WO2023046152A1 - 光纤检测方法、roadm系统、服务器及存储介质 - Google Patents

光纤检测方法、roadm系统、服务器及存储介质 Download PDF

Info

Publication number
WO2023046152A1
WO2023046152A1 PCT/CN2022/121278 CN2022121278W WO2023046152A1 WO 2023046152 A1 WO2023046152 A1 WO 2023046152A1 CN 2022121278 W CN2022121278 W CN 2022121278W WO 2023046152 A1 WO2023046152 A1 WO 2023046152A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
fiber connection
wss
uplink
Prior art date
Application number
PCT/CN2022/121278
Other languages
English (en)
French (fr)
Inventor
王振
张明超
郭永东
朱晓宇
赵志勇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023046152A1 publication Critical patent/WO2023046152A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to the field of optical fiber technology, in particular to an optical fiber detection method, a Reconfigurable Optical Add-Drop Multiplexer (ROADM, Reconfigurable Optical Add-Drop Multiplexer) system, a server and a storage medium.
  • ROADM Reconfigurable Optical Add-Drop Multiplexer
  • ROADM is a key technology in wavelength division multiplexing (WDM, Wavelength Division Multiplexing) optical network.
  • WDM wavelength division multiplexing
  • WDM Wavelength Division Multiplexing
  • the local add/drop function and pass-through function of channel wavelengths can be completed in real time, which enhances the flexibility of wavelength scheduling in WDM optical networks.
  • the ROADM function is mainly realized by three devices, namely, a wavelength blocker (WB, Wavelength Blocker), a planar waveguide (PLC, Planar Lightwave Circuit) and a wavelength selective switch (WSS, Wavelength Selective Switch). More and more applications are deployed on the live network of operators.
  • WB wavelength blocker
  • PLC Planar waveguide
  • WSS Wavelength Selective Switch
  • the current method for checking whether the physical fiber connection is wrong in the project is to connect each port through the physical fiber according to the business fiber connection planning diagram after the project deployment is completed. After completion, use an optical power meter to measure the power of each fiber link. This requires testers to test each fiber link inside each ROADM node.
  • the physical optical fiber inside the multi-dimensional ROADM node is very complex and there are a large number of optical fibers. It takes a lot of manpower, material resources and time costs for testers to test each optical fiber link inside each ROADM node, and the test results may be interfered by human factors. , affecting the accuracy of the test results.
  • the embodiment of the present application proposes an optical fiber detection method, a ROADM system, a server, and a storage medium.
  • the accuracy of test results can be improved while saving manpower and time costs.
  • An embodiment of the present application provides a method for detecting an optical fiber, which is applied to a network management server of a ROADM system.
  • the ROADM system includes: a network management server, and a plurality of optical fiber connection units connected to the network management server.
  • Each of the optical fiber connection units includes: a downlink optical amplifier, a downlink WSS, an uplink optical amplifier, and an uplink WSS.
  • the output end of the downlink optical amplifier is connected to the input port of the downlink WSS, and the downlink WSS includes n sending ports.
  • the input end of the uplink optical amplifier is connected to the output port of the uplink WSS, and the uplink WSS includes n receiving ports.
  • n sending ports and the n receiving ports of each of the optical fiber connection units There is a one-to-one correspondence between the n sending ports and the n receiving ports of each of the optical fiber connection units.
  • the n sending ports of each of the optical fiber connection units are respectively connected to one receiving port of the other n optical fiber connection units through optical fibers, and the n receiving ports of each of the optical fiber connection units are respectively connected to other receiving ports through the optical fibers.
  • One sending port of the n optical fiber connection units is connected to one of the receiving ports of another optical fiber connection unit, and the receiving port corresponding to one of the sending ports of one of the optical fiber connection units is connected to to the sending port corresponding to one of the receiving ports of the other optical fiber connection unit.
  • the method includes: sequentially turning on an optical fiber according to a preset sequence; controlling the downlink optical amplifier corresponding to the optical fiber to provide an optical signal; acquiring the first optical power output by the downlink optical amplifier corresponding to the optical fiber and the The second optical power input by the uplink optical amplifier corresponding to the optical fiber; according to the pre-stored first insertion loss value of the downlink WSS corresponding to the optical fiber and the pre-stored first insertion loss value of the uplink WSS corresponding to the optical fiber
  • the connection state of the optical fiber is obtained by the second insertion loss value, the first optical power, and the second optical power.
  • the embodiment of the present application also provides a fiber detection method, which is applied to the network management server of the ROADM system.
  • the ROADM system includes: a network management server, and a plurality of optical fiber connection units connected to the network management server.
  • Each of the optical fiber connection units includes: a downlink optical amplifier, a downlink WSS, an uplink optical amplifier, an uplink WSS, and a detector.
  • the output end of the downlink optical amplifier is connected to the input port of the downlink WSS, and the downlink WSS includes n sending ports; the input end of the uplink optical amplifier is connected to the output port of the uplink WSS, and the uplink WSS includes n receiving port.
  • the detector is connected to the uplink optical amplifier.
  • n sending ports and the n receiving ports of each of the optical fiber connection units There is a one-to-one correspondence between the n sending ports and the n receiving ports of each of the optical fiber connection units.
  • the n sending ports of each of the optical fiber connection units are respectively connected to one receiving port of the other n optical fiber connection units through optical fibers, and the n receiving ports of each of the optical fiber connection units are respectively connected to other receiving ports through the optical fibers.
  • One sending port of the n optical fiber connection units is connected to one of the receiving ports of another optical fiber connection unit, and the receiving port corresponding to one of the sending ports of one of the optical fiber connection units is connected to to the sending port corresponding to one of the receiving ports of the other optical fiber connection unit.
  • the method includes: controlling the downlink optical amplifier of each of the optical fiber connection units to provide optical signals; controlling multiple transmission ports in each of the optical fiber connection units to work simultaneously, and each of the transmission ports operates according to The preset on-off time of each setting is continuously switched between the on and off states; controlling one of the receiving ports of each of the optical fiber connection units to be opened, and controlling the other receiving ports in each of the optical fiber connection units except one of the receiving ports The receiving port is closed; the actual on-off time of the optical signal in the uplink optical amplifier is detected by the detector of each of the optical fiber connection units; and the corresponding sending port is set according to the actual on-off time The connection state of the corresponding optical fiber is obtained by the preset on-off time.
  • the embodiment of the present application also provides a ROADM system, including: a network management server, and a plurality of optical fiber connection units connected to the network management server.
  • Each of the optical fiber connection units includes: a downlink optical amplifier, a downlink WSS, an uplink optical amplifier, and an uplink WSS.
  • the output end of the downlink optical amplifier is connected to the input port of the downlink WSS, and the downlink WSS includes n sending ports.
  • the input end of the uplink optical amplifier is connected to the output port of the uplink WSS, and the uplink WSS includes n receiving ports.
  • the n sending ports of each of the optical fiber connection units are respectively connected to one receiving port of the n optical fiber connection units, and the n receiving ports of each of the optical fiber connection units are respectively connected to the n receiving ports of the optical fiber connection units.
  • a send port wherein, one of the sending ports of one optical fiber connection unit is connected to one of the receiving ports of another optical fiber connection unit, and the receiving port corresponding to one of the sending ports of one of the optical fiber connection units is connected to to the sending port corresponding to one of the receiving ports of the other optical fiber connection unit.
  • the embodiment of the present application also provides a server, including: at least one processor; and a memory connected in communication with the at least one processor.
  • the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor can execute the above optical fiber inspection method.
  • the embodiment of the present application also provides a computer-readable storage medium storing a computer program, and implementing the above optical fiber detection method when the computer program is executed by a processor.
  • the optical signal is provided through the downlink optical amplifier, and the first optical power information at the input end of the downlink optical amplifier and the second optical power at the output end of the uplink optical amplifier are inquired through the network management server. These information can be used to calculate the connection insertion loss value of the corresponding physical optical fiber, so as to detect whether the physical optical fiber is abnormal.
  • the network management server only needs to turn on the corresponding optical fibers in sequence according to the preset sequence. Testers do not need to manually test the test instruments one by one, saving a lot of manpower, material resources and time costs. Moreover, the test results are basically free from interference from human factors, and the reliability has also been greatly improved.
  • Fig. 1 is a schematic structural diagram of a ROADM system according to an embodiment of the present application
  • FIG. 2 is a schematic structural view of an optical fiber connection unit in a ROADM system according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a local add/drop unit according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a ROADM system according to an embodiment of the present application.
  • FIG. 5 is a schematic structural view of an optical fiber connection unit of the ROADM system according to an embodiment of the present application.
  • FIG. 6 is a schematic flow diagram of an optical fiber detection method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a partial structure of a ROADM system according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of the sub-steps of step 204 of the optical fiber detection method according to an embodiment of the present application.
  • FIG. 9 is a schematic flow diagram of an optical fiber detection method according to an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a server according to an embodiment of the present application.
  • An embodiment of the present application relates to a ROADM system, and the ROADM system includes: a network management server, and a plurality of optical fiber connection units connected to the network management server.
  • FIG. 1 is a schematic structural diagram of the ROADM system of this embodiment.
  • the ROADM system shown in FIG. 1 includes: a network management server 10 and a plurality of optical fiber connection units 20 .
  • the network management server 10 is respectively connected to each optical fiber connection unit 20 , so as to control each optical fiber connection unit 20 .
  • FIG. 2 it is a schematic structural diagram of an optical fiber connection unit in the ROADM system of this embodiment, including: a downlink optical amplifier 101, a downlink WSS 102, an uplink optical amplifier 103, and an uplink WSS 104.
  • the output end of the downlink optical amplifier 101 is connected to the input end of the downlink WSS 102, and the downlink WSS 102 includes n sending ports D1 to Dn.
  • the input end of the uplink optical amplifier 103 is connected to the output end of the uplink WSS 104, and the uplink WSS 104 includes n receiving ports A1 to An.
  • a sending port of the downlink WSS 102 (that is, any interface from D1 to Dn) is used to connect with a receiving port of the uplink WSS of other optical fiber connection units.
  • a receiving port of the upstream WSS 104 (that is, any interface from A1 to An) is used to connect with a transmitting port of the downstream WSS of other optical fiber connection units.
  • the downlink optical amplifier 101 can provide an optical signal, that is, a wide-spectrum optical signal, at the beginning of the project.
  • the network management server can obtain the first optical power at the output end of the downlink optical amplifier 101 connected to the same optical fiber, and the second optical power at the input end of the uplink optical amplifier 103, thereby obtaining the insertion loss value of the optical fiber, The fiber is thus tested.
  • the function of the downlink optical amplifier 101 in the ROADM system is to amplify the service signal sent from the previous node.
  • the downlink optical amplifier 101 also needs to provide a wide-spectrum optical signal when there is no service optical signal input (that is, in the case of engineering deployment), and the network management server can query the downlink optical amplifier 101 Optical power at the output.
  • the function of the uplink optical amplifier 103 in the ROADM system is to amplify the service signal sent from the previous node.
  • a broadband optical signal will also be transmitted to the uplink optical amplifier 103 .
  • the network management server needs to query the optical power at the input end of the uplink optical amplifier 103 .
  • the downlink WSS 102 can open or block each service sending port D1-Dn according to the service operation instruction issued by the network management server.
  • the uplink WSS 104 can open or block each service receiving port A1-An according to the service operation instruction issued by the network management server.
  • each optical fiber connecting unit there are multiple optical fiber connection units in the ROADM system of this embodiment, and the n sending ports and n receiving ports of each optical fiber connecting unit are in one-to-one correspondence.
  • the n sending ports of each fiber connection unit are respectively connected to one receiving port of n fiber connection units, and the n receiving ports of each fiber connection unit are respectively connected to one sending port of n fiber connection units.
  • a sending port of one fiber connection unit is connected to a receiving port of another fiber connection unit, and a receiving port corresponding to a sending port of one fiber connection unit is connected to a sending port corresponding to a receiving port of another fiber connection unit. port.
  • an optical fiber connection unit further includes a multiplexer 106 and a multiplexer 107 . That is, the optical fiber connection unit is a local add/drop unit.
  • FIG. 3 is a schematic structural diagram of a local add/drop unit. As shown in Figure 3, the output end of the multiplexer 106 is connected to the input end of the corresponding downlink optical amplifier 101, and the input end of the multiplexer 106 is connected to the local user; The output end, the output end of the wave splitter 107 is connected to the local user.
  • the local service signal is amplified by the downlink optical amplifier 101 after being multiplexed by the multiplexer 106, and then sent to each service receiving port A1 of the uplink WSS 104 of the next node through the service sending ports D1-Dn of the downlink WSS 102 ⁇ An.
  • the service signals from all directions are sent to the service receiving ports A1-An of the uplink WSS 104 of the local add/drop unit through the service sending ports D1 ⁇ Dn of the downlink WSS 102 in each direction, and then amplified by the uplink optical amplifier 103 After being demultiplexed by the demultiplexer 107, it is sent to the local user.
  • FIG. 4 is a schematic structural diagram of the ROADM system of this embodiment.
  • the ROADM system includes fiber connection units in four directions, that is, fiber connection units in direction A, fiber connection units in direction B, fiber connection units in direction C, fiber connection units in direction D, and a local add/drop unit , the local add/drop unit is also an optical fiber connection unit.
  • the solid lines with arrows in Figure 4 indicate physical optical fibers, and the arrows indicate the direction of optical signals. In Figure 4, a total of 20 optical fibers are connected to each other.
  • the service sending port D1 of the downlink WSS of the fiber connection unit in the A direction is connected to the service receiving port A1 of the uplink WSS of the line unit in the B direction, and the service sending port D2 of the downlink WSS of the fiber connection unit in the A direction is connected to the uplink service port A1 of the line unit in the D direction.
  • the service receiving port A2 of the WSS is connected, the service sending port D3 of the downlink WSS of the line unit in the direction A is connected with the service receiving port A1 of the uplink WSS of the optical fiber connection unit in the direction C, and the service sending port Dn of the downlink WSS of the line unit in the direction A is connected to the local upstream and downstream
  • the service receiving port A2 of the uplink WSS of the road unit is connected.
  • the service sending port A1 of the uplink WSS of the fiber connection unit in the A direction is connected to the service receiving port D1 of the downlink WSS of the line unit in the B direction, and the service sending port A2 of the uplink WSS of the fiber connection unit in the A direction is connected to the line unit in the D direction
  • the service receiving port D2 of the downlink WSS is connected
  • the service sending port A3 of the uplink WSS of the line unit in the direction A is connected with the service receiving port D1 of the downlink WSS of the optical fiber connection unit in the direction C
  • the service sending port An of the uplink WSS of the line unit in the direction A is connected to the local
  • the service receiving port D2 of the downlink WSS of the add/drop unit is connected.
  • a sending port of each fiber connection unit is connected to a receiving port of another fiber connection unit, and a receiving port corresponding to the sending port is connected to a sending port corresponding to the receiving port of the other fiber connection unit.
  • the tester first determines the transmission path of the service between network elements inside the ROADM node according to the service fiber connection planning diagram provided by the bureau or the equipment supplier, and according to the service fiber connection planning diagram Use physical fibers to connect network elements.
  • the service fiber connection planning diagram provided by the equipment supplier is shown in Figure 4, and testers are required to connect each fiber connection unit together according to Figure 4.
  • the process of processing the service fiber connection planning diagram by the software method is as follows: first, construct a data model that the network management server can recognize according to the service fiber connection planning diagram; The physical connection relationship between elements corresponds one by one; finally, according to the hierarchical relationship between data objects, an execution command that the network management server can recognize is generated, and the network management server executes the corresponding business operation after receiving the execution command.
  • testers can construct a data model that the network management server can recognize based on the service fiber connection planning diagram, and send the generated execution commands to the network management server.
  • the network management server performs corresponding business operations according to the execution command, such as opening or closing a specific sending port or receiving port in a specific WSS in a specific direction, thereby saving manpower and time costs.
  • each fiber connection unit of the ROADM system further includes a detector.
  • FIG. 5 is a schematic structural diagram of an optical fiber connection unit in the ROADM system of this embodiment. As shown in FIG. 5 , the detector is connected to the uplink optical amplifier 103 , specifically, to the MON port of the uplink optical amplifier 103 . The detector is used to detect the on-off time of the optical signal in the uplink optical amplifier 103 .
  • the downlink optical amplifier 101 in the downlink optical amplifier 101 and the uplink optical amplifier 103 connected by an optical fiber, the downlink optical amplifier 101 generates an optical signal and transmits the optical signal to the corresponding uplink optical amplifier 103 through the optical fiber.
  • the detector 105 in this embodiment can detect the actual on-off time of the optical signal in the uplink optical amplifier 103, so as to obtain the corresponding on-time of the optical fiber link.
  • the network management server can determine whether the corresponding optical fiber link is abnormally connected according to the opening time. Therefore, the optical fiber connection unit in this embodiment provides a structural basis for automatic detection of the optical fiber connection unit.
  • An embodiment of the present application relates to an optical fiber detection method, which is applied to the network management server of the ROADM system in the previous embodiment.
  • the specific flowchart of the optical fiber detection method of this embodiment is shown in Figure 6, including the following steps:
  • Step 201 conducting one optical fiber sequentially according to a preset sequence.
  • the testers first determine the transmission path of the service between network elements inside the ROADM node according to the service fiber connection planning diagram provided by the bureau or the equipment supplier. After the network elements are connected with physical optical fibers according to the service fiber connection planning diagram, the service optical fiber has not been connected yet, which is the beginning of the project. Each optical fiber needs to be detected to determine whether the optical fiber is connected abnormally. Therefore, it is necessary to turn on one fiber in turn, and only one fiber is turned on at a time.
  • FIG. 7 a schematic diagram of a partial structure of the ROADM system is shown.
  • the sending port D2 of the downlink WSS of the fiber connection unit in the direction A and the receiving port A3 of the uplink WSS of the fiber connection unit in the direction B need to be turned on to block
  • the downlink WSS service sending ports D1, D3 ⁇ Dn of the fiber connection unit in the A direction block all the service receiving ports A1 ⁇ An of the uplink WSS of the fiber connection unit in the A direction, and block the uplink WSS except services of the fiber connection unit in the B direction
  • All service receiving ports other than the receiving port A3 block all service sending ports D1-Dn of the downlink WSS of the optical fiber connection unit in the B direction.
  • step 202 the downlink optical amplifier corresponding to the optical fiber is controlled to provide an optical signal.
  • Step 203 acquiring the first optical power output by the downlink optical amplifier corresponding to the optical fiber and the second optical power input by the uplink optical amplifier corresponding to the optical fiber.
  • the service optical signal has not been connected yet, and the downlink optical amplifier in direction A will provide the optical signal under the control of the network management server in the case of project deployment.
  • the wide-spectrum optical signals are respectively transmitted to the downlink WSS in the A direction, the sending port D2, the receiving port A3, and the uplink WSS in the B direction.
  • the network management server respectively obtains the first optical power output by the downlink optical amplifier connected to the fiber, and obtains the second optical power input by the uplink optical amplifier connected to the fiber.
  • step 204 according to the first insertion loss value of the downlink WSS corresponding to the pre-stored fiber, the second insertion loss value of the uplink WSS corresponding to the pre-stored fiber, the first optical power, and the second optical power to obtain the optical fiber connection status.
  • each downlink WSS and uplink WSS has an insertion loss. Both the insertion loss value information of the downlink WSS and the insertion loss value information of the uplink WSS are calibrated in the corresponding WSS single board.
  • the network management server acquires and stores the insertion loss value information of the downlink WSS and the insertion loss value information of the uplink WSS. In the process of testing, according to the first insertion loss value of the downlink WSS corresponding to the pre-stored fiber, the second insertion loss value of the uplink WSS corresponding to the pre-stored fiber, the first optical power, and the second optical power to obtain the optical fiber Connection Status.
  • FIG. 8 shows a schematic flowchart of the sub-steps of the above-mentioned step 204.
  • Obtaining the connection state of the optical fiber according to the first insertion loss value, the second insertion loss value, the first optical power, and the second optical power includes the following substeps:
  • Step 2041 calculate the insertion loss value of the optical fiber according to the first insertion loss value, the second insertion loss value, the first optical power, and the second optical power.
  • the insertion loss value of the optical fiber can be obtained.
  • Step 2042 when the insertion loss value of the optical fiber is greater than the preset alarm threshold, a prompt alarm is issued.
  • the network management server presets an alarm threshold. After obtaining the insertion loss value of the optical fiber, the network management server compares the insertion loss value of the optical fiber with a preset alarm threshold. If the insertion loss value of the optical fiber does not exceed the preset alarm threshold, it indicates that the optical fiber connection is correct. If the insertion loss value of the optical fiber exceeds the set alarm threshold, the network management server generates a prompt alarm to prompt testers that there is a problem with the physical optical fiber connection of the service transmission path. After receiving the prompt alarm generated by the network management server, the tester checks the physical fiber connection on the service transmission path, and starts to re-test the insertion loss of the fiber after the check.
  • the network management server only needs to turn on the corresponding optical fibers in sequence according to the preset sequence. Testers do not need to manually test the test instruments one by one, saving a lot of manpower, material resources and time costs. Moreover, the test results are basically free from interference from human factors, and the reliability has also been greatly improved.
  • This embodiment is applicable to a scenario with a small site, few directional dimensions, and few physical fiber connections, for example, the number of physical optical fibers is less than 100. At this time, the detection accuracy of the optical fiber detection method of this embodiment is high, and the insertion loss information of the optical fiber can be accurately detected to determine whether the optical fiber is misconnected, broken, or excessively bent.
  • each optical fiber connection unit also includes a detector.
  • the detector is connected to the upstream optical amplifier.
  • the detector is used to detect the on-off time of the optical signal in the uplink optical amplifier.
  • Step 301 controlling the downlink optical amplifier of each optical fiber connection unit to provide an optical signal.
  • Step 302 controlling multiple sending ports in each optical fiber connection unit to work at the same time, and each sending port is constantly switched on and off according to its preset on-off time.
  • the network management server simultaneously controls the work of each sending port in the optical fiber connection unit in each direction.
  • all sending ports D1 to Dn of all downlink WSSs of the optical fiber connection unit and the local add/drop unit in the four directions of A, B, C, and D are controlled to be opened simultaneously.
  • the operation of "open-close-open-close” is carried out, and the state of opening and closing of the sending port is constantly switched, and each sending port is set with a preset on-off time, each sending port
  • the opening and closing time of the switch corresponds to the preset on-off time.
  • Step 303 controlling one receiving port of each optical fiber connection unit to be turned on, and controlling other receiving ports except one receiving port in each optical fiber connection unit to be closed.
  • each optical fiber connection unit one of the receiving ports is controlled to be turned on, and the other receiving ports are turned off.
  • the receiving port A1 of the uplink WSS of each optical fiber connection unit is turned on, and the other receiving ports A2-An are turned off.
  • the optical signals of the five receiving ports A1 respectively enter the corresponding five uplink optical amplifiers, and the actual on-off time of the optical signals can be detected by the detector.
  • another receiving port in each optical fiber connection unit is controlled to be turned on according to a preset sequence. Specifically, continuing to take FIG. 4 as an example, the receiving port A1 of the uplink WSS of each optical fiber connection unit is turned on, and the other receiving ports A2-An are turned off.
  • the optical signals of the five receiving ports A1 respectively enter the five uplink optical amplifiers, and the detector can detect the actual on-off time of the optical signals in the uplink optical amplifiers. At this time, only part of the optical fiber link detection is completed.
  • step 302 In order to detect each optical fiber link, it is necessary to open another receiving port of the uplink WSS of each optical fiber connection unit when step 302 is executed. That is, after the detection is completed, the five receiving ports A1 are closed, and the five receiving ports A2 are opened for detection. By analogy, until all receiving ports An are detected, the detection of each optical fiber can be quickly realized.
  • step 304 the actual on-off time of the optical signal in the uplink optical amplifier is detected by the detector of each optical fiber connection unit.
  • step 305 the connection state of the corresponding optical fiber is obtained according to the actual on-off time and the preset on-off time set by the corresponding sending port.
  • the function of the detector is to detect the actual on-off time of the optical signal on the corresponding uplink optical amplifier.
  • Each sending port is provided with a preset on-off time, and each sending port performs "on-off-on-off" operation according to the preset on-off time. Therefore, if there is no abnormality in the connection of the optical fiber, there should be no large deviation between the actual on-off time and the preset on-off time.
  • the connection status of the corresponding optical fiber can be obtained through the actual on-off time and the preset on-off time.
  • the receiving port, and the sending port corresponding to the receiving port.
  • the network management server compares the on-off time of the optical signal detected by the optical fiber connection unit in the A, B, C, and D directions and the uplink detector of the local add/drop unit with the optical signal connection unit in the A, B, C, and D directions Compare with the on-off time set by the service sending port corresponding to the downlink WSS of the local add/drop unit to judge whether the fiber connection between the corresponding ports is correct.
  • A1 of the uplink WSS of the A-direction fiber connection unit is connected to D1 of the downlink WSS of the B-direction fiber connection unit.
  • obtaining the connection state of the corresponding optical fiber according to the actual on-off time and the preset on-off time set for the corresponding sending port includes: calculating the difference between the actual on-off time and the preset on-off time, and when the difference is not When the condition is within the preset range, a prompt alarm will be issued. Specifically, if the difference is within a preset range, it indicates that the optical fiber connection is error-free. If the difference exceeds the preset range, the network management server generates a prompt alarm, prompting the tester that there is a problem with the physical optical fiber connection of the service transmission path. After receiving the prompt alarm generated by the network management server, the tester checks the physical fiber connection on the service transmission path, and starts to retest the fiber after the check.
  • the network management server determines the on-off of the fiber connection units in directions A, B, C, and D and the downlink WSS sending ports D1 ⁇ Dn of the local add/drop unit according to the business fiber connection planning diagram shown in Figure 4 Time, and the on-off time of each sending port is unique, so as to improve the accuracy of detection and avoid the situation that the connection error cannot be detected due to two settings of the same on-off time.
  • the on-off time of the downlink WSS service sending port D1 of the fiber connection unit in the A direction can be set to 10ms
  • the on-off time of the downlink WSS service sending port D2 of the fiber connection unit in the A direction can be set to 20ms
  • the on-off time of the downlink WSS service sending port D3 of the optical fiber connection unit is set to 30ms, and so on until all the on-off times of all downlink WSS sending ports in all directions are set.
  • the network management server needs to perform the "open-close-open-close" operation on all sending ports in each direction according to the preset on-off time.
  • the network management server also needs to turn on the receiving ports in each direction in sequence from A1 to An. Testers do not need to manually test the test instruments one by one, saving a lot of manpower, material resources and time costs. Moreover, the test results are basically free from interference from human factors, and the reliability has also been greatly improved.
  • This embodiment is applicable to a scenario where the site is large, with many directions and dimensions, and there are many and complex physical fiber connections, for example, the number of physical optical fibers reaches more than 300. In this scenario, it is necessary to judge in a short time whether there is a wrongly connected optical fiber in a large number of optical fibers. At this time, using the optical fiber detection method of this embodiment has high detection efficiency and less time-consuming.
  • step division of the above various methods is only for the sake of clarity of description. During implementation, it can be combined into one step or some steps can be split and decomposed into multiple steps. As long as they include the same logical relationship, they are all within the scope of protection of this patent. ; Adding insignificant modifications or introducing insignificant designs to the algorithm or process, but not changing the core design of the algorithm and process are all within the scope of protection of this patent.
  • An embodiment of the present invention relates to a server, as shown in FIG. 10 , including at least one processor 401 ; and a memory 402 communicatively connected to the at least one processor 401 .
  • the memory 402 stores instructions executable by the at least one processor 301, and the instructions are executed by the at least one processor 401, so that the at least one processor 401 can execute the above communication control method.
  • a bus may include any number of interconnected buses and bridges.
  • the bus connects the various circuits of one or more processors 401 and memory 402 together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the data processed by the processor 401 is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor 401 .
  • Processor 401 is responsible for managing the bus and general processing, and may also provide various functions including timing, peripheral interface, voltage regulation, power management, and other control functions. And the memory 402 may be used to store data used by the processor 401 when performing operations.
  • An embodiment of the present invention relates to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • the program is stored in a storage medium, and includes several instructions to make a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本申请涉及光纤技术领域,特别涉及一种光纤检测方法、可重构光分插复用(ROADM)系统、服务器及存储介质。本申请的光纤检测方法应用于ROADM系统的网络管理服务器,该方法包括:按照预设的顺序依次导通一个光纤;控制光纤对应的下行光放大器提供光信号;获取光纤对应的下行光放大器输出的第一光功率以及光纤对应的上行光放大器输入的第二光功率;根据预先存储的光纤对应的下行波长选择开关(WSS)的第一插损值、预先存储的光纤对应的上行WSS的第二插损值、第一光功率、第二光功率得到光纤的连接状态。整个测试过程中,仅需按照预设的顺序依次开启对应的光纤即可,节约了大量的人力物力和时间成本,并且测试结果基本不受人为因素的干扰,可信度也得到很大的提升。

Description

光纤检测方法、ROADM系统、服务器及存储介质
本申请要求于2021年09月26日提交中国专利局、申请号为202111131784.8、发明名称为“光纤检测方法、ROADM系统、服务器及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光纤技术领域,特别涉及一种光纤检测方法、可重构光分插复用(ROADM,Reconfigurable Optical Add-Drop Multiplexer)系统、服务器及存储介质。
背景技术
ROADM是波分复用(WDM,Wavelength Division Multiplexing)光网络中的关键技术。通过软件配置ROADM能够实时完成通道波长的本地上下路功能以及直通功能,增强了WDM光网络对波长进行调度的灵活性。目前,ROADM功能主要由三种器件实现,分别为波长阻断器(WB,Wavelength Blocker)、平面波导(PLC,Planar Lightwave Circuit)和波长选择开关(WSS,Wavelength Selective Switch),基于WSS的ROADM在运营商的现网中得到了越来越多的部署应用。
为了保证ROADM节点内部WSS模块各个端口物理光纤连接关系的准确性,目前工程上检查物理光纤连接是否出错采用的办法是在工程部署完毕即测试人员按照业务连纤规划图将各个端口通过物理光纤连接完毕之后,使用光功率计测量每一条光纤链路的功率。这需要测试人员测试每个ROADM节点内部的每一条光纤链路。然而,多维ROADM节点内部的物理光纤非常复杂且光纤数量众多,测试人员测试每个ROADM节点内部的每一条光纤链路需要耗费大量的人力物力和时间成本,并且测试结果有可能受到人为因素的干 扰,影响测试结果的准确性。
发明内容
本申请实施例提出了一种光纤检测方法、ROADM系统、服务器及存储介质。可以实现在节省了人力和时间成本的同时提高测试结果的准确性。
本申请实施例提供了一种光纤检测方法,应用于ROADM系统的网络管理服务器。所述ROADM系统包括:网络管理服务器、与所述网络管理服务器连接的多个光纤连接单元。每个所述光纤连接单元包括:下行光放大器、下行WSS、上行光放大器、上行WSS。所述下行光放大器的输出端连接所述下行WSS的输入端口,所述下行WSS包括n个发送端口。所述上行光放大器的输入端连接所述上行WSS的输出端口,所述上行WSS包括n个接收端口。每个所述光纤连接单元的n个发送端口与n个接收端口是一一对应的。每个所述光纤连接单元的n个发送端口分别通过光纤连接至其他n个所述光纤连接单元的一个接收端口,每个所述光纤连接单元的n个接收端口分别通过所述光纤连接至其他n个所述光纤连接单元的一个发送端口。其中,一个所述光纤连接单元的一个所述发送端口连接至另一个所述光纤连接单元的一个所述接收端口,一个所述光纤连接单元的与一个所述发送端口对应的所述接收端口连接至另一个所述光纤连接单元的与一个所述接收端口对应的所述发送端口。所述方法包括:按照预设的顺序依次导通一个光纤;控制所述光纤对应的所述下行光放大器提供光信号;获取所述光纤对应的所述下行光放大器输出的第一光功率以及所述光纤对应的所述上行光放大器输入的第二光功率;根据预先存储的所述光纤对应的所述下行WSS的第一插损值、以及预先存储的所述光纤对应的所述上行WSS的第二插损值、所述第一光功率、所述第二光功率得到所述光纤的连接状态。
本申请实施例还提供了一种光纤检测方法,应用于ROADM系 统的网络管理服务器。所述ROADM系统包括:网络管理服务器、与所述网络管理服务器连接的多个光纤连接单元。每个所述光纤连接单元包括:下行光放大器、下行WSS、上行光放大器、上行WSS、检测器。所述下行光放大器的输出端连接所述下行WSS的输入端口,所述下行WSS包括n个发送端口;所述上行光放大器的输入端连接所述上行WSS的输出端口,所述上行WSS包括n个接收端口。所述检测器连接所述上行光放大器。每个所述光纤连接单元的n个发送端口与n个接收端口是一一对应的。每个所述光纤连接单元的n个发送端口分别通过光纤连接至其他n个所述光纤连接单元的一个接收端口,每个所述光纤连接单元的n个接收端口分别通过所述光纤连接至其他n个所述光纤连接单元的一个发送端口。其中,一个所述光纤连接单元的一个所述发送端口连接至另一个所述光纤连接单元的一个所述接收端口,一个所述光纤连接单元的与一个所述发送端口对应的所述接收端口连接至另一个所述光纤连接单元的与一个所述接收端口对应的所述发送端口。所述方法包括:控制每个所述光纤连接单元的所述下行光放大器提供光信号;控制每个所述光纤连接单元中的多个所述发送端口同时工作,每个所述发送端口均按照各自设置的预设通断时间不断切换开启与关闭的状态;控制每个所述光纤连接单元的一个所述接收端口开启,控制每个所述光纤连接单元中除一个所述接收端口外的其他接收端口关闭;通过每个所述光纤连接单元的所述检测器检测所述光信号在所述上行光放大器的实际通断时间;以及根据所述实际通断时间、对应的所述发送端口设置的所述预设通断时间得到对应光纤的连接状态。
本申请实施例还提供了一种ROADM系统,包括:网络管理服务器、与所述网络管理服务器连接的多个光纤连接单元。每个所述光纤连接单元包括:下行光放大器、下行WSS、上行光放大器、上行WSS。所述下行光放大器的输出端连接所述下行WSS的输入端口,所述下行WSS包括n个发送端口。所述上行光放大器的输入端连接所述上行WSS的输出端口,所述上行WSS包括n个接收端口。 每个所述光纤连接单元的n个发送端口与n个接收端口是一一对应的。每个所述光纤连接单元的n个发送端口分别连接至n个所述光纤连接单元的一个接收端口,每个所述光纤连接单元的n个接收端口分别连接至n个所述光纤连接单元的一个发送端口。其中,一个所述光纤连接单元的一个所述发送端口连接至另一个所述光纤连接单元的一个所述接收端口,一个所述光纤连接单元的与一个所述发送端口对应的所述接收端口连接至另一个所述光纤连接单元的与一个所述接收端口对应的所述发送端口。
本申请实施例还提供了一种服务器,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器。所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的光纤检测方法。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述的光纤检测方法。
本申请通过下行光放大器提供光信号,并通过网络管理服务器查询下行光放大器的输入端的第一光功率信息、以及上行光放大器的输出端的第二光功率。利用这些信息可以计算得出对应的物理光纤的连接插损值,从而检测该物理光纤是否出现异常。在整个测试过程中,网络管理服务器仅需按照预设的顺序依次开启对应的光纤即可。测试人员无需逐个站点的通过测试仪表手动测试,节约了大量的人力物力和时间成本。并且测试结果基本不受人为因素的干扰,可信度也得到很大的提升。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据本申请一实施例的ROADM系统的结构示意图;
图2是根据本申请一实施例的ROADM系统中的一个光纤连接单元的结构示意图;
图3是根据本申请一实施例的本地上下路单元的结构示意图;
图4是根据本申请一实施例的ROADM系统的结构示意图;
图5是根据本申请一实施例的ROADM系统的一个光纤连接单元的结构示意图;
图6是根据本申请一实施例的光纤检测方法的流程示意图;
图7是根据本申请一实施例的ROADM系统的局部结构示意图;
图8是根据本申请一实施例的光纤检测方法的步骤204的子步骤的流程示意图;
图9是根据本申请一实施例的光纤检测方法的流程示意图;
图10是根据本申请一实施例的服务器的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请一实施例涉及一种ROADM系统,ROADM系统包括:网络管理服务器、与网络管理服务器连接的多个光纤连接单元。
图1为本实施例的ROADM系统的结构示意图。图1所示的ROADM系统包括:网络管理服务器10、多个光纤连接单元20。网络管理服务器10分别连接每个光纤连接单元20,从而实现对每个光纤连接单元20的控制。
如图2所示,为本实施例ROADM系统中的一个光纤连接单元的结构示意图,包括:下行光放大器101、下行WSS 102、上行光放大器103、上行WSS 104。
具体地说,下行光放大器101的输出端连接下行WSS 102的输入端,下行WSS 102包括n个发送端口D1至Dn。上行光放大器103的输入端连接上行WSS 104的输出端,上行WSS 104包括n个接收端口A1至An。下行WSS 102的一个发送端口(即D1至Dn中任意一个接口)用于与其他光纤连接单元的上行WSS的一个接收端口连接。上行WSS 104的一个接收端口(即A1至An中任意一个接口)用于与其他光纤连接单元的下行WSS的一个发送端口连接。
具体地说,下行光放大器101可以在工程开局的情况下,提供一种光信号即宽谱光信号。此时没有业务光信号的传输,网络管理服务器可以获取同一光纤所连接的下行光放大器101输出端的第一光功率、上行光放大器103输入端的第二光功率,从而得到该光纤的插损值,从而测试该光纤。
具体地说,下行光放大器101在ROADM系统中的作用是将上一节点发送过来的业务信号放大。同时,在本实施例中,下行光放大器101还需要在没有业务光信号输入的情况下(即工程开局的情形下),提供一种宽谱光信号,并且网络管理服务器能够查询下行光放大器101输出端的光功率。上行光放大器103在ROADM系统中的作用是将上一节点发送过来的业务信号放大。另外,在本实施例中,由于上行光放大器103所在的上行链路会与另一个光纤连接单元的下行链路连接,也会有宽谱光信号传输至该上行光放大器103。网络管理服务器需要查询该上行光放大器103输入端的光功率。
具体地说,下行WSS 102能够根据网络管理服务器下达的业务操作指令,对各业务发送端口D1~Dn进行打开或阻断操作。上行WSS 104能够根据网络管理服务器下达的业务操作指令,对各业务接收端口A1~An进行打开或阻断操作。
具体地说,本实施例的ROADM系统的光纤连接单元的数量为 多个,每个光纤连接单元的n个发送端口与n个接收端口是一一对应的。每个光纤连接单元的n个发送端口分别连接至n个光纤连接单元的一个接收端口,每个光纤连接单元的n个接收端口分别连接至n个光纤连接单元的一个发送端口。其中,一个光纤连接单元的一个发送端口连接至另一个光纤连接单元的一个接收端口,一个光纤连接单元的与一个发送端口对应的接收端口连接至另一个光纤连接单元的与一个接收端口对应的发送端口。
在一个实施例中,一个光纤连接单元还包括合波器106、分波器107。即,该光纤连接单元为本地上下路单元。图3为本地上下路单元的结构示意图。如图3所示,合波器106的输出端连接对应的下行光放大器101的输入端,合波器106的输入端连接本地用户;分波器107的输入端连接对应发上行光放大器103的输出端,分波器107的输出端连接本地用户。具体地说,本地业务信号通过合波器106合波后经过下行光放大器101放大,再通过下行WSS 102的各业务发送端口D1~Dn发送给下一节点的上行WSS 104的各业务接收端口A1~An。同理,来自各个方向的业务信号通过各自方向下行WSS 102的各业务发送端口D1~Dn发送给本地上下路单元的上行WSS 104的各业务接收端口A1~An,再经过上行光放大器103放大后通过分波器107分波后发送给本地用户。
为了便于描述,本实施例以光纤连接单元的数量为5进行举例说明,并不对本方案进行限制。
图4为本实施例的ROADM系统的结构示意图。如图4所示,ROADM系统包括四个方向的光纤连接单元即A方向的光纤连接单元、B方向的光纤连接单元、C方向的光纤连接单元、D方向的光纤连接单元以及一个本地上下路单元,该本地上下路单元也是一个光纤连接单元。图4中带箭头的实心线表示物理光纤,箭头表示光信号的走向,图4中共有20根光纤相互连接。其中,A方向的光纤连接单元的下行WSS的业务发送端口D1与B方向线路单元上行WSS的业务接收端口A1相连,A方向的光纤连接单元的下行WSS的业 务发送端口D2与D方向线路单元上行WSS的业务接收端口A2相连,A方向线路单元下行WSS的业务发送端口D3与C方向的光纤连接单元的上行WSS的业务接收端口A1相连,A方向线路单元下行WSS的业务发送端口Dn与本地上下路单元的上行WSS的业务接收端口A2相连。相应地,A方向的光纤连接单元的上行WSS的业务发送端口A1与B方向线路单元下行WSS的业务接收端口D1相连,A方向的光纤连接单元的上行WSS的业务发送端口A2与D方向线路单元下行WSS的业务接收端口D2相连,A方向线路单元上行WSS的业务发送端口A3与C方向的光纤连接单元的下行WSS的业务接收端口D1相连,A方向线路单元上行WSS的业务发送端口An与本地上下路单元的下行WSS的业务接收端口D2相连。其他物理光纤连接关系在此就不再一一赘述了。也就是说,每个光纤连接单元的一个发送端口连接至另一光纤连接单元的一个接收端口,与该发送端口对应的接收端口连接至该另一光纤连接单元的该接收端口对应的发送端口。
需要说明的是,本实施例中,测试人员首先根据局方或是设备供应商提供的业务连纤规划图确定业务在ROADM节点内部各网元之间的传输路径,并且按照业务连纤规划图使用物理光纤将各网元连接起来。例如,设备供应商提供的业务连纤规划图为图4,需要测试人员按照图4将各个光纤连接单元连接在一起。
具体地说,测试人员按照业务连纤规划图使用物理光纤将各网元连接起来之后,采用软件的方法对业务连纤规划图进行处理。软件的方法对业务连纤规划图进行处理的过程为:首先,根据业务连纤规划图构造网络管理服务器能够识别的数据模型;之后,将数据模型中的数据对象之间的层次关系与各网元之间的物理连纤关系一一对应;最后,根据数据对象之间的层次关系生成网络管理服务器能够识别的执行命令,网络管理服务器收到执行命令后执行相应的业务操作。通过上述步骤,测试人员能够基于业务连纤规划图构造网络管理服务器能够识别的数据模型,并且将生成的执行命令发送 给网络管理服务器。网络管理服务器根据执行命令执行相应的业务操作,例如打开或是关闭特定方向特定WSS中的特定发送端口或是接收端口,从而节约人力和时间成本。
在一个实施例中,ROADM系统的每个光纤连接单元还包括检测器。图5为本实施例ROADM系统中的一个光纤连接单元的结构示意图。如图5所示,检测器连接上行光放大器103,具体地,连接上行光放大器103的MON端口。检测器用于检测光信号在上行光放大器103的通断时间。
具体地说,在一个光纤所连接的下行光放大器101以及上行光放大器103中,下行光放大器101会生成光信号并通过该光纤传输至对应的上行光放大器103。本实施例中的检测器105可以检测到光信号在上行光放大器103的实际通断时间,从而获取对应的光纤链路的开启时间。网络管理服务器可以根据开启时间判断对应的光纤链路是否存在连接异常,因此,本实施例的光纤连接单元提供了一种结构基础,可以实现自动对光纤连接单元的检测。
本申请一实施例涉及一种光纤检测方法,应用于上一实施例的ROADM系统的网络管理服务器。本实施例的光纤检测方法的具体流程示意图如图6所示,包括以下步骤:
步骤201,按照预设的顺序依次导通一个光纤。
具体地说,测试人员首先根据局方或是设备供应商提供的业务连纤规划图确定业务在ROADM节点内部各网元之间的传输路径。在按照业务连纤规划图使用物理光纤将各网元连接起来之后,业务光尚未接通,处于工程开局的情形。需要对每条光纤进行检测,从而判断光纤是否连接异常,因此需要依次开启一个光纤,每次仅开启一条光纤。
具体地说,在开启一个光纤的过程中,控制光纤对应的目标发送端口以及光纤对应的目标接收端口开启,并阻断ROADM系统中除目标发送端口之外的发送端口以及阻断ROADM系统中除目标接收端口之外的接收端口。由于每次仅开启一条光纤,仅有该光纤所 连接的发送端口、接收端口开启,ROADM系统的其他发送端口以及接收端口均被阻断。
下面参考图7示出ROADM系统的局部结构示意图。以图7所示的这条光纤为例,在开启该光纤时,需要开启A方向的光纤连接单元的下行WSS的发送端口D2以及B方向的光纤连接单元的上行WSS的接收端口A3,阻断A方向的光纤连接单元的下行WSS业务发送端口D1、D3~Dn,阻断A方向的光纤连接单元的上行WSS所有业务接收端口A1~An,阻断B方向的光纤连接单元的上行WSS除了业务接收端口A3以外的所有其他业务接收端口,阻断B方向的光纤连接单元的下行WSS所有业务发送端口D1~Dn。
参考回图6,步骤202,控制光纤对应的下行光放大器提供光信号。
步骤203,获取光纤对应的下行光放大器输出的第一光功率以及光纤对应的上行光放大器输入的第二光功率。
具体地说,继续以图7为例,业务光信号尚未接通,处于工程开局的情形下,A方向的下行光放大器在网络管理服务器的控制下会提供光信号。宽谱光信号分别传输至A方向的下行WSS、发送端口D2、接收端口A3、B方向的上行WSS。网络管理服务器分别获取该光纤连接的下行光放大器输出的第一光功率,获取该光纤连接的上行光放大器输入的第二光功率。
参考回图6,步骤204,根据预先存储的光纤对应的下行WSS的第一插损值、预先存储的光纤对应的上行WSS的第二插损值、第一光功率、第二光功率得到光纤的连接状态。
具体地说,每个下行WSS、上行WSS均具有插损。下行WSS的插损值信息、上行WSS的插损值信息均标定在相应WSS单板中。网络管理服务器在进行测试之前,获取下行WSS的插损值信息、上行WSS的插损值信息并存储。在进行测试的过程中,根据预先存储的光纤对应的下行WSS的第一插损值、预先存储的光纤对应的上行WSS的第二插损值、第一光功率、第二光功率得到光纤的连接状态。
在一个实施例中,参考图8示出上述步骤204的子步骤的流程示意图。根据第一插损值、第二插损值、第一光功率、第二光功率得到光纤的连接状态包括以下子步骤:
步骤2041,根据第一插损值、第二插损值、第一光功率、第二光功率计算光纤的插损值。
具体地说,根据第一插损值、第二插损值、第一光功率、第二光功率计算光纤的插损值具体可以实现为:将第一光功率、第二光功率相减得到总插损值,并且将总插损值减去第一插损值、第二插损值得到光纤的插损值。即,光纤的插损值=(第一光功率-第二光功率)-第一插损值-第二插损值。通过此种计算方法就可获取光纤的插损值。
步骤2042,在光纤的插损值大于预设的告警阈值的情况下,发出提示告警。
具体地说,网络管理服务器预设有一个告警阈值。网络管理服务器在获取光纤的插损值之后,将光纤的插损值与预设的告警阈值进行比较。若光纤的插损值没有超出预设的告警阈值,则表明该光纤连接无错误。若光纤的插损值超出了设定的告警阈值,网络管理服务器产生提示告警,提示测试人员该业务传输路径物理光纤连接有问题。测试人员接收到网络管理服务器产生的提示告警后,对该业务传输路径上的物理光纤连接进行排查,并在排查后开始重新对该光纤进行插损测试。
本实施例通过查询下行光放大器的输入端的光功率信息、以及上行光放大器的输出端的光功率信息,并且利用这些信息来计算得出对应的物理光纤的连接插损值,从而检测该物理光纤是否出现异常。整个测试过程中,网络管理服务器仅需按照预设的顺序依次开启对应的光纤即可。测试人员无需逐个站点的通过测试仪表手动测试,节约了大量的人力物力和时间成本。并且测试结果基本不受人为因素的干扰,可信度也得到很大的提升。
本实施例适用于站点较小、方向维度少、物理连纤也较少的场 景,例如物理光纤的数量少于100根。此时使用本实施例的光纤检测方法的检测精度高,可以精确地检测出光纤的插损信息从而判断光纤是否连错、折断、过度弯曲等情况。
本申请的一实施例涉及一种光纤检测方法,应用于上述实施例的ROADM系统的网络管理服务器。其中,每个光纤连接单元还包括检测器。检测器连接上行光放大器。检测器用于检测光信号在上行光放大器的通断时间。
本实施例的具体流程示意图如图9所示,包括以下步骤:
步骤301,控制每个光纤连接单元的下行光放大器提供光信号。
步骤302,控制每个光纤连接单元中的多个发送端口同时工作,每个发送端口均按照各自设置的预设通断时间不断切换开启与关闭的状态。
具体地说,继续参考图4,本实施例中,网络管理服务器会同时控制每个方向上的光纤连接单元中的每个发送端口工作。例如,控制A、B、C、D四个方向上的光纤连接单元和本地上下路单元的所有下行WSS的所有发送端口D1至Dn同时开启。对于每个发送端口,均进行“开启-关闭-开启-关闭”的操作,不断切换发送端口的开启与关闭的状态,且每个发送端口均设置有一个预设通断时间,每个发送端口的开启与关闭的时间与预设通断时间对应。
步骤303,控制每个光纤连接单元的一个接收端口开启,控制每个光纤连接单元中除一个接收端口外的其他接收端口关闭。
具体地说,对于每个光纤连接单元,控制其中一个接收端口开启,其他的接收端口关闭。例如,继续参考图4,每个光纤连接单元的上行WSS的接收端口A1开启,其他接收端口A2-An关闭。5个接收端口A1的光信号分别进入对应的5个上行光放大器中,通过检测器即可检测出光信号的实际通断时间。
在一个例子中,通过每个光纤连接单元的检测器检测光信号在上行光放大器的实际通断时间之后,按照预设的顺序控制每个光纤连接单元中的另一个接收端口开启。具体地说,继续以图4为例, 每个光纤连接单元的上行WSS的接收端口A1开启,其他接收端口A2-An关闭。5个接收端口A1的光信号分别进入5个上行光放大器中,检测器可以检测到光信号在上行光放大器中的实际通断时间,此时仅完成了部分光纤链路的检测。为了检测到每条光纤链路,需要在步骤302执行的情况下,将每个光纤连接单元的上行WSS的另一个接收端口开启。即,检测完成后关闭5个接收端口A1,打开5个接收端口A2进行检测。依此类推直到所有接收端口An均被检测完成,可以快速实现对每个光纤的检测。
步骤304,通过每个光纤连接单元的检测器检测光信号在上行光放大器的实际通断时间。
步骤305,根据实际通断时间、对应的发送端口设置的预设通断时间得到对应的光纤的连接状态。
具体地说,在光纤连接单元中,检测器的作用是检测对应的上行光放大器上的光信号的实际通断时间。而每个发送端口均设置有预设通断时间,且每个发送端口均是按照预设的通断时间进行“开启-关闭-开启-关闭”操作的。因此,若光纤无连接异常,实际通断时间应该与预设通断时间不会存在较大的偏差,通过实际通断时间与预设通断时间即可得到对应光纤的连接状态,该光纤连接该接收端口、与该接收端口对应的发送端口。
继续参考图4,网络管理服务器将A、B、C、D方向光纤连接单元以及本地上下路单元上行链路检测器检测到的光信号通断时间与A、B、C、D方向光纤连接单元以及本地上下路单元下行WSS对应的业务发送端口设置好的通断时间进行对比,以判断对应端口之间的连纤是否正确。例如,A方向光纤连接单元的上行WSS的A1与B方向光纤连接单元的下行WSS的D1连接。将A方向光纤连接单元的上行链路的检测器检测到的光信号的通断时间与B方向光纤连接单元的下行WSS发送端口D1设置好的光信号通断时间进行对比。如果在误差范围内两个通断时间一致,则表明B方向光纤连接单元的下行WSS的发送端口D1与A方向光纤连接单元的上行WSS 的接收端口A1之间的物理光纤连接正确,反之则光纤连接有误。
在一个例子中,根据实际通断时间、对应的发送端口设置的预设通断时间得到对应光纤的连接状态包括:计算实际通断时间与预设通断时间的差值,并且在差值不在预设范围之内的情况下,发出提示告警。具体地说,若该差值在预设范围之内,则表明该光纤连接无错误。若该差值超出了预设范围,网络管理服务器产生提示告警,提示测试人员该业务传输路径物理光纤连接有问题。测试人员接收到网络管理服务器产生的提示告警后,对该业务传输路径上的物理光纤连接进行排查,并在排查后开始重新对该光纤进行测试。
继续以图4为例,网络管理服务器根据如图4的业务连纤规划图确定A、B、C、D方向的光纤连接单元以及本地上下路单元的下行WSS的发送端口D1~Dn的通断时间,并且每个发送端口的通断时间都是唯一的,从而提高检测的准确率,避免两个设置相同的通断时间而导致连接出错时无法检测出来的情况。例如,可以将A方向的光纤连接单元的下行WSS业务发送端口D1的通断时间设置为10ms,将A方向的光纤连接单元的下行WSS业务发送端口D2的通断时间设置为20ms,将A方向的光纤连接单元的下行WSS业务发送端口D3的通断时间设置为30ms,依次类推直至将所有方向的下行WSS的所有发送端口的通断时间全部设置完毕。
本实施例通过同时将光纤连接单元中的发送端口开启,以及按照预设顺序控制每个光纤连接单元的一个接收端口开启,控制每个光纤连接单元中除一个接收端口外的其他接收端口关闭,从而获取到对应光纤的实际通断时间。将实际通断时间与对应的预设通断时间进行对比可以快速地检测该物理光纤是否出现异常。整个测试过程中,网络管理服务器需要按照预设通断时间对每个方向的所有发送端口进行“开启-关闭-开启-关闭”操作。此外,网络管理服务器还需要对每个方向的接收端口按照A1至An的顺序依次导通。测试人员无需逐个站点的通过测试仪表手动测试,节约了大量的人力物力和时间成本。并且测试结果基本不受人为因素的干扰,可信度也 得到很大的提升。
本实施例适用于站点较大、方向维度多、物理连纤非常多并且复杂的场景,例如物理光纤的数量达到300根以上。该场景下需要在短时间内判断大量的光纤内是否存在连接错误的光纤,此时使用本实施例的光纤检测方法,检测效率高,耗时较少。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本发明一实施例涉及一种服务器,如图10所示,包括至少一个处理器401;以及,与至少一个处理器401通信连接的存储器402。其中,存储器402存储有可被至少一个处理器301执行的指令,指令被至少一个处理器401执行,以使至少一个处理器401能够执行如上述的通讯控制方法。
其中,存储器402和处理器401采用总线方式连接。总线可以包括任意数量的互联的总线和桥。总线将一个或多个处理器401和存储器402的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器401处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器401。
处理器401负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器402可以被用于存储处理器401在执行操作时所使用的数据。
本发明一实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施例是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (12)

  1. 一种光纤检测方法,应用于可重构光分插复用ROADM系统的网络管理服务器;所述ROADM系统包括:网络管理服务器、与所述网络管理服务器连接的多个光纤连接单元,
    其中每个所述光纤连接单元包括:下行光放大器、下行波长选择开关WSS、上行光放大器、上行WSS,所述下行光放大器的输出端连接所述下行WSS的输入端口,所述下行WSS包括n个发送端口,所述上行光放大器的输入端连接所述上行WSS的输出端口,所述上行WSS包括n个接收端口,
    其中每个所述光纤连接单元的n个发送端口与n个接收端口是一一对应的,每个所述光纤连接单元的n个发送端口分别通过光纤连接至其他n个所述光纤连接单元的一个接收端口,每个所述光纤连接单元的n个接收端口分别通过所述光纤连接至其他n个所述光纤连接单元的一个发送端口,其中,一个所述光纤连接单元的一个所述发送端口连接至另一个所述光纤连接单元的一个所述接收端口,一个所述光纤连接单元的与一个所述发送端口对应的所述接收端口连接至另一个所述光纤连接单元的与一个所述接收端口对应的所述发送端口,并且
    所述方法包括:
    按照预设的顺序依次导通一个光纤;
    控制所述光纤对应的所述下行光放大器提供光信号;
    获取所述光纤对应的所述下行光放大器输出的第一光功率以及所述光纤对应的所述上行光放大器输入的第二光功率;以及
    根据预先存储的所述光纤对应的所述下行WSS的第一插损值、预先存储的所述光纤对应的所述上行WSS的第二插损值、所述第一光功率、所述第二光功率得到所述光纤的连接状态。
  2. 根据权利要求1所述的光纤检测方法,其中根据第一插损值、第二插损值、所述第一光功率、所述第二光功率得到所述光纤的连 接状态包括:
    根据所述第一插损值、所述第二插损值、所述第一光功率、所述第二光功率计算所述光纤的插损值;以及
    在所述光纤的插损值大于预设的告警阈值的情况下,发出提示告警。
  3. 根据权利要求2所述的光纤检测方法,其中根据所述第一插损值、所述第二插损值、所述第一光功率、所述第二光功率计算所述光纤的插损值包括:
    将所述第一光功率、所述第二光功率相减得到总插损值;以及
    将所述总插损值减去所述第一插损值、所述第二插损值得到所述光纤的插损值。
  4. 根据权利要求1所述的光纤检测方法,还包括在导通一个所述光纤的过程中,控制所述光纤对应的目标发送端口以及所述光纤对应的目标接收端口开启,并阻断所述ROADM系统中除所述目标发送端口之外的发送端口以及阻断所述ROADM系统中除所述目标接收端口之外的接收端口。
  5. 一种光纤检测方法,应用于可重构光分插复用ROADM系统的网络管理服务器,所述ROADM系统包括:网络管理服务器、与所述网络管理服务器连接的多个光纤连接单元,
    其中每个所述光纤连接单元包括:下行光放大器、下行波长选择开关WSS、上行光放大器、上行WSS、检测器,所述下行光放大器的输出端连接所述下行WSS的输入端口,所述下行WSS包括n个发送端口,所述上行光放大器的输入端连接所述上行WSS的输出端口,所述上行WSS包括n个接收端口,所述检测器连接所述上行光放大器,
    其中每个所述光纤连接单元的n个发送端口与n个接收端口是一一对应的,
    其中每个所述光纤连接单元的n个发送端口分别通过光纤连接至其他n个所述光纤连接单元的一个接收端口,每个所述光纤连接 单元的n个接收端口分别通过所述光纤连接至其他n个所述光纤连接单元的一个发送端口,其中,一个所述光纤连接单元的一个所述发送端口连接至另一个所述光纤连接单元的一个所述接收端口,一个所述光纤连接单元的与一个所述发送端口对应的所述接收端口连接至另一个所述光纤连接单元的与一个所述接收端口对应的所述发送端口,并且
    所述方法包括:
    控制每个所述光纤连接单元的所述下行光放大器提供光信号;
    控制每个所述光纤连接单元中的多个所述发送端口同时工作,每个所述发送端口均按照各自设置的预设通断时间不断切换开启与关闭的状态;
    控制每个所述光纤连接单元的一个所述接收端口开启,控制每个所述光纤连接单元中除一个所述接收端口外的其他接收端口关闭;
    通过每个所述光纤连接单元的所述检测器检测所述光信号在所述上行光放大器的实际通断时间;以及
    根据所述实际通断时间、对应的所述发送端口设置的所述预设通断时间得到对应光纤的连接状态。
  6. 根据权利要求5所述的光纤检测方法,其中所述根据所述实际通断时间、对应的所述发送端口设置的所述预设通断时间得到所述光纤的连接状态包括:
    计算所述实际通断时间与预设通断时间的差值;以及
    在所述差值不在预设范围之内的情况下,发出提示告警。
  7. 根据权利要求5所述的光纤检测方法,还包括:
    在通过每个所述光纤连接单元的所述检测器检测所述光信号在所述上行光放大器的实际通断时间之后,按照预设的顺序控制每个所述光纤连接单元中的另一个所述接收端口开启。
  8. 一种可重构光分插复用ROADM系统,包括:网络管理服务器、与所述网络管理服务器连接的多个光纤连接单元,
    其中每个所述光纤连接单元包括:下行光放大器、下行波长选择开关WSS、上行光放大器、上行WSS,所述下行光放大器的输出端连接所述下行WSS的输入端口,所述下行WSS包括n个发送端口,所述上行光放大器的输入端连接所述上行WSS的输出端口,所述上行WSS包括n个接收端口,每个所述光纤连接单元的n个发送端口与n个接收端口是一一对应的,每个所述光纤连接单元的n个发送端口分别通过光纤连接至其他n个所述光纤连接单元的一个接收端口,每个所述光纤连接单元的n个接收端口分别通过所述光纤连接至其他n个所述光纤连接单元的一个发送端口,其中,一个所述光纤连接单元的一个所述发送端口连接至另一个所述光纤连接单元的一个所述接收端口,一个所述光纤连接单元的与一个所述发送端口对应的所述接收端口连接至另一个所述光纤连接单元的与一个所述接收端口对应的所述发送端口。
  9. 根据权利要求8所述的ROADM系统,其中每个所述光纤连接单元还包括检测器,所述检测器连接所述上行光放大器,所述检测器用于检测光信号在所述上行光放大器的通断时间。
  10. 根据权利要求8所述的ROADM系统,其中一个所述光纤连接单元包括合波器、分波器,所述合波器的输出端连接对应的所述下行光放大器的输入端,所述合波器的输入端连接本地用户,所述分波器的输入端连接对应的所述上行放大器的输出端,所述分波器的输出端连接所述本地用户。
  11. 一种服务器,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器,其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行根据权利要求1至4中任一项所述的光纤检测方法,或者根据权利要求5至7中任一项所述的光纤检测方法。
  12. 一种计算机可读存储介质,存储有计算机程序,所述计算 机程序被处理器执行时实现根据权利要求1至4中任一项所述的光纤检测方法,或者实现根据权利要求5至7中任一项所述的光纤检测方法。
PCT/CN2022/121278 2021-09-26 2022-09-26 光纤检测方法、roadm系统、服务器及存储介质 WO2023046152A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111131784.8A CN115882942A (zh) 2021-09-26 2021-09-26 光纤检测方法、roadm系统、服务器及存储介质
CN202111131784.8 2021-09-26

Publications (1)

Publication Number Publication Date
WO2023046152A1 true WO2023046152A1 (zh) 2023-03-30

Family

ID=85720133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121278 WO2023046152A1 (zh) 2021-09-26 2022-09-26 光纤检测方法、roadm系统、服务器及存储介质

Country Status (2)

Country Link
CN (1) CN115882942A (zh)
WO (1) WO2023046152A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101387877A (zh) * 2008-07-28 2009-03-18 中兴通讯股份有限公司 一种光纤自动通断的装置及其方法
US20100097601A1 (en) * 2008-10-22 2010-04-22 Fujitsu Limited Optical fiber transmission line measurement apparatus and system
CN102546009A (zh) * 2012-01-17 2012-07-04 华为技术有限公司 光纤对称性检测方法及设备
CN106209295A (zh) * 2016-07-20 2016-12-07 上海交通大学 双向时分复用时间传递系统的控制方法
CN109088777A (zh) * 2018-09-14 2018-12-25 武汉光迅科技股份有限公司 一种roadm业务侧光纤连接的匹配装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101387877A (zh) * 2008-07-28 2009-03-18 中兴通讯股份有限公司 一种光纤自动通断的装置及其方法
US20100097601A1 (en) * 2008-10-22 2010-04-22 Fujitsu Limited Optical fiber transmission line measurement apparatus and system
CN102546009A (zh) * 2012-01-17 2012-07-04 华为技术有限公司 光纤对称性检测方法及设备
CN106209295A (zh) * 2016-07-20 2016-12-07 上海交通大学 双向时分复用时间传递系统的控制方法
CN109088777A (zh) * 2018-09-14 2018-12-25 武汉光迅科技股份有限公司 一种roadm业务侧光纤连接的匹配装置和方法

Also Published As

Publication number Publication date
CN115882942A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
US7769292B2 (en) Automated testing and analysis of dense wave division multiplexing (DWDM) switching devices
US10396892B2 (en) Automated node level fibre audit
US8509621B2 (en) Method and system for optical connection validation
CN111989878B (zh) 用于执行连接性验证测试和拓扑发现的系统、方法和介质
US8619246B2 (en) Optical node apparatus, method for checking connection in node apparatus and program thereof
CN102035599A (zh) 一种ftth无源光链路监测系统及方法
WO2007005970B1 (en) Optical autodiscovery for automated logical and physical connectivity check between optical modules
CN104221311A (zh) 用于监管波分复用无源光网络的远程节点处的布置、远程节点、中央局和其中的各自方法
CN105812051A (zh) Roadm内部连接光纤的检测方法、系统及roadm
JP5250633B2 (ja) 光通信ネットワークの診断方法
CN201918994U (zh) Ftth无源光链路监测系统
WO2016023331A1 (zh) 一种光网络连接关系确定方法、设备以及系统
WO2023046152A1 (zh) 光纤检测方法、roadm系统、服务器及存储介质
CN113114357B (zh) 无源波分设备故障检测方法、装置、服务器和存储介质
CN102123422B (zh) 通信通道的故障检测方法和设备
US20190261072A1 (en) Software defined optical network
US7945158B2 (en) Transponder-less verification of the configuration of an optical network node
EP3580864B1 (en) System and method of providing dark section free transport networks
CN114244432B (zh) 故障检测装置、方法、分析诊断设备、系统和存储介质
CN111385019B (zh) 光线路测试系统、方法及存储介质
CN110213681A (zh) 混合pon系统中对光功率临界onu的管理方法及装置
WO2018001228A1 (zh) 光纤连接检测方法、网络管理服务器及接收端网元和计算机存储介质
CN112564845B (zh) 一种确定逻辑连接的方法和相关设备
CN107769868B (zh) 射频拉远单元及其检测方法
WO2019185139A1 (en) Optical network node and optical network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872196

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022872196

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022872196

Country of ref document: EP

Effective date: 20240327

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024005882

Country of ref document: BR