WO2023046043A1 - 生物动能收集装置及其制备方法 - Google Patents

生物动能收集装置及其制备方法 Download PDF

Info

Publication number
WO2023046043A1
WO2023046043A1 PCT/CN2022/120715 CN2022120715W WO2023046043A1 WO 2023046043 A1 WO2023046043 A1 WO 2023046043A1 CN 2022120715 W CN2022120715 W CN 2022120715W WO 2023046043 A1 WO2023046043 A1 WO 2023046043A1
Authority
WO
WIPO (PCT)
Prior art keywords
turret
rotor
permanent magnet
weight
cylinder
Prior art date
Application number
PCT/CN2022/120715
Other languages
English (en)
French (fr)
Inventor
廖维新
蔡明京
Original Assignee
香港中文大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港中文大学 filed Critical 香港中文大学
Publication of WO2023046043A1 publication Critical patent/WO2023046043A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/08Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching or like movements, e.g. from the vibrations of a machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1853Rotary generators driven by intermittent forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present application relates to the field of energy capture and energy reuse, and more specifically, to a wearable biokinetic energy harvesting device and a preparation method thereof.
  • One aspect of the present application provides a device for collecting kinetic energy from a wearer, including: a weight configured to swing with the movement of the wearer, thereby converting mechanical energy generated by the movement into kinetic energy of the weight; a turret mechanically coupled to the weight for receiving kinetic energy of the weight; a planetary gear train mechanically coupled to the turret for rotation with movement of the turret; and an interconnected stator assembly and a rotor assembly, wherein the stator assembly includes a coil, the rotor assembly includes a rotor and a third permanent magnet located on the rotor, wherein the rotor is mechanically coupled with the planetary gear train, and from the planetary gear The system receives the kinetic energy so that the third permanent magnet rotates with the rotor to change the magnetic flux of the coil to generate induced electromotive force.
  • the device further includes a base; and a magnetic spring assembly, including: a first permanent magnet, the first permanent magnet is fixed on the base, and a second permanent magnet, the second permanent magnet It is fixed on the turret, wherein the polarities of the first permanent magnet and the second permanent magnet repel each other.
  • the number of pole pairs of the third permanent magnet is a multiple of the number of pole pairs of the first permanent magnet, and the number of pole pairs of the third permanent magnet is the number of poles of the second permanent magnet Multiples of logarithms.
  • the planetary gear train includes a ring gear mechanically coupled to the arc surface of the turret on a side close to the rotor; a planetary gear meshing with the ring gear; and a sun gear meshing with the The planet gears mesh and have the concentric shafts with the rotor.
  • the turret includes a turret circular cylinder; and a turret cylinder that fits seamlessly with the turret circular cylinder, wherein the first The area has at least one of a through hole and a groove, wherein the projected shape of the first area on the side of the turret cylinder close to the rotor is a semicircle.
  • weighting blocks in a second region of the turret different from the first region.
  • the second area is located on the side of the first semicircular cylinder of the turret circular cylinder close to the rotor, and the weight is located on the side of the circular cylinder of the turret The side of the first semicircular ring away from the rotor.
  • the weight is composed of a first part of the circular cylinder and a second part of the circular cylinder seamlessly bonded, and the mass of the second part of the circular cylinder is greater than that of the first part of the circular cylinder The mass of the cylinder.
  • the first arc surface of the first partial ring is located on the same arc surface as the first arc surface of the second partial ring, and the second arc surface of the first partial ring is on the same arc surface as the first arc surface of the first partial ring.
  • the arc surface of the side of the turret ring cylinder away from the rotor is at least partially attached, and the side of the first part of the ring away from the base and the side of the turret away from the base are coplanar, and a side of the second partial ring remote from the turret is coplanar with a side of the substrate remote from the turret.
  • the projections of the first part of the circular cylinder and the second partial circular cylinder on the plane of the turret away from the rotor have a common center, and the center of the projection The angles are the same, wherein the central angle is less than 180°.
  • the stator assembly further includes a stator, and the coil is wound on a surface of the stator.
  • the weight, the magnetic spring assembly, the planetary gear train, the rotor assembly, the stator assembly and the base are arranged coaxially.
  • the base has at least one of a through hole and a groove for placing the coil.
  • the rotor assembly is located between the planetary gear train and the base, and the stator assembly is located between the rotor assembly and the base.
  • Another aspect of the present application provides a method of manufacturing a kinetic energy harvesting device, the method comprising: mechanically coupling a weight to a turret, wherein the weight is configured to swing with the movement of the wearer, thereby The mechanical energy generated by the movement is converted into the kinetic energy of the weight; a planetary gear train mechanically coupled with the turret is provided, and the planetary gear train rotates with the movement of the turret; and stators coupled to each other are provided assembly and a rotor assembly, wherein the stator assembly includes a coil, the rotor assembly includes a rotor and a third permanent magnet on the rotor, wherein the rotor is mechanically coupled to the planetary gear train, and the The gear train receives the kinetic energy so that the third permanent magnet rotates with the rotor to change the magnetic flux of the coil to generate an induced electromotive force.
  • it also includes fixing the first permanent magnet of the magnetic spring assembly on the base, and fixing the second permanent magnet of the magnetic spring assembly on the turret, wherein the first permanent magnet and The polarities of the second permanent magnets repel each other.
  • it also includes setting a ring gear on the arc surface of the turret close to the rotor; setting a planetary gear in the semicircle structure formed by connecting the turret and the weight, wherein, The planet gears mesh with the ring gear; and a sun gear meshing with the planet gears and having a concentric axis with the rotor is provided.
  • At least one of a through hole and a groove is formed in the first region of the turret cylinder, wherein the turret is composed of a turret ring cylinder and a turret cylinder.
  • the shape of the projection of the first region on the side of the turret cylinder close to the rotor is a semicircle.
  • it further includes forming a weight-increasing block in a second region of the turret, wherein the second region is a region of the turret cylinder excluding the first region.
  • the method of forming the stator assembly further includes providing a stator, and the coil is wound on a surface of the stator.
  • Another aspect of the present application provides an electronic device, which includes the kinetic energy harvesting device described in any one of the above.
  • the kinetic energy harvesting device provided by this application can convert the mechanical energy generated during biological movement into electrical energy, and at the same time, the magnetic spring can be used to enhance the kinetic energy collection efficiency, and the magnetic spring will not increase friction and interfere with power generation;
  • the kinetic energy harvesting device provided by this application has a compact structure, small volume and weight, high power generation and high energy density, and can be embedded in wearable electronic devices.
  • FIG. 1 is a schematic diagram of a half-section structure of a kinetic energy harvesting device according to an embodiment of the present application
  • Fig. 2 is a schematic diagram of a half-section exploded structure of a kinetic energy harvesting device according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a turret according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a kinetic energy harvesting device embedded in an electronic device according to an embodiment of the present application.
  • first, second, third, etc. are only used to distinguish one feature from another, and do not represent any limitation on the features, especially do not represent any sequential order. Accordingly, a first permanent magnet discussed in this application may also be referred to as a second permanent magnet, and vice versa, without departing from the teachings of this application.
  • the kinetic energy harvesting device 100 may have auxiliary means (not shown) adapted to be worn by the wearer, such as straps or other suitable securing devices adapted to bind the kinetic energy harvesting device 100 to any of the wearer's extremities.
  • the kinetic energy harvesting device 100 can also be embedded or set into a smart watch or other devices that require a power source, and use the energy collected by the kinetic energy harvesting device 100 from the wearer to power itself.
  • Fig. 1 is a schematic structural diagram of a kinetic energy harvesting device according to an embodiment of the present application
  • Fig. 2 is a schematic diagram of a half-section exploded structure of a kinetic energy harvesting device 100 according to an embodiment of the present application. The direction has been moved in position, forming the diagram shown in Figure 2.
  • the kinetic energy harvesting device 100 includes a turret 101 , a weight 102 , a planetary gear train 200 , a stator assembly 300 and a rotor assembly 400 coupled to each other.
  • the turret 101 can be composed of two parts: a circular cylinder and a cylinder.
  • the outer wall of the turret 101 may be the outer wall of a circular cylinder, and the outer wall is configured to be mechanically coupled with the ring inner wall of the weight 102 .
  • the inner sidewall of the turret 101 is the inner sidewall of a circular cylinder, and a mechanically coupled ring gear 110 is arranged on the inner sidewall.
  • the weight 102 can be, for example, a ring with a central angle of less than 180° and has an eccentric mass. Although it is shown that the weight 102 has the shape of a ring, other suitable shapes are also possible. In addition, the weight 102 can be made of high-density materials to improve the energy harvesting capability, such as tungsten alloy, copper alloy and the like. When the kinetic energy harvesting device 100 is worn on the limb of the wearer through the above-mentioned auxiliary tool (not shown) or set to other equipment worn on the limb of the user, the weight 102 will also swing along with the movement of the limb, Thereby generating corresponding kinetic energy.
  • the planetary gear train 200 is mechanically coupled to the inside of the ring body of the weight 102 and has a ring gear 110 , a rotor 107 , a planetary gear 103 and a sun gear 109 .
  • the sun gear 109 is coaxially connected to the rotor 107 .
  • the planetary gear 103 meshes with the sun gear 109 and the ring gear 110 respectively, and is located on a side close to the weight 102 . Specifically, during the movement of the wearer, the weight 102 obtains the kinetic energy of the wearer and drives the turret 101 to rotate.
  • the ring gear 110 mechanically coupled to the turret 101, such as the inner arc surface, rotates together with the turret 101, and Drive the planetary gear 103 to rotate, and then drive the sun gear 109 and the rotor 107 coaxially connected with the sun gear 109 to move.
  • the mutually coupled stator assembly 300 and rotor assembly 400 generate electromotive force according to energy collected from the weight 102 by the planetary gear train 200 .
  • the stator assembly 300 is located in the groove or through hole of the base 104 and includes a stator 301 and a coil 105 wound on the stator 301 .
  • the rotor assembly 400 is coaxially connected to the sun gear 109 and is coaxial with the base 104 .
  • the rotor assembly 400 includes a semicircular rotor 107 and a third permanent magnet 108 covering the edge of the rotor 107 and the semicircular surface.
  • the weight 102 transmits the kinetic energy of the wearer to the moving sun gear 109
  • the rotor 107 coaxially connected with the sun gear 109 also moves and drives the third permanent magnet 108 to rotate around the axis.
  • the movement of the third permanent magnet 108 changes the magnetic flux of the coil 105 , thereby generating an induced electromotive force and converting kinetic energy into electrical energy.
  • the kinetic energy harvesting device 100 has a base 104 and a magnetic spring assembly 500, specifically, the magnetic spring assembly 500 includes a first permanent magnet 106 fixed on the base 104 and a second permanent magnet fixed on the turret 101 111.
  • the polarities of the first permanent magnet 106 and the second permanent magnet 111 are repelling.
  • the number of pole pairs of the third permanent magnet 108 is a multiple of the number of pole pairs of the first permanent magnet 106 and the second permanent magnet 111 .
  • the first permanent magnet 106 is fixed on the base 104 and may be composed of several pairs of permanent magnets equal to the pole pairs of the first permanent magnet 106 and evenly arranged around the central axis of the base 104 .
  • a magnetic ring having a pole pair equal to that of the first permanent magnet 106 may also be used.
  • the first permanent magnet 106 can be magnetized radially, axially or in parallel, and can also be magnetized using a Halbach array, so that the magnetic field is concentrated on one side of the second permanent magnet 111 .
  • the second permanent magnet 111 is fixed on the turret 101, and may be composed of several pairs of permanent magnets and evenly arranged around the central axis of the turret 101, or a magnetic ring with several pairs of magnetic poles may also be used.
  • the second permanent magnet 111 can be magnetized radially, axially or in parallel, and can also be magnetized using a Halbach array, so that the magnetic field is concentrated on one side of the first permanent magnet 106, but the second permanent magnet 111 and the first permanent magnet 106 The magnetization directions are opposite, so that the second permanent magnet 111 and the first permanent magnet 106 have opposite polarities.
  • the turret 101 is free to rotate around the ring gear 110 .
  • Part of the unconnected part of the turret 101 and the weight 102 can be hollowed out, dug out, sunk, etc. to remove part of the material to achieve an asymmetric structure, thereby improving the overall eccentric mass and energy collection capacity.
  • the turret 101 and the weight 102 can be connected by bonding, welding and mechanical connection.
  • the material of the weight 102 can be selected to be the same as or different from that of the turret 101 to further improve the overall eccentric mass and energy collection capacity.
  • the turret 101 is composed of a turret cylinder 101a and a turret circular cylinder 101b seamlessly bonded, and at least one of a through hole and a groove is provided in the first region of the turret cylinder 101a , wherein the first region is located on the side of the turret cylinder 101a close to the rotor 107, and has a semicircular shape.
  • the second area of the turret 101 has a weighting block 112 (as shown in FIG. 3 ), and the second area is a part of the turret 101 different from the first area. In other words, the second area is located on the turret.
  • the side of the cylinder 101a away from the rotor 107 and together with the first area constitute the circular plane of the turret cylinder 101a. Further, the second area is located on the side of the first half-circle of the turret circular cylinder 101b that is close to the rotor 107, and at the same time, the weight 102 and the side of the first semi-circular cylinder of the turret circular cylinder 101b away from the rotor One side of 107 is mechanically coupled.
  • the weight 102 is composed of a first part of the circular cylinder 102 a and a second part of the circular cylinder 102 b without any gap.
  • the mass of the second portion of the annular cylinder 102b may be greater than the mass of the first portion of the annular cylinder 102a.
  • the weight 102 can be fixed on the outer cylindrical surface of the turret 101 or on the bottom plane of the turret 101 .
  • the first part of the circular cylinder 102a and the second part of the circular cylinder 102b have a concentric center, and the central angle of the projection in the plane formed by x and y is less than 180°, in other words, the first partial circle Both the ring cylinder 102a and the second partial ring cylinder 102b are less than half of a complete circle.
  • the stator assembly 300 includes a stator 301 and a coil 105 wound on the surface of the stator 301 , wherein the coil 105 is wound by a self-adhesive coil and can be wound on the iron core of the axial stator 301 . Further, the coil 105 can also be manufactured by printed circuit or three-dimensional printing.
  • the stator assembly 300 is located in the through hole or groove of the base 104 .
  • the turret 101 , the sun gear 109 , and the rotor 107 are arranged coaxially on the base 104 sequentially from top to bottom.
  • the third permanent magnet 108 may be magnetized in an axial direction or in a Halbach array, so that the magnetic field is concentrated on one side of the coil 105 to enhance power generation capacity.
  • the surface of the third permanent magnet 108 opposite to the coil 105 can be covered with a high magnetic permeability material, such as silicon steel, permalloy, etc., to enhance the power generation capability.
  • the number of pole pairs of the third permanent magnet 108 is a multiple of the number of pole pairs of the first permanent magnet 106 and the second permanent magnet 111 .
  • Another aspect of the present application also provides a method for preparing a kinetic energy harvesting device.
  • This method can produce any of the devices of the above-described embodiments.
  • the weight 102 is mechanically coupled with the turret 101, and the turret 101 can drive the planetary gear train 200 to move, wherein the weight 102 is used to move with the movement of the wearer.
  • the planetary gear train 200 moves together with the turret 101 mechanically coupled with the weight, and receives the kinetic energy transmitted by the weight 102; and sets the stator assembly coupled with each other 300 and a rotor assembly 400, wherein the stator assembly 300 includes a coil 105, the rotor assembly 400 includes a rotor 107 and a third permanent magnet 108 located on the rotor 107, the rotor 107 is mechanically coupled with the turret 101 to receive the kinetic energy of the weight 102, In order to make 101 the third permanent magnet rotate with the rotor 107 , the induced electromotive force is generated by changing the magnetic flux of the coil 105 .
  • the method for forming the kinetic energy harvesting device further includes setting the ring gear 110 on the arc surface of the turret 101 close to the rotor 107, and setting the ring gear 110 in the semicircular structure formed by the connection between the turret 101 and the weight 102.
  • the ring 110 meshes with the planetary gear 103
  • the sun gear 109 meshes with the planetary gear 103 .
  • the kinetic energy harvesting device 100 can efficiently utilize the limited space of the smart watch.
  • the weight swings around the central axis of the base 104 near the lowest potential energy point.
  • the first permanent magnet 106 and second permanent magnet 111 of the magnetic spring have phase
  • the polarity of repulsion generates a repulsive moment, which makes the weight 102 tend to be far away from the lowest potential energy point, thereby increasing the swing range of the weight 102, and the weight 102 obtains more biokinetic energy.
  • the biokinetic energy obtained by the weight 102 can be further improved.
  • the turret 101 connected with the weight 102 drives the sun gear 109 and the rotor 107 to rotate through the planetary gear 103 of the planetary gear train, so that the rotor 107 obtains a rotation speed higher than that of the weight 102 .
  • the third permanent magnet 108 on the rotor causes the coil 105 on the stator to produce a change in magnetic flux, thereby generating an induced electromotive force, converting mechanical kinetic energy into electrical energy, and providing power for smart watches.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

本申请提供了一种生物动能收集装置及其制备方法,该装置包括:重锤,用于随穿戴者的运动而摆动,从而将运动产生的机械能转化为重锤的动能;转动架,与重锤机械耦合,用于从重锤接收所述动能;行星轮系,与转动架机械耦合,以随转动架的运动而转动;以及相互耦合的定子组件和转子组件,定子组件包括线圈,转子组件包括转子以及位于转子上的第三永磁体,转子与行星轮系机械耦合,从行星轮系接收动能,以使得第三永磁体随转子转动,以改变线圈的磁通量以产生感应电动势。该装置还可包括底座和磁性弹簧组件。磁性弹簧组件还可包括第一永磁体以及第二永磁体,其中第一永磁体固定于底座上,第二永磁体固定于转动架上,第一永磁体和第二永磁体的极性相斥。

Description

生物动能收集装置及其制备方法 技术领域
本申请涉及能量捕获及能量再利用领域,更具体地,涉及一种穿戴式的生物动能收集装置及其制备方法。
背景技术
随着社会的发展,各种便携式、可穿戴式电子设备方兴未艾,例如智能手表、智能手环、无线耳机、虚拟现实眼镜、可穿戴健康监测设备等。这些设备主要依赖电池供电,然而,由于现有技术的限制,电池容量有限,导致电池续航力较短且需频繁充电。同时,现有的利用惯性轮发电的装置的厚度和体积通常较大,而且结构不够紧密、发电性能较低,因此难以嵌入到可穿戴电子设备中满足供电需求。所以,寻找一种新的可嵌入穿戴式电子设备的薄型化电源为电子设备供电,降低对电池的依赖和提高用户体验,是必要的和有意义的。
发明内容
本申请提出的实施方式可解决或部分解决上述背景技术部分提出的不足或现有技术中的其它不足。
本申请一方面提供了一种从穿戴者收集动能的装置,包括:重锤,用于随所述穿戴者的运动而摆动,从而将所述运动产生的机械能转化为所述重锤的动能;转动架,与所述重锤机械耦合,用于接收所述重锤的动能;行星轮系,与所述转动架机械耦合,以随所述转动架的运动而转动;以及相互耦合的定子组件和转子组件,其中,所述定子组件包括线圈,所述转子组件包括转子以及位于所述转子上的第三永磁体,其中,所述转子与所述行星轮系机械耦合,从所述行星轮系接收所述动能,以使得所述第三永磁体随所述转子转动,以改变所述线圈的磁通量以产生感应电动势。
在一个实施方式中,所述装置还包括底座;以及磁性弹簧组件,包括:第一永磁体,所述第一永磁体固定于所述底座上,以及第二永磁体, 所述第二永磁体固定于所述转动架上,其中,所述第一永磁体和第二永磁体的极性相斥。
在一个实施方式中,所述第三永磁体的磁极对数为所述第一永磁体的磁极对数的倍数,以及所述第三永磁体的磁极对数为所述第二永磁体的磁极对数的倍数。
在一个实施方式中,所述行星轮系包括齿圈,机械耦合于所述转动架的靠近所述转子的一侧的弧面;行星轮,与所述齿圈相啮合;以及太阳轮,与所述行星轮相啮合,并与所述转子具有所述同心轴。
在一个实施方式中,所述转动架包括转动架圆环柱体;以及转动架圆柱体,与所述转动架圆环柱体无缝隙贴合,其中,在所述转动架圆柱体的第一区域具有通孔以及凹槽中的至少一种,其中,所述第一区域在所述转动架圆柱体的靠近所述转子的一侧上的投影形状为半圆形。
在一个实施方式中,在所述转动架的不同于所述第一区域的第二区域具有增重块体。
在一个实施方式中,所述第二区域位于所述转动架圆环柱体的第一半圆环的靠近所述转子的一侧,以及所述重锤位于所述转动架圆环柱体的第一半圆环的远离所述转子的一侧。
在一个实施方式中,所述重锤由第一部分圆环柱体以及第二部分圆环柱体无缝隙地贴合组成,所述第二部分圆环柱体的质量大于所述第一部分圆环柱体的质量。
在一个实施方式中,所述第一部分圆环的第一弧面与所述第二部分圆环的第一弧面位于同一弧面上,所述第一部分圆环的第二弧面与所述转动架圆环柱体的远离所述转子的一侧的弧面至少部分贴合,以及所述第一部分圆环的远离所述底座的一侧与所述转动架的远离所述底座的一侧共平面,以及所述第二部分圆环的远离所述转动架的一侧与所述衬底的远离所述转动架的一侧共平面。
在一个实施方式中,所述第一部分圆环柱体与所述第二部分圆环柱体在所述转动架的远离所述转子一侧的平面上的投影共圆心,以及所述投影的圆心角相同,其中,所述圆心角小于180°。
在一个实施方式中,所述定子组件还包括定子,所述线圈缠绕在所 述定子的表面。
在一个实施方式中,所述重锤、所述磁性弹簧组件、所述行星轮系、所述转子组件、所述定子组件以及所述底座是同轴设置的。
在一个实施方式中,所述底座具有通孔以及凹槽中的至少一种,用于放置所述线圈。
在一个实施方式中,所述转子组件位于所述行星轮系和所述底座之间,以及所述定子组件位于所述转子组件与所述底座之间。
本申请另一方面提供了一种制备动能收集装置的方法,所述方法包括:将重锤与转动架机械耦合,其中,所述重锤用于随所述穿戴者的运动而摆动,从而将所述运动产生的机械能转化为所述重锤的动能;设置与所述转动架机械耦合的行星轮系,所述行星轮系随所述转动架的运动而转动;;以及设置相互耦合的定子组件和转子组件,其中,所述定子组件包括线圈,所述转子组件包括转子以及位于所述转子上的第三永磁体,其中,所述转子与所述行星轮系机械耦合,从所述行星轮系接收所述动能,以使得所述第三永磁体随所述转子转动,以改变所述线圈的磁通量以产生感应电动势。
在一个实施方式中,还包括将磁性弹簧组件的第一永磁体固定于底座上,并将所述磁性弹簧组件第二永磁体固定于所述转动架上,其中,所述第一永磁体和第二永磁体的极性相斥。
在一个实施方式中,还包括在所述转动架的靠近所述转子一侧的弧面上设置齿圈;在所述转动架和所述重锤连接形成的半圆结构内设置行星轮,其中,所述行星轮与所述齿圈相啮合;以及设置与所述行星轮相啮合,以及与所述转子具有同心轴的太阳轮。
在一个实施方式中,还包括在所述转动架圆柱体的第一区域形成通孔以及凹槽中的至少一种,其中,所述转动架由转动架圆环柱体和转动架圆柱体无缝隙地贴合组成,所述第一区域在所述转动架圆柱体的靠近所述转子的一侧上的投影形状为半圆形。
在一个实施方式中,还包括在所述转动架的第二区域形成增重块体,其中,所述第二区域为所述转动架圆柱体去除所述第一区域以外的区域。
在一个实施方式中,形成所述定子组件的方法还包括设置定子,所述线圈缠绕在所述定子的表面。
本申请再一方面提供了一种电子设备,所述设备包括上述任一项所述的动能收集装置。
根据本申请提供的动能收集装置及其制备方法可至少具有以下其中之一的优点:
1)本申请提供的动能收集装置可将生物运动时产生的机械能转换为电能,同时可利用磁力弹簧增强动能收集效率,且磁力弹簧不会增加摩擦和干扰发电;以及
2)本申请提供的动能收集装置结构紧密,体积、重量较小,发电功率大,能量密度高,可以嵌入穿戴式电子设备上。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其它特征、目的和优点将变得更加明显。在附图中:
图1是根据本申请实施方式的动能收集装置的半剖结构示意图;
图2是根据本申请实施方式的动能收集装置的半剖爆炸结构示意图;
图3是根据本申请实施方式的转动架的示意图;以及
图4根据本申请实施方式的动能收集装置嵌入电子设备中的示意图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制,尤其不表示 任何的先后顺序。因此,在不背离本申请的教导的情况下,本申请中讨论的第一永磁体也可被称作第二永磁体,反之亦然。
在附图中,为了便于说明,已稍微调整了部件的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。例如,在本申请中附图绘制的第一永磁体的厚度并非按照实际生产中的比例。如在本文中使用的“大致”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
还应理解的是,诸如“包括”、“包括有”、“具有”、“包含”和/或“包含有”等表述在本说明书中是开放性而非封闭性的表述,其表示存在所陈述的特征、元件和/或部件,但不排除一个或多个其它特征、元件、部件和/或它们的组合的存在。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,其修饰整列特征,而非仅仅修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有措辞(包括工程术语和科技术语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,除非本申请中有明确的说明,否则在常用词典中定义的词语应被解释为具有与它们在相关技术的上下文中的含义一致的含义,而不应以理想化或过于形式化的意义解释。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其它方面进行详细描述。
动能收集装置100可具有适于穿戴者佩戴的辅助工具(未示出),例如适于将动能收集装置100绑定到穿戴者四肢中任意之一的绑带或其他合适的固定装置。动能收集装置100还可以嵌入到或设定到智能手表或其它需要电源的装置,利用动能收集装置100从佩戴者收集的能量进行自行供电。
图1是根据本申请实施方式的动能收集装置的结构示意图,图2是根据本申请实施方式的动能收集装置100的半剖爆炸结构示意图,为方便观察,将图1中的各部件仅沿z方向进行了位置移动,形成如图2示图。如图1和2所示,动能收集装置100包括转动架101、重锤102、行星轮系200、相互耦合的定子组件300和转子组件400。
转动架101可由圆环柱体和圆柱体两部分构成。在一个实施方式中,转动架101的外侧壁可为圆环柱体的外侧壁,该外侧壁被设置为与重锤102的环体内壁机械耦合。转动架101的内侧壁为圆环柱体的内侧壁,并且在该内侧壁设置有机械耦合的齿圈110。
重锤102可例如为圆心角小于180°的环体,且具有偏心质量。在图中虽然示出了重锤102具有环体的形状,但是其他合适的形状也是可以的。此外,重锤102可用高密度材料制造以提高能量收集能力,例如可由钨合金、铜合金等制造。当将动能收集装置100通过上述辅助工具(未示出)佩戴到佩戴者肢体上或者设置到其它佩戴在用户肢体上的设备时,随着肢体的运动,重锤102也会随之产生摆动,从而产生相应的动能。
行星轮系200机械耦合于重锤102的环体内侧,并具有齿圈110、转子107、行星轮103以及太阳轮109。太阳轮109与转子107同轴地连接。行星轮103分别与太阳轮109以及齿圈110相啮合,并位于靠近重锤102的一侧。具体地,在穿戴者运动过程中,重锤102获得穿戴者的动能,带动转动架101转动,此时机械耦合于转动架101的例如内弧面的齿圈110随转动架101共同转动,并带动行星轮103转动,进而带动太阳轮109和与太阳轮109同轴连接的转子107运动。相互耦合的定子组件300和转子组件400根据行星轮系200从重锤102收集的能量生产电动势。如图2所示,定子组件300位于底座104的凹槽或者通孔内,并包括定子301以及缠绕在定子301上的线圈105。转子组件400与太阳轮109同轴地连接,且与底座104同轴。如图所示,转子组件400包括半圆形的转子107和覆盖在转子107的边缘以及半圆表面的第三永磁体108。当重锤102将穿戴者的动能传递至动太阳轮109后,与太阳轮109同轴连接的转子107也产生运动并带动第三永磁体108绕轴转动。 第三永磁体108的运动使得线圈105的磁通量发生改变,从而产生了感应电动势,将动能转化为电能。
在一些实施方式中,动能收集装置100具有底座104和磁性弹簧组件500,具体地,磁性弹簧组件500包括固定在底座104上的第一永磁体106和固定在转动架101上的第二永磁体111。在一个实施方式中,第一永磁体106和第二永磁体111的极性相斥。在一些实施方式中,第三永磁体108的磁极对数分别为第一永磁体106和第二永磁体111的磁极对数的倍数。第一永磁体106固定在底座104上,可由若干对和第一永磁体106磁极对相等的永磁体组成并环绕底座104中心轴均匀布置。在可选的实施方式中,也可采用具有和第一永磁体106磁极对相等的磁极对的磁环。第一永磁体106可径向、轴向或平行充磁,也可采用海尔贝克阵列充磁,使磁场聚集在第二永磁体111一边。
第二永磁体111固定在转动架101,可由若干对永磁体组成并环绕转动架101中心轴均匀布置,也可采用具有若干磁极对的磁环。第二永磁体111可径向、轴向或平行充磁,也可采用海尔贝克阵列充磁,使磁场聚集在第一永磁体106的一侧,但第二永磁体111和第一永磁体106充磁方向相反,使第二永磁体111和第一永磁体106具有相斥的极性。
在一些实施方式中,转动架101可围绕齿圈110自由转动。转动架101与重锤102未连接部分可采用镂空、挖孔、沉槽等工艺去除部分材料,以实现非对称结构,从而提高整体的偏心质量和能量收集能力。同时,转动架101与重锤102可通过粘接、焊接和机械连接等方式连接,重锤102的材质可选择与转动架101的材质相同或不同,进一步提高整体的偏心质量和能量收集能力。在一些实施方式中,转动架101由转动架圆柱体101a和转动架圆环柱体101b无缝隙贴合组成,在转动架圆柱体101a的第一区域具有通孔以及凹槽中的至少一种,其中,第一区域位于转动架圆柱体101a的靠近转子107的一侧上,且形状为半圆形。在一些实施方式中,转动架101的第二区域具有增重块体112(如图3所示),第二区域为转动架101不同于第一区域的部分,换言之,第二区域位于转动架圆柱体101a的远离转子107的一侧,且与第一区域共同构成转动架圆柱体101a的圆平面。进一步地,第二区域位于转动架圆环柱体101b 的第一半圆环的靠近转子107的一侧,同时,重锤102与转动架圆环柱体101b的第一半圆环的远离转子107的一侧机械耦合。重锤102由第一部分圆环柱体102a以及第二部分圆环柱体102b无缝隙地贴合组成。第二部分圆环柱体102b的质量可大于第一部分圆环柱体102a的质量。重锤102可固定在转动架101的外圆柱面,也可固定在转动架101的底平面上。
在一些实施方式中,第一部分圆环柱体102a与第二部分圆环柱体102b具有同轴心,且在x和y形成的平面内的投影的圆心角小于180°,换言之,第一部分圆环柱体102a和第二部分圆环柱体102b均小于一完整圆环的一半。
在一些实施方式中,定子组件300包括定子301以及缠绕在定子301表面的线圈105,其中,线圈105采用自粘线圈绕制,可绕在轴向定子301的铁芯上。进一步地,线圈105还可通过印刷电路或三维打印的方法制造。定子组件300位于底座104的通孔或者凹槽内。转动架101、太阳轮109、转子107从上至下依次同轴地设置在底座104上。在一些实施方式中,第三永磁体108可采用轴向充磁方式,也可采用海尔贝克阵列充磁,使磁场聚集在线圈105一边,以增强发电能力。在一个实施方式中,第三永磁体108可在与线圈105相反的一面覆盖高导磁材料,例如硅钢、坡莫合金等,以增强发电能力。第三永磁体108的磁极对数为第一永磁体106和第二永磁体111的磁极对数的倍数。
本申请的另一方面还提供了一种动能收集装置的制备方法。该方法可制备上述实施方式中的任一装置。在一些实施方式中,如图1和图2所示,将重锤102与转动架101机械耦合,转动架101可带动行星轮系200运动,其中,重锤102用于随穿戴者的运动而摆动,从而将运动产生的机械能转化为所述重锤102的动能,行星轮系200随与重锤机械耦合的转动架101共同运动,接收重锤102传递的动能;以及设置相互耦合的定子组件300和转子组件400,其中,定子组件300包括线圈105,转子组件400包括转子107以及位于转子107上的第三永磁体108,转子107与转动架101机械耦合,以接收重锤102的动能,以使得101第 三永磁体随转子107转动,通过改变线圈105的磁通量从而产生感应电动势。
在一些实施方式中,形成动能收集装置的方法还包括在转动架101的靠近转子107一侧的弧面上设置齿圈110,在转动架101和重锤102连接形成的半圆结构内设置与齿圈110相啮合的行星轮103、以及与行星轮103相啮合的太阳轮109。
由于在上文中描述动能收集装置的内容和结构可完全或部分地适用于在这里描述的制备方法,因此与其相关或相似的内容不再赘述。
本申请的另一方面还提供了一种包含上述任一动能收集装置100的电子设备,如图4所示,本申请的动能收集装置100可嵌入到例如智能手表900中,由于采用上述的技术方案,动能收集装置100可高效利用智能手表的有限空间。当用户正常活动摆动肢体时,由于惯性力和重力的共同作用,重锤在最低势能点附近围绕底座104中心轴摆动,同时,由于磁性弹簧的第一永磁体106和第二永磁体111具有相斥的极性,产生排斥力矩,使重锤102具有远离最低势能点的趋势,从而增大重锤102的摆动幅度,重锤102获得更多生物动能。同时,当转动架101采用非对称结构时,可进一步提高重锤102获得的生物动能。与重锤102相连的转动架101通过行星轮系的行星轮103驱动太阳轮109和转子107转动,从而使转子107获得高于重锤102的转动速度。转子107高速转动时,转子上的第三永磁体108使定子上的线圈105产生磁通量变化,从而产生感应电动势,把机械动能转换为电能,并可为智能手表供电。
以上描述仅为本申请的实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的保护范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离技术构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (20)

  1. 一种适于从穿戴物体收集动能的装置,包括:
    重锤,用于随所述穿戴者的运动而摆动,将所述运动产生的机械能转化为所述重锤的动能;
    转动架,与所述重锤机械耦合,用于从所述重锤接收所述动能;
    行星轮系,与所述转动架机械耦合,以随所述转动架的运动而转动;以及
    相互耦合的定子组件和转子组件,其中,所述定子组件包括线圈,所述转子组件包括转子以及位于所述转子上的第三永磁体,
    其中,所述转子与所述行星轮系机械耦合,从所述行星轮系接收所述动能,以使得所述第三永磁体随所述转子转动,以改变所述线圈的磁通量以产生感应电动势。
  2. 根据权利要求1所述的装置,其特征在于,所述装置还包括:
    底座;以及
    磁性弹簧组件,包括:
    第一永磁体,所述第一永磁体固定于所述底座上,以及
    第二永磁体,所述第二永磁体固定于所述转动架上,
    其中,所述第一永磁体和第二永磁体的极性相斥。
  3. 根据权利要求2所述的装置,其特征在于,所述第三永磁体的磁极对数为所述第一永磁体的磁极对数的倍数,以及
    所述第三永磁体的磁极对数为所述第二永磁体的磁极对数的倍数。
  4. 根据权利要求1所述的装置,其特征在于,所述行星轮系包括:
    齿圈,机械耦合于所述转动架的靠近所述转子的一侧的弧面;
    行星轮,与所述齿圈相啮合;以及
    太阳轮,与所述行星轮相啮合,并与所述转子具有同心轴。
  5. 根据权利要求1所述的装置,其特征在于,所述转动架包括:
    转动架圆环柱体;以及
    转动架圆柱体,与所述转动架圆环柱体无缝贴合,
    其中,在所述转动架圆柱体的第一区域具有通孔和凹槽中的至少一种,
    其中,所述第一区域在所述转动架圆柱体的靠近所述转子的一侧上的投影形状为半圆形。
  6. 根据权利要求5所述的装置,其特征在于,在所述转动架的不同于所述第一区域的第二区域具有增重块体。
  7. 根据权利要求6所述的装置,其特征在于,所述第二区域位于所述转动架圆环柱体的第一半圆环的靠近所述转子的一侧,以及所述重锤位于所述转动架圆环柱体的第一半圆环的远离所述转子的一侧。
  8. 根据权利要求1所述的装置,其特征在于,所述重锤由第一部分圆环柱体以及第二部分圆环柱体无缝贴合组成,所述第二部分圆环柱体的质量大于所述第一部分圆环柱体的质量。
  9. 根据权利要求8所述的装置,其特征在于,所述第一部分圆环的第一弧面与所述第二部分圆环的第一弧面位于同一弧面上,所述第一部分圆环的第二弧面与所述转动架圆环柱体的远离所述转子的一侧的弧面至少部分贴合,以及
    所述第一部分圆环的远离所述底座的一侧与所述转动架的远离所述底座的一侧共平面,以及所述第二部分圆环的远离所述转动架的一侧与所述衬底的远离所述转动架的一侧共平面。
  10. 根据权利要求8所述的装置,其特征在于,所述第一部分圆环柱体与所述第二部分圆环柱体在所述转动架的远离所述转子一侧的平面上的投影共圆心,以及所述投影的圆心角相同,其中,所述圆心角小于180°。
  11. 根据权利要求1所述的装置,其特征在于,所述定子组件还包括定子,所述线圈缠绕在所述定子的表面。
  12. 根据权利要求2所述的装置,其特征在于,所述重锤、所述磁性弹簧组件、所述行星轮系、所述转子组件、所述定子组件以及所述底座是同轴设置的。
  13. 根据权利要求2所述的装置,其特征在于,所述底座具有通孔以及凹槽中的至少一种,用于放置所述线圈。
  14. 根据权利要求1所述的装置,其特征在于,所述转子组件位于所述行星轮系和所述底座之间,以及
    所述定子组件位于所述转子组件与所述底座之间。
  15. 一种制备动能收集装置的方法,其特征在于,所述方法包括:
    将重锤与转动架机械耦合,其中,所述重锤用于随穿戴物体的运动而摆动,从而将所述运动产生的机械能转化为所述重锤的动能,;
    将所述转动架机械耦合于行星轮系,以使得所述行星轮系随所述转动架的运动而转动;以及
    设置相互耦合的定子组件和转子组件,其中,所述定子组件包括线圈,所述转子组件包括转子以及位于所述转子上的第三永磁体,
    其中,所述转子与所述行星轮系机械耦合,从所述行星轮系接收所述动能,以使得所述第三永磁体随所述转子转动,以改变所述线圈的磁通量以产生感应电动势。
  16. 根据权利要求15所述的方法,其特征在于,还包括:
    将磁性弹簧组件的第一永磁体固定于底座上,并将所述磁性弹簧组件的第二永磁体固定于所述转动架上,
    其中,所述第一永磁体和第二永磁体的极性相斥,以降低重锤的势 井深度,从而增强所述转动架从所述重锤接收的动能。
  17. 根据权利要求15所述的方法,其特征在于,还包括:
    在所述转动架的靠近所述转子一侧的弧面上设置齿圈;
    在所述转动架和所述重锤连接形成的半圆结构内设置行星轮,其中,所述行星轮与所述齿圈相啮合;以及
    设置与所述行星轮相啮合,以及与所述转子具有同心轴的太阳轮。
  18. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    在所述转动架圆柱体的第一区域形成通孔以及凹槽中的至少一种,
    其中,所述转动架由转动架圆环柱体和转动架圆柱体无缝隙地贴合组成,所述第一区域在所述转动架圆柱体的靠近所述转子的一侧上的投影形状为半圆形。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    在所述转动架的第二区域形成增重块体,
    其中,所述第二区域为所述转动架圆柱体去除所述第一区域以外的区域。
  20. 一种电子设备,其特征在于,所述设备包括权利要求1至14中任一项所述的动能收集装置。
PCT/CN2022/120715 2021-09-24 2022-09-23 生物动能收集装置及其制备方法 WO2023046043A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111120926.0A CN115912783A (zh) 2021-09-24 2021-09-24 生物动能收集装置及其制备方法
CN202111120926.0 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023046043A1 true WO2023046043A1 (zh) 2023-03-30

Family

ID=85706097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120715 WO2023046043A1 (zh) 2021-09-24 2022-09-23 生物动能收集装置及其制备方法

Country Status (3)

Country Link
US (1) US20230093955A1 (zh)
CN (1) CN115912783A (zh)
WO (1) WO2023046043A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032986A (ja) * 2001-07-10 2003-01-31 Seiko Epson Corp 電子機器
CN204965023U (zh) * 2015-08-20 2016-01-13 惠州比亚迪电子有限公司 用于智能手表的能量收集模组和智能手表
KR101720454B1 (ko) * 2016-01-11 2017-04-03 이재혁 휴대용 발전기
CN111525768A (zh) * 2019-02-01 2020-08-11 香港中文大学 人体动能收集装置及其转换方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032986A (ja) * 2001-07-10 2003-01-31 Seiko Epson Corp 電子機器
CN204965023U (zh) * 2015-08-20 2016-01-13 惠州比亚迪电子有限公司 用于智能手表的能量收集模组和智能手表
KR101720454B1 (ko) * 2016-01-11 2017-04-03 이재혁 휴대용 발전기
CN111525768A (zh) * 2019-02-01 2020-08-11 香港中文大学 人体动能收集装置及其转换方法

Also Published As

Publication number Publication date
US20230093955A1 (en) 2023-03-30
CN115912783A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
CN106849599B (zh) 一种电磁摩擦压电复合式能量采集器
CN110138260A (zh) 一种环境机械能复合收集转化装置
US20170047767A1 (en) Connector-free magnetic charger/winder
CN111181346B (zh) 一种面向海洋机器人的电磁式振动能量收集装置
CN105846642A (zh) 磁体阵列平面转动式能量采集器
EP3059850A1 (en) Mobile induction and power-generation device
EP0990961B1 (en) Electromagnetic transducer and electronic device including the transducer
CN110492788A (zh) 一种压电-电磁耦合的上变频多方向振动俘能装置
CN215072093U (zh) 一种智能穿戴设备用电磁式能量收集器
CN103066782A (zh) 磁电式微发电机
WO2023046043A1 (zh) 生物动能收集装置及其制备方法
CN103925291A (zh) 一种永磁偏置混合轴向磁轴承
CN111756126B (zh) 一种磁场调制升频式的电磁俘能装置
KR20160141271A (ko) 발전기
WO2018196551A1 (zh) 自发电装置及智能穿戴设备
CN104868690B (zh) 一种振动能量收集装置
CN210380694U (zh) 一种压电-电磁耦合的上变频多方向振动俘能装置
CN210780390U (zh) 能量收集装置及可穿戴电子设备
CN103280910B (zh) 轴向磁场磁电式微发电机
CN112865473A (zh) 一种基于fpc工艺和电磁耦合的微型可穿戴能量收集装置
CN111525768B (zh) 人体动能收集装置及其转换方法
CN201068842Y (zh) 微振动发电器
US20190319553A1 (en) Three-dimensional kinetic generator
CN215010011U (zh) 一种基于fpc工艺和电磁耦合的微型可穿戴能量收集装置
CN113300446A (zh) 一种运动充电装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872087

Country of ref document: EP

Kind code of ref document: A1