉心溶融事故を想定し、炉心内でのジルコニウム・水反応又は膜沸騰の発生を炉心圧力等で検知した後は、炉心注水を中止する炉心注水遮断手段、及び
   (b)炉心溶融事故時には、前記(a)の炉心注水を中止した後で、炉心崩壊熱を、原子炉圧力容器外面からの輻射熱の放射によって除去するだけでなく、
(i)小型の原子炉の場合、前記原子炉圧力容器外面の自然冷却によっても除去することができるようにするために、保温材を確実に溶融破壊することができるように、保温材の製作時の材料選定における溶融点制限を管理する、保温材の溶融点制限管理手段、又は
(ii)大型の原子炉の場合、前記原子炉圧力容器外面又はその保温材外面の水冷却によっても除去することができるようにするために、前記原子炉圧力容器の保温材と遮蔽コンクリートとの間に注水する注水手段。
 また、その請求項2に記載された発明は、原子炉が、次の(1)~(3)の手段を備え、想定される炉心溶融事故時には、前記原子炉が、原子炉圧力容器外面又はその保温材外面を通し、自然冷却又は水冷却されるとともに、放射能の放出が防止されるようになっていることを特徴とする、放射能の放出防止を目的とした、炉心溶融事故に対応可能な原子炉である。
(1)(a)炉心溶融事故を想定し、炉心内でのジルコニウム・水反応又は膜沸騰の発生を炉心圧力等で検知した後は、炉心注水を中止する炉心注水遮断手段、及び
   (b)炉心溶融事故時には、前記(a)の炉心注水を中止した後で、炉心崩壊熱を、原子炉圧力容器外面からの輻射熱の放射によって除去するだけでなく、
(i)小型の原子炉の場合、前記原子炉圧力容器外面の自然冷却によっても除去することができるようにするために、保温材を確実に溶融破壊することができるように、保温材の製作時の材料選定における溶融点制限を管理する、保温材の溶融点制限管理手段、又は
(ii)大型の原子炉の場合、前記原子炉圧力容器外面又はその保温材外面の水冷却によっても除去することができるようにするために、前記原子炉圧力容器の保温材と遮蔽コンクリートとの間に注水する注水手段。
(2)原子炉格納容器の圧力境界に開けられた大口径の貫通孔と、前記貫通孔内に設けられた破壊板。
(3)前記(2)の貫通孔を、前記原子炉の通常運転時には、水没させる手段。
 次に、本発明者が、これらの発明を完成するに至った経過を、更に詳しく説明する。
 東電福島事故での炉心溶融事故の原因分析を、本発明者が独自で行った結果、炉心溶融事故を拡大したのは、炉心が既に膜沸騰現象を起こした状態であるのに、炉心への注水が続けられたためであることが解明できた。
 また、原子炉格納容器も、破損する虞があったが、BWRでは、その格納容器の上蓋が、ボルト止め構造になっているので、その蓋が運よく浮き上がり、圧力上昇を抑制することができた。その結果、破壊を免れたという分析結果に至った。
 炉心溶融事故の拡大原因に関し、以上のような分析結果に至った経緯を、事故時のデータの経時的な分析評価の結果に基づいて、更に詳細に説明する。
 本発明者独自の、東電福島第一原子力発電所1号機(以下、「福島1号機」と略称する場合がある。これは、BWRである。)の事故発生後最初の14時間のデータの分析評価(添付資料1、第3~7頁)の結果によれば、炉心は既に溶融していたにもかかわらず、原子炉圧力容器は健全で、圧力容器(溶融炉心周りの高温部)の外面は、自然冷却されていたことが分かった。このような、圧力容器外面の自然冷却は、圧力容器が壊れる前に、保温材が溶融して壊れたことにより、生じたものと考えられる。
 炉心は既に溶融していたにもかかわらず、原子炉圧力容器が健全であった要因は、このように、圧力容器の外面が自然冷却されていたことと、事故発生後最初の14時間が経過するまでは、消防ポンプ等による炉心注水が行われていなかったこととによるものである。そして、それ以降(14時間経過以降)に、消防ポンプによる炉心注水が行われたことが、事故を拡大した。すなわち、発熱反応であるジルコニウム・水反応を促進し、水素爆発及び原子炉圧力容器底貫通・放射能大量放出へと導いてしまったものと考えられる。
 これらのことは、従来、一般的に考えられていた常識とは全く異なる結論であった。そこで、本願の発明では、その教訓の反映として、原子炉が、
「炉心溶融事故を想定し、炉心内でのジルコニウム・水反応又は膜沸騰の発生を炉心圧力等で検知した後は、炉心注水を中止する炉心注水遮断手段」(請求項1の(1)(a))を備えるとともに、
「炉心溶融事故時には、前記炉心注水を中止した後で、炉心崩壊熱を、原子炉圧力容器外面からの輻射熱の放射によって除去するだけでなく、前記原子炉圧力容器外面の自然冷却によっても除去することができるようにするために、保温材を確実に溶融破壊することができるように、保温材の製作時の材料選定における溶融点制限を管理する、保温材の溶融点制限管理手段」(請求項1の(1)(b)(i))を備えることとした。
 なお、原子炉出力が大型化した(福島1号機の46万kwを越える)大型の原子炉の場合には、原子炉圧力容器外面の自然冷却では冷却不足するので、遮蔽コンクリート内側(原子炉圧力容器の保温材と遮蔽コンクリートとの間)に注水する注水手段を設け、その水の蒸発熱による原子炉圧力容器外面又はその保温材外面の水冷却を行うようにする(請求項1の(1)(b)(ii))。
 ところで、PWRの場合には、その格納容器は、溶接構造であり、BWRの格納容器の上蓋のようなボルト止め構造は存在しないし、PWRでは、BWRの圧力抑制室(サプレッションチャンバー:S/C)のような設備も存在しない。よって、もし東電福島事故のような全電源喪失事故が発生し、炉心に消防ポンプ等で注水を続けると、格納容器が過圧されて、破損の可能性がある。しかも、炉心が膜沸騰状態になると、加圧とともに、ジルコニウム・水反応が加速される可能性が高いので、大口径の圧力減圧装置で素早く減圧する必要がある。
 そこで、本願の発明では、従来、格納容器の圧力境界に設置されて、燃料交換時に使用されてきた前記燃料移送管10’を、格納容器の圧力境界に開けられた大口径の貫通孔10としてそのまま使用することとし、燃料移送管10’ を塞ぐために用いられていた蓋を、破壊板(ラプチャーディスク)に変更して、これを、貫通孔10内に設置することとした(請求項2の(2))。
 また、破壊板が破壊した後は、その破壊個所から、放射性物質である核分裂生成物(FP)が放出されるので、それを減少させる必要がある。
 FPには、水に溶けない放射性ガス(希ガス)と、水に溶け易い揮発性FPとがあるが、放射性ガス(希ガス)は、ほとんどが短寿命のものであるので、直ぐに減衰して、放射能は減少する。しかし、揮発性FPは、放射能レベルが高いので、水中を通して放射能を減少させる必要がある。
 そこで、本願の発明では、破壊板を含む貫通孔周りを、原子炉の通常運転時には、水没させておくこととした(請求項2の(3))。
 このような、PWRにおける運用の変更は、東電福島事故における福島1号機(BWR)が示したデータに対する本発明者独自の分析評価(添付資料2、第7~8頁の5(1)基本的考え)の結果に基づき、創案された。
 すなわち、福島1号機においては、不測の事故の結果、格納容器圧力が異常に上昇したのに、破壊を免れた。その理由は、格納容器の上蓋がボルト止め構造になっていたので、これが浮き上がり、発生気体(水素や蒸気)が漏洩したためである。
 しかも、その時の放出放射能レベルは、きわめて低かった。その理由は、漏洩気体が、格納容器内の圧力抑制室(サプレッションチャンバー:S/C)内の豊富な水中を通過した後の気体であったからである。すなわち、水中でほとんどの放射能が除かれていたためである。
 これらの分析評価の結果をPWRに反映させたのが、請求項2の(2)、(3)である。
 本願の発明は、前記のように構成されているので、次のような作用、効果を奏することができる。
(請求項1に係る発明の作用、効果)
 先ず、特許請求の範囲の請求項1に記載された発明(以下、単に「請求項1に係る発明」ともいう。他の請求項について同じ。)の作用、効果について説明する。
 請求項1に係る発明は、福島1号機(BWR)の全電源喪失事故に見られるような、事故の発生から10~14時間後の原子炉格納容器圧力の安定状態を、その時間の経過後であっても、確実に維持するための手段を備えている。
 この手段は、前記のとおり、次のような手段(1)(a)、(b)からなっている。
(1)(a)炉心溶融事故を想定し、炉心内でのジルコニウム・水反応又は膜沸騰の発生を炉心圧力等で検知した後は、炉心注水を中止する炉心注水遮断手段、及び
   (b)炉心溶融事故時には、前記(a)の炉心注水を中止した後で、炉心崩壊熱を、原子炉圧力容器外面からの輻射熱の放射によって除去するだけでなく、(i)小型の原子炉の場合、前記原子炉圧力容器外面の自然冷却によっても除去することができるようにするために、保温材を確実に溶融破壊することができるように、保温材の製作時の材料選定における溶融点制限を管理する、保温材の溶融点制限管理手段、又は(ii)大型の原子炉の場合、前記原子炉圧力容器外面又はその保温材外面の水冷却によっても除去することができるようにするために、前記原子炉圧力容器の保温材と遮蔽コンクリートとの間に注水する注水手段。
 そして、その作用、効果は、次のとおりである。
 先ず、前記(1)(a)の手段の作用、効果について説明する。
 東電福島事故のように、全(交流・直流)電源喪失等で計測器も喪失しているような状態では、恒設の炉心冷却設備の不測の停止や、冷却水の不足等が分かった場合には、消防ポンプ等による炉心注水を継続しながらも、炉心崩壊熱(これは、原子炉停止からの経過時間で算出される。)と、設備停止や冷却水不足等からの経過時間とに基づき、炉心露出や燃料温度の予測を行い、ジルコニウム・水反応や膜沸騰の発生の可能性があるかどうかを算定し、可能性があれば、直ぐに炉心注水を止めることとする(請求項1の(1)(a))。
 福島1号機の事故では、事故発生から14時間経過して以降に、消防ポンプによる炉心注水を行ったために、炉心でジルコニウム・水反応を引き起こし、多量の水素と蒸気を放出して、水素爆発を起こすこととなった。したがって、炉心内でのジルコニウム・水反応の発生や、沸騰状態の膜沸騰への移行の可能性があるようであったならば、先ずは、前記のように処置することが望ましい。
 このようにすれば、水素爆発を避け、原子炉格納容器圧力の安定状態を確実に維持することができる。
 次に、前記(1)(b)(i)の手段の作用、効果について説明する。
 前記のようにして炉心注水を止めた後は、炉心内は、燃料の崩壊熱により、1000℃を越える高温燃料からの輻射熱が支配する世界になる。炉心内では、燃料や、ジルカロイ材からなる燃料被覆管等の一部又は大部分が溶け、その溶融炉心に近いステンレス構造材等も溶融し、原子炉圧力容器壁の温度も、上昇し始める。
 福島1号機の場合、原子炉圧力容器の保温材は、アルミニウム製であり、その溶融点は、約650℃である。したがって、圧力容器の壁面(特にその溶融炉心周りの高温部)温度が、約650℃になると、その周りの保温材は、溶融して壊れる。
 その後、圧力容器壁は、それ自体が発する輻射熱による放熱と、周囲の気体(蒸気及び最初から格納容器内に充填されていた窒素ガス)の自然対流による熱伝達を介した放熱とにより冷却されて、原子炉圧力容器の健全性は、維持されたものと推定される。
 したがって、炉心溶融事故時には、炉心注水を中止した後で、炉心崩壊熱を除去するために、圧力容器壁からの輻射熱の放射による除去だけでなく、福島1号機のような小型の原子炉(出力46万kw)の場合には、溶融炉心近くの高温になった圧力容器壁の外面の自然冷却による除去によっても炉心崩壊熱の除去が行えるようにすることがきわめて有効であり、このために、保温材を確実に溶融破壊できるように、保温材の製作時に、選定材料の溶融点が、それに適う温度であるように規制し、管理することとする。すなわち、保温材の製作時の材料選定における溶融点制限を管理することとする(請求項1の(1)(b)(i))。
 このようにすれば、保温材は、設計条件上では、十分に余裕を持つものの、炉心溶融事故時の炉心注水中止後では、原子炉圧力容器の耐熱強度が著しく低下して急激にその機能低下が生じる前に、その溶融点に到達して、その留め金部等を含めて、確実に溶融破壊するようにすることができ、所期の保温材を選択できたことになる。
 これにより、原子炉圧力容器は、自身の輻射熱の放射により冷却されるのに加えて、周囲の気流によっても自然冷却されて、ジルコニウム・水反応も停止しているので、原子炉圧力容器内は、崩壊熱の減衰とともに徐々に冷却され、そのまま収束して、安全に安定状態に向かい、原子炉圧力容器の健全性を維持することができる。
 現在の原子炉圧力容器の材質は、低合金鋼であるので、その耐熱強度が著しく低下する目安は、600~700℃であり、現在、一般的に使用されているアルミニウム金属保温材の溶融点は、約650℃であるので、保温材に求められる、前記のような溶融点条件を満足している。
 次に、前記(1)(b)(ii)の手段の作用、効果について説明する。
 原子炉出力が大型化した(福島1号機の46万kwを越える)大型の原子炉の場合には、原子炉圧力容器外面の自然冷却では冷却不足する。そこで、炉心注水中止後は、原子炉圧力容器の保温材と遮蔽コンクリートとの間(遮蔽コンクリート内側)に注水する注水手段を設け(請求項1の(1)(b)(ii))、その水の蒸発熱による原子炉圧力容器外面又はその保温材外面の水冷却を行うようにする。
 このようにすれば、炉心崩壊熱を除去するのに、原子炉圧力容器外面からの輻射熱の放射による冷却とともに、十分な冷却が得られることになる。この場合、保温材は、溶融破損していてもいなくても構わない(冷却可能である)が、溶融破損していた場合には、冷却速度が上がるという効果がある。
(圧力容器外面からの自然冷却による放熱量の概略計算)
 なお、ここで、保温材が壊れた状態での原子炉圧力容器外面からの自然冷却による放熱について、福島1号機の場合における概略計算を、少々長くなるが、図3及び図4を参照しながら、以下に説明しておく。より詳しくは、資料1が参照されよう。
 福島1号機では、事故後、直ぐに原子炉が隔離されたので、炉心注水は一切なく、燃料の崩壊熱により、炉内水は無くなり(3/11(「3月11日」の意。以下、同様。)の20時以降)、その後、炉心は溶融し、全くの輻射熱の世界になっていった。
 その状態で、原子炉格納容器圧力が、3/11の23:50(「23時50分」の意。以下、同様。)から3/12の01:05まで同じ0.6MPaであったのに、その後、急上昇して、02:30に0.84MPaとなった。
 これは、原子炉圧力容器3の溶融炉心に最も近い部位の壁面温度が、アルミ金属保温材の溶融点約650℃近くまで上昇し、その周りの保温材4が、溶融破壊したことによるものと考えられる。その結果、当該壁面は冷やされて、温度上昇が抑えられたものの、当該壁面からの放熱により、原子炉格納容器6のドライウェル(以下、「D/W」又は「D/W」という。)14内の圧力が、急上昇したものと考えられる。
 その時の保温材破損前のD/W14内は、0.6 MPaの飽和状態(T0=159℃)である。保温材破損後については、遮蔽壁13内側下部の保温材破損部18のD/W14側が昇温して、高温の過熱蒸気19が上昇して、D/W上部14a空間へ流れる。D/W上部14a空間では、高温過熱蒸気(平均としてT1℃)が溜まるような構造となっている。そして、そこに高温過熱蒸気が溜まると、温度成層化したまま高温部が下がって来て、その下の混合部20で、高温上昇流19とT0℃の低温蒸気とが混合する(混合平均の過熱蒸気温度をT2℃とする。)。この混合部20の上部では、T1とT2の温度成層化域21が形成される。一方、混合部20の中・下部では、混合後の過熱蒸気(平均T2℃)が、下面で温度成層(T2-T0)化した状態のまま、遮蔽壁13外側からD/W下部14bの方へ徐々に広がり下降して行く。
 他方、破損部18周りの流れについては、遮蔽壁13内側の下端は、原子炉圧力容器スカート部22で閉じられているので、3次元的に考える必要がある。すなわち、破損部18の周りの遮蔽壁13内側では、破損部18からの高温過熱蒸気の上昇流19を補給するように、周りから低温蒸気が下降流となり、破損部18の方へ廻り込んで来る。その低温蒸気は、D/W下部14bの低温蒸気が遮蔽壁13外側を上昇し、遮蔽壁13頂部の混合部20の下面で反転して、破損部18へ向かって下降する。このようにして、高温蒸気の上昇流19に対して、それを補給するように、低温蒸気の流れが形成される。
 しかしながら、その流れ以外のところでは、前述のように、混合部20で高温上昇流19と低温蒸気とが混合して一定の温度T2℃となった温度域が、下面を温度成層(T2- T0)化したまま、徐々に遮蔽壁13外側を下降し、D/W下部14b全体まで広がる。その間、破損部18からの入熱量(qkW)による熱膨張で、D/W14内は昇圧し続ける。このように、温度成層化したまま、高温域が広がるとしたのは、D/W14外面からの放熱量に比べ、保温材破損部18からの入熱量q kWが非常に大きく、全体が対流循環するより、密度差で温度成層化する方が勝ると考えられるからである。
 T2℃の温度域の過熱蒸気が、D/W下部14b全体を覆うと、D/W14内は、上部14a空間のT1℃域と下部14b空間のT2℃域の二つの温度域に分かれ、それ以降、安定した混合状態(高温上昇流19に伴う流れを含む)で昇圧して行くと考えられる。温度成層(T2-T0)化域が下降して行くと、飽和温度のT0℃域では、蒸発は生じないが、過熱蒸気のT2℃域になると、D/W14内の機器設備表面上に多量に存在する凝縮水滴等が蒸発し始める。
 今、D/W14全体積をV0m3(=3400 m3)とし、これを、上部14a空間の体積V1m3、下部14b空間の体積V2m3とに分け、V1=0.05 V0、V2=0.95 V0 とし、V0=V1 + V2とする。そして、保温材破損から漏洩開始まで(前段階)と、漏洩開始からピーク圧達成まで(後段階)とに分けて、各々経過時間をt秒として検討する。
 前段階は、D/W14内が上部14aのT1℃領域と下部14bのT2℃領域とに分かれ、下部14bでは、蒸発の無いT0℃領域が縮まり、蒸発が生じるT2℃領域が増えている段階で、漏洩開始(D/W上蓋6a浮上り)まで続く。一方、後段階では、T2℃領域は下部14b全体を覆い、安定した蒸発が生じている段階であり、ピーク圧の0.84 MPaまで続く。
 両段階を分けるのは、漏洩開始時点の圧力温度は推定値であるので、多少の幅を持たせるためと、放出量(漏洩量)x=0として、入熱量q kWの推定を容易にするためである。破損部18からの入熱量q kWは、両段階とも同じ値で一定とする。D/W14内での蒸発量をu kg/sとして、前段階をu1、後段階をu2とする。また、上蓋6a浮上り後の放出量をx kg/s とする。なお、uやxは平均値を表し、そのエンタルピーは、蒸発・放出前後の平均値で表すべきであるが、温度が一定の時の差は余りないので、t秒後の値で代表している。
 先ず、前段階の保温材破損から漏洩開始までの検討を行う。
 保温材破損前の状態(初期状態)は、0.6 MPaの飽和状態(T0= 159℃)で、比体積v”=0.316 m3/kg、蒸気エンタルピーh”=2756 kJ/kg、水エンタルピー h’=670 kJ/kgである。圧力が0.76 MPa付近で、D/W上蓋6aが浮上り、漏洩が生じたと考えられる。今、D/W14内において、上部がT1℃域の状態に、下部がT2℃域の状態になったとし、T1を3/12の03:21に計測された400℃とする。T2については、0.76 MPa近傍で蒸発量u1がゼロに近い値の温度として、T2=200℃を選定する。この漏洩開始時点のD/W上部14a(体積V1m3)内は400℃、0.76 MPaの過熱蒸気となり、その比体積はv1= 0.457 m3/kg、エンタルピーはh1=3269 kJ/kgとなる。D/W下部14b(体積V2m3)内は200℃、0.76 MPaの過熱蒸気となり、その比体積は v2=0.312 m3/ kg、エンタルピーはh2=2840 kJ/kgとなる。この前段階における質量保存とエネルギー保存の式は、各々、次の (1)と(2)式となる。
V0/v” +u1t =V1/v1 +V2/v2                                           (1)
V0/v”×h” +qt -u1t (h2-h’) = V1/v1×h1+ V2/v2×h                (2)
 ここで、(1)式にそれぞれの数値を入れると、丁度u1=0となり、それを(2)式に入れて整理すると、qt=960×103(kJ)となる。このqtは、1400 kW×690s又は1600 kW×600sに相当し、後段階のq kWの選定に利用する。
 次に、後段階のピーク圧までの検討をする。
 漏洩開始時点(状態1)から、ピーク圧である0.84 MPaに到達する時点(状態2)に変化した時の質量保存とエネルギー保存の式は、状態1 を( )1で、状態2を( )2で表すと、各々次の(3)と(4)式になる。
(V1/v1 + V2/v2 )1 + u2t = (V1/v1 + V2/v2 )2+xt                         (3)
(V1/v1×h1+ V2/v2×h2) 1 +qt -u2t (h2-h’) = (V1/v1×h1+V2/v2×h2) 2+xth1 (4)
 状態1の値は、前述のとおりであるが、状態2の値については、D/W上部14a内が400℃、0.84 MPaの過熱蒸気となり、その比体積はv1 =0.419 m3/kg、エンタルピーはh1=3268 kJ/kgとなり、D/W下部14b内が200℃、0.84 MPaの過熱蒸気となり、その比体積はv2=0.286 m3/kg、エンタルピーはh2=2837 kJ/kgとなる。これらの数値を(3)式に入れて、u2tで整理すると、u2t=950+xtとなる。これを(4)式に代入すると、qt=580×104+5440 xtとなる。
 ここで、実測値に対応するように、0.6 MPaが計測された3/12の01時頃に保温材4が破損したとし、02:30頃に 0.84 MPaとなり、途中の0.76 MPaに達した頃に漏洩開始するという想定で、入熱量q kWを算出する。
 先ず、前段階より、qt=1400 kW×690sと1600 kW×600sを候補とした。実測データでは、保温材破損から約90分でピーク圧に達しているので、後段階の計算結果にこの2点を入れ、放出量xを算定する。その結果、1400 kWと1600 kWの各々に対し、x=0.03 kg/s (xt=140 kg)とx=0.07 kg/s (xt=350 kg)となる。その後の03時頃からの格納容器減圧を考えると、放出された蒸気の凝縮・蒸発による冷却・減圧効果も考えられるので、放出量xtが大きい後者の方がより妥当であろうと考え、q=1600 kWを選定する。
 以上の結果、3/12の01時頃保温材4が溶融破損し、原子炉圧力容器壁より格納容器6内へ約1600kW程度の入熱が生じ、格納容器圧が急上昇し、10分後に上蓋6aが浮上り漏洩が始まり、90分後の02:30頃ピーク圧0.84 MPaに達するということになり、実測値の変化をよく説明できる。
 以上、保温材4が壊れた状態での原子炉圧力容器6外面からの自然冷却による放熱について、福島1号機の場合における概略計算を説明した。ここで重要なことは、全電源喪失下で、この間に計測されたデータは、この0.6MPaの2点と、0.84MPaと、400℃の4点しかないことと、以上の計算結果が、この4点と矛盾なく合致することである。
 また、この間及びその後3日間以上も、発電所正門付近での放射能の計測値が低レベルのまま変化がないということは、原子炉圧力容器底貫通は生じていなく、放射能は、原子炉圧力容器3から安全弁(SRV)を通り、S/C15内部の水で浄化された後に、D/W14の上蓋6a(これは、実際は、原子炉格納容器6の上蓋をなしている。)から漏洩したという、本計算の前提となる考えとも良く合致している。
(請求項2に係る発明の作用、効果)
 次に、請求項2に係る発明の作用、効果について説明する。
 請求項2に係る発明は、請求項1に係る発明が備える(1)(a)、(b)の手段を備えるほかに、炉心溶融事故時に、炉心注水の継続、停止の如何に関わらず、原子炉格納容器内部の圧力が上昇した場合に、格納容器の破損を防止して、その健全性を維持するとともに、放射能の外部への放出を防止するための手段を備えている。
 請求項2に係る発明が、このような手段を備えるのは、この発明が、特にPWRにおける炉心溶融事故を想定していることによる。
 この手段は、前記のとおり、次のような手段(2)及び(3)からなっている。
(2)原子炉格納容器の圧力境界に開けられた大口径の貫通孔と、前記貫通孔内に設けられた破壊板。
(3)前記(2)の貫通孔を、前記原子炉の通常運転時には、水没させる手段。
 そして、その作用、効果は、次のとおりである。
 なお、請求項2に係る発明が備える(1)の手段の作用、効果については、請求項1に係る発明の作用、効果を説明する中で既に述べたとおりであるので、反復説明を省略する。
 炉心溶融事故時に、炉心内では、燃料の崩壊熱とジルコニウム・水反応熱とが発生し、水素や蒸気が、原子炉格納容器へと流れ出し、格納容器内部の圧力を上昇させる。
 特に、炉心が膜沸騰状態に移行した後に、消防ポンプ等で炉心注水を継続させている場合には、圧力上昇に比例してジルコニウム・水反応が進み、発生する水素ガス量も増大するので、格納容器圧力は、加速度的に上昇していく。この圧力の急上昇を食い止めるためには、格納容器の圧力境界に大口径の貫通孔を開け、この貫通孔内に破壊板(ラプチャーディスク)を設置して、この破壊板を壊すことにより、急減圧し、加速度的圧力上昇を止めた上で、更に減圧するために、前記破壊板を、相応の大口径のものにする必要がある(請求項2の(2))。
 東電福島事故における口径20~30cm程度の格納容器ベント弁では、不足であった。燃料移送管の圧力境界貫通部のような大口径(50cm~1m程度)の破壊板が必要である。このことは、従来の格納容器の圧力解析で確認することができる。
 また、炉心溶融事故ではなくて(膜沸騰にはならずに)、原子炉冷却水が格納容器内に噴出するような事故時で、炉心注水が継続され続けた場合、崩壊熱だけの発生熱でも、原子炉格納容器圧力は上昇し、格納容器スプレイ設備又は炉心冷却設備が働かなければ、時間が経つと、設計圧を越える可能性がある。その時も、格納容器を保護するために、破壊板が必要になるが、この場合に必要な破壊板の口径は、小さくても良いので、前記した大口径のものに包摂される。
 いずれの場合においても、破壊板が破壊した時には、炉心の放射能が外部に放出されることになるので、放出口や、そのルート(前記した、原子炉格納容器の圧力境界に開けられた大口径の貫通孔を含む)で、水による浄化が行われるように、これらを囲む周りの領域を水没させておくこととする(請求項2の(3))。
 このようにすれば、新規な圧力解放(減圧)手段(請求項2の(2))が得られ、また、新規な放射性物質の浄化手段(請求項2の(3))が得られて、事故発生から10~14時間経過後であっても、格納容器圧力の加速度的上昇を食い止めて、原子炉格納容器の健全性を確実に維持するとともに、放射能レベルが高い揮発性FPなどの放射能の外部への放出を防止することができる。
(発明の効果)
 以上、請求項1及び請求項2に係る各発明の作用、効果について説明したが、これらの説明から明らかなとおり、本願の発明によれば、東電福島事故に見られたような、全電源喪失下における炉心溶融事故という、きわめて稀であるが、最も過酷な事故(シビアアクシデント)においても、原子炉圧力容器の健全性を守り、さらには、最後の守りである原子炉格納容器の健全性を守って、放射能の外部への放出を防止することができる。
 すなわち、福島1号機と同等以下の小型の原子炉の場合では、原子炉停止(核分裂反応停止)後の崩壊熱の除去においては、消防ポンプ等による炉心注水を止めて、何もしなくて放置しておくだけで、原子炉圧力容器壁の温度上昇で保温材が破壊されて、原子炉の周囲の気流の自然対流により、原子炉が、その圧力容器外面を通して自然に冷却される、自然冷却原子炉を構築することができる。
 また、大型の原子炉の場合には、原子炉圧力容器外面の自然冷却では冷却不足するので、圧力容器外面又はその保温材外面の水の蒸発熱による冷却を行うことができるように、炉心注水停止後に、遮蔽コンクリート内側(原子炉圧力容器の保温材と遮蔽コンクリートとの間)に注水する注水手段を設けることにより、原子炉が、その圧力容器外面又はその保温材外面を通して水冷却される、水冷却原子炉を構築することができる。
 これらにより、炉心溶融事故時にも、原子炉圧力容器と原子炉格納容器の健全性を守り、放射能の外部への放出を防止(ないしは極小に)して、その機能を守ることができる、きわめて安全な、炉心溶融事故に対応可能な原子炉を得ることができる。
 なお、必要とする改造、設計変更、運用変更等は、きわめて限定されており、現行の軽水炉のわずかな変更で、きわめて効果の大きい成果を上げることができる。
本願の発明の第1の実施例の原子炉(BWR、PWR)の、圧力容器の外殻部分(圧力容器壁、保温材、隙間を含む)の縦断面図である。 同第2の実施例の原子炉(PWR)の、格納容器の圧力境界部分を水平方向から透視した縦断面の概念図であって、そこに開けられた大口径の貫通孔と、その貫通孔を水没させる手段を説明するための図である。 従来の原子炉(BWR)の建屋及び格納容器部分の縦断面図であって、福島1号機が、その原子炉圧力容器の保温材破損時に示したデータの解析を説明するための図である。 図3の部分拡大図である。
(第1の実施例)
 次に、本願の発明の、放射能の放出防止を目的とした、炉心溶融事故に対応可能な原子炉の第1の実施例を、図面を参照して、詳細に説明する。
 この第1の実施例は、特許請求の範囲の請求項1に記載された発明を実施した原子炉であり、この原子炉は、沸騰水型軽水炉(BWR)において好適に使用される。
 そして、この第1の実施例の原子炉は、図1及び図3をも参照すれば、次のような、(1)(a)、(b)の手段を備えている。
(1)(a)炉心溶融事故を想定し、炉心2内でのジルコニウム・水反応又は膜沸騰の発生を炉心圧力等で検知した後は、炉心2内への注水を中止する炉心注水遮断手段、及び
   (b)炉心溶融事故時には、前記(a)の炉心2への注水を中止した後で、炉心崩壊熱を、原子炉圧力容器3外面からの輻射熱の放射によって除去するだけでなく、(i)小型の原子炉1の場合、前記原子炉圧力容器3外面の自然冷却によっても除去することができるようにするために、保温材4を確実に溶融破壊することができるように、保温材4の製作時の材料選定における溶融点制限を管理する、保温材4の溶融点制限管理手段、又は(ii)大型の原子炉1の場合、前記原子炉圧力容器3外面又はその保温材4外面の水冷却によっても除去することができるようにするために、前記原子炉圧力容器3の保温材4と遮蔽コンクリート13との間に注水する注水手段。
 以下、更に具体的に、これらの手段の実施の態様を説明する。
 先ず、(1)(a)の手段の実施の態様については、炉心圧力を検知する手段として、現行の事故時対応の圧力計で対応することができる。
 また、全電源喪失等で、計測機器等の使用が不可能な場合であっても、炉心冷却を喪失して後の経過時間、保有水量の減少、崩壊熱等により、膜沸騰への移行時期は、ある程度予測できるので、その時期を過ぎると、原子炉1の炉心2内への注水は止めて、原子炉圧力容器3の周囲を流れる気流の自然対流で、同圧力容器3の外面が自然に冷却される、自然冷却原子炉へと移行するようにする。なお、この気流の自然対流は、次に述べる(1)(b)(i)の手段により、圧力容器3の温度上昇で、保温材4が溶融破壊されることにより、生じるものである。
 よって、(1)(a)の手段について、従来と比べて、大きな運用の変更等は、必要ない。
 次に、(1)(b)(i)の手段の実施の態様については、現状の福島1号機でも達成できていた実績があり、これを引き続き使用することができる。
 具体的に説明すれば、保温材材料には、アルミニウム金属が使用されており、その溶融点は、約650℃であり、炉心溶融事故時に、炉心2への注水を中止した場合には、原子炉圧力容器3の炉心2近くの高温部で、燃料の崩壊熱により、650℃程度まで上昇したと考えられ、このため、その保温材4は、溶融破壊したものと考えられる。そして、これにより、原子炉1の周囲に気流の自然対流が生じ、原子炉1は、その圧力容器外面を通して自然に冷却されたものと考えられる。
 他方、原子炉圧力容器(これは、低合金鋼からなる。)3は、650℃程度では、その強度が保たれている。
 次に、(1)(b)(ii)の手段の実施の態様については、この注水手段は、格納容器6内の遮蔽コンクリート13上部から遮蔽コンクリート13内側へ注水するだけであるが、新たに配管を設置する必要がある。
 原子炉出力が大型化した大型の原子炉1の場合には、原子炉圧力容器3外面の自然冷却では冷却不足するので、この注水手段により、遮蔽コンクリート13の内側(原子炉圧力容器3の保温材4と遮蔽コンクリート13との間)に注水し、その水の蒸発熱による原子炉圧力容器3外面又はその保温材4外面の水冷却を行うようにする。
(第2の実施例)
 次に、本願の発明の、放射能の放出防止を目的とした、炉心溶融事故に対応可能な原子炉の第2の実施例を、図面を参照して、詳細に説明する。
 この第2の実施例は、特許請求の範囲の請求項2に記載された発明を実施した原子炉であり、この原子炉は、加圧水型軽水炉(PWR)において好適に使用される。
 そして、この第2の実施例の原子炉は、第1の実施例の原子炉が備える(1)(a)、(b)の手段を備えるほかに、図1、図2をも参照すれば、次のような(2)、(3)の手段を備えている。
(2)原子炉格納容器6の圧力境界に開けられた大口径の貫通孔10と、該貫通孔10内に設けられた破壊板11。
(3)前記(2)の貫通孔10を、原子炉1の通常運転時には、水没させる手段。
 この第2の実施例の原子炉が、(1)(a)、(b)の手段のほかに、これら(2)、(3)の手段を備えるのは、〔発明の効果〕の欄で説明したところから明らかなとおり、この実施例の原子炉が、特にPWRにおける炉心溶融事故を想定していることによる。
 PWRにおいては、炉心溶融事故時に、炉心注水の継続、停止の如何に関わらず、原子炉格納容器6内部の圧力が急上昇することが想定されるが、そうした場合への対処として、格納容器6の破損を防止し、その健全性を維持するとともに、放射能の外部への放出を防止するための手段が求められ、これら(2)、(3)の手段は、この要求に応えようとするものである。
 以下、更に具体的に、これらの手段の実施の態様を説明する。
 先ず、(1)(a)、(b)の手段の実施の態様については、既に第1の実施例の説明の中で述べたので、ここでの反復説明を省略するが、これらの手段のうち、特に(1)(b)(ii)の手段については、以下に、1点だけ補足しておく。
 (1)(b)(ii)の手段による、原子炉出力が大型化した場合の遮蔽コンクリート13の内側への注水については、BWRの場合には、既に第1の実施例の説明の中で述べたとおり、新たに配管を設置することにより行われるが、PWRの場合には、これに代えて、次のような手段を採用することができる。
 すなわち、後で(2)と(3)の各手段の実施の態様について説明されるとおり、原子炉格納容器6の圧力境界に開けられる貫通孔10は、格納容器6内のキャビティ8内の底から4m程の深さ領域に、格納容器6の壁を貫通するようにして、固定して設置される。また、貫通孔10の周りを、原子炉1の通常運転時に、水没させるのには、燃料交換時にキャビティ8内に水を張るのに使用したのと同じ水補給ラインを使用して、キャビティ8内の同じ深さ領域内に水張りすることにより行われる。よって、このキャビティ8内の水張りのために使用される水補給ラインを、その手段として採用して、原子炉圧力容器3外面又はその保温材4外面を水冷却するための注水を得るようにすることができる。
 具体的には、この場合には、キャビティ8内の水張りの水位が、キャビティ8の底から4m程の深さ領域の水位を越えて、原子炉圧力容器上蓋3a(以下、「上蓋3a」と略称する場合がある。)のレベルまで達するように、この水補給ラインより水を補給するようにする。このようにすれば、自然に、遮蔽コンクリート13の内側へと注水することができる。
 この点について、より詳しく説明すると、図1及び図2に示されるように、原子炉圧力容器3の上部は、前記した原子炉圧力容器上蓋3aとなっていて、この上蓋3aが、原子炉圧力容器3の本体部にボルトで固定されているが、この上蓋3aの下部には、リング状の出っ張りが溶接されており、この出っ張りと遮蔽コンクリート13との間には、一定の隙間(キャビティシール部)16が開けられている。そして、この隙間16を、キャビティーシールリング17という手動可動なリングが覆っており、このキャビティ―シールリング17を上下させることにより、隙間16を閉じたり開けたりすることができるようになっている。
 この隙間16は、通常運転中は、数cmほど開いていて、保温材4外面を冷却する空気を原子炉圧力容器3下部より、このシール部の隙間16を通して、キャビティー8内に流している。そして、燃料交換の時には、この隙間16を閉じて(リング17を下げて)、燃料交換用水をキャビティー8内に水張りして満水になるようにしている。炉心溶融事故時には、この隙間16は、通常運転中の開いたままの状態であるので、水補給ラインより注水をすると、キャビティ8内の底から4m程の深さ領域の水面が上昇していき、シール部の隙間16より、自然に、水が、遮蔽コンクリート13の内側の保温材4外面に流れ落ちることになる。
 次に、(2)の手段の実施の態様については、従来のPWRで、原子炉格納容器6の圧力境界にある燃料移送用貫通部12に設置されて、燃料交換時に使用されていた燃料移送管10’(内部にレールが敷設されている)を、そのまま格納容器6の圧力境界に開けられた大口径の貫通孔10として使用することとし、この燃料移送管10’を塞ぐために用いられていた蓋を、所定の圧力を受けて自壊するように設計された破壊板(ラプチャーディスク)11に変更して、これを、貫通孔10内に設置するようにすることにより、対応することができる。
 前記した、燃料移送用貫通部12は、従来、格納容器6内のキャビティ8内の底から4m程の深さ領域に設定されており、燃料移送管10’も、この領域において、格納容器6の壁を貫通するようにして、固定して設置されている。
 よって、本第2の実施例の貫通孔10も、キャビティ8内の底から4m程の深さ領域に、同じようにして設置することとする。
 そして、これにより、格納容器6内の過圧力を解放して減圧するルートとしての機能を発揮することができるようになるとともに、従来の燃料移送管10’が果たしていた役割も、同じようにして果たすことができる。
 また、破壊板11は、貫通孔10が、格納容器6の圧力境界から格納容器6の外側の通路9内に突出した、その外側端部内に設置することができる。この通路9は、建屋7内に設置されている使用済み燃料ピット(不図示)へと通じる通路である。
 また、破壊板11の破壊圧力の設定は、自由であるが、現行の規制基準を満足するためには、設計圧力(最高使用圧力)又はそれ以上とする。
 よって、(2)の手段についても、従来の設備の改造、運用の変更は容易であり、容易に実施することができる。
 なお、ここで、従来の燃料移送管10’を介して行われている燃料交換の作業のあらましを、簡単に説明しておく。これにより、本第2の実施例の貫通孔10が果たす役割も、また、明らかになろう。
 従来のPWRの場合、燃料交換時には、先ず、キャビティ8内及び通路9内に、図2に示されるように、格納容器6内の運転床面近くまで水張りがなされる。
 次いで、クレーンが、原子炉圧力容器3内の燃料集合体を1個づつ取り出して、キャビティ8の底から4m程の深さ位置にあるキャビティ8の上床面に仮置きする。次いで、そこから4mだけ低い位置にあるキャビティ8の底床面にまで下降移送して、ここで、燃料集合体をいったん寝かせ、これを燃料移送管10’内に収納する。次いで、ここを遠隔操作で通過させて、使用済み燃料ピット側の通路9へと送る。ここで、燃料集合体を、また、縦に起こして、そのまま通路9から使用済み燃料ピットへと移送する。
 新しい燃料集合体が搬送されて来たら、前記と逆の動作で、燃料集合体を、通路9内から原子炉圧力容器3内へと移送する。
 これらの移送作業は、全て運転床面にて、クレーンの遠隔操作で行われ、燃料集合体は、全て水中で操作される。
 このようにして、燃料の交換が終わると、キャビティ8内と通路9内から水を抜いて、燃料移送管10’に蓋をしていた。
 本第2の実施例の貫通孔10も、また、前記と同じようにして、従来の燃料移送管10’が果たしていた役割を果たすことができる。
 次に、(3)の手段の実施の態様については、格納容器6内のキャビティ8内の水張りと、格納容器6に貫通孔10を介して連通する前記通路9内の水張りとに関する運用の違いだけであるので、この手段の実施の態様としては、常時監視の水位計の追加設置だけで済ませることができる。
 よって、(3)の手段についても、従来と比べて、設備の大幅な改造、大きな運用の変更等は必要なく、容易に実施することができる。
 格納容器6内のキャビティ8内の水張りについて、具体的に説明すると、キャビティ8内の特別に深くされている部分、すなわち、キャビティ8内の底から4m程の深さ領域に、燃料交換後の通常運転時も、水を張っておくようにすれば良い。同時に、通路9内にも、同じ深さに水を張っておくようにすれば良い。
 このようにすれば、キャビティ8内の同じ深さ領域に設置されている貫通孔10を、原子炉1の通常運転時に、水没させることが容易に行える。
 これらキャビティ8内の底から4m程の深さ領域及び通路9内の同じ深さ領域は、従来、燃料交換時は水没させられ、燃料交換が終了して、原子炉1の通常運転に移ると、水が抜かれて、空にされていた領域である。揮発性FPのような放射能レベルが高いFPは、水による浄化作用が非常に大きいので、前記のような運用は、放射能の放出防止を図る上で、きわめて有効である。
 以上、本願の発明の実施例について説明したが、本願の発明は、以上の実施例に限定されず、その要旨を逸脱しない範囲で、種々の変更が可能である。
 例えば、本願の発明の実施例では、炉心に収容される燃料の被覆管は、ジルコニウム管とされたが、これに限られず、高温で水と反応して、反応熱を発生する金属材料からなる被覆管であれば良く、このような材料からなる被覆管により被覆された燃料を炉心内に有する原子炉にも、本願の発明を適用することができる。
 以上、本願の発明は、本発明者が、東電福島事故の原因分析を、実測値を忠実に追って、その物理現象を見極めながら、その結果と事象の進展を一つづつ確認して、行ったことにより、達成できたものである。そのためには、特に沸騰熱伝達の理論に基づく、ジルコニウム・水反応時の沸騰現象の分析評価が重要であった。
 本願の発明の基礎となった、その原因分析の過程は、論文にまとめられているので、これを、資料1、資料2として、参考のために提出する。
 資料1:松岡強著「東電福島第一原子力発電所事故における全電源喪失後の1号機の14時間」日本原子力学会和文論文誌Vol.21, No.1(2022.03.01発行予定)、日本原子力学会発行
 資料2:松岡強著「炉心冷却喪失後の原子炉・格納容器圧力変化に基づく東電福島事故進展解明への一考察」日本原子力学会和文論文誌Vol.20,p131-142 (2021.09発行予定)、日本原子力学会発行
 1…原子炉、2…炉心、3…原子炉圧力容器、3a…原子炉圧力容器上蓋、4…保温材、5…隙間、6…原子炉格納容器、6a…原子炉格納容器上蓋(ドライウェル(D/W)上蓋)、7…建屋、8…キャビティ、9…使用済み燃料ピット側通路、10…貫通孔、10’…燃料移送管(従来)、11…破壊板(ラプチャーディスク)、12…燃料移送用貫通部、13…遮蔽コンクリート(遮蔽壁)、14…ドライウェル(D/W)、14a…ドライウェル(D/W)上部、14b…ドライウェル(D/W)下部(混合部を含む)、15…圧力抑制室(S/C)、16…隙間(キャビティシール部)、17…キャビティシールリング、18…保温材破損部、19…過熱蒸気の上昇流、20…混合部、21…温度境界層(温度成層化域)、22…原子炉圧力容器スカート部。
 
 
 
 
 

Claims (2)

  1.  原子炉が、次の(1)の手段を備え、想定される炉心溶融事故時には、前記原子炉が、原子炉圧力容器外面又はその保温材外面を通し、自然冷却又は水冷却されるとともに、放射能の放出が防止されるようになっていることを特徴とする、放射能の放出防止を目的とした、炉心溶融事故に対応可能な原子炉。
    (1)(a)炉心溶融事故を想定し、炉心内でのジルコニウム・水反応又は膜沸騰の発生を炉心圧力等で検知した後は、炉心注水を中止する炉心注水遮断手段、及び
       (b)炉心溶融事故時には、前記(a)の炉心注水を中止した後で、炉心崩壊熱を、原子炉圧力容器外面からの輻射熱の放射によって除去するだけでなく、
    (i)小型の原子炉の場合、前記原子炉圧力容器外面の自然冷却によっても除去することができるようにするために、保温材を確実に溶融破壊することができるように、保温材の製作時の材料選定における溶融点制限を管理する、保温材の溶融点制限管理手段、又は
    (ii)大型の原子炉の場合、前記原子炉圧力容器外面又はその保温材外面の水冷却によっても除去することができるようにするために、前記原子炉圧力容器の保温材と遮蔽コンクリートとの間に注水する注水手段。
  2.  原子炉が、次の(1)~(3)の手段を備え、想定される炉心溶融事故時には、前記原子炉が、原子炉圧力容器外面又はその保温材外面を通し、自然冷却又は水冷却されるとともに、放射能の放出が防止されるようになっていることを特徴とする、放射能の放出防止を目的とした、炉心溶融事故に対応可能な原子炉。
    (1)(a)炉心溶融事故を想定し、炉心内でのジルコニウム・水反応又は膜沸騰の発生を炉心圧力等で検知した後は、炉心注水を中止する炉心注水遮断手段、及び
       (b)炉心溶融事故時には、前記(a)の炉心注水を中止した後で、炉心崩壊熱を、原子炉圧力容器外面からの輻射熱の放射によって除去するだけでなく、
    (i)小型の原子炉の場合、前記原子炉圧力容器外面の自然冷却によっても除去することができるようにするために、保温材を確実に溶融破壊することができるように、保温材の製作時の材料選定における溶融点制限を管理する、保温材の溶融点制限管理手段、又は
    (ii)大型の原子炉の場合、前記原子炉圧力容器外面又はその保温材外面の水冷却によっても除去することができるようにするために、前記原子炉圧力容器の保温材と遮蔽コンクリートとの間に注水する注水手段。
    (2)原子炉格納容器の圧力境界に開けられた大口径の貫通孔と、前記貫通孔内に設けられた破壊板。
    (3)前記(2)の貫通孔を、前記原子炉の通常運転時には、水没させる手段。
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
PCT/JP2021/035210 2021-09-25 2021-09-25 放射能の放出防止を目的とした、炉心溶融事故に対応可能な原子炉 WO2023047555A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022503423A JP7082253B1 (ja) 2021-09-25 2021-09-25 放射能の放出防止を目的とした、炉心溶融事故に対応可能な原子炉
PCT/JP2021/035210 WO2023047555A1 (ja) 2021-09-25 2021-09-25 放射能の放出防止を目的とした、炉心溶融事故に対応可能な原子炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/035210 WO2023047555A1 (ja) 2021-09-25 2021-09-25 放射能の放出防止を目的とした、炉心溶融事故に対応可能な原子炉

Publications (1)

Publication Number Publication Date
WO2023047555A1 true WO2023047555A1 (ja) 2023-03-30

Family

ID=81926010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035210 WO2023047555A1 (ja) 2021-09-25 2021-09-25 放射能の放出防止を目的とした、炉心溶融事故に対応可能な原子炉

Country Status (2)

Country Link
JP (1) JP7082253B1 (ja)
WO (1) WO2023047555A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220896A (ja) * 1984-04-17 1985-11-05 株式会社日立製作所 事故時原子炉水位調整装置
JPH0875887A (ja) * 1994-09-05 1996-03-22 Mitsubishi Atom Power Ind Inc 原子炉の炉心デブリ冷却装置
US20200161011A1 (en) * 2017-05-24 2020-05-21 Korea Atomic Energy Research Institute Cooling facility in a reactor vessel and electric power generation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220896A (ja) * 1984-04-17 1985-11-05 株式会社日立製作所 事故時原子炉水位調整装置
JPH0875887A (ja) * 1994-09-05 1996-03-22 Mitsubishi Atom Power Ind Inc 原子炉の炉心デブリ冷却装置
US20200161011A1 (en) * 2017-05-24 2020-05-21 Korea Atomic Energy Research Institute Cooling facility in a reactor vessel and electric power generation system

Also Published As

Publication number Publication date
JP7082253B1 (ja) 2022-06-07
JPWO2023047555A1 (ja) 2023-03-30

Similar Documents

Publication Publication Date Title
US3865688A (en) Passive containment system
JP6676053B2 (ja) 加圧水型原子炉の溶融炉心を冷却して閉じ込めるシステム
KR101665059B1 (ko) 코어캐쳐를 구비한 원자로용기 내외 노심용융물 냉각 시스템 및 방법
JP3118489B2 (ja) 原子炉の偶発的メルトダウン後に炉心を回収するための装置を備えた原子炉
KR100668048B1 (ko) 원자로 외벽 냉각 직접 주입 시스템 및 그 방법
JP7255778B2 (ja) 原子炉の炉心溶融物冷却方法および原子炉の炉心溶融物冷却制御システム
JP2018500561A (ja) 加圧水型原子炉の溶融炉心を冷却して閉じ込めるシステム
US10147506B2 (en) Conformal core cooling and containment structure
Fischer et al. Core melt stabilization concepts for existing and future LWRs and associated research and development needs
JPH0727050B2 (ja) 受動冷却系を備えた液体金属冷却型原子炉
WO2023047555A1 (ja) 放射能の放出防止を目的とした、炉心溶融事故に対応可能な原子炉
JP4746911B2 (ja) 高速炉および高速炉施設の建設方法
JPH02281190A (ja) 原子炉格納構造物の安全冷却系
US20240221964A1 (en) Reactor capable of coping with core meltdown accident with aim of preventing release of radioactive substances
KR930003059B1 (ko) 원자력발전소 격납건물 건전성 확보장치
KR101404954B1 (ko) 액체금속층을 이용한 노심용융물 냉각방법 및 이를 이용한 원자로 냉각시스템
Song et al. Improvement of molten core cooling strategy in a severe accident management guideline
KR101404955B1 (ko) 액체금속을 이용한 원자로 외벽 냉각방법 및 이를 이용한 원자로 외벽 냉각시스템
WO2024009716A1 (ja) 原子力プラント
Takashima et al. Analyses of wet and dry cavity strategies for bwr severe accident management with melcor-2.2
CA3066230A1 (en) Cooling method for reactor molten core melt and cooling control system for reactor molten core
Stępień et al. Overview of the safety systems used in generation III and III+ of reactors
Han-Chul In Plant Accident Management
Tynys Safety assessment of interim spent nuclear fuel storage
JP2022032025A (ja) 炉心溶融事故を軽減するための専用の安全装置を含む一体型高速中性子原子炉

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022503423

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 17998988

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE