WO2023047449A1 - 光ファイバセンシング装置及び方法 - Google Patents

光ファイバセンシング装置及び方法 Download PDF

Info

Publication number
WO2023047449A1
WO2023047449A1 PCT/JP2021/034518 JP2021034518W WO2023047449A1 WO 2023047449 A1 WO2023047449 A1 WO 2023047449A1 JP 2021034518 W JP2021034518 W JP 2021034518W WO 2023047449 A1 WO2023047449 A1 WO 2023047449A1
Authority
WO
WIPO (PCT)
Prior art keywords
ref
interferometer
sensor
signal
light
Prior art date
Application number
PCT/JP2021/034518
Other languages
English (en)
French (fr)
Inventor
槙悟 大野
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/034518 priority Critical patent/WO2023047449A1/ja
Priority to JP2023549183A priority patent/JPWO2023047449A1/ja
Publication of WO2023047449A1 publication Critical patent/WO2023047449A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light

Definitions

  • This disclosure relates to the field of optical fiber sensing technology.
  • An optical fiber sensor is a general term for systems and measurement technologies that use optical fibers as a sensor medium to sense changes in physical quantities such as temperature and strain in association with changes in light intensity, frequency, or phase.
  • One of the optical fiber sensors is an interferometric optical fiber sensor.
  • An interferometer-type optical fiber sensor uses one optical path of a Mach-Zehnder interferometer as a sensor unit, and performs sensing using a phenomenon in which the intensity of an interference signal changes due to changes in the optical path length of the sensor unit due to temperature or strain.
  • a multi-point interferometric optical fiber sensor has also been developed that connects multiple interferometric optical fiber sensors and separates and detects the signals of individual sensors.
  • the multi-point interferometer type optical fiber sensor has a time domain division multiplexing system, a wavelength domain division multiplexing system, and a coherence domain division multiplexing system depending on the difference in the division multiplexing system of a plurality of sensor signals.
  • the coherence domain division multiplexing method is characterized in that it is possible to constantly monitor each sensor signal and to increase the number of sensors without using a special optical device such as a wavelength division optical coupler.
  • Non-Patent Document 1 The outline of the multi-point interferometer type optical fiber sensor based on the coherence area division multiplexing method is as described in Non-Patent Document 1. Specifically, low-coherence light is incident on a sensor section in which a plurality of Mach-Zehnder interferometers are connected, and the transmitted light is optically branched, and signals are separated and detected by light-receiving Mach-Zehnder interferometers corresponding to individual sensor sections.
  • a plurality of interferometers used in the sensor section are designed to have different inter-optical path propagation delay time differences, and the inter-optical path propagation delay time difference of the light receiving interferometer is equal to the inter-optical path propagation delay of the corresponding interferometer of the sensor section. Design to equal the time difference.
  • ⁇ j is the propagation delay time difference between the optical paths in the j-th interferometer in the receiver.
  • ⁇ i and ⁇ i be the optical phase changes due to the propagation delay time and the change in temperature or strain in the i-th sensor unit, and E i (t) and ⁇ I j (t)> can be described as follows. .
  • ai is a constant related to the amplitude of light passing through the i-th sensor section.
  • ⁇ ( ⁇ ) is the autocorrelation function of E 0 (t) and is defined by the following equation. where the subscript * is the complex conjugate.
  • the time average ⁇ I j (t)> of the light intensity detected by the j-th photodetector changes depending only on the optical phase change ⁇ j at the sensor section where the propagation delay time difference of the interferometer matches. In other words, it becomes possible to separate and detect the signals of the individual sensor units for each photodetector.
  • ⁇ j has the following relationship with temperature change ⁇ T j and strain change ⁇ j at the j-th sensor portion.
  • C T and C ⁇ are proportional constants for temperature change and strain change, respectively.
  • the present disclosure has been made in view of the above circumstances, and its purpose is to enable multipoint sensors without complicating the device configuration and design in a multipoint interferometer type optical fiber sensor based on coherence area division multiplexing. It is to provide the technology to
  • the optical fiber sensing device of the present disclosure includes a light source that outputs continuous light; an optical coupler for branching the continuous light; a reference interferometer that receives the continuous light branched by the optical coupler and causes a predetermined propagation delay time difference ⁇ ref in the continuous light; A plurality of Mach-Zehnder interferometers are connected, into which the continuous light branched by the optical coupler is incident, and which cause the continuous light to have propagation delay time differences corresponding to integral multiples of the predetermined propagation delay time difference ⁇ ref and different from each other, a sensor interferometer in which one of the optical paths of the Mach-Zehnder interferometer functions as a sensor unit; a signal processing unit that performs signal processing using a received light signal I(t) received by the sensor interferometer and a reference signal I ref-1 (t) received by the reference interferometer; with The signal processing unit is calculating a reference signal I ref-j (t) corresponding to the j-th (j is a natural number
  • the fiber optic sensing method of the present disclosure comprises: splits the continuous light from the light source, Entering the branched continuous light into a reference interferometer that causes a predetermined propagation delay time difference ⁇ ref in the continuous light, A plurality of Mach-Zehnder interferometers are connected that cause the continuous light to have propagation delay time differences corresponding to integral multiples of the predetermined propagation delay time difference ⁇ ref and different from each other, and one of the optical paths of the Mach-Zehnder interferometers functions as a sensor unit.
  • a signal processing unit uses a received light signal I(t) received by the sensor interferometer and a reference signal I ref-1 (t) received by the reference interferometer to obtain the sensor unit
  • a fiber optic sensing method for detecting changes in The signal processing unit is using the reference signal I ref-1 (t) to calculate a reference signal I ref-j (t) corresponding to the j-th sensor unit; calculating a cross-correlation R j between the received light signal I(t) and the reference signal I ref-j (t); The change in the cross-correlation Rj is used to detect the change in the j-th sensor unit.
  • multiple sensor units can be provided without using an interferometer on the light receiving side, and multi-point sensing is possible with a single device configuration regardless of the number of sensor units. Therefore, the present disclosure can enable multipoint sensors without complicating device configuration and design in a multipoint interferometric optical fiber sensor based on coherence area division multiplexing.
  • FIG. 4 is a conceptual diagram of calculation of the phase X Mj (t) of the reference signal in the present disclosure
  • 1 is a block diagram showing a device configuration according to Embodiment 1 of the present disclosure
  • FIG. 4 is a flow chart showing an implementation procedure in Embodiments 1 and 2 of the present disclosure
  • FIG. 3 is a block diagram showing a device configuration according to Embodiment 2 of the present disclosure
  • the optical signal transmitted through the interferometer of the sensor unit is received without using the interferometer on the light receiving side.
  • the optical fiber sensing device of the present disclosure separately prepares a reference interferometer passing through an optical path different from the interferometer of the sensor unit, and performs signal processing using the signal acquired from the reference interferometer. generates a pseudo-signal before the change in temperature and strain of each sensor unit. In the present disclosure, this pseudo-generated signal is referred to as a reference signal.
  • the optical fiber sensing device of the present disclosure calculates the cross-correlation between the reference signal and the received light signal obtained from the interferometer of the sensor unit, thereby realizing a multi-point interferometer type optical fiber sensor without complicating the device configuration. come true.
  • the received light signal I(t) obtained for the optical path passing through N (N is a natural number) sensor sections is represented by the following equation.
  • E 0 (t) is the complex electric field amplitude of the continuous light before entering the N sensor units
  • the received light signal I(t) is expressed by the following equation.
  • ⁇ i is the propagation delay time at the i-th sensor portion
  • ⁇ i is the light phase change at the i-th sensor portion
  • a i is a constant related to the light amplitude passing through the i-th sensor portion.
  • ⁇ (t) is the phase of continuous light from the light source, and the description of the DC component is omitted in the second line of Equation (9). Further, it was assumed that the intensity of light transmitted through each sensor portion is sufficiently weaker than the intensity of light not transmitted through the sensor portion (a i ⁇ 1), and the interference component between the transmitted light beams of the sensor portion can be ignored.
  • the reference signal I ref-1 (t) obtained from the transmitted light of the reference interferometer is represented by the following equation.
  • ⁇ ref is the propagation delay time difference between the optical paths in the reference interferometer.
  • X Mj (t) can be calculated by the following equation using X 1 (t).
  • FIG. 1 is an image of calculation of X Mj (t) by Equation (13) when M j >1.
  • X Mj (t) is calculated by adding waveforms obtained by shifting M j X 1 (t) by ⁇ ref on the time axis.
  • a pseudo reference signal I ref ⁇ Mj (t) for the j-th sensor unit is generated by the following equation.
  • changes in temperature and strain of the j-th sensor section can be sensed.
  • FIG. 2 is a block diagram showing the device configuration in this embodiment.
  • a low-coherence light source 11 is used as a light source, and continuous light output from the low-coherence light source 11 is branched by an optical coupler 16 to enter a sensor interferometer 20 and a reference interferometer 30 .
  • the sensor interferometer 20 includes N sensor units 21#1 to 21#N.
  • the light receiver 13S receives light from the interferometer 20 for sensors.
  • the light receiver 13S receives light from the reference interferometer 30.
  • the reference interferometer 30 is a Mach-Zehnder interferometer having an inter-optical path propagation delay time difference of ⁇ ref .
  • the inter-optical path propagation delay time differences ⁇ 1 to ⁇ N of the Mach-Zehnder interferometers of the sensor interferometer 20 are set to integral multiples of ⁇ ref so that the plurality of Mach-Zehnder interferometers do not overlap each other (M j ⁇ M i (j ⁇ i)).
  • the low-coherence light source 11 having a coherence time shorter than ⁇ ref is used.
  • the sensor interferometer 20 has a chain configuration in which a plurality of Mach-Zehnder interferometers are connected in series using optical couplers 22#1 to 22#N and 23#1 to 23#N.
  • One optical path of each Mach-Zehnder interferometer of total 20 is assumed to be sensor units 21#1 to 21#N.
  • FIG. 3 is a flow chart showing the implementation procedure in this embodiment.
  • the implementation procedure includes an optical interference signal acquisition step S11, a reference signal phase calculation step S12, a phase concatenation step S13, a pseudo signal generation step S14, and a cross-correlation step S15.
  • an optical interference signal acquisition step S11 a reference signal phase calculation step S12
  • a phase concatenation step S13 a phase concatenation step S13
  • a pseudo signal generation step S14 and a cross-correlation step S15.
  • the optical interference signal acquisition step S11 two types of optical interferometers, the sensor interferometer 20 and the reference interferometer 30, are used to acquire respective optical interference signals.
  • the continuous light transmitted through the sensor interferometer 20 and the continuous light transmitted through the reference interferometer 30 are received by individual light receivers 13S and 13R, respectively, and converted into electrical signals.
  • the received light signals converted into electric signals are each converted into digital signals by the A/D converter 14 and transferred to the signal processing section 15 .
  • the signal processing unit 15 uses the digital signal from the A/D converter 14 to calculate optical interference signals of the sensor interferometer 20 and the reference interferometer 30 respectively.
  • the digital signal obtained from the photodetector 13S is the photodetection signal I(t)
  • the digital signal obtained from the photodetector 13R is the photodetection signal Iref-1 (t).
  • the signal processing unit 15 calculates the received light signal I ref ⁇ 1 (t ) to calculate the phase X 1 (t).
  • X 1 (t) can be calculated from the following equation using the signal I ref ⁇ 1 (t) obtained with reference interferometer 30 .
  • H[I ref-1 (t)] is the Hilbert transform of I ref-1 (t), and if I ref-1 (t) is expressed as in Equation (10), then H[I ref-1 (t)] is represented by the following equation.
  • X 1 (t) is used to obtain X Mj (t) from equation (13).
  • ⁇ j is the inter-optical path propagation delay time difference in the interferometer of the j-th sensor unit 21#j.
  • the pseudo signal I ref ⁇ Mj (t) for the j-th sensor unit 21#j is calculated by Equation (14).
  • the cross-correlation R Mj between the optical interference signal I(t) obtained with respect to the sensor interferometer 20 and the pseudo signal I ref ⁇ Mj (t) is calculated.
  • the magnitude of the calculated RMj is monitored to detect changes in temperature and strain at the j-th sensor section 21#j.
  • FIG. 4 is a block diagram showing the device configuration in this embodiment.
  • a low-coherence light source 11 is used as a light source, and continuous light output from the low-coherence light source 11 is branched by an optical coupler 16 to enter a sensor interferometer 20 and a reference interferometer 30 .
  • the reference interferometer 30 is a Mach-Zehnder interferometer having an inter-optical path propagation delay time difference of ⁇ ref .
  • the sensor interferometer 20 includes a plurality of sensor units 21 connected in parallel, and the propagation delay time ⁇ of continuous light passing through the sensor interferometer 20 differs for each sensor unit 21 .
  • the sensor interferometer 20 has a structure in which optical fibers are connected in a ladder shape using optical couplers 22#1 to 22#N and 23#1 to 23#N, and the optical paths of each stage of the ladder shape are The sensor units are 21#1 to 21#N.
  • Delay time until light emitted from the upper left optical coupler 22#0 in the sensor interferometer 20 of FIG. is an integral multiple of ⁇ ref so as not to overlap each other in the plurality of sensor units 21 (M j ⁇ M i (j ⁇ i)).
  • the continuous light transmitted through the sensor interferometer 20 and the continuous light transmitted through the reference interferometer 30 are received by individual light receivers 13S and 13R, respectively, and converted into electrical signals.
  • the received light signal converted into an electric signal is converted into a digital signal by the A/D converter 14 and transferred to the signal processing section 15 .
  • the low-coherence light source 11 used in this apparatus configuration has a coherence time shorter than ⁇ ref .
  • the signal processing unit 15 of the present disclosure can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
  • This disclosure can be applied to the information and communications industry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

本開示の目的は、コヒーレンス領域分割多重方式に基づく多点干渉計型光ファイバセンサにおいて、装置構成及び設計を複雑化させることなくセンサ多点化を可能とする技術を提供することにある。 本開示は、連続光に所定の伝搬遅延時間差を生じさせる参照用干渉計と、複数のマッハツェンダ干渉計の光路の一方がセンサ部として機能するセンサ用干渉計と、前記センサ用干渉計の透過光を受光した受光信号I(t)と前記参照用干渉計の透過光を受光した参照信号Iref-1(t)を用いて信号処理を行う信号処理部と、を備え、前記信号処理部は、前記受光信号I(t)と前記参照信号Iref―j(t)の相互相関Rjを算出し、相互相関Rjの変化を用いて、j番目のセンサ部の変化を検出する、光ファイバセンシング装置である。

Description

光ファイバセンシング装置及び方法
 本開示は、光ファイバセンシング技術分野に関する。
 光ファイバセンサは、光ファイバをセンサ媒体として温度や歪み等の物理量変化を光強度、周波数又は位相の変化に対応付けてセンシングするシステム及び測定技術の総称である。光ファイバセンサの一つに、干渉計型光ファイバセンサがある。干渉計型光ファイバセンサは、マッハツェンダ干渉計の一方の光路をセンサ部とし、温度や歪みによるセンサ部の光路長変化により干渉信号強度が変化する現象を利用してセンシングを行う。
 また、複数の干渉計型光ファイバセンサをつないで個々のセンサの信号を分離検出する多点干渉計型光ファイバセンサも開発されている。多点干渉計型光ファイバセンサは、複数のセンサ信号の分割多重方式の違いにより、時間領域分割多重方式、波長領域分割多重方式、コヒーレンス領域分割多重方式がある。中でもコヒーレンス領域分割多重方式は、各センサ信号の常時モニタリングが可能であり、波長分割光カプラのような特殊な光デバイスを用いることなくセンサ多点化が可能という特徴がある。
 コヒーレンス領域分割多重方式による多点干渉計型光ファイバセンサの概要は非特許文献1で述べられているとおりである。具体的には、複数のマッハツェンダ干渉計が連結されたセンサ部に低コヒーレンス光を入射し、透過光を光分岐して個々のセンサ部に対応する受光用マッハツェンダ干渉計で信号を分離検出する。このとき、センサ部に用いられる複数の干渉計の光路間伝搬遅延時間差は互いに異なるように設計し、受光用の干渉計の光路間伝搬遅延時間差は対応するセンサ部の干渉計の光路間伝搬遅延時間差と等しくなるように設計する。
 センサ部の数をN(Nは自然数)、低コヒーレンス光源からの出射光の複素電界振幅をE(t)、i番目(i=1~N)のセンサ部の透過光の複素電界振幅をE(t)とすると、j番目(j=1~N)の受光器で検出される光強度の時間平均<I(t)>は次式で表される。
Figure JPOXMLDOC01-appb-M000001
ここでτは受信部におけるj番目の干渉計における光路間の伝搬遅延時間差である。
 i番目のセンサ部における伝搬遅延時間と温度又は歪みの変化による光位相変化をそれぞれτ、Δθとすると、E(t)及び<I(t)>は次式のように記述できる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
ここでaはi番目のセンサ部を通る光振幅に係る定数である。Γ(τ)はE(t)の自己相関関数であり、次式で定義される。
Figure JPOXMLDOC01-appb-M000004
ここで添字*は複素共役である。
 とり得るτの値に対してE(t)のコヒーレンス時間が十分短い場合、Γ(τ)は次式のようにみなせる。
Figure JPOXMLDOC01-appb-M000005
 式(3)に式(5)を代入すると、τ>0の領域では<I(t)>は次式のようになる。
Figure JPOXMLDOC01-appb-M000006
 したがって、j番目の受光器で検出される光強度の時間平均<I(t)>は、干渉計の伝搬遅延時間差が一致するセンサ部における光位相変化Δθのみに依存して変化する。つまり、個々のセンサ部の信号を受光器毎に分離検出することが可能となる。Δθは、j番目のセンサ部における温度変化ΔTと歪み変化Δεに対して次式の関係にある。
Figure JPOXMLDOC01-appb-M000007
ここでCとCεはそれぞれ温度変化と歪み変化に対する比例定数である。事前に比例定数CもしくはCεを求めておき、式(7)を式(6)に代入することで、対応するセンサ部における温度及び歪みの変化を測定できる。
J.L.Brooks,R.H.Wentworth,R.C.Youngquist,M.Tur,B.Y.Kim,and H.J.Shaw,"Coherence Multiplexing of Fiber-Optic Interferometric Sensors,"J.Lightw.Technol.,Vol.LT-3,No.5,pp.1062-1072,1985.
 従来のコヒーレンス領域分割多重方式に基づく多点干渉計型光ファイバセンサでは、センサ部の数だけ受光部にマッハツェンダ干渉計と受光器を用意する必要があるため、センサ部の多点化に伴い装置構成が複雑化・高コスト化してしまうという課題がある。また、受光部に用意される干渉計の光路間伝搬遅延時間差は対応するセンサ部の干渉計の光路間伝搬遅延時間差と一致するように設計する必要があり、これは必ずしも容易なことではない。
 本開示は上記事情を鑑みてなされたものであり、その目的はコヒーレンス領域分割多重方式に基づく多点干渉計型光ファイバセンサにおいて、装置構成及び設計を複雑化させることなくセンサ多点化を可能とする技術を提供することにある。
 本開示の光ファイバセンシング装置は、
 連続光を出力する光源と、
 前記連続光を分岐する光カプラと、
 前記光カプラで分岐された連続光が入射され、所定の伝搬遅延時間差τrefを当該連続光に生じさせる参照用干渉計と、
 前記光カプラで分岐された連続光が入射され、前記所定の伝搬遅延時間差τrefの整数倍に相当しかつ互いに異なる伝搬遅延時間差を当該連続光に生じさせる複数のマッハツェンダ干渉計が接続され、前記マッハツェンダ干渉計の光路の一方がセンサ部として機能する、センサ用干渉計と、
 前記センサ用干渉計の透過光を受光した受光信号I(t)と前記参照用干渉計の透過光を受光した参照信号Iref-1(t)を用いて信号処理を行う信号処理部と、
 を備え、
 前記信号処理部は、
 前記参照信号Iref-1(t)を用いて、j番目(jは自然数)の前記センサ部に対応する参照信号Iref―j(t)を算出し、
 前記受光信号I(t)と前記参照信号Iref―j(t)の相互相関Rを算出し、
 前記相互相関Rの変化を用いて、j番目の前記センサ部の変化を検出する。
 本開示の光ファイバセンシング方法は、
 光源からの連続光を分岐し、
 所定の伝搬遅延時間差τrefを当該連続光に生じさせる参照用干渉計に、前記分岐された連続光を入射し、
 前記所定の伝搬遅延時間差τrefの整数倍に相当しかつ互いに異なる伝搬遅延時間差を当該連続光に生じさせる複数のマッハツェンダ干渉計が接続され、前記マッハツェンダ干渉計の光路の一方がセンサ部として機能する、センサ用干渉計に、前記分岐された連続光を入射し、
 信号処理部が、前記センサ用干渉計の透過光を受光した受光信号I(t)と前記参照用干渉計の透過光を受光した参照信号Iref-1(t)を用いて、前記センサ部の変化を検出する光ファイバセンシング方法であって、
 前記信号処理部は、
 前記参照信号Iref-1(t)を用いて、j番目のセンサ部に対応する参照信号Iref―j(t)を算出し、
 前記受光信号I(t)と前記参照信号Iref―j(t)の相互相関Rを算出し、
 前記相互相関Rの変化を用いて、j番目の前記センサ部の変化を検出する。
  本開示によれば、受光側に干渉計を用いることなくセンサ部を多点化することができ、センサ部の数に関わらず単一の装置構成で多点センシングが可能となる。このため、本開示は、コヒーレンス領域分割多重方式に基づく多点干渉計型光ファイバセンサにおいて、装置構成及び設計を複雑化させることなくセンサ多点化を可能とすることができる。
本開示における参照信号の位相XMj(t)の算出の概念図である。 本開示の実施形態1における装置構成を示すブロック図である。 本開示の実施形態1及び2における実施手順を示すフローチャートである。 本開示の実施形態2における装置構成を示すブロック図である。
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
 本開示では、センサ部の干渉計を透過した光信号については受光側に干渉計を用いずに受光する。具体的には、本開示の光ファイバセンシング装置は、センサ部の干渉計とは別の光経路を通る参照用干渉計を別途用意し、参照用干渉計から取得される信号を用いた信号処理により各センサ部の温度及び歪みの変化前の信号を疑似的に生成する。本開示では、この疑似的に生成した信号を参照信号と称する。本開示の光ファイバセンシング装置は、この参照信号とセンサ部の干渉計から取得される受光信号の相互相関を計算することにより、装置構成を複雑化させることなく多点干渉計型光ファイバセンサを実現する。
 受光部に干渉計を用いない場合、N個(Nは自然数)のセンサ部を通る光経路について取得される受光信号I(t)は次式のように表される。
Figure JPOXMLDOC01-appb-M000008
ここで、E(t)はN個のセンサ部に入射する前の連続光の複素電界振幅、E(t)はi番目(i=1~N)のセンサ部の透過光の複素電界振幅である。本実施形態では、光源からの連続光をN個のセンサ部に入射する例について説明する。
 式(8)に式(2)を代入すると、受光信号I(t)は次式のように表される。
Figure JPOXMLDOC01-appb-M000009
ここで、τはi番目のセンサ部における伝搬遅延時間であり、Δθはi番目のセンサ部における光位相変化であり、aはi番目のセンサ部を通る光振幅に係る定数である。
 なお、ここでθ(t)は光源からの連続光の位相であり、式(9)の2行目では直流成分の記述は省略した。また、各センサ部を透過する光強度はセンサ部を透過しない光強度に対して十分弱く(a<<1)、センサ部の透過光同士の干渉成分は無視できることとした。
 一方、参照用干渉計の透過光から得られる参照信号Iref―1(t)は次式のように表される。
Figure JPOXMLDOC01-appb-M000010
ここでτrefは参照用干渉計における光路間の伝搬遅延時間差である。
 次に、Iref―1(t)を用いてj番目のセンサ部に関する温度及び歪みの変化前の参照信号を数値計算により疑似的に生成する。j番目のセンサ部の光経路に与える遅延時間τをτ=Mτref(Mは自然数)となるように設計すると、θ(t)-θ(t-Mτref)を位相成分とする余弦波の信号を生成できればよい。ここで、M=1の場合の位相X(t)、及びMの場合の位相XMj(t)を次式のように定義する。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 XMj(t)は、X(t)を用いて次式により算出することができる。
Figure JPOXMLDOC01-appb-M000013
 図1はM>1の場合における式(13)によるXMj(t)の算出のイメージである。XMj(t)はM個のX(t)を時間軸上でτrefずつずらした波形を足し合わせていくことで算出される。XMj(t)を用いて、j番目のセンサ部に関する疑似的な参照信号Iref―Mj(t)を次式により生成する。
Figure JPOXMLDOC01-appb-M000014
 次に、I(t)とIref―Mj(t)の余弦波における相互相関RMjを計算する。RMjは次式により計算される。
Figure JPOXMLDOC01-appb-M000015
 ここで、光源からの連続光のコヒーレンス時間がτrefに比べて十分短く、複数のセンサ部の伝搬遅延時間が互いに重複しないこととすると、次式が成り立つ。
Figure JPOXMLDOC01-appb-M000016
式(16)を式(15)に代入すると、RMjは次式のようになる。
Figure JPOXMLDOC01-appb-M000017
 したがって、τ=Mτrefを満たすMについて計算される相互相関RMjの大きさはj番目のセンサ部の温度及び歪みなどによる変化に依存して変化するため、RMjの変化をモニタリングすることでj番目のセンサ部の温度及び歪みの変化をセンシングできる。同様に、j番目以外の任意のi番目のセンサ部についてもτ=Mτrefを満たすMについて計算される相互相関RMiをモニタリングすることで温度及び歪みの変化をセンシングできる。
(本開示の効果)
 本開示を用いることにより、多点干渉計型光ファイバセンサに関して受光部の干渉計や受光器を追加することなくセンサ部を多点化することができる。また、従来はセンサ部の干渉計と受光部の干渉計で光路間伝搬遅延時間差が等しくなるように設計する必要があったのに対し、本開示を用いることで受光部の干渉計が不要となるため、受光部の設計を簡素化することができる。これにより、センサ部の数に関わらず単一の装置構成で多点センシングが可能となるため、従来よりも低コストかつ拡張性の高い光ファイバセンシングが実現できる。
 添付の図面を参照して本開示の実施形態を説明する。ここではセンサ部の構成の異なる2種類の実施形態について述べる。
(実施形態1)
 図2は本実施形態における装置構成を示すブロック図である。光源には低コヒーレンス光源11を用い、低コヒーレンス光源11から出力される連続光を光カプラ16で分岐してセンサ用干渉計20と参照用干渉計30に入射する。センサ用干渉計20はN個のセンサ部21#1~21#Nを備える。受光器13Sはセンサ用干渉計20からの光を受光する。受光器13Sは参照用干渉計30からの光を受光する。
 参照用干渉計30は光路間伝搬遅延時間差をτrefとするマッハツェンダ干渉計とする。センサ用干渉計20の各マッハツェンダ干渉計の光路間伝搬遅延時間差τ~τはτrefの整数倍とし、複数のマッハツェンダ干渉計で互いに重複しないようにする(M≠M(j≠i))。また、低コヒーレンス光源11はコヒーレンス時間がτrefよりも短いものを用いる。
 本実施形態では、センサ用干渉計20は光カプラ22#1~22#N及び23#1~23#Nを用いて複数のマッハツェンダ干渉計を直列に接続した鎖型の構成とし、センサ用干渉計20の各マッハツェンダ干渉計の一方の光路をセンサ部21#1~21#Nとする。
 図3は本実施形態における実施手順を示すフローチャートである。実施手順は光干渉信号取得ステップS11、参照信号位相算出ステップS12、位相連結ステップS13、疑似信号生成ステップS14、相互相関ステップS15を備える。なお、ここでは複数のセンサ部21#1~21#Nのうちj番目のセンサ部21#iについてセンシングを実施する場合について述べる。
 光干渉信号取得ステップS11では、センサ用干渉計20と参照用干渉計30の2種類の光干渉計を用いてそれぞれの光干渉信号を取得する。具体的には、センサ用干渉計20を透過した連続光と参照用干渉計30を透過した連続光をそれぞれ個別の受光器13S及び13Rで受光し、電気信号に変換する。電気信号に変換した受光信号をそれぞれA/D変換器14でデジタル信号に変換し、信号処理部15に転送する。
 信号処理部15は、A/D変換器14からのデジタル信号を用いて、センサ用干渉計20と参照用干渉計30の光干渉信号をそれぞれ算出する。受光器13Sから得られれたデジタル信号が受光信号I(t)であり、受光器13Rから得られたデジタル信号が受光信号Iref―1(t)である。
 次に参照信号位相算出ステップS12では、信号処理部15が、光干渉信号取得ステップS11で取得した2種類の光干渉信号のうち参照用干渉計30に関して得られた受光信号Iref―1(t)を用いて、位相X(t)を算出する。X(t)は、参照用干渉計30に関して得られた信号Iref―1(t)を用いて次式により算出することができる。
Figure JPOXMLDOC01-appb-M000018
 ここでH[Iref―1(t)]はIref―1(t)のヒルベルト変換であり、Iref―1(t)が式(10)のように表されるとすると、H[Iref―1(t)]は次式のように表される。
Figure JPOXMLDOC01-appb-M000019
 次に位相連結ステップS13では、X(t)を用いて式(13)によりXMj(t)を求める。ここでMはj番目のセンサ部21#jの干渉計における光路間伝搬遅延時間差をτとしてτ=Mτrefを満たす自然数である。
 次に疑似信号生成ステップS14では、式(14)によりj番目のセンサ部21#jに関する疑似信号Iref―Mj(t)を算出する。
 最後に相互相関ステップS15において、センサ用干渉計20に関して取得した光干渉信号I(t)と疑似信号Iref―Mj(t)の相互相関RMjを計算する。計算されるRMjの大きさをモニタリングし、j番目のセンサ部21#jにおける温度及び歪みの変化を検出する。
(実施形態2)
 本実施形態は、実施手順は実施形態1と同一であり、用いられる装置構成が実施形態1と異なる。図4は本実施形態における装置構成を示すブロック図である。光源には低コヒーレンス光源11を用い、低コヒーレンス光源11から出力される連続光を光カプラ16で分岐してセンサ用干渉計20と参照用干渉計30に入射する。
 参照用干渉計30は光路間伝搬遅延時間差をτrefとするマッハツェンダ干渉計とする。センサ用干渉計20は、並列に接続されている複数のセンサ部21を備え、センサ用干渉計20を透過する連続光の伝搬遅延時間τがセンサ部21ごとに異なる。本実施形態では、センサ用干渉計20は光カプラ22#1~22#N及び23#1~23#Nを用いて梯子型に光ファイバを接続した構成とし、梯子型の各段の光路をセンサ部21#1~21#Nとする。
 図4のセンサ用干渉計20において左端上の光カプラ22#0からの出射光が各センサ部21#1~21#Nを通り左端下の光カプラ23#0に入射されるまでの遅延時間はτrefの整数倍とし、複数のセンサ部21で互いに重複しないようにする(M≠M(j≠i))。センサ用干渉計20を透過した連続光と参照用干渉計30を透過した連続光をそれぞれ個別の受光器13S及び13Rで受光し、電気信号に変換する。電気信号に変換した受光信号をA/D変換器14でデジタル信号に変換し、信号処理部15に転送する。なお、本装置構成で用いられる低コヒーレンス光源11はコヒーレンス時間がτrefよりも短いものを用いる。
 その他実施手順は、実施形態1と同様に図3のフローチャートに従って実施される。
 本開示の信号処理部15は、コンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
 本開示は情報通信産業に適用することができる。
11:低コヒーレンス光源
12:高コヒーレンス光源
13:受光器
14:A/D変換器
15:信号処理部
16、22#0~22#N、23#0~23#N、32、33:光カプラ
20:センサ用干渉計
30:参照用干渉計

Claims (8)

  1.  連続光を出力する光源と、
     前記連続光を分岐する光カプラと、
     前記光カプラで分岐された連続光が入射され、所定の伝搬遅延時間差τrefを当該連続光に生じさせる参照用干渉計と、
     前記光カプラで分岐された連続光が入射され、前記所定の伝搬遅延時間差τrefの整数倍に相当しかつ互いに異なる伝搬遅延時間差を当該連続光に生じさせる複数のマッハツェンダ干渉計が接続され、前記マッハツェンダ干渉計の光路の一方がセンサ部として機能する、センサ用干渉計と、
     前記センサ用干渉計の透過光を受光した受光信号I(t)と前記参照用干渉計の透過光を受光した参照信号Iref-1(t)を用いて信号処理を行う信号処理部と、
     を備え、
     前記信号処理部は、
     前記参照信号Iref-1(t)を用いて、j番目(jは自然数)の前記センサ部に対応する参照信号Iref―j(t)を算出し、
     前記受光信号I(t)と前記参照信号Iref―j(t)の相互相関Rを算出し、
     前記相互相関Rの変化を用いて、j番目の前記センサ部の変化を検出する、
     光ファイバセンシング装置。
  2.  前記信号処理部は、
     前記参照信号Iref-1(t)を用いて、前記所定の伝搬遅延時間差τrefのときの前記連続光の位相X(t)を算出し、
     j番目の前記センサ部における伝搬遅延時間差がτrefのM倍の場合、M個のX(t)をτrefずつずらした波形を足し合わせることで、j番目の前記センサ部に対応する位相XMj(t)を算出し、
     前記位相XMj(t)を用いて、j番目の前記センサ部に対応する参照信号Iref―j(t)を算出する、
     請求項1に記載の光ファイバセンシング装置。
  3.  前記信号処理部は、
     前記位相XMj(t)を位相成分とする余弦波を、前記参照信号Iref―j(t)として算出し、
     前記余弦波を用いて、前記受光信号I(t)と前記参照信号Iref―j(t)の相互相関Rを算出する、
     請求項2に記載の光ファイバセンシング装置。
  4.  前記参照用干渉計における前記所定の伝搬遅延時間差τrefは、前記連続光のコヒーレンス時間よりも長いことを特徴とする、
     請求項1から3のいずれかに記載の光ファイバセンシング装置。
  5.  前記センサ用干渉計は、複数のマッハツェンダ干渉計が直列に接続されており、
     前記センサ部は、前記マッハツェンダ干渉計内の光路の一方であり、
     前記複数のマッハツェンダ干渉計に備わる各センサ部の伝搬遅延時間差が互いに異なる、
     請求項1から4のいずれかに記載の光ファイバセンシング装置。
  6.  前記センサ用干渉計は、並列に接続されている複数のセンサ部を備え、
     前記センサ用干渉計を透過する前記連続光の伝搬遅延時間が前記センサ部ごとに異なる、
     請求項1から5のいずれかに記載の光ファイバセンシング装置。
  7.  前記センサ部の変化は、j番目の前記センサ部の温度又は歪みの変化である、
     請求項1から6のいずれかに記載の光ファイバセンシング装置。
  8.  光源からの連続光を分岐し、
     所定の伝搬遅延時間差τrefを当該連続光に生じさせる参照用干渉計に、前記分岐された連続光を入射し、
     前記所定の伝搬遅延時間差τrefの整数倍に相当しかつ互いに異なる伝搬遅延時間差を当該連続光に生じさせる複数のマッハツェンダ干渉計が接続され、前記マッハツェンダ干渉計の光路の一方がセンサ部として機能する、センサ用干渉計に、前記分岐された連続光を入射し、
     信号処理部が、前記センサ用干渉計の透過光を受光した受光信号I(t)と前記参照用干渉計の透過光を受光した参照信号Iref-1(t)を用いて、前記センサ部の変化を検出する光ファイバセンシング方法であって、
     前記信号処理部は、
     前記参照信号Iref-1(t)を用いて、j番目のセンサ部に対応する参照信号Iref―j(t)を算出し、
     前記受光信号I(t)と前記参照信号Iref―j(t)の相互相関Rを算出し、
     前記相互相関Rの変化を用いて、j番目の前記センサ部の変化を検出する、
     光ファイバセンシング方法。
PCT/JP2021/034518 2021-09-21 2021-09-21 光ファイバセンシング装置及び方法 WO2023047449A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/034518 WO2023047449A1 (ja) 2021-09-21 2021-09-21 光ファイバセンシング装置及び方法
JP2023549183A JPWO2023047449A1 (ja) 2021-09-21 2021-09-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/034518 WO2023047449A1 (ja) 2021-09-21 2021-09-21 光ファイバセンシング装置及び方法

Publications (1)

Publication Number Publication Date
WO2023047449A1 true WO2023047449A1 (ja) 2023-03-30

Family

ID=85720237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034518 WO2023047449A1 (ja) 2021-09-21 2021-09-21 光ファイバセンシング装置及び方法

Country Status (2)

Country Link
JP (1) JPWO2023047449A1 (ja)
WO (1) WO2023047449A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148110A (ja) * 2000-11-14 2002-05-22 Oki Electric Ind Co Ltd 光ファイバセンサ
WO2006099056A2 (en) * 2005-03-10 2006-09-21 Luna Innovations Inc. Calculation of birefringence in a waveguide based on rayleigh scatter
JP2016053525A (ja) * 2014-09-03 2016-04-14 日本電信電話株式会社 光ファイバの温度・歪み分布測定方法および装置
JP2019020276A (ja) * 2017-07-18 2019-02-07 日本電信電話株式会社 空間多重光伝送路評価装置及び方法
CN112525238A (zh) * 2020-11-02 2021-03-19 上海大学 一种利用马赫曾德干涉仪滤波特性的分布式光纤传感系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148110A (ja) * 2000-11-14 2002-05-22 Oki Electric Ind Co Ltd 光ファイバセンサ
WO2006099056A2 (en) * 2005-03-10 2006-09-21 Luna Innovations Inc. Calculation of birefringence in a waveguide based on rayleigh scatter
JP2016053525A (ja) * 2014-09-03 2016-04-14 日本電信電話株式会社 光ファイバの温度・歪み分布測定方法および装置
JP2019020276A (ja) * 2017-07-18 2019-02-07 日本電信電話株式会社 空間多重光伝送路評価装置及び方法
CN112525238A (zh) * 2020-11-02 2021-03-19 上海大学 一种利用马赫曾德干涉仪滤波特性的分布式光纤传感系统

Also Published As

Publication number Publication date
JPWO2023047449A1 (ja) 2023-03-30

Similar Documents

Publication Publication Date Title
US11802789B2 (en) Method and apparatus for optical sensing
JP5469749B2 (ja) 位相ベース検知
AU2022203823B2 (en) Method and apparatus for optical sensing
WO2020084825A1 (ja) 光パルス試験装置及び光パルス試験方法
CN111678584A (zh) 一种带光源频移校准辅助通道的光纤振动测量装置及方法
WO2023047449A1 (ja) 光ファイバセンシング装置及び方法
CN110375779B (zh) 提高ofdr频域采样率的装置和方法
WO2023037535A1 (ja) 光ファイバセンシング装置及び方法
JP2019020276A (ja) 空間多重光伝送路評価装置及び方法
WO2022059050A1 (ja) 光周波数領域反射計測装置及び方法
CN114111855B (zh) 一种基于双向迈克尔逊干涉仪的分布式光纤传感定位系统
US20240012760A1 (en) Method and Apparatus for Optical Sensing
AU2015201357A1 (en) Optical sensor and method of use
NL2021638B1 (en) Optical signal processing system
US20230288191A1 (en) Strain change measuring device and strain change measuring method
CN115265616A (zh) 一种基于时分复用的长距离ofdr系统及其数据处理方法
CN116222404A (zh) 测量mzi两臂差的传感系统和mzi两臂差的测量方法
Sun et al. Method of multi-white-light-beam interfering and its application in fusion-sensitve measurement of distributed optical fiber
KR20020052760A (ko) 음향파를 이용한 광스펙트로메터 및 광검출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958327

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549183

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE