WO2023046077A1 - 医疗机器人、手术辅助定位系统及控制方法 - Google Patents

医疗机器人、手术辅助定位系统及控制方法 Download PDF

Info

Publication number
WO2023046077A1
WO2023046077A1 PCT/CN2022/120916 CN2022120916W WO2023046077A1 WO 2023046077 A1 WO2023046077 A1 WO 2023046077A1 CN 2022120916 W CN2022120916 W CN 2022120916W WO 2023046077 A1 WO2023046077 A1 WO 2023046077A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
workstation
adjustment
information
hole
Prior art date
Application number
PCT/CN2022/120916
Other languages
English (en)
French (fr)
Inventor
吕文尔
吴警
王少白
陶庆东
Original Assignee
上海卓昕医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111116561.4A external-priority patent/CN113729940B/zh
Priority claimed from CN202210893408.0A external-priority patent/CN115122355B/zh
Application filed by 上海卓昕医疗科技有限公司 filed Critical 上海卓昕医疗科技有限公司
Publication of WO2023046077A1 publication Critical patent/WO2023046077A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms

Definitions

  • the invention relates to the technical field of medical devices, in particular to a medical robot, an operation auxiliary positioning system and a control method.
  • the human-machine collaborative medical robot disclosed in the Chinese invention patent application with the publication number CN111085990A can independently prepare an operation plan, determine the action program according to the actual situation, and then turn the action into operation. Institutional movement.
  • most of the current medical robot equipment is bulky and takes up a lot of space, which is not conducive to the flexible control and operation of the operator.
  • Puncture is a diagnosis and treatment technique that penetrates into the body cavity to extract secretions for testing, injects gas or contrast agent into the body cavity for contrast examination, or injects drugs into the body cavity.
  • the prior art usually performs the puncture operation in the following ways: one is to determine the puncture point by the doctor after taking image information such as CT (Computed Tomography, computerized tomography), MRI (Magnetic Resonance Imaging, magnetic resonance imaging) and puncture angle, and then formulate a corresponding surgical plan and perform puncture.
  • the other is to project X-rays in different directions, find the target point to be punctured under the guidance of X-rays, and perform puncture under the guidance of X-rays.
  • the above method mainly relies on the preoperative plan, the experience of the doctor and the observed situation to perform the operation manually, so that the accuracy of the puncture is affected by many factors, which increases the risk of the operation.
  • the invention provides a medical robot capable of reducing occupied space.
  • the medical robot of the present invention includes a single-arm mechanism, and the single-arm mechanism includes a pitch adjustment mechanism and a yaw adjustment mechanism.
  • the pitch adjustment mechanism includes a pitch motor, a support frame, a rotating main shaft, a telescopic pull rod and a pitch frame, and the pitch frame It includes a hinge part, the rotating main shaft is movably connected with the support frame, the telescopic pull rod is located inside the rotating main shaft, one end of the telescopic pulling rod is hinged to one end of the hinge part, and the other end of the hinge part is connected to the rotating shaft.
  • the yaw adjustment mechanism includes a first gear, a second gear and a main rotating motor, the first gear is sleeved on the outside of the rotating main shaft, the second gear meshes with the first gear, and the main rotating motor It is connected with the second gear, and is used to drive the second gear to rotate to drive the first gear to rotate, so as to drive the rotation main shaft to realize the yaw movement of the pitch frame.
  • the beneficial effect of the medical robot of the present invention is that: in the pitch adjustment mechanism, one end of the telescopic pull rod is hinged to one end of the hinge part, the other end is connected to the pitch motor, and the other end of the hinge part is connected to the rotating main shaft One end is hinged to telescopically slide relative to the rotating main shaft driven by the pitching motor to realize the pitching motion of the hinge part, and the first gear meshes with the second gear and is sleeved on the outside of the rotating main shaft , the main rotating motor connected with the second gear can drive the first gear to drive the rotation main shaft to rotate through the second gear to realize the yaw movement of the pitch frame, so that the yaw adjustment mechanism can pass through
  • the transmission of the rotating main shaft in the pitch adjustment mechanism realizes the yaw movement of the pitch frame, improves the integration degree, and effectively reduces the occupied space.
  • the outer diameter of the first gear is larger than the outer diameter of the second gear.
  • the support frame includes a first hole and a second hole, and the rotation spindle passes through the first hole and the second hole.
  • a first bearing is arranged in the first hole
  • a second bearing is arranged in the second hole
  • the rotating main shaft passes through the first bearing and the second bearing.
  • the support frame includes a third hole and a fourth hole, and the main rotating motor passes through the third hole and the fourth hole.
  • the pitch motor is a telescopic motor.
  • one end of the hinge part includes a first through hole and a first pin passing through two opposite walls of the hinge part, one end of the telescopic rod is connected to the first pin, and the first pin is located at the first pin. inside a through hole.
  • one end of the rotating main shaft includes a first triangular plate, a second triangular plate and a connecting plate, the first triangular plate and the second triangular plate are oppositely arranged and connected by the connecting plate, and a first triangular plate is opened on the connecting plate.
  • the telescopic pull rod passes through the fifth hole, the sixth hole is opened at one end of the first triangular plate, the seventh hole is opened at one end of the second triangular plate, and the other end of the hinge part includes the first Two pins and a second through hole, the second pin is located between the first triangular plate and the second triangular plate so that the sixth hole, the second through hole and the seventh hole are sequentially communicated, the second pin is located in the channel connecting the sixth hole, the second through hole and the seventh hole so that the hinge part is hinged to one end of the rotating main shaft.
  • the medical robot also includes a cross slide, and the cross slide includes a track mechanism, and the track mechanism includes a first slider, a second slider, a first track and a second track, and the first track and The second track is located on a horizontal plane, the first track and the second track are perpendicular to each other, the first slider is slidably connected to the first track, and the first track is connected to the second slider Fixedly connected, the second slider is slidingly connected to the second track, and is used to drive the first track to slide along the second track.
  • the cross slide includes a track mechanism
  • the track mechanism includes a first slider, a second slider, a first track and a second track, and the first track and The second track is located on a horizontal plane, the first track and the second track are perpendicular to each other, the first slider is slidably connected to the first track, and the first track is connected to the second slider Fixedly connected, the second slider is slidingly connected to the second track, and is used to drive the first track to slide along the second track
  • the cross slide table also includes a first lead screw mechanism, the first lead screw mechanism includes a first motor, a first lead screw and a first nut, the first motor and the first lead screw One end is connected, the first lead screw is threadedly connected with the first nut, the first slider is fixedly connected with the first nut, and the first motor is used to drive the first lead screw to rotate to drive The first slider moves along the first track.
  • the first lead screw mechanism includes a first motor, a first lead screw and a first nut, the first motor and the first lead screw One end is connected, the first lead screw is threadedly connected with the first nut, the first slider is fixedly connected with the first nut, and the first motor is used to drive the first lead screw to rotate to drive The first slider moves along the first track.
  • the cross slide table also includes a second lead screw mechanism
  • the second lead screw mechanism includes a second motor, a second lead screw and a second nut, the second motor and the second lead screw One end is connected, the second lead screw is threadedly connected with the second nut, the first slider is fixedly connected with the second nut, and the second motor is used to drive the second lead screw to rotate to drive The second slider moves along the second track.
  • the present invention also provides an auxiliary positioning system for surgery, which is used to improve the problems in the prior art of low surgical accuracy, greater harm to patients, large operational limitations, and inconvenient flexible use.
  • the surgical auxiliary positioning system includes a first adjustment module, a second adjustment module, an information feedback module, a clamping module, a workstation module, a navigation module, an image capture module and a display module, the second adjustment module is a single-arm mechanism, and the The second adjusting module is arranged at one end of the first adjusting module, the first adjusting module is used to adjust the working area of the second adjusting module, the clamping module is arranged at the second adjusting module, and The second adjustment module is used to adjust the position and angle of the clamping module, the clamping module is used to fix the operation execution structure, the information feedback module is electrically connected to the workstation module, and the information feedback module is arranged on The second adjustment module, the information feedback module is used to determine the working area information of the second adjustment module, and transmit the working area information to the workstation module, and the image capture module is connected with the display The module is electrically connected to the workstation module, the image capture module acquires image information of the surgical object and transmits it to the display module and the workstation module,
  • the beneficial effect of the surgical auxiliary positioning system of the present invention is that: the first adjustment module is manually adjusted, and the working area of the second adjustment module is adjusted through the first adjustment module during use, and the second adjustment module is used to adjust the working area of the second adjustment module.
  • the position and angle of the clamping module are used to fix the instrument to be operated on through the clamping module, the second adjustment module and the information feedback module are both electrically connected to the workstation module, and the information feedback module Giving feedback to the working area, so that the manual adjustment of the first adjustment module can be performed when the second adjustment module cannot reach the required position, and the image capture module is electrically connected to the display module and the workstation module respectively.
  • the second adjustment module is a single-arm mechanism of the medical robot of the present invention.
  • the surgery-assisted positioning system further includes an image processing module, the image processing module is electrically connected to the image capture module, the display module and the workstation module, and the image processing module is used to fuse all different image information acquired by the image capturing module, and the image processing module transmits the fused image information to the image capturing module, the display module and the workstation module.
  • the beneficial effect is that such setting is convenient for processing image information obtained at different times, and superimposing the image information obtained at different times, which is convenient for operators to adjust according to the current situation during actual use.
  • the surgery-assisted positioning system further includes an image analysis module
  • the image analysis module is respectively connected with the image capture module, the image processing module, the display module and the workstation module, and the image processing module module or the image capture module transmits the image information to the image analysis module
  • the image analysis module receives the image information
  • the image analysis module analyzes the tissue structure and the position of the lesion area in the image information and outlines the The tissue structure and the boundary of the lesion area
  • the image analysis module transmits the outlined image information to the workstation module and the display module.
  • the beneficial effect is that such setting facilitates marking the internal tissue structure and lesion area of the surgical object, which is convenient for the operator to observe, and is also convenient for formulating the surgical plan.
  • the surgical auxiliary positioning system further includes a comparison module, a storage module and a call module, the comparison module is electrically connected to the workstation module, and the workstation module combines the outlined image information with the The working path is transmitted to the comparison module, and the comparison module receives the outlined image information and the working path, and the comparison module is used to compare the working path with the position and the structure of the tissue structure respectively.
  • the positions of the lesion areas are compared to obtain a comparison result
  • the comparison module transmits the comparison result to the workstation module
  • the storage module is electrically connected to the workstation module
  • the workstation module receives The comparison result
  • the workstation module transfers the working path to the storage module or deletes the working path according to the comparison result
  • the storage module receives and saves the working path
  • the The calling module is electrically connected to the storage module and the workstation module respectively, and the calling module calls the working path saved by the storage module and transmits it to the workstation module.
  • the working path is compared with the image information through the comparison module, and the feasible operation plan is transmitted to the storage module through the workstation module for storage, and then called by the calling module , it is convenient to formulate and select a plan in advance during the operation, and save the operation time during the operation.
  • the single-arm mechanism includes an execution module, the execution module is arranged on the clamping module, the execution module is connected to the workstation module, and the workstation module is used to control the opening and closing of the execution module .
  • the navigation module includes a reference target and an optical target, the reference target is set on the surgical object, and the optical target is set on the clamping module. Its beneficial effect is that such setting is convenient for knowing the position information of the operation object and the execution module, and at the same time, it is convenient for knowing the relative position information of the operation object and the execution module, and it is convenient for determining the relative position information when performing the operation, avoiding Misuse.
  • the surgical auxiliary positioning system further includes an isolation layer structure, and the isolation layer structure is arranged outside the first adjustment module and the second adjustment module.
  • the beneficial effect is that such setting can prevent the operation object from being polluted by the first adjustment module and the second adjustment module.
  • the present invention also provides a control method of the surgical auxiliary positioning system, including the following steps: S1: setting the navigation module on the clamping module and the surgical object, and determining the clamping module and the surgical object
  • the position information, the image information is collected by the image capture module, the information feedback module is set on the second adjustment module to determine the work area information, and the position information, the image information and the work area
  • the area information is transmitted to the workstation module, and the position information and the image information are transmitted to the display module.
  • S2 The workstation module receives the image information, the work area information and the position information, and the The workstation module establishes a space coordinate system through the image information, the display module receives and displays the position information and the image information, S3: the workstation module establishes a working path through the space coordinate system, S4: the The workstation module compares the position information with the working path to obtain adjustment information, S5: the workstation module outputs an adjustment instruction according to the adjustment information and the working area information, if the distance indicated by the adjustment information is greater than the working path For the area covered by the area information, adjust the working area of the second adjustment module through the first adjustment module, and control the second adjustment module to adjust the direction and position of the clamping module through the workstation module, if The distance indicated by the adjustment information is not greater than the area covered by the work area information, then the workstation module controls the second adjustment module to adjust the direction and position of the clamping module, S6: through the clamping module working.
  • the beneficial effect of the control method of the surgical auxiliary positioning system of the present invention is that the image information of the surgical object is acquired through the image capturing module, and the position information of the surgical object and the clamping module is acquired through the navigation module, and
  • the working area information is determined by the information feedback module and displayed on the display module, the workstation module establishes a working path according to the above information, and adjusts the first adjustment according to the working path and the position information Whether the module is adjusted or not is judged, and then the position of the clamping module is adjusted under the control of the workstation module, so that it is convenient to shorten the adjustment of the second adjustment module when it is not necessary to adjust the first adjustment module.
  • the range is convenient to shorten the adjustment time, and it is also convenient to improve the adjustment accuracy of the second adjustment module, and the manual adjustment of the working area of the second adjustment module by the first adjustment module covers a wide range.
  • Fig. 1 is a schematic structural diagram of a medical robot in some embodiments of the present invention.
  • Fig. 2 is a sectional view of the pitch adjustment mechanism in some embodiments of the present invention.
  • Fig. 3 is a schematic structural view of a cross slide in some embodiments of the present invention.
  • Fig. 4 is a schematic diagram of the working state of the surgical auxiliary positioning system in some embodiments of the present invention.
  • Fig. 5 is a schematic structural diagram of the first adjustment module in Fig. 4;
  • Fig. 6 is a structural block diagram of the surgical auxiliary positioning system in Fig. 4;
  • Fig. 7 is a schematic diagram of the assembly structure of the surgical auxiliary positioning system and the operating bed in some embodiments of the present invention.
  • Fig. 8 is a schematic structural diagram of the first adjustment module in Fig. 7;
  • Fig. 9 is a flow chart of a control method of the surgical auxiliary positioning system in some embodiments of the present invention.
  • the medical robot includes a single-arm mechanism (not shown in the figure), and the single-arm mechanism (not shown in the figure) includes a pitch adjustment mechanism 10 and a yaw adjustment mechanism 20, and the pitch adjustment mechanism 10 Including a pitching motor 11, a support frame 12, a rotating main shaft 13, a telescopic pull rod 14 and a pitching frame 15, the pitching frame 15 includes a hinge portion 151, the rotating main shaft 13 is movably connected with the support frame 12, and the telescopic pull rod 14 Through the rotating main shaft 13, the end of the telescopic pull rod 14 is hinged to the upper end of the hinge part 151, the lower end of the hinge part 151 is hinged to the end of the rotating main shaft 13, and the telescopic pull rod 14 is away from the hinge.
  • the pitch motor 11 is a telescopic motor, which is used to drive the telescopic sliding of the telescopic rod 14 relative to the rotating main shaft 13, so as to realize the pitch motion of the hinge part 151
  • the yaw adjustment mechanism 20 includes a first gear 21, a second gear 22 and a main rotating motor 23, the first gear 21 is sleeved on the outer wall of the end of the rotating main shaft 13 away from the hinge part 151, the The second gear 22 is meshed with the first gear 21, and the main rotating motor 23 is connected with the second gear 22 for driving the second gear 22 to rotate to drive the first gear 21 to rotate, thereby Drive the rotating main shaft 13 to rotate to realize the yaw movement of the pitch frame 15 .
  • Both the main rotating motor 23 and the pitching motor 11 are arranged at a position away from one end of the pitching frame 15, so as not to hinder the surgical operation.
  • the outer diameter of the first gear 21 is larger than the outer diameter of the second gear 22 .
  • the outer diameters of the first gear 21 and the second gear 22 are different, so the transmission ratio is small, and when rotating, the number of turns of the first gear 21 is less than that of the second gear 22. In this way, when the second gear 22 is rotated, the first gear 21 rotates slowly, which can better improve the accuracy.
  • the support frame 12 includes a first hole 121 and a second hole 122 , and the rotating spindle 13 passes through the first hole 121 and the second hole 122 .
  • a first bearing 123 is provided in the first hole 121
  • a second bearing 124 is provided in the second hole 122
  • the rotating main shaft 13 passes through the first bearing 123 and the first bearing 123. Describe the second bearing 124.
  • the support frame 12 includes a third hole 231 and a fourth hole (not shown in the figure), and the main rotating motor 23 passes through the third hole 231 and the fourth hole (not shown in the figure). shown), the support frame 12 can fix and support the main rotating electrical machine 23 .
  • one end of the hinge part 151 includes a first through hole 1511 and a first pin 1512 passing through two opposite walls of the hinge part 151, and the end of the telescopic rod 14 is connected to the first pin 1512 , the first pin 1512 is located in the first through hole 1511 .
  • one end of the rotating main shaft 13 includes a first triangular plate 131, a second triangular plate 132 and a connecting plate 133, the first triangular plate 131 and the second triangular plate 132 are arranged oppositely and connected by the connecting plate 133, A fifth hole 1331 is opened on the connecting plate 133, the telescopic pull rod 14 passes through the fifth hole 1331, and a sixth hole (not shown in the figure) is opened at one end of the first triangular plate 131.
  • the other end of the hinge part 151 includes a second pin 1513 and is provided with a second through hole 1514, and the second pin 1513 is located on the Between the first triangular plate and the second triangular plate, the sixth hole (not shown in the figure), the second through hole 1514 and the seventh hole (not shown in the figure) are communicated in sequence, so The second pin 1513 is located in the passage connecting the sixth hole (not shown in the figure), the second through hole 1514 and the seventh hole (not shown in the figure) so that the hinge part 151 It is hinged with one end of the rotating main shaft 13 .
  • the medical robot shown in Fig. 1 also includes a clamping module composed of an operating part 162 and a knob 161, the operating part 162 is provided with a hole, the hinge part 151 is provided with a hole, and the knob 161 Screw into the hole provided on the operating part 162 and the hole provided on the hinge part 151 to tighten the operating part 162 and the hinge part 151 .
  • the medical robot also includes a cross slide.
  • the cross slide table shown in Fig. 3 includes a track mechanism 30, and the track mechanism 30 includes a first slide block 31, a second slide block 32, a first track 33 and a second track 34, and the first track 33 and the
  • the second track 34 is located on a horizontal plane, the first track 33 and the second track 34 are perpendicular to each other, the first slider 31 is slidably connected to the first track 33, and the first track 33 is connected to the first track 33.
  • the second slider 32 is fixedly connected, and the second slider 32 is slidably connected to the second track 34 for driving the first track 33 to slide along the second track 34 .
  • a first screw mechanism 40 which includes a first motor 41, a first screw 42 and a first nut 43, and the first motor 41 and One end of the first lead screw 42 is connected, the first lead screw 42 is threaded with the first nut 43 , the first slider 31 is fixedly connected with the first nut 43 , and the first motor 41 It is used to drive the first lead screw 42 to rotate to drive the first slider 31 to move along the first track 33 .
  • the cross slide table shown in Figure 3 it also includes a second screw mechanism (not shown in the figure), and the second screw mechanism (not shown in the figure) includes a second motor 51, a second screw 52 and A second nut (not shown in the figure), the second motor 51 is connected to one end of the second lead screw 52, and the second lead screw 52 is threadedly connected to the second nut (not shown in the figure) , the first slider 31 is fixedly connected with the second nut (not shown in the figure), and the second motor 51 is used to drive the second lead screw 52 to rotate to drive the second slider 32 Move along the second track 34 .
  • the second screw mechanism includes a second motor 51, a second screw 52 and A second nut (not shown in the figure)
  • the second motor 51 is connected to one end of the second lead screw 52
  • the second lead screw 52 is threadedly connected to the second nut (not shown in the figure)
  • the first slider 31 is fixedly connected with the second nut (not shown in the figure)
  • the second motor 51 is used to
  • the medical robot of the present invention includes a cross slide shown in FIG. 3 and a single-arm mechanism including the pitch adjustment mechanism 10 and the yaw adjustment mechanism 20 shown in FIG. 1 .
  • the cross slide table includes the track mechanism 30, the first screw mechanism 40 and the second screw mechanism including the second motor 51, the second screw 52 and the second nut, which can drive the single-arm mechanism Do forward and backward, left and right 2 degrees of freedom movement.
  • the pitch adjustment mechanism 10 and the yaw adjustment mechanism 20 can drive the pitch frame 15 of the single-arm mechanism to perform two degrees of freedom motions of pitch and yaw, so the medical robot of the present application can realize forward and backward movement. , left and right, pitch, yaw 4 degrees of freedom movement.
  • the embodiment of the present invention also provides a surgical auxiliary positioning system.
  • the surgical auxiliary positioning system shown in Fig. 4 includes a first adjustment module 1, a second adjustment module 2, an information feedback module 3, a clamping module 4, a workstation module 5, a navigation module 100, and an image capture module 6 and a display module 7,
  • the second adjustment module 2 is arranged at one end of the first adjustment module 1, the first adjustment module 1 is used to adjust the working area of the second adjustment module 2, the clamping
  • the module 4 is arranged on the second adjustment module 2, the second adjustment module 2 is used to adjust the position and angle of the clamping module 4, the clamping module 4 is used to fix the operation execution structure, and the information feedback
  • the module 3 is electrically connected to the workstation module 5, the information feedback module 3 is arranged on the second adjustment module 2, the information feedback module 3 is used to determine the working area information of the second adjustment module 2, and
  • the working area information is transmitted to the workstation module 5, and the image capture module 6 is electrically connected to the display module 7 and the workstation module 5 respectively,
  • the second adjustment module 2 is a single-arm mechanism including the pitch adjustment mechanism 10 and the yaw adjustment mechanism 20 shown in FIG. 1 .
  • the operating part 162 and the knob 161 shown in FIG. 1 constitute the clamping module 4 .
  • the surgical auxiliary positioning system shown in FIG. 4 is set on the operating bed 9 .
  • the first adjustment module 1 includes a first connecting rod 101 , a second connecting rod 102 , a connecting piece 103 and a base 104 , and the base 104 is slidably disposed on the The operating bed 9, one end of the first connecting rod 101 is rotatably arranged on the base 104, the connecting piece 103 is arranged on the other end of the first connecting rod 101, and the second connecting rod 102 is arranged on the The connecting member 103, the first connecting rod 101 and the second connecting rod 102 are relatively rotated through the connecting member 103, and the second adjustment module 2 is rotated so that the second connecting rod 102 is away from the connection One end of the piece 103, the first connecting rod 101 can freely rotate relative to the base 104, the second adjustment module 2 can freely rotate relative to the second connecting rod, and the connecting piece 103 can fix the first The angle between the connecting rod 101 and the second connecting rod
  • the clamping module 4 can be driven to reciprocate relative to the operating bed 9, and the base 104 can be fixed after adjustment, and the connecting piece can 103 release the fixed state of the first connecting rod 101, the second connecting rod 102 and the second adjustment module 2, adjust the angle of the first connecting rod 101 compared with the base 104, adjust the
  • the second connecting rod 102 is compared to the angle of the first connecting rod 101, adjusts the angle of the second adjustment module 2 compared to the second connecting rod 102, and then fixes the first connecting rod through the connecting piece 103.
  • the rod 101, the second connecting rod 102 and the second adjustment module 2 further realize the adjustment of the working area, and are easy to use and have a wide area.
  • the clamping module 4 is a clamping frame, and the clamping module 4 is used for fixing and guiding surgical instruments, and the surgical instruments are one of puncture needles, ablation needles or transforaminal mirrors, and can be used through
  • the clamping module 4 performs surgery manually
  • the driving unit can also be fixedly arranged on the clamping module 4 by setting a driving unit, and the surgical instrument is fixed on the movable end of the driving unit, and the driving unit
  • the unit is electrically connected with the workstation module 5, and under the automatic control of the workstation module 5, the opening and closing of the driving unit is controlled to perform surgery automatically.
  • the image capturing module 6 includes a camera for obtaining external contours and a camera for obtaining perspective images, and the camera is CT (Computed Tomography, computerized tomography), MRI (Magnetic Resonance Imaging, magnetic resonance imaging), One of ultrasonic imaging device or X-ray (X-ray, X-ray) inspection equipment.
  • CT Computerized Tomography
  • MRI Magnetic Resonance Imaging, magnetic resonance imaging
  • the navigation module 100 is a positioning device, and the navigation module 100 is used to determine the position information of the clamping module 4 and the surgical object.
  • the workstation module 5 is a host.
  • the display module 7 is a monitor, and the display module 7 is arranged on the workstation module 5 .
  • the workstation module 5 establishes a surgical path based on artificial intelligence or operator settings according to the image information, and adjusts the operation path according to the surgical path and the current position of the clamping module 4 .
  • the first adjustment module 1 and the second adjustment module 2 are adjusted.
  • the workstation module 5 is adjusted according to the operation
  • the path and the position information obtain adjustment information, and the workstation module 5 can determine whether to adjust the first adjustment module 1 based on artificial intelligence or the operator according to the adjustment information and the work area information, and the adjustment information indicates
  • the distance is the direction and distance that the clamping module 4 needs to move, the area covered by the working area information is the position that the clamping module 4 can reach in the current state, if necessary, the first adjustment module 1
  • the adjustment can be done by adjusting the base 104 and/or the connecting piece 103 , if there is no need to adjust the first adjustment module 1 , the second adjustment module 2 can be directly controlled by the workstation module 5 .
  • the preliminary adjustment of the first adjustment module 1 can be performed through the surgical site of the surgical object before the operation, so that the adjustment of the first adjustment module 1 can be avoided when the judgment is made, or the adjustment of the first adjustment module 1 can be shortened. 1 adjustment range, saving time.
  • the workstation module 5 sends an adjustment signal, and transmits the adjustment information to the display module 7 for display, and the operator adjusts the first adjustment module 1 according to the observed information. Adjust module 1 for adjustment.
  • the surgical auxiliary positioning system further includes an image processing module, which is electrically connected to the image capture module 6, the display module 7, and the workstation module 5, and the image processing module is used for fusion
  • the image capture module 6 acquires different image information, and the image processing module transmits the fused image information to the image capture module 6 , the display module 7 and the workstation module 5 .
  • the image processing module since the image information of the surgical object changes at different times or in different states, the image processing module fuses different image information by capturing image information at different times or in different states , so that the operation can be performed more accurately.
  • the surgical auxiliary positioning system further includes an image analysis module connected to the image capture module 6, the image processing module, the display module 7 and the workstation module 5, the image processing module Module or the image capture module 6 transmits image information to the image analysis module, the image analysis module receives the image information, and the image analysis module analyzes the tissue structure and the position of the lesion area in the image information and outlines The boundary of the tissue structure and the lesion area, the image analysis module transmits the outlined image information to the workstation module 5 and the display module 7 .
  • an image analysis module connected to the image capture module 6, the image processing module, the display module 7 and the workstation module 5, the image processing module Module or the image capture module 6 transmits image information to the image analysis module, the image analysis module receives the image information, and the image analysis module analyzes the tissue structure and the position of the lesion area in the image information and outlines The boundary of the tissue structure and the lesion area, the image analysis module transmits the outlined image information to the workstation module 5 and the display module 7 .
  • the image analysis module is arranged on the workstation module 5, and the image analysis module is electrically connected to the image capturing module 6, the image processing module, the display module 7 and the workstation module 5 respectively. connected, the image analysis module stores the image information of the tissue structure and the image information of the normal human body, and the image analysis module distinguishes the tissue structure and lesion area of the surgical object by comparing the acquired image information with the image information stored by itself site, and outline the boundaries of the tissue structure site and the lesion area, and then transmit the outlined image information to the workstation module 5, which is convenient for the operator to observe and formulate a plan.
  • the surgical auxiliary positioning system further includes a comparison module, a storage module, and a call module
  • the comparison module is electrically connected to the workstation module 5, and the workstation module 5 stores the outlined The image information and the working path are transmitted to the comparison module, and the comparison module receives the outlined image information and the working path, and the comparison module is used to compare the working path with the The position of the tissue structure is compared with the position of the lesion area to obtain a comparison result
  • the comparison module transmits the comparison result to the workstation module 5, and the storage module is electrically connected to the workstation module 5 connected, the workstation module 5 receives the comparison result, the workstation module 5 transmits the working path to the storage module or deletes the working path according to the comparison result, and the storage module receives The working path is saved, and the calling module is electrically connected to the storage module and the workstation module 5 respectively, and the calling module calls the working path saved by the storage module and transmits it to the
  • the comparison module, the storage module and the calling module are all set in the workstation module 5, and the workstation module 5 transmits the outlined image information and the working path to the The comparison module, the comparison module compares whether the working path intersects with the tissue structure and the lesion area in the image information, and feeds back the result to the workstation module 5, and the workstation module 5 according to the The comparison result analyzes the feasibility of the working path, transfers the feasible plan to the storage module for storage, and repeats the comparison and storage of multiple paths to obtain a variety of feasible plans.
  • the call module calls a saved path to perform surgery, so that the operation plan can be formulated before the operation and selected according to the need during the operation, saving operation time.
  • the single-arm mechanism includes an execution module, the execution module is arranged on the clamping module 4, the execution module is connected to the workstation module 5, and the workstation module 5 is used to control the Describe the opening and closing of the executive module.
  • the execution module is a linear motor
  • the execution module is arranged on the clamping module 4
  • the movable end of the execution module is connected to the clamping module 4
  • the clamping module 4 clamps
  • the implementing module can drive the implementing instrument to move in the direction driven by the implementing module, so as to control the direction and depth and eliminate errors caused by external factors.
  • the navigation module 100 includes a reference target and an optical target, the reference target is set on the surgical object, and the optical target is set on the clamping module 4 .
  • the reference target is fixed on the surgical object or the operating bed 9 before the operation, and when set on the operating bed 9, the surgical object and the operating table can be determined according to the original image information.
  • the reference target can be regarded as the origin of coordinates, and the three-dimensional position information of the surgical object can be determined.
  • the optical target is set on the clamping module 4, through The optical target can directly determine the position information of the clamping module 4 compared to the reference target, and indirectly determine the position information of the actuator module 4 compared to the surgical object, so that it is convenient to know the clamping module 4 Compared with the position information of the surgical object, the module 4 is convenient for adjusting the position of the clamping module 4 .
  • the navigation module 100 includes an optical target and an optical camera
  • the optical target is set on the clamping module 4
  • the optical camera is set corresponding to the clamping module 4
  • the optical camera identifies the optical target and determines relative position information of the optical target and the surgical object.
  • the surgical auxiliary positioning system shown in FIG. 4 further includes an isolation layer structure 8 , and the isolation layer structure 8 is disposed outside the first adjustment module 1 and the second adjustment module 2 .
  • the isolation layer structure 8 is a sterile bag, and the isolation layer structure 8 is sleeved on the outside of the first adjustment module 1 and the second adjustment module 2, because the first adjustment module 1 And the second adjustment module 2 contains a transmission structure, and the installation of the isolation layer structure 8 can reduce pollution and improve the safety of the operation.
  • the first adjustment module 1 includes a column 105 , a boom 106 , and a small arm 107 , and the column 105 connects with the first rotary joint 108
  • the base 109 is movably connected, the upright 105 and the big arm 106 are movably connected through the second rotary joint 110 and the third rotary joint 111 , and the big arm 106 and the small arm 107 are connected through the fourth rotary joint 112 and the fifth rotary joint 112 .
  • the revolving joint 113 is movably connected, and the end of the forearm 107 is movably connected to the sixth revolving joint 114 and the seventh revolving joint 115 in turn, so that the first adjustment module 1 has seven degrees of freedom, which can realize multi-degrees of freedom adjustment and arbitrary Quick positioning of posture, space positioning is more flexible, and positioning is convenient and fast.
  • the base 109 is slidably disposed on the operating bed 9
  • the second adjustment module 2 is disposed on the seventh rotating joint 115 .
  • control method of the surgical auxiliary positioning system includes the following steps:
  • the workstation module 5 receives the image information, the work area information and the location information, the workstation module 5 establishes a spatial coordinate system through the image information, and the display module 7 receives the location information and the location information. and displaying the image information;
  • the workstation module 5 establishes a working path through the spatial coordinate system
  • the workstation module 5 compares the position information with the working path to obtain adjustment information
  • the workstation module 5 outputs an adjustment command according to the adjustment information and the work area information, and if the distance indicated by the adjustment information is greater than the area covered by the work area information, the first adjustment module 1 adjusts the working area of the second adjustment module 2, and control the second adjustment module 2 to adjust the direction and position of the clamping module 4 through the workstation module 5, if the distance indicated by the adjustment information is not greater than the For the area covered by the working area information, control the second adjustment module 2 to adjust the direction and position of the clamping module 4 through the workstation module 5;
  • the reference target is set on the surgical object or the operating bed 9
  • the optical target is set on the performing instrument
  • the image capturing module 6 Collecting image information, so that the relative position information of the surgical object and the performing instrument can be determined, ensuring that the performing instrument is performed according to a predetermined plan during the operation, and determining the working area information through the information feedback module 3, Able to know the reachable position area of the clamping module 4 in the current state, and then the workstation module 5 takes the reference target or any point as a reference according to the image information, the working area information and the position information
  • the origin establishes a spatial coordinate system, and the spatial three-dimensional coordinate information of the surgical object and the clamping module 4 can be known, and the image information and the position information can be displayed through the display module 7, and the three-dimensional coordinate information can also be displayed during use.
  • the coordinate information is transmitted to the workstation module 5 for display, which is convenient for the operator to select the target position and observe. Afterwards, the workstation module 5 establishes a working path based on artificial intelligence or operator control through the above information, and after obtaining the working path, the current state The clamping module 4 needs to be adjusted in position, the adjustment information is calculated by the workstation module 5, and whether the first adjustment module 1 needs to be adjusted is determined according to the adjustment information and the working area information.
  • An adjustment module 1 needs to reconfirm the working area information and position information after adjustment, and compare it with the working path, and control the second adjustment module 2 through the workstation module 5 to adjust the clamping module 4 If it is not necessary to adjust the first adjustment module 1, then directly control the second adjustment module 2 through the workstation module 5 to adjust the position of the clamping module 4, and then use the clamping module 4 to perform Surgery is enough.
  • a step is further included between step S5 and step S6: the position information of the clamping module 4 adjusted in step S5 is determined again through the navigation module 100 and transmitted to the workstation module 5 , the workstation module 5 receives the adjusted position information, and the workstation module 5 compares the adjusted position information with the working path, and if they do not coincide, execute step S4, and if overlap, execute step S6.
  • the setting is to compare the position of the execution module adjusted in step S5 with the position indicated by the working path, so as to ensure that the adjustment of the execution module is in place and the accuracy of the adjustment is ensured.
  • step S5 the following steps are also included between step S5 and step S6:
  • the workstation module 5 receives the re-collected image information, and the workstation module 5 compares the re-collected image information with the fused image information in step S2 or the image information collected in S1, and the The workstation module 5 calculates the deviation between the image information collected again and the image information fused in step S2 or the image information collected in S1;
  • step S53 If there is a deviation, consider the deviation as adjustment information, and perform step S5, and if there is no deviation, perform step S6.
  • step S6 before performing step S6, the image information of the surgical object is confirmed again, and the movement information can be superimposed in the surgical plan after the surgical object moves, and the surgical route can be determined. Adjust accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Robotics (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

本发明提供一种医疗机器人,包括单臂机构,所述单臂机构包括俯仰调整机构和偏摆调整机构。所述俯仰调整机构的伸缩拉杆一端与铰接部一端铰接,另一端与俯仰电机连接,所述铰接部另一端与旋转主轴一端铰接以在所述俯仰电机驱动下相对于所述旋转主轴伸缩滑动以实现所述铰接部的俯仰运动,而所述偏摆调整机构的第二齿轮与第一齿轮啮合并套接在所述旋转主轴外壁,所述主旋转电机通过所述第一齿轮能驱动所述第二齿轮带动所述旋转主轴旋转,使得所述偏摆调整机构通过所述俯仰调整机构中的所述旋转主轴的传动实现了所述俯仰架的偏摆运动,提高了集成度,有效减小了占用空间。本发明还提供了手术辅助定位系统及控制方法。

Description

医疗机器人、手术辅助定位系统及控制方法
本申请要求申请号为2021111165614,申请日为2021年9月23日,发明名称为“手术辅助定位系统及其控制方法”的在先申请的优先权,还要求申请号为2022108934080,申请日为2022年7月27日,发明名称为“医疗机器人”的在先申请的优先权。前述两个在先申请的全部内容以合并方式引用于本申请。
技术领域
本发明涉及医疗器械技术领域,尤其涉及医疗机器人、手术辅助定位系统及控制方法。
背景技术
目前医用领域也出现了多种类型的医疗机器人,例如公开号为CN111085990A的中国发明专利申请公开的人机协作医疗机器人,能独自编制操作计划,依据实际情况确定动作程序,然后把动作变为操作机构的运动。但是当前多数医疗机器人设备体积庞大,占用空间大,不利于操作者进行灵活控制操作。
穿刺是刺入体腔抽取分泌物做化验,向体腔注入气体或造影剂做造影检查,或向体腔内注入药物的一种诊疗技术。现有技术通常通过以下方式执行穿刺手术:一种是通过拍摄CT(Computed Tomography,电子计算机断层扫描)、MRI(Magnetic Resonance Imaging,磁共振成像)等图像信息后由医生借助计算机辅助设置确定穿刺点和穿刺角度,然后制定相应手术方案并进行穿刺。另一种是通过在不同方位投射X射线,并在X射线的引导下找到欲穿刺的目标点后在X射线的引导下进行穿刺。上述方式主要依赖术前制定的方案、医生的经验和观察到的情况手动进行手术,使得穿刺的精度受到多方面的因素影响,提升了手术 的风险。
此外,现有的医疗装备中机械臂的应用,通常是通过多个腕关节连续转动实现位置的调整,或者是通过单一方向上的定向移动,上述方式前者会导致较大的误差,且操作局限性大,后者使用方式单一,不能应对复杂的手术情况。
发明内容
本发明提供了一种能够减小占用空间的医疗机器人。
本发明的医疗机器人包括单臂机构,所述单臂机构包括俯仰调整机构和偏摆调整机构,所述俯仰调整机构包括俯仰电机、支撑架、旋转主轴、伸缩拉杆和俯仰架,所述俯仰架包括铰接部,所述旋转主轴与所述支撑架活动连接,所述伸缩拉杆位于所述旋转主轴内部,所述伸缩拉杆一端与所述铰接部一端铰接,所述铰接部另一端与所述旋转主轴一端铰接,所述伸缩拉杆另一端与所述俯仰电机连接,所述俯仰电机用于驱动所述伸缩拉杆相对于所述旋转主轴的伸缩滑动,以实现所述铰接部的俯仰运动,所述偏摆调整机构包括第一齿轮、第二齿轮和主旋转电机,所述第一齿轮套接在所述旋转主轴外侧,所述第二齿轮与所述第一齿轮相啮合,所述主旋转电机与所述第二齿轮连接,用于驱动所述第二齿轮旋转以带动所述第一齿轮旋转,从而带动所述旋转主轴旋转以实现所述俯仰架的偏摆运动。
[根据细则91更正 01.11.2021] 
本发明的医疗机器人的有益效果在于:所述俯仰调整机构中,所述伸缩拉杆一端与所述铰接部一端铰接,另一端与所述俯仰电机连接,所述铰接部另一端与所述旋转主轴一端铰接以在所述俯仰电机驱动下相对于所述旋转主轴伸缩滑动以实现所述铰接部的俯仰运动,而所述第一齿轮与所述第二齿轮啮合并套接在所述旋转主轴外侧,与所述第二齿轮连接的主旋转电机通过所述第二齿轮能驱动所述第一齿轮带动所述旋转主轴旋转以实现所述俯仰架的偏摆运动,使得所述偏摆调整机构通过所述俯仰调整机构中的所述旋转主轴的传动实现了所述俯仰架的偏摆运动,提高了集成度,有效减小了占用空间。
可选地,所述第一齿轮的外径大于所述第二齿轮的外径。
可选地,所述支撑架包括第一孔和第二孔,所述旋转主轴穿过所述第一孔和所述第二孔。
可选地,所述第一孔内设置有第一轴承,所述第二孔内设置有第二轴承,所述旋转主轴穿过所述第一轴承和所述第二轴承。
可选地,所述支撑架包括第三孔和第四孔,所述主旋转电机穿过所述第三孔和所述第四孔。
可选地,所述俯仰电机为伸缩电机。
可选地,所述铰接部一端包括贯穿所述铰接部相对两壁的第一通孔和第一销,所述伸缩拉杆一端与所述第一销连接,所述第一销位于所述第一通孔内。
[根据细则91更正 01.11.2021] 
可选地,所述旋转主轴一端包括第一三角板、第二三角板和连接板,所述第一三角板和所述第二三角板相对设置并通过所述连接板连接,所述连接板上开设有第五孔,所述伸缩拉杆穿过所述第五孔,所述第一三角板的一端开设有第六孔,所述第二三角板的一端开设有第七孔,所述铰接部的另一端包括第二销并开设有第二通孔,所述第二销位于所述第一三角板和所述第二三角板之间以使所述第六孔、所述第二通孔和所述第七孔依次连通,所述第二销位于所述第六孔、所述第二通孔和所述第七孔连通的通道内以使所述铰接部与所述旋转主轴一端铰接。
可选地,医疗机器人还包括十字滑台,所述十字滑台包括轨道机构,所述轨道机构包括第一滑块、第二滑块、第一轨道和第二轨道,所述第一轨道和所述第二轨道位于水平面上,所述第一轨道和所述第二轨道相互垂直,所述第一滑块与所述第一轨道滑动连接,所述第一轨道与所述第二滑块固定连接,所述第二滑块与所述第二轨道滑动连接,用于带动所述第一轨道沿所述第二轨道滑动。
可选地,所述十字滑台还包括第一丝杠机构,所述第一丝杠机构包括第一 电机、第一丝杠和第一螺母,所述第一电机与所述第一丝杠一端连接,所述第一丝杠与所述第一螺母螺纹连接,所述第一滑块与所述第一螺母固定连接,所述第一电机用于驱动所述第一丝杠旋转以带动所述第一滑块沿所述第一轨道运动。
可选地,所述十字滑台还包括第二丝杠机构,所述第二丝杠机构包括第二电机、第二丝杠和第二螺母,所述第二电机与所述第二丝杠一端连接,所述第二丝杠与所述第二螺母螺纹连接,所述第一滑块与所述第二螺母固定连接,所述第二电机用于驱动所述第二丝杠旋转以带动所述第二滑块沿所述第二轨道运动。
本发明还提供了一种手术辅助定位系统,用以改善现有技术中手术准确度不高、对患者伤害较大、操作局限性大、不便于灵活使用的问题。
所述手术辅助定位系统包括第一调整模块、第二调整模块、信息反馈模块、夹持模块、工作站模块、导航模块、图像摄取模块和显示模块,所述第二调整模块为单臂机构,所述第二调整模块设置于所述第一调整模块的一端,所述第一调整模块用于调整所述第二调整模块的工作区域,所述夹持模块设置于所述第二调整模块,所述第二调整模块用于调整所述夹持模块的位置和角度,所述夹持模块用于固定手术执行结构,所述信息反馈模块与所述工作站模块电连接,所述信息反馈模块设置于所述第二调整模块,所述信息反馈模块用于确定所述第二调整模块的工作区域信息,并将所述工作区域信息传输给所述工作站模块,所述图像摄取模块分别与所述显示模块和所述工作站模块电连接,所述图像摄取模块获取手术对象图像信息并传输给所述显示模块和所述工作站模块,所述导航模块分别与所述显示模块和所述工作站模块电连接,所述导航模块设置于所述夹持模块和所述手术对象,所述导航模块采集所述手术对象和所述夹持模块的位置信息,并将所述位置信息传输给所述显示模块和所述工作站模块,所述显示模块与所述工作站模块电连接,所述显示模块接收所述图像信息和所述位置信息并显示,所述工作站模块与所述第二调整模块电连接,所述工作站模 块接收所述图像信息和所述位置信息,所述工作站模块根据所述图像信息建立工作路径,所述工作站模块比对所述位置信息和所述工作路径得到调整信息,所述工作站模块接收所述工作区域信息,所述工作站模块根据所述调整信息和所述工作区域信息输出调整指令控制所述第二调整模块的启闭,并根据所述调整指令判断是否调整所述第一调整模块。
本发明的手术辅助定位系统的有益效果在于:所述第一调整模块为手动调节,使用时通过所述第一调整模块调整所述第二调整模块的工作区域,通过所述第二调整模块调整所述夹持模块的位置和角度,通过所述夹持模块固定需要进行手术的器械,所述第二调整模块和所述信息反馈模块均与所述工作站模块电连接,通过所述信息反馈模块对所述工作区域进行反馈,便于所述第二调整模块无法达到所需位置时进行所述第一调整模块的手动调整,通过所述图像摄取模块分别与所述显示模块和所述工作站模块电连接,并通过导航模块分别与所述显示模块和所述工作站模块电连接,将获取的手术对象的图像信息和夹持模块的位置信息进行显示,便于操作人员进行观察,同时通过所述工作站模块根据图像信息和位置信息建立工作路径,并对比得到调整信息,之后所述工作站模块根据所述工作区域信息和所述调整信息对第一调整模块是否调整做出判断,并控制所述第二调整模块的启闭。这样设置可以使得本申请的手术辅助定位系统覆盖较大区域,可以应对不同的手术场景,且根据图像信息建立手术路径,并在所述工作站模块的控制下进行角度的调整,准确度高,能够消除人员方面产生的误差,整体准确度高、对手术对象的损伤小,同时通过所述第一调整模块和所述第二调整模块的配合,便于提升所述夹持模块的调整精度,便于缩短调整时间。
可选的,所述第二调整模块为本发明所述医疗机器人的单臂机构。
[根据细则91更正 01.11.2021] 
可选的,所述手术辅助定位系统还包括图像处理模块,所述图像处理模块分别与所述图像摄取模块、所述显示模块和所述工作站模块电连接,所述图像处理模块用于融合所述图像摄取模块获取的不同图像信息,所述图像处理模块 将融合后的图像信息传输给所述图像摄取模块、所述显示模块和所述工作站模块。其有益效果在于:这样设置便于处理不同时刻得到的图像信息,并将不同时刻得到的图像信息进行叠加,便于操作人员实际使用时根据当前的情况进行调整。
可选的,所述手术辅助定位系统还包括图像分析模块,所述图像分析模块分别与所述图像摄取模块、所述图像处理模块、所述显示模块和所述工作站模块连接,所述图像处理模块或所述图像摄取模块将图像信息传输给所述图像分析模块,所述图像分析模块接收所述图像信息,所述图像分析模块分析所述图像信息内组织结构和病灶区域的位置并勾勒所述组织结构和所述病灶区域的边界,所述图像分析模块将勾勒后的图像信息传输给所述工作站模块和所述显示模块。其有益效果在于:这样设置便于将手术对象内部的组织结构和病灶区域标注出来,便于操作人员观察,同时也便于制定手术方案。
[根据细则91更正 01.11.2021] 
可选的,所述手术辅助定位系统还包括比对模块、存储模块和调用模块,所述比对模块与所述工作站模块电连接,所述工作站模块将所述勾勒后的图像信息和所述工作路径传输给所述比对模块,所述比对模块接收所述勾勒后的图像信息和所述工作路径,所述比对模块用于将所述工作路径分别与所述组织结构的位置和所述病灶区域的位置进行比对以得到比对结果,所述比对模块将所述比对结果传输给所述工作站模块,所述存储模块与所述工作站模块电连接,所述工作站模块接收所述比对结果,所述工作站模块根据所述比对结果将所述工作路径输送至所述存储模块或将所述工作路径进行删除,所述存储模块接收所述工作路径并保存,所述调用模块分别与所述存储模块和所述工作站模块电连接,所述调用模块调用所述存储模块保存的工作路径并传输给所述工作站模块。其有益效果在于:这样设置通过所述比对模块将工作路径与图像信息进行比对,将可行的手术方案通过所述工作站模块传输至所述存储模块进行保存,之后通过所述调用模块进行调用,便于手术时提前制定方案和选取方案,节省术中的手术时长。
可选的,所述单臂机构包括执行模块,所述执行模块设置于所述夹持模块,所述执行模块与所述工作站模块连接,所述工作站模块用于控制所述执行模块的启闭。其有益效果在于:这样设置通过所述执行模块代替术者进行手术,一方面可以远程操作,另一方面便于消除操作人员方面带来的误差。
可选的,所述导航模块包括基准标靶和光学标靶,所述基准标靶设置于所述手术对象,所述光学标靶设置于所述夹持模块。其有益效果在于:这样设置便于知晓所述手术对象和所述执行模块的位置信息,同时也便于知晓所述手术对象和所述执行模块的相对位置信息,便于执行手术时确定相对位置信息,避免误操作。
可选的,所述手术辅助定位系统还包括隔离层结构,所述隔离层结构设置于所述第一调整模块和所述第二调整模块外侧。其有益效果在于:这样设置能够避免所述第一调整模块和所述第二调整模块对手术对象造成污染。
本发明还提供了所述手术辅助定位系统的控制方法,包括以下步骤:S1:在所述夹持模块和所述手术对象上设置所述导航模块,确定所述夹持模块和所述手术对象的位置信息,通过所述图像摄取模块采集图像信息,在所述第二调整模块上设置所述信息反馈模块确定所述工作区域信息,并将所述位置信息、所述图像信息和所述工作区域信息传输给所述工作站模块,将所述位置信息和所述图像信息传输给所述显示模块,S2:所述工作站模块接收所述图像信息、所述工作区域信息和所述位置信息,所述工作站模块通所述图像信息建立空间坐标系,所述显示模块接收所述位置信息和所述图像信息并显示,S3:所述工作站模块通过所述空间坐标系建立工作路径,S4:所述工作站模块比对所述位置信息和所述工作路径得到调整信息,S5:所述工作站模块根据所述调整信息和所述工作区域信息输出调整指令,若所述调整信息指示的距离大于所述工作区域信息覆盖的区域,则通过所述第一调整模块调整所述第二调整模块的工作区域,并通过所述工作站模块控制所述第二调整模块调整所述夹持模块的方向和位置,若所述调整信息指示的距离不大于所述工作区域信息覆盖的区域,则 通过所述工作站模块控制所述第二调整模块调整所述夹持模块的方向和位置,S6:通过所述夹持模块进行工作。
本发明的手术辅助定位系统的控制方法的有益效果在于:通过所述图像摄取模块获取手术对象的图像信息,并通过所述导航模块获取所述手术对象和所述夹持模块的位置信息,并通过所述信息反馈模块确定所述工作区域信息,并在所述显示模块进行显示,所述工作站模块根据上述信息建立工作路径,并根据所述工作路径和所述位置信息对所述第一调整模块的调整与否进行判定,之后在所述工作站模块的控制下调整所述夹持模块的位置,这样在无需调整所述第一调整模块时便于缩短所述第二调整模块在调整时的调整幅度,便于缩短调整时间,同时也便于提升所述第二调整模块的调整精度,并且通过所述第一调整模块的手动调整所述第二调整模块的工作区域,覆盖范围广。
附图说明
图1为本发明一些实施例中医疗机器人的结构示意图;
图2为本发明一些实施例中俯仰调整机构的剖面图;
图3为本发明一些实施例中十字滑台的结构示意图;
图4为本发明一些实施例中手术辅助定位系统的工作状态示意图;
图5为图4中的第一调整模块的结构示意图;
图6为图4中手术辅助定位系统的结构框图;
图7为本发明一些实施例中手术辅助定位系统和手术床的装配结构示意图;
图8为图7中第一调整模块的结构示意图;
图9为本发明的一些实施例中手术辅助定位系统的控制方法的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。除非另外定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本文中使用的“包括”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
参照图1,所述医疗机器人包括单臂机构(图中未示出),所述单臂机构(图中未示出)包括俯仰调整机构10和偏摆调整机构20,所述俯仰调整机构10包括俯仰电机11、支撑架12、旋转主轴13、伸缩拉杆14和俯仰架15,所述俯仰架15包括铰接部151,所述旋转主轴13与所述支撑架12活动连接,所述伸缩拉杆14贯穿所述旋转主轴13,所述伸缩拉杆14的末端与所述铰接部151的上端铰接,所述铰接部151的下端与所述旋转主轴13的末端铰接,所述伸缩拉杆14远离所述铰接部151的一端与所述俯仰电机11连接,所述俯仰电机11为伸缩电机,用于驱动所述伸缩拉杆14相对于所述旋转主轴13的伸缩滑动,以实现所述铰接部151的俯仰运动,所述偏摆调整机构20包括第一齿轮21、第二齿轮22和主旋转电机23,所述第一齿轮21套接在所述旋转主轴13远离所述铰接部151一端的外壁,所述第二齿轮22与所述第一齿轮21相啮合,所述主旋转电机23与所述第二齿轮22连接,用于驱动所述第二齿轮22旋转以带动所述第一齿轮21旋转,从而带动所述旋转主轴13旋转以实现所述俯仰架15的偏摆运动。
[根据细则91更正 01.11.2021] 
由于所述第二齿轮22与所述第一齿轮21啮合,所述第一齿轮21套接在所述旋转主轴13外壁,与所述第二齿轮22连接的所述主旋转电机23通过所述第二齿轮22能驱动所述第一齿轮21带动所述旋转主轴13旋转以实现所述俯仰架15的偏摆运动,使得所述偏摆调整机构通过所述俯仰调整机构中的所述旋转主轴13的传动实现 了所述俯仰架15的偏摆运动,提高了集成度,有效减小了占用空间。
所述主旋转电机23和所述俯仰电机11都设置在远离所述俯仰架15一端的位置,不会妨碍手术操作。
一些实施例中,所述第一齿轮21的外径大于所述第二齿轮22的外径。
[根据细则91更正 01.11.2021] 
一些实施例中,所述第一齿轮21和所述第二齿轮22的外径不同,则传动比较小,转动时,所述第一齿轮21转动的圈数小于所述第二齿轮22转动的圈数,这样在旋转所述第二齿轮22时,所述第一齿轮21旋转较慢,能够更好的提高精度。
参照图1,所述支撑架12包括第一孔121和第二孔122,所述旋转主轴13穿过所述第一孔121和所述第二孔122。
参照图1和图2,所述第一孔121内设置有第一轴承123,所述第二孔122内设置有第二轴承124,所述旋转主轴13穿过所述第一轴承123和所述第二轴承124。
[根据细则91更正 01.11.2021] 
参照图1,所述支撑架12包括第三孔231和第四孔(图中未示出),所述主旋转电机23穿过所述第三孔231和所述第四孔(图中未示出),所述支撑架12能够对所述主旋转电机23起到固定和支撑作用。
参照图1和图2,所述铰接部151一端包括贯穿所述铰接部151相对两壁的第一通孔1511和第一销1512,所述伸缩拉杆14的末端与所述第一销1512连接,所述第一销1512位于所述第一通孔1511内。
[根据细则91更正 01.11.2021] 
参照图1,所述旋转主轴13的一端包括第一三角板131、第二三角板132和连接板133,所述第一三角板131和所述第二三角板132相对设置并通过所述连接板133连接,所述连接板133上开设有第五孔1331,所述伸缩拉杆14穿过所述第五孔1331,所述第一三角板131的一端开设有第六孔(图中未示出),所述第二三角板132的一端开设有第七孔(图中未示出),所述铰接部151的另一端包括第二销1513并开设有第二通孔1514,所述第二销1513位于所述第一三角板和所述第二三角板之间以使所述第六孔(图中未示出)、所述第二通孔1514和所述第七 孔(图中未示出)依次连通,所述第二销1513位于所述第六孔(图中未示出)、所述第二通孔1514和所述第七孔(图中未示出)连通的通道内以使所述铰接部151与所述旋转主轴13一端铰接。
[根据细则91更正 01.11.2021] 
参照图1,图1所示的医疗机器人还包括由操作部162和旋钮161构成的夹持模块,所述操作部162上开设有孔,所述铰接部151上开设有孔,所述旋钮161旋进所述操作部162上开设的孔和所述铰接部151上开设的孔内,使所述操作部162和所述铰接部151旋紧。
所述医疗机器人还包括十字滑台。参照图3所示的十字滑台包括轨道机构30,所述轨道机构30包括第一滑块31、第二滑块32、第一轨道33和第二轨道34,所述第一轨道33和所述第二轨道34位于水平面上,所述第一轨道33和所述第二轨道34相互垂直,所述第一滑块31与所述第一轨道33滑动连接,所述第一轨道33与所述第二滑块32固定连接,所述第二滑块32与所述第二轨道34滑动连接,用于带动所述第一轨道33沿所述第二轨道34滑动。
参照图3所示的十字滑台还包括第一丝杠机构40,所述第一丝杠机构40包括第一电机41、第一丝杠42和第一螺母43,所述第一电机41与所述第一丝杠42一端连接,所述第一丝杠42与所述第一螺母43螺纹连接,所述第一滑块31与所述第一螺母43固定连接,所述第一电机41用于驱动所述第一丝杠42旋转以带动所述第一滑块31沿所述第一轨道33运动。
参照图3所示的十字滑台还包括第二丝杠机构(图中未示出),所述第二丝杠机构(图中未示出)包括第二电机51、第二丝杠52和第二螺母(图中未示出),所述第二电机51与所述第二丝杠52一端连接,所述第二丝杠52与所述第二螺母(图中未示出)螺纹连接,所述第一滑块31与所述第二螺母(图中未示出)固定连接,所述第二电机51用于驱动所述第二丝杠52旋转以带动所述第二滑块32沿所述第二轨道34运动。
本发明的医疗机器人包括如图3所示的十字滑台和图1中所示的包括所述俯仰调整机构10和所述偏摆调整机构20的单臂机构。所述十字滑台包括所述 轨道机构30、所述第一丝杠机构40和包括第二电机51、第二丝杠52和第二螺母的第二丝杠机构,能够带动所述单臂机构做前后、左右2个自由度的运动。如前所述所述俯仰调整机构10和所述偏摆调整机构20能够带动单臂机构的所述俯仰架15做俯仰、偏摆2个自由度的运动,因此本申请的医疗机器人能够实现前后、左右、俯仰、偏摆4个自由度的运动。
本发明的实施例还提供了一种手术辅助定位系统。
[根据细则91更正 01.11.2021] 
参考图4至图7,图4所示的手术辅助定位系统包括第一调整模块1、第二调整模块2、信息反馈模块3、夹持模块4、工作站模块5、导航模块100、图像摄取模块6和显示模块7,所述第二调整模块2设置于所述第一调整模块1的一端,所述第一调整模块1用于调整所述第二调整模块2的工作区域,所述夹持模块4设置于所述第二调整模块2,所述第二调整模块2用于调整所述夹持模块4的位置和角度,所述夹持模块4用于固定手术执行结构,所述信息反馈模块3与所述工作站模块5电连接,所述信息反馈模块3设置于所述第二调整模块2,所述信息反馈模块3用于确定所述第二调整模块2的工作区域信息,并将所述工作区域信息传输给所述工作站模块5,所述图像摄取模块6分别与所述显示模块7和所述工作站模块5电连接,所述图像摄取模块6获取手术对象图像信息并传输给所述显示模块7和所述工作站模块5,所述导航模块100分别与所述显示模块7和所述工作站模块5电连接,所述导航模块100设置于所述夹持模块4和所述手术对象,所述导航模块100采集所述手术对象和所述夹持模块4的位置信息,并将所述位置信息传输给所述显示模块7和所述工作站模块5,所述显示模块7与所述工作站模块5电连接,所述显示模块7接收所述图像信息和所述位置信息并显示,所述工作站模块5与所述第二调整模块2电连接,所述工作站模块5接收所述图像信息和所述位置信息,所述工作站模块5根据所述图像信息建立工作路径,所述工作站模块5比对所述位置信息和所述工作路径得到调整信息,所述工作站模块5接收所述工作区域信息,所述工作站模块5根据所述调整信息和所述工作区域信息输出调整指令控制所述第二调整模块2的启闭, 并根据所述调整指令判断是否调整所述第一调整模块1。
一些实施例中,所述第二调整模块2为图1所示的包括所述俯仰调整机构10和所述偏摆调整机构20的单臂机构。
一些实施例中,图1所示的操作部162和旋钮161构成了所述夹持模块4。
一些实施例中,参照图4和图7,图4所示的手术辅助定位系统设置于手术床9。
[根据细则91更正 01.11.2021] 
一些实施例中,参照图4、图5和图7,所述第一调整模块1包括第一连杆101、第二连杆102、连接件103和底座104,所述底座104滑动设置于所述手术床9,所述第一连杆101一端转动设置于所述底座104,所述连接件103设置于所述第一连杆101的另一端,所述第二连杆102设置于所述连接件103,所述第一连杆101和所述第二连杆102通过所述连接件103相对转动设置,所述第二调整模块2转动设置于所述第二连杆102远离所述连接件103的一端,所述第一连杆101能够相对所述底座104自由转动,所述第二调整模块2能够相对所述第二连接杆自由转动,所述连接件103能够固定所述第一连杆101和所述第二连杆102之间的角度,同时所述连接件103能够固定所述第一连杆101对比于所述底座104的角度、固定所述第二调节单元对比于所述第二连杆102的角度。使用时通过调整所述底座104在所述手术床9上的位置,能够带动所述夹持模块4相比于所述手术床9往复运动,调整后固定所述底座104,通过所述连接件103解除所述第一连杆101、所述第二连杆102和所述第二调整模块2的固定状态,调整所述第一连杆101相比于所述底座104的角度、调整所述第二连杆102对比于所述第一连杆101的角度、调整所述第二调整模块2对比于所述第二连杆102的角度,之后通过所述连接件103固定所述第一连杆101、所述第二连杆102和所述第二调整模块2,进而实现所述工作区域的调整,且使用方便、区域广。
一些实施例中,所述夹持模块4为夹持架,所述夹持模块4用于固定和导 向手术器械,手术器械为穿刺针、消融针或椎间孔镜中的一种,使用时可以通过所述夹持模块4手动进行手术,也可以通过设置驱动单元,将所述驱动单元固定设置于所述夹持模块4,并将手术器械固定在所述驱动单元的活动端,将所述驱动单元与所述工作站模块5电连接,在所述工作站模块5的自动控制下控制所述驱动单元的启闭自动进行手术。
一些实施例中,所述图像摄取模块6包括获取外部轮廓的摄像头和获取透视图像的摄像装置,摄像装置为CT(Computed Tomography,电子计算机断层扫描)、MRI(Magnetic Resonance Imaging,磁共振成像)、超声成像装置或X光(X-ray,X射线)检查设备中的一种。
一些实施例中,所述导航模块100为定位装置,所述导航模块100用于确定所述夹持模块4和手术对象的位置信息。
一些实施例中,所述工作站模块5为主机。
一些实施例中,所述显示模块7为显示器,所述显示模块7设置于所述工作站模块5上。
一些实施例中,参照图4至图7,所述工作站模块5基于人工智能或者操作人员的设置根据所述图像信息建立手术路径,根据手术路径和当前所述夹持模块4的位置对所述第一调整模块1和所述第二调整模块2进行调整,由于所述夹持模块4在所述第二调整模块2上自动控制下的可调距离有限,所述工作站模块5根据所述手术路径和所述位置信息得到调整信息,所述工作站模块5基于人工智能或者操作人员根据所述调整信息和所述工作区域信息可以判定是否需要调整所述第一调整模块1,所述调整信息指示的距离即所述夹持模块4需要运动的方向和距离,所述工作区域信息覆盖的区域即当前状态下所述夹持模块4可以到达的位置,若需要对所述第一调整模块1进行调整,通过调整所述底座104和/或所述连接件103即可,若无需调整所述第一调整模块1,直接通过所述工作站模块5控制所述第二调整模块2即可。
一些实施例中,术前可以通过手术对象的手术部位进行所述第一调整模块1的初步调整,这样进行判定时能够避免所述第一调整模块1的调整,或缩短所述第一调整模块1的调整幅度,节省时间。
此外,若需要调整所述第一调整模块1,所述工作站模块5发出调整信号,并将所述调整信息传输至所述显示模块7并显示,操作人员根据观察到的信息对所述第一调整模块1进行调整。
本发明一些实施例中,所述手术辅助定位系统还包括图像处理模块,分别与所述图像摄取模块6、所述显示模块7和所述工作站模块5电连接,所述图像处理模块用于融合所述图像摄取模块6获取的不同图像信息,所述图像处理模块将融合后的图像信息传输给所述图像摄取模块6、所述显示模块7和所述工作站模块5。
具体的说,在本实施例中,由于手术对象在不同时刻或不同状态下图像信息会发生变化,通过摄取不同时刻或者不同状态下的图像信息,所述图像处理模块将不同的图像信息进行融合,这样能够更准确的进行手术。
本发明一些实施例中,所述手术辅助定位系统还包括图像分析模块分别与所述图像摄取模块6、所述图像处理模块、所述显示模块7和所述工作站模块5连接,所述图像处理模块或所述图像摄取模块6将图像信息传输给所述图像分析模块,所述图像分析模块接收所述图像信息,所述图像分析模块分析所述图像信息内组织结构和病灶区域的位置并勾勒所述组织结构和所述病灶区域的边界,所述图像分析模块将勾勒后的图像信息传输给所述工作站模块5和所述显示模块7。
一些实施例中,所述图像分析模块设置于所述工作站模块5,所述图像分析模块分别与所述图像摄取模块6、所述图像处理模块、所述显示模块7和所述工作站模块5电连接,所述图像分析模块存储有组织结构的图像信息和正常人体的图像信息,所述图像分析模块通过对比获取的图像信息和自身存储的图像信 息,辨别出手术对象的组织结构部位和病灶区域部位,并对组织结构部位和病灶区域部位的边界进行勾勒,之后将勾勒后的图像信息传输给所述工作站模块5,这样便于操作人员进行观察和制定方案。
[根据细则91更正 01.11.2021] 
本发明一些实施例中,所述手术辅助定位系统还包括比对模块、存储模块和调用模块,所述比对模块与所述工作站模块5电连接,所述工作站模块5将所述勾勒后的图像信息和所述工作路径传输给所述比对模块,所述比对模块接收所述勾勒后的图像信息和所述工作路径,所述比对模块用于将所述工作路径分别与所述组织结构的位置和所述病灶区域的位置进行比对以得到比对结果,所述比对模块将所述比对结果传输给所述工作站模块5,所述存储模块与所述工作站模块5电连接,所述工作站模块5接收所述比对结果,所述工作站模块5根据所述比对结果将所述工作路径输送至所述存储模块或将所述工作路径进行删除,所述存储模块接收所述工作路径并保存,所述调用模块分别与所述存储模块和所述工作站模块5电连接,所述调用模块调用所述存储模块保存的工作路径并传输给所述工作站模块5。
[根据细则91更正 01.11.2021] 
一些实施例中,所述比对模块、所述存储模块和所述调用模块均设置于所述工作站模块5,所述工作站模块5将所述勾勒后的图像信息和所述工作路径传输给所述比对模块,所述比对模块对比所述工作路径是否与所述图像信息内的组织结构和病灶区域发生交叉,并将结果反馈至所述工作站模块5,所述工作站模块5根据所述比对结果对该工作路径的可行性进行分析,将可行的方案传输至所述存储模块进行保存,并重复多个路径的比对和存储,得到多种可行方案,之后在手术时通过所述调用模块调用一种保存的路径进行手术,这样通过术前制定手术方案,并在术中根据需要进行选取,节约手术的时间。
本发明一些实施例中,所述单臂机构包括执行模块,所述执行模块设置于所述夹持模块4,所述执行模块与所述工作站模块5连接,所述工作站模块5用于控制所述执行模块的启闭。
一些实施例中,所述执行模块为直线电机,所述执行模块设置于所述夹持 模块4,所述执行模块的活动端与所述夹持模块4连接,所述夹持模块4夹持执行器械,所述执行模块能够带动所述执行器械在所述执行模块驱动的方向上运动,便于控制方向和深度,消除外界原因带来的误差。
本发明一些实施例中,所述导航模块100包括基准标靶和光学标靶,所述基准标靶设置于所述手术对象,所述光学标靶设置于所述夹持模块4。
一些实施例中,在手术前将所述基准标靶固定在所述手术对象或所述手术床9上,设置于所述手术床9时,根据所述原始图像信息可以确定所述手术对象和所述手术床9的相对位置信息,即可将所述基准标靶视为坐标原点,并确定所述手术对象的三维位置信息,所述光学标靶设置于所述夹持模块4上,通过所述光学标靶可以直接确定所述夹持模块4相比于所述基准标靶的位置信息,间接确定所述执行模块相比于所述手术对象的位置信息,这样便于知晓所述夹持模块4相比于手术对象的位置信息,便于对所述夹持模块4的位置进行调整。
此外,本发明的一些实施例中,所述导航模块100包括光学标靶和光学摄像头,所述光学标靶设置于所述夹持模块4,所述光学摄像头对应所述夹持模块4设置,所述光学摄像头识别所述光学标靶并确定所述光学标靶和所述手术对象的相对位置信息。
本发明一些实施例中,参考图4所示的手术辅助定位系统还包括隔离层结构8,所述隔离层结构8设置于所述第一调整模块1和所述第二调整模块2外侧。
一些实施例中,所述隔离层结构8为无菌袋,所述隔离层结构8套设在所述第一调整模块1和所述第二调整模块2外侧,由于所述第一调整模块1和所述第二调整模块2内包含传动结构,设置所述隔离层结构8能够降低污染,提升手术的安全性。
本发明一些实施例中,参考图4、图5、图7和图8,所述第一调整模块1包括立柱105、大臂106、小臂107,所述立柱105通过第一旋转关节108与底座109活动连接,所述立柱105和所述大臂106通过第二旋转关节110和第三 旋转关节111活动连接,所述大臂106和所述小臂107通过第四旋转关节112和第五旋转关节113活动连接,所述小臂107的末端依次活动连接第六旋转关节114和第七旋转关节115,使得所述第一调整模块1具有七个自由度,可以实现多自由度调节和任意姿态的快速定位,空间定位比较灵活,定位方便快捷。使用时,所述底座109滑动设置于所述手术床9,所述第二调整模块2设置于所述第七旋转关节115。
本发明一些实施例中,参考图4、图6和图9,所述手术辅助定位系统的控制方法包括以下步骤:
S1、在所述夹持模块4和所述手术对象上设置所述导航模块100,确定所述夹持模块4和所述手术对象的位置信息,通过所述图像摄取模块6采集图像信息,在所述第二调整模块2上设置所述信息反馈模块3确定所述工作区域信息,并将所述位置信息、所述图像信息和所述工作区域信息传输给所述工作站模块5,将所述位置信息和所述图像信息传输给所述显示模块7;
S2、所述工作站模块5接收所述图像信息、所述工作区域信息和所述位置信息,所述工作站模块5通所述图像信息建立空间坐标系,所述显示模块7接收所述位置信息和所述图像信息并显示;
S3、所述工作站模块5通过所述空间坐标系建立工作路径;
S4、所述工作站模块5比对所述位置信息和所述工作路径得到调整信息;
S5、所述工作站模块5根据所述调整信息和所述工作区域信息输出调整指令,若所述调整信息指示的距离大于所述工作区域信息覆盖的区域,则通过所述第一调整模块1调整所述第二调整模块2的工作区域,并通过所述工作站模块5控制所述第二调整模块2调整所述夹持模块4的方向和位置,若所述调整信息指示的距离不大于所述工作区域信息覆盖的区域,则通过所述工作站模块5控制所述第二调整模块2调整所述夹持模块4的方向和位置;
S6、通过所述夹持模块4进行工作。
具体的说,在本实施例中,将所述基准标靶设置于所述手术对象或所述手术床9上,将所述光学标靶设置于所述执行器械,通过所述图像摄取模块6采集图像信息,这样即能够确定所述手术对象和所述执行器械的相对位置信息,确保手术执行时所述执行器械按照预定方案执行,并通过所述信息反馈模块3确定所述工作区域信息,能够知晓当前状态下所述夹持模块4可以到达的位置区域,之后所述工作站模块5根据所述图像信息、所述工作区域信息和所述位置信息以所述基准标靶或任一点为基准原点建立空间坐标系,即可知晓所述手术对象和所述夹持模块4的空间三维坐标信息,并通过所述显示模块7显示所述图像信息和所述位置信息,使用时也可以将三维坐标信息传输至所述工作站模块5进行展示,便于操作人员选取目标位置和观察,之后所述工作站模块5基于人工智能或者操作人员的操控通过上述信息建立工作路径,得到工作路径后对当前状态下的夹持模块4需要进行位置调整,通过所述工作站模块5计算出调整信息,并根据调整信息和工作区域信息进行所述第一调整模块1是否需要进行调整的判定,若需要调整所述第一调整模块1则需要在调整后重新对工作区域信息、位置信息进行确认,并和工作路径进行比对,并通过所述工作站模块5控制所述第二调整模块2调整所述夹持模块4的位置,若不需要调整所述第一调整模块1,则直接通过所述工作站模块5控制所述第二调整模块2调整所述夹持模块4的位置,之后通过所述夹持模块4进行手术即可。
本发明一些实施例中,在步骤S5和步骤S6之间还包括步骤:通过所述导航模块100再次确定经步骤S5调整后的所述夹持模块4的位置信息并传输给所述工作站模块5,所述工作站模块5接收所述调整后的位置信息,所述工作站模块5将所述调整后的位置信息与工作路径进行比对,若不重合则执行步骤S4,若重合则执行步骤S6。
具体的说,在本实施例中,这样设置将经过步骤S5调整后的所述执行模块的位置与所述工作路径指示的位置进行比对,保证所述执行模块调整到位,保证调整的准确度。
本发明一些实施例中,在步骤S5和步骤S6之间还包括以下步骤:
S51、通过所述图像摄取模块6再次采集图像信息并传输给所述工作站模块5;
S52、所述工作站模块5接收所述再次采集的图像信息,所述工作站模块5将所述再次采集的图像信息与步骤S2中融合后的图像信息或S1中采集的图像信息进行对比,所述工作站模块5计算所述再次采集的图像信息与步骤S2中融合后的图像信息或S1中采集的图像信息的偏差;
S53、若存在偏差,则将所述偏差视为调整信息,并执行步骤S5,若不存在偏差,则执行步骤S6。
具体的说,在本实施例中,在进行步骤S6之前再次对手术对象的图像信息进行确认,能够在所述手术对象发生移动后将该移动信息叠加在手术方案内,并做出手术路径的相应调整。
虽然在上文中详细说明了本发明的实施方式,但是对于本领域的技术人员来说显而易见的是,能够对这些实施方式进行各种修改和变化。但是,应理解,这种修改和变化都属于权利要求书中所述的本发明的范围和精神之内。而且,在此说明的本发明可有其它的实施方式,并且可通过多种方式实施或实现。

Claims (19)

  1. 一种医疗机器人,其特征在于,包括单臂机构,所述单臂机构包括俯仰调整机构和偏摆调整机构,所述俯仰调整机构包括俯仰电机、支撑架、旋转主轴、伸缩拉杆和俯仰架,所述俯仰架包括铰接部,所述旋转主轴与所述支撑架活动连接,所述伸缩拉杆位于所述旋转主轴内部,所述伸缩拉杆一端与所述铰接部一端铰接,所述铰接部另一端与所述旋转主轴一端铰接,所述伸缩拉杆另一端与所述俯仰电机连接,所述俯仰电机用于驱动所述伸缩拉杆相对于所述旋转主轴的伸缩滑动,以实现所述铰接部的俯仰运动,所述偏摆调整机构包括第一齿轮、第二齿轮和主旋转电机,所述第一齿轮套接在所述旋转主轴外侧,所述第二齿轮与所述第一齿轮相啮合,所述主旋转电机与所述第二齿轮连接,用于驱动所述第二齿轮旋转以带动所述第一齿轮旋转,从而带动所述旋转主轴旋转以实现所述俯仰架的偏摆运动。
  2. 根据权利要求1所述的医疗机器人,其特征在于,所述第一齿轮的外径大于所述第二齿轮的外径。
  3. 根据权利要求1所述的医疗机器人,其特征在于,所述支撑架包括第一孔和第二孔,所述旋转主轴穿过所述第一孔和所述第二孔。
  4. 根据权利要求3所述的医疗机器人,其特征在于,所述第一孔内设置有第一轴承,所述第二孔内设置有第二轴承,所述旋转主轴穿过所述第一轴承和所述第二轴承。
  5. 根据权利要求1所述的医疗机器人,其特征在于,所述支撑架包括第三孔和第四孔,所述主旋转电机穿过所述第三孔和所述第四孔。
  6. 根据权利要求1所述的医疗机器人,其特征在于,所述俯仰电机为伸缩电机。
  7. 根据权利要求1所述的医疗机器人,其特征在于,所述铰接部一端包括 贯穿所述铰接部相对两壁的第一通孔和第一销,所述伸缩拉杆一端与所述第一销连接,所述第一销位于所述第一通孔内。
  8. [根据细则91更正 01.11.2021] 
    根据权利要求7所述的医疗机器人,其特征在于,所述旋转主轴一端包括第一三角板、第二三角板和连接板,所述第一三角板和所述第二三角板相对设置并通过所述连接板连接,所述连接板上开设有第五孔,所述伸缩拉杆穿过所述第五孔,所述第一三角板的一端开设有第六孔,所述第二三角板的一端开设有第七孔,所述铰接部的另一端包括第二销并开设有第二通孔,所述第二销位于所述第一三角板和所述第二三角板之间以使所述第六孔、所述第二通孔和所述第七孔依次连通,所述第二销位于所述第六孔、所述第二通孔和所述第七孔连通的通道内以使所述铰接部与所述旋转主轴一端铰接。
  9. 根据权利要求1所述的医疗机器人,其特征在于,医疗机器人还包括十字滑台,所述十字滑台包括轨道机构,所述轨道机构包括第一滑块、第二滑块、第一轨道和第二轨道,所述第一轨道和所述第二轨道位于水平面上,所述第一轨道和所述第二轨道相互垂直,所述第一滑块与所述第一轨道滑动连接,所述第一轨道与所述第二滑块固定连接,所述第二滑块与所述第二轨道滑动连接,用于带动所述第一轨道沿所述第二轨道滑动。
  10. 根据权利要求9所述的医疗机器人,其特征在于,所述十字滑台还包括第一丝杠机构,所述第一丝杠机构包括第一电机、第一丝杠和第一螺母,所述第一电机与所述第一丝杠一端连接,所述第一丝杠与所述第一螺母螺纹连接,所述第一滑块与所述第一螺母固定连接,所述第一电机用于驱动所述第一丝杠旋转以带动所述第一滑块沿所述第一轨道运动。
  11. 根据权利要求10所述的医疗机器人,其特征在于,所述十字滑台还包括第二丝杠机构,所述第二丝杠机构包括第二电机、第二丝杠和第二螺母,所述第二电机与所述第二丝杠一端连接,所述第二丝杠与所述第二螺母螺纹连接,所述第一滑块与所述第二螺母固定连接,所述第二电机用于驱动所述第二丝杠旋转以带动所述第二滑块沿所述第二轨道运动。
  12. 一种手术辅助定位系统,其特征在于,包括第一调整模块、第二调整模块、信息反馈模块、夹持模块、工作站模块、导航模块、图像摄取模块和显示模块,所述第二调整模块为权利要求1所述的医疗机器人中的单臂机构;
    所述第二调整模块设置于所述第一调整模块的一端,所述第一调整模块用于调整所述第二调整模块的工作区域,所述夹持模块设置于所述第二调整模块,所述第二调整模块用于调整所述夹持模块的位置和角度,所述夹持模块用于固定手术执行结构;
    所述信息反馈模块与所述工作站模块电连接,所述信息反馈模块设置于所述第二调整模块,所述信息反馈模块用于确定所述第二调整模块的工作区域信息,并将所述工作区域信息传输给所述工作站模块;
    所述图像摄取模块分别与所述显示模块和所述工作站模块电连接,所述图像摄取模块获取手术对象图像信息并传输给所述显示模块和所述工作站模块;
    所述导航模块分别与所述显示模块和所述工作站模块电连接,所述导航模块设置于所述夹持模块和所述手术对象,所述导航模块采集所述手术对象和所述夹持模块的位置信息,并将所述位置信息传输给所述显示模块和所述工作站模块;
    所述显示模块与所述工作站模块电连接,所述显示模块接收所述图像信息和所述位置信息并显示;
    所述工作站模块与所述第二调整模块电连接,所述工作站模块接收所述图像信息和所述位置信息,所述工作站模块根据所述图像信息建立工作路径,所述工作站模块比对所述位置信息和所述工作路径得到调整信息;
    所述工作站模块接收所述工作区域信息,所述工作站模块根据所述调整信息和所述工作区域信息输出调整指令控制所述第二调整模块的启闭,并根据所述调整指令判断是否调整所述第一调整模块。
  13. 根据权利要求12所述的手术辅助定位系统,其特征在于,还包括图像 处理模块;
    所述图像处理模块分别与所述图像摄取模块、所述显示模块和所述工作站模块电连接,所述图像处理模块用于融合所述图像摄取模块获取的不同图像信息,所述图像处理模块将融合后的图像信息传输给所述图像摄取模块、所述显示模块和所述工作站模块连接。
  14. 根据权利要求13所述的手术辅助定位系统,其特征在于,还包括图像分析模块;
    所述图像分析模块分别与所述图像摄取模块、所述图像处理模块、所述显示模块和所述工作站模块连接,所述图像处理模块或所述图像摄取模块将图像信息传输给所述图像分析模块,所述图像分析模块接收所述图像信息,所述图像分析模块分析所述图像信息内组织结构和病灶区域的位置并勾勒所述组织结构和所述病灶区域的边界,所述图像分析模块将勾勒后的图像信息传输给所述工作站模块和所述显示模块。
  15. 根据权利要求14所述的手术辅助定位系统,其特征在于,还包括比对模块、存储模块和调用模块;
    所述比对模块与所述工作站模块电连接,所述工作站模块将所述勾勒后的图像信息和所述工作路径传输给所述比对模块,所述比对模块接收所述勾勒后的图像信息和所述工作路径,所述比对模块用于将所述工作路径分别与所述组织结构的位置和所述病灶区域的位置进行比对以得到比对结果,所述比对模块将所述比对结果传输给所述工作站模块;
    所述存储模块与所述工作站模块电连接,所述工作站模块接收比对模块,所述工作站模块根据所述比对结果将所述工作路径输送至所述存储模块或将所述工作路径进行删除,所述存储模块接收所述工作路径并保存;
    所述调用模块分别与所述存储模块和所述工作站模块电连接,所述调用模块调用所述存储模块保存的工作路径并传输给所述工作站模块。
  16. 根据权利要求15所述的手术辅助定位系统,其特征在于,所述单臂机构包括执行模块,所述执行模块设置于所述夹持模块,所述执行模块与所述工作站模块连接,所述工作站模块用于控制所述执行模块的启闭。
  17. 根据权利要求12中所述的手术辅助定位系统,其特征在于,所述导航模块包括基准标靶和光学标靶;
    所述基准标靶设置于所述手术对象,所述光学标靶设置于所述夹持模块。
  18. 根据权利要求12所述的手术辅助定位系统,其特征在于,还包括隔离层结构,所述隔离层结构设置于所述第一调整模块和所述第二调整模块外侧。
  19. 根据权利要求12所述的手术辅助定位系统的控制方法,其特征在于,包括以下步骤:
    S1、在所述夹持模块和所述手术对象上设置所述导航模块,确定所述夹持模块和所述手术对象的位置信息,通过所述图像摄取模块采集图像信息,在所述第二调整模块上设置所述信息反馈模块确定所述工作区域信息,并将所述位置信息、所述图像信息和所述工作区域信息传输给所述工作站模块,将所述位置信息和所述图像信息传输给所述显示模块;
    S2、所述工作站模块接收所述图像信息、所述工作区域信息和所述位置信息,所述工作站模块通所述图像信息建立空间坐标系,所述显示模块接收所述位置信息和所述图像信息并显示;
    S3、所述工作站模块通过所述空间坐标系建立工作路径;
    S4、所述工作站模块比对所述位置信息和所述工作路径得到调整信息;
    S5、所述工作站模块根据所述调整信息和所述工作区域信息输出调整指令,若所述调整信息指示的距离大于所述工作区域信息覆盖的区域,则通过所述第一调整模块调整所述第二调整模块的工作区域,并通过所述工作站模块控制所述第二调整模块调整所述夹持模块的方向和位置,若所述调整信息指示的距离 不大于所述工作区域信息覆盖的区域,则通过所述工作站模块控制所述第二调整模块调整所述夹持模块的方向和位置;
    S6、通过所述夹持模块进行工作。
PCT/CN2022/120916 2021-09-23 2022-09-23 医疗机器人、手术辅助定位系统及控制方法 WO2023046077A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111116561.4 2021-09-23
CN202111116561.4A CN113729940B (zh) 2021-09-23 2021-09-23 手术辅助定位系统及其控制方法
CN202210893408.0A CN115122355B (zh) 2022-07-27 2022-07-27 医疗机器人
CN202210893408.0 2022-07-27

Publications (1)

Publication Number Publication Date
WO2023046077A1 true WO2023046077A1 (zh) 2023-03-30

Family

ID=85719319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120916 WO2023046077A1 (zh) 2021-09-23 2022-09-23 医疗机器人、手术辅助定位系统及控制方法

Country Status (1)

Country Link
WO (1) WO2023046077A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090326365A1 (en) * 2008-06-18 2009-12-31 Goldenberg Andrew A Medical robot for use in a MRI
CN104586346A (zh) * 2015-01-20 2015-05-06 张传峰 纤维支气管镜
CN206335584U (zh) * 2016-12-09 2017-07-18 中山市汉德机器人有限公司 一种机械手翻转机构
CN108772832A (zh) * 2018-07-16 2018-11-09 上海震界自动化设备制造有限公司 一种用于四轴取件机的取件手臂结构
CN209122386U (zh) * 2018-10-31 2019-07-19 山东大学齐鲁医院 一种自动旋转式举宫器
CN113288435A (zh) * 2021-05-24 2021-08-24 上海卓昕医疗科技有限公司 医疗机器人及其控制方法
CN113729940A (zh) * 2021-09-23 2021-12-03 上海卓昕医疗科技有限公司 手术辅助定位系统及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090326365A1 (en) * 2008-06-18 2009-12-31 Goldenberg Andrew A Medical robot for use in a MRI
CN104586346A (zh) * 2015-01-20 2015-05-06 张传峰 纤维支气管镜
CN206335584U (zh) * 2016-12-09 2017-07-18 中山市汉德机器人有限公司 一种机械手翻转机构
CN108772832A (zh) * 2018-07-16 2018-11-09 上海震界自动化设备制造有限公司 一种用于四轴取件机的取件手臂结构
CN209122386U (zh) * 2018-10-31 2019-07-19 山东大学齐鲁医院 一种自动旋转式举宫器
CN113288435A (zh) * 2021-05-24 2021-08-24 上海卓昕医疗科技有限公司 医疗机器人及其控制方法
CN113729940A (zh) * 2021-09-23 2021-12-03 上海卓昕医疗科技有限公司 手术辅助定位系统及其控制方法

Similar Documents

Publication Publication Date Title
US11129684B2 (en) System and method for maintaining a tool position and orientation
JP7128224B2 (ja) 統合された手術台運動のためのシステム及び方法
JP6682512B2 (ja) 一体化された手術台のシステム及び方法
JP2020171681A (ja) 手術台に対して位置合わせをするシステム及び方法
CN109419555B (zh) 用于外科手术导航系统的定位臂
CN108175510A (zh) 医疗机器人以及医疗系统
JP2018500055A (ja) 統合手術台アイコンのためのシステム及び方法
US20090082784A1 (en) Interventional medical system
CN111166476A (zh) 具有主动制动器释放控制装置的医疗装置
RU135957U1 (ru) Робот-манипулятор
WO2008012864A1 (en) Method of controlling x-ray diagnosis device
CN108852473A (zh) 一种穿刺手术系统
US20200352782A1 (en) Remote ophthalmic system and related methods
KR20160122558A (ko) 모발 이식 장치
CN113729941B (zh) 基于vr的手术辅助定位系统及其控制方法
CN113940759B (zh) 穿刺手术主控台及穿刺机器人
WO2023046077A1 (zh) 医疗机器人、手术辅助定位系统及控制方法
CN113729940B (zh) 手术辅助定位系统及其控制方法
JP2002159479A (ja) X線診断装置
CN113940733B (zh) 一种ct兼容的肺部穿刺活检系统及方法
CN215129679U (zh) 一种用于医院肺穿刺手术中的四自由度固定支座
JP2000217811A (ja) 医療用穿刺器
US11185376B2 (en) Robot for placement of spinal instrumentation
US20220175480A1 (en) Systems and methods for a kinematically-controlled remote center manipulator
US20220401160A1 (en) Robotic surgical system with rigid bed mount

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE