WO2023047033A1 - Turbine à gaz haute-pression pour une turbomachine et turbomachine - Google Patents

Turbine à gaz haute-pression pour une turbomachine et turbomachine Download PDF

Info

Publication number
WO2023047033A1
WO2023047033A1 PCT/FR2022/051662 FR2022051662W WO2023047033A1 WO 2023047033 A1 WO2023047033 A1 WO 2023047033A1 FR 2022051662 W FR2022051662 W FR 2022051662W WO 2023047033 A1 WO2023047033 A1 WO 2023047033A1
Authority
WO
WIPO (PCT)
Prior art keywords
upstream
annular
downstream
radially
spoiler
Prior art date
Application number
PCT/FR2022/051662
Other languages
English (en)
Inventor
Francesco SALVATORI
Damien Bonneau
Nicolas CONTINI
Clément Jarrossay
Pascal Cédric TABARIN
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Publication of WO2023047033A1 publication Critical patent/WO2023047033A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/321Application in turbines in gas turbines for a special turbine stage
    • F05D2220/3212Application in turbines in gas turbines for a special turbine stage the first stage of a turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/126Baffles or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/127Vortex generators, turbulators, or the like, for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/185Two-dimensional patterned serpentine-like

Definitions

  • This description relates to a high-pressure gas turbine for a turbomachine. It also relates to a turbomachine comprising such a gas turbine.
  • a turbomachine 10 of the turbofan turbojet type comprises, from upstream to downstream in the direction of the circulation of the gases inside the turbomachine 10, a fan 14, a low-pressure compressor 16, a high-pressure compressor 18, a combustion chamber 20, a high-pressure turbine 22, a low-pressure turbine 24 and an exhaust nozzle 26.
  • the low-pressure compressor 16 , the high-pressure compressor 18, the combustion chamber 20, the high-pressure turbine 22, the low-pressure turbine 24 and the exhaust nozzle 26 are arranged radially inside a casing 12 which delimits, radially outwards, an annular stream 11 of the turbine engine 10 in which the gases flow from upstream to downstream.
  • the high-pressure compressor 14 and the low-pressure compressor 18 are respectively connected to a high-pressure turbine 22 and a low-pressure turbine 24 by a respective shaft 15, 17 extending along the longitudinal axis X of rotation of the shafts of the turbomachine 10.
  • orientation qualifiers such as “longitudinal”, “radial” and “circumferential” are defined with reference to the longitudinal axis.
  • upstream and downstream are defined with respect to the direction of circulation of the gases within the turbomachine.
  • the high-pressure turbine 22 comprises a plurality of stages, one of them being partially shown in Figure 2, each comprising a distributor 30 and a moving wheel 40 mounted downstream of the distributor 30.
  • the distributor 30 comprises an internal annular platform 34 and an annular row of fixed vanes 32. Each fixed vane 32 extends radially in the annular vein 11 and is connected, radially inside to the internal annular platform 34
  • the distributor 30 generally comprises an annular radial flange 36 for attachment to the casing 5.
  • the moving wheel 40 comprises an annular row of moving blades 42 carried by a disc 41 comprising a plurality of cells on its outer periphery, each receiving a foot 46 of a blade 42.
  • Each moving blade 42 further comprises a sector of internal annular platform 44 of the impeller 40 from which extends a blade 42' radially outwards through the annular vein 11.
  • the internal annular platform 44 thus comprises a plurality of sectors arranged circumferentially end to end around the longitudinal axis X.
  • the internal annular platform 34 of the distributor 30 and the internal annular platform 44 of the impeller 40 each delimit, radially inwards, the annular vein 11.
  • the gases flowing in the annular stream 11 are introduced into a space formed longitudinally between the internal annular platform 34 of the distributor 30 and the internal annular platform 44 of the impeller 40, which reduces the performance of the turbomachine 10.
  • a baffle is formed in the longitudinal space between the internal annular platform 34 of the distributor 30 and the internal annular platform 44 of the movable wheel 44, limiting the leak, radially inward, gases flowing in the annular vein 11.
  • the annular part 50 has a cavity 51 in which is housed an elastic member 51'.
  • a purge air flow taken from the low-pressure compressor 14 and/or the high-pressure compressor 16, is directed through an annular purge cavity 62 towards the space formed longitudinally between the internal annular platform 34 of the distributor 30 and the internal annular platform 44 of the impeller 4.
  • This purge air flow thus makes it possible to redirect the gases that have entered the purge cavity 62 towards the annular vein 11.
  • a high-pressure gas turbine is proposed for a turbomachine extending around a longitudinal axis, the turbine comprising:
  • a distributor comprising an internal annular platform and an annular row of fixed vanes, each fixed vane being connected, radially inwards, to the internal annular platform,
  • the upstream sealing part comprising an annular part from which a downstream annular spoiler extends longitudinally downstream, said annular part having a radially outer part comprising an upstream annular cavity, said upstream cavity being open at the level of a radially outer annular clearance, delimited between the downstream face of the distributor and the upstream sealing part,
  • the downstream sealing part comprising a first upstream spoiler arranged, at least in part, radially inside the internal annular platform of the distributor and radially outside the downstream spoiler of the upstream sealing part, said part downstream sealing further comprising a second upstream spoiler arranged, at least in part, radially inside the downstream spoiler, the downstream spoiler extending, at least in part, radially opposite the first and second upstream spoilers, the first and second upstream spoilers and the downstream spoiler defining a double baffle.
  • the double baffle generates a pressure drop limiting the rate of leakage of gas from the stream radially inwards, between the distributor and the annular row of blades, also limiting the air purge rate required . Furthermore, the upstream annular cavity also makes it possible to limit such a leak rate, by creating an additional pressure drop.
  • a so-called annular part may comprise a plurality of sectors arranged circumferentially end to end around an axis, in particular at 360° around said axis.
  • a so-called annular part can also be in one piece, that is to say formed from a single part and not from sectors.
  • the first upstream spoiler, the second upstream spoiler and/or the downstream spoiler may be, at least in part, cylindrical.
  • the first upstream spoiler may have a radially outer face which is of frustoconical shape with a section decreasing towards the upstream extending over at least a first longitudinal portion.
  • Such a shape makes it easier to evacuate the purge air and the gases out of the cavity located between the distributor and the annular row of moving blades towards the annular passage. Moreover, such a characteristic makes it possible to adapt the direction in which the gases mixed in the annular vein are reintroduced into the annular vein to minimize the disturbances on the gases flowing in the annular vein.
  • the annular space may extend between the first and second upstream spoilers is delimited by a radially inner surface of the first upstream spoiler, a radially outer surface of the second upstream spoiler and a concave upstream surface of the downstream sealing part .
  • the radially inner surface of the second upstream spoiler can be connected to an upstream face of the downstream sealing part by a concave rounded portion.
  • the upstream annular cavity of the upstream sealing part can be delimited longitudinally by a downstream radial face of the distributor and by a downstream radial wall of the upstream sealing part extending radially outwards from the annular part of the upstream sealing piece part, and delimited radially by an annular end surface located at the radially outer end of said annular part and by a longitudinal wall extending longitudinally upstream from the radially outer end of the downstream radial wall, said outer annular clearance being formed longitudinally between the downstream radial face of the distributor and the upstream end of said longitudinal wall.
  • Said annular end surface may include a frustoconical zone widening downstream.
  • the radially inner annular face of the inner annular platform of the dispenser may have at least one concave-shaped zone.
  • the distributor may further comprise a radial annular flange extending radially inwards from the internal annular platform, the upstream sealing part being attached and fixed to the radial annular flange.
  • the upstream sealing part can be made in one piece with the radial annular flange of the distributor.
  • downstream sealing piece can be attached or fixed to a disk of the annular row of moving blades, or be integral with the disk.
  • the annular row of moving blades may include an inner annular platform, said first upstream spoiler extending from an upstream end of the inner annular platform.
  • Each moving blade of an annular row of moving blades may comprise a sector of the internal annular platform, said sectors being arranged circumferentially end to end.
  • Each moving vane may include a blade extending radially outward from the respective sector of the inner annular platform.
  • Each moving blade may include a blade root extending radially inward from the respective sector of the inner annular platform.
  • Each blade root can be received in an associated cell formed on the outer periphery of the disc.
  • each moving blade is formed in one piece with the respective sector of the internal annular platform.
  • This document also relates to a turbomachine comprising a high-pressure gas turbine of the aforementioned type.
  • FIG. 1 already described above, is a partial schematic sectional view of a prior art turbomachine
  • FIG. 2 is a partial schematic sectional view of a high-pressure turbine of the turbomachine of FIG. 1;
  • FIG. 3 is a partial schematic view in perspective and in section of a high-pressure turbine according to one embodiment of this document;
  • FIG. 4 is a partial schematic sectional view of the turbine of FIG. 3;
  • FIG. 3 and 4 represent, according to a first embodiment, partially a high-pressure turbine of a turbomachine of longitudinal axis X.
  • the high-pressure turbine comprises a plurality of stages each comprising a distributor 30 and a movable wheel 40 mounted downstream of the distributor 30.
  • the nozzle 30 comprises an annular row of fixed vanes 32.
  • Each fixed vane 32 is connected, radially inwardly, to an internal annular platform 34 of the nozzle 30.
  • Each fixed vane 32 extends radially towards the inside. exterior from the internal annular platform 34.
  • Each fixed vane 32 is connected, radially outwards, to an external platform 34′ connected to an external casing of the high-pressure turbine.
  • each fixed vane 32 extends radially inside the annular vein 11.
  • the distributor 30 further comprises a radial annular flange 36 extending radially inward from the internal annular platform 34.
  • the distributor 30 can be connected to an internal turbomachine casing via the radial annular flange 36.
  • the rotor 40 comprises an annular row of rotor blades 42 carried by a disc 41.
  • the mobile wheel 40 comprises an internal annular platform 44.
  • Each mobile blade 42 of the mobile wheel 40 comprises a sector of the internal annular platform 44, the sectors being arranged circumferentially end to end around the longitudinal axis X.
  • An annular face radially outer 44a of the inner annular platform 44 delimits, radially inwards, the annular vein 11 at the level of the moving wheel 40 of the turbine.
  • Each moving blade 42 comprises a blade 42' extending radially outwards in the annular vein 11 from the respective sector of the internal annular platform 44.
  • the impeller 40 also comprises a downstream sealing piece 43 attached and fixed to an upstream radial surface of the disc 41 and of the area comprising the platform 44.
  • the downstream sealing piece 43 may be made of with disc 41 .
  • the downstream sealing part 43 comprises a first upstream annular spoiler 47 which is annular and which extends longitudinally upstream at the level of the radially outer end of the downstream sealing part 43.
  • the first upstream annular spoiler 47 is arranged, here in part, radially inside the internal annular platform 34 of the distributor 30.
  • the first upstream annular spoiler 47 is arranged radially inside of the internal annular platform 34 of the distributor 30 and, in part, radially opposite the internal annular platform 34 of the distributor 30.
  • the upstream end of the first upstream spoiler 47 is located longitudinally further upstream than the end downstream of the internal platform 34.
  • the first upstream annular spoiler 47 has a radially outer annular face 47a which is of frustoconical shape with a section decreasing towards the upstream and which extends over a first longitudinal portion of the first upstream annular spoiler 47.
  • the first portion of the spoiler upstream annular 47 is, here in part, radially opposite the internal annular platform 34 of the distributor 30.
  • the radially outer annular face 47a of the first portion of the upstream annular spoiler 47 is here connected to the radially outer annular face 44a of the internal annular platform 44 of the mobile wheel 40, in particular by a rounding.
  • downstream sealing part 43 comprises a second upstream annular spoiler 48, extending longitudinally downstream and located radially inside the first upstream spoiler 47.
  • the annular space extending between the first and second upstream spoilers 47, 48 is delimited by a radially inner surface 47b of the first upstream spoiler 47, a radially outer surface 48a of the second upstream spoiler 48 and a concave upstream surface 43a of the downstream sealing piece 43.
  • the second upstream spoiler 48 comprises a radially internal surface 48b which is connected to an upstream face of the downstream sealing part 43 by a concave rounded portion 49.
  • the high-pressure turbine further comprises an upstream sealing piece 50, which here is annular, applied against a downstream face 36a of the distributor 30.
  • the upstream sealing piece 50 is attached here and fixed to the annular flange 36.
  • the upstream sealing part 50 comprises an annular part 52 applied against a downstream face 36a of the radial annular flange 36 of the distributor 30.
  • the annular part 52 of the upstream sealing part 50 can be fixed , for example by bolting, to the radial annular flange 36 of the distributor 30.
  • the upstream sealing part may be an integral part of the casing of the high-pressure turbine or of the flange 36.
  • the upstream sealing part 50 comprises a cavity 51 in which is housed an elastic member 51'.
  • the upstream sealing piece 50 includes a downstream spoiler 54 which is annular.
  • the first downstream annular spoiler 54 is arranged, here in part, radially inside the first upstream annular spoiler 47 and radially outside the second upstream spoiler 48 of the downstream sealing part 43. Furthermore, the downstream end of the downstream spoiler 54 is located longitudinally further downstream than the upstream ends of the first and second upstream spoilers 47, 48.
  • the spoilers 54, 47, 48 form a double baffle, and created pressure drops limiting the gas flow capable of flowing radially through said double baffle.
  • the upstream sealing part 50 further comprises an upstream annular cavity 56, said upstream cavity 56 being open at the level of a radially outer annular clearance 58, delimited between the downstream face 36a of the distributor 30 and the part of upstream sealing 50.
  • the upstream annular cavity 56 of the upstream sealing part 50 can be delimited longitudinally by the downstream radial face 36a of the distributor 30 and by a downstream radial wall 60 of the upstream sealing part 50 extending radially towards the outside from the annular part 52 of the upstream sealing piece part 50, and delimited radially by an annular end surface 52a located at the radially outer end of said annular part 52 and by a longitudinal wall 62 extending longitudinally upstream from the radially outer end of the downstream radial wall 60.
  • the outer annular clearance 58 is formed longitudinally between the downstream radial face 36a of the distributor 30 and the upstream end of said longitudinal wall 62.
  • Said annular end surface 52a may comprise a frustoconical zone 52b widening downstream.
  • the upstream annular sealing part 50 can be made in one piece with the radial annular flange 36 of the distributor 30.
  • the annular sealing part 50 may comprise a plurality of sectors arranged circumferentially end to end around the longitudinal axis X.
  • the radially internal annular face 34a of the internal annular platform 34 of the distributor 30 may have a concave-shaped zone 34b which is arranged radially opposite the upstream annular spoiler 47 and/or the longitudinal wall 62.
  • the turbine further comprises an annular purge cavity 62 located longitudinally between the upstream sealing part 50 and the downstream sealing part 43, or more generally between the distributor 30 and the impeller 40, and radially to the inside the second upstream spoiler 48.
  • a free space 64 is formed, longitudinally, between the internal annular platform 34 of the distributor 30 and the internal annular platform 44 of the impeller 40.
  • the internal annular platform 34 of the distributor 30 and the upstream annular spoiler 47 of the mobile wheel 40 together define a clearance or flow conduit between the annular vein 11 and the double baffle 47, 48, 54.
  • the double baffle 47, 48, 54 and the upstream cavity 56 make it possible to generate pressure drops limiting the progression of the flow of hot gases from the stream 11 radially inwards, towards the annular purge cavity 62, also limiting the amount of purge air needed to prevent damage to the turbine.

Abstract

L'invention concerne une turbine à gaz haute-pression pour une turbomachine, la turbine comprenant un distributeur (30), une rangée annulaire d'aubes mobiles (40) montée en aval du distributeur (30), une cavité de purge (62), une pièce d'étanchéité amont (50) montée sur le distributeur (30) et une pièce d'étanchéité aval (50) montée sur la rangée annulaire d'aubes mobiles (40), une double chicane (47, 48,54) étant formée par lesdites pièces d'étanchéité amont et aval (50, 43), une cavité amont externe (56) étant formée dans la pièce d'étanchéité amont (50).

Description

TURBINE À GAZ HAUTE-PRESSION POUR UNE TURBOMACHINE ET TURBOMACHINE
Domaine technique
[1] La présente description se rapporte à une turbine à gaz haute-pression pour une turbomachine. Elle se rapporte également à une turbomachine comprenant une telle turbine à gaz.
Technique antérieure
[2] Classiquement, telle que représentée à la figure 1 , une turbomachine 10 de type turboréacteur à double flux comporte, de l’amont vers l’aval dans le sens de la circulation des gaz à l’intérieur de la turbomachine 10, une soufflante 14, un compresseur basse- pression 16, un compresseur haute-pression 18, une chambre de combustion 20, une turbine haute-pression 22, une turbine basse-pression 24 et une tuyère d’échappement 26. Le compresseur basse-pression 16, le compresseur haute-pression 18, la chambre de combustion 20, la turbine haute-pression 22, la turbine basse-pression 24 et la tuyère d’échappement 26 sont agencés radialement à l’intérieur d’un carter 12 qui délimite, radialement vers l’extérieur, une veine annulaire 1 1 de la turbomachine 10 dans laquelle s’écoule les gaz de l’amont vers l’aval.
[3] Le compresseur haute-pression 14 et le compresseur basse-pression 18 sont respectivement reliés à une turbine haute-pression 22 et une turbine basse-pression 24 par un arbre 15, 17 respectif s’étendant selon l’axe longitudinal X de rotation des arbres de la turbomachine 10. Dans la suite, les qualificatifs d’orientation, tels que « longitudinal », « radial » et « circonférentiel » sont définis par référence à l’axe longitudinal. Par ailleurs, les termes amont et aval sont définis par rapport au sens de circulation des gaz au sein de la turbomachine.
[4] La turbine haute-pression 22 comprend une pluralité d’étages, l’un d’entre eux étant partiellement représenté à la figure 2, comportant chacun un distributeur 30 et une roue mobile 40 montée en aval du distributeur 30.
[5] Le distributeur 30 comporte une plateforme annulaire interne 34 et une rangée annulaire d’aubes fixes 32. Chaque aube fixe 32 s’étend radialement dans la veine annulaire 11 et est reliée, radialement à l’intérieur à la plateforme annulaire interne 34. Le distributeur 30 comporte généralement une bride radiale annulaire 36 d’accrochage au carter 5.
[6] La roue mobile 40 comporte une rangée annulaire d’aubes mobiles 42 portée par un disque 41 comprenant une pluralité d’alvéoles sur sa périphérie externe, chacune recevant un pied 46 d’une aube 42. Chaque aube mobile 42 comprend en outre un secteur d’une plateforme annulaire interne 44 de la roue mobile 40 depuis lequel s’étend une pale 42’ radialement vers l’extérieur à travers la veine annulaire 1 1 . La plateforme annulaire interne 44 comporte ainsi une pluralité de secteurs disposés circonférentiellement bout à bout autour de l’axe longitudinal X.
[7] La plateforme annulaire interne 34 du distributeur 30 et la plateforme annulaire interne 44 de la roue mobile 40 délimitent chacune, radialement vers l’intérieur, la veine annulaire 11.
[8] En fonctionnement, les gaz s’écoulant dans la veine annulaire 1 1 s’introduisent dans un espace formé longitudinalement entre la plateforme annulaire interne 34 du distributeur 30 et la plateforme annulaire interne 44 de la roue mobile 40, ce qui réduit les performances de la turbomachine 10. Pour limiter ce phénomène, il est connu d’agencer, radialement à l’intérieur de la plateforme annulaire interne 34 du distributeur 30, un becquet annulaire amont 47 de la plateforme annulaire interne 44 et un becquet annulaire aval 54 d’une pièce annulaire 50 d’étanchéité du carter 5. Ainsi, une chicane est formée dans l’espace longitudinal entre la plateforme annulaire interne 34 du distributeur 30 et la plateforme annulaire interne 44 de la roue mobile 44, limitant la fuite, radialement vers l’intérieur, des gaz s’écoulant dans la veine annulaire 1 1 .
[9] La pièce annulaire 50 comporte une cavité 51 dans laquelle est logé un organe élastique 51 ’.
[10] Par ailleurs, un flux d’air de purge, prélevé dans le compresseur basse-pression 14 et/ou le compresseur haute-pression 16, est dirigé à travers une cavité annulaire de purge 62 vers l’espace formé longitudinalement entre la plateforme annulaire interne 34 du distributeur 30 et la plateforme annulaire interne 44 de la roue mobile 4. Ce flux d’air de purge permet ainsi de rediriger les gaz s’étant introduits dans la cavité de purge 62 vers la veine annulaire 1 1 .
[11] Toutefois, cette solution ne présente pas entière satisfaction en ce que le prélèvement d’air pris au niveau du compresseur basse-pression 14 et/ou du compresseur haute- pression 16 diminue le rendement de la turbomachine 10. Par ailleurs, la réintroduction, dans la veine annulaire 1 1 , de l’air de purge et des gaz s’étant introduit dans la cavité de purge 62 perturbe l’écoulement dans la veine annulaire 11 , ce qui diminue également les performances de la turbomachine 10.
Résumé
La présente divulgation vient améliorer la situation. [12] Il est proposé une turbine à gaz haute-pression pour une turbomachine s’étendant autour d’un axe longitudinal, la turbine comprenant :
- un distributeur comprenant une plateforme annulaire interne et une rangée annulaire d’aubes fixes, chaque aube fixe étant reliée, radialement vers l’intérieur, à la plateforme annulaire interne,
- une rangée annulaire d’aubes mobiles montée en aval du distributeur, comportant un disque à partir duquel des aubes s’étendent radialement vers l’extérieur,
- une pièce d’étanchéité amont appliquée sur une face aval du distributeur et une pièce d’étanchéité aval appliquée sur une face amont du disque de la rangée annulaire d’aubes mobiles,
- la pièce d’étanchéité amont comportant une partie annulaire à partir de laquelle un becquet annulaire aval s’étend longitudinalement vers l’aval, ladite partie annulaire présentant une partie radialement externe comportant une cavité annulaire amont, ladite cavité amont étant ouverte au niveau d’un jeu annulaire radialement externe, délimité entre la face aval du distributeur et la pièce d’étanchéité amont,
- la pièce d’étanchéité aval comprenant un premier becquet amont agencé, au moins en partie, radialement à l’intérieur de la plateforme annulaire interne du distributeur et radialement à l’extérieur du becquet aval de la pièce d’étanchéité amont, ladite pièce d’étanchéité aval comprenant en outre un second becquet amont agencé, au moins en partie, radialement à l’intérieur du becquet aval, le becquet aval s’étendant, au moins en partie, en vis-à-vis radial des premier et second becquets amont, les premier et second becquets amont et le becquet aval définissant une double chicane.
[13] La double chicane génère une perte de charge limitant le débit de fuite de gaz issus de la veine radialement vers l’intérieur, entre le distributeur et la rangée annulaire d’aubes mobiles, limitant également le débit de purge d’air nécessaire. Par ailleurs, la cavité annulaire amont permet également de limiter un tel débit de fuite, par création d’une perte de charge supplémentaire.
[14] Par ailleurs, on réduit le débit d’air de purge nécessaire pour rediriger les gaz chauds s’étant introduits entre le distributeur et la rangée annulaire d’aubes mobiles vers la veine annulaire. Ainsi, les éléments de la rangée annulaire d’aubes mobiles sont mieux protégés. Aussi, la quantité d’air de purge prélevée dans le compresseur haute-pression et/ou le compresseur basse-pression est réduite, ce qui permet d’améliorer le rendement global de la turbomachine et donc de diminuer la consommation spécifique. [15] Dans le présent exposé, une pièce dite annulaire peut comprendre une pluralité de secteurs disposés circonférentiellement bout à bout autour d’un axe, notamment à 360° autour dudit axe. Bien entendu, une pièce dite annulaire peut également être monobloc, c’est-à-dire formée d’une seule pièce et non de secteurs.
[16] Le premier becquet amont, le second becquet amont et/ou le becquet aval peuvent être, au moins en partie, cylindriques.
[17] Le premier becquet amont peut présenter une face radialement externe qui est de forme tronconique à section diminuant vers l’amont s’étendant sur au moins une première portion longitudinale.
[18] Une telle forme permet de faciliter l’évacuation de l’air de purge et des gaz hors de la cavité située entre le distributeur et la rangée annulaire d’aubes mobiles vers la veine annulaire. Par ailleurs, une telle caractéristique permet d’adapter la direction dans laquelle les gaz mélangés dans la veine annulaire sont réintroduits dans la veine annulaire pour minimiser les perturbations sur les gaz s’écoulant dans la veine annulaire.
[19] L’ espace annulaire peut s’étendre entre les premier et second becquets amont est délimité par une surface radialement interne du premier becquet amont, une surface radialement externe du second becquet amont et une surface amont concave de la pièce d’étanchéité aval.
[20] La surface radialement interne du second becquet amont peut être reliée à une face amont de la pièce d’étanchéité aval par une portion arrondie concave.
[21] La cavité annulaire amont de la pièce d’étanchéité amont peut être délimitée longitudinalement par une face radiale aval du distributeur et par une paroi radiale aval de la pièce d’étanchéité amont s’étendant radialement vers l’extérieur depuis la partie annulaire de la partie pièce d’étanchéité amont, et délimitée radialement par une surface d’extrémité annulaire située à l’extrémité radialement externe de ladite partie annulaire et par une paroi longitudinale s’étendant longitudinalement vers l’amont depuis l’extrémité radialement externe de la paroi radiale aval, ledit jeu annulaire externe étant formé longitudinalement entre la face radiale aval du distributeur et l’extrémité amont de ladite paroi longitudinale.
[22] Ladite surface d’extrémité annulaire peut comporter une zone tronconique s’évasant vers l’aval.
[23] La face annulaire radialement interne de la plateforme annulaire interne du distributeur peut présenter au moins une zone de forme concave. [24] Le distributeur peut comporter en outre une bride annulaire radiale s’étendant radialement vers l’intérieur depuis la plateforme annulaire interne, la pièce d’étanchéité amont étant rapportée et fixée à la bride annulaire radiale. Alternativement, la pièce d’étanchéité amont peut être venue de matière avec la bride annulaire radiale du distributeur.
[25] De même, la pièce d’étanchéité aval peut être rapportée ou fixée sur un disque de la rangée annulaire d’aubes mobiles, ou venir de matière avec le disque.
[26] La rangée annulaire d’aubes mobiles peut comprendre une plateforme annulaire interne, ledit premier becquet amont s’étendant depuis une extrémité amont de la plateforme annulaire interne.
[27] Chaque aube mobile de rangée annulaire d’aubes mobiles peut comprendre un secteur de la plateforme annulaire interne, lesdits secteurs étant agencés circonférentiellement bout à bout. Chaque aube mobile peut comprendre une pale s’étendant radialement vers l’extérieur depuis le secteur respectif de la plateforme annulaire interne. Chaque aube mobile peut comprendre un pied d’aube s’étendant radialement vers l’intérieur depuis le secteur respectif de la plateforme annulaire interne. Chaque pied d’aube peut être reçu dans une alvéole associée formée sur la périphérie externe du disque. En variante, chaque aube mobile est formée d’une seule pièce avec le secteur respectif de la plateforme annulaire interne.
[28] Le présent document concerne également une turbomachine comprenant une turbine à gaz haute-pression du type précité.
Brève description des dessins
[29] D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels :
[30] [Fig. 1], déjà décrite précédemment, est une vue schématique partielle en coupe d’une turbomachine de l’art antérieur ;
[31] [Fig. 2], déjà décrite précédemment, est une vue schématique partielle en coupe d’une turbine haute-pression de la turbomachine de la figure 1 ;
[32] [Fig. 3] est une vue schématique partielle en perspective et en coupe d’une turbine haute-pression selon une forme de réalisation du présent document ;
[33] [Fig. 4] est une vue schématique partielle en coupe de la turbine de la figure 3 ;
Description des modes de réalisation [34] Il est maintenant fait référence aux figures 3 et 4 qui représentent, selon un premier mode de réalisation, partiellement une turbine haute-pression d’une turbomachine d’axe longitudinal X. La turbine haute-pression comprend une pluralité d’étages comprenant chacun un distributeur 30 et une roue mobile 40 montée en aval du distributeur 30.
[35] Le distributeur 30 comprend une rangée annulaire d’aubes fixes 32. Chaque aube fixe 32 est reliée, radialement vers l’intérieur, à une plateforme annulaire interne 34 du distributeur 30. Chaque aube fixe 32 s’étend radialement vers l’extérieur depuis la plateforme annulaire interne 34. Chaque aube fixe 32 est reliée, radialement vers l’extérieur, à une plateforme externe 34’ reliée à un carter externe de la turbine haute- pression. Une face annulaire radialement externe de la plateforme annulaire interne 34 et une face annulaire radialement interne de la plateforme externe 34’ délimitent, radialement, respectivement vers l’intérieur et vers l’extérieur, une veine annulaire 1 1 de la turbomachine 10 au niveau du distributeur 30 de la turbine haute-pression. Ainsi, chaque aube fixe 32 s’étend radialement à l’intérieur de la veine annulaire 1 1 .
[36] Le distributeur 30 comporte en outre une bride annulaire radiale 36 s’étendant radialement vers l’intérieur depuis la plateforme annulaire interne 34. Le distributeur 30 peut être relié à un carter interne de turbomachine par l’intermédiaire de la bride annulaire radiale 36.
[37] La roue mobile 40 comporte une rangée annulaire d’aubes mobiles 42 portée par un disque 41 . La roue mobile 40 comprend une plateforme annulaire interne 44. Chaque aube mobile 42 de la roue mobile 40 comprend un secteur de la plateforme annulaire interne 44, les secteurs étant agencés circonférentiellement bout à bout autour de l’axe longitudinal X. Une face annulaire radialement externe 44a de la plateforme annulaire interne 44 délimite, radialement vers l’intérieur, la veine annulaire 11 au niveau de la roue mobile 40 de la turbine. Chaque aube mobile 42 comprend une pale 42’ s’étendant, radialement vers l’extérieur, dans la veine annulaire 1 1 depuis le secteur respectif de la plateforme annulaire interne 44.
[38] La roue mobile 40 comprend aussi une pièce d’étanchéité aval 43 rapportée et fixée sur une surface radiale amont du disque 41 et de la zone comportant la plateforme 44. En variante, la pièce d’étanchéité aval 43 peut venir de matière avec le disque 41 . La pièce d’étanchéité aval 43 comporte un premier becquet annulaire amont 47 qui est annulaire et qui s’étend longitudinalement vers l’amont au niveau de l’extrémité radialement externe de la pièce d’étanchéité aval 43. Le premier becquet annulaire amont 47 est agencé, ici en partie, radialement à l’intérieur de la plateforme annulaire interne 34 du distributeur 30. Autrement dit, le premier becquet annulaire amont 47 est disposé radialement à l’intérieur de la plateforme annulaire interne 34 du distributeur 30 et, en partie, en vis-à-vis radial de la plateforme annulaire interne 34 du distributeur 30. L’extrémité amont du premier becquet amont 47 est située longitudinalement plus en amont que l’extrémité aval de la plateforme interne 34.
[39] Le premier becquet annulaire amont 47 présente une face annulaire radialement externe 47a qui est de forme tronconique à section diminuant vers l’amont et qui s’étend sur une première portion longitudinale du premier becquet annulaire amont 47. La première portion du becquet annulaire amont 47 est, ici en partie, en vis-à-vis radial de la plateforme annulaire interne 34 du distributeur 30. La face annulaire radialement externe 47a de la première portion du becquet annulaire amont 47 est ici reliée à la face annulaire radialement externe 44a de la plateforme annulaire interne 44 de la roue mobile 40, notamment par un arrondi.
[40] Par ailleurs, la pièce d’étanchéité aval 43 comporte un second becquet annulaire amont 48, s’étendant longitudinalement vers l’aval et situé radialement à l’intérieur du premier becquet amont 47.
[41] L’espace annulaire s’étendant entre les premier et second becquets amont 47, 48 est délimité par une surface radialement interne 47b du premier becquet amont 47, une surface radialement externe 48a du second becquet amont 48 et une surface amont concave 43a de la pièce d’étanchéité aval 43.
[42] Par ailleurs, le second becquet amont 48 comporte une surface radialement interne 48b qui est reliée à une face amont de la pièce d’étanchéité aval 43 par une portion arrondie concave 49.
[43] La turbine haute-pression comprend en outre une pièce d’étanchéité amont 50, qui est ici annulaire, appliquée contre une face aval 36a du distributeur 30. La pièce d’étanchéité amont 50 est ici rapportée et fixée à la bride annulaire radiale 36. Pour ce faire, la pièce d’étanchéité amont 50 comprend une partie annulaire 52 appliquée contre une face aval 36a de la bride annulaire radiale 36 du distributeur 30. La partie annulaire 52 de la pièce d’étanchéité amont 50 peut être fixée, par exemple par boulonnage, à la bride annulaire radiale 36 du distributeur 30. La pièce d’étanchéité amont peut être partie intégrante du carter de la turbine haute-pression ou de la bride 36.
[44] La pièce d’étanchéité amont 50 comporte une cavité 51 dans laquelle est logé un organe élastique 51 ’.
[45] La pièce d’étanchéité amont 50 comporte un becquet aval 54 qui est annulaire. Le premier becquet annulaire aval 54 est agencé, ici en partie, radialement à l’intérieur du premier becquet annulaire amont 47 et radialement à l’extérieur du second becquet amont 48 de la pièce d’étanchéité aval 43. Par ailleurs, l’extrémité aval du becquet aval 54 est située longitudinalement plus en aval que les extrémités amont des premier et second becquets amont 47, 48. Les becquets 54, 47, 48 forment une double chicane, et créés des pertes de charge limitant le débit de gaz apte à s’écouler radialement au travers de ladite double chicane.
[46] La pièce d’étanchéité amont 50 comporte en outre une cavité annulaire amont 56, ladite cavité amont 56 étant ouverte au niveau d’un jeu annulaire radialement externe 58, délimité entre la face aval 36a du distributeur 30 et la pièce d’étanchéité amont 50.
[47] La cavité annulaire amont 56 de la pièce d’étanchéité amont 50 peut être délimitée longitudinalement par la face radiale aval 36a du distributeur 30 et par une paroi radiale aval 60 de la pièce d’étanchéité amont 50 s’étendant radialement vers l’extérieur depuis la partie annulaire 52 de la partie pièce d’étanchéité amont 50, et délimitée radialement par une surface d’extrémité annulaire 52a située à l’extrémité radialement externe de ladite partie annulaire 52 et par une paroi longitudinale 62 s’étendant longitudinalement vers l’amont depuis l’extrémité radialement externe de la paroi radiale aval 60. Le jeu annulaire externe 58 est formé longitudinalement entre la face radiale aval 36a du distributeur 30 et l’extrémité amont de ladite paroi longitudinale 62.
[48] Ladite surface d’extrémité annulaire 52a peut comporter une zone tronconique 52b s’évasant vers l’aval.
[49] Selon une variante non représentée, la pièce annulaire d’étanchéité amont 50 peut être venue de matière avec la bride annulaire radiale 36 du distributeur 30.
[50] Selon une variante non représentée, la pièce annulaire d’étanchéité 50 peut comprendre une pluralité de secteurs disposés circonférentiellement bout à bout autour de l’axe longitudinal X.
[51] La face annulaire radialement interne 34a de la plateforme annulaire interne 34 du distributeur 30 peut présenter une zone de forme concave 34b qui est agencée en vis-à-vis radial du becquet annulaire amont 47 et/ou de la paroi longitudinale 62.
[52] La turbine comporte en outre une cavité annulaire de purge 62 située longitudinalement entre la pièce d’étanchéité amont 50 et la pièce d’étanchéité aval 43, ou plus généralement entre le distributeur 30 et la roue mobile 40, et radialement à l’intérieur du second becquet amont 48.
[53] Un espace libre 64 est formé, longitudinalement, entre la plateforme annulaire interne 34 du distributeur 30 et la plateforme annulaire interne 44 de la roue mobile 40. La plateforme annulaire interne 34 du distributeur 30 et le becquet annulaire amont 47 de la roue mobile 40 définissent ensemble un jeu ou conduit d’écoulement entre la veine annulaire 11 et la double chicane 47, 48, 54.
[54] En fonctionnement, des gaz chauds issus de la veine 11 pénètrent dans l’espace 64 ménagé entre la plateforme 34 et la plateforme 44, ce flux de gaz chauds étant contré par un flux d’air de purge, prélevé dans le compresseur basse-pression 14 et/ou le compresseur haute-pression 16, et dirigé à travers la cavité annulaire de purge 62 et la double chicane 47, 48, 54, vers la veine 11 .
[55] La double chicane 47, 48, 54 et la cavité amont 56 permettent de générer des pertes de charges limitant la progression du flux de gaz chauds issus de la veine 11 radialement vers l’intérieur, en direction de la cavité annulaire de purge 62, limitant également le débit d’air de purge nécessaire à éviter l’endommagement de la turbine.
[56] L’ invention ne se limite pas aux seuls exemples décrits précédemment et est susceptible de nombreuses variantes. En particulier, les modes de réalisation sont susceptibles d’être combinés.

Claims

Revendications
[Revendication 1] Turbine à gaz haute-pression pour une turbomachine (10) s’étendant autour d’un axe longitudinal (X), la turbine comprenant :
- un distributeur (30) comprenant une plateforme annulaire interne (34) et une rangée annulaire d’aubes fixes (32), chaque aube fixe (32) étant reliée, radialement vers l’intérieur, à la plateforme annulaire interne (34),
- une rangée annulaire d’aubes mobiles (40) montée en aval du distributeur (30), comportant un disque (41 ) à partir duquel des aubes (42) s’étendent radialement vers l’extérieur,
- une pièce d’étanchéité amont (50) appliquée contre une face aval du distributeur (30) et une pièce d’étanchéité aval (43) appliquée contre une face amont du disque (41 ) de la rangée annulaire d’aubes mobiles (40),
- la pièce d’étanchéité amont (50) comportant une partie annulaire (52) à partir de laquelle un becquet annulaire aval (54) s’étend longitudinalement vers l’aval, ladite partie annulaire (52) présentant une partie radialement externe comportant une cavité annulaire amont (56), ladite cavité amont (56) étant ouverte au niveau d’un jeu annulaire radialement externe (58), délimité entre la face aval du distributeur (30) et la pièce d’étanchéité amont (50),
- la pièce d’étanchéité aval (43) comprenant un premier becquet amont (47) agencé, au moins en partie, radialement à l’intérieur de la plateforme annulaire interne (34) du distributeur (30) et radialement à l’extérieur du becquet aval (54) de la pièce d’étanchéité amont (50), ladite pièce d’étanchéité aval (43) comprenant en outre un second becquet amont (48) agencé, au moins en partie, radialement à l’intérieur du becquet aval (54), le becquet aval (54) s’étendant, au moins en partie, en vis-à-vis radial des premier et second becquets amont (47, 48), les premier et second becquets amont (47, 48) et le becquet aval (54) définissant une double chicane.
[Revendication 2] Turbine selon l’une quelconque des revendications précédentes, dans laquelle le premier becquet amont (47), le second becquet amont (48) et/ou le becquet aval (54) sont, au moins en partie, cylindriques.
[Revendication 3] Turbine selon l’une quelconque des revendications précédentes, dans laquelle le premier becquet amont (47) présente une face radialement externe (47a) qui est de forme tronconique à section diminuant vers l’amont s’étendant sur au moins une première portion longitudinale.
[Revendication 4] Turbine selon l’une quelconque des revendications précédentes, dans laquelle l’espace annulaire s’étendant entre les premier et second becquets amont (47, 48) est délimité par une surface radialement interne (47b) du premier becquet amont (47), une surface radialement externe (48a) du second becquet amont (48) et une surface amont concave de la pièce d’étanchéité aval (43).
[Revendication 5] Turbine selon l’une quelconque des revendications précédentes, dans laquelle la surface radialement interne du second becquet amont (48) est reliée à une face amont de la pièce d’étanchéité aval (43) par une portion arrondie concave (49).
[Revendication 6] Turbine selon l’une quelconque des revendications précédentes, dans laquelle la cavité annulaire amont (56) de la pièce d’étanchéité amont (50) est délimitée longitudinalement par une face radiale aval (36a) du distributeur (30) et par une paroi radiale aval (60) de la pièce d’étanchéité amont (50) s’étendant radialement vers l’extérieur depuis la partie annulaire (52) de la partie pièce d’étanchéité amont (50), et délimitée radialement par une surface d’extrémité annulaire (52a) située à l’extrémité radialement externe de ladite partie annulaire (52) et par une paroi longitudinale (62) s’étendant longitudinalement vers l’amont depuis l’extrémité radialement externe de la paroi radiale aval (60), ledit jeu annulaire externe (58) étant formé longitudinalement entre la face radiale aval (36a) du distributeur (30) et l’extrémité amont de ladite paroi longitudinale (62).
[Revendication 7] Turbine selon la revendication précédente, dans laquelle ladite surface d’extrémité annulaire (52a) comporte une zone tronconique (52b) s’évasant vers l’aval.
[Revendication 8] Turbine selon quelconque des revendications précédentes, dans laquelle la face annulaire radialement interne (34a) de la plateforme annulaire interne (34) du distributeur (30) présente au moins une zone (34b) de forme concave.
[Revendication 9] Turbine selon l’une quelconque des revendications précédentes, dans laquelle le distributeur (30) comporte en outre une bride annulaire radiale (36) s’étendant radialement vers l’intérieur depuis la plateforme annulaire interne (34), la pièce d’étanchéité amont (50) étant rapportée et fixée à la bride annulaire radiale (36).
[Revendication 10] Turbomachine comprenant une turbine à gaz haute-pression selon l’une quelconque des revendications précédentes.
PCT/FR2022/051662 2021-09-27 2022-09-02 Turbine à gaz haute-pression pour une turbomachine et turbomachine WO2023047033A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2110131A FR3127519B1 (fr) 2021-09-27 2021-09-27 Turbine a gaz haute-pression pour turbomachine
FRFR2110131 2021-09-27

Publications (1)

Publication Number Publication Date
WO2023047033A1 true WO2023047033A1 (fr) 2023-03-30

Family

ID=80122422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/051662 WO2023047033A1 (fr) 2021-09-27 2022-09-02 Turbine à gaz haute-pression pour une turbomachine et turbomachine

Country Status (2)

Country Link
FR (1) FR3127519B1 (fr)
WO (1) WO2023047033A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930593A1 (fr) * 2008-04-23 2009-10-30 Snecma Sa Piece thermomecanique de revolution autour d'un axe longitudinal, comprenant au moins une couronne abradable destinee a un labyrinthe d'etancheite
FR2940351A1 (fr) * 2008-12-19 2010-06-25 Snecma Rotor de turbine d'un moteur a turbine a gaz comprenant un disque de rotor et un flasque d'etancheite
FR3001492A1 (fr) * 2013-01-25 2014-08-01 Snecma Stator de turbomachine avec controle passif de la purge
US20150354391A1 (en) * 2013-01-28 2015-12-10 Siemens Aktiengesellschaft Turbine arrangement with improved sealing effect at a seal
US9605552B2 (en) * 2013-06-10 2017-03-28 General Electric Company Non-integral segmented angel-wing seal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930593A1 (fr) * 2008-04-23 2009-10-30 Snecma Sa Piece thermomecanique de revolution autour d'un axe longitudinal, comprenant au moins une couronne abradable destinee a un labyrinthe d'etancheite
FR2940351A1 (fr) * 2008-12-19 2010-06-25 Snecma Rotor de turbine d'un moteur a turbine a gaz comprenant un disque de rotor et un flasque d'etancheite
FR3001492A1 (fr) * 2013-01-25 2014-08-01 Snecma Stator de turbomachine avec controle passif de la purge
US20150354391A1 (en) * 2013-01-28 2015-12-10 Siemens Aktiengesellschaft Turbine arrangement with improved sealing effect at a seal
US9605552B2 (en) * 2013-06-10 2017-03-28 General Electric Company Non-integral segmented angel-wing seal

Also Published As

Publication number Publication date
FR3127519A1 (fr) 2023-03-31
FR3127519B1 (fr) 2023-09-22

Similar Documents

Publication Publication Date Title
EP2440746B1 (fr) Turbomachine comprenant des moyens ameliores de reglage du debit d'un flux d'air de refroidissement preleve en sortie de compresseur haute pression
EP1965027B1 (fr) Turbine haute-pression d'une turbomachine
FR2948726A1 (fr) Roue a aubes comprenant des moyens de refroidissement ameliores
EP2694781B1 (fr) Flasque d'etancheite pour etage de turbine de turbomachine d'aeronef, comprenant des tenons anti-rotation fendus
FR3068070B1 (fr) Turbine pour turbomachine
FR3006366A1 (fr) Roue de turbine dans une turbomachine
FR3091725A1 (fr) Ensemble pour une turbomachine
EP3880939B1 (fr) Étanchéité entre une roue mobile et un distributeur d'une turbomachine
FR2931515A1 (fr) Turbomachine avec diffuseur
FR3066533B1 (fr) Ensemble d'etancheite pour une turbomachine
WO2023047033A1 (fr) Turbine à gaz haute-pression pour une turbomachine et turbomachine
FR2999249A1 (fr) Compresseur pour turbomachine dote de moyens de refroidissement d'un joint tournant assurant l'etancheite entre un redresseur et un rotor
WO2023047034A1 (fr) Turbine à gaz haute-pression pour une turbomachine et turbomachine
FR3119199A1 (fr) Conduit de decharge a etancheite perfectionnee
FR3118782A1 (fr) Turbine a gaz haute-pression pour turbomachine
FR3118783A1 (fr) Turbine a gaz haute-pression pour turbomachine
FR3111393A1 (fr) Turbomachine comprenant un organe de séparation d’un flux d’air amovible
FR3101374A1 (fr) Structure de refroidissement d’une turbine avec coopération radiale entre anneau d’étanchéité et disque de roue mobile
FR3092865A1 (fr) Disque de rotor avec arret axial des aubes, ensemble d’un disque et d’un anneau et turbomachine
FR3049307B1 (fr) Ensemble rotatif pour turbomachine
EP3847339B1 (fr) Disque de rotor avec arret axial des aubes, ensemble d'un disque et d'un anneau et turbomachine
FR2962158A1 (fr) Machine tournante et dispositif d'etancheite
EP3976935B1 (fr) Anneau d'étanchéité pour une roue de turbine de turbomachine
FR3085405A1 (fr) Pressurisation de la cavite inter-lechettes par derivation du flux de bypass
EP3976939A1 (fr) Module de turbomachine d'aeronef

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22786057

Country of ref document: EP

Kind code of ref document: A1